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ABSTRACT 

Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of 

American adults have one or more types of CVD. The importance of continuous monitoring of the 

older population, for early detection of changes in health conditions, has been shown in the 

literature, as the key to a successful clinical intervention. We have been investigating 

environmentally-embedded in-home networks of non-invasive sensing modalities. This 

dissertation concentrates on the signal processing techniques required for the robust extraction of 

morphological features from the ballistocardiographs (BCG), and machine learning approaches to 

utilize these features in non-invasive monitoring of cardiovascular conditions. 

At first, enhancements in the time domain detection of the cardiac cycle are addressed due 

to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed 

enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% 

improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations 

compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These 

results are still subject to some errors, primarily due to the contamination of noise and motion 

artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory 

activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation 

as they slightly modify the morphology of the BCG waveform. 

Wavelet-based and the empirical mode decomposition (EMD) techniques were then applied 

to remove the noise components of the signal. Both the original and the enhanced implementations 

of the energy algorithm were then applied to the output of each denoising method, to compute an 

average heart rate for each epoch of 30 seconds. A detailed analysis of these estimations is provided 

for each combination of datasets and denoising techniques. In overall, the Daubechies wavelet 

decomposition and the ensemble empirical mode decomposition (EEMD) were shown to provide 
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the best results. While the estimations provided by the original energy algorithm have errors in the 

range of 16 beats per minute, combining the enhanced energy algorithm and the denoising 

techniques reduces the average error to about 4 beats per minute.  

Most of our BCG instruments have more than one data channel including the 3 axes of the 

accelerometer or the 4 transducers of the hydraulic bed sensor. Even after denoising the BCG 

signals from different channels, the waveforms acquired from each channel may have a different 

level of signal quality (SQ) mostly due to their distance from the body’s center of mass or their 

direction. Multiple channel selection schemas have been studied in the current dissertation, to 

provide a general guideline on choosing the best signal among all available ones. The results of 

these automatic channel selections can match the manual selections by 78%, which is much higher 

than the 30%-50% acquired from the previous DC level approach. 

After denoising the signal and providing a robust estimation for the fiducial points of the 

BCG waveform, a morphological BCG template is created using the ensemble averaging. 

Abnormal and normal variations of these templates were studied under different conditions. For 

example, the amplitude of the J-peak is shown to decrease from the baseline by 7.4% during 

exhalation while it increases by 5.2% during inhalation. These morphological features of the BCG 

waveform are also investigated for the cuff-less estimation of the relative change in the blood 

pressure on 48 subjects. Among different morphological features, the summation of the amplitude 

of the two sides of the J-peak (IJ+JK) shows a mean correlation above 94% to the reference changes 

in the systolic blood pressure. 

All the methods and algorithms discussed in this manuscript have been evaluated against 

multiple datasets collected simultaneously from the ballistocardiography device and the reference 

signals such as ECG. We have recruited a total of 62+51+75+50 volunteers in 4 different IRB 

approved studies, both in the lab and hospital settings, for periods of as long as eight hours of 

continuous data collection.
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1. INTRODUCTION 

1.1. Motivation 

According to the American Heart Association [1], cardiovascular disease (CVD) was the 

underlying cause of death for nearly 836,546 adults in the US, between 2013 to 2016. About 48% 

of American adults have one or more types of CVD, which covers about 89.3% of males and 91.8% 

of females of 80 years or older. In the US, Coronary heart disease is the leading cause of death 

related to cardiovascular disease, followed by stroke, heart failure, and high blood pressure. About 

80.0% of males and 85.6% of females of 75 years or older suffer from high blood pressure. With 

the goal of meeting the desire of the older adults to remain in their home setting while controlling 

healthcare costs, we have been investigating, and refining health alerts produced by 

environmentally-embedded in-home sensor networks designed to detect early signs of health 

change and functional decline in older adults, the keys to successful intervention.  

Home-based intelligent monitoring systems have the potential to detect health problems 

based on relative changes in normal life activities over an extended period [2]. Longitudinal in-

home vital signs measurement gives clinicians the ability to track long-term trends in patients’ 

health conditions. This information can be used to direct therapeutic decisions or determine the 

need for a follow-up visit [3]. Unobtrusive in-home systems could especially benefit older adults 

and subjects of reduced mobility [4]. When our sensor network detects these changes, the system 

automatically sends appropriate alerts to the caregivers to allow early intervention (Figure 1.1). 

Thus, by helping older adults remain healthier, active, and in control of their chronic illnesses with 

early detection of changes in health status and early intervention by health care providers, millions 

can remain independent as they age, avoiding or reducing debilitating and costly hospital stays and, 

for many, avoiding or delaying the move to a nursing home. 
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Figure 1.1. Environmentally-embedded in-home sensor networks for early detection of health 

change and functional decline in older adults.  

Ballistocardiography (BCG) is a non-invasive technique of monitoring cardiovascular 

parameters which captures the cyclic motion of the human body caused by the movement of heart 

and blood flow inside the arteries during each heartbeat. It has been shown to be very valuable, 

particularly for long-term evaluation of myocardial strength [2]. The effect of CVD on the 

morphological variations in the BCG waveform have been studied previously,  and BCG has been 

demonstrated as a potential cardiovascular diagnostic tool [3]. A 20-year BCG follow-up of 211 

subjects by Starr and an 18-month clinical BCG measurement by Mandelbaum et al. on 100 patients 

recovering from heart attack show the prognostic value of BCG in monitoring cardiac function. 

BCG signals can be captured using the low-cost sensors that are embedded in a bed or chair, with 

the advantage of not needing the presence of medical staff [6]. 

Ballistocardiography offers advantages over the ECG measurement, as (i) direct body 

contact is not required and (ii) the signal is not limited to the cardiac function but also reflects the 

status of the more extensive cardiovascular system. These advantages provide intriguing 

possibilities of continuous passive monitoring of the cardiovascular system without requiring 
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anything from the patient. Presently, though, a crucial issue limits the utilization of BCG over ECG. 

Over the years, ECG measurements and their interpretations have been standardized, so that, given 

a specific lead placement, abnormalities in the ECG waveform bear particular clinical meaning. 

Conversely, to date, standardized methods to interpret the BCG signal obtained from different 

sensing devices are not available; thus, hindering the use of BCG as a clinical diagnostic and 

monitoring instrument. The lack of knowledge of how the physiological BCG waveform should 

look with different sensing systems makes it extremely challenging to identify and characterize 

instances when changes in the BCG waveform are indicative of pathological conditions. 

A variety of systems can be used to capture BCG signals, including beds [7, 8], chairs [9], 

and weighing scales [10]. Bed-based sensors, in particular, have the potential advantage of long 

term BCG acquisition throughout the night [3]. Our hydraulic bed sensor targets the longitudinal 

and noninvasive monitoring of vital signs including, but not limited to, the heart rate, respiratory 

rate, sleep posture, sleep stage, blood pressure, and other cardiac conditions [11-13]. While these 

systems provide a high degree of freedom for the subjects [6], they are highly susceptible to motion 

artifacts [3]. The coincidence of BCG bandwidth (0.5-10 Hz) with several sources of motion, 

including respiratory fluctuation of the chest, body postural change, or limb movements, is the 

leading cause [14]. According to [15], even in the controlled longitudinal experiments with BCG, 

only 29% of the head-foot waveforms (in men) are considered normal, and the rest have different 

levels of noise. Inaccurate estimation of cardiac parameters from the artifact-contaminated BCG 

records could negatively affect the quality of future studies. This emphasizes the need for methods 

to deal with motion artifacts and to choose the best possible channel, before any feature extractions 

and health analysis. 

Furthermore, most of the existing machine learning studies in the field of 

ballistocardiography are based on features engineered using the expert domain knowledge, which 

requires an intensive, time consuming and manual process of design and experiment with the hope 
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of learning some general properties throughout the entire population. Developing such a 

generalizable set of features requires a large population of all different ages and disorders as the 

training set. It has been reported that the cardiovascular parameters and in specific the ones 

potentially accessible via ballistocardiography vary a lot among subjects of different age and health 

condition. This implies the necessity of exploring newer and more generalizable feature extraction 

methods, and also the application of modern techniques to transfer the knowledge gained and 

developed through other sensing modalities, to infer vital information from BCG. Mathematical 

and data-driven models could help in providing causal relationships between the health conditions 

and the anticipated variations in the ballistocardiographic parameters. 

In a long-term view, this research will investigate the state-of-the-art techniques to provide 

data-driven models for accurate extraction of reliable and understandable ballistocardiography 

features using the template waveforms acquired from real subjects in their typical day and night 

activities at their home or assisted living facilities. Better non-invasive monitoring predictors for 

different vital signs, including the change in blood pressure, restlessness, and sleep conditions will 

help the family members and the nursing staff to provide better care for this growing population.  

1.2. Primary Goals 

The primary objectives of this research include: 

• Better understanding of the physiology of ballistocardiography through: 

- Studying the literature on the origin of ballistocardiography. 

- Understanding the potential parameters that affect the BCG waveform. 

- Comparing the properties of different ballistocardiography devices. 

• Collecting a comprehensive set of data: 

- Controlled and in-lab data collections for exploring new concepts. 

- Overnight data collections in home or hospital settings with manual annotations. 
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• Exploring the non-BCG components of the acquired signal 

- Sleep posture classification by means of the DC level of the four hydraulic bed 

transducers.  

• Designing more robust algorithms to detect cardiac function: 

- Incorporating physiology-based enhancements in time domain heartbeat detection. 

- Evaluating the effect of noise on this algorithm and the appropriate compensations. 

- Selecting a channel to increase the accuracy and reduce the computational time. 

• Preprocessing the signals acquired from the hydraulic bed sensor for the longitudinal and 

non-invasive measurement of cardiovascular parameters: 

- Reduction, detection, and cancellation of the noise and motion artifacts. 

- Selecting the channel with the highest signal quality index. 

- Identifying the potentially less affected and highly consistent segments of the 

signal, regarding the motion artifacts, sleep posture, and hemodynamics such as 

sleep stages, from a longitudinal perspective. 

• Creating waveform templates and extracting morphological features used to track different 

health parameters: 

- Studying the normal systemic variations of the BCG waveforms during respiratory 

cycles or as a result of aging. 

Estimating the change in blood pressure by monitoring the morphological 

variations of the BCG waveform. 
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1.3. Proposed Research Tasks 

The following table shows the work plan presented in the research proposal, with updates on 

what has been completed in the final dissertation. The significant part of the new work is related to 

different motion artifact detection and denoising techniques. I also tried different channel selection 

schemas. Therefore, I introduced the signal quality index (SQI), SNR, and two other methods for 

channel selection, and compared them against the Oracle approach. I also have studied the effect 

of these improvement techniques on the accuracy of sleep stage classification. Although the results 

were not different from the previous case, I provided in Chapter 9 a detailed description on the 

implementation and some discussion on the possible reasons. 

Table 1. The proposed research tasks with the corresponding chapter in this dissertation  

 

Description

Previous Progress

C
urrent Progress

C
hapter Num

ber

Fundamentals of ballistocardiography Ch2

●Physiology  ●Instrumentations(Classic, Modern)  ●Classes(D-V-A) Ch3

Different approaches to create morphological templates

●Alignment ●Normalization ●Averaging (Mean, Median) ●Dynamic Time Warping

Already published work

Energy algorithm to estimate heart rate from ballistocardiographs

Time domain features and NN for sleep posture detection Ch4

Feasibility study on morphological features to estimate the relative change of blood pressure Ch8

Time and frequency domain features for sleep stage detection BHI19

Age related variations in the morphology of BCG EMBEC17

Respiratory related variations in the morphology of BCG BHI17

Related data collections Ch3.4

HRV and Blood pressure   /  60  young subjects  /  10 + 3 + <7 minutes Ch5

Blood pressure                  /  50  young-old subj  / 10 minutes Ch8

Sleep posture                    /  60  young subjects  /  1 + 1 + 1 minutes Ch4

SleepLab data                   /  75  patients            /  7-8 hours BHI19

Different Mattresses          /   2   Subjects            /  3 x (5 x 10)  minutes Ch7.3

Chair sensor                      /  45  older subjects   /  10 minutes Ch3.4

Distortions in ballistocardiographs

●Motion artifacts  ●Respiratory variations  ●System (Instrumentation/Mattress) 

Motion artifact detection and reduction 90% 100% Ch6

Time-frequency features for motion artifact detection 100% 100% Ch6.4

EMD & Wavelets for motion artifact reduction 60% 100% Ch6.3

Morphological variations caused by respiratory cycle Ch7.3.2

●Cause(RSA/HRV)   ●Effects(Energy, Blood Pressure)   ●Compensation Ch5.2.1

Improved energy algorithm for beat detection 90% 100% Ch5.2

Re-implement selected literature on beat detection 40% * channel selection

Improved sleep stage classification using

●Improved HRV features   ●Improved respiratory features   ●Reduced motion artifacts

Cuff-less monitoring of relative blood pressure variations

●Improved energy algorithm   ●Reduced noise and artifact  ●Respiratory effect

Ch5

Ch7.3

Ch10.1

Ch8

100%

100%

100%

100%

100%

Ch7

100%

100%

100%

100%

100%

100%

100%

100%

70%

80% 100%
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1.4. Dissertation Organization 

Chapter 2 provides an in-depth review of the main physiological functionalities of the 

cardiovascular system and standard approaches to evaluate them. It reviews the historical evolution 

of ballistocardiography, including a list of the most extensive studies in the field, physiological 

formulation of BCG, the classical instrumentations, and their sample waveforms. The 

standardization process to group all classical devices into four general categories, as well as a list 

of recent and modern instrumentation, is included in this chapter. 

Chapter 3 will specifically focus on the ballistocardiography devices that have been 

developed in our lab. I have been using two different BCG sensors, including the hydraulic bed 

sensor and the accelerometer-based suspended bed, as a replica for Isaac Starr’s sensor. We also 

have tried recliner chair for respiratory and heart rate monitoring. The detailed specification of each 

sensor as well as a sample signal recording from each one is provided. This chapter also provides 

the required information about the IRB approved data collections that are being used in this 

dissertation. Our datasets always contain synchronized ECG signal as a reference, while depending 

on the case many other simultaneously recorded signals are also available. 

Chapter 4 reports the application of machine learning techniques on estimating the sleep 

posture from the hydraulic bed sensor. Sleep posture introduces variations in the signals acquired 

by the hydraulic bed sensor, including the differences in the DC bias. It is also considered as a 

potential source of variations in the morphology of BCG waveforms, due to the change in the 

heart’s orientation. Meanwhile, different postures may introduce different breathing and sleep 

qualities, thus extracting the sleep posture will provide benefits for different applications. By 

extracting some statistics from the amplitude of the four transducers, a feed-forward artificial neural 

network was trained and tested against manually annotated data. The data collection was designed 

explicitly for this purpose and consists of data on four different sleeping postures from 60 subjects 

in the lab. The initial idea was to utilize the variation in the shape of BCG signals as an indicator 
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for the direction of BCG variations. But finally, the direction of the chest rib cage seemed to have 

the highest impact on the hydraulic bed sensor signals than the variations in the BCG morphology. 

I have also realized some other possible improvements in the processing and analysis techniques 

that the rest of the dissertation will focus on, as schematically presented in Figure 1.2. 

Chapter 5 focuses on time-domain detection of a heartbeat from the BCG as the surrogate 

approach for the beat to beat estimation of heart rate and therefore the critical step in the 

noninvasive analysis of heart rate variability and sleep stages. Our previously published energy 

algorithm is studied using different datasets with different levels of noise contamination and age-

related BCG abnormality. Multiple improvements are proposed and tested to enhance the quality 

of the beat detection. The beat to beat estimations of the resulted enhanced energy algorithm are 

evaluated against the ECG R-peak estimations as the ground truth and have shown at least 50% 

improvement in the accuracy of the beat to beat heart rate estimation. 

Chapter 6 deals specifically with the motion artifact contamination of the ballistocardiograms 

and its effect on lowering the accuracy of our algorithms to estimate the beat-to-beat heart rates 

and consecutively the heart rate variability (HRV), sleep stage classification and perhaps any 

features being extracted from the BCG sensors. This chapter first shows the application of two 

general noise reduction techniques, namely the wavelet decomposition and the empirical mode 

decomposition (EMD), and some of their variants. It is followed by introducing a machine learning 

method based on time and frequency domain features to detect, localize, and discard the remaining 

artifact affected parts of the signal. The last section of this chapter investigates different approaches 

for channel selection and evaluates them against the manual channel selection; hereafter called the 

oracle. The overall accuracy improves by about 70% compared to the conventional approach. 

Having prepared a clean BCG signal from the best channel and an enhanced beat detection 

algorithm, Chapter 7 describes how to create a morphological BCG template through segmentation 

and ensemble averaging. Some normalization and alignment techniques are proposed in order to 
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create a more reliable template and monitor their variations during different physiological events. 

The typical morphology of the BCG waveform is shown to be altered due to some systematic 

variations in the cardiovascular system, such as age or respiration. This chapter also contains the 

utilization of morphological templates to characterize our BCG devices. 

In Chapter 8, our non-invasive approach to estimate the relative change in systolic blood 

pressure based on the variation of morphological parameters is discussed. In the previous chapters, 

I have provided details on denoising, selection, segmentation, and template creation from the BCG 

signals, and described different parameters one might consider in designing the proper features 

from the BCG. In Chapter 8, I have provided the results of some new features to estimate the change 

in blood pressure that have not yet been published. I have also described how the inflation of the 

reference blood pressure cuff affects the BCG waveforms and the morphological features. 

In Chapter 9, I have investigated some new ideas to improve the accuracy of sleep stage 

classification. Supported by the results that I have reported in the previous chapters on different 

approaches to improve the accuracy of beat to beat heart rate estimation from the BCG signals, I 

focused on the enhancement of the HRV features in sleep stage classification. First, using the 

channel selection techniques, I pick the best transducer and then using the enhanced energy 

algorithm I better defined the individual BCG cycles. On top of them, I tried two new classification 

algorithms compared to our previously published paper. Results of these experiments do not show 

any improvement in the classification accuracy, which has been discussed at the end of the chapter. 

Although each chapter has its own dedicated results and conclusion section, Chapter 10 also 

provides an overview and summary of the work as a whole, the major contributions, and my 

suggested ideas for future work. Finally, detailed description of the codes and information about 

the organization of datasets are provided in Appendices A and B.   
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Figure 1.2. Proposed steps required in morphological analysis of waveforms, starting from the 

raw BCG signal to the creation of waveform templates.  

 

1.5. Contributions 

• Development of an enhanced algorithm for accurate beat detection in BCG 

- Fast, time domain, and robust against small motion artifacts. 

• Investigation of different approaches to evaluate and improve the quality of the BCG signal 

- Application of noise reduction techniques to minimize the effect of artifacts. 

- Designing a machine learning approach to detect and discard noisy segments. 

- Introducing the use of different signal quality indices to select the best channel. 

• Sleep posture classification from the four hydraulic bed sensors 

- Identifies consistent portions of sleep over multiple nights, which results in more 

consistent morphological templates in longitudinal studies. 

• Template-based analysis of the morphology of BCG waveforms 

- Designing the procedure to create physiologically, reliable BCG templates. 
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- Studying the variation of these templates during the respiratory cycle, or due to the 

change in cardiovascular parameters such as the change in blood pressure or aging. 

• Preparation of the most extensive annotated datasets using the hydraulic bed sensor 

- I was engaged in 4 IRB approved data collections with more than 570 hours of 

BCG signal synchronized with other reference signals including but not limited to 

ECG and PPG. 

1.6. Publications 

This work has resulted in the following 12 publications, wherein all of them, I was engaged 

with both the data collection and developing the algorithms. My main contribution in these papers 

is mostly about the signal segmentation, creation of the templates and machine learning approaches 

in the analysis of morphological features with a focus on the potential impact of motion artifacts 

and age and respiratory variations of the measurements. 

(1) Enayati, M., Skubic, M., Zanjirani Farahani, N., 2019. Motion Artifact Detection in 

Ballistocardiograms using Machine Learning Techniques. IEEE International Conference on 

Biomedical and Health Informatics May. 19-22, 2019, Chicago, Illinois, USA.  

(2) Yi, R., Enayati, M., Keller, J.M., Popescu, M., Skubic, M., 2019. Non-Invasive In-Home Sleep 

Stage Classification Using A Ballistocardiography Bed Sensor. IEEE International Conference on 

Biomedical and Health Informatics May. 19-22, 2019, Chicago, Illinois, USA.  

(3) Ullal, A., Su, B.Y., Enayati, M., Skubic, M., Despins, L., Popescu, M., Keller, J., 2019. Non-

Invasive Monitoring of Vital Signs for Older Adults Using Recliner Chairs. IEEE Journal of 

Biomedical and Health Informatics. (Under review) 

(4) Guidoboni, G., Sala, L., Enayati, M., Sacco, R., Szopos, M., Keller, J., Popescu, M., Despins, 

L., Huxley, V., Skubic, M., 2018. Cardiovascular function and ballistocardiogram: a relationship 

interpreted via mathematical modeling. IEEE Transactions on Biomedical Engineering. 

(5) Su, B.Y., Enayati, M., Ho, K.C., Skubic, M., Despins, L., Keller, J.M., Popescu, M., 

Guidoboni, G., and Rantz, M., 2018. Monitoring the Relative Blood Pressure Using a Hydraulic 

Bed Sensor System. IEEE Trans. on Biomedical Engineering. 

(6) Enayati, M., Skubic, M., Keller, J.M., Popescu, M. and Farahani, N.Z., 2018, July. Sleep 

Posture Classification Using Bed Sensor Data and Neural Networks. In 2018 40th Annual 
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International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 

461-465). IEEE. 

(7) Enayati, M., B.-Y. Su, L. Despins, and M. Skubic (2017). Investigating the Interaction between 

Ballistocardiogram and Cardiac Age. European Medical and Biological Engineering Conference 

EMBEC. 

(8) Enayati, M., B. Y. Su, L. Despins, M. Skubic, J. M. Keller, and M. Popescu (2017). 

Investigating the Interaction between Ballistocardiogram and Respiratory Phases. 2017 IEEE 

International Conference on Biomedical and Health Informatics Feb. 16-19, 2017, Orlando, 

Florida, USA. 

(9) Skubic, M., Su, B.Y., Enayati, M., Zare., A., Jiao, C., Lyons, P. and H., K.C. (2016). 

Multimedia Investigation of BCG and SCG Signals. CIC, BCG-SCG Workshop, Vancouver, B.C., 

Canada. 

(10) Lydon, K., Su, B.Y., Rosales, L., Enayati, M., Ho, K.C., Rantz, M., and Skubic, M., 2015, 

August. Robust heartbeat detection from in-home ballistocardiogram signals of older adults using 

a bed sensor. In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual 

International Conference of the IEEE (pp. 7175-7179). 

(11) Enayati, M., Banerjee, T., Popescu, M., Skubic, M., and Rantz, M., 2014, August. A novel 

web-based depth video rewind approach toward fall preventive interventions in hospitals. 

In Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conf. of 

the IEEE (pp. 4511-4514). IEEE. 

(12) Banerjee, T., Enayati, M., Keller, J.M., Skubic, M., Popescu, M., and Rantz, M., 2014, 

August. Monitoring patients in hospital beds using unobtrusive depth sensors. In Engineering in 

Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the 

IEEE (pp. 5904-5907). IEEE.  
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2. BACKGROUND ON BALLISTOCARDIOGRAPHY 

2.1. Definition  

Ballistocardiography is the technique to visualize the slight movements imparted to the 

human body’s center of mass caused by the cyclic displacement of the heart and flow of blood in 

the vessels after each cardiac contraction [16]. Heart activity can be described as a cyclic repetition 

of two mechanical phases: The systolic or ejection phase when the blood in the heart chambers 

being pumped out via the heart contraction, and the diastolic phase wherein the heart is resting and 

being filled by the blood. Figure 2.2 represents the internal and external anatomy and circulation 

of the heart. The heart contraction in the systolic phase results in the movement of the heart and 

causes a change in the distribution of blood through the body. This movement is being captured 

and visualized through a technique named Ballistocardiography [17]. 

J.W. Gordon [18] was the first who published his observations of the oscillations in the 

needle of the old mechanical weight scales, synchronous to the heartbeat of the person (Figure 

2.1.b). He used the ordinary (by that time) sphygmography device (Figure 2.1.a) to derive this 

motion, which is caused by heart pushing the blood upward into the aorta. The blood then flows 

downward to the lower body, after hitting the aortic arch. These action and reaction forces cause 

cyclic variations in measurements of the weighing scale [16]. 

 

Figure 2.1. Keyt simple sphygmograph with the calibrated tube from [19](A), and an example 

reading(B). 
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One of the first BCG measurements in the controlled environment was recorded by 

Henderson [20] (1905) using a “swinging table” and a set of levers, followed by the seismograph 

bed used by [21], and [22] who suspended an aluminum chair from steel springs. However, it took 

until 1961 when Starr and Wood [16] developed the first mature description for 

ballistocardiography and its measurement. By 1954 there were at least 300 papers on 

ballistocardiography in medical literature throughout the world [23].  

The prognostic value of ballistocardiograms was reported by Starr in [24] after five years of 

follow up studies on 221 hospital patients (or until death). Starr determined relationships between 

longevity and BCG and proposed recommendations for doctors to utilize the BCG recordings in 

their evaluations. Table 2.1 lists the most significant studies on variations and the diagnostic and 

prognostic potential of ballistocardiography. 

Table 2.1. Review of the most extensive ballistocardiography studies. 

Reference Duration Num. of Subjects Study 

Starr and Wood [16] 20 years 211 healthy subjects Physiological age of the heart 

Alametsä and Viik [25] 12 years 1     healthy subject BCG Alterations on EMFi 

Lynn and Wolf [26] 7 years 134 patients Prognosis ischemic disease 

Erina [27] 1 time 428 patients Diagnosis of arteriosclerosis 

Scarborough, et al. [28] 1 time 369 normal subjects Normal vs. Borderline BCG 

Abrams and Edger [29] 1 time 319 young soldiers Normal variations of BCG 

Brotmacher [30] 1 time 200 subjects Normal vs. Abnormal BCG 

Jones [31] 12 days 157 patients Arteriosclerotic heart disease 

Henderson [32] 5 times 124 normal subjects Smoking and heart disease 

Moser, et al. [33] 1 time 100 patients Myocardial Infarction 

Mandelbaum and 

Mandelbaum [34] 

1 time 100 normal subjects Coronary artery disease 

Pordy, et al. [35] 2 times 80   normal subjects Normal vs. Abnormal BCG 

Brown Jr, et al. [36] 1 time 50   patients Symptoms of Angina Pectoris 
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Figure 2.2. Internal and external anatomy and circulation of the heart. The heart consists of four 

chambers. The upper heart is the atria (two atrial chambers), and the lower part is the ventricles 

(two ventricular chambers). The muscle composing walls of the heart are called the myocardium. 

The veins of the body terminate in two great vessels that empty into the right atrium: the superior 

vena cava (from the upper body) and the inferior vena cava (from the lower body). Blood exits 

the heart through the pulmonary artery (which takes unoxygenated blood to the lungs from the 

right ventricle) and through the aorta (which distributes oxygenated blood to the body from the 

left ventricle). Oxygenated blood from the lungs enters the left atrium from the pulmonary vein. 

The pulmonary artery is the only artery that carries unoxygenated blood, and the pulmonary vein 

is the only vein that carries oxygenated blood.  
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2.2. Physiological Formulation 

According to the first report of the committee on ballistocardiographic terminology [37], 

regardless of the type of the measurement device, the ballistocardiogram consists of two general 

categories of systolic and diastolic waves. The systolic waves are named H, I, J, and K followed by 

the diastolic waves of L, M, and N. The presystolic G wave also sometimes appears in the BCG 

recordings. A brief description of each peak is provided here: 

• The H wave is the first headward deflection of the BCG that begins near the ECG R peak.  

• The I wave appears early in the systole, in the footward direction. 

• The J wave is the largest headward wave of the BCG, which occurs later in the systole. 

• The K wave is the next footward ballistic wave to appear near the end of systole and may 

extend into the early diastole. 

• The L and N waves are the smaller headward waves in the diastole with a footward wave 

in between them named the M wave. 

 
Figure 2.3. Example of a standard ballistocardiogram signal with its main waves. Picture from 

[36] 

 

Starr proposed the application of Newtonian physics to the problem of heart disease, as a 

quantitative way of looking at the old physiological conception of cardiac weakness. Using a 
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cadaver Starr tied large tubes in the aorta and pulmonary artery. He injected water or blood into the 

great vessels against normal counter pressures, using large syringes, and used his arms’ muscles 

for the myocardium. He then injected a normal stroke volume in the regular ejection time to 

simulate the systole [38]. In another study, Starr used standard weights of 115 lbs. to make a 

mechanical impulse to calibrate his BCG bed. The response recordings obtained by automatic 

application of the mechanical impact maker to the head of the cadaver [39].  

When a subject lies on the table, he is not conscious of its motion, but the records obtained 

are characteristic and reproducible. Multiple forces have been identified by [40] as the source of 

this motion, including the recoil caused by pumping blood out of the heart, or when the blood 

reaches the aortic arch and the curve of the pulmonary artery. Also, the accelerated blood that 

moves footward after the arch of aorta produces a small recoil impact. Reproducing the waveform 

from these forces is not completely possible, due to the variations in the physical properties of the 

body. These recoil vibrations mainly affect the descending waves, while having a much smaller 

effect on the ascending waves; hence, more reliable features can be extracted from the ascending 

waves. 

2.3. Instruments 

2.3.1. Classical instruments 

Multiple groups have investigated instrumentation for accurate BCG measurements. For 

instance, Bixby and Henderson [41] used a light beam system, a photokymograph and an old 

electrocardiograph with a photographic recording camera, to measure the ballistocardiographic 

movement of the body. Starr first tried and later abandoned the freely swinging table (ultra-low 

frequency)[16], and instead proposed measuring only the longitudinal motion by a sturdy steel 

spring, which was able to cancel the respiratory movements. This device, as shown in Figure 2.4, 

is a thin panel braced and mounted on a frame with a total weight of 50 pounds. They have designed 
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a mechanism of flexible wall-mounted joints to prevent the lateral motion of the table. An 

adjustable spring mounted on the rigid holding structure, which is screwed to the floor. This spring 

holds one end of a small mirror and its other end is mounted on the apparatus frame. Thus, small 

stretches of the spring will cause slight movements in the mirror. A very similar apparatus was 

designed and commercialized by Japanese company Nihon Kohden in 1952. This device was using 

the body’s recoil caused by the ejection of blood from the ventricles and thus was able to measure 

the blood passing through the heart and the forces of cardiac contraction [6, 42]. Figure 2.4 shows 

some examples of these classical BCG instruments. 

 
 

Figure 2.4. Examples of the classical BCG instrument: (a) Starr’s one-directional high 

frequency, floating BCG board and its mirror-based ECG camera [39]. (b) Dock’s 

electromagnetic BCG device[34]. (c) Original Ultra-low frequency BCG suspended bed created 

by Burger and Noordergraaf [43] picture from [44, 45]. (d) Nickerson’s (low frequency) BCG 

table [46]. 

2.3.2. Four major types of BCG instruments 

Despite having a common source, each device shows a slightly different “template” for the 

same subject [6]. Due to the design differences between these devices, each one might have a 

different natural frequency response, which primarily results in different dampening and filtering 

of the actual signal. The Committee on Ballistocardiographic Nomenclature defined four essential 
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types of ballistocardiography devices, including the high-frequency, low-frequency, ultra-low 

frequency, and the direct-body [47] ballistocardiographs.  

The high-frequency ballistocardiograph (HF-BCG) also known as Starr-type is a table, bed, 

or platform holding the body, weighing from 1 to 1/10 of an adult body weight, with a footboard 

to improve the coupling. Starr’s ballistocardiograph was made of a thin ply panel mounted on a 

spruce frame without any vertical or lateral movements [39] [46], while Dock designed an 

electromagnetic ballistocardiograph with a light bar of wood, and a magnet mounted to it to move 

against a coil embedded in the bed frame [34, 48-50].  

This type has 7 standard waves, where the H wave is the peak near the beginning of the 

systolic ejection and expulsion of blood into the aorta, followed by the I wave in early systole which 

reflects the rapid acceleration of blood in the descending and abdominal aorta, pulmonary trunk 

and carotid arteries [51]. The J wave is the most significant upward wave, which immediately 

comes after the I wave in the late systole. It comes after the acceleration of blood in the descending 

and abdominal aorta, and the deceleration of blood in the ascending aorta. The last wave in the 

systolic phase is the foot-ward K wave. It is usually followed by two smaller headward waves of L 

and N in the diastole. The footward wave between them is called the M wave. The tiny footward 

wave right before the H wave in the presystolic (pre-ejection) phase, is called the G wave. The I–J 

amplitude reflects the force of contraction of the left ventricle, and the I–J interval reflects its 

contractility [51]. 

The low-frequency ballistocardiograph (LH-BCG), also known as Nickerson-type, is very 

similar to the HF-BCG with a critically damped platform using a deadweight equal to the weight 

of the subject. Nickerson used a wooden table to capture ballistocardiogram. These devices 

generate the same number of waves (G, H, I, J, and K) as in the HF-BCG, but with a time delay. 

This device is sensitive to the respiration, so most of the data was acquired when the subject was 

holding his breath, with special care to avoid an inadvertent Valsalva maneuver.  
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Ultra-low frequency ballistocardiograph (UF-BCG) is a suspended platform (hammock) 

weighing 1/6 to 1/60 of the body weight with minimal vertical or flexural vibrations. The UF-BCG 

usually have fewer sinusoidal waves, with a tiny K wave, all come earlier in time than the HF_BCG 

waves. The best results usually appear after suspending the respiration as the respiratory 

movements are much higher than the BCG in the amplitude. 

Direct-body ballistocardiograph (DB-BCG) is to capture the motions of a single part of the 

body and does not need the subject to lie on any suspended or special platform, but rather to recline 

on a rigid surface with different transducers used to measure the body part motions. The waveforms 

are similar in form to the ones from the HF-BCG with a time delay. Here again, the respiratory 

activity affects the recordings unless the subjects hold their breath.  

Figure 2.5 shows the templates acquired from multiple apparatuses, including the Ultra-low 

frequency [18],[20]. High-frequency apparatuses (𝜔0 = 10𝐻𝑧 − 15𝐻𝑧) are better at reflecting the 

forces while the ultra-low frequency devices (𝜔0 < 1𝐻𝑧) are better in displacement measurement 

[45]. Despite having a common source, each device shows a slightly different “template” for the 

same subject [6]. 

 

Figure 2.5. Illustration of one cardiac cycle template from multiple sensing modalities. The top 

row has the ECG, PCG (Phonocardiogram), followed by four different measurements of BCG: 

Ultralow Frequency[18], Starr’s HF BCG bed [39], Dock’s electromagnetic HF BCG 

device[34], and Nickerson’s LF BCG table [46]. Variations in the BCG templates are due to the 

mechanical aspects of the apparatus. 
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2.3.3. Modern instruments 

Ballistocardiography could not be used for clinical purposes because of the unrefined nature 

of the previous BCG acquisition devices with their limited technology, and the sizeable inter-

subject variability of the waveforms without proper interpretation [52, 53]. More recently, the 

technological and manufacturing advancement in the MEMS technology opens new doors to 

develop different efficient and affordable non-invasive sensor modalities to capture 

ballistocardiography in standard home settings by embedding them in commonly used objects (e.g., 

weight scales, bed, chair).  

Bed-based transducers are the most widely used BCG devices which cover different 

modalities including the charge-sensitive [54], piezoelectric mats [55] and electromechanical films 

[56, 57] that are developed after the recent advancements in the MEMS technology. A new 

ElectroMechanical Film (EMFi) with a cellular charge-sensitive polypropylene structure can 

generate an electric charge proportional to the amount of pressure applied to the film [56, 57]. This 

structure makes the EMFi sensitive enough to capture dynamic forces exerted to the surface, 

including the electromechanical activities of the heart [57].  

Load cells are also shown to be capable of capturing the small ballistic movement of the 

center of mass and have been placed under the mattress [58], and under the bed legs [59-61]. 

Etemadi, et al. [62] recorded the forces applied to the strain gauges of a modified home bathroom 

scale. These forces are due to the heartbeat, respiration, and body movements. They have also 

embedded the ECG and PPG sensors to the scale surface and its hand holder (Omron HBF-500 

[63], InnerScan BC-534, Tanita[14]).   

Accelerometers are capable of capturing tiny motions in the bed frame or mattress caused by 

the respiration and heartbeat. They have been used for the measurement of respiration rate, heart 

rate, heart rate variability, and stroke volume [64, 65]. Accelerometers are also used to measure the 

ballistocardiographic movements of the bed or the seismocardiogram on the chest [66-68]. 



22 

 

Fiber optics are placed between a pair of microendes, and any movement of the subject 

causes displacement between them and changes the light intensity[69]. Pressure based transducers 

including the pneumatic strips[70],[58, 71] that measures heartbeat through a thin, air-sealed 

cushion placed under or on top of the bed mattress, or the water-based transducers to be placed 

under the pillow used by [72]. The MU hydraulic bed sensor contains four water-based pressure 

transducers placed under the mattress and shown to be capable of capturing restlessness, 

respiration, and heart rate.  

 

Figure 2.6. Examples of modern BCG sensors for in-home applications. a) Emfit sensor [73],  b) 

Beddit sleep monitor[74], c)MU’s hydraulic bed sensor [75], d) Murata contactless bed 

sensor[65], e) Modified bathroom scale (Omron HBF-500) [63],  f) Load cells (MNC-50L, CAS, 

Co. Ltd., Korea)[59] 

Each of these sensors has its own advantages and disadvantages. For example, the very 

popular electromechanical film (EMFi) sensors are more expensive, while the very inexpensive 

accelerometers tend to capture fewer morphological details. The load cells provide valuable 

measurement about the displacement of the center of mass but are harder to install, while the more 

accessible bathroom scales could capture short periods of time while the subject stays still on the 

scale. Table 2.2 provides a list of recent innovations for in-home measurement of 

ballistocardiography and their pros and cons.  
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Table 2.2. Comparing the pros. and cons. of different BCG sensors. 

 Pros Cons 

Weighing scale 

Exact Y direction 

Possibility to connect other sensors 

Motion Artifact 

Short time 

Not for all health conditions 

Under 

Mattress 

Contact-less 

Longtime overnight 

Motion artifact 

 

Bed Frame 
Contact-less 

Overnight 

Motion artifact 

No detailed morphology  

Under Pillow 
No mattress-effects 

Focused on the head area 

Motion artifact 

Biased toward the head flow 

Chair 

Possibility to use during the working 

day or resting time 

Motion artifact 

Complexity in install 

Not clear waveform 
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3. MU BCG INSTRUMENTS AND DATA COLLECTIONS 

A variety of systems are currently being used for research purposes in our lab and for 

different data collections, including the hydraulic bed sensor, suspended bed, and the chair sensor. 

Our hydraulic bed sensor targets the longitudinal and noninvasive monitoring of vital signs 

including, but not limited to, the heart rate, respiratory rate, sleep posture, sleep stage, blood 

pressure, and other cardiac conditions [11-13]. The suspended bed is a replica of the original ultra-

low frequency suspended bed that is used by Isaac Starr, and we use it mainly as a reference to 

validate our efforts in modeling the BCG. We also have been working on extending our BCG 

sensors coverage to even outside the bed. Therefore, we designed an accelerometer-based chair 

sensor and studied its capabilities in monitoring the heart rate and respiratory rate. Although I am 

not using the data from the chair sensor in this dissertation, it is included for completeness.  

3.1. The hydraulic bed sensor 

Our hydraulic bed sensor, as the primary source of data collection for this work, initially was 

designed to capture heart rate and respiratory rate, while the person lays on the bed, mostly during 

the night [75]. It is composed of a set of four water tubes each fitted with a pressure sensor to be 

placed under the bed mattress for the purpose of non-invasive ballistocardiography measurement. 

The four-channel signal contains a DC bias (the weight of the body lying on the bed) in its raw 

format. Figure 3.1 represents a sample configuration of four hydraulic bed transducers on a regular 

bed and underneath its mattress, and the filtered ballistocardiography signals acquired from the four 

transducers. It also shows the synchronously captured ECG signal as a reference for the electrical 

activity of the heart. The best arrangement for the transducers has been previously studied, and we 

used the same recommendation in all data collected for this research. DC values of the four channels 

are believed to be correlated to the placement of the person on the bed [76]. 
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Figure 3.1. MU’s hydraulic bed transducers and example of their BCG signals: (a) T1 through 

T4 are the four transducers longitudinally placed underneath the mattress close to the headboard 

of the bed with pressure sensors under the torso area. (b) 15 seconds synchronized ECG signal 

and the corresponding 4 BCG channels from the transducers. 

3.2. The chair sensor 

Considering the increase in the median age of the general population, which has resulted in 

the increased risk of cardiovascular ailments [77], and the quality of the independent life of the 

elderly, in-home monitoring the vital signs have become essentially important. A recliner chair 

could potentially be used as a target for data collection, as it is often used by older adults, even for 

sleeping at night, for those with breathing difficulty, neck and back problems, or other pain. In [78], 

a sensor system is proposed for recliner chairs, which measures heart rate and respiratory rate of 

the person sitting on it. The system uses two accelerometers placed strategically to capture these 

vital signs noninvasively and without direct contact with the body, while at the same time, being 

hidden from view.  

Several different chair sensors have been used in the literature mostly to capture activities 

[79-81], such as posture, sedentary activities, and behavior assessment, sometimes with costly 

sensors [82]. In an effort to measure the BCG signals from the chair, Junnila, et al. [83] has placed 

electromechanical film (EMFi) sensors on the seat and backrest of the chair, and Baek, et al. [84] 

placed polyvinylidene fluoride films (PVDF) on the seat to measure the change of pressure. In 

addition, the pressure mats and the FSRs in [82, 85] are placed on the surface of the seat and the 

backrest of the chair, which change the look and feel of the chair. Our system, in contrast, is 
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designed primarily to be an inexpensive and easy-to-mount sensor, which is entirely out of sight 

after installation on the recliner chairs. Our target population in this chapter is older adults.  

  

  

Figure 3.2. MU’s accelerometer-based chair sensor for vital sign monitoring (a) Accelerometer 

placed under the seat cushion of the recliner chair. (b) Accelerometer placed on the side of the 

seat cushion, hidden between the seat cushion and the arm of the chair. The accelerometers are 

not visible during normal operation and require no contact with the occupant to function. (c,d) 

Two chair positions were tested in the study: Upright (left) and Reclined (right). For ground truth 

reference, a chest band and a finger pulse transducer were worn by each study participant. 

Besides finding the placement on the chair which potentially contains the highest amplitude in the 

captured acceleration, we were constrained to place the sensors in the locations on the chair that 

are hidden from view, which will not cause any discomfort and also would not need any 

modifications of the chair. While no studies have been done on the morphology of the waveforms, 



27 

 

the experiment on 45 older subjects (with an average age of 78 years) published in [78] shows high 

accuracy in estimation of heart rate and respiratory rate. 

 
Figure 3.3. Example of BCG signals obtained from the chair accelerometers (a). Overlaid on the 

BCG signal is the output of our Energy algorithm, (b) Respiration signals obtained from the 

chair accelerometers. 

3.3. The suspended bed  

Our suspended bed is a replica of the suspended ballistocardiography bed originally designed 

by Burger, et al. [43] according to the details provided by Ngai, et al. [45]. This ultra-low frequency 

ballistocardiograph device is made of a lightweight foldable aluminum frame approximately 207 

cm by 78 cm fixed on top of two lateral wood frames. The frame is suspended at four points from 

the ceiling with 3 m long steel cable of approximately 2.5 mm in diameter such that the cables are 

parallel to each other. One accelerometer (Kionix EVAL-KXR94-2283 [86]) with 3 active axes of 

1000mV/g sensitivity, was placed on the wood frame and four short hydraulic transducers 

positioned underneath the torso area. I studied different soft and rigid materials (thin plastic cot, 

wood board, thin air mattress) on top or under the transducers to improve the quality of the BCG 

waveforms. The total weight of the bed and all extra materials were always kept at less than 8 Kg.  

To verify that our suspended bed is inconsistent with the true concept, we followed the 

recommendations provided by Tavakolian [44], where he tested a very similar design for the 



28 

 

suspended bed and verified the device is an ultra-low frequency device according to the definition. 

I have also made a secondary visual comparison between the accelerometer signals and the 

templates from the book by Starr ad Noordergraaf [87] and showed similar patterns between our 

templates and the ones reported in that book. 

 
Figure 3.4. MU’s suspended bed with cod, wood board, thin pad, transducers, and air mattress. 

To our knowledge, this is the most reliable and accessible approach to measure the true 

acceleration ballistocardiography, as any movement of the body would be measured directly by the 

accelerometers on its frame. Figure 3.5 shows example synchronous recordings from 3 axes of the 

accelerometer on the suspended bed, 4 transducers of the hydraulic sensor placed on the suspended 

bed, and the electrocardiography signal from the person who laid still on the bed. Clear 

accelerometer signals acquired from this method, are used as ground truth reference for our 

mathematical model of the BCG presented in a future chapter. 

 
Figure 3.5. Example synchronous signals captured on our suspended bed: (Left) BCG signals 

from four hydraulic transducers, (Right) signals from the accelerometer along with ground truth 

ECG. 
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The very same accelerometers have also been tested to collect Seismocardiographic (SCG) 

signals. In general, ECG provides information about the electrical activity of the heart and BCG 

captures the movement of the center of mass of the entire body, while SCG measures the movement 

in the heart if located in the right place on the chest. By proper filtering of the SCG, we can get 

information about the open and closure of the heart valves, also known as “lub” and “dub”. For 

normal healthy subjects, the heart sound consists of two well-defined components, S1(the lub) and 

S2 (the dub). S1 corresponds to the systolic period and is a good indicator of the heart contraction 

and begins with the mitral valve closure. The second heart sound (S2) is the indicator of the diastolic 

period where the heart relaxes, usually starting by the closure of the aortic valve. 

As suggested by [88], the accelerometer is placed on the sternum and held in place using the 

3M Tegaderm adhesive patches, with its y-axis in the head-toe direction and the x-axis point in the 

left-right direction with respect to the subject. Preprocessing of the SCG signal to extract the heart 

sounds has been made through a bandpass filter with 20–250 Hz cut-off frequencies. Figure 3.6 

shows an example data collected synchronously from the electrocardiogram (ECG), the 3-axis 

accelerometer on the chest (SCG), the phonocardiogram reconstructed by filtering the SCG, and 

also one channel ballistocardiogram (BCG).  

 
Figure 3.6. Example of data collected synchronously from the ECG, SCG, and BCG. Three 

accelerometer axes and one BCG transducer are shown.  
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All these sensors are capturing the same phenomena, which is directly or indirectly related 

to the flow of blood in the body and displacement of the center of mass. They are so sensitive to 

even small movements that usually their signals are subject to motion artifacts. A detailed 

discussion on the sources of motion artifacts and their effect on the quality of vital sign 

measurements is provided in a future chapter of this dissertation, followed by multiple methods to 

reduce, detect and discard these artifacts from the BCG. 
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3.4. Datasets 

I have collected some small datasets with our research team members as subjects, as an initial 

proof-of-concept. I also have designed or have been involved in multiple IRB approved studies to 

collect ballistocardiography data from volunteers of different age and health conditions.  For most 

of these datasets, we tried to have a complete set of sensors as the reference for the analysis, 

including the ECG, PPG, pulse, and respiratory band. We have used an ADInstrument’s PowerLab 

16/35, with the latest version of LabChart, to create separate files per subject per study. The PSG 

data from the hospital sleep lab was received in the “.EDF” format for the wearable sensors, and 

the normal.“DB3” files related to the bed sensor. All files have been exported to MATLAB files 

for any future analysis, as described in the appendix. 

 

3.4.1. Data collections 

Table 3.1 provides statistics about the three most extensive datasets that we collected 

specially to validate our hypotheses on the ballistocardiographs collected from the hydraulic bed 

sensor. Multiple targets have been addressed by these datasets, including the estimation of heart 

rate variability (HRV), detection of sleeping posture on the bed, evaluating the change in blood 

pressure caused by exercise in young, healthy subjects as well as older residents of Tiger Place. 

Table 3.1. Overview of the datasets collected for this study. 

IRB # Initial Purpose Condition Duration Subjects Age Gender Health Setting 

2002586 

HRV Supine Rest 10 min 62 

18-50 15F/47M Healthy Lab setting 

Sleep Posture Four postures 5 min 62 

Blood Pressure Supine Rest 3 min 62 

Blood Pressure After Exercise 7-11 min 62 

2006391 Blood Pressure Supine Rest 10 min 50 19-95 34F/15M Mix TigerPlace 

2008526 Sleep Stages Over night 1 night 56 31-86 27F/49M Mix Boone H 
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3.4.2. Reference sensors and annotations 

In most of the data collections, we tried to use multiple reference sensors to expand the future 

possibilities to use them. All data were collected synchronously using the PowerLab data 

acquisition system from the sensors listed in Table 3.2. In the hospital settings where the reference 

signals came from the clinical devices, hydraulic bed signals were manually synchronized to the 

rest of the signals using a physical marker that nurses provide on both data right before the 

beginning of the data collection. For that reason, the nurses were asked to push three times on one 

of the ECG leads that are connected to the patients, so that three distinct noisy regions with high 

amplitudes appear on both the PSG recordings and the bed sensor signals. Then we manually 

aligned these markers to provide synchronized PSG and BCG signals for all subjects.   

Table 3.2. List of sensors that have been used in my data collections, along with the bed sensor. 

Except from the sleep lab data, other datasets were collected using the AD Instruments LabChart.

Sensor name Placement Num channels 

ECG Electrocardiogram 3 leads on the chest 1 

PPG Photoplethysmogram Right index fingertip 1 

PEFS Piezo-Electric Finger Sensor Right ring fingertip 1 

Respiratory Band Around the chest 1 

Blood pressure cuff  Left arm Store separately 

BCG Ballistocardiogram Under the mattress 8 

Accelerometer Edge of the mattress 3 

Smartphone Edge of the mattress Store separately 

 

3.4.3. Health status questioners 

To have accurate health information at the time of data collection, some short-term health-

related questions were provided in the questionnaire form, as listed below. This information was 

used firstly as a criterion during the recruitment, and secondly as a future reference for comparing 

the between-group variations. Table 3.3 provides an example of these questionnaire forms which 

older subjects were asked to fill. We used different questionnaires for each study based on the 

requirements of each as described in the corresponding IRB project protocol. 
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Table 3.3. Health status questionnaire to provide information about the volunteers.  

Age: Gender: Height: Weight: Date Time: 

Have you ever been diagnosed with any of the following in the past six months? 

Yes No Have you drunk Coffee, Tea, or Alcohol in the past 6 hours? 

Yes No Heart problems (such as heart surgery, heart attack, irregular heartbeat, CHF)? 

Yes No Lung problems (COPD or emphysema)? 

Yes No Do you use the pacemaker?  

Yes No Do you ever have chest or heart pain? 

Yes No Do you lose your balance because of dizziness / do you ever lose 

consciousness? 

Yes No Are you currently taking medication for high blood pressure or heart condition? 

Yes No Heart problems (such as heart surgery, heart attack, irregular heartbeat, CHF)? 

Yes No Lung problems (COPD or emphysema)? 

Yes No Do you ever have chest or heart pain? 

Yes No Do you lose your balance because of dizziness, or do you ever lose 

consciousness? 

Yes No Are you currently taking medication for high blood pressure or a heart 

condition? 

Yes No Do you have any other physical condition that would need physician approval 

before starting an exercise program? 

Yes No Has your physician ever told you that you have bone, joint, or back problems 

that can be made worse by physical activity? 
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4. SLEEP POSTURE CLASSIFICATION 

4.1. Background 

With the recent advances in health care, the average lifespan of older adults is increasing. 

This increases the necessity of better and more accessible monitoring tools specialized for the needs 

and conditions of this population. One significant aspect of elderly life is a large amount of time 

they spend in bed. Adults usually spend one quarter to one-third of their daily life in bed [89] while 

the elderly usually stay in bed more than that. If their sleeping posture and movements are measured 

and evaluated quantitatively over a period of time, not only can nurses assist them better, but also 

the automatic health monitoring systems can be used to detect health issues. 

There is a two-way relationship between health and sleep posture. Some sleep disorders may 

appear due to the decline or changes in health condition. For example, Leung, et al. [90] reported 

that for patients with Congestive Heart Failure (CHF), the amount of time spent in the right lateral 

position is significantly more than the amount of time spent in the left lateral position. My proposed 

classification technique can help them in reducing the discomfort caused by the enlarged apical 

heartbeat or further hemodynamic or autonomic compromise. Meanwhile, about 20~40% of the 

elderly population are suffering from sleep apnea and hypopnea syndrome (SAHS), and more than 

half of the patients remain undiagnosed [91]. By modification of sleep position and preventing 

supine sleep, Jackson, et al. [92] reported improvement of sleep-disordered breathing for positional 

Obstructive Sleep Apnea (OSA) patients.  

In sleep studies, neurophysiological signals and polysomnography (PSG) are used due to 

their accuracy [93]. Sleep studies are usually expensive, and the patients are asked to stay overnight 

in hospitals. In-home sleep monitoring systems would help researchers to analyze sleep conditions 

in a natural setting such as the patient’s own home. Long-term care facilities may also take 



35 

 

advantage of sleep-related information on the treatment plans for their residents. As a result, we 

see an increase in demand for low cost and efficient monitoring systems for the elderly [94]. 

In polysomnography, different devices such as accelerometers, gyroscopes, and 

magnetometers are being placed on the chest, wrist, or feet of the subject. Although these sensors 

can accurately measure the thoracic respiration, heartbeat, as well as body posture, they all need to 

be worn during sleep, making an inconvenient sleep experience for the subjects. Noninvasive 

methods such as camera-based techniques are the common approach of monitoring in-bed postures. 

As an example, the use of 3D depth scans of the body is explored in [95]. The main issues with the 

camera-based approaches are privacy concerns and limitations in obtaining images at night. 

The majority of recent noninvasive methods for in-bed posture recognition use high-density 

pressure mats to identify the structure of the whole body. A dense grid of  42×192 pressure sensors 

was used in [96], with sampling rate at 1 frame every 3 seconds, to classify the supine, prone, left 

and right postures. While, a total of 6144 square sensors within a region of 33×73 inches were 

utilized by Sun, et al. [97], for their limb clustering algorithm. Conductive textile sheet [98] and 

static charge sensitive bed [89] are also being used for posture detection. 

Although most of these methods reported high recognition accuracy, usually hundreds of 

pressure sensors are required in a mat for a complete data acquisition. Recent approaches are seen 

to decrease the number of sensing elements. In [99], 48 conductive sensors were placed between 

the mattress and the bedsheet. They reported 80.76% accuracy for their classification task. Hsia, et 

al. [100] uses 16 long-narrow force-sensing resistor (FSR) sensors. Additionally, Viriyavit, et al. 

[101] had only four sensors, i.e., two piezoelectric and pressure sensors are used for data 

acquisition. They reported 89.9% accuracy for three postures, i.e., back, left, and right, with 5-fold 

cross-validation and on 120 hours of data collected from one subject.  

On the other hand, different classification algorithms have been applied by researchers for 

the estimation of in-bed sleep postures, including Bayesian classification [100], K-nearest 
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neighbors [96], and SVM [102]. An accuracy of 98% is reported by Boughorbel, et al. [96] through 

the application of KNN and SVM. Hierarchical inference model with the binary SVM classification 

also tested by Liu and Ostadabbas [102], where they reported high accuracy of 91% after applying 

PCA. Despite the ease of application, Neural Networks have been used only in a handful of papers. 

For example, Seo, et al. [89] used neural networks to estimate pose and motion, to assist the patients 

using their Intelligent Bed Robot System (IBRS). 

The focus of the current chapter is on the evaluation of different parameter settings for the 

application of neural networks in sleep posture detection using the data acquired from an in-home 

setting of only four hydraulic bed sensors. Section 4.2 of this chapter presents a brief overview of 

the system and the data collected for the experiments. Data preprocessing and feature extraction, 

and the classification method will be described in Section 4.3. In Section 4.4, I have discussed 

different parameters in the classification method, and the experiments and their results. Finally, 4.5 

provides a brief summary of the work, along with avenues for future investigation. 

4.2. Sensor and data 

In this study, I am using the MU hydraulic bed sensor designed for capturing 

ballistocardiogram (BCG) signals [75]. It is composed of a set of four water tubes, each fitted with 

a pressure sensor (Figure 4.1) which are placed under the bed mattress for the purpose of non-

invasive heart motion measurement. The four-channel signal is sampled at 100 Hz and in its raw 

format, it contains a DC bias (the weight of the body lying on the bed). I simply ran a moving 

average to remove the high-frequency part of the signal and keep the DC bias. Variations in the DC 

values of the four channels are known to be correlated to the location of the person on the bed.  
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Figure 4.1. The workflow of bed-

data preparation for the 

classification task, from the 

transducers to the feature 

extraction. Our bed sensor consists 

of four hydraulic transducers 

placed underneath the bed mattress. 

 

A total of 58 young, healthy subjects were recruited and asked to lie still on each of the main 

postures for one minute. The exact definition of supine, prone, left lateral, and right lateral, was 

somewhat subjective and left for the subjects’ interpretation (Figure 4.2). 

The data collection procedure was approved by the University of Missouri Institutional 

Review Board (MUIRB). A separate file containing four data channels has been created for each 

subject and per posture. In order to create the dataset, all channels were divided into multiple 

segments of equal length. Features extracted from each segment are used for signal segmentation, 

as described in algorithm I.  

The algorithm I Signal segmentation 

Goal: Segmentation of data acquired from one subject on a specific posture. 

Requires: Ti, Signal acquired from each transducer for the entire length.  

                  ST, Segmentation length. Could be 5, 10, 15, or 20 seconds. 
  

1: function signal_segmentation(T1, T2, T3, T4) 

2:      ST = 15*Fs;                                          % Segment length in Seconds 

3:      for i=1:4 do  

4:            Si = reshape( Ti, len(Ti)/ST, ST);  % Cut the signal 

5:      end 

6: End 
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Figure 4.2. 58 volunteers were asked to lay still on each posture for one minute. The exact 

definition of Supine, Prone, Left Lateral, and Right Lateral, was somewhat subjective and left for 

the subjects’ interpretation.  

 

4.3. Method 

4.3.1. Feature extraction 

Authors of [103], [93] reported the use of a set of statistical features including mean, standard 

deviation, minimum and maximum of sensor values and also the kurtosis of the frame values. They 

reported high accuracy rates for using statistical features, especially being applied to a limited 

number of sensors. Consequently, I also based my classification on a set of simple statistical 

features, as described in algorithm II. All channels were divided into equal-length segments 𝑆𝑖. The 

length of segments varies between configurations (e.g., 1,…,5 seconds). Then a set of 16 simple 

statistical features were extracted from each signal, in the following manner. A moving average 𝑀𝑖 

is computed for each channel, resembling the DC value of that channel over time. Then, the 

difference between the adjacent channels  was computed as 𝐷𝑖  =  𝑀𝑖  −  𝑀𝑖+1 . We then 

normalized both computed vectors of 𝑀𝑖 and 𝐷𝑖, using formulas 1 and 2 where we subtract the 

mean value in order to center the data and then divide by the global range of that segment:  

𝑁𝑟𝑚𝑀𝑖 =
𝑀𝑖 − 𝑚𝑒𝑎𝑛(𝑀1…4)

max(𝑀1…4) − min (𝑀1…4)
                       (1) 

𝑁𝑟𝑚𝐷𝑖  =  
𝐷𝑖 − 𝑚𝑒𝑎𝑛(𝐷1…4)

max(𝐷1…4) − min (𝐷1…4)
                       (2) 
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Finally, we put all these 16 vectors in the form of a columnar matrix. By applying four 

functions of Min, Max, Mean, and Median on the columns of this matrix, we made our feature set 

of size 64 (=16x4). 

Algorithm II Feature extraction 

Goal: Extracting features from one signal segment in the time 

Requires:  Si, Signal acquired from each of the four transducers 

 

1: function feature_extraction(S1, S2, S3, S4) 

2:      W = 5*Fs;                      % Window size in Seconds 

3:      for i=1:4 do M(i) = moving_mean(S(i), W);             % DC bias 

4:      for i=1:4 do D(i)  = M(i)-M(i+1);                              % Diff. channels     

5:      for i=1:4 do NrmM(i) = (M(i)-mean(M(:)))/range(M(:));   

6:                           NrmD(i)  = (D(i) - mean(D(:))) /range(D(:));    

7:      Matrix   = [M(:,:), D(:,:), NrmM(:,:), NrmD(:,:)];   % Collection 

8:      Features = [min(Matrix), max(Matrix),                   % Statistical func. 

9:                          mean(Matrix), median(Matrix)];  

10: end 
 

With a total of 64 features per sample point, for 58 subjects and over 4 sleeping postures, I 

ran multiple experiments to investigate the best configuration settings. I applied Matlab’s PCA 

function called pcares, to sort the features in the original domain. Moreover, then we selected the 

first 4 or first 16 features for classification tasks. For the principal component analysis (PCA), we 

compared the set of best 16 features to the set of best 4 features. 

PCA is one of the most widespread methods in data analysis. It consists of applying 

orthogonal transformations to variables that are assumed to be possibly correlated, in order to make 

them linearly uncorrelated, aiming to preserve the most variations between the data variables and 

avoid redundancy. Hence the first principal component is the one that accounts for the most data 

variability, while the second account for less variance, and is orthogonal to the previous one, etc. 

The resulting uncorrelated variables form then an orthogonal basis set. 
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4.3.2. Classification Procedure 

The classification process was performed using a feedforward neural network. I explored 

some parameters of the neural network itself, including the number of hidden layers and the number 

of nodes per layer, the activation function of each layer, and the amount of regularization. I used 

MATLAB’s implementation for the neural network as an easy to use API, which provides the 

ability to manually set all these parameters (Figure 4.3). 

 

Figure 4.3. An example neural network with one layer of 5 nodes. For input, it uses 4 features 

after PCA, and generated 2-class labels as output. 

For the number of hidden layers, both 1 and 2 layers were used. I then changed the number 

of nodes per layer, to be either 5, 10, 20, or 30 neurons to change the complexity of the model. 

Also, for the activation function, the hyperbolic tangent sigmoid function (tansig) was used, which 

is a faster implementation of tanh function. I also used the Positive linear function (poslin), which 

is MATLAB’s implementation of the rectified linear unit (ReLu), as described in Figure 4.4. 

 
Figure 4.4. Schematic definition and formulation of the two transfer functions that I compared. 

Regularization was another parameter to explore, which addresses the over-fitting problem 

in training the neural networks. In over-fitting, the network “memorizes” the training examples, 



41 

 

instead of learning a general pattern. Having very few training samples, or too many free parameters 

(weights of the network) without using regularization may cause overfitting. I tried three values of 

0, 0.1, and 0.5 for the regularization. 

Another gap in the literature was related to the validation of the classification accuracy. 

Despite some papers which did not mention their validation approach, most of the researchers in 

this field used a k-Fold CV, and there are few papers in which the Leave-One-Subject-Out (LOSO) 

validation was used [98]. Based on the typical assumption of having independent and identically 

distributed (i.i.d) dataset, many machine learning researchers use the k-Fold CV to evaluate their 

classification tasks. In each fold of the k-Fold CV, 1/𝑘  of all sample points will be selected 

randomly and tested against the rest of the samples. However, in human activity recognition, we 

do not always have i.i.d dataset. In fact, Safonov, et al. [104] reported having a non-negligible 

grouping of data points by subjects. In contrast, in LOSO, samples of one subject are tested against 

the model being trained by all samples from other subjects together, as described by algorithm III. 

Algorithm III LOSO Cross-Validation (CV) 

Goal: Leave-One-Subject-Out Cross-Validation 

Requires: N, Number of subjects 

                 Fn, Set of 64 feature extracted from subject n. 

                 fTrain, the function used to train the neural network 

                 fTest,  the function used to test the neural network 
 

1: function LOSO_CrossVal([F1, F2, …, F58]) 

2:      net = feedforward(hiddenSizes, ActivationFn, Regularization);     

3:      for i=1:58 do  

4:            test_FeatureSet = Fi;                      % Test Features, current user 

5:            train_FeatureSet = F - Fi;               % All other samples to train 

6:            net = train(net, train_FeatureSet)    % Train the network 

7:            acc(i) = test(net, test_FeaturesSet)  % Test the network 

8:    end 

9: % Evaluate the overall(mean) accuracy 

10: end 

 

I used both of these cross-validation methods to make sure my proposed system is capable 

of classifying, not just random test samples from all subjects combined (as defined in the 10-Fold 
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cross-validation), but also it is able to learn a general pattern from part of the population and use it 

for classification of a new unseen subject (claimed in LOSO). 

4.4. Experiments and results 

In the current work, each classification process consists of setting multiple parameters started 

by defining the length of signal segments, followed by the number of features selected after PCA, 

setting the number of hidden nodes, activation function and the amount of regularization for neural 

network, and finally ended by deciding the type of cross-validation method to evaluate that specific 

classification task accuracy. Selecting a subset of posture data helps us to explore different class 

label problems such as classification of “Lateral vs. Non-Lateral”, or “Supine vs. Prone”. 

We used four values for the segmentation length (5,10,15, and 20 seconds), three values for 

the number of features selected after PCA (4, 16, 64 features), three values for the regularization 

(0, 0.1, and 0.5), two different activation functions (tansig, poslin), and eight configurations for the 

number of layers and neurons in the neural network (one layer of 5,10,20 or 30 nodes, or two layers 

by adding 5 nodes to the  second layer). We applied all these configurations on 6 posture-based 

problem settings (e.g., Supine vs. Non-Supine which are reported in the second column of Table 

2.1) and evaluated the classification accuracy using two cross-validation methods (10-Fold and 

LOSO). Since we had 58 subjects, for LOCO CV, the data from 57 subjects were used for training 

and was tested against the data from the remaining one subject. This procedure repeated for 58 

times always leaving samples of a new subject out for testing. 

In total, we ran the entire classification process, for 6912 number of different configurations, 

which often takes weeks for training and cross-validation. To speed up this work, the computation 

was performed on the high-performance computing infrastructure provided by Research 

Computing Support Services at the University of Missouri.   
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This study gave us a good idea of what postures the neural network is capable of classifying 

better and what would be the best setting for each classification problem. We report comparisons 

between the results of 10-Fold CV versus the LOSO, which shows how well a trained network can 

classify records from unseen subjects in Table 4.1.The best results were produced with 5 second 

segmentation time, 16 features, more neurons in the first layer, and no regularization.  

 

Table 4.2 shows the average and maximum values of 576 separate runs of the entire 

procedure from feature extraction to cross-validation. The values are computed by aggregating 

(Avg. or Max) all available data, to illustrate the average accuracy and ultimate potential of each 

posture setting (the Max column). The max accuracy columns are related to the single 

configurations which have the highest cross-validation accuracy among all possible configurations. 

LOSO tends to have lower average accuracy in comparison to the k-Fold because of the higher 

number of unseen patterns introduced by the left-out subject. For k-Fold, the maximum accuracy 

Table 4.1. Accuracy of posture classification changes with combination of parameters. 

Classification 

Problem 

Splitting Time (S.) Num. Features Regularization Num. Hidden Layer Nodes 

5 10 15 20 4 16 64 0 0.1 0.5 5 10 20 30 10_5 20_5 30_5 5_5 

k
-F

o
ld

 

L vs. NL 91 90 89 87 85 91 93 94 94 92 84 88 91 92 90 92 92 85 

LL vs. RL 95 93 93 92 92 94 95 78 76 63 92 93 93 94 93 94 95 92 

S vs. NS 84 81 79 76 75 80 84 83 82 78 74 79 82 83 80 83 84 75 

S vs. P 86 82 80 76 77 81 85 78 77 68 75 80 83 84 81 83 84 77 

S vs. P vs. L 77 77 73 70 66 75 81 92 91 85 67 73 78 80 74 78 80 67 

S vs. P vs. LL 

vs. RL 
76 70 73 70 65 75 79 82 81 77 65 71 76 78 72 75 78 65 

k-Fold total 85 82 81 78 77 83 85 84 83 77 76 80 84 85 81 84 85 77 

L
ea

v
e 

O
n

e 
S

u
b

je
ct

 O
u

t L vs. NL 87 87 86 86 83 88 88 89 89 89 83 86 88 88 87 88 88 83 

LL vs. RL 89 89 89 89 89 90 88 70 70 61 89 89 89 89 89 89 89 89 

S vs. NS 71 72 72 72 71 73 72 72 72 72 71 73 73 73 72 72 72 70 

S vs. P 72 73 72 72 72 73 72 68 69 64 72 73 73 73 73 72 72 70 

S vs. P vs. L 67 68 67 66 63 69 69 88 88 84 63 67 69 69 66 68 69 63 

S vs. P vs. LL 

vs. RL 
67 66 68 67 62 69 70 72 72 72 63 67 69 70 66 69 70 62 

LOSO Total 76 75 76 74 73 77 75 76 76 73 73 75 77 77 75 76 76 73 

*Postures including Lateral(L), Non-Lateral(NL), Left Lateral(LL), Right Lateral(RL), Prone(P), Supine(S), Non-Supine(NS). Values shown in percentage. 



44 

 

was always above 99%, which means there was at least one configuration setting, which ended up 

in 99% correct classification of the target. For LOSO, the best value was 93%, which is again less 

than the results for the k-Fold.  

 

According to this table, left lateral and right lateral postures were the easiest to classify, 

probably due to the fact that the rib cage wall moves in opposite directions for these two postures. 

This possibly introduces differences in the acquired waveforms of the four transducers. The second 

highest accuracy is related to the classification of lateral from non-lateral postures. Again, the same 

reasoning is applicable, as the rib cage moves horizontally in the lateral posture while this 

movement is mostly vertical for the supine and prone postures. By combining left and right laterals 

together (Lateral) and supine and prone together (Non-Lateral), we achieved as high as 99% 

accuracy for k-Fold CV and up to 92% accuracy with LOSO. These values are related to the best 

configuration settings that we explored in this paper and are reported in Table 4.3. 

Table 4.3 contains some other examples of the best performing configurations, which lead 

to high classification rates. Best results usually came from either 0 or 0.1 regularization values. 

Sixteen features after PCA worked as well as all 64 features in a 10-Fold CV and worked a little 

better than all 64 features for the LOSO method. 

 

Table 4.2. The average vs the best accuracies for posture classification, for all possible 

configurations separated by the posture problem. 

Classification problem 
Avg. Accuracy Max Accuracy 

kfold LOSO kfold LOSO 

L vs. NL 89% 86% 99% 92% 

LL vs. RL 93% 89% 100% 93% 

S vs. NS 80% 72% 99% 79% 

S vs. P 81% 72% 100% 80% 

S vs. P vs. L 74% 67% 99% 76% 

S vs. P vs. LL vs. RL 72% 67% 100% 75% 

Grand Total (Avg. or Max) 81% 75% 100% 93% 
* Lateral(L), Non-Lateral (NL), Left Lateral (LL), Right Lateral (RL), Prone (P), Supine (S) 
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Table 4.3. Sample parameter settings for posture classification that lead to configurations with 

higher accuracy rates. Classification accuracies shown in this table are in percentage (%). 

C
o

n
fi

g
u

ra
ti

o
n

 
Transfer Fun. tansig tansig tansig tansig poslin poslin poslin poslin 

Splitting Time 5 5 5 15 15 20 15 10 

Num. Features 64 64 64 16 16 16 16 4 

Hidden Sizes 20 30 10_5 30 5 30_5 5_5 30 

Regularization 0.1 0 0 0.1 0.1 0.1 0.5 0.5 

k
-F

o
ld

 

L vs. NL 96 99 96 92 90 90 88 87 

LL vs. RL 100 99 98 95 93 93 93 90 

S vs. NS 97 98 96 82 77 77 75 76 

S vs. P 97 100 94 79 78 71 78 77 

S vs. P vs. L 93 99 89 77 72 66 64 66 

S_P_LL_RL 92 100 89 80 72 74 59 62 

k-Fold max 100 100 98 95 93 93 93 90 

L
ea

v
e 

O
n

e 
S

u
b

je
ct

 O
u

t 

L vs. NL 86 86 88 91 88 87 86 86 

LL vs. RL 88 89 90 91 90 90 92 88 

S vs. NS 70 70 71 73 77 72 74 76 

S vs. P 68 69 72 72 74 73 73 76 

S vs. P vs. L 66 63 66 71 71 67 62 64 

S_P_LL_RL 67 65 69 75 70 72 54 60 

LOSO max 88 89 90 91 90 90 92 88 

*Postures including Lateral(L), Non-Lateral (NL), Left Lateral (LL), Right Lateral (RL), Prone(P), Supine(S), Non-Supine (NS).  

 

 

Table 4.4. Sample confusion matrix for 10-fold cross-validation on four-posture classification 

problem, for one specific configuration setting. Values in percentage. 

Supine Prone Left Lat. Right Lat.

Supine
87.2 1.3 4 7.5

Prone
0.6 98.1 1.3 0

Left Lat.
4.3 1.8 92.8 1.1

Right Lat.
9 0 1.8 89.2

Target 

Postures

Recognized Posture

 

The lowest performance was obtained for the classification of all four major postures, 

separately, by the maximum rate of 75% using LOSO. It is noticeable that even for this problem, 
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there is at least one configuration setting which achieves 100% accuracy for k-Fold cross-

validation, so it is essential to consider this big difference while comparing results in different 

methodologies. Table 4.4 shows the confusion matrix for just one of these configurations, made 

over four-posture classification and averaged over 10-Fold cross-validation. 

4.5. Discussion and future work 

In this chapter, I discussed a low cost and easy to use in-home device for sleep posture 

classification that could be used to find correlations between sleep patterns and health conditions 

such as sleep apnea or CHF. Inconvenient wearable devices or expensive dense pressure mats are 

usually being used in classifying sleep postures in hospitals. Here, I proposed a new application for 

our hydraulic bed sensor, which is already installed in many elderly homes and care facilities for 

longitudinal heart rate and respiration monitoring [75]. I investigated a variety of different 

parameter settings to find the potentials and limitations of the bed sensor for posture classification 

using neural networks.  

The MU bed sensor with four hydraulic pressure transducers was placed underneath the 

mattress to maintain sleeping comfort. We collected one-minute data on each posture of supine, 

prone, left lateral and right lateral, from 58 subjects. Different configuration settings for feature 

extraction and neural network were explored, and overall performance and some of the best 

performing configurations were reported. 

Our results confirm that in case we use the 10-Fold cross-validation, it is possible to achieve 

the 100% accuracy for most of posture classification problems. Meanwhile, as it was expected, the 

accuracy achieved by applying the LOSO CV is, on average less than the 10-Fold CV for the same 

setting (Table 4.2). This reduced accuracy is due to the fact that in the 10-Fold CV, the dataset is 

assumed to be independent and identically distributed (i.i.d), which is not always correct [104].  
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In general, the highest classification rates were usually related to separating the two lateral 

postures (left and right) from each other (Table 4.3). I believe this is because the rib cage moves in 

the opposite horizontal directions in these two postures. Classification of lateral versus non-lateral 

posture was ordered the second. This can also be correlated to the orthogonal direction of chest 

movement in these postures. 

In the future, we will use these best configuration settings to initialize the neural networks 

for posture classification in homes and care facilities. Noninvasive posture classification in real 

home environments would give us opportunities firstly to study the sleep patterns of the residents 

and correlations to the health conditions, and secondly to improve our estimations of restlessness. 

It also will open potentials for posture-based segmentation for more accurate estimations of vital 

signs, as they might be correlated to posture.  
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5. ROBUST HEART RATE ESTIMATION FROM BCG 

5.1. Background 

Unobtrusive and continuous monitoring of vital signs such as heart rate has broad 

applications at homes and hospitals and has gained increased interest due to the revival of 

ballistocardiography. Research has shown that important information can be derived from data 

collected using BCG sensing technology. Contact-free and non-invasive measurement of 

respiratory rate, heart rate, sleep stages, sleep postures, and blood pressure are among the possible 

applications of the ballistocardiography devices, such as our hydraulic bed sensor [105, 106].  

Non-invasive assessment of heartbeats in the time domain, among all others, has specific 

importance because it is being used as a prerequisite for most of the other estimations. BCG reflects 

the mechanical vibrations of the body caused by cardiac activity [107]. Time-domain detection of 

cardiac cycles provides information to estimate the beat-to-beat heart rate variation, which is also 

known as the heart rate variability (HRV) [76]. Segmentation of BCG signals according to the 

cardiac cycle, makes it possible to estimate and monitor some of the essential mechanical properties 

of the cardiovascular system, including the blood pressure, cardiac output, and stroke volume.  

However, many “automatic/voluntary” and “involuntary” movements of the human body can 

affect the measurements acquired by the ballistocardiography devices. Respiratory movement of 

the rib cage wall causes cyclic variations in the DC level of BCG signals, consistently correlated to 

the respiratory rate. Standard high pass filters cannot completely separate this respiratory variation 

from the BCG signals. On the other hand, respiration has some systemic/internal effects on cardiac 

activity, which naturally affect the BCG waveforms. In this chapter, some of these effects are 

described, and solutions are provided for better separation of respiratory variations from the signal. 
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Multiple sensor systems are currently being used for non-invasive pulse rate monitoring, 

including a video camera, an ultrasonic device, mattress-based sensor, infrared diode, and pillow-

based sensor [11]. The detection of heartbeats in the BCG signal can aid in tracking these 

parameters noninvasively. Wearable sensors are also emerging for tracking cardiac health. 

Important cardiac parameters to track include heart rate, heart rate variability, and irregular 

heartbeats or arrhythmias. Robust methods are needed to address the noisy environments, 

especially for in-home settings.  

Accurate detection of BCG cycles is a crucial step in morphological analysis of BCG and is 

the first step in many feature extraction techniques. We have previously published a paper on the 

estimation of heart rate in the time domain, using the energy of the ballistocardiograms [11], which 

will be called “the original energy algorithm”. The signal of each transducer was modeled as 

follows: 

𝑆𝑖𝑔𝑛𝑎𝑙(𝑡) = 𝑅𝑒𝑠𝑝(𝑡) + 𝐵𝐶𝐺(𝑡) + 𝑁𝑜𝑖𝑠𝑒(𝑡) 

where 𝑡  is the time stamp, 𝑆𝑖𝑔𝑛𝑎𝑙(𝑡)  is the acquired signal from one sensor, 𝑅𝑒𝑠𝑝(𝑡)  is the 

respiration component, 𝐵𝐶𝐺(𝑡) is the true ballistocardiography content and 𝑁𝑜𝑖𝑠𝑒(𝑡) represents 

the additive noise at each time. I used a 6th order Butterworth bandpass filter with cutoff frequencies 

at 0.7 Hz to 10 Hz, to filter out the high-frequency noise and the low-frequency respiration.  

By definition, the ballistocardiographic signal follows a specific pattern during each cardiac 

cycle, including some standard waveforms as shown previously in Figure 2.3. As described there, 

the largest headward variation in the BCG waveform is called the J-peak and is the primary 

reference for different BCG measurements. The J-peak is also an excellent candidate to distinguish 

individual BCG beats and estimate the heart rate in the time domain. There are already multiple 

sophisticated algorithms to estimate the location of the J-peak using machine learning techniques 

[58, 105].  
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In our previous paper [11], we utilized the short-time (0.3-Second) energy of the signal 

instead of the amplitude of the J-peak, to detect the cardiac cycles. The short-time energy function 

is defined in the formula: 

𝜀𝑖 = ∑ 𝑥𝑖(𝑛)2

𝑁−1

𝑛=0

 

MATLAB’s movsum function with a window of 0.3 seconds has been utilized for the 

estimation of the energy of the signal. A simple moving average function then removes useless 

high-frequency variations to provide a nice and smooth energy waveform. As shown in Figure 5.1, 

peaks of the energy function occur once in every cardiac cycle, especially in healthy subjects.  

 
Figure 5.1. Original energy on clean BCG matches the ECG cycles. ECG signal and its 

peaks(top), filtered BCG signal(middle), the energy waveform computed from the BCG, and its 

peaks (bottom). 

Despite the simplicity of the implementation, the original energy algorithm is known to have 

a relatively large amount of noise in the beat-to-beat estimation of the heart rate, without extra 

smoothing. This, in fact, is due to the high possibility of misses in the peak detection approach. 

This usually causes an extra peak being detected in a single cycle which itself makes one sub-cycle 
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of inaccurately short (increased heart rate estimation). Similarly, missing peaks due to the lowered 

signal energy, the estimated beat to beat heart rate will be much lower than it should be. Off course, 

by averaging all these values, the good approximation will be provided for the average heart rate. 

There are multiple conditions which can affect the accuracy of heart rate estimations and 

more specifically, the ability to estimate beat to beat intervals. Among them is the remaining effect 

of respiratory variation in the amplitude of the BCG signal. The conventional digital filtering cannot 

completely separate and discard the respiratory variations of the baseline (DC) from the BCG 

signals. This is partly due to the non-stationary nature of the BCG and the respiratory signals, which 

makes the frequency of the two signals vary over time. Moreover, there are some systemic/internal 

relations between the activity of these two systems, inside the body, which causes more powerful 

cardiac activities during the inhale. These natural variations appear in the amplitude of the BCG, 

during the respiratory cycle [108] and therefore affect the amplitude of the energy waveforms and 

make it harder to detect the peak of the energy in some cases,  as shown in Figure 5.2.     

 
Figure 5.2. Energy algorithm might not work properly even on regular BCG beats. 

A very similar condition appears when processing the BCG signals of older subjects, with 

less prominent J-peaks, as demonstrated in Figure 5.3. In such cases, the energy algorithm is 
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vulnerable to miss detections of the cardiac beats, as the variation of the peaks and therefore, the 

energy of the waveforms are not easily distinguishable.  

 

Figure 5.3. Example of loss of significant J-peak during the process of aging. Usually, a 

prominent J-peak in young subjects is easily distinguishable, while in older subjects, especially 

with prior cardiac disease, the j-Peak is just slightly different from the rest of the peaks. 

 

5.2. Enhancing the beat detection accuracy 

According to my observations in multiple data collections, I found many cases that the 

original energy algorithm misses the location of the cardiac cycle. Here, I will describe some of 

these cases and provide step by step enhancement on the energy algorithm.  

5.2.1. Better separation from respiration 

One critical source of these problems is due to the nonstationary nature of both BCG and 

respiratory signals, as they overlap in the frequency domain. The conventional choice of cutoff 

frequencies for the bandpass filtering (0.7-10 Hz) is designed based on the average minimum and 

maximum heart rate in the entire population. These are not always the best possible choices for 

every individual. Incomplete cancellation of the respiratory variations from the BCG signal will 

cause some J-peaks being damped by respiratory DC and hard to separate from the rest of the 

waves. A two-step personalization of these parameters for each individual by means of an 

approximate heart rate and respiratory rate was helpful to refine the filtering properties.  
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The personalization process is based on the time-domain or frequency-domain estimation of 

the heart rate and respiratory rate. I have used Welch’s power spectral density estimator, with a 

window size of 120 seconds and 30 seconds overlap. To estimate the best values for the lower cut-

off frequency, I focused on the range of 1 Hz to 5 Hz to find the point of the maximum power. This 

should be an important BCG frequency for that subject, so we want to keep that frequency content. 

Then I found the corresponding trough right before that peak as an approximate location for the 

lower frequency cut-off. The higher cut-off frequency is kept on 5Hz, as shown in Figure 5.4. 

 
Figure 5.4. Zoomed version of the Welch power spectral density on raw BCG signal. The 

highlighted region in red is used to refine the lower cutoff frequency of the bandpass filter.  

 

5.2.2. Baseline deviation of the signal 

Deviation of the BCG mean from the baseline (the local DC bias, long-term median) is also 

the source of some problems, as the absolute value from the baseline is being used in the process 

of computing the energy. If for any reason, such as respiration, the local mean of the BCG shifts to 

higher amplitudes, then the computed energy would artificially show higher values. Conversely, if 

the local mean of BCG goes below the baseline, the corresponding energy wave would have an 

amplitude lower than the actual. Both of these artifacts may cause difficulties in the detection of 

the neighboring peaks. 
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To resolve this issue, I have computed and adjusted the local baseline using the lower and 

upper BCG envelopes. I have used MATLAB’s envelope function to fit upper and lower 

polynomials to every 10 consecutive peaks. The point by point difference between the upper and 

lower peaks is considered as the optimal baseline. Figure 5.5 shows on top a sample BCG signal 

with almost three respiratory cycles and multiple BCG beats superimposed on them. It also shows 

the upper and lower envelopes created using MATLAB’s envelope function. The point by point 

average of the upper and lower BCG envelopes shows a pattern similar to the respiratory variations 

from the respiratory band and also from the transducers.  

The lower plot in Figure 5.5 shows the flattened BCG signal by subtracting the point by point 

mean of the upper and lower envelopes from the original waveform. As presented here, the result 

is clean and stable and does not have the normal variations remaining from the incomplete filtering 

of the respiratory signal. 

 
Figure 5.5. The 1st energy enhancement by resolving the deviation from the mean by averaging 

the upper and lower envelops. 
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5.2.3. BCG amplitude normalization using respiration 

As described in [109], heart activity varies during different respiratory phases. Otis, et al. 

[110] studied the respiratory-related changes of the cardiac output, employing BCG, and reported 

a decrease in stroke volume during inhalation. Starr and Friedland [111] also studied the genesis of 

the respiratory variations in the ballistocardiograms. During inspiration, the filling, and so the 

output of the right heart increases immediately, but the left heart's output does not increase until an 

interval of several seconds has elapsed [111].  

The output of the right heart reduces on expiration, which is followed by an interval of 

reduction in the left heart's output [111]. The change in the right heart's output during the respiratory 

cycle is larger than that of the left. This causes more blood being pumped out of the heart and 

therefore a higher amplitude in the BCG waveform, during the inhale. Although it might not be 

precisely linear, my experiments also show a clear correlation between the respiratory depth and 

the amplitude of the J-peak.  

The energy algorithm suffers from the high variation of the J-peaks during the respiration. 

The peak detection will miss some of the real J-peaks assuming them as being the low amplitude 

noise, and will incorrectly detect some other peaks as J-peak due to their extended amplitude. To 

solve this issue, I divided the amplitude of the BCG signal by the amplitude of the respiratory 

signal, so that it cancels part of the respiratory-related variations of the J-peak. The resulting J-

peaks and their energy waves have more stable amplitude among the neighboring cycles. The 

preliminary results illustrated in Figure 5.6 show a great improvement by normalizing the 

amplitude of the peaks of the energy algorithm. 
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Figure 5.6. The 2nd enhancement of energy peaks by normalizing the energy waveform and a 

lowpass filter. The peak detection algorithms work much better on this second derivation of the 

energy algorithm.  

5.2.4. Less significant J-peaks, within one cardiac cycle 

In some cases, especially for older adults, the J-peak is not anymore that much different from 

the rest of the waves and is hard to separate from the rest of the peaks during one cardiac cycle. I 

decided to use other properties of the J-peak on top of its high amplitude. There is one other 

parameter that is significantly different between the J-peak and the rest of the peaks, and that is the 

slope of the J-peak. As reported by Starr and Friedland [111], J-peak is caused by the movement of 

the center of mass of the body, right after the heart pumps the blood into the aorta. After that, the 

blood flow would slow down, and the rest of the peaks would not be as sharp as the J-peak. Here I 

have focused on the cases where the amplitude of multiple peaks are almost the same; thus, the 

normal energy function cannot highlight the beats correctly.  

To resolve this issue, I used the fact that the slope of the J-peak should also be larger than 

the rest of the peaks. Therefore, in the 3rd improvement of the energy algorithm, I first computed 

the first derivative the of the BCG signal, and then computed its energy function and also applied 

the respiratory correction (like in step 2). An example waveform is shown in Figure 5.7, with the 



57 

 

ECG signal, the BCG signal where both of the original and the second implementation of the energy 

algorithm fail to detect the BCG beats due to the low variation in the amplitude of the BCG peaks.  

 
Figure 5.7. The 3rd enhancement of energy waveform using the first derivative of BCGhas less 

variability of the peak amplitudes in each cycle. Both the original energy algorithm and my first 

extension for it could not detect much of the beats, while the 3rd approach which uses the 1st 

derivative of the signal to construct the energy, shows much more clear peaks a just misses one 

beat in 30 seconds, due to a lower amplitude. 

 

5.2.5. Guided J-peak detection 

Accurate localization of the J-peak in BCG waveforms plays an important role in some 

applications, such as extracting the J-peak features. Despite the common thought about the timing 

of the energy waveform with respect to the BCG J-peak, my experiments show the BCG J-peaks 

do not necessarily coincide with the peak of the energy algorithm. Even in the case of a clean BCG 

signal from a young, healthy subject, as shown in Figure 5.1, the peak of the energy waveform, 

mostly (not always) appears on the JK edge of the waveform. I have tried different filtering 

parameters, but the variability is still obvious. This is important if we try to use the peaks of the 

energy waveform, as the fiducial point in the cardiac cycle. 
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In order to specifically finding the location of every individual J-peak, I proposed the 

utilization of energy peaks as a guide for J-peak localization. The enhanced version of the energy 

algorithm is capable of finding some fiducial points in every individual heart cycle. The idea is to 

search in between every two consecutive peaks of the energy waveform and find the best match for 

the J-peak. By definition, the J-peak is the most prominent variation in the amplitude of the BCG 

waveform. This usually interpreted as the peak with the highest amplitude, which is highly 

inaccurate on different devices. Here instead, I use the peak with the largest slope, to define the J-

peak, which will handle part of the issues with the age-related deformations of the BCG waveforms   

One other consideration is regarding the cases where two neighboring peaks of the BCG 

have very similar properties. This makes it very difficult even for human investigators, to 

confidently annotate one of the two beats as the true J-peak. I have decided to always choose the 

first peak as the J-peak, for the sake of consistency. I have demonstrated in Figure 5.8 the peaks of 

the original energy waveform (red crosses), the peaks of the enhanced energy waveform (red dots), 

and the detected location of the J-peaks (green dots), as described above.  

  

Figure 5.8. Refining the J-peak locations using the energy peaks as reference. The figure shows 

even the peaks of the enhanced energy wave do not perfectly alight the J-peaks. Bottom: Sample 

BCG signal recorded from a young, healthy subject, and the locations of J-peaks. Top: 

Corresponding Energy waveform and its peak locations. Right: is the zoomed version of the same 

signals.  
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5.3. Evaluation and Results 

5.3.1. Evaluation approach 

The best reference to evaluate any algorithm on cardiac cycle detection is the use of the ECG 

R-peaks. ECG, as the electrical activator of the heart, has been studied very well and multiple 

algorithms are currently available for automatic detection of the ECG R-peaks. I have re-

implemented the famous Pan-Tompkins [112] algorithm in MATLAB, and have used it on short 

ECG recordings, in the range of 2-20 minutes. For longer recordings, such as 7-8 hours of overnight 

data received from the sleep lab, I ended up using the AD Instrument’s LabChart software. This 

software has multiple algorithms for R-peak detection, and I used the Bazett as the default setting.  

Pan-Tompkins [112] is a real-time algorithm to find the QRS complexes in the ECG signals 

through the analysis of the amplitude, slope, and width of the peaks. An embedded adaptive 

thresholding and filtering technique reduces the false alarms and improves the sensitivity of the 

detections. On the other hand, considering the correlation between the QT interval and RR interval, 

many algorithms tried to provide more advanced approaches to detect the QRST complexes. 

LabChart has implemented the Bazett’s [113] approach, which used the correlation between the 

measured QT interval and the square root of the RR interval. Interested readers are encouraged to 

find more details about these algorithms in [112-114]. 

After finding the reference ECG R-peaks, the continuous beat-to-beat heart rate could be 

computed using the time interval between the neighboring R-peaks (RR interval), as depicted in 

the following formula: 

𝑓𝑜𝑟 𝑗𝑡ℎ 𝑐𝑎𝑟𝑑𝑖𝑎𝑐 𝑐𝑦𝑐𝑙𝑒;     𝐻𝑅𝑗 =
60 ∗ 𝐹𝑠

𝑅𝑅𝐼𝑗
 

Where Fs is the sampling rate in Hz, and RRI is the interval between the two R-peaks, and 

HR is the beat to beat heart rate estimated in beats per minutes (bpm). 
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Bland-Altman plot is used to analyze the agreement between two measurements. In the 

standard process, the average of two readings is used as the x-axis and their difference to be used 

for the y-axis of the resulting point in the plot (s). 

𝑆(𝑥𝑖, 𝑦𝑖) = [
1

2
(𝑆1𝑖 + 𝑆2𝑖),  𝑆1𝑖 − 𝑆2𝑖] 

Where S1 and S2 are the two series to be compared, and x and y are the locations of the 

resulting point. As a common approach, in case of existence, the ground truth measurement could 

be used on the x-axis instead of the average of the two. As we usually have the reference HR from 

the ECG signal, I have used them on x-axis. An example Bland-Altman is plotted in Figure 5.9 

beside the correlation plot, for the beat to beat HR values that were estimated from the pulse figure 

sensor compared to the ECG R-peaks. 

 
Figure 5.9. Bland-Altman plot of beat to beat HR estimations using the pulse sensor vs. the ECG 

based method. Even the wearable pulse sensor has some estimation errors. 

To use the standard Bland-Altman technique for the beat to beat evaluation of the heart rate 

estimates, there should be an estimate for every cardiac cycle. In other words, the method would 

not work if the energy algorithm misses some of the peaks or incorrectly detects more peaks. 

Unfortunately, Due to the physiological delay between BCG and ECG, the R-peak timings would 

not be of great help, by themselves. In order to provide a simple way to align the heart rate 

estimations from the two approaches, I decided to use interpolation to synthetically add the missing 
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values in between the existing ones, and also discard the extra points in one cycle. To do so, I have 

used MATLAB’s interp1 function to interpolate both time series into a common time stamp, with 

a sample rate of 2Hz. This will ensure the coverage of most of the detections as well as promising 

distances to the actual detected points.  

Also, to assess the quality of average heart rate estimation, I have used two approaches. In 

the first one, an average heart rate is being computed for every epoch of 30 seconds. This approach 

uses the timings of the actual detected fiducial points and computed heart rate utilizing the peak to 

peak intervals. In the second approach, the moving median function with the 30-second sliding 

window was applied to the interpolated heart rate estimations, to provide a smoother estimation for 

each time series. 

The following functions will be used to assess the accuracy of the beat detections. The first 

one looks at the overall estimation of the average heart rate for the entire 10-minute of data. The 

second method compares the inter-beat intervals to see how well the j-peaks were detected. 

1. Root mean square difference (RMSD) between the estimations from ECG and BCG: 

𝑅𝑀𝑆𝐷 = √∑ (𝐻𝑅𝐸𝐶𝐺 − 𝐻𝑅𝐵𝐶𝐺)2
𝑁

𝑖=1
  

2. Reproducibility Coefficient (RPC) measured upon the creation of the Bland-Altman 

plot: 

𝑅𝑃𝐶 = 1.96 ∗ 𝑆𝑇𝐷 

 

5.3.2. Results 

For a detailed analysis of agreement between our estimated heart rate compared to the 

reference values from the ECG RR interval, I have created a Bland-Altman plot for the four 

transducers on each file. As shown in Figure 5.10 for a random healthy subject, the accuracy of 

beat detection relies a lot on the channel selection. For example, in this figure, channel 4 (right, 
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bottom row) has a nice linear correlation to the ECG estimates, and therefore have very small 

RMSE (1.1 bpm) and a small reproducibility coefficient (18 bpm), while both RMSE and RPC 

values are much higher on the other channels.  

 
Figure 5.10. Bland-Altman plot for the HR estimates using the enhanced energy algorithm on 

four transducers using Data from a sample young, healthy subject from the HRV dataset. 

Although good agreements available in transcoders 3 and 4, the other two transducers show a 

large deviation from the reference values. These results encourage me to focus more on 

enhancing the quality of the BCG signal. 

 

As I am working on a large data set consisting of hundreds of files (subjects × trials), Bland-

Altman plotting for every individual is not reasonable, especially due to the large difference 

between these datasets with respect to the signal quality caused by motion or due to the age. Instead, 
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I have computed the RMSE and also the RPC values and aggregated them over all subjects to 

provide group by group overall statistics. The results of this section mainly obtained from the three 

databases which synchronous ECG recordings, namely the followings:  

1. HRV: 60 young, healthy subjects in the supine position,  

2. POS:  60 young subjects with 4 different sleep postures,  

3. TP:     50 mostly older residents and workers of TigerPlace. 

First, I have computed the average RMSE over all subjects of each dataset, for the 

estimations acquired by applying both the original and the enhanced energy algorithms on the bed 

sensor. As provided in Table 5.1., the newly proposed enhancements of the energy algorithm 

improved the accuracy of beat to beat estimations both in the mean and standard deviation of the 

error in every single dataset, by a factor of 2-3 times.  

Table 5.1. Evaluation of beat detection algorithms before denoising or channel selection. Even 

before applying any denoising or channel selection, the enhanced energy algorithm outperforms 

the original one by a factor of 2-3 according to the RMSE. 

 

RMSE (bpm) 

All Subjects HRV Pos TP 

Mean STD Mean STD Mean STD Mean STD 

Original alg. 16 11.1 15.4 10.6 17.2 9.4 16.9 13.9 

Enhanced alg. 7 5 5.7 4.9 8.3 4.5 6.9 5.5 

 

Note that these values are acquired from the raw signal before any noise reduction or 

cancellation. Therefore, the dataset that contains four change of postures has the highest amount of 

error caused by the motion artifacts. For older subjects (TP), in addition to the age-related 

deformations that appeared in the BCG waveforms, the reference ECG and PPG signals were also 

noisy at times. This causes an incorrect ground truth reference and consequently out of range RMSE 

values. As depicted in Figure 5.11, the finger pulse sensor for at least three subjects shows a high 

RMSE value, and in one case, BCG estimation is also off. I checked those instances carefully. For 



64 

 

one subject the finger sensor looked very irregular, and for the others, the ECG was so noisy, 

perhaps due to a loose sensor-skin connection. Thus in a few cases with high noise contamination 

in the ECG signal, I have used the PPG peaks to estimate the reference beat to beat heart rate. This 

is partially due to the different structure of the skin in older subjects, which causes some noise 

artifacts in PPG or ECG. 

 
Figure 5.11. Beat to beat RMSE of the original vs. the enhanced energy algorithm shows a huge 

improvement on the beat to beat estimations. The original energy algorithm (gray) has a high 

RMSE on all subjects, while the error on the enhanced energy (orange) is comparable to the 

pulse sensor (blue). There are a few subjects in which the enhanced energy estimate is not as 

good; those subjects also have low accuracy by means of the pulse sensor, which perhaps is due 

to their movements, and the body-sensor coupling.  

5.4. Discussion and future work 

Even after applying all these steps, there still exists the chance of having delays between the 

J-peaks being detected from each of the four transducers. This is mainly due to the difference in 

the morphology of BCG waveforms captured from the four transducers, as shown in Figure 5.12.  
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Figure 5.12. Example of different templates created from the 4 transducers from the hydraulic 

bed sensor on a random healthy subject. Templates show slightly different waveform morphology, 

which causes a miss-alignment between the detections of different transducers. 

Although a persistent miss-alignment between the J-peaks in different transducers is 

transparent for the estimation of heart rate, it might be an inconsistent and random detection due to 

a small variation in the amplitude. Therefore, in future work, one can combine the information of 

all four transducers together to improve the detection on the others. As presented in Figure 5.13, 

the idea is to use the average J-peak location from three of the transducers to find a reasonable 

window for the appearance of the J-peak on the other transducers. This process should be done in 

short sliding windows (0.5 Sec.), to reduce the change of covering multiple cardiac cycles.   

 
Figure 5.13. J-peaks of four transducers may not align as their morphologies differ. Figure on 

the left represents a real example of the miss alignments in the BCG peaks detected from the four 

transducers. The right side of the figure shows how the proposed alignment could make 

corrections on the individual traducer. 
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As the final experiment, I used the enhanced energy algorithm on the overnight BCG data 

recorded at the sleep lab from their normal patients. While not perfect, we tried to align these BCG 

signals to their corresponding EDF files from the sleep lab, which contains an ECG recording as 

well. I have imported these ECG signal of 20 subjects to LabChart and analyzed them to extract 

the ECG R-peaks. In Figure 5.14 I have superimposed the reference HR from the PSG on the 

estimations that I have acquired from the for transducers of our sensors using the enhanced energy 

algorithm. While there is a general agreement between these measurements, for most of the time 

there is at least one transducer whose estimations are off and mostly above the ground truth.  

 
Figure 5.14. Evaluation of the enhanced energy algorithm on a 7-hour sleep lab data shows some 

periods of high accuracy and some periods or low accuracy for different transducers. The black 

dots are the HR estimations from the ECG R-peaks, and the colored lines are the estimations 

from the four transducers. Although, each sensor has some periods of high error, for the most of 

times there is at least one transducer with very low deviation from the reference. 

For comparison, I have also plotted the sleep annotations regarding sleep posture and sleep 

cycles. Supine posture seems to coincide with the appearance of yellow and red lines, which are 

the errors related to the two transducers in the middle of the bed (F2 and F3). There is a much 

smaller error for these two transducers, while the subject is on their side. The exact source of this 

problem requires more investigations on the configuration of the bed and sensors. One possible 
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cause could be the different type of activity during those two periods, such as wake and REM, or 

the possibility of blockage of the transducers on that specific configuration.  

Now that I made some significant improvements in the quality of the beat to beat heart rate 

estimation, I will use the average heart rate of epochs to evaluate the quality of different algorithms, 

in the rest of this dissertation. 
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6. HANDLING DISTORTION AND VARIATION IN BCG 

As will be discussed in a future chapter, BCG waveforms are subject to variations due to 

different circumstances including the age and respiration. In general distortions are deformations 

of BCG signal caused by non-systemic (ambient) sources, such as the relative vibration of the 

sensor and the subject which causes sudden spikes in the signal, or the stable relocation of the 

subject which causes a constant change in the direction, distance and the quality of decoupling of 

the sensor and the body respectively. Some normal systemic variations are also expected in the 

acquired BCG, due to the change in the health conditions or even during the regular internal cycles 

of the body, which will be discussed later. 

Not all of these variations are reflecting a change in the mechanical activities and properties 

of the person’s body but rather might be related to the random variations in the sensing 

environment. These variations are less likely to be helpful in early detection of health conditions; 

thus, they need to be detected and treated so that they will not affect the analysis. Three categories 

of such artifacts in the ballistocardiography have been recognized including (1) the motion artifacts 

either caused by the body movements or from the ambient noise, (2) the variable coupling of body 

and the sensor including the contact area, distance to the sensor and the body direction, and (3) the 

normal parasympathetic variations of the hemodynamics such as heart rate variability (HRV) and 

the respiratory sinus arrhythmia (RSA).  

Similarly, as described by Alihanka, et al. [54], when interpreting the data, the patient’s 

change of position during the sleep must be taken into consideration. In supine position or when 

the subject is sleeping on the right side, the BCG amplitude is about the same, but if the subject is 

sleeping for example on their left side, the apex beat of the heart may be recorded with an amplitude 

about two times the usual BCG amplitude. This happens when the region of the thorax (where the 

apex beat of the heart is strong), comes in close contact with the mattress (e.g., on the left side).  
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In this chapter, I first define different sources of motion artifacts and their effect on biosignals 

such as ECG, PPG, and BCG. Various approaches for artifact detection, reduction and removal 

have been provided with a brief theoretical background for each. An intensive review of the existing 

literature in Section 6.2 will provide enough evidence on the lack of advanced motion detection 

and removal techniques for BCG. In Section 6.3, multiple motion reduction techniques will be used 

to eliminate the noise from the BCG signal, and Section 6.4 provides different techniques to 

evaluate the signals and detect the motion artifacts. Finally, Section 6.5 explores the utilization of 

these techniques to choose the best channel among the four transducers. 

 

6.1. Background  

Ballistocardiography was initially used to study cardiac mechanics and obtain diagnostic 

information about the cardiac contractility [39, 115, 116]. It provides a nice visual representation 

of the mechanical activities of the heart and the cardiovascular system. Therefore, the visually 

perceptible variations in the morphology of the BCG waveforms, have always been of interest for 

many researchers. There is a general agreement between researchers that regardless of the type of 

BCG device, the IJ amplitude declines by age [117]. Trends in IJ amplitude or derived functions 

such as stroke volume have been found by investigators in several laboratories.  

Abramson [22] was the first who tried formulating the relation between the BCG curves and 

the cardiac output. He showed that the BCG amplitude relates to the force of the heart and the way 

it ejects the blood [23]. However, it is not very clear how the BCG amplitude and stroke volume 

and the body size are related to each other. Taylor and Walker [117] provided evidence that shows 

Nickerson’s low-frequency device gave a relatively large correlation coefficient between the 

body’s surface area and the cardiac output. 
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BCG has shown the ability to detect cardiac changes in the early stages of the disease before 

symptoms manifest [6, 118]. While there is not yet a clear and precise explanation on the effect of 

change in hemodynamics to the ballistocardiography waveform, studies have shown that 

ballistocardiography can provide fundamental information about the occurrence of myocardial 

ischemia [119], or the ischaemic heart disease (I.H.D.) [120]. Starr, et al. [39] reported the potential 

variations of the BCG morphology related to the weakness of one side of the heart. Starr and Wood 

[16] also showed that the BCG amplitudes of those patients who developed heart disease were on 

average, initially only 25 percent of those who did not. In other words, small IJ amplitude 

significantly increases the chance of developing some form of cardiac abnormality in the future 

(after 5 to 20 years). 

Many studies have explored the morphological variations of the ballistocardiography as an 

effect of age or physical activity. Rosenblatt [121] reported a decrease in the amplitude of 

ballistocardiograms for people of age 50 or more in comparison with a younger population, which 

reportedly is due to the condition of the cardiovascular system (e.g., healthy versus a diseased heart) 

[6, 51, 118]. Healthy subjects have strong contractility to generate large waveforms, whereas 

smaller waveforms come after weak contractility [122]. Thus, BCG can more accurately predict 

the heart’s age than the person's chronological age [6]. Twenty years ballistocardiography follow 

up on 211 healthy subjects (174 men, 37 women), by Starr and Wood [16] showed the amplitude 

of the BCG waveform diminishes with age.  

Besides the "normal" effect of aging, the percentage of abnormal BCG waveforms increases. 

This is while the ordinary clinical tests do not diagnose any health problems [23]. The abnormality 

in BCG contour could appear in the form of deviations from the normal template, small noises, and 

notches of normal waves, reduction or absence of normal waves, and the presence of abnormal 

waves. The diseased heart appears to lose the fine coordination of the normal contraction. Most 

elderly patients with coronary heart disease or congestive heart failure have abnormal BCG 
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recordings. Changes in the conditions of the disease usually clearly change the BCG waveforms, 

for example, the small BCG amplitude in the in patients with congestive heart failure, often 

improves as the patient responds to therapy. 

 
Figure 6.1. BCG obtained from a young, healthy woman after twenty two months. The right-hand 

tracing, which is the later one, show some decrease in the size of the diastolic complexes, but no 

change in the systolic ones. (image from [30])  

 

 

The Ballistocardiogram waveform tends to vary during the respiratory cycle and shows more 

abnormal complexes at expiration while approaching normal patterns at full inspiration [23]. This 

can be described as an example of Starling's law of the heart [23], in which the best contraction 

of a weakening heart appears at a time during the respiratory cycle in which it is best filled. As a 

result, there are many cases in which only the inspiration phase contains normal BCG complexes. 

Indeed, for patients in declining health, the percentage of abnormal BCG waveforms can be used 

as a guide to evaluate the severity of myocardial impairment. Starr and Wood [16] realized that 

women have smaller BCG amplitudes than men, not because they are smaller in size, but because 

they are women and their heart’s contraction applies smaller force to the blood.  

The morphology of the ballistocardiograms can be changed due to a change in the 

hemodynamics, or as a result of the external sources of motion. These motions usually appear due 

to the ambient noise, limb movement or the movement of the person on the bed while changing the 

sleep posture can affect the quality of the readings.  

A variety of systems are used to capture BCG signals, including beds [7, 8], chairs [9], and 

weighing scales [10]. Bed-based sensors, in particular, have the potential advantage of long term 
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BCG acquisition throughout the night [3]. Our hydraulic bed sensor targets the longitudinal 

monitoring of vital signs such as heart rate, sleep posture, blood pressure, and other cardiac 

conditions, noninvasively [11-13]. Collecting BCG signals while the subject is in the supine 

position, provides an ideal platform for non-invasive estimation of blood pressure. With the subject 

mostly flat in a similar position on the bed, body part elevations will not contribute to blood pressure 

change. Thus, blood pressure changes in this position are related to some physiological variations. 

While these systems provide a high degree of freedom for the subjects [6], they are highly 

susceptible to motion artifacts [3], as represented in Figure 6.2. The coincidence of BCG bandwidth 

(0.5-10 Hz) with several sources of motion, including respiratory fluctuation of the chest, body 

postural change, or limb movements, is the leading cause [14]. According to [15], even in the 

controlled setting of longitudinal experiments with BCG, only 29% of the head-foot waveforms (in 

men) are considered normal, and the rest have different levels of noise. Inaccurate estimation of 

cardiac parameters from the artifact-contaminated BCG records could negatively affect the quality 

of future studies. This emphasizes the need for methods that are robust against motion artifacts. 

The necessity of having accurate and reliable sensor information on the clinical status of the 

patients during the anesthesia have been discussed by Takla, et al. [123]. Motion artifacts are the 

primary source of distortion in achieving the desired features. To overcome the potential issue that 

motion artifacts can impose on the quality of biosignals in general, different techniques have been 

designed and developed both for detection and also the removal of motion artifacts especially from 

ECG signals ([124-130]). Hamilton, et al. [125] removed motion artifacts from the Holter ECG 

signals and designed and improved methods to remove coarse cardiopulmonary resuscitation 

(CPR) artifacts from the ECG signal. Ambient light interface and finger motion artifacts can corrupt 

these characteristic features of the pulse oximeters. Lee, et al. [131] was able to design a filter to 

reject pulse oximetry artifacts, caused by the ambient light and the finger motions. 
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From a technical point of view, a few general approaches are getting more attention among 

the researchers, including the wavelet-based denoising ([128, 132, 133]), Adaptive Filters ([125-

127, 134-138]), and Empirical Mode Decomposition ([129, 139, 140]). Some case base solutions 

in the frequency space ([131, 141-143]) along with some feature space ([144, 145]) data analysis 

have also been introduced in the literature. Working in the feature space is usually highly dependent 

on an accurate beat detection, which itself is a challenge in the case of BCG. A secondary motion 

reference sensor, usually an accelerometer, has been used in many types of research both to verify 

the accuracy of the method or as a guide to detecting the motion.  

By the emergence of new devices for continuous vital sign monitoring, valuable information 

can be extracted from normal activities without interrupting the daily routines. These sensors are 

meant to be used in unconstrained normal life instead of limiting the users’ activities [123]. The 

current sensors being used in the measurements of ballistocardiography are highly sensitive to 

motions, including the body or limb movements or other ambient motion artifacts such as floor 

vibration caused by walking [134]. Multiple studies showed the effectiveness of motion artifact 

detection and removal techniques on the ballistocardiographic data, including the works of 

 
Figure 6.2. Example effect of motion artifact in BCG signal compared to the corresponding ECG 

signal. 

 



74 

 

Friedrich, et al. [141] to reduce the limb movements, coughing or snoring artifacts to increase the 

accuracy of overnight beat-to-beat heart rate estimations. Table 6.1, in the next section, provides a 

comprehensive review of the current literature dealing with motion artifacts in multiple biosignals, 

including the BCG. The proposed techniques, the goal of each method (detection or reduction), and 

the data source are also provided for each article. Also, a column is dedicated in each row to 

highlight the use of a secondary reference sensor. 

 

6.2. Related Work 

There are two general approaches to deal with motion artifacts, the diagnosis (detection), and 

the accommodation (reduction) [146]. While an accommodative method tries to reduce the effect 

of noise, a diagnostic approach highlights (detects) the potential motion corrupted segments of the 

signal. Once detected, the system may remove these segments from future processing of the data. 

I have provided a review on the current leading methods to deal with the noise and motion artifacts 

in Table 6.1, which include some general categories of signal processing techniques such as linear 

filtering, adaptive filtering, wavelet denoising, blind source separation, and empirical mode 

decomposition (EMD) that have been used in reducing the noise content of the biosignals and 

reconstruction of noise-free signals [147].  

Adaptive filters have generally been used for noise cancellation in a variety of signal sources 

[135]. They require a primary signal input and a reference noise input. Inan [134] used a seismic 

sensor as the reference signal to eliminate floor vibrations on ballistocardiogram signals acquired 

from the modified bathroom scale. In another study, they reported the use of foot-acquired 

electromyograms as the reference to cancel body movement on the modified weighing scale [3]. 

Similarly, Yang and Tavassolian [148] used a delayed version of the original seismocardiogram 
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(SCG) signal as the reference for the least mean squares (LSM) adaptive filter. However, a noise 

reference signal is not typically available for noninvasive in-home sensing systems. 

Without having any a priori knowledge about the data, EMD decomposes the signal into a 

few components with well-defined modes [149]. EMD is shown to be more flexible than linear 

techniques in the reduction of noise, due to the dynamic assignment of signal and noise to different 

modes. EMD is used in [149] to improve the accuracy of heart rate estimations from unstable chair-

based BCG records. However, the reconstructed signal provides incomplete dynamic features of 

the uncorrupted signal and causes the loss of detail in BCG components that are required for 

tracking health conditions. 

In contrast, machine learning approaches for motion artifact detection mostly quantify the 

severity of the artifacts using some feature-based signal quality index (SQI) [148]. Some 

approaches quantify the SQI using waveform morphologies after segmentation. Their feature 

extraction is highly dependent on the accuracy of time-domain peak detection [146]. For instance, 

in Wijenayake and Park [150], a reference ECG signal is used to segment out BCG and PPG signals 

and create a cardiac template to be used in the reconstruction of the full-length signal. This 

reconstructed signal was then used to compute the signal to noise ratio and signal quality. Likewise, 

features such as y-axis variance, displacement of the center of mass, sensor mean value, mean 

diagonal energy of the load cells and mean percentage variance of each load cell, was extracted by 

the authors of [151] to feed a support vector machine (SVM) classifier to distinguish between 

different type of body movements. 

Temporal features such as mean, variance, skewness, kurtosis, 75th percentile, and Shannon 

entropy are mostly extracted from consecutive cardiac cycles, after segmentation. Assuming that 

clean and corrupted segments form two separate groups, the statistical features may discriminate 

amplitude distributions between BCG segments. However, BCG morphology varies among 
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patients, which causes different levels of amplitude distortion. Therefore, it can be difficult to 

obtain high accuracy results from these algorithms in practice.  

Table 6.1. Review of literature that deal with motion artifacts in different biosignals. A column 

designates the use of a secondary reference sensor. 
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Takla, et al. [123] 2006 
  

 Review 
  

  

Wiard, et al. [14] 2011    Thresholding     

Alivar, et al. [152]     Thresholding, Auto-Regression     

Hoog Antink, et al. [130] 2017 
 

 
 Shape-Based SNR 

   

 

Krishnan, et al. [153] 2010    Neyman–Pearson, FD-ICA     

Dao, et al. [154] 2017    Time-Frequency Spectral 

Features 
    

Młyńczak and Cybulski 

[143] 
2017    Teager–Kaiser energy     

Lee, et al. [129] 2012    Empirical Mode Decomposition     

Javaid, et al. [139] 2017    Empirical Mode Decomposition     
Khan, et al. [140] 2016    Empirical Mode Decomposition     

Barros, et al. [124] 1998    Independent Component Analysis     

Milanesi, et al. [126] 2006 
   Independent Component Analysis 

+Adaptive Filter (LMS+RLS)     

Hamilton, et al. [125] 2000    Adaptive Filter (LMS)     

Liu [127] 2011    Adaptive Filter (LMS)     

Inan, et al. [134] 2010    Adaptive Filter (LMS)     

Yang and Tavassolian [135] 2015    Adaptive Filter (NLMS)     
Shimazaki, et al. [136] 2014    Adaptive Filter (NLMS)     

Seyedtabaii and Seyedtabaii 

[137] 
2008 

   Adaptive Filter (Kalman)     

Lee, et al. [138] 2010 
   Adaptive Filter (Kalman 

Smoother) 
    

Lee, et al. [131] 2004    Filter bank and the Matched Filter     

Reddy, et al. [142] 2009 
   Continuous Fourier Series 

Analysis 
    

Friedrich, et al. [141] 2010    Time-Frequency Distribution     

Salehizadeh, et al. [144] 2014    Feature Space (Clustering)     

Petterson, et al. [145] 2007    Feature Space (Data Averaging)     

Lee and Zhang [132] 2003    Wavelet     

Raghuram, et al. [133] 2010    Wavelet     

Hashim, et al. [128] 2012    Wavelet     
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Time-frequency techniques such as short-time Fourier transform (STFT), wavelet transform 

(WT), and Hilbert–Huang transform are also used in the analysis of non-stationary physiological 

signals such as BCG [155]. They transform the signal into different frequency bands and compute 

their power spectrum density. Various spectral features can be studied, including mean and median 

frequency, maximum to minimum drop in power density, and power spectrum deformation. 

A linear time-frequency transform is used by Moukadem, et al. [155] to improve the heart 

rate estimations from the accelerometer BCG. A sequential detection algorithm is used in [152] to 

label successive BCG frames by comparing them to two thresholds. Dao, et al. [154] used the time-

frequency spectrum first to detect the motion-artifact-corrupted data and next to discard the non-

usable part.  

As we do not have any reference signal for motions, adaptive filters are not an option. Here, 

the best options are either the wavelet decomposition that has been described and used by [128, 

132, 133] or the empirical mode decomposition used by [139, 140]. The remainder of this chapter 

will provide detail information about these techniques and the results of my experiments in the 

application of these techniques, with the goal first enhancing the quality of the signals and then 

discarding the remaining portion of the signal that is highly contaminated with noise. 

 

6.3. Motion Artifact Reduction 

6.3.1. Method 

Part of the work presented in this chapter specifically and this dissertation, in general, is 

related to different signal processing methods being applied on the biosignals of interest to acquire 

cleaner signals leading to more reliable time, frequency or time and frequency features. I will start 

with a brief definition of different transformation functions and encourage interested readers to 

refer to the book by Stark [156] as one of the most cited references in the literature. 
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I. Wavelet Decomposition 

In general, transformation refers to the convolution of the input signal f(u) with an “analysis 

function” as represented in (1.1), where g(u) characterizes the chosen transform through different 

parameters, as described by [156]. Each transformation results in the decomposition of the input 

time-dependent function f(t) into a more compact representation. For example, the Fourier 

transform decomposes a signal into the weighted sum of multiple sinusoidal with circular frequency 

(ω) and is represented as 𝑔𝜔(𝑢) =  𝑒𝑗𝑢𝜔 in equation 1.2. 

𝑓(𝑡) ∶  ∫ 𝑓(𝑢)𝑔(𝑢)𝑑𝑢
+∞

−∞
    (1.1) 

𝑓(𝜔) ∶  ∫ 𝑓(𝑢)𝑔𝜔(𝑢)𝑑𝑢
+∞

−∞
  (1.2) 

Short-time Fourier transform (STFT) is the windowed version of the Fourier transform which 

is designed to provide localized information about the signal. The analysis function of STFT is as 

shown in (1.3) 

𝑔(𝜔, 𝑡)(𝑢) =  𝑒𝑗𝑢𝜔𝜔(𝑢 −  𝑡)   (1.3) 

where w(u) is the shape of the window function (1.4) 

𝑓𝜔(𝜔, 𝑡) = ∫ 𝑓(𝑢)𝑔(𝜔,𝑡)(𝑢)𝑑𝑢
+∞

−∞
    (1.4) 

The theoretical description of the wavelet transform is very similar to the Fourier transform, 

with an extended possibility of incorporating multiple scales in order to decompose the signal into 

several scales. In the Discrete wavelet transform (DWT), the coefficients are computed by the 

sequential application of a series of high-pass and low-pass filters on the input discrete-time signal 

[157]. This sequential process, also known as multi-resolution analysis, as represented in Figure 

6.3, decomposes the signal through a step by step application of a filter bank of high-pass (HP) and 

low-pass (LP) filters. The output of the high-pass filter is addressed as the detail coefficient (D) of 

the input signal, and the output of the low-pass filter is called the approximation coefficients (A). 
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To increase the frequency resolution of the signal, the signal is down-sampled by a scale of 2 before 

being passed to the next filter. This process is repeated until a specified level has been reached 

[158].  

The detail coefficients (D) are, in fact, the frequency-dependent properties of the signal. By 

repeatedly applying this process, the signal can be decomposed into lower resolution components. 

In the multi-resolution decomposition of a signal with length 2n, n level of resolutions can be 

retrieved [157]. The beauty of the transformation functions is they have an inverse function. More 

specifically for the case of discrete wavelet decomposition, we can always reconstruct the original 

signal from the wavelet coefficients by up-sampling the approximation coefficients and the detail 

coefficients then, respectively, pass them through a low-pass or high-pass filter and finally sum 

them at each decomposition level. 

 
Figure 6.3. Representation of wavelet decomposition and its effect on BCG signals. The 

sequential process of wavelet decomposition, also known as multi-resolution analysis.  
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Wavelet transforms usually have been used for the denoising of non-stationary signals, as 

they provide a decomposition of the signal in the time-frequency domain [159]. Discarding some 

decomposition levels by thresholding some coefficients of the wavelet transform creates a smoother 

version of the input signal. This powerful threshold-based denoising method was introduced by 

Donoho [160]. Donoho’s thresholding method for denoising has shown to be effective for a wide 

class of one-dimensional signals. The general denoising procedure involves three steps [159], that 

are described here and depicted in Figure 6.4: 

1) Decomposition: First choose any wavelet with proper selection of level N. Then, 

compute the wavelet decomposition of the signals at level N. 

2) Thresholding: Appropriate threshold is applied to the detailed coefficients prior to the 

Nth level of decomposition. 

3) Reconstruction: Perform wavelet reconstruction using the original approximation 

coefficients of level N and the modified detailed coefficients of levels from 1 to N. 

 
Figure 6.4. Workflow for motion artifact reduction using wavelet block processing. 

II. Empirical Mode Decomposition 

Empirical mode decomposition (EMD), has been widely used to filter nonlinear and 

nonstationary signals. EMD is much more flexible to the reduction of noise than linear techniques, 

and even than wavelets, as it can dynamically assign different modes to signals and noise. This 

technique decomposes a complex signal into some (almost) orthogonal components, where the 

Hilbert transform could provide their instantaneous frequencies. As described in [161], EMD 

empirically identifies the time lapse between the successive extrema, also known as the data’s 

intrinsic physical time scales. Therefore, the extracted characteristic oscillatory modes are intrinsic 
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mode function (IMF), each of which satisfies the following properties. All IMFs should satisfy the 

following conditions: 

1) Having the same number of minima and maxima. The number of zero crossings should 

also be the same or differing at most by one. 

2) The mean value of the computed upper and lower envelopes should be zero, at any point. 

For a given signal, the IMFs can be found via EMD by the following procedure, which is called 

the sifting procedure: 

1) Identify all the extrema (maxima and minima) of the series X.  

2) Generate the upper and lower envelope by applying the cubic spline interpolation among 

all the maxima and minima, respectively. 

3) Average the two envelopes in a point by point manner to compute a local mean series m.  

4) Subtract m from the data to obtain a candidate IMF ℎ = 𝑋 − 𝑚. 

5) Check the properties of h:  

a. if h is not an IMF (i.e., it does not satisfy the previously defined properties), replace 

X with h and repeat the procedure from Step 1; 

b. if h is an IMF, evaluate the residue 𝑟 = 𝑋 − ℎ. 

6) Repeat the procedure from Steps 1 to 5 by sifting the residual signal.  

 

At the end of the procedure, we have a residue r and a collection of n IMFs, named ℎ𝑖 (𝑖 =

1, … , 𝑛). The ℎ𝑖 are generated being sorted in descending order of frequency and therefore h1 is 

the one associated with the locally highest frequency. Moreover, the original X can be exactly 

reconstructed by a linear superposition: 

𝑋 = ∑ ℎ𝑖 + 𝑟

𝑛

𝑖=1
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However, EMD suffers from a problem known as “mode mixing”, which is the presence of 

oscillations with different amplitudes in a mode, or the presence of very similar oscillations in 

different modes. To reduce the chance of mode mixing, Wu and Huang [162] have proposed an 

adaptive noise-assisted technique, named ensemble empirical mode decomposition (EEMD). 

EEMD is nothing more than averaging the results of the application of the original EMD on the 

random noise added to the original signal. The mode mixing problem is solved by the addition of 

white Gaussian noise, as the dyadic filter bank behavior of the EMD got used on the whole time-

frequency space [163]. Considering the randomness of the noise, the hope is to cancel out the noise 

through the process while resolving the mode mixing. EEMD has the following procedure: 

1) Add to the signal different realizations of the white Gaussian noise 𝑥𝑖(𝑛) = 𝑥(𝑛) +

𝑤𝑖(𝑛). 

2) Compute the EMD on each noisy signal 𝑥𝑖(𝑛)  and find the corresponding modes 

𝐼𝑀𝐹𝑘
𝑖 (𝑛). 

3) Average the IMFs of the same level, to reconstruct the modes for the overall EEMD: 

𝐼𝑀𝐹𝑘(𝑛) =
1

𝑊
∑ 𝐼𝑀𝐹𝑘

𝑖 (𝑛)

𝑊

𝑖=1

 

where W represents the number of realizations of the white noise. 

 

6.3.2. Experiments 

I have used MATLAB’s wavelet toolbox to decompose each signal into its detail coefficients 

(D) and the approximation coefficients (A). For the first experiment, I have tried multiple different 

mother wavelets, including the Daubechies (dB), Symlets (Sym), Coiflets (coif) and Biorthogonal 

(bior) each one with different configurations. The first 9 detail coefficients resulted by the 

application of each wavelet on the same sample BCG signal is presented in Figure 6.5, to provide 
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a general sense about the effect of each wavelet on the signal. As a visual inspection of the denoised 

signals of different subjects, it seems that components at levels 6 through 8 are the best candidates 

to reduce the noise from the ballistocardiograph. Also, wavelets such as “bior1.3” and “Sym4” have 

undesirable effects on the BCG signals.  

In the meantime, the approximation coefficients of the same configuration have been 

reported in Figure 6.6, where almost all wavelets could clearly extract the respiratory-like 

waveforms from the raw signal, very similar to the bandpass filtered signals. 

 
Figure 6.5. Example of applying different wavelet decompositions on raw BCG. Each column 

focuses on a specific mother wavelet. The top row is ECG and the second row is the raw BCG, 

followed by the detail coefficients (D2 to D9) of each wavelet transform on the same BCG signal. 

 

This approach could simply change our viewpoints with respect to the extraction of the 

respiratory waveforms. The following code demonstrates the MATLAB implementation for 

wavelet decomposition: 
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Code sample I Wavelet decomposition 

Goal: Extract the detail and approximation coefficients of the signal, used in denoising process. 

Requires: Ni, Number of decompositions  

                  WavletName, chosen from the list of available wavelets in MATLAB. 
  

1:   WavletName = 'bior3.3';                                                            % Choose a wavelet. 

2:   [C,L] = wavedec(X,Ni, WavletName);                                       % 1D wavelet decomposition. 

3:   for i_lev=1:15                                                                            % Process for 15 levels. 

4: D(:,i_lev) = wrcoef('d',C,L, WavletName,i_lev);           % Detail coeffs. 

5: A(:,i_lev) = wrcoef('a',C,L, WavletName,i_lev);           % Approximation coeffs. 

6:   end 

 

 
Figure 6.6. Wavelet thresholding used to reduce motion artifacts, by means of decomposing the 

signal into multiple detail coefficients, and then discarding some coefficients and summing up the 

rest of them. The 3rd row of this figure shows how wavelet thresholding can reduce the effect of 

motion artifacts, compared to the conventional bandpass filter, as shown in the last row.  

After the wavelet decomposition, I have also tried the standard empirical mode 

decomposition (EMD) on the BCG signal of some random subjects. This was again to provide a 

visual inspection of the conditions and the differences of multiple IMFs. MATLAB’s wavelet 

toolbox has a simple implementation of the EMD function which returns intrinsic mode functions 

(IMF) and the residual signals corresponding to the empirical mode decomposition of any input 
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signal X. EMD parameters such as the interpolation method, sifting stop criterion, decomposition 

stop criterion, and the boundary methods could be configured for different applications. I have used 

the following default settings for the EMD configuration. 

Code sample II Empirical Mode Decomposition (EMD) 

Goal: Decompose the signal into its IMFs used in the denoising process. 

  

1:   [imf,residual,info] = emd(X,'Interpolation','pchip',                         % Interpolation method 

2:                                                  'SiftRelativeTolerance', 0.02,            % Tolerance of Sift 

3:                                                  'SiftMaxIterations',100,                     % Max num sift iterations 

4:                                                  'MaxEnergyRatio',2);                        % Max energy ratio 

 

As described earlier, EMD suffers from the problem of mode mixing, and as a solution, the 

ensemble EMD (EEMD) has been introduced in the literature. I have implemented my own version 

of the EEMD, according to the literature and by means of the standard EMD function in MATLAB. 

As shown in the following code snippet, the process is very straight forward, which consists of 

generating different realizations of the normal Gaussian noise (using normrnd function) being 

added to the input signal. The resulting noisy signal will then be passed to the standard EMD 

function to create the corresponding IMFs (new_imf). The summation of all IMFs will be divided 

by the number of ensembles to create an average IMF set.  

Code sample III Ensemble Empirical Mode Decomposition (EEMD) 

Goal: Reduce the amount of mode mixing in the original EMD, using additive noise. 

1: noiseMU = 0;                         % Zero mean 

2: noiseSigma = 5*std(FilteredSignal);                      % Relative STD 

3: imf_sum = zeros(sLen,MaxNumIMF);                        % Initialization 

5: parfor i_ens = 1:numEns                                  % num iterations 

6:     noisySignal = inputSignal + normrnd(noiseMU, noiseSigma, sLen, 1);  % Noise signal 

7:     imf_new = emd(noisySignal,'Interpolation','pchip',                                  % Standard EMD 

8:                          'SiftMaxIterations',10, 'MaxNumIMF', MaxNumIMF, 'Display',0); 

9:     imf_sum = imf_sum + imf_new;                                                               % Sum of IMFs 

10: End 

11: imf_avg = imf_sum./numEns;                                              % Averaging 
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Figure 6.7 shows a sample BCG signal (on top) along with its 5 level decompositions through 

the normal EMD (left), ensemble EMD with 100 realizations of noise (middle), and the EEMD 

with 500 realizations of the noise (right). As the first few IMFs usually depict the high-frequency 

content of the signal, I show the 6th through the 10th IMFs. As theoretically expected, from left to 

right, each level of IMF shows a more stable form with less amount of mode mixing. Unfortunately, 

EEMD is a little slow compared to the standard EMD or the wavelet decomposition, due to the 

averaging process. Utilization of parallel computing could save time in large size analyzes.  

 
Figure 6.7. Comparing different implementations of the empirical mode decomposition. Sample 

BCG signal (on top) along with its 5 level decompositions through the normal EMD (left), 

ensemble EMD with 100 realizations of noise (middle), and the EEMD with 500 realizations of 

the noise (right). 

I have also applied the EEMD to recover some small motion artifacts from the BCG 

recording. As depicted in Figure 6.8, the 6th IMF of the EEMD was able to recover from the small 

motion artifacts and provide a cleaner representation of the BCG signal compared to the 

conventional bandpass filter. Comparing the last two rows of the figure on the right, with the 
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bandpass filtered BCG and the 6th IMF from the EEMD, clearly shows the benefit of EEMD on 

denoising the signals recorded from an older resident of TigerPlace. 

 

Figure 6.8. Example of how EEMD can reduce the noise contamination of BCG with the 

reference ECG, raw BCG, and IMFs 4 through 10 from the EEMD. As highlighted in the last 

row, IMF6 of the EEMD was able to recover BCG from the small motion artifacts, while the FIR 

bandpass filtered BCG shows considerably large distortions at that region.  

After trying the above three methods on some random signals of different conditions, I chose 

a single best output from each method and plotted them along with the reference ECG signals and 

also the standard result of applying the bandpass filter on the BCG signal. Figure 6.9 shows the 

sample recordings of simultaneous ECG, finger sensor, and bandpass filtered BCG signal along 

with the 6th IMF of the standard EMD, 6th IMF of the EEMD, and finally on the last row the 9th 

detail coefficient of the db6 Daubechies wavelet. 

The signal on the upper plot of Figure 6.9 is related to a young, healthy subject (HRV1046) 

who was relaxed for 10 minutes on supine position on the bed. While not having the cleanest 
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possible BCG waveform, still one can easily observe the cyclic variation of the BCG waveforms 

and estimate their locations from the bandpass filtered signal. 

 

 
Figure 6.9. Comparing different denoising techniques between young and old subjects. ECG and 

its R-peaks, PPG and the bandpass filtered BCG, along with the EMD, EEMD and wavelet-based 

filters for a young, healthy subject (top) and an older subject with not clear BCG (bottom). For 

the younger subject, EEMD was more effective, and for the older subject the wavelet 

decomposition provides better results. 
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As shown in the 4th row of Figure 6.9, the standard EMD is affected by the mode mixing 

problem and contains multiple switches between different frequencies. Instead, the ensemble EMD 

was able to do a nice job in both discarding the remaining low-frequency content as well as some 

of the unnecessary high-frequency component. Therefore, in the 5th row, we can clearly segment 

every single beat of the BCG signal. Finally, in the 6th row, the application of the Daubechies 

wavelet decomposition is not that much satisfactory.  

Conversely, the lower plot of the figure represents the signals acquired from a random older 

subject at TigerPlace (TP1140) with normal ECG but not a very clear BCG signal. The hope is to 

find at least one denoising technique to enhance the quality of the BCG signal for the purpose of 

beat detection. As shown in the 5th and 6th rows, while neither of the methods could completely 

clear the signal, the wavelet decomposition perhaps creates a better output for beat detection. 

6.3.3. Results and conclusion 

After reaching promising results in the application of both techniques (EEMD and wavelet) 

to enhance the quality of the BCG signal, I have studied the entire data set to provide a quantitative 

measure of the enhancement occurred after applying each method. I have used the synchronized 

ECG RR intervals as the ground truth for the instantaneous heart rate and applied both the original 

energy algorithm and my proposed enhanced energy algorithm to provide a beat to beat heart rate 

estimation from each channel of the hydraulic bed sensor. As discussed in Chapter 3, here, I have 

focused on evaluation of average heart rate estimations for epochs of 30 seconds long.  

The data consist of the simultaneous ECG and BCG signals from the following datasets: 

1) HRV:  60 young, healthy subjects, in the supine position with less motion. 

2) POS :  60 young, healthy subjects (same as above), with successive change of posture. 

3) TP    :  51 volunteers from both older residents and younger workers of TigerPlace. 

4) Sleep:  20 random patients from the Boone hospital sleep lab. 
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The process of analyzing the data from each subject consists of creating different denoised 

versions of the signal through the use of each of the previously described denoising techniques and 

then computing the beat to beat heart rate estimation from each one by applying both the original 

energy algorithm and the enhanced energy algorithm. For denoising, I have used the EMD (2nd to 

4th IMFs), the EEMD (2nd to 4th IMFs), and from each of the four wavelet decompositions (db5, 

db6, bior3.1, bior3.2) I picked three detail coefficients (DC3, DC4, DC5). The beat to beat 

estimations then averaged for every epoch of 30 seconds and were compared to the average heart 

rates computed from the corresponding ECG signal. The entire process following these steps: 

1) Load the signals from each of the four transducers  

2) Apply different configurations of the described filtering techniques, including: 

a. A bandpass filter with 0.7-10 Hz as the reference. (4 channels) 

b. EMD and EEMD and storing the 2nd to 4th IMFs. (4 channels, 2 methods, 3 IMFs)  

c. Wavelet decomposition (db5, db6, bior3.1, bior3.2), (DC3, DC4, DC5) 

3) Compute the beat to beat HR estimation of signals (Original and enhanced energy alg.). 

4) Split the beat to beat heart rate estimations into epochs of 30 seconds. 

5) Compute an average heart rate estimation for each segment.  

6) Compute the error of each epoch compared to the ECG based estimations. 

As the first goal, I have provided a comparative analysis of the potentials of application of 

denoising techniques on each of the original and enhanced energy algorithms. In Table 6.2, I 

showed the mean and standard deviation of the error in heart rate estimations, on the original (noisy) 

signal and each of its denoised versions. Regardless of the exact configuration of each technique 

(such as the wavelet type or IMF level), a general comparison provided on the best possible 

configuration of each method. In other words, for example for the dB wavelet, among all different 

wavelet configurations (db5, db6) and all choices for detail coefficients (DC3-DC5) and all choices 

to select the transducer (F1-F4), I have selected the lowest error in HR estimation (closest to the 
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reference HR). This will provide an “oracle” estimation of the lowest possible error of that general 

technique for each subject. Off course, automatic channel selection and the choice of decomposition 

level require further analysis. 

As described, Table 6.2 provides an overall comparison of the best cases for each 

configuration. Here the lower error of each configuration was averaged over all subjects (in 

different groups), and the mean and standard deviation error in heart rate estimation of each group 

is provided in terms of beats per minute (bpm). Clearly, in all cases, the enhanced energy algorithm 

could provide a significant improvement in the estimation of heart rates. Also, it always has a 

smaller amount of deviation from the mean (STD), which shows it is a much more stable approach 

compared to the original energy algorithm. 

Table 6.2. Effect of denoising on the original and enhanced beat detection algorithms. This 

table shows the average error for each combination of the approaches in beat per minute (bpm). 

 
* HRV, Pos, TP, and Sleep are the name of datasets used in the comparison. 

 

Comparing different datasets also shows very interesting results, which mostly matches the 

expectation due to the data collection settings. As expected, the posture (POS) dataset, which 

contains large motion artifacts due to multiple changes of postures, usually has the highest average 

estimation error. In comparison, the HRV dataset of young, healthy subjects with minimal motion 

artifacts usually has the least amount of noise contamination and therefore, the smallest average 

error. The dataset of older TigerPlace residents (TP) with minimum movements is somewhere in 

between the previous two, as they have a smaller amount of motion artifact compared to the POS 

All HRV Pos Sleep TP All HRV Pos Sleep TP (bpm) (%)

Wavelet Dec.

bior33(DC3)

Wavelet Dec.

db5(DC5)

EMD

2nd IMF

EEMD

4th IMF

Original Energy Alg. Enhanced Energy Alg.

Without Denoising 17.8 16.7 18.6 15.6

18.2 16.4 18.8 16.7 20.4 12.1

19.1 11.3 11.4

18.2 16.1 20.6 15.1 19.3 9.3

7.0 8.6 7.9

16.7 15.5 17.8 13.9 18.0 11.4

14.0 12.3 14.9 14.1 15.3 8.6

10.6 10.7 8.6 14.6

11.2

11.0 11.2 11.6 14.9

11.1 10.1 12.0

Estimation error by choosing the mean error of all four transducers (bpm)

6.4 35.9%

8.6 48.0%

Denoising Technique
Overall Improvement

6.5 36.5%

5.7 32.2%

9.2 51.7%

7.6 8.9 10.3 11.7
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dataset, but their BGC waveform is not as clean as the one for young, healthy subjects in the HRV 

dataset. Finally, the sleep lab data is always in the middle range as they were patients with sleep 

and breathing disorders, but perhaps not as bad as a very old TigerPlace resident, and with a smaller 

percentage of motion, artifacts compared to the POS dataset. 

Regarding the comparison of the denoising techniques, my results show that application of 

EMD always improves the accuracy of HR estimation in either of the two energy algorithms. Also, 

the results of EEMD show some improvements in the estimation error of the enhanced energy 

algorithm. DB wavelet decomposition, even more, improves the estimation error of the enhanced 

energy algorithm while the Bior wavelet usually has the same accuracy as of the EEMD. The same 

improvements usually appear through the application of denoising techniques on the original 

energy algorithm (always with much higher error than the enhanced energy algorithm). But, 

surprisingly, EEMD was never better than the EMD on the original energy algorithm. This is 

despite the expected theoretical comparison of the EMD and EEMD and might be due to the higher 

level of uncertainty and randomness in the original energy algorithm. 

In overall results, the dB wavelet decomposition always shows better accuracy in the 

estimation of heart rate using the enhanced energy algorithm. It also has the minimum standard 

deviation, which means the highest stability of the estimations. Its results are also comparable to 

the application of EMD for the original energy algorithm.  

Despite the huge improvement in the accuracy of the heart rate estimates, still, large motion 

artifacts seem to produce errors in the estimations. Excluding the sleep dataset (which contains lots 

of unconstrained conditions), the POS dataset always has the highest error among the other two 

datasets, in each row and for both implementations of the energy algorithm. This opens up the 

importance of the next topic on the detection of motion artifacts and the cancellation of motion 

contaminated segments from the signal, before reporting the HR estimation.  
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6.4. Motion Artifact Detection  

This section explores the use of machine learning methods for automatic identification of 

motion artifacts, i.e., variations in the time and frequency domain characteristics of 

ballistocardiography signals acquired from noninvasive in-home hydraulic bed sensors. Section 

6.4.1 starts with the description of dataset and ground truth labeling, followed by the description of 

time-domain and time-frequency domain features of the BCG and their normalization. It finally 

describes the classification method that I propose to use on a fusion of time and frequency domain 

features extracted from multiple transducers for the detection task. Experiments and results of 

performance comparison for different classification algorithms are reported in 6.4.2, and finally, 

the conclusions are provided in 6.4.3. 

 

6.4.1. Method 

I. Dataset 

The data used in this study were collected in two separate IRB-approved studies, with a total 

of 30 subjects being recruited. Four hydraulic transducers were placed under the mattress and a set 

of reference sensors (i.e., ECG, Chest band) placed on the body surface. The first dataset was 

collected from 25 young, healthy subjects in a controlled lab setting at MU. Subjects were asked to 

lie still on the bed for 10 minutes in a supine position, followed by changing posture to left, right 

and prone positions, consecutively, and staying still for 2 minutes at each posture. 

The second dataset was collected at the Boone Hospital Sleep Center, under the standard 

polysomnography (PSG) conditions. IRB approved de-identified PSG data of 5 random patients 

were collected in synchrony with the hydraulic bed sensor signals placed under the mattress for an 

entire night for each subject. Random movements of the subjects during their PSG sleep study 
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provide great opportunity to approximate the uncontrolled settings, while some limitations are 

enforced by the PSG sensors.  

II. Ground truth labeling 

Many recent publications on motion artifact detection used human visual inspection by 

experts who were familiar with the signal, and their decisions are regarded as the gold standard in 

labeling motion-artifact-corrupted segments [154]. I have reviewed and manually annotated the 

collected signals three times each, with 2-4 days delay in-between, to reduce the possibility of 

biased labeling. During this process, each sample was annotated for being clean vs. noisy. The final 

label for each segment comes from the maximum severity assigned over the three review phases, 

as the goal here is to discard any possible noise. 

III. Time Domain Features 

Even small body movements on the bed are recorded by the bed-sensor transducers and could 

affect the quality of the signals (Figure 6.2). Abrupt jumps in the amplitude and DC level of 

transducers during posture changes are represented in Figure 6.10. Sequential detection algorithms 

can be used to analyze successive data frames of the BCG signal. This analysis requires the 

extraction of features from the time-domain representation of the BCG signal. 

To compute the time-domain features, a sliding window of 30-second width with 50% 

overlap was used to move along the signal of each transducer. The standard deviation (STD), 

median absolute deviation (MAD), 75th percentile, skewness, kurtosis, and Shannon entropy 

features from each window are computed and stored to build the feature set. Another very useful 

feature in our multi-channel hydraulic bed-sensor is the changes that appear in the DC value of the 

four transducers, after each posture change. Meanwhile, a novel fusion level feature computed by 

the MAD of the sum value of the four transducers at each time window is added, to make a total of 

24 time-domain features. 
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IV. Time-Frequency Features 

The classical Fourier Transform does not deal with non-stationary physiological signals such 

as BCG. Time-Frequency domain analysis of the signals provides a joint platform to explore the 

varying spectral content of these signals [155]. Among all approaches available in the literature, I 

used the Short-Time Fourier Transform (STFT) to track the change in the frequency content of 

each signal in the time-frequency domain (Figure 6.11).  

A 2D spectrogram of each channel created using a Hamming window of size 5 seconds with 

80% overlap. Frequencies outside the range of 0.5-15 Hz are discarded. Again, another sliding 

window of length 60 seconds (12 samples here) with 90% overlap is run over the spectrogram to 

extract the features in the time-frequency domain of each channel. A total of 28 features including 

the minimum, maximum, mean and median of the power spectrum, the ratio of minimum to 

maximum frequency content, the ratio and variation of the maximum to minimum power density 

drop were extracted from the four transducers.  

 
Figure 6.10. Example of overnight recording BCG, PSG and the motion annotations. Figure 

shows ballistocardiography signals (lower row) from our hydraulic bed sensor, along with the 

PSG annotations for sleep posture (middle row) and our expert’s manual annotations for artifact 

regions, show good alignment between all sources. Significant variations in the DC level and 

amplitude of the transducers, are mainly correlated to the change in posture, or limb movements. 
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V. Normalizing the features 

After extraction, all 53 features from both the time domain and time-frequency domain were 

resampled to the same timestamp and concatenated to build a single feature set. Each extracted 

feature was normalized separately between 0 to 1, over all subjects combined. Then two thresholds 

equal to the 20th and the 70th percentile value of each feature were used to discretize the feature 

values to 3 levels. These features were used for both visualization and classification purposes. 

VI. Classification methods 

All extracted features were set together in a columnar matrix with the last column containing 

the manually annotated class labels for each sample. MATLAB’s implementation of support vector 

machines (SVM) and RUSBoost classifiers with 5-fold cross-validation were used to identify the 

motion artifact contaminated samples from the clean samples. A comparison of different 

classification settings is provided using different measures, i.e., the sensitivity, specificity, 

accuracy, and false-negative rate (Table 6.3). 

 

 
Figure 6.11. Sample spectrogram of transducer 3 during an overnight recording (Top row), 

along with the corresponding variation in the Shannon entropy and also Max2Min drop of the 

power density ratio. While the correlation of the first two is visually perceptible, the last feature 

peaks during the absence of the noise. 
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6.4.2. Experiments and Results 

As suggested in the literature [154], support vector machines (SVM) with Gaussian kernels 

were initially selected for the binary classification of noisy vs. clean segments of the signal. We 

used standard MATLAB R2019a libraries, on a Windows PC with Intel Core i7 CPU of 3.7 GHz 

and 26 GB of RAM.  

As listed in Table 6.3, it takes a long time (about 3 hours) to get the results using all 53 

extracted features. Thus, a second experiment was conducted using the first 5 principal components 

estimated after passing the original features through principal component analysis (PCA). Analysis 

of the results shows that although the classification accuracy in both experiments is above 97%, 

they both have very low sensitivity (23% and 54% respectively) and very high values for the false-

negative rate (77% and 45% respectively). This, in part, is due to the imbalanced distribution of the 

two classes. In other words, only 3% of the samples are labeled as noisy (5437), compared to the 

clean samples (181,958). As a test, a balanced dataset was made by simply replicating the samples 

in the smaller class (noisy) to get the same size as the larger class. A new round of experiments was 

performed on this balanced dataset both with and without the PCA. The balanced dataset 

significantly improved the sensitivity of the tasks to 99.4% and 98.7% respectively for the original 

features and the first 5 principal components. 

I have also used the RUSBoost classification (with 30 learners of the type decision tree and 

a default learning rate of 0.1) as they are known to be fast (boosted) and also invariant to imbalanced 

datasets [164]. For the sake of comparability, I repeated all four of the previous SVM-based 

experiments, with the new approach. RUSBoost was orders of magnitude faster than SVM under 

similar configurations, especially on the unbalanced dataset where high accuracy results are 

achieved in less than a minute compared to hours of computation with the SVM, as reported in 

Table 6.3. Moreover, its sensitivity measure was much better than the SVM on the imbalanced 
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dataset. Meanwhile, synthetically increasing the number of samples in the noise class resulted in 

only a little higher sensitivity rate at the cost of more time and accuracy reduction (by about -2%). 

 

Table 6.3. Noise classification using SVM vs. RUSBoost. RUSBoost is much faster than SVM in 

the classification of clean vs. noisy segments and is almost invariant to imbalanced datasets. 

Method PCA Accuracy (%) Sensitivity (%) Specificity (%) FNR*(%) Time (S) Balance 

SVM No 97.3 23.0 99.5 77.0 10700 No 

SVM Yes 98.2 54.3 99.5 45.7 1200 No 

SVM No 99.2 99.4 98.9 0.6 8200 Yes 

SVM Yes 98.7 98.7 98.7 1.3 2300 Yes 

RUSBoost No 94.6 91.2 94.7 8.8 50 No 

RUSBoost Yes 94.2 91.0 94.3 9.0 50 No 

RUSBoost No 92.8 94.3 91.2 5.7 600 Yes 

RUSBoost Yes 92.1 92.6 91.7 7.4 600 Yes 

* FNR: False Negative Rate 

 

6.4.3. Conclusion 

Extracted features from successive data frames of each transducer were combined with 

features from the other channels. These features were then used as inputs for two machine-learning 

classifiers, namely the SVM and the RUSBoost, to identify those portions of the signal that are 

contaminated with noise. As the number of artifact contaminated samples are much smaller than 

the number of clean samples, the sensitivity of the results was low. To resolve the problem of 

imbalanced data, I tried two approaches, firstly, to make a balanced version of the dataset and 

secondly, to utilize algorithms such as RUSBoost which are invariant to data balance. 

While the accuracy of all experiments tends to be higher than 92% (see Table 6.3), the 

sensitivity of SVM on the imbalanced dataset is as low as 23%. Our results show improved 

sensitivity rates after making the dataset balanced. Likewise, the RUSBoost algorithm handles 

imbalanced datasets at a much faster computation time but the cost of accuracy, compared to SVM. 

Overall the best results come from SVM with balanced dataset before the application of PCA. 

Meantime, RUSBoost classifies the data much faster, which might be of interest for future studies. 
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6.5. Channel Selection 

6.5.1. Background 

Digital processing of multi-channel signals has reached a wide application in the preparation 

and analysis of biosignals such as multi-lead ECG or EEG. Efficient channel selection approaches 

are needed to (i) reduce the computational cost and (ii) improve the quality of features and 

estimations, by selecting only the most relevant channels. It can also help in the selection of the 

best configuration at the design time, where multiple sensors are being placed at different locations 

with respect to the body and the goal is to find the best sensor configuration for a specific problem. 

As described in Chapter 3, our BCG sensors usually consist of multiple channels, including 

the four transducers of the hydraulic bed sensor, or the three axes of accelerometers used in the 

chair sensor. While each of these channels provides some information about the cardiorespiratory 

activities, my observations confirmed that the estimated values of different parameters acquired 

from each channel might be different from the others. Motion artifacts also cause a different amount 

of distortion in each channel, usually due to the differences in the distance of body to the sensor or 

the relative direction of body and sensor. Therefore, channel selection not only improves the 

computational time by reducing the amount of data to process but also can improve the quality of 

features and estimations by means of rejecting the low-quality samples. 

One data-driven approach to select the channel of the highest quality goes through the 

definition of signal quality indices (SQI) to be assigned to each channel in order to provide the 

means to sort the channels based on the quality of their signals. A rule-based assessment of the 

estimated heart rate values was used by Orphanidou, et al. [165] as the SQI to assess whether 

reliable heart rates (HRs) can be obtained from wearable ECG and PPG signals. A fuzzy logic 

representation of the waveforms and reasoning was also used by Zong, et al. [166] to assess the 

signal quality of the arterial blood pressure (ABP) in the intensive care unit (ICU). 
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Elgandi [167] has provided a complete list of different signal quality indexes for PPG signals. 

Some of these indices are in the time domain, and the rest are in the frequency domain, for example, 

the PerfusionSQI, which is the ratio of pulsatile blood flow to the static blood flow in the peripheral 

tissue. This index is reported as the gold standard in the assessment of signal quality in PPG signals. 

Other proposed indices such as Skewness, Kurtosis, or the entropy of the PPG beats were also 

discussed as carrying valuable signal quality information.  

Frequency domain approaches for signal quality evaluation are also discussed in [167], 

including the relative power index, which is the ratio between the power of two different frequency 

bands of the signal. Pradhan, et al. [168] have used the median relative power variation between 

consecutive PPG beats, by means of the Welch periodogram in two different sub-frequency ranges. 

The first frequency range associated with “good signal” has chosen to be between 1-2.25 Hz (as 

most of the energy of PPG signal is concentrated in that range), while the entire frequency range 

was selected between 0-8 Hz. Then a “relative power index” computed as: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑤𝑒𝑟 =
∫ 𝑃(𝑓)𝑑𝑓

2.25

1

∫ 𝑃(𝑓)𝑑𝑓
8

0

 

Unfortunately, most of the SQI indices mentioned above are defined based on the properties 

of an individual cardiac cycle, and therefore need an accurate heartbeat detection as a prerequisite. 

In our case, we want to use a signal-level index for each BCG channel to enhance the quality of our 

beat detection algorithms.  

In this section, I have relaxed some of these quality indices for not being limited to the 

individual cycles and applied them on a signal segment of 30 seconds as a single epoch. SQI values 

estimated from different BCG channels were compared in each epoch for the choice of the most 

reliable channel. Among them is the DC-based approach that was used in [13], and also the channel 

selection based on the variation of the estimated heart rates. 
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6.5.2. Method  

This section contains the description of multiple signal quality indices (SQI) that I designed 

or adapted for the signal-level evaluation of the channels. 

I. Signal to Noise Ratio: 

Signal to Noise Ratio (SNR) is the first approach to evaluate the quality of the signal and can 

be used in the quality assessment of multiple channels. There are many different approaches to 

define the “signal” and “noise”. In this work, I am using the standard Butterworth bandpass filter 

with cutoff frequencies between 0-10 Hz to define the signal, and the remainder of the input is 

selected as noise: 

𝑆𝑖𝑔𝑛𝑎𝑙𝑖𝑗  =  𝐵𝑎𝑛𝑑𝑝𝑎𝑠𝑠𝐹𝑖𝑙𝑡𝑒𝑟(𝑆𝑖𝑗 , 𝐿𝐹 = 0.7, 𝐻𝐹 = 10, 𝐹𝑠) 

𝑁𝑜𝑖𝑠𝑒𝑖𝑗  =  𝑆𝑖𝑗 − 𝑆𝑖𝑔𝑛𝑎𝑙𝑖𝑗 

where 𝑆𝑖𝑗 is the ith epoch of the jth transducer, and Fs is the sample rate. Then the ratio between the 

variance of the signal to the variance of the noise creates the first SQI index as defined here: 

𝑆𝑁𝑅_𝑆𝑄𝐼𝑖𝑗 =  
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑆𝑖𝑔𝑛𝑎𝑙𝑖𝑗)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑁𝑜𝑖𝑠𝑒𝑖𝑗)
 

 

II. Band Power Ratio: 

In the same analogy as used by Elgendi [167],and Pradhan, et al. [168], I have split the 

frequency content of our sensor into two separate ranges, as the “good BCG frequency” containing 

frequencies from 4-15 Hz and the other “overall frequency content” including all frequencies from 

0 to 60 Hz. The selection of 4-15 Hz frequency range was to emphasize the importance of higher 

frequencies of the BCG waveform, including the sharp J-peak, rather than low-frequency variations 

which mostly have overlaps with respiratory variations. Then the average power of each frequency 
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range computed using MATLAB’s band power command, and their ratio was used as the SQI for 

each epoch, as represented bellow: 

𝐵𝑃𝑅_𝑆𝑄𝐼𝑖𝑗  = (
𝑏𝑎𝑛𝑑𝑝𝑜𝑤𝑒𝑟(𝑆𝑖𝑗, 𝐹𝑠, [4,15])

𝑏𝑎𝑛𝑑𝑝𝑜𝑤𝑒𝑟(𝑆𝑖𝑗, 𝐹𝑠, [0, 𝑚𝑖𝑛(60, (𝐹𝑠/2)])
) 

where 𝑆𝑖𝑗 is the ith epoch of the jth transducer, and Fs is the sample rate. 

 

III. Heart Rate Deviation: 

The variation in the estimated heart rate values is the other heuristic SQI that I am using here 

to compare the quality of different channels. The rationale behind this selection is based on the fact 

that in case the signal is contaminated by a high degree of noise, the chance of a missed detection 

(either more or less) is increased which therefore would increase the density of abnormally high or 

abnormally low HR estimations in that segment. I have computed the median absolute deviation 

(MAD) for an accurate estimate for the deviations in each channel. 

𝑀𝐴𝐷_𝑆𝑄𝐼𝑖𝑗  =  𝑚𝑎𝑑(𝑆𝑖𝑗) 

 

IV. DC bias of each channel: 

Especially for the case of our hydraulic bed sensor, the raw signals from each of the four 

transducers can have a different DC bias value, depending on the distribution of the weight on top 

of them. DC bias (offset) is usually undesirable, especially when causing the clipping on the target 

signal, for example, due to the change of posture or placement of the individual on the mattress. 

Therefore, usually by subtracting the mean amplitude of the signal in a moving manner, the DC 

offset is removed.   
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However, the DC bias can also contain useful information regarding the placement of the 

subject on the bed and how far they are away from the sensor. The historical thought was to assume 

the transducer with the highest DC being the closest one to the heart and therefore, the one which 

potentially could have more clear cardiac information. While we have been using this idea in 

different cases [13], it has never gone under a thorough test. Here I show the results of my 

investigation on this idea by treating the DC level of each transducer as an SQI and to choose the 

transducer with the highest DC bias. To compute the DC bias, I used the median of the signal in 

each epoch: 

𝐷𝐶_𝑆𝑄𝐼𝑖𝑗  =  𝑚𝑒𝑑𝑖𝑎𝑛(𝑆𝑖𝑗) 

V. The oracle; the best choice of channels 

In the imaginary world of the “best channel selection techniques”, the error produced by the 

“best channel” should always be less than the rest of the channels. One way for reverse engineering 

of such an “oracle” technique is to use the actual errors computed for each channel compared to 

ECG-based ground truth as the “Oracle SQI”. After finding the best possible choice between the 

available channels, I compared the number of times that both approaches match in choosing the 

same channel (Hit). The hit rate is defined as the ratio of the number of times the two outcomes 

match, to the total number of comparisons (epochs). 

𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠
 

There are, of course, multiple important points to be considered in this approach, that I found 

in my experiments, including (i) the possibility of having multiple channels with the minimum error 

or the best (lowest or highest) SQI value, and (ii) also the fact that two, not exactly equal but very 

similar values, usually could be considered as “equal”. To address all these considerations, I have 

relaxed the outcome of the channel selection to be as many channels as possible. I usually start with 

“the first best channel”, and then incrementally add other channels as described here: 
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i) Find all transducers that have the same value as the best one (error or SQI). 

ii) Accept a small tolerance in the estimated values (error or SQI) 

Thereafter, I have a list of best channels produced by the oracle approach, and a list of 

channels by using each of the provided SQI indices for channel selection. A channel selection is 

considered acceptable if its output list of channels has at least one overlap with the oracle’s list. I 

do not consider any penalty in case of missing of the oracle channels, as in my case, I need “the 

one” best channel to reduce the computational cost and improve the estimation error. 

 

6.5.3. Experiments and Results 

As the first experiment, I computed the heart rate estimation error of both the original energy 

algorithm and the enhanced algorithm, on the input signal after applying each of the previously 

described denoising techniques. To provide a better comparison, the average results of each dataset 

are also reported in separate columns. In the rightmost columns, the overall improvement of each 

combination (denoising x energy algorithm) is computed by comparing their estimation error to the 

error that traditionally the original energy algorithm produced without any denoising (cell (1,1)).  

Table 6.4. Effect of denoising techniques on heart rate estimations. Multiple denoising 

techniques were applied prior to the original and also the enhanced energy algorithm. The oracle 

approach is used to pick the best transducer. The overall improvement is computed based on the 

data from all datasets, compared to the original energy algorithm without any denoising. 

  

All HRV Pos Sleep TP All HRV Pos Sleep TP (bpm) (%)

Wavelet Dec.

bior33(DC3)

Wavelet Dec.

db5(DC5)

EMD

2nd IMF

EEMD

4th IMF

Original Energy Alg. Enhanced Energy Alg.

16.4 15.4 6.9

16.5 14.3 17.1 17.9 18.1 7.3 4.4 8.8

17.2 16.1 17.0 6.9 5.7 8.3

12.9 11.3 13.4 14.7 13.8 5.0 3.1 6.2

6.8Without Denoising

6.1 8.1

17.0 15.1 19.1 17.1 17.0 5.4 3.0 6.6

5.5 6.1

14.9 13.6 16.1 13.9 15.5 7.5

Overall Improvement

9.5

9.1

11.4

8.9

11.08.5 6.1

6.8 8.3

8.6 8.9

Denoising Technique

Estimation error by choosing the best transducer, using the oracle method (bpm)

57.9%

55.6%

69.3%

54.3%

66.9%
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I should emphasize the difference between the values of this table from previously shown 

Table 6.4, are only due to the application of the oracle method for channel selection, and is not 

reporting any SQI-based channel selection. This is to establish the superiority of the enhanced 

energy algorithm even in case of oracle channel selection, as in each row the lowest values are 

always related to the enhanced algorithm, regardless of the dataset or the denoising approach.  

Meanwhile, most of the times the HRV dataset (young subjects with no movement) shows 

the minimum amount of error (as low as 3 bpm), which is consistent with our expectations, as it 

contains clean BCG signals from young, healthy volunteers in a controlled lab environment. On 

the other hand, the estimations from the three other datasets are usually at the same level. The “Pos” 

dataset has periods of large motion artifact due to the change of posture which perhaps is the cause 

of relatively higher errors (still improvements are obvious). The “TP” dataset contains the signals 

from the older subjects at TigerPlace. Not only some deformations appeared in their typical BCG 

waveform, but also three 30-second periods in the signal are contaminated by possible motion 

artifacts caused by the application of the automatic blood pressure cuff. Finally, in the sleep data, 

different random activities such as change of posture and use of oxygen masks may cause noisy 

segments in the signal. In fact, the results shown in this table for the sleep dataset, are higher than 

my initial expectations, considering the situation of the patients in the sleep lab. 

As depicted by underscores in the last two columns, the wavelet decomposition using 

Daubechies wavelet provides the maximum overall improvement (reduction) in the HR estimation 

errors. The application of the enhanced energy algorithm on the denoised signal using the 

Daubechies wavelet could reduce the HR estimation error by almost 70%, compared to the overall 

estimation error of applying the original energy algorithm on the bandpass filtered signal (before 

denoising).  

Secondly, I have also studied the effect of channel selection on the accuracy of the heart rate 

estimation. I compared multiple channel selection techniques based on the SQI indices that are 
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described earlier in this chapter, including the approaches based on the DC level, MAD of heart 

rate estimates, signal SNR, and finally the band power ratio. In this section, the analysis is done 

solely on the combination of the enhanced energy algorithm and the wavelet denoising, to see how 

well each SQI can match the channels selected by the oracle approach (hit). 

Figure 6.12 shows the accuracy of each SQI in matching (hit%) the oracle selection on 

different datasets. As discussed earlier, despite the DC level approach, other SQI indices have 

acceptable performance in hitting the best transducer. Average hit percentage of 74% up to 78% on 

multiple datasets, could make a considerable improvement in accuracy of any future BCG analysis. 

 

Figure 6.12. Comparing different channel selection approaches to the oracle approach. Results 

are shown in the percentage of times each SQI-based method hits the same channel as the oracle.  

 

6.5.4. Conclusion 

Among the investigated SQI indices, SNR shows the highest hit percentage on the 

combination of all datasets, with a minimum of 55% on the POS dataset. In fact, the POS and TP 

datasets have the lowest average percentage of hit among all channel selection approaches (HRV: 

62%, POS: 51%, Sleep: 68%, and TP:53%), which is due to the existence of motion artifacts on all 

transducers. Despite the expectations, the Sleep dataset with 6-8 hours of over-night signals from 

the sleep lab patients shows a high hit rate. This could be due to the fact that in longer periods of 
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time, usually, the channel selection algorithms can compensate for random distortions in the signals 

by switching to another one. 

On the other hand, while the band power ratio has very high hit rates on the HRV and Sleep 

datasets, it apparently was not successful on the TigerPlace data. This shows the existence of 

variation in the higher frequency contents of the BCG during the aging process. In other words, the 

selected frequency band (4-15 Hz) for the “good” BCG seems not as accurate for the older subjects.  

As a summary, in this section, I have studied the effect of channel selection and denoising 

on the improvement of heart rate estimations. Even with the oracle channel selection, the enhanced 

energy algorithm always works much better than the original energy algorithm. Also, different SQI 

indices have been proposed for channel selection, and their results were compared against the 

channel selected by the oracle approach. Among all, the SNR and the MAD of HR have a higher 

hit rate with the oracle channel. 
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7. MORPHOLOGICAL ANALYSIS OF BCG 

7.1. Background 

The instantaneous beat by beat analysis of biological waveforms, such as the arterial pressure 

waves or the electrocardiogram waves, has been known as a definite approach in studying the 

cardiovascular system. But analyzing every single beat of a cardiovascular waveform might not be 

of interest to researchers as they usually are looking at the “average” value of parameters within a 

short period of time. This averaging is intended to cancel out the normal variations of the waveform 

caused by different sympathetic and parasympathetic activities. In this work, instead of extracting 

features from each beat and then smoothing the values, I will first construct an ensemble average 

(template) to represent the average morphology of the waveform in a time period. 

For example, Szczepanski and Saeed [169] used templates to show changes in the schematic 

waveform of a single heartbeat in the ECG signal. This gave them the ability to analyze distortions, 

deformations, and delays that appear in normal ECG waveforms to produce an early warning 

system for ECG anomalies. In a similar way, Lilly [170] has reported a table with different 

templates created during the recovery period after the heart attack. As shown in Figure 7.1, their 

templates were showing completely different morphological properties during different time 

periods after the heart attack, which could be used as a reference to monitor the recovery process. 

 
Figure 7.1. ECG waveform evolution shows pathological disturbances after heart attack in ST, T, 

and Q parts (basing on the knowledge acquired from [170],[169]). Any pathological change in 

any stage can automatically be described as an abnormal disturbance. 
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 Similarly, the templates from the acceleration photoplethysmogram (i.e., the second 

derivative of the PPG, also known as APG) has previously been shown to correlate with the 

disorders such as atherosclerotic and arterial stiffness [171] (Figure 7.2).  

 
Figure 7.2. The morphological variation in APG templates during the process of aging is 

correlated to the stiffness of the blood vessels [171].  

The morphological features of the APG templates were used by Elgendi [172] to create a 

cardiac age index, as shown in Figure 7.3. In this figure, sample APG waveforms are provided for 

different conditions. The waveform on the left (A) is related to the good circulation, whereas the 

amplitude of trough b is lower than that of peak c. The APG waveform on the right (G) is related 

to the bad circulation, where the amplitude of peak c is lower than that of trough b. 

 
Figure 7.3. Variations in the morphology of APG signal as age increases, from left to right [172].  
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I have been searching for new methods for the early prediction of age-related disorders. Now 

that my proposed methods have the ability to reduce the noise from the signals, and also detect the 

individual heartbeat cycles of the BCG signal in different configurations, I can analyze and monitor 

the BCG templates for different reasons. In this chapter, I will first provide a detailed approach to 

create the templates from the BCG signals. Then, the possible effect of the mattress on the BCG 

morphology will be studied, on multiple mattresses and subjects of different age. Also, I will 

consider the well-known respiratory sinus arrhythmia, which correlates the heart rate to the point 

it appears in the respiratory cycles. This supports the future investigation of other respiratory-

related variations in the BCG waveform. 

7.2. Method 

7.2.1. Preprocessing and Templates 

Due to the natural variability of our heart rate, it is desirable to average the signals of multiple 

heartbeats in order to obtain a template that adequately represents the physiological signals of a 

given individual. Then, the template can be used for feature extraction or comparison. To this end, 

we will utilize the local R-peaks of the ECG signal as the reference for (i) heartbeat activities, and 

(ii) segmentation of the other signals, including BCG waveforms. Abnormal beats will be discarded 

if their amplitude is out of range or if their length is greater or less than acceptable thresholds for 

the regular heartbeat (e.g., 1.5 seconds (90 bpm) or less than 1 second (60 bpm)).  

Two alternative segmentation strategies have been proposed in the literature to account for 

the variable length of segments due to the instantaneous variation of the heart rate. The first 

approach utilizes the entire cardiac cycle and reshapes (stretches or shrinks) all segments to the 

same length (calculated as the average heartbeat length during the time of data collection). This 

approach helps in later sample-by-sample averaging and all other matrix-based computations (such 

as dynamic time warping (DTW)). On the other hand, though, this averaging approach does not 



111 

 

retain the exact time-related morphological information of the waveforms. The second approach 

cuts (or zero-pads) all the segments at certain (method-dependent) distances before and after the 

reference point (usually the R-peak of the ECG). For example, Ashouri and Inan [173] used the 

minimum RR interval as a simple way to make all their signals of equal length, starting from the 

R-peak of ECG. While saving the timing information of the main waveform peaks, this method is 

vulnerable to potential miss-alignments of the smaller peaks that might cause unwanted variations 

in the computation of the final template. In this chapter, I compare both approaches and investigate 

potential differences in the templates that could be relevant for physiological BCG interpretation.  

Other important issues in data processing are filtering and alignment. Due to the dynamic 

properties of vital signs, the fixed cut-off band-pass filters cannot completely separate and remove 

baseline variations associated with respiration. As a consequence, the baseline of each waveform 

might differ slightly from the others. I have proceeded by subtracting the mean of each waveform in 

order to make them zero-mean. Then I aligned all waveforms to the median one, based on their 

cross-correlation value. In order to eliminate motion artifacts, I have removed waveforms with the 

correlation below 0.4 and lag-time above 0.4 seconds. An additional step for outlier removal may 

be based on counting the number of peaks in each waveform and removing outliers, which may 

reduce the chance of having very low or very high-frequency variations, without necessarily 

knowing a priori the actual number of peaks.  

 

7.2.2. Segmentation 

The typical approach in creating morphological templates goes through the use of a 

secondary event as the reference for cardiac activity, like ECG R-peaks. I have also tried to always 

include multiple reference signals in our data collections, including ECG, PPG, and pulse sensor. 

This is critical not only because our current algorithms sometimes fail in accurately estimating the 

location of BCG J-peaks, but also because the ECG signal can provide a variety of extra information 
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about the cardiac activity of the subject. Moreover, the variations in the time intervals between 

electrical activities of the hearts (such as R-peak) to its mechanical activities (such as BCG J-Peak) 

known to be related to some hemodynamics variations.  

In the first step, I have used an implementation of the famous Pan-Tompkins algorithm [112] 

to detect the ECG R-peaks. Figure 7.4 demonstrates how the Pan-Tompkins algorithm first 

transforms the input ECG signal (top row), to the clearer and more filtered version (bottom row) 

for the detection of ECG R-peaks. But the current implementation of the Pan-Tompkins algorithm 

is very slow and almost useless for sequences of as long as 6-7 hours related to the sleep lab data. 

So I decided to use another approach for ECG R-peak detection. 

 
Figure 7.4. Running the Pan-Tompkins algorithm on a random and noisy ECG signal represents 

its great ability in detecting ECG R-peaks, with very high accuracy.  

In order to reliably find the R-peaks, ECG signals were processed using the AD Instrument’s 

LabChart, and filtered signals and the R-peak locations were exported to Matlab for further 

analysis. This was the most convenient and reliable approach, as we have used the same system 

(hardware and software) in our data collections in the lab. However, additional work was required 

to import the PSG signals from the sleep lab, as they were in EDF format. In order to import the 

PSG data from their original EDF format into Matlab, I first converted EDF files to CSV files, and 

then imported those CSV files to LabChart for peak detection. 
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Figure 7.5. Ensemble averaging technique is used to create morphological templates. The figure 

shows a schematic overview of different steps required in creating a BCG template. 

7.2.3. Ensemble average 

Two general approaches have been taken in the literature to analyze BCG signals, including 

the linear and non-linear averaging techniques [53]. In the presence of a significant stimulus, the 

waveforms are averaged after being aligned with respect to a reference point, which is called the 

synchronous averaging. In the case of having an a priori reference waveform (i.e., the template), 

the template-based approach filters out non-similar waveforms from the signal, and averages the 

remaining similar ones. Finally, non-linear averaging techniques, such as the dynamic time 

warping (DTW) have been used to deal better with the quasi-periodic nature of biological signals, 

with morphological variation both in amplitude and in timing [53]. 

Usually, some bandpass filtering should be applied to the signals, before segmentation. I 

mostly used a bandpass Butterworth filter with frequency ranges between 0.7Hz to 10Hz. After 

finding the ECG R-peaks and segmentation, outlier sequences are detected and discarded based on 

amplitude, number of peaks, or their length. Then different averaging methods such as mean, 

median, medoid, and dynamic time warping were applied to the segments to create templates. Most 

of the times, a simple alignment procedure makes much more clear templates. Some normalizations 

on the length or amplitude of the waveforms might also be applied based on the experiment. Figure 

7.6 shows an example of signals I collected from a young, healthy subject along with their average 

templates, and Figure 7.7 provides a visual comparison between the templates created from the 

ECG, SCG, Pulse and bed sensor signals and the ones reported in the literature in [66]. 
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Figure 7.6. Example of the morphological templates creates from different channels. Left: Traces 

of ECG, PPG, and four BCG signals from a young, healthy subject. The ECG R-peaks are shown 

by green circles. Right: superimposed “beats” of each channel and their “average” waveform.  

 
Figure 7.7. Comparing templates from our suspended bed to the ones in literature. Left, shows 

the templates that I created using the above-mentioned method, on ECG, SCG, BCG, and Pulse 

sensor. On right are the templates reported by [66]. Considering the difference in the sensing 

modality, and also the subject in these two experiments, the results are remarkably similar.  
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After creating these templates, I can track their variations over time, or between different 

groups to find more insights about the possible health conditions of the subjects in the study. Some 

of these variations are affected by respiratory activity. Section 7.3.2 will discuss the respiratory 

variations induced in the ballistocardiograms. The following section, on the other hand, focuses on 

the variation of BCG waveforms, as a result of a change in the blood pressure. 

 

7.3. Experiments and results 

7.3.1. Morphological variations caused by different mattresses 

I. Introduction  

Our hydraulic bed sensor, as described earlier, is designed to be placed underneath the 

mattress in the longitudinal direction aligned with the regular body placement. The mattress also 

works as a separate system to transfer the original ballistocardiographic movements of the body’s 

center of mass, to the hydraulic transducers. An advantage of the mattress is that it transfers the 

signals to the transducers, even if the person is not directly above the sensor. It also provides some 

flexibility in the placement and direction of sensors, regardless of the exact placement of the person 

on the mattress.  

Previous studies in our group [76] showed how the displacement of the transducers with 

respect to the body can change the BCG signal and, consequently, the quality of the heartbeat 

detections. However, the potential effect of different mattresses on the morphology of BCG 

waveforms is still under investigation. This section describes our experiments with different 

mattresses, to see if different mattresses cause significant variations in the acquired waveforms. 

This is important for longitudinal evaluations where subjects might decide to change their mattress 

or go to different sites for BCG measurements. Moreover, characterizing the effect of the mattress 

on the BCG waveform plays an important role in extending our current closed loop mathematical 
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modeling of the cardiovascular system [5]. Appropriate system identification is essential in the 

process of BCG standardization.   

 

II. Experiments 

Two male volunteers of almost the same height and weight and about 30 years difference in 

age were asked to lie still on different mattresses, while the bed sensor is placed under the mattress 

and the reference sensors (ECG, PPG) were connected to their bodies. The first subject ran each of 

the experiments two times, for the sake of consistent evaluation. Three completely different 

mattresses were chosen, including a twin and two queen size mattresses of about 7.5, 12 and 18 

inches thickness, respectively. The second mattress was an air mattress in which different pressure 

settings (100%, 85%, 70%) were included in the measurements. During each trial, the subjects were 

asked to lie on the mattress in the supine position with the hydraulic transducers being placed under 

the mattress at the same location. The transducers and subjects’ bodies were carefully aligned to 

reduce unwanted variations. Each trial took about 10 minutes long, and synchronous data were 

collected from the four transducers under the mattress and the reference sensors placed on the body, 

including a 3-lead ECG, PPG, Pulse pressure and the respiratory band. 

Each signal was segmented using the ECG R-peaks as the reference, and segments were 

normalized in width and amplitude and aligned together using the cross-correlation. Putting the 

normalized and aligned segments in a matrix provides a 3D representation of the waveform 

amplitudes, and how stable it was over time.  The normalized and aligned BCG cycles acquired 

from three trials of two subjects on three different mattresses are presented in Figure 7.8. For better 

visualization, two consecutive beats were segmented together to make the J-peaks recognizable. 

As expected, during each trial, the general morphology and timing of the normalized BCG peaks 

stayed stable. However, variations between subjects on the same mattress, or the same subject on 

different mattresses are of consideration in this section. 
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Figure 7.8. Normalized and aligned BCG cycles of two subjects on three mattresses. For better 

visualization, two consecutive beats were segmented together to make the J-peaks recognizable. 

As expected, during each trial, the general morphology and timing of the normalized BCG peaks 

remained stable. Variations between subjects on the same mattress, or the same subject on 

different mattresses are observed. The second column shows the results from the sleep number air 

mattress with the pressure set to 85% for both subjects. 

 

III. Evaluation and conclusion 

Comparing the two rows of Figure 7.8, personal differences of the BCG morphology are 

represented. The first subject, 30 years younger, has a relatively stronger J-peak and a smaller 

number of peaks, while the second subject has smaller peaks in the diastole. Multiple trials of the 

same subject with the similar settings show matching waveforms in general. Some small 

differences might appear between different trials, which are due to the subject’s movements and 

physical activities between the two trial, which sets the heart rate variability outside the normal 

resting situation. 

On the other hand, as it was expected, our observations confirm variations in the morphology 

of the BCG waveforms caused by changing the mattress. Going from left to right in each row of 

Figure 7.8, the effect of different mattresses is showed on a specific subject. To make the 

comparison a little easier, I have created the BCG templates for the first trial on the three mattresses, 
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as shown in Figure 7.9. The variations in the normalized BCG templates of the younger subject on 

three mattresses shows the thicker mattress (3rd mattress) has a kind of dampening effect on the 

BCG J-peak and caused more equally leveled peaks in one cycle, which, therefore, can cause 

difficulties in the beat detection. This is while the air mattress (2nd mattress), highlighted the J-peak 

and its significance with respect to the rest of the peaks, in a normalized template. 

 
Figure 7.9. Variations in the BCG templates show the dampening effect of mattress. Comparing 

the normalized templates created from a young, healthy subject on each of the three mattresses 

shows the thicker mattress (3rd mattress) has more dampening effect on the BCG J-peak and 

causes more equally leveled peaks in one cycle, which may cause difficulties in the beat detection. 

The final conclusion from these experiments, along with our on-site investigations is the apparent 

effect of the mattress on the amplitude of the waves in each BCG cycle. The air mattress is not 

capable to truly measure the smaller peaks such as the L, M, and N. At the same time, it makes the 

J-peak more distinguishable for the heartbeat algorithms such as the energy algorithm. The thicker 

mattresses dampened all the waves in a single cycle to a very similar level, a very similar case as 

for the subjects with stiffer arteries.  

7.3.2. Morphological variations of the BCG during the respiratory cycles 

Previous studies showed interactions between system hemodynamics and respiration [174]. 

Authors of [175] reported a 2% increase in heart rate during inspiration as well as other effects of 

phasic respiration such as 17% inspiratory decrease of left ventricular systolic volume (LVSV). 
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A study on PPG signals also showed a reduction in the peak amplitude during inspiration 

[176]. Significant changes in the morphology of the BCG signal were noted by Starr [111], which 

repeated in corresponding respiratory cycles. In this paper, we study several morphological features 

of the BCG waveform, to investigate their possible variations with respect to the respiration cycles, 

for better characterization of the BCG waveform, and non-invasive health monitoring and tracking.  

The focus of this section is to provide a complete literature review on the source, possible 

effects, and potential predictive properties of the cardiorespiratory interactions. Based on this 

review, a couple of experiments will be done on our available data sets to detect an abnormal change 

of cardiac activity. 

 

I. Background 

Many time-varying physiological signals are the net results of two or more body functions 

while usually, obtaining “clean” signals of just one physiologic function at a time is desirable [177]. 

This requires the filtering and removal of unwanted components. Unfortunately, it is impossible to 

completely separate the noise from these signals by means of passive filtering, mostly as the 

frequency spectrums of the desired and undesired signals overlap. However, a suitable combination 

of the mixed-signal with another physiologic signal, that is correlated either to the wanted signal 

or to the unwanted signal can be used by “active” filtering, to do the separation [177]. 

Previous studies have shown interactions between system hemodynamics and respiration 

[174]. Some effects consist of periodic fluctuations in systolic blood pressure caused by respiration 

[178], reduced the diastolic filling time associated with a higher heart rate [179], and a decrease of 

left ventricular volume during inspiration [175]. A study on PPG signals also showed a reduction 

in the peak amplitude during inspiration [176]. Asking the subject to hold their breath provides a 

condition for recording a pure circulatory signal. However, this produces unphysiological 
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circulatory conditions as the lungs filling, and the intrathoracic pressure is getting fixed with altered 

venous return and pulmonary vascular resistances. What is desired is a displacement 

ballistocardiogram when all systems are functioning normally [177]. 

Ballistocardiograms are also subject to variations during each respiratory cycle. The 

respiratory and the circulatory forces are the two main components that cause the displacement of 

an ultra-low frequency BCG device. The circulatory component with the higher frequency is only 

about 20 percent of the amplitude of the respiratory component [177]. Dock [180] reported how 

the IJ wave is being affected by the respiration. As the subject inhales, the ballistic impact increases 

in size, to diminish again as he exhales; if the breath is held, this rhythmic variation disappears 

[111]. They also showed that if the glottis is kept open when the breath is held after a deep 

inspiration, the ballistic impact continues as normal; when held after a deep expiration, the impact 

remains small until respiration is resumed. It is shown that BCG signals contain more abnormal 

complexes at expiration while approaching normal patterns at full inspiration [23].  

Respiratory-induced fluctuations in BCG are highly dynamic and not trivial to characterize. 

Due to the quasi-periodic nature of these signals and the overlapping frequencies of these two 

components, even advanced filtering methods [2, 14, 177] cannot provide the perfect separation. 

Figure 7.10 provides a trace of BCG records with its obvious variations during the respiratory cycle, 

even after filtering, both from our signals and also the one reported by Inan, et al. [2]. 

In the beginning, Starr and Wood [16] simply used the sum amplitudes of typical large and 

small complexes of the respiratory cycle (𝐼𝑚𝑖𝑛  +  𝐽𝑚𝑖𝑛 +  𝐼𝑚𝑎𝑥 +  𝐽𝑚𝑎𝑥), to define the amplitude 

of the records. Later, Bixby and Henderson [41] found it difficult to calibrate the 

ballistocardiography device in the presence of arching respiration, which in some cases made 

considerable changes in the magnitude. This is because, during breathing, the baseline is never 

straight unless the breath is held [41]. Asking the subjects to hold their breath during a recording, 
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causes the loss of the valuable information to be gained from the respiratory variations of the 

ballistocardiogram [34]. 

  

Figure 7.10. Respiratory related variation of the heart rate.(RSA) Left: Respiratory sinuous 

arrhythmia or the respiratory-related variations in the heart rate. This figure shows the ECG, 

BCG and the variation of Heartrate due to the respiration, from our hydraulic bed sensor. Right: 

ECG and BCG traces from a subject at rest (top) and during the Valsalva maneuver (bottom).  

The respiratory variation of the heartbeat shape cannot be described with a simple model 

[181]. Tavakolian, et al. [182] found that the respiratory variation of the seismocardiogram is so 

significant that heartbeats corresponding to inspiration and expiration have to be treated separately 

when heartbeat shape averaging is performed for diagnostic purposes. Starr, et al. [39] first 

averaged the amplitude of all BCG waveforms and then compared it with the average amplitude of 

the highest and lowest complexes, in 50 ballistocardiography records. The latter estimation proved 

to be 4.2% different from the former, which should not be simply neglected. 

In the current dissertation, instead of trying to filter out the respiratory variations of the 

ballistocardiograms, the goal is to investigate and extract useful information from the possible 

interrelation of BCG features with respect to the respiration cycles, for non-invasive health 

monitoring. One example of a similar utilization of respiratory information is the work of 

Tavakolian, et al. [182], wherein rather than removing the respiratory effect; it was utilized to 

enhance the diagnosis of cardiac malfunctions by ballistocardiogram. 
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II. Introduction 

By definition, ballistocardiograms, are the sum of the force vectors in the head-toe direction 

of the body, exerted due to the blood flow in the cardiovascular system. In [111], Starr explored 

the relationship between the displacement of the heart’s axis to the variation of BCG amplitudes 

during the respiration. He mentioned that the heart’s axis is subject to a counter-clockwise rotation, 

as the cardiac apex moves to the left during the expiration and after the rise of the diaphragm. Any 

reasonable thought would conclude that this distraction of the heart’s axis from the measurement 

direction is the cause of respiratory diminishes found in the recorded ballistic force. Instead, Starr 

found that a large portion of BCG comes from the movement of blood in the aorta, an organ whose 

position remains fixed during respiration, and concluded the change in the heart’s direction should 

not be a primary factor. 

Further studies by Starr’s [111] supports a familiar physiological conception as follows; on 

inspiration, the filling, and so the output of the right heart, increases immediately, but the left heart's 

output does not increase until an interval of several seconds has elapsed. On expiration, the right 

heart output diminishes immediately, to be followed after an interval by a similar diminution of the 

left heart's output. It is also reported that the change in the right heart's output during the respiratory 

cycle is larger than that of the left. This phenomenon is known as the Starling's law of the heart, 

which states the weakening heart contracts best at that point in the respiratory cycle in which it is 

best filled [23]. Similarly, it is very common to see BCG signals where only the largest complex 

that appear during the respiratory cycle remains normal. Indeed, for patients in declining health, 

the percentage of abnormal BCG waveforms can be appropriately regarded as a guide to the 

severity of the myocardial impairment. 

The respiratory variation in BCG has been proposed as a measure of abnormality universally 

present in patients with angina pectoris [31]. Respiratory weaving of the baseline is a prominent 

feature of all BCG signals made during normal breathing [41]. While this makes the baseline harder 
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to identify, it has certain advantages; the amplitude of the systolic complexes varies with their 

position in the respiratory cycle, as is well known. Any variation from the usual pattern can be 

detected in most ballistic signals by taking a simultaneous record of respiration.  

There is a growing interest in studying the interaction between cardiovascular and 

cardiorespiratory systems [183]. Starr and Friedland [111] reported the sinus arrhythmia in young 

adults always happen in the expiration period. The arrhythmias coincident with a reduction in the 

ballistic impacts are due to changes in the cardiac filling. They are very similar to the heart’s 

behavior before contracting. 

The quasi-periodic BCG signal is characterized by considerable inter-beat variability in its 

morphology (both in duration and in amplitude), mainly related to the respiratory activity and 

mediated by the autonomic nervous system, thus affecting both preload and afterload by changes 

in intrathoracic pressure [53]. Studies have investigated the effect of respiratory sinus arrhythmia 

(RSA) on the cardiopulmonary coupling of the heart, blood pressure, and the coronary artery 

disease [177]. Zhang, et al. [183] studied the effect of regular and slow breathing on the blood 

pressure and cardiopulmonary coupling, by using the Stepwise-paced breathing (SPB) procedure 

(spontaneous breathing followed by paced breathing at 14, 12.5, 11, 9.5, 8 and 7 breaths per minute, 

3 min each). They reported a significant reduction in blood pressure by the SPB procedure, SBP: 

From 122 to 114.2 mmHg, DBP: From 82.2 to 77.0 mmHg, and PTT: from 172.8 to 176.8 ms. 

Despite common sense, the respiratory-related variation of BCG waveform is not only 

limited to the amplitude of its waves. about two-thirds of the respiratory cycle is related to the 

expiratory phase, as reported by Brown Jr, et al. [36]  (Figure 7.11). In fact, multiple groups have 

studied the time variation of cardiac activities during the respiration. Van Leeuwen and Kuemmell 

[184] studied 25 subjects and reported 8 milliseconds modulation in the cardiac time intervals, due 

to the respiration. They have reported pre-ejection periods were longer in the transition from 
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inspiration to expiration, and shortest at mid-expiration. In contrast, the values for ejection time 

were lowest at the end of inspiration and highest around min-expiration. 

 
Figure 7.11. Expiratory phase covers about two-thirds of the respiratory cycle. (picture from 

[36])  

III. Experiments 

A group of 58 healthy volunteers (ages 18-50) were asked to lay in the supine posture on a 

bed. Ten minutes of continuous BCG signals were collected using four hydraulic sensors located 

under the mattress. The respiratory waveform was collected from the chest band. The ECG R-peaks 

were used for reference to segment heartbeats in the BCG signal. The best transducer was selected 

based on the highest DC-bias, to extract the BCG beats (Figure 7.12- Top). The BCG J-peaks were 

then mapped onto the respiratory signal to be assigned a label based on the respiratory phase. J-

peaks with at least a 90% amplitude of the closet respiratory peak were labeled as Inhale Peaks 

(IP), and J-peaks with less than 10% of the amplitude of the closest respiratory valley were labeled 

as Exhale Peaks (EP). We used a moving range function (movMax to movMin) to estimate the upper 

and lower thresholds at each time. The rest of the heartbeats were labeled as Inhale Active (IA) or 

Exhale Active (EA) and were excluded from this study (Figure 7.12).  

Common morphological features (amplitude and time location of BCG I, J and K peaks, and 

their differences, Amp_IJ and Amp_JK) were extracted from the BCG beats (Figure 7.12- Bottom). 

Then to evaluate the variation of the features between the two respiratory phases, I computed the 

average difference of each feature during IP and EP, from their global average. The average 

percentage of variation was computed for each feature, over all subjects. Thus, a positive value 
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over IP shows the percentage of increase in that feature during IP, compared to its average value 

over all four respiratory phases. 

 

Figure 7.12. Heartbeats 

labeled with respect to the 

four respiratory phases. 

Upper and lower thresholds 

were computed using the 

moving range. 

IV. Results 

Figure 7.13 shows that despite the little variations in the time delay between I-J waves or J-

K, during respiration, a higher variation happens in their ratio. While time delays of IJ and JK 

increase over IP respectively by 0.4% and 0.6%, their ratio decreases by 21.8% on IP. Also, while 

the amplitude of IJ wave decreases by 3.7%, and the amplitude of JK decreases by 4.7%, the ratio 

of these two numbers increases by 109.2%. 

 

 

 

Figure 7.13. Respiratory-related variation of BCG features from their average values, 

compared between inhalation and exhalation. 
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V. Conclusion 

Our results are in the same range as the ones previously reported in the literature. This 

represents a potential starting point for future work on “the application of hydraulic bed in 

prognostic studies”. Expanding one of the ideas provided in the literature review and using both 

respiratory and BCG information of the hydraulic bed sensor can help in early detection of 

conditions in the cardiorespiratory system. 

7.4. Preliminary Studies for Future Work 

In order to better understand our BCG sensors, I have tried multiple experiments. As the 

foundation for future research, I first tried to verify that our BCG signals from the suspended bed, 

are in fact, the same as the ones in the literature. In Section 7.4.1, I provide a visual comparison 

between the ensemble-averaged templates of the accelerometer signals to the ones of the reference. 

Then in Section 7.4.2, I investigate a transfer function to match the BCG signals from the hydraulic 

bed sensor to the ones recorded simultaneously by means of the suspended bed. 

 

7.4.1. Characterizing the Suspended Bed 

Despite the extensive work of Isaac Starr [185], the field of ballistocardiography still lacks 

standardization of devices and methods. Each device has slightly different mechanistic properties 

and therefore acquires a different amount of motion from the body. We also wanted to provide a 

model for our hydraulic bed sensor so that we could directly use the findings of other sensing 

modalities. As an effort in this direction, I have collected synchronous recordings of BCG on the 

suspended bed from the accelerometer (as the reference) and the hydraulic bed sensor. In order to 

consider the possible effect of motion on the hydraulic transducers, I have tried the same experiment 

both in the moving and the stationary state of the suspended bed. Then ECG R-peaks were used for 

segmentation and creation of ensemble averages. 
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As the first step, I tried to calibrate the signals acquired from the accelerometer to provide a 

quantitative comparison between our accelerometer-based BCG and the reference waveforms 

reported by Isaac Starr [87].  There he used “103 DYNES” as the scale for “Acceleration of BCG”. 

Dyne is a unit of force that, acting on a mass of one gram, increases its velocity by one centimeter 

per second every second along the direction that it acts. (1 𝑑𝑦𝑛 =  1 𝑔 ⋅ 𝑐𝑚/𝑠2 =  10−5 𝑘𝑔 ⋅

𝑚/𝑠2 =  10−5 𝑁 ). For “Velocity of BCG”, they used “102 g.cm/s”; for displacement they 

used g.cm. Even in other reference papers, Noordergraaf has used the same units and scales as 

presented in the book by [87]. 

Variations in the acceleration of the MU suspended bed were recorded in voltage using the 

3-axis accelerometer (Kionix EVAL-KXR94-2283 [86]). This accelerometer has the sensitivity of 

1000mV/g, according to the datasheet. Then to convert from g to the Dyns, I first converted values 

to Newtons, by multiplying by the weight of the system: 

𝑊𝑒𝑖𝑔ℎ𝑡 = 78𝑘𝑔 + 5𝑘𝑔; 

𝐹 = 𝑚 ∗ 𝑔; 

𝑁𝑒𝑤𝑡𝑜𝑛𝑠 = 𝑊𝑒𝑖𝑔ℎ𝑡 ∗ (𝑉𝑜𝑙𝑡𝑠 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦); 

Then by definition, we convert Newtons to Dyns: 

𝐷𝑦𝑛𝑠 = 𝑁𝑒𝑤𝑡𝑜𝑛𝑠 ∗ 105; 

𝐷𝑢𝑛𝑒𝑠 = 𝑉𝑜𝑙𝑡𝑠 ∗ (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡) ∗ 105; 

We also know that the Acceleration is the first derivative of velocity, and velocity is also 

defined as the first derivative of displacement: 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  𝜕𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦/ 𝜕𝑇𝑖𝑚𝑒  

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  𝜕𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 / 𝜕𝑇𝑖𝑚𝑒 

We should be able to go backward from acceleration to the displacement, by means of 

integrations: 
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𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  ∫ 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝜕𝑡 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = ∫ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝜕𝑡 

I have demonstrated in Figure 7.4, the acceleration ballistocardiogram (A-BCG), computed 

velocity ballistocardiogram (V-BCG), and the computed displacement ballistocardiogram (D-

BCG) waveforms both from the book of Starr and Noordergraaf [87] and from our suspended bed. 

Obviously, by computing the first derivative of the displacement, we lost the “c” constant, and we 

cannot retrieve it back just by computing the integral of the velocity. The same thing happens while 

differentiating the velocity to acquire the displacement. This is the reason that the baseline of our 

displacement waveform, is not at the level of the baseline for Isaac Starr’s. We need at least a single 

value for calibration. 

 
Figure 7.14. Obtaining Displacement-BCG and Velocity-BCG from Acceleration-BCG. The top 

row shows the waveforms from [87], the bottom row shows the MU suspended bed measurements 

on the same scale or computed through the integration of the Acceleration-BCG. 

 

7.4.2. Characterizing the Hydraulic Bed Sensor 

Some empirical investigations have been done previously by Rosales [76] to find the optimal 

dimensions, directions, and positions of the hydraulic transducers. However, no work was done to 
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study the exact physics behind the ballistic measurements, regarding the source of the change 

(acceleration, velocity, or displacement), and also its direction. Researchers in our team are 

currently working to mathematically describe how the displacement of transducers, relative to the 

body, may affect the BCG signal, or more importantly, which transducer most represents the actual 

status of the source ballistic waves. 

 To begin a characterization of the hydraulic bed sensor, here, I use the suspended bed as a 

reference for the measurements acquired from the hydraulic bed sensor. Experiments were run on 

the suspended bed, which was also equipped with the hydraulic transducers. Subjects were asked 

to lie on the bed in two conditions: first, while the bed was fixed stationary in place using external 

holders, and second, in the normal unconstrained suspension of the bed. As expected, the signals 

acquired from the hydraulic sensors when the bed was free to move, were poor. This probably is 

due to the fact that the movement of the bed frame and transducers affects the usual way of pressure 

measurement inside the transducers. Inversely, the accelerometer signals were not as clear when 

the bed motion was constrained. 

Interestingly, as shown in Figure 7.15, the template of the hydraulic sensor (top) when the 

bed is stationary, looks very similar to the template created from the accelerometer in the Y (head-

toe) direction on the moving bed, from the same subject. 

 

Figure 7.15. A visual comparison of accelerometer vs hydraulic bed template. The template of the 

hydraulic sensor (top) when the bed is stationary, looks very similar to the template created from 

the accelerometer in the Y (head-toe) direction on the moving bed, from the same subject. 
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Further investigations, as presented in Figure 7.16, shows the 1st derivative of the pressure 

sensor (second row) closely matches the acceleration of suspended bed (third row), on three 

different subjects. Also, the original templates from the hydraulic pressure sensor (first row) have 

a very similar shape as of the velocity of the suspended bed (fourth row). 

Further data collections and investigations are required in order to find a mathematical 

relationship between the waveforms of these two modalities. Currently, we are working on a 

parallel research to use our previous mathematical model of the suspended bed [5] and extend it to 

the case of the hydraulic bed sensor. We should consider the fact that the suspended bed is a ULF 

device while the hydraulic bed sensor has some of the characteristics of the HF devices; therefore, 

the comparison should be carefully made between the waveforms of the same type. 

 

Figure 7.16. Similarity between the bed sensor and the Velocity-BCG. This figure compares the 

BCG waveform and its first derivative to the accelerometer signal and two of its integrals, over 

three subjects. The first row is the bed sensor; the second row is its first derivative, the third row 

is the accelerometer, the fourth row is the velocity (first integral of the accelerometer signal), and 

the last row is the displacement or movement (second integral of the accelerometer signal). Note 

the similarity of the second and the third rows; also, the first and the fourth rows as very similar.  
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8. CUFFLESS BLOOD PRESSURE MONITORING 

8.1. Background 

According to the American Heart Society [186], some of the most dangerous health concerns 

in the United States are related to cardiovascular diseases. The blood pressure of an individual 

appears to be a reliable indicator of health issues that could eventually lead to a cardiovascular-

related illness [187]. Accurately estimating the blood pressure, either in the absolute or relative 

form can provide an early sign of cardiovascular conditions and used to prevent cardiovascular-

related problems whenever the blood pressure exceeds the normal range, which is a challenging 

problem.  

High blood pressure, termed "hypertension," is a condition that afflicts almost 1 billion 

people worldwide and is a leading cause of morbidity and mortality. More than 20% of Americans 

are hypertensive, and one-third of these Americans are not even aware they are hypertensive. 

Therefore, this disease is sometimes called the "silent killer." This disease is usually asymptomatic 

until the damaging effects of hypertension (such as stroke, myocardial infarction, renal dysfunction, 

visual problems, etc.) are observed. Hypertension is a major risk factor for coronary artery disease, 

myocardial infarction ("heart attacks") and stroke. 

Blood pressure (BP) is the pressure exerted by circulating blood upon the walls of the blood 

vessels. It is expressed in terms of the systolic pressure over diastolic pressure in millimeters of 

mercury (mm Hg). Conventionally BP can be measured using a sphygmomanometer, which is a 

device composed of an inflatable rubber cuff wrapped around the arm. A measuring device 

indicates the cuff's pressure. A bulb inflates the cuff, and a valve releases pressure. As the heart 

beats, blood forced through the arteries causes a rise in pressure, called systolic pressure, followed 

by a decrease in pressure as the heart's ventricles prepare for another beat. This low pressure is 

called diastolic pressure.  
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By reviewing the history of blood pressure measurement [188, 189], arterial catheterization 

stands out in its ability to measure blood pressure directly from inside the artery. Invasive 

techniques and methods that require trained physicians or nurses provide a high precision 

measurement for critical hospital settings such as ICU. But there are other methods later proposed 

to reduce the invasiveness and expand the range of use of the device in the absence of physicians 

or nurses. These devices can be used in ambulatory and even home settings, using the hand-held 

automated oscillometric devices. These methods can also reduce the effect of white-coat 

hypertension (WCH), which is the elevation of blood pressure just due to the presence of the health 

care workers, particularly the physicians [189]. One factor that holds back the broader use of self-

monitoring devices in clinical practice has been the lack of prognostic data. Two prospective studies 

have found that home blood pressure predicts morbid events better than conventional clinic 

measurements. There is an increasing body of evidence that home blood pressure may also predict 

target organ damage better than clinic pressure [189].  

BP can also be estimated by combining information captured by the BCG and ECG [190] or 

BCG and Photoplethysmography (PPG) [191]. PPG is a technique that measures the change in skin 

blood volume using a small light probe that is placed on the surface of the skin. Different sites for 

measuring PPG include the ear, forehead, ankle, and finger; we will use a finger sensor for the PPG 

measurement. BCG has been used for unobtrusive estimation of  blood pressure by combining 

information captured by BCG and ECG [190], [192] or BCG and Photoplethysmography (PPG) 

[191]. By developing algorithms that estimate changes in Blood Pressure, the hydraulic bed sensor 

can be used as an unobtrusive screening tool for monitoring the health status in senior housing or 

nursing care settings, allowing early detection of health changes [193]. In this context, Blood 

Pressure has an essential role for physicians.  

 



133 

 

8.1.1. Traditional Blood Pressure Measurement Methods 

Arterial Catheterization: The most accurate but invasive approach to measure blood 

pressure is the use of an arterial catheter which is a thin, hollow tube that is placed into an artery 

(blood vessel) in the wrist, groin, or other location to measure blood pressure more accurately than 

is possible with a blood pressure cuff. This is often called an “art line” in the intensive care unit 

(ICU). There are risk factors involved in using the catheter, including the bleeding, pain, and 

discomfort of using it, possible infections, and blood clots on the tips of the catheters.  

Sphygmomanometer: The auscultatory method has been the mainstay of clinical blood 

pressure measurement for over 100 years since it was first discovered. The Korotkoff’s blood pressure 

measurement technique is subject to limited accuracy but has continued without any substantial 

improvement. In this technique, first, by increasing the pressure inside the cuff, the arteries under 

the cuff are occluded. Then, by gradually decreasing the inflation of the cuff, the systolic peak of 

pressure can exceed the cuff pressure producing palpable pulsation. As cuff pressure is further 

diminished, the sounds increase in intensity and then suddenly become muffled at the level of 

diastolic pressure where the arteries remain open throughout the entire pulse wave [194]. 

The problems with sphygmomanometer appear especially for elderly patients who are more 

likely to have white-coat hypertension (WCH), isolated systolic hypertension. Also, in the case of 

arrhythmias, when the cardiac rhythm is very irregular, the cardiac output and blood pressure vary 

significantly from beat to beat. There is considerable interobserver and intra-observer error. 

Estimating blood pressure from Korotkoff sounds is a guess at best; there are no generally accepted 

guidelines. The blood pressure should be measured several times, and the average value used [189]. 

The Oscillometric Technique: This method, employed by most clinical-grade automated BP 

devices, analyzes pulse waves collected from the cuff during constricted blood flow. The 

oscillations of pressure in a sphygmomanometer cuff are recorded during gradual deflation, the 

point of maximal oscillation corresponds to the mean intra-arterial pressure. It yields valid 
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estimates of mean pressure but questionable estimates of systolic and diastolic pressures [195]. The 

main problem with the technique is that the amplitude of the oscillations depends on several factors 

other than blood pressure, most importantly, the stiffness of the arteries. Thus, in older people with 

stiff arteries and wide pulse pressures, the mean arterial pressure may be significantly 

underestimated. 

The finger cuff method: This method is based on the principle of the “unloaded arterial wall”, 

where in the arterial pulsation in a finger is detected by a photoplethysmography device under a 

pressure cuff. The output of the plethysmograph is used to drive a servo-loop, which rapidly 

changes the cuff pressure to keep the output constant so that the artery is held in a partially opened 

state. The oscillations of pressure in the cuff are measured and have been found to resemble the 

intra-arterial pressure wave in most subjects. This method gives an accurate estimate of the changes 

of systolic and diastolic pressure, although both may be underestimated (or overestimated in some 

subjects) when compared with brachial artery pressures; the cuff can be kept inflated for up to 2 

hours. This method, in its present form, is not suitable for clinical use because of its cost, 

inconvenience, and relative inaccuracy for measuring absolute levels of blood pressure. Its most 

significant value is for research studies assessing short-term changes in blood pressure and its 

variability [189]. 

 

8.1.2. Cuff-less blood pressure estimation 

A number of previous studies [191, 192, 196] used several sensor modalities to obtain the 

bio-signals for blood pressure estimation. The sensor modalities used, broadly speaking, can be 

categorized as wearable and non-wearable. Techniques based on the electrocardiogram (ECG) and 

photoplethysmogram (PPG) [197-200] signals require wearable sensors. Wearable techniques can 

give better results than non-wearable. However, an individual may feel uncomfortable wearing the 

sensors all the time and may not be able to use them at all. One of the nonwearable approaches uses 
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a standard weight scale equipped to measure both ballistocardiogram (BCG) and electrocardiogram 

(ECG)[190] for blood pressure estimation. The ability to thoroughly monitor blood pressure 

changes in an unobtrusive manner can have huge benefits with enormous health care implications. 

In addition to the traditional methods, different approaches to estimate the blood pressure 

have been developed recently. One is the photoplethysmogram (PPG) that is capable of providing 

continuous blood pressure estimates [197-200] that are derived using the features extracted from 

the morphology of PPG. Yet another is the pulse transit time (PTT) [201-207], which is the time 

delay between the observations of ECG and PPG or two PPG devices from separate parts of the 

body to determine the relative blood pressure. The relative blood pressure from PTT can be mapped 

into the actual blood pressure when combined with other parameters. In papers such as [208], a 

connection between pulse pressure and PPG amplitude is reported. So other than episodic manual 

BP measurements, we use the PPG features to track the continuous estimation of pulse pressure. 

Ballistocardiogram consists of two general categories of systolic and diastolic waves, which 

provides valuable information based on different mechanical properties of the cardiovascular 

system. The H, I, J, and K waves appear in systole followed by the diastolic waves of L, M, and N.  

Pinheiro, et al. [6] provided a complete review on the morphological variations of 

ballistocardiography (different BCG waves), as a result of cardiovascular complications, such as 

the decrease in the amplitude of the I and J waves caused by mitral stenosis, after malfunctioning 

of heart valves.  

As reported by Kim, et al. [209], the J wave amplitude is related to the aortic pulse pressure 

by a scale factor related to the area of descending aortic cross-sectional. As the variation of this 

area is relatively small, the amplitude of the J wave can be used to estimate relative changes in the 

aortic pulse pressure. Meanwhile, the down-stroke amplitude of J-K have been shown to be 

correlated to the peripheral pulse pressure by a scale factor equal to the descending aortic cross-

sectional [209]. This provides another predictor for the cardiovascular problems, by monitoring the 
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ratio of the amplitude of the J-K down-stroke to the amplitude of the J wave. Figure 8.1 contains a 

schematic presentation of BCG template along with the blood pressure waves and their annotations. 

 
Figure 8.1. An example of a BCG waveform predicted via the mathematical model presented in 

[209]. (A) BP waveforms at the inlet of the aorta (P0), the apex of the aortic arch (P1) and outlet 

of the aorta (P2) measured from a human subject. (B) Scaled BP gradients in the ascending 

(AAδP01) and descending (ADδP12) aorta calculated from the measured BP waveforms and 

nominal values for the aortic cross-sectional areas. (C) BCG waveform predicted by taking the 

difference of the scaled BP gradients[209]. 

 

We proposed previously two new BCG features acquired non-invasively from the hydraulic bed 

sensor while the person lies on the bed [13]. Collecting BCG signals while the subject is in the supine 

position provides an ideal platform for non-invasive estimation of blood pressure. With the subject 

mostly flat in a similar position on the bed, body part elevations will not contribute to blood pressure 

change. Thus, blood pressure changes in this position are most likely related to some physiological 

variations. 
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Our hydraulic bed sensor system is capable of capturing the BCG signal of an individual 

lying on the mattress. The signal obtained from the bed sensor contains information about the 

heartbeat, respiration, and motion [210]. We previously have explored the potential of the bed 

sensor in monitoring the changes in the blood pressure [13]. Although it does not provide the 

absolute blood pressure, our studies showed the possibility of tracking the relative changes in the 

systolic blood pressure. The relative blood pressure differs from the actual by a scale factor and a 

constant offset only. The scale and offset parameters may be subject and sensor-specific but can be 

obtained through calibration for generating an actual blood pressure from the relative. The 

significance of tracking relative blood pressure with a sensor embedded in the bed is its ability in 

recognizing the blood pressure changes over time. As reported previously by our team [193, 211], 

tracking the changes in health parameters using in-home sensors provides a practical approach to 

facilitate the early detection of health status in older adults, which results in better health outcomes. 

8.2. Method 

Three features were extracted from the BCG signal of each transducer, in periods of time 

that matches the times of blood pressure measurement using the cuff. Two of these features have 

been introduced in our previous paper [13], and the other one is a newly proposed feature extracted 

from the morphology of the BCG signal. Extracted features from all transducers then go through 

different channel selection schemes and the correlation of the final outcome of each setting is 

compared against the reference blood pressure measurements.  

8.2.1. Data 

As lowering the systolic blood pressure is often the target of clinical treatments [212, 213], 

the focus of this work is on the monitoring of systolic blood pressure. I used a dataset consisting of 

48 young, healthy subjects who were asked to do some exercise in order to increase their blood 

pressure before laying on the bed. These 48 subjects were selected from the entire dataset of 62 
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subjects, by discarding the records with motion artifacts. The hydraulic bed sensor signals, as well 

as ECG, PPG, and respiratory signals, were collected immediately after a 2-minute use of the 

stationary bike. An automatic blood pressure cuff was placed on the left arm of each subject (close 

to transducer 4); six to eleven blood pressure measurements were documented until the 

measurements stabilized, after exercise. 

8.2.2. Feature extraction 

We proposed in [13] two BCG related features for systolic blood pressure monitoring. The 

first is based on the strength of the BCG pulses in the bed sensor signal. An increasing trend in 

pulse strength indicates the heart is exerting larger force and hence an increase in blood pressure. 

The second feature is based on the shape of the BCG signal from cycle to cycle to indicate the 

variations in the morphology of BCG waveform due to the change of blood pressure. 

Ballistocardiogram Pulse Strength (BPS): 

The magnitude of the heartbeat signal captured by the hydraulic bed sensor is related to the 

stroke volume [87], which may provide indications about the blood pressure. First, I removed the 

low-frequency respiratory-related component, and the high-frequency noise artifacts by means of a 

passband from 0.7 Hz to 10 Hz.  Then the short-term energy profile, E(n), was developed for each 

channel, by squaring the filtered data samples and applying an averaging filter (the impulse 

response was set equal to 1 for n = 0, 1,..., 29). The span of the filter is 30 samples, corresponding 

to an averaging window of 0.3 seconds. In other words, 

𝐸(𝑛) =  ∑ 𝑥(𝑛 − 𝑖)2

29

𝑖=0

 

An example energy profile is shown in Figure 8.2(b). The feature for relative blood pressure 

is the local peak heights of the energy profile, and we shall call this local peak feature the 

Ballistocardiogram Pulse Strength (BPS).  
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Figure 8.2. Peaks of the energy algorithm are used to estimate blood pressure. (a) Preprocessed 

data from the hydraulic bed sensor, and (b) its short-term energy profile. 

Ballistocardiogram Pulse Deviation (BPD) 

The shape of a BCG cycle is characterized by a number of peak properties [39]. Figure 8.3 

shows a typical cycle obtained from the hydraulic bed sensor. The maximum amplitude value of 

the BCG beat in the first 300msec is located as the J-peak. The I-peak is detected as the minimum 

before the detected J-peak and after the first 70msec portion of the corresponding sample BCG. 

The K-peak is obtained by detecting the minimum after the J-peak of the sample mean BCG 

heartbeat in the 200msec interval. 

 
Figure 8.3. Illustration of morphological features extracted from the BCG waveform to estimate 

the relative blood pressure. 

 

The first morphological feature to be discussed here is the difference in the amplitude of the 

two sides of the J-peak, as presented in the following formula by BPD: 

𝐵𝑃𝐷 =  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒(𝐽𝐾)  −  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒(𝐼𝐽) 
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The IJK complex is the main part of the BCG signal. We notice that the difference between 

the JK-amplitude and IJ-amplitude is large immediately after exercise, and there is almost no 

difference when the subject returns to rest. BPD is in a sense the difference in the amplitude of the 

headward movement of the center of mass during the early systole (J-wave), and the footward 

reflection of it after reaching the aortic arch (the K-wave). This difference was hypothesized to be 

correlated to the difference between the two corresponding segments of the cardiovascular system. 

Ballistocardiogram Pulse Integral (BPI) 

The difference between JK-amplitude and IJ-amplitude, and also the IJ-amplitude or JK-

amplitude provide direct information for monitoring the blood pressure. In the current work, in 

addition to the previous features, I am reporting the results of my study in the utilization of a new 

morphological feature. This feature depicts the total movement of the center of mass in an upward-

backward cycle around the J-peak, as presented in the following formula: 

𝐵𝑃𝐼 =  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒(𝐽𝐾) +  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒(𝐼𝐽) 

The BPI feature contains the two largest movements in the BCG waveform and is easy to 

measure. Small changes in the flow of the blood in each direction, causes a change in this feature.  

Extracting features from the templates 

In order to reduce the uncertainties that appear in the morphological features of the BCG 

waveform, mostly due to the respiratory variations, I have created an ensemble average (template) 

for each channel in a 10-second neighborhood around each measurement, as described in Section 

7.2. The 10-second window is usually enough to contain a couple of respiratory cycles, and 

therefore, a good average of the respiratory effects. 

Figure 8.4 shows the typical BCG pattern of five random subjects before and immediately 

after exercise when the heart rate, respiratory rate, and blood pressure of the subjects start at a high 

level and decline to normal after a while.  
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Figure 8.4. Effect of exercise on the typical BCG waveform. (Left) Before exercise, (Right) 

Immediately after exercise. 

 

8.2.3. Channel selection: 

We had used a simple approach for channel selection in [13], which was based on the DC 

level of the four transducers. The rationale was, as the transducers with higher DC values are 

usually the ones that are closer to the body’s center of mass, they can better capture the 

cardiovascular information. But, as my experiments in Section 6.5 on signal quality and channel 

selection show, this is not the case for the estimation of heart rate. There, I showed that channel 

selection based on the DC level is usually not the best possible channel selection, which I referred 

to as the oracle approach.  

In the current work, I have studied multiple channel selection techniques including the 

selections based on (i) the maximum DC bias, (ii) maximum SNR, (iii) maximum SQI, (iv) 

minimum, maximum and median of the measurement among all channels, and finally (vii) oracle 
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for blood pressure (maximum correlation). Here I provide a brief description of each of these 

channel selection approaches: 

i) Selection based on the maximum DC bias is based on the computation of the DC 

bias (median) of each channel, once for the entire length of the data. Then the 

channel with the highest DC bias is selected for feature extraction and computing of 

the correlation to the reference. 

ii) Selection based on the maximum SNR requires the computation of signal to noise 

ratio (SNR) for each channel and choosing the channel with the highest SNR. To 

compute the SNR, I have used the same approach as described in Section 6.5. 

iii) The oracle selection is an after-fact process of choosing the channel with the highest 

correlation. Although the oracle approach for channel selection is not applicable to 

most of the real-world cases, it should provide an upper limit for the expectations 

from the improvements that a channel selection technique could provide. 

iv) Channel fusion aggregates the measurements from the four transducers using 

simple statistics such as min, max, and median of all four values. This is an 

experiment to observe the possibility of simple statistical approaches compared to 

the more complex ones. 

 

8.2.4. Computing the correlation 

Over 6 to 10 minutes after active exercise, the blood pressure of a subject decreases 

gradually. To reduce the random variations, the BPS feature values are averaged over 5 seconds 

and BPD over 10 seconds. In average, the latter duration is longer since it has higher random 

variations. In acquiring the GT, the blood pressure cuff took about one minute to give a reading. 

The performance of the features was computed using the correlation of the two series of 
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measurements from the reference ground truth cuff, reference PTT, and our new proposed features. 

The correlation coefficient is obtained by using this formula: 

𝜌(𝑥, 𝑦) =
𝑐𝑜𝑛𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
 

When computing the correlation coefficients between a proposed feature and the GT, only 

the feature value at the beginning of 5 (for BPS) and 10 (for BPD, and BPI) seconds of each one 

minute in collecting the GT is used. Since we took the data right after the subject finished the 

exercise, the blood pressure decreased continuously. The beginning of 5 and 10 seconds in each 

one minute better corresponds with the time of the blood pressure cuff reading. Thus, the length of 

the two vectors in computing the correlation coefficient ranges from six to ten. 

 

8.3. Experiments and Results 

The first question to answer is whether there is a simple approach to selecting the best 

transducer. In other words, I wanted to investigate whether the position of the transducers with 

respect to the body makes any bias toward the quality of estimations from each one. To test this 

idea, I used the oracle approach (best possible selection) on all subjects in the BP dataset. Figure 

8.5 left, shows a visualization of the channels being selected for each feature, using the oracle 

approach. I also have counted how many times each transducer got selected as the best channel for 

the energy features and also the J-peak feature, then computed the probability of being the best 

channel for each one, as presented in Figure 8.5 right. This figure provides a comparison between 

the channels that were selected for the J-peak morphological feature (BPI), vs. the ones selected 

for the energy feature. 
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Figure 8.5. The highest correlated transducer differs between trials. This figure shows the 

comparison of channels with the highest correlation to the systolic blood pressure, for two 

features. Top row related to the BPD from the J-peak and the lower row is related to the BPS 

computed from the energy of the signal. On the right, the probability of selecting each channel as 

the most correlated channel is presented.  

 

As depicted in Figure 8.5, the best choice of channel differs from one subject to the other, 

which is also different for different feature settings. Although the 3rd and 4th channels have the 

highest probability of being chosen as the most correlated ones, it is not only due to their distance 

from the heart. That is because the 2nd transducer sits closer to the body than the 1st one, but it has 

a lower probability of being selected as the best. 

After studying the problem with pre-selection of one transducer based on their order, I have 

tried more objective channel selection approaches and compared their accuracies to the oracle 

approach. The average correlation of each channel selection is reported in Table 8.1 against the 

choice of the target feature. For example, the value 0.90 at the crossing of the first column and the 

first row, shows the correlation coefficient acquired by choosing the transducer with highest DC 

bias for the estimation of change in the blood pressure by means of the energy feature (BPS), and 

it matches the results reported in our previous paper [13].  
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Table 8.1. Effect of channel selection on the average correlation coefficient acquired from 

each of the three features. 

Row Labels Max DC SNR SQI Min Val. Median Val. Max Val. Oracle 

BPS (Energy) 0.90 0.85 0.91 0.83 0.90 0.94 0.95 

BPI (ij+jk) 0.90 0.85 0.89 0.83 0.90 0.94 0.95 

BPD (ij-jk) 0.83 0.74 0.65 0.40 0.70 0.87 0.87 

 

The highest correlations in this table are, of course, related to the oracle approach, in which 

the transducer with the highest correlation is selected. The selection based on the maximum DC 

bias is not the best approach for any of the features in the study, although it provides high 

correlations for two of the features, namely the energy of the wave and the summation of the two 

J-peak edges (BPI). These two features always provide higher correlations than the third feature 

(BPD, the difference between the IJ and JK edges of the J-peak).  

Signal quality approaches such as SNR and SQI do not provide much improvement, while 

one of the aggregation approaches produces correlations almost as high as the oracle approach. 

Apparently, if at any point of measurement, we choose the maximum of the feature values from all 

four transducers, the overall measurement would have a very high correlation to the ground truth. 

One should also consider the fact that this study has been done in the lab setting, and the 

subjects were asked to do some exercise and then come back to the bed. The measurements start 

from the first second that the subject stabilized on the bed, while they usually still have high 

respiratory rates and therefore the extra movement of the chest rib cage. This can cause artificially 

higher amplitudes for the signal and higher values for both features, at the beginning of the study. 

Therefore, choosing the maximum value among the four measurements results in the highest 

accuracy. 
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I also generated the scatter plots between the GT and the bed sensor blood pressure estimate 

to gain additional understanding. The bed sensor feature, either BPS or BPD, differs from the 

absolute blood pressure by a scale and an offset factor, that is 

𝐴𝑐𝑡𝑢𝑎𝑙 𝐵𝑙𝑜𝑜𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≈  𝑠𝑐𝑎𝑙𝑒 ×  𝐹𝑒𝑎𝑡𝑢𝑟𝑒 +  𝑜𝑓𝑓𝑠𝑒𝑡 

These two parameters are expected to be subject dependent and sensor unit specific. We 

obtain them separately for each subject by applying a least-squares fit of the bed sensor feature 

value to the GT blood pressure to generate the blood pressure estimate. Figure 8.6 depicts the scatter 

plot for the blood pressure estimate derived from the BPS feature. It clearly shows the results fit 

well to the 45-degree line, confirming a high correlation between the ground truth and the BPS 

feature. 

 
Figure 8.6. Scatter plot of blood pressure estimates derived from both features BPS and BPI vs. 

the ground truth GT. 

 

The mean absolute error between GT and the blood pressure estimate is 1.8081 (mmHg) for 

BPS and 2.3350 (mmHg) for BPD, while that of PTT is 2.4221 (mmHg). 
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8.4. Conclusion 

In this chapter, I proposed and compared the use of different channel selection techniques to 

improve the correlation of BCG related features to the reference blood pressure measurements, 

using the non-invasive hydraulic bed sensor. I have also introduced a new morphological feature, 

namely the summation of the two sides of the J-peak, which overall provides high correlations to 

the reference. This study has been done on the same dataset (48 young, healthy volunteers) as the 

one in our previous work [13] and I have shown how the new approach could improve the 

correlation coefficient of the features. 

I have proposed use of the oracle approach as the golden reference to evaluate the quality of 

each channel selection scheme. On top of channel selection, I have also introduced for the first 

time, the combination of the measurements from the four transducers (fusion) to provide better 

performance.  

This work opens the possibility of monitoring the relative systolic blood pressure 

continuously using our hydraulic bed sensor system. Future suggested work includes a longitudinal 

study of the TigerPlace residents with overnight data. By combining the proposed approach of this 

chapter on tracking the blood pressure, with other chapters of this dissertation including the channel 

selection, noise reduction and also sleep posture classification, researchers should be able to focus 

on the clear portions of the overnight data for feature extraction. We also can combine the blood 

pressure monitoring results with our previous studies in which health changes are tracked using 

non-obtrusive in-home sensors [193, 211]. 

8.5. Discussion 

There are multiple points to discuss in this work and the previously published article, which 

might be helpful in future explorations and understanding of the physics of our hydraulic bed 

sensor. These include the design of an experiment to increase the blood pressure in the lab setting, 
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uncorrelated effects of the blood pressure cuff on the ballistic readings of the hydraulic bed sensor, 

channel selection and challenges with the older population. 

To increase the blood pressure, we asked the subjects to use the stationary bike for about 

two minutes to increase their blood pressure, while making sure they will not hurt themselves by 

any means. This, of course, has some ambiguities in the description. For example, it is unclear how 

much increase in blood pressure or heart rate appeared right at the end of the exercise. Some 

subjects made a great effort on the bike and some apparently just used the most relaxed settings. 

Thus a significant discrepancy appears in the real amount of changes. Multiple other techniques 

have been proposed in the literature [214] to artificially change the blood pressure, including the 

respiratory maneuvers such as Valsalva, Müller's maneuver, or some muscle contractions such as hand 

grip or squatting. Knowing how each maneuver affects the cardiovascular system can help in predicting 

the corresponding changes in the morphology of the waveform. 

Some of these exercises can change the venous return (VR) to the heart from the venous 

vascular. For example, lung expansion (inspiration), results in a substantial increase in the pressure 

gradient driving venous return from the peripheral circulation to the right atrium. Transient changes 

in venous return can occur in response to several factors including the rhythmical contraction of 

limb muscles during regular locomotory activity (walking, running, swimming), sympathetic 

activation of veins to decrease venous compliance, and the respiratory activity, which causes a 

decrease in right atrial pressure. For example, squatting, which decreases the distance between the 

legs to the heart, thus influences the blood return and increases the preload. Handgrip increases 

vascular resistance inside the arms and increases afterload and a slight increase in the preload. 

Respiratory Maneuvers, such as Valsalva, or the Müller's maneuver (inverse of Valsalva) affect 

the preload by changing the abdominal pressure [214]. 
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Normal respiratory variations of the ballistocardiograms were also considered in the 

experiments. Respiratory sinus arrhythmia (RSA) is the automatic variation of heart rate during 

different phases of a respiratory cycle. As the BCG waves enlarge in amplitude during inspiration 

and cause an increased cardiac output, the systolic pressure and pulse pressure may simultaneously 

diminish, suggesting decreasing cardiac output. This apparent discrepancy is due to the fact that 

the ballistocardiogram records the sum of the impacts from the movement of blood coming from 

both sides of the heart while arterial blood pressure is affected by the output of the left heart [111]. 

Table 8.2, illustrates how different segmentations of the samples, according to the respiratory 

phase, could affect the overall correlation coefficient in blood pressure estimations using the BCG. 

Four respiratory phases including the Inhalation Peak (IP), Exhalation Active (EA), Exhalation 

Peak (EP), and the Inhalation Active (IA) were studied. Among all four, the expiration peak (EP), 

which is located at the end of exhaling period, has the biggest improvement. This is a potential 

strategy in establishing a general framework. 

Table 8.2. Variations in the correlation coefficient during the respiratory cycle. Focusing on 

certain phases of the respiratory cycle changes the accuracy of BP estimation. The best subjects 

are the 48 ones among the total 62 subjects without large motion artifacts in their recordings.  
 

 All IP EP IA EA 

Best 

Subjects 

Energy 0.93 0.96 0.97 0.93 0.93 

J-Peak 0.86 0.84 0.93 0.84 0.83 

All 

Subjects 

Energy 0.90 0.95 0.96 0.91 0.90 

J-Peak 0.83 0.85 0.92 0.81 0.83 

 

Estimations on older subjects were the primary motivation of our work. Fundamental 

differences exist between the data of younger subjects compared to the ones collected from the 

older subjects. These differences include the natural differences between the morphology of the 

BCG signals acquired from older subjects compared to the younger ones, and also the fact that the 
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older subjects were not asked to do any exercise in our study (to reduce the risk factors of data 

collections). As expected, exercise causes a higher variation in the BCG waveforms acquired from 

the younger subjects, which was easier to capture using our features. To explore the real difference 

in the accuracy of estimations between different age groups, I repeated the entire study on each of 

the 3 data sets separately. Comparing four different features, on each of the three datasets (1. Young 

subjects before exercise, 2. Young subjects after exercise, 3. Old subjects before exercise) shows 

that none of these features achieves high accuracy estimations on older subjects. It also shows the 

morphological features are better than the energy algorithm for young-at-rest subjects.   

 
Figure 8.7. Comparing the correlation of four different features, on the three datasets (1. Young 

subjects at rest, 2. Young subjects after exercise, 3. Old subjects at rest). Correlation values show 

that none of these features achieves high accuracy estimations on older subjects. It also shows the 

morphological features are better than the energy algorithm for young-at-rest subjects.  
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A more detail comparison of the accuracy of each estimating feature on different age groups 

is provided in Figure 8.8. Clearly, the accuracy of all features declines as age increases. This should 

encourage us to do more data collections on older subjects, after the initial algorithm developments 

on young subjects. 

 
Figure 8.8. The correlation of BP estimates using each feature decline by age group. 

The effect of the blood pressure cuff on the acquired bed sensor signals at first looks very 

similar to the respiratory variation. More investigations showed a consistent change in the DC level 

of all four transducers caused by the inflation and deflation of the blood pressure cuff, which is not 

related to respiration or even the general reduction of blood pressure (Figure 8.9). 
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Figure 8.9. Variations in DC bias around the inflation of the blood pressure cuff. The figure 

shows the synchronized measurement of DC values (top) and blood pressure readings (bottom).  

Some of the unwanted effects of the blood pressure cuff have already reported in the 

literature. Sheshadri, et al. [215] reported a transient rise of 0–10 mmHg in arterial blood pressure 

readings caused by the inflation of a blood pressure cuff. Also, Liu, et al. [216] reported a 

significant increase in the PTT measurement (ECG to PPG), within one minute after a four-minute 

cuff inflation and deflation process. All of these show a potential research area to study the causes 

and effects of these variations. 

My investigation in Figure 8.10 shows the variations appeared right around the activation of 

blood pressure on all four transducers, while the subjects were at rest and before exercise. The 

reference manual blood pressure measurements (red dots) show the documented time of each 

manual blood pressure measurement. The interesting point in this figure is the opposite direction 

of the DC changes in transducer R4 vs. R1. R4 is the leftmost transducer as happens to be the 

closest to the left arm. As inflation starts, the DC level of R4 declines while the DC level of R1 

increases at the same time.  

This variation could be related to the decreased amount of blood circulation on the left side, 

as a result of cuff inflation, and increased circulation on the right side. An interesting study could 

explore the relation of these DC variations to the measured blood pressure of the subject at that 

time. So, for any future assessment of blood pressure using ballistocardiography, it is suggested to 

consider the DC variations caused by the inflation of the blood pressure cuff. 
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Figure 8.10. Inflation of blood pressure cuff causes a change in the DC bias of the four 

transducers. For both of the subjects represented in this figure, transducer R4 was the one closer 

to the left arm (heart), where the cuff was placed. 
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9. SLEEP STAGE CLASSIFICATION 

9.1. Background 

Normal human being spends almost one-third of their lives in sleep. During sleep, multiple 

mechanisms such as the sympathetic nervous system and cardiorespiratory system function 

differently, depending on the sleep stage. The quality of sleep is shown to have direct effects on 

the physiological and neurological abilities of individuals. Sleep disorders such as apnea or 

insomnia, and sleep distortions have been shown to be related to neurological and physiological 

diseases [217], and therefore can help physicians in the diagnosis of such diseases. 

According to the American Academy of Sleep Medicine Manual (AASM, 2007) [218], a 

normal human sleep consists of multiple cycles of alternating between the two general sleep stages, 

namely the REM and non-REM, as well as some periods of wakefulness. Brain waves, muscle 

activities, and eye movements have different patterns in different sleep stages. REM stands for the 

rapid eye movement and is the restorative part of the sleep, which therefore is a clinically relevant 

parameter to monitor.  

Recently we published a paper [219] on the classification of sleep stages using features 

extracted from the hydraulic bed sensor signals acquired from five regular patients in the Boone 

hospital’s sleep center. These five subjects were chosen among a larger dataset, with lower Apnea-

hypopnea index (AHI) and so that each one has all three main sleep stages during the night. 

Annotation for sleep stages and other events have been provided by a sleep-credentialled technician 

through de-identified PSG files. An example hypnogram from one of these subjects with multiple 

sleep cycles during the night is presented in Figure 9.1. 
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Figure 9.1. Example hypnogram with multiple sleep cycles during the night, acquired from the 

sleep lab annotations. 

The original energy algorithm [11] was used to detect the individual heartbeats from the 

BCG signal, as described in Chapter 5. These detected locations were then used to compute the 

heartbeat intervals and heart rate variability (HRV). Nine features from the time domain and four 

frequency domain features were computed from the heartbeat intervals to build a set of thirteen 

HRV features. The heart-beat intervals and breath intervals were calculated from the filtered heart 

rate signal and the respiratory signal. Then, HRV features and RV features were extracted based 

on these intervals, respectively. The LFCC features were generated from the filtered heart rate 

signals. 

In this section, I report the results of my experiments on the possibility of improving the 

sleep stage classification accuracy. I have used the enhanced energy algorithm for a better beat 

detection as my experiments in Chapter 5 show it improves the accuracy of beat to beat heart rate 

estimations. Also, based on the results reported in Section 6.5, here, I will show the effect of other 

channel selection approaches. 

 

9.2. Experiments and results 

I investigated multiple approaches to improve the accuracy of sleep stage classification, 

including the utilization of a different channel selection scheme or application of the enhanced 
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energy algorithm in extracting the beat to beat heart rates. I created three different feature datasets 

to represent different configuration settings including (i) the set of features extracted from the 

channel with the highest DC using the original energy algorithm, (ii) the feature set from the highest 

DC channel by means of the enhanced energy algorithm, and finally (iii) the features from the 

channel with minimum MAD of heartrate using the enhanced energy algorithm. For the channel 

selection using the MAD of heartrate, I first applied the enhanced energy algorithm on all channels 

and then used the estimations acquired from the channel with the minimum MAD in heart rate.  

Table 9.1. Sleep classification accuracy and the area under the curve. This table compares the 

classification accuracy (ACC) and the area under the curve (AUC) for the 3-classes of wake, 

REM, and non-REM on different configuration settings. The configurations consist of different 

subsets of the features, beat-detection algorithm, channel selection schemas, and four different 

classification methods. 

Feature 

Set 

Beat 

Detection 

Channel 

Selection 

Cubic SVM KNN Bagging 

Acc AUC Acc AUC Acc AUC 

All 

Features 

Original 

Energy Alg. 
DC Bias 84.5% 97.0% 73.8% 92.0% 80.3% 94.0% 

Enhanced 

Energy Alg. 
DC Bias 85.3% 97.0% 73.1% 92.0% 79.6% 94.0% 

Enhanced 

Energy Alg. 
MAD HR 85.5% 98.0% 73.4% 91.0% 81.0% 93.0% 

HRV 

Features 

Original 

Energy Alg. 
DC Bias 55.4% 52.0% 57.4% 60.0% 56.3% 58.0% 

Enhanced 

Energy Alg. 
DC Bias 57.5% 59.0% 57.5% 65.0% 55.4% 66.0% 

Enhanced 

Energy Alg. 
MAD HR 49.4% 60.0% 60.3% 72.0% 57.4% 69.0% 

Non-HRV 

Features 

Original 

Energy Alg. 
DC Bias 85.2% 97.0% 74.5% 93.0% 80.5% 93.0% 

Enhanced 

Energy Alg. 
DC Bias 85.4% 97.0% 74.5% 93.0% 80.7% 93.0% 

Enhanced 

Energy Alg. 
MAD HR 85.2% 97.0% 74.5% 93.0% 80.8% 94.0% 
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The upper three rows of Table 9.1 are related to the analysis of all features, and the middle 

three rows are related to the analysis using only the 13 HRV-related features, and finally, the last 

three rows are related to the non-HRV features. At first, I tried the new beat detection, and the new 

channel selection approaches on the entire features using 10-fold cross-validation for each of the 

three classification algorithms. Comparing the classification accuracies for the 3-class problem of 

WAKE, REM, and non-REM over different settings does not show a noticeable improvement in 

the accuracy or the area under the curve (AUC) for the REM class.  

Then I decided to use only the 13 features that are related to HRV and are extracted from the 

beat to beat intervals. While expecting a lower accuracy than the combination of all features, 

studying only this subset of features would have a higher possibility in showing the effect of each 

setting on the total accuracy. But unfortunately, nothing more than a couple of percentages changed 

between these configurations. This is while the overall accuracy through the use of only HRV 

features has gone from about 85% in the original setting to as low as 55%, even for the energy 

algorithm and the DC bias approach for channel selection. This brings a question on how much the 

HRV features are important in the overall classification results because 55% works almost like a 

random variable. 

To test this idea, I have also compared all the previous configurations against the non-HRV 

features, and as Table 9.1 shows the classification accuracy of each setting stays very close (or even 

a little higher) than the ones with all features being used. These experiments show that the HRV 

features are not playing an important positive role in the current classification problem, and 

therefore even an improvement in their extraction, might not have an effect on the outcome of the 

entire classification. 
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9.3. Conclusion  

In this section, I have tried two ideas to improve the quality of sleep stage classifications that 

we previously reported in [219]. Two different channel selection schemas were used, including the 

traditional DC-based approach and the one based on the minimum deviation of the heart rate 

estimates, which shows improvement in the HR estimation as reported in Section 6.5. Also, the 

features extracted from the enhanced energy algorithm were compared to the features from the 

original beat detection algorithm.  

Results show no considerable improvements in the accuracy of the sleep stage classifications. 

In fact, my further experiments with and without the HRV features show that the contribution of 

these features to the overall accuracy is minimal (either before or after the enhancements). In other 

words, by completely removing these features, the classification accuracy had even some small 

improvements. These results are not in agreement with what I presented in Section 6.5 on the 

improved quality of beat detection and heart rate estimations after the application of the enhanced 

energy algorithm on the selected channels.  

Further studies of the relevance of these HRV features and also their implementation details 

are required to understand the source of the problem. Studying different denoising techniques is 

suggested for future work, as the hospital data consists of multiple sources for noise and artifacts, 

including vibrating devices such as the air mattress, CPAP, and BIPAP. It is also important to note 

the “patients” might have different syndromes, which changes their responses to the sleep stages. 

For example, although REM sleep in healthy subjects contains no movements, REM sleep behavior 

disorder (RBD) is common between patients with Parkinson's disease [220]. Studying the health 

condition of the patients, and the effect of abnormal REM sleep movements such as RBD could be 

another venue to explore. 
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10. CONCLUSION 

10.1. Summary 

The work described in this dissertation provides an accurate, robust, and real-time approach 

to detect cardiac cycles through the use of ballistocardiography with a particular focus on the 

longitudinal in-home data collections where a high degree of ambient noise diluted the signal 

quality. Reduction of the noise or detection and cancelation of the noisy regions enhances the 

potential of future BCG based research. Accurate localization of the fiducial points in the BCG can 

directly improve the accuracy in the estimation of HRV and sleep stage classification. Sleep posture 

classification, on the other hand, helps the researchers to focus on a specific posture for longitudinal 

studies. Creating physiologically, reliable templates from the BCG was also part of my work. It 

provides the foundation for morphological analysis of the BCG waveforms that appear due to 

different changes in the cardiovascular system, such as aging or the change in the blood pressure. 

After providing the theoretical definition of BCG, some classical and modern BCG devices 

are mentioned in Chapter 2 including Starr’s original suspended bed and the recent bathroom scale. 

I have also provided the standard categorization of BCG devices as the ultra-low frequency (ULF), 

low frequency (LF), and the high frequency (HF). Starr’s free moving suspended bed is known to 

be ULF. We have made a replica of the Starr’s suspended bed in our lab which uses a 3-axis 

accelerometer to record the ballistic movement of the subject’s body. This device and our other 

BCG devices, including the hydraulic bed sensor and the chair sensor are described in Chapter 3. 

Chapter 3, also provides the list of datasets that we collected for this study, including (i) the 

young, healthy subjects resting in supine position (HRV dataset), (ii) young, healthy subjects before 

and after exercise (BP dataset), (iii) young, healthy subjects shifting sleep postures (POS dataset), 

(iv) mostly older  residents of TigerPlace in resting supine position (TP dataset), and finally 

overnight BCG and PSG dataset from sleep lab patients (Sleep Dataset). 
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In Chapter 4, I used the non-BCG components of the signals acquired from the four 

transducers of the hydraulic bed sensor to estimate sleep postures. By applying simple statistical 

functions on the DC levels of the four transducers, I was able to train neural networks for the 

classification of various sleep posture classes and have achieved average accuracies as high as 89% 

for separating the lateral (side) vs. the non-lateral postures. There, I also reported how the LOSO 

cross-validation has lower accuracies compared to the K-fold cross-validation. Having non-

invasive tools for sleep posture classification helps researchers in extracting features only from the 

time periods that the subject is in a specific sleep posture. This would compensate partially the 

impact of sleep posture on the amplitude and shape of BCG waveforms. 

Then by focusing on the BCG components of the signals, I was able to improve the accuracy 

of our previous beat detection algorithm by means of some enhancement steps, in Chapter 5. These 

steps include (i) the customization of the bandpass filter for better separation of the respiratory 

variations, (ii) reduce the remaining respiratory variations, by means of the signal envelopes, (iii) 

normalization of the BCG amplitude using the respiratory waveform, (iv) using the slope of the J-

peak combined with its amplitude. My results show the average RMSE in beat to beat heart rate 

estimation, is higher for the original energy algorithm compares to the enhanced one. My results 

show on average, the RMSE of the enhanced energy algorithm is almost one-third of the original 

energy algorithm.  

In Chapter 6, I have proposed and investigated different approaches to handle distortions and 

motion artifacts in the BCG signal. I first used different variations of the wavelet decomposition, 

and empirical mode decomposition to reduce the noise content of the signals. My results show the 

enhanced algorithm always has smaller errors in the beat to beat heart rate estimation. I also found 

the wavelet decomposition as the best denoising technique on each and all of our datasets. The 

combination of the wavelet denoising and the enhanced energy algorithm resulted in about 52% 

reduction of the beat to beat heart rate estimation. 
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Moreover, in Section 6.4, I proposed the use of SVM and RUSBoost on the combination of 

53 features from all four transducers, and as reported in Table 6.3, the accuracy of detecting the 

noisy segments is as high as 99.2%. The data consist of 10-minute recordings from 25 young, 

healthy subjects during the change of postures, and also overnight signals from the sleep lab. 

Then in Section 6.5, I have adapted some signal quality indices to evaluate the quality of 

different channels, including the (i) signal to noise ratio (SNR), (ii) band power ratio (BPR), (iii) 

heart rate deviation (MAD), (iv) the conventional DC-based selection, and finally (v) the oracle 

approach. The oracle approach is the manual process of choosing the best option after computing 

the performance of all possible selections. It can provide an upper limit on our expectations about 

the amount of improvements that we should expect after the utilization of channel selection 

techniques. In this section, the selected channels of each method are compared against the oracle, 

and if there was at least one match (hit) between these two sets, the selection reported as successful. 

My results show the conventional DC-based approach has the lowest hit rate, and the SNR usually 

outperforms the other methods on all datasets (HRV: 62%, POS: 51%, Sleep: 68%, and TP:53%).  

After noise reduction and elimination of noisy sections, I proposed the use of ensemble 

averaging techniques to create morphological BCG templates. Morphological templates have been 

used in the literature to track the pathological disturbances in the ECG after heart attack, and also 

the age-related variations in the photoplethysmography signals. In Chapter 7, after describing the 

process of creating the morphological templates from our BCG signals, I provided evidence on 

different variations in the BCG template during the respiratory cycle, and also as the result of aging. 

I used the same approach and showed how well our suspended bed matches the ones described by 

Starr, and also provided some foundations for characterization of the waveforms from the hydraulic 

bed sensor. 

These morphological templates were also used in Chapter 8 for non-invasive monitoring of 

the relative variations in blood pressure. I used different channel selection techniques on top of new 
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morphological features to improve the correlation in monitoring the blood pressure. Other than 

channel selection, aggregation (fusion) of the measurement from the four transducers proposed and 

compared against the oracle approach. My results show that choosing the maximum feature value 

among all four transducers always provides correlations as high as the oracle approach (best 

possible correlation). Also, the new morphological feature (BPI) shows correlations as high as the 

energy algorithm on the after-exercise data of the young subjects.  

My further investigations in Table 8.2 show how the correlation changes with different stages 

of the respiratory cycle. Unfortunately, Figure 8.7 shows none of these features could achieve high 

accuracy estimations on older subjects. In fact, as reported in Figure 8.8, the correlation of the 

blood pressure estimations using each of the four features declines by age. This could be due to the 

age-related variations of the BCG morphology, or also the structural differences between the two 

datasets of younger and older subjects, as the latter one was not designed to change the blood 

pressure of the subjects. 

In Chapter 9, I have studied the possibility of improving the sleep stage classification 

accuracy by introducing new channel selection techniques (MAD HR) and enhanced features, 

compared to our previously published paper. The newly proposed enhanced energy algorithm was 

used for feature extraction from the sleep lab data, specifically for the HRV-related features. 

Meanwhile, two new channel selection schemas were used to find the best transducer among the 

four. My experiments show no significant improvement in the accuracy of sleep stage classification 

after utilizing the new techniques. While further studies are required in this area, results show the 

current implementation of the HRV features does not have much contribution to the overall 

classification task. I showed that using only the HRV features produces about 55% classification 

accuracy, which is about the random decision making. Also, removing the 13 HRV features from 

the entire features does not reduce the overall accuracy of the classification. 
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10.2. Contributions 

• Development of an enhanced algorithm for accurate beat detection in BCG 

- Fast, time domain, and robust against small motion artifacts. 

• Investigating different approaches to evaluate and improve the quality of the BCG signal 

- Application of noise reduction techniques to minimize the effect of artifacts. 

- Designing a machine learning approach to detect and discard noisy segments. 

- Introducing the use of different signal quality indices to select the best transducer. 

- Relaxation of the SQI indices initially designed for beat-level, to the signal-level.  

- Innovative evaluation of the selection by defining the Oracle SQI and the Hit-Rate. 

• Sleep posture classification from the four hydraulic bed sensors 

- Identifies consistent portions of sleep over multiple nights, which results in more 

consistent morphological templates in longitudinal studies 

• Template-based analysis of the morphology of BCG waveforms 

- Designing the procedure to create physiologically reliable BCG templates. 

- Studying the variation of these templates during the respiratory cycle, or due to the 

change in cardiovascular parameters such as the change in blood pressure or aging. 

• Preparation of the most extensive annotated datasets using the hydraulic bed sensor 

- I was engaged in 4 IRB approved data collections with more than 570 hours of 

BCG signal synchronized with other reference signals including but not limited to 

ECG and PPG. 
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10.3. Future Work 

This dissertation consists of different experiments and approaches for a better understanding 

of the BCG devices and enhancing the quality of features being extracted from each device. While 

each chapter contains its own discussions and suggestions for future work, here I have provided 

some suggestions for future work. 

In Section 2.3 on this dissertation, I have provided a list of different BCG devices and the 

standard categories that each one belongs to. As described, our suspended bed belongs to the 

category of ultra-low frequency devices, which have fewer waves included in them. Although our 

mathematical model was able to reproduce a matching BCG waveform to the ones we acquired 

from our suspended bed, they are still significantly different from the waveforms collected using 

the hydraulic bed. I suggest investigating a high-frequency device such as the ones I have 

introduced in Section 2.3, as the reference to characterize our hydraulic bed sensor. 

In Chapter 4, I have reported the results of my experiments on finding the best configuration 

setting in the classification of sleep postures, using MU hydraulic bed sensor. This provides a 

foundation for future experiments using the deep NN structures to improve classification accuracy. 

Hierarchical classification is yet another powerful, relatively simple to implement and easily 

expandable method which can be explored in the future. 

In Chapter 5, I have presented multiple steps in enhancing the overall accuracy of the energy-

based algorithms for BCG beat detection. There I showed how different obstacles could be reduced 

by means of the enhanced energy algorithm and reported the improvements in the accuracy of 

predictions in multiple datasets. Here I did not study the gender-related differences in the BCG 

waveform. Future research should investigate the customization of these techniques for different 

gender and age groups. 
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I have previously reported [221] some of my observations on the age-related variations in 

the BCG waveforms. In addition, in Section 6.5.4 of this dissertation, I have discussed the low 

performance of the “band-power-ratio” SQI on the TigerPlace dataset (TP) and hypothesized the 

existence of some variations in the higher frequencies of the BCG during the aging process. By 

integrating these pieces together, I suggest designing a new BCG-based age index for non-invasive 

evaluation of cardiovascular health. 

Directional BCG is another important topic for future researches that require careful design 

of experiments in the initial steps. In [111], Starr explored the relationship between the 

displacement of the heart’s axis to the variation of BCG amplitudes during the respiration. He 

mentioned that the heart’s axis is subject to a counter-clockwise rotation, as the cardiac apex moves 

to the left during the expiration and after the rise of the diaphragm. A reasonable conclusion is that 

this perturbation of the heart’s axis from the measurement direction is the cause of respiratory 

effects found in the recorded ballistic force. Instead, Starr found that a large portion of BCG comes 

from the movement of blood in the aorta, an organ whose position remains fixed during respiration, 

and concluded the change in the heart’s direction should not be a primary factor. 

Chapter 8 contains some experiments on the non-invasive monitoring of the change in blood 

pressure through the use of our hydraulic bed sensor. Three features and multiple channel selection 

strategies were compared to the reference measurements using the correlation. Future suggested 

work includes a longitudinal study of the TigerPlace residents with overnight data. This is now 

possible by means of the techniques that I proposed in different chapters of this dissertation 

regarding the channel selection, noise reduction, and the creation of morphological templates. Also, 

focusing on a specific sleep posture and sleep stage would provide better consistency in the 

extracted features. 

Also, as I described in Section 8.5, the enlargement of BCG waves during inspiration causes 

an increased cardiac output. At the same time, the systolic pressure and pulse pressure may 
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simultaneously diminish, suggesting decreasing cardiac output. This apparent discrepancy is due 

to the fact that the ballistocardiogram records the sum of the impacts from the movement of blood 

coming from both sides of the heart while arterial blood pressure is affected by the output of the 

left heart only [111]. My suggestion for the future work on the estimation of blood pressure is to 

take advantage of our mathematical model [5] to first investigate the components that are related 

to  blood pressure and then take a fresh look at the measured BCG waveform. 

Chapter 9 of this dissertation shows my studies on the application of channel selection and 

the new feature extraction based on the enhanced energy algorithm. One possible extension to this 

chapter is to investigate the noise reduction, noise detection techniques, and also other channel 

selection techniques. According to the results that I presented in Figure 6.12, the SNR-based 

channel selection may be a better option for the Sleep dataset. Also, based on the results presented 

in Table 6.2, signal denoising techniques such as the wavelet decomposition may provide 

considerable improvements in the accuracy of the heart rate estimation and therefore the overall 

contribution of the HRV features.  

Another venue for future work is the application of the motion artifact detection technique 

that I developed in Section 6.4. In that section, I proposed the use of SVM and RUSBoost on the 

combination of 53 features from all four transducers, and as reported in Table 6.3, the accuracy of 

detecting the noisy segments is as high as 99.2%. The idea would be to use the model that I have 

already trained on the existing dataset and apply it to detect the noise on the rest of the Sleep dataset 

in order to detect and cancel the noisy segments. After this step, only segments with the minimum 

amount of noise should stay, and therefore, the accuracy of beat detection should be improved. This 

effort not only improves the accuracy of HRV features but also has the potential to improve the rest 

of the features that we use in the sleep stage classification, by discarding the noise.   
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APPENDICES 

Appendix A. Details on the Datasets 

In this section, a more detailed description is provided regarding the datasets that I used in 

this dissertation. All of the datasets are de-identified and IRB approved, and includes LabChart 

files and the exported data into Matlab. There are also txt or excel files included in the folders with 

data from the subjects’ health questionnaire. 

 Each database was collected for a specific purpose, and therefore, acquired a name with 

respect to the initial goal; for example, the HRV database was designed and collected for an HRV 

study. For the sake of consistency with other documentation, I am using the same names for each 

dataset. An overview of these datasets is already provided in Table 3.1. 

In all of these data collections, multiple standard reference sensors were also connected to 

the subjects including the 3-lead ECG, PPG, pulse figure sensor, and the respiratory chest band. 

All these sensors and the bed sensor channels were connected to the ADInstrument’s PowerLab 

16/35. The latest version of LabChart was used to manage, the data collection and signal 

preprocessing. 

Each dataset is stored as a separate folder with all related files inside that folder. Our IT team 

has pushed a version of these files to our HTC storage at this address:  

128.206.234.62:/storage/htc/eldercare/data/projectdata/bcgdatasets. 

The first data collection covers multiple datasets that were collected from the same 

population but with different conditions and for different studies; 63 young, healthy volunteers 

were recruited with the age between 8 to 50, including 15 females and 47 males. These studies are 

namely the HRV, POS and the BP data collection; a short description of each is provided below. I 

have created a similar structure for all these datasets and have placed them in a common folder, 
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which is named “HRV BedPosition BP data collection”. This folder contains the following 

subfolders: 

• LabChart Recordings: there is a folder for each subject including the original LabChart 

“.adicht” files collected for each study (HRV, POS, BP), and an excel file for the blood 

pressure readings. The name of each channel recently added to these files for more 

clarification. It also has  

• Additional Inf: has some excel files to provide age, gender, weight, height, BMI of each 

subject and a flag to show if they have any ectopic peaks.  

• Matlab Exports: contains a Matlab file for each subject per study. These files were 

exported directly from the LabChart. 

• MatlabTables: LabChart exports the data into Matlab in a very strange way; in this folder 

all those LabChart files into are converted to nice Matlab tables.  

• StructsForPython: converting Matlab structs to python is easier, so this folder has a Matlab 

struct for the python users. 

 

 

I. The heart rate variability dataset (HRV): 

This dataset was initially designed and collected to provide enough BCG data to develop a 

study on the heart rate variability (HRV).  A population of 62 young, healthy volunteers were asked 

to come to our lab and lie still in the supine position on the bed, for 10 minutes. The files are stored 

in a folder named “HRV BedPosition BP data collection” which contains multiple datasets for 

different reasons from the same population. 
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II. The blood pressure dataset (BP): 

This dataset was designed and collected to provide enough BCG data to develop a study 

on the estimation of change in blood pressure on the young subjects. A population of 62 young, 

healthy volunteers were asked to come to our lab and do the following steps: 

a) Lie still in the supine position for 2 minutes. Their blood pressure was measured for 3 

times. 

b) Increase their blood pressure by using a stationary bike for 2 minutes with the intensity 

of their preference, while considering their safety. 

c) Come back to the bed and lie on the bed until their blood pressure measurements 

become stable. Between 7 to 11 BP readings were recorded after the exercise. 

 

III. The sleep posture dataset (Pos): 

This dataset was designed and collected to provide enough BCG data to develop a study 

on the classification of sleep postures. A population of 62 young, healthy volunteers were asked to 

come to our lab and do the following steps: 

a) Lay still in the middle of the bed and on the supine posture, for two minutes. 

b) Turn to the left side and stay for two minutes. 

c) Turn to the right side and stay for two minutes. 

d) Turn on the stomach (prone) and stay for two minutes. 

 

IV. The blood pressure dataset from the TigerPlace residents (TP): 

This dataset was designed and collected to provide synchronous BCG and reference signals 

to study the estimation of blood pressure in older adults using the hydraulic bed sensor. While 

trying to collect the data from the older residents of TigerPlace, we had some younger volunteers 

from the staff who also joined this data collection. The overall population has an age range from 
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19 to 95 years with 34 females and 15 males. It took about 10 minutes for each subject and they 

were asked to lie still on their supine position, while 3 blood pressure readings were recorded at the 

beginning, in the middle and at the end of each data collection. 

The files of this data collection are stored in a folder named “BCG - Blood Pressure – 

TigerPlace”. Inside the subfolder “Original Data \AllSubjects” there is a single “.adicht” LabChart 

file for each subject. Each LabChart file is then exported to a Matlab folder and stored in subfolder 

named “Matlab”. There are also two excel files in this project with data on each subject from the 

health questionnaires and also the health information of the subjects.  

 

 

V. The Boone Sleep Lab dataset (Sleep): 

In this dataset we collected overnight PSG data from 75 subjects along with our hydraulic bed 

sensor. The designated nurse pushed slightly on the chest of each subject, 3 times, to provide signal 

markers in both PSG and BCG for synchronization once at the beginning of night and once in the 

morning. Subjects were regular sleep lab patients and were aged between 31 to 86 years, including 

27 females and 49 males.  

The original EDF files from the sleep lab are stored in a folder named “Boone Hospital Sleep 

Study”. The de-identified subjects are labeled by the date of their visits, and there is a folder for 

each subject. These folders contain many different files among which the “.txt” files are important 

as they include the annotations. The following folders are important:  

• Natus Installation CD: the installation material for the original sleep lab software named 

Natus. 

• boone_Polysomnic_Data_EDF: contains a single EDF file for each subject. In another 

folder I have converted them to Matlab. 
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• boone_Polysomnic_Data_Matlab: contains the files created by exporting the EDF files as 

Matlab, and also some Matlab code used for this process. 

• boone_bed_data\beddata\BedFiles_Original: this folder contains all individual bed sensor 

files related to this dataset. In another folder I have concatenated them together to make a 

single Matlab file. 

• Data Sets\Sleep Study\bcg_psg_sync_firstepoch: this folder contains the Matlab files 

created after synchronization of the BCG and Bed sensor files together. 

• PSG report: contains the word documentation of the PSG reports related to each subject. 

These reports include important information and statistics about the overnight experience. 

• AlignSleepData: contains some Matlab codes to handle these EDF files and prepare them 

to be used in Matlab. 

• no_break_psg_all: contains the files I created by importing the ECG signals to LabChart 

in order to create the reference for ECG R-peaks. It also has all channels resampled to 

100Hz for simplicity of future computations. Also, for a subset of files the PSG_HR signals 

are also provided. 

There are also multiple excel files in this folder, which contain statistics about the subjects, 

including the: 

• Boone data info all.xlsx: this file contains important information about the subjects such 

as age, gender, weight, height, BMI, and the total number of epochs in each condition 

including the apnea, REM, or different sleep stage. 

• Readme_2_ExportChannelLabels.txt: this file contains detailed information on the 

naming and sample rate of each channel in the PSG dataset. 

• start time.xlsx: contains the timing of the first epoch with respect to the BCG signal. This 

is done manually in our team by looking for the similar events on both signals.  
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Appendix B. Details on the Matlab Code Used in this Work 

In this section, the details of Matlab code that I have used in this project are provided. I have 

created a separate folder for each project. Each folder works independently and may share some 

general codes with the others. Each folder is related to one project and has a few Matlab files (.m) 

that are designed for a specific task, and each file may contain multiple functions to handle the task. 

Folders, files, functions, and all variables have clear naming so the other researchers could easily 

work with them. More details of each part of the code are also provided as inline comments. 

The general trend that I am following to write Matlab codes is to take advantage of Matlab 

Tables. In short, a Matlab table is a cell array (matrix of objects) with labels for each column. This 

is very important in codes and datasets to be shared between multiple researchers. Also, I have tried 

to take advantage of Matlab’s parallel computing to increase the execution time. Especially the use 

of “parfor” instead of “for” which simply accelerated the execution by the number of CPU cores 

while having multiple input/output (I/O) file processes.  In the current documentation, I have 

provided the following information for each “function”: 

Description: Brief description of each function and how it contributes to the entire project. 

Input Arguments: Description of each argument, including datatype, and acceptable values. 

Output Arguments: Description of each output parameter, including datatype. 
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List of Functions: 

FUNCTION 1. ENERGYALG_ORIG ................................................................................. 174 
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PROJECT I. ENHANCED ENERGY ALGORITHM 

This folder contains all the required Matlab functions that I described in this dissertation in 

order to improve the time-domain estimation of heart rate through the enhancement of the energy 

algorithm. All files are pushed to the GitLab folder with the following address that is accessible to 

all students in our lab: 

https://gitlab.missouri.edu/CERT-

Students/studentProjects/bcgenhance/bcgenhance/tree/master/BCG_EnhancedEnergyAlg 

This project includes the following functions: 

FUNCTION 1. ENERGYALG_ORIG 

[EngPk_Vals, EngPk_Locs, EnergyWave]=ME_EnergyAlg_Orig(inputSignal, Fs) 

Description: This code is the "original" code that BoYu used for the energy algorithm paper. Here 

I just have some small code updates: 

• Used my filtering code, to enforce zero-phase filtering using the filtfilt function, and 

then my bandpass implementation. 

• Replaced the for-loop with the more efficient movsum, which will also generate the 

output in the same length (plus) 

• Added a little extra smoothing, to make it like the original energy (for simplicity of the 

code) 

 

https://gitlab.missouri.edu/CERT-Students/studentProjects/bcgenhance/bcgenhance/tree/master/BCG_EnhancedEnergyAlg
https://gitlab.missouri.edu/CERT-Students/studentProjects/bcgenhance/bcgenhance/tree/master/BCG_EnhancedEnergyAlg
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Input arguments: 

• inputSignal: The BCG signal that we want to compute its energy.  

• Fs: Sample rate of the signal in Hz. 

Output Parameters: 

• EngPk_Vals: The value/amplitude of the energy waveform at its peaks. 

• EngPk_Locs: The location/timing of the peaks of energy waveform. 

• EnergyWave: The complete energy waveform/signal created here. 

FUNCTION 2. ME_ENERGYALG_ENHANCED_SHORT 

[EngPk_Locs] = ME_EnergyAlg_Enhanced_Short(inputSignal, Signal_FS) 

Description: Simply trying to resolve the problems with the original energy algorithm as described 

in my dissertation. This function assumes the signal is in an acceptably short length. I use the 

following steps:  

1. Filter the signal,  

2. Compute its first derivative (related to the elder’s deformation) 

3. Smooth it by means of the movmean 

4. Subtract the lower envelope to have all positive values 

5. Compute the energy of this waveform 

6. Smooth is in a step by step manner to get better results 

7. Filter the energy for the range of 0.7-2.5Hz, which are the normal range of heart rate 

frequency. 

8. Find the peaks of energy function in a two-step manner, to make it more precise. 

9. Remove the outlier peaks using ME_RemoveOutlier_BeatLocations 

10. Refine the location of J-peaks using the ME_FindClosestBCG_Peak 

11. Remove the outlier locations ME_RemoveOutlier_BeatLocations 
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Input arguments: 

• inputSignal: input BCG signal to compute its energy.  

• Signal_FS: sample rate of the input signal. 

Output arguments: 

• EngPk_Locs: the enhanced location of the J-peaks using this function. These locations 

can be used to estimation the heart rate. 

FUNCTION 3. ME_FINDCLOSESTBCG_PEAK 

[closestBCG_Locs] = ME_FindClosestBCG_Peak(inputBCG, Ref_Locs, Fs) 

Description: As mentioned in the dissertation, the J-peaks do not necessarily match the peaks of 

the energy algorithm. This function uses some ref_locs as the location of energy peaks and finds 

the closest J-peak to each of them. To resolve some of the exceptional cases, I first find the two 

closest peaks and then pick the one that has the highest amplitude. This function will provide a 

more realistic information about the location of J-peaks. 

Input arguments: 

• inputBCG: the input BCG signal. 

• Ref_Locs: the reference locations which usually are the peaks of the energy waveform. 

• Fs: the sample rate of the input signal. 

Output arguments: 

• closestBCG_Locs: the location of the closest J-peak to each of the input reference 

locations. 
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FUNCTION 4. ME_COMPUTE_B2BHR 

[Interp_B2B_HR, Interp_Time] = ME_Compute_B2BHR(input_BeatLocs,input_Fs, output_Fs, 

output_DurInSeconds, filterOutliers) 

Description: To provide a central function to compute the continuous HR estimates, from the 

estimated peak locations. I am doing an interpolation between the B2B HR estimates with the 

minimum amount of smoothing and correction, to stay close to the real estimations. If your goal is 

just the overall heart rate for a window of X minutes, do not hesitate to apply outlier removal and 

smoothing on top of this. 

Input arguments: 

• input_BeatLocs: the input locations of each cardiac cycle, like the J-peak locations. 

• input_Fs: the sample rate of the input signal. 

• output_Fs: it will interpolate the estimated HR values to any sample rate. Thus, you can 

easily compare the HR from different sources. 

• output_DurInSeconds: In case you just need a subset of the data. 

• filterOutliers: A Boolean flag to enable outlier cancellation. 

Output arguments: 

• Interp_B2B_HR: the interpolated HR values based on the output_Fs parameter. 

• Interp_Time: the timing of the estimated HR locations. 

FUNCTION 5. PHD_DEF_ENERGYALG_ENHANCED 

[jLocs, jjHR, jjTimes] = PHD_DEF_EnergyAlg_Enhanced(inputSignal, Signal_FS, HR_FS) 

Description: Enhancing the accuracy of beat detection using the energy idea. If the signal is longer 

than a certain threshold, it will cut the signal and estimate on each segment separately. The idea 

here is, due to the movement of the subject between transducers and also other artifacts, the quality 
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of the signal would change; thus, we cannot apply the same preparation on the entire signal, and it 

is better to do localized preparation. 

Input arguments:  

• inputSignal: Input BCG signal  

• Signal_FS: the sample rate of the input signal 

• HR_FS: the sample rate of the output heart rate. 

Output arguments: 

• jLocs: detected location of J-peaks 

• jjHR: estimated HR based on the JJ-intervals 

• jjTimes: the estimated JJ-intervals 

 

PROJECT II. NOISE REDUCTION 

This project focuses on the reduction of noise from the BCG signal. Two main techniques are used 

here, including the wavelet transform and empirical mode decomposition. Files are already pushed 

to the following path in our GitLab:  

https://gitlab.missouri.edu/CERT-

Students/studentProjects/bcgenhance/bcgenhance/tree/master/BCG_NoiseReduction 

FUNCTION 6. MATLAB FILE NAMED: PHD_DEF_DENOISESIGNALS.M 

Description: This file is the main code to load, process, and denoise the BCG signals. It will search 

for all files in a source folder and using a for loop goes through each of them to create a denoised 

version, and then saves that denoised file in the destination folder. 

It contains the following functions: 

https://gitlab.missouri.edu/CERT-Students/studentProjects/bcgenhance/bcgenhance/tree/master/BCG_NoiseReduction
https://gitlab.missouri.edu/CERT-Students/studentProjects/bcgenhance/bcgenhance/tree/master/BCG_NoiseReduction
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FUNCTION 7. DENOISE_SINGLE_CHANNEL 

[Den]=Denoise_Single_Channel(inputSignal, sourceFs, targetFs) 

Description: takes an input BCG signal and denoise it using the following steps: 

1. Downsample the signal, to reduce the complexity and improve the computational time. 

2. Bandpass the signal to get the BCG components. 

3. Apply different denoising techniques 

a. Empirical mode decomposition (EMD) on it. 

b. Ensemble empirical mode decomposition (EEMD) on it. 

c. Wavelet decomposition  

Input parameters:  

• inputSignal: the input BCG signal 

• sourceFs: the sample rate of the input signal 

• targetFs: the requested sample rate for the output denoised signal 

Output parameters: 

• Den: the denoised version of the input signal in the requested sample rate, in the Table 

format. In this table, each column has its label, which makes it easy to retrieve the 

following: 

o The input signal after downsampling, as the reference. 

o The bandpass filtered signal, as the reference. 

o IMFs number 2 to 4 from the EMD. 

o IMFs number 2 to 4 from the EEMD. 

o The detail coefficients of multiple wavelets. 
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FUNCTION 8. WAVELETDECOMPOSITION 

[DC3, DC4, DC6] = WaveletDecomposition(inputSignal, WaveletName) 

Description: will apply the wavelet decomposition using the specified mother wavelet. 

Input parameters: 

• inputSignal: the input BCG signal to be denoised 

• WaveletName: the name of the mother wavelet, as defined by Matlab, could be one of the 

followings: db8, Sym8, coif5, bior3.5, bior3.9, haar. 

Output arguments: 

• DC3, DC4, DC5: are the 3 detail coefficients of the wavelet decomposition, as my 

experiments show the best value from these three. 

 

PROJECT III. CHANNEL SELECTION 

This project, as described in the dissertation, focuses on different approaches to find the best 

transducer. My selected approach goes through the use of Signal Quality Indices (SQIs) that I have 

the code for each one here. Also, here, I have provided the functions which use these SQI indices 

to make the actual channel selection. Files and codes of this project are pushed to our GitLab at: 

https://gitlab.missouri.edu/CERT-

Students/studentProjects/bcgenhance/bcgenhance/tree/master/BCG_ChannelSelection 

This project contains the following files and functions: 

FUNCTION 9. PHD_DEF_UPDATE_NEWSQIS.M 

Description: This file will compute the selected SQI values and append them to the current files if 

one exists. You can add more SQI indices here for your experiments. 

https://gitlab.missouri.edu/CERT-Students/studentProjects/bcgenhance/bcgenhance/tree/master/BCG_ChannelSelection
https://gitlab.missouri.edu/CERT-Students/studentProjects/bcgenhance/bcgenhance/tree/master/BCG_ChannelSelection
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FUNCTION 10. PHD_DEF_CHANNELSELECTION_VS_SQI.M 

Description: This file is the main function of this project with loads all BCG files from a source 

folder and computes the “hit rate” of how well different channel selections match each other, using 

the following functions: 

FUNCTION 11. HITORMISS 

[HitPrc, MissPrc, Hit, Miss]=HitOrMiss(ErrorVector, SQIVector, sqiSortByMax, sqiVales) 

Description: compares the SQI based channel selection to the oracle channel selection (the channel 

with the lowest error), by comparing the following methods: 

1. Find the selected transducers based on Error (the oracle) 

2. Find the selected transducers based on SQI 

Then it computes the “hit rate” by counting the number of overlaps between these approaches. 

Input arguments: 

• ErrorVector: the estimation error of each channel as the reference. 

• SQIVector: the SQI value computed for each channel. 

• sqiSortByMax: the order of SQI, true corresponds to the ascending order. 

• sqiVales: the range of the SQI measurements. 

Output arguments: 

• HitPrc: Percentage of overlap or Hit. 

• MissPrc: Percentage of cases that no overlap exists. 

• Hit: number of cases for the hit. 

• Miss: number of cases for miss. 
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FUNCTION 12. SELECTTRANS_BY_MIN_ERROR 

[selected_ch] = selectTrans_by_min_error(ErrorVector) 

Description: find the transducer with the minimum error (oracle), with a 5% tolerance. 

Input arguments: 

• ErrorVector: the average error rate of each channel. 

Output arguments: 

• Selected_ch: is the selected transducers 

FUNCTION 13. SELECTTRANS_BY_MIN_SQI 

[selected_ch] = selectTrans_by_min_SQI(SQIVector, SQI_thr, sqiSortByMax, sqiRange) 

Description: Uses the SQI value of each transducer to find the one with the best value. For some 

SQI indices, the best value is the lowest one, and for some, the best is the highest one. The 

sqiSortByMax input parameter defines this order. Here again, I am considering a tolerance in 

defining the best value. 

Input arguments: 

• SQIVector: a vector with the SQI values related to all channels. 

• SQI_thr:  not defined.  

• sqiSortByMax: defines the sort order. If true, means SQI with maximum value is better. 

• sqiRange: defines the maximum range for that SQI over all data. 

Output arguments: 

• selected_ch: the selected channel with the best SQI. 

FUNCTION 14. PHD_DEF_SQI_SNR 

[SNR] = PHD_DEF_SQI_SNR(inputSignal, Fs) 
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Description: computes the signal to noise ratio (SNR) of a signal based on my definition for signal 

(bandpass filter), and the noise (the rest of components). I used the ratio between the MAD of these 

two components as the measure of SNR.  

ref: Optimal Signal Quality Index for Photoplethysmogram Signals, Mohamed Elgendi 

Input arguments:  

• inputSignal: the input BCG signal. 

• Fs: the sample rate of the signal. 

Output arguments: 

• SNR:  the computed SNR for that signal. 

FUNCTION 15. PHD_DEF_SQI_NOISEINTENSITY_ISCHANGE 

[intensity]=PHD_DEF_SQI_NoiseIntensity_ischange(selectedChannel) 

Description: another SQI measure. I used Matlab's ischange function here and then computed the 

intensity of the noise as the ratio between the duration of the noisy part to the entire length of the 

signal. 

Input arguments: 

• selectedChannel: the input BCG signal of one channel 

Output arguments:  

• intensity: the noise intensity or density of the noise.  

FUNCTION 16. PHD_DEF_SQI_NOISEINTENSITY_CUSUM 

[intensity]=PHD_DEF_SQI_NoiseIntensity_Cusum(selectedChannel) 

Description: another SQI measure. I used Matlab’s cusum function here and then computed the 

intensity of the noise using a threshold of 100. 
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Input arguments: 

• selectedChannel: the input BCG signal of one channel 

Output arguments:  

• intensity: the noise intensity or density of the noise.  

FUNCTION 17. PHD_DEF_SQI_BANDPOWERRATIO 

powerRatio = PHD_DEF_SQI_BandPowerRatio(inputSignal, Fs) 

Description: uses Matlab’s bandpower to estimate the frequency power of a signal inside a 

frequency range. To do that I defined two frequency ranges of MidPower and AllPower and 

computed their ration. 

Input arguments: 

• inputSignal: the input BCG signal of one channel. 

• Fs: the sample rate of the signal. 

Output arguments:  

• powerRatio: the power ratio SQI.  

 

PROJECT IV. TEMPLATE CREATION 

In this project, I have included all codes that are needed to create templates from periodic signals 

such as BCG. The general idea is to use some reference point to cut the signal into segments and 

then create a morphological ensemble average from them. The code is pushed onto our GitLab 

repository at: 

https://gitlab.missouri.edu/CERT-

Students/studentProjects/bcgenhance/bcgenhance/tree/master/BCG_TemplateCreation 

https://gitlab.missouri.edu/CERT-Students/studentProjects/bcgenhance/bcgenhance/tree/master/BCG_TemplateCreation
https://gitlab.missouri.edu/CERT-Students/studentProjects/bcgenhance/bcgenhance/tree/master/BCG_TemplateCreation
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FUNCTION 18. PHD_DEF_CREATETEMPLATES_FORALL_ECG_RPEAK.M 

This file contains the overall flow of creating BCG (or any signal) templates using some reference 

events. It will load all data files from the source folder. These files are suggested to be denoised 

but could be any filtered signal. It will create a template for each channel of those files using another 

function named PHD_DEF_CreateTemplates. Then will save the created templates inside the 

destination folder with the same name. 

FUNCTION 19. PHD_DEF_INSPECTINGTEMPLATESVISUALLY.M 

This file provides a visual inspection evaluation of ECG-Based Templates for each file. This can 

be helpful in demonstrating the effect of denoising on the templates. It will simply load a file of 

templates and plot them in a figure. 

FUNCTION 20. PHD_DEF_CREATETEMPLATES 

[theTemplate,SplittedBCG_Array] = PHD_DEF_CreateTemplates(inputSignal, refEvents) 

Description: This function will create morphological templates from a signal by means of a 

reference event vector. The general process is as follows: 

1. Use the reference events to cut the signal into small segments (of one cycle) 

2. Normalize each segment in length and height (you can change these if you want) 

3. Align all segments together using cross-correlation. 

4. Compute the average of all segments to create a template. 

Input parameters: 

• inputSignal: the input BCG signal that should be filtered already. 

• refEvents: the reference events such as ECG R-peaks. 
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Output arguments: 

• theTemplate: the result template after going through all steps. 

• SplittedBCG_Array: the segmented peace of the signal that is used in the creation of the 

template.   

FUNCTION 21. PHD_DEF_SPLITESIGNALBYEVENT 

[ SplittedData ] = PHD_DEF_SpliteSignalByEvent(InputSignal, events, numConcats, 

extraLength) 

Description: To cut/split the inputSignal (i.e. BCG) into small segments based on the events (such 

as ECG_R_Locs).  

Input arguments: 

• InputSignal: the input BCG signal. 

• events: the reference events such as the ECG R-peaks used to cut the signal. 

• numConcats: if you want to create templates of two or more consecutive cycles. 

• extraLength: if you want to include part of the next beat as well, for visualization. 

Output arguments: 

• SplittedData: a cell array containing all signal segments based on the provided events. 

FUNCTION 22. PHD_DEF_ALIGNESIGNALS 

[ outputSignals,outputLags,corrVals,theMedoidIndex ] = PHD_DEF_AligneSignals  

( signalsTobeAligned, minCorreleation, maxLagPercent, alignBy) 

Description: will use the cross-validation to align multiple signal segments together. The user can 

define thresholds for the minimum correlation and maximum time lag computed between the 
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signals. If any signal happens to be outside of this threshold, it will be considered noisy and will be 

discarded. 

Input arguments: 

• signalsTobeAligned: the input segments to be aligned together. 

• minCorreleation: the segments will be discarded if its correlation to the reference goes 

below this. 

• maxLagPercent: the segments will be discarded if their time lag from reference goes above 

this. 

• alignBy: used to create the reference template and could be Centroid or Median. 

Output arguments: 

• outputSignals: the remaining segments after alignment that pass the thresholds. 

• outputLags: the time lag of each segment with respect to the reference template. 

• corrVals: the correlation values of each segment with respect to the reference template. 

• theMedoidIndex: the index of the medoid segment which used as the reference.  

FUNCTION 23. PHD_DEF_SHIFTTOALIGN 

[alignedSignal] = PHD_DEF_ShiftToAlign(currentToBeAlign, lagDiff) 

Description: will shift the input segments by the amount provided in the lagDiff, to make them 

aligned. 

Input arguments: 

• currentToBeAlign: the cell array of segments to be shifted and aligned. 

• lagDiff: the vector of lag values used for the shifting. 
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Output arguments: 

• alignedSignal: the cell array of aligned segments. 

FUNCTION 24. PHD_DEF_NORMALIZECELLARRAY 

[ normalizedSignal ] = PHD_DEF_NormalizeCellArray( inputCellArray, normHeight, 

normWidth, strechWidth, cutWidth ) 

Description: To normalize elements of a cell array under different criteria, for example stretching 

the length or normalizing the height. This is sometimes very important in creating reasonable 

templates. I used the imresize to stretch the signals in length. 

Input arguments: 

• inputCellArray: a cell array of input segments which we want to normalize. 

• normHeight: set true if you want the height of all to be normalized. 

• normWidth: set true if you want all to have the same length. 

• strechWidth: the length of each segment after stretching. 

• cutWidth: if you just need a subsegment of each signal. 

Output arguments: 

• normalizedSignal: the array cell of normalized segments. 

FUNCTION 25. PHD_DEF_AVERAGE_CENTROID 

[ theCentroid,theCentroidIndex ] = PHD_DEF_Average_Centroid( matrix ) 

Description: This function is a combination of medoid and median it first finds the median of all 

signals, which is not necessarily a signal from the set then tries to find the closest signal to the 

median, and an actual representative. The process is as follows: 
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1. Filter outliers and Find the median of all signals. 

2. Find the distance of all to the median 

3. Remove outlier signals by means of their distance matrix. 

4. Choose the signal with minimum distance to the median. 

Input arguments: 

• matrix: the matrix of input segments that are used in creating the template. 

Output argument: 

• theCentroid: the resulting signal which has the minimum distance to the median. 

• theCentroidIndex: the index of the centroid among all segments. 

FUNCTION 26. PHD_DEF_CELLARRAY2MATRIX 

[ theMatrix ] = PHD_DEF_CellArray2Matrix( theCellArray,theAlignment,theWidth, withNaN ) 

Description: this function is designed to create a matrix from any cell array. The important point 

is in the cell array the length of elements might be different. This happens, for example, as a result 

of normal variation in the RR intervals. The general process is: 

1. Find max array length of the cell(width). 

2. Create the result matrix. 

3. Fill the new matrix with the original data. 

4. Will resample each sequence to get to the same length 

Input arguments: 

• theCellArray: the input cell array with elements (signal segments) of different length. 

• theAlignment: could be one of ‘LEFT’, ‘CENTER’, ‘RIGHT’, or ’RESAMPLE’. The last 

one will resample each sequence to get to the same length. 

• theWidth: could be ‘MAX’, ‘MIN’, or ‘MEAN’ of the length of all segments. 
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• withNaN: provides 3 different approaches to deal with the NaN values. 

Output arguments: 

• theMatrix: the output matrix of all elements with the same length. 
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