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Editorial

Photonic Biosensors: Detection, Analysis and
Medical Diagnostics

Donato Conteduca

Photonics Group, University of York, York YO10 5DD, UK; donato.conteduca@york.ac.uk

The necessity of personalised diagnoses and ad hoc treatments for individual patients
is driving the outbreak of personalised nanomedicine in research and in clinical studies
in the healthcare field. In this context, nanotechnologies are assuming a fundamental
role due their ability to promptly diagnose a disease, its progression and aggressiveness,
and their capability to define the most efficient drugs and treatments due to their continuous
screening ability, making treatments less and less harmful for patients [1].

Together with the strong efforts to improve sensor performance, the demand to develop
biosensors in low-cost and user-friendly technologies can no longer be neglected due to a
forthcoming use of these sensing platforms in hospitals and clinics by healthcare workers.

Photonics biosensors have demonstrated their ability to combine high sensitivity,
selectivity, and reliability together with real-time operation and strong integrability in
cost-efficient solutions. Furthermore, the capability to integrate photonic biosensors with
microfluidics and the compatibility of most of the photonic architectures and materials
with electric readouts make them the most suitable candidates for the development of
lab-on-a-chip systems to be integrated in point-of-care instruments [2].

The main goal of this Special Issue has been to address new technologies, materials,
and configurations for photonic biosensors that can improve the sensitivity, accuracy,
and precision of medical diagnostics. Novel biomedical studies have also been highlighted
in this collection, i.e., for cardiovascular diseases and bacterial infections, which are now
possible due to the technological progress and innovation that have been made in this field.
Moreover, the strong demand for the integrability of the photonic biosensors in compact
systems, which is playing a more fundamental role in many sensing applications, such as
in wearable and implanted sensors, is becoming more evident.

The published articles, which are briefly described in the following section, cover these
topics and make a strong impact in the biosensing field.

In [3], Adamopoulos et al. describe a novel strategy to create both micro and meso-
scale microfluidic structures that were developed on multiple levels for integrated into
monolithic photonic–electronic systems on a single chip. The strong advantage of silicon
photonic sensors is their strong integrability with a printed circuit board (PCB) for the
electrical readout and their compactness, allowing a large number of devices in a single
photonic chip to undergo advanced multiplexing. However, the drawback is mainly related
to the interface of the photonic sensors with the standard microfluidics. Standard packaging
techniques usually suffer of this extreme compactness, which does not allow each sensor to
be accessed and addressed without affecting the final cost of the chip. The authors solve this
typical issue by creating a small microfluid interface that bonds to the silicon chip, accesses
the single device, and uses micro-ring resonators as a sensing element as proof of concept.
This microfluidic interfaces with another layer through vertical connections, where macro-
scale tubes are directly connected. The realization of the multilevel microfluidics through
the adoption of 3D printed transfer moulding and bonding can guarantee high scalability
and cost efficiency.

In [4], Saha et al. developed a wearable device to measure blood circulation in human
patients. The possibility of integrating the whole sensor in a watch-sized device represents
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a key technology for the next generation of biosensors because it allows for the continuous
monitoring of health parameters in a fully non-invasive manner, something that could
impact personalised medicine.

The authors developed a sensor based on laser Doppler flowmetry. The external
sensor probe includes both an optical source and detector for the real-time measurement of
blood perfusion by analysing the Doppler spectrum. The pilot study reported in this paper
confirms the possibility of differentiating the cardiovascular parameters between smokers
and non-smokers, findings that were confirmed by lower blood perfusion in the latter
group and the presence of an embedded accelerometer that allows the blood perfusion
levels to be discriminated from actual body movements.

A non-invasive sensing modality based on near-infrared (NIR) spectroscopy was also
used by Heise et al. in [5] to measure blood glucose levels. The science-based calibration
(SBC) method was applied by the authors and, in particular, tissue glucose concentrations
were measured using the lip NIR-spectra of a type-1 diabetic patient recorded under
modified oral glucose tolerance test (OGTT) conditions.

The reflection spectroscopy technique is preferred to transmission measurements
because the latter requires thin skin folds or short-wave NIR spectroscopy to illuminate a
fingertip or an earlobe. The main achievements of the above work are the demonstration
that SBC calibration can be adopted for non-invasive studies and when selective mea-
surements are needed. As confirmed by the authors, for further developments in this
technology, more model parameters will be considered for in vivo spectroscopy, with phys-
iology, sensor repositioning, temperature gradients, and blood flow changes being only a
few of the main variables that are to be investigated in detail.

The necessity of continuous blood pressure screening using portable instruments and
cost-efficient solutions is a recurring and pressing topic in healthcare technologies. Sun et al.
in [6] adopted a convolutional neural network (CNN) based on the Hilbert–Huang Trans-
form method, to predict the blood pressure risk level using photoplethysmography (PPG).
The authors also proved that the derivatives of PPG carry important information on blood
pressure, which could allow the combination of the ECG and PPG techniques to be replaced.
Deep learning will be investigated in more detail in further studies in order to improve the
accuracy of the measurements and the prediction of the blood pressure values related to
specific physiological activities.

Rho et al. in [7] propose an optical cavity-based biosensor used for streptavidin and
C-reactive protein (CRP) sensing. The optical cavity consists in two partially reflective
and parallel surfaces separated by a thin gap, which affects the properties of the optical
spectrum. Therefore, the gap is considered to be the sensing area that is functionalised
with specific receptors. When the target analyte binds to the receptor, the changes in the
optical properties provide changes in the optical intensities at two different wavelengths.
The multi-wavelength system allows the cost of the system to be minimized by replacing
the tunable laser and the spectrometer with low-cost laser diodes and a CMOS camera.
The sensing modality is based on a differential detection method that maximizes the
sensitivity, dynamic range, and fabrication tolerances. The authors have verified a limit-of-
detection (LOD) of 377 pM for CRP by using a small sample volume of only 15 μL within
30 min.

Finally, in [8], Brunetti et al. modelled an optoelectronic biosensor to monitor bacterial
biofilm evolution based on a multiparameter analysis with optical and electrical detection
schemes. The sensor consists of a dual array comprising interdigitated micro- and nano-
electrodes in parallel. The optical response of the nanostructure is typical of a 1D grating
supporting guided mode resonance (GMR). The resonant response allows the imaging
of planktonic bacteria distributed in small colonies to be carried out at a higher spatial
resolution, providing useful information on the modality of biofilm generation. In addition,
the electrical response of both micro- and nanoelectrodes is necessary for the study of the
metabolic state of the bacteria, which can be very powerful in the testing of the efficacy
of antibiotics on the biofilm. The main advantage of this sensing configuration based on
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a multiparameter approach is the capability to detect and monitor a biofilm in real-time
while also analysing its metabolic state and the evolution phase. Optoelectronic devices
can make a strong impact in antimicrobial resistance studies.
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Abstract: Multiplexed sensing in integrated silicon electronic-photonic platforms requires microfluidics
with both high density micro-scale channels and meso-scale features to accommodate for optical,
electrical, and fluidic coupling in small, millimeter-scale areas. Three-dimensional (3D) printed transfer
molding offers a facile and rapid method to create both micro and meso-scale features in complex
multilayer microfluidics in order to integrate with monolithic electronic-photonic system-on-chips with
multiplexed rows of 5 μm radius micro-ring resonators (MRRs), allowing for simultaneous optical,
electrical, and microfluidic coupling on chip. Here, we demonstrate this microfluidic packaging
strategy on an integrated silicon photonic biosensor, setting the basis for highly multiplexed molecular
sensing on-chip.

Keywords: integrated photonics; microfluidics; packaging; photonic biosensors; optical resonators;
multiplexed sensing; 3D printing

1. Introduction

Label-free assays provide real time information for molecular analysis without requiring labeling
of the target analytes that require customized molecular labels, multiple additional steps, and preclude
monitoring real-time binding kinetics useful for characterizing molecular interactions. This makes
them ideal for point-of-care assays. However, to date, label-free assays have been hindered by the
need for complex, bulky optics precluding both mass production and miniaturization and remain
confined to special laboratory settings [1–3]. In an effort to address these dual challenges, silicon
photonic biosensors—fabricated using techniques based on integrated circuit manufacturing—have
shown increasing promise in monitoring label-free molecular interactions through the evanescent
field interaction of light, tightly confined to a waveguide, with the surrounding optical environment.
In particular, one such structure where light of a specific wavelength is trapped in a ring (called a
micro-ring resonator or micro-ring resonator (MRR)-based photonic devices), has been able to detect
a wide range of molecular concentrations of different target analytes ranging from femtomolar to
micromolar by leveraging high transducer sensitivity and small transducer area [4–13]. However,
one of the key challenges towards efficient and diverse multiplexed sensing of multiple biomarkers is
the fabrication of fluidic delivery devices to interface with the extraordinary density and degree of
integration of arrays of micrometer-scale MRRs, while allowing for both optical and electrical coupling

Biosensors 2020, 10, 177; doi:10.3390/bios10110177 www.mdpi.com/journal/biosensors
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to the integrated circuit, which is often on a millimeter-square scale. Microfluidic interfaces with
silicon photonic chips require (a) regular surfaces to form a seal and prevent leaking, (b) optical clarity
for alignment, (c) vertical cylindrical interconnections with an aspect ratio of 5, which is defined as
the ratio of their height to their width, to connect microfluidic layers with a high channel density
(100 μm–200 μm channel width and edge to edge channel spacing), (d) access areas allowing fiber
optics to couple light into the system, and (e) a mechanism to interface multiple microfluidic inputs to
millimeter-scale chips with densely packed sensor arrays.

The current approaches to meet these constraints often require custom packaging techniques
in order to accommodate centimeter scale microfluidics [14] or complex post processing following
conventional multilayer soft lithography [15]. The bonding of microfluidics to chips typically requires
a broad, flat surface in order to provide an adequate seal and structural support for the microfluidics.
A key challenge arises with the small chip size (square millimeter-scale), constrained by the cost of
manufacturing large (square centimeter-scale) chips. Large chip surfaces cannot be manufactured
due to the high cost per unit area of manufacturing silicon-based devices. Thus, many small sensor
elements are packed together in tightly spaced arrays. This makes it conventionally challenging to
interface with standard microfluidics and inlet-outlet tubes, which are on the order of 5 mm diameter
(needed to interface with standard pumps and sample sources), since they do not fit on the area of a
traditional chip. While there are many techniques to create a flat surface for attaching microfluidic
devices [14], we require a method to interface millimeter scale microfluidics with a small chip. We
create a small interface microfluidic chip that securely bonds on the silicon photonic chip [15,16].
By doing this, we eliminate the need for larger chip areas that would significantly increase the cost.
This bottom microfluidic layer then interfaces through vertical interconnections with another layer
that expands microfluidic dimensions, so that they can interface with standard sized microfluidics and
macro-scale tubing over a larger surface area.

This multilayer interface approach requires precisely aligned microfluidics at two different
scales. Creating each layer via photolithography traditionally offers the greatest precision in channel
dimensions and surface finishes, but it requires complex processing to create high-density vertical
interconnections and align multiple layers [17]. A hybrid of soft lithography and laser micromachining
can be used to address these challenges but requires expensive and specialized equipment [15].
Additive manufacturing can greatly reduce the complexity in fabricating such multilayer devices
through 3D printed transfer molding wherein each layer is cast on a printed mold. Despite the promise
of 3D printing, the fabrication of molds for microfluidics has been historically limited by the inability
to produce the smooth surface finishes—necessary for both visualization through the microfluidic
layers as well as proper sealing—and minimum feature sizes of photolithography, and has thus been
limited to centimeter scale microfluidics [18].

Commercial printing technology has now crossed the resolution threshold in order to overcome
surface finish, feature size, and aspect ratio constraints in designing millimeter scale microfluidics.
Leveraging these advances, we demonstrate a simple, highly scalable, and versatile multilayer
microfluidic device for CMOS integration created by 3D printed transfer molding and bonding. This
packaging architecture can enable multiplexed analyte sensing without requiring large chip surfaces
and complicated fabrication techniques, while it ensures a robust interface between the photonic
sensors and the fluidic samples.

2. Materials and Methods

Three-dimensional (3D) printed transfer molding enables rapid fabrication of multilayer microfluidics
for co-packaging with highly miniaturized silicon photonic chips, as seen in Figure 1.
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Figure 1. (a) CMOS 45RFSOI process cross-section. Backside Si substrate etch exposes the sensing
photonics to the fluidic samples. (b) Cross section of microfluidic package aligned to chip. Photonic
ports allow for fiber optic coupling, needles inserted at the edge allow for fluidic coupling, and flip
chip bonding allows for electrical coupling. Layer 1 interfaces with the chip, layer 2 routes fluid to
tubing, and layer 3 provides mechanical support.

This versatile packaging technique can accommodate multi-fluidic and photonic coupling, independent
of the electronic interface. As a first step, the advanced process node of the 45 nm Silicon on Insulator
(SOI) fully integrated electronic-photonic platform requires removal of the Si substrate to prevent leakage of
the optical mode in the substrate and expose the photonic sensors to the fluidic samples, as illustrated in
Figure 1a. The Si substrate of the silicon-photonic chip is fully removed via a XeF2 etch. Because XeF2 is
highly selective to silicon over silicon dioxide (SiO2), the buried oxide layer (BOX), which is SiO2-based,
acts as a natural etch stop. The XeF2 etch is performed in excess until the silicon is visually observed to
be removed. In the package that is shown in Figure 1b, the silicon chip is flip chip bonded on a printed
circuit board (PCB) for electrical coupling and multilayer microfluidics are mounted on top of the chip.
Our microfluidic design consists of two polydimethylsiloxane (PDMS) layers and a glass substrate for
mechanical stability. The layers are enumerated by proximity to the chip, wherein the small area of the
PDMS layer in contact with the chip is layer 1 (“primary layer”), the larger layer for fluid routing is
layer 2 (“secondary layer”), and finally the glass substrate is layer 3.

2.1. 3D Printed Mold Fabrication

The mold for each PDMS layer is designed in CAD (Autodesk Fusion360) as an array of devices
with various geometries of vertical interconnections (vias), channels, and access areas for optic fibers
that act as photonic ports. We designed devices that range from four to 14 channels, eight to 28 vias,
and three photonic ports on a 5.5 mm by 3 mm area to match the size of our sensing chip in order to
test the limitations of the printed molds. The final 3D model forms interconnections with a height to
width ratio between 5:1 to 10:1, high resolution channels, meso-scale photonic ports, and alignment
marks as demonstrated in Figure 2. Alignment marks aid in precisely locating multiple layers while
assembling the final device.

The model was submitted for fabrication by projection micro-stereolithography (Boston Micro
Fabrication) with 2 μm resolution and using UV curable acrylate-based resins as the material. Bottom
layer molds with varying channel widths were fabricated, achieving a smooth surface finish with
interconnections of 5:1 to 10:1 height to width ratio, millimeter scale photonic ports, and an edge to
edge channel spacing ranging from 150 μm to 200 μm, thus meeting the requirements for on-chip
silicon photonic integration. The channel pitch was fixed at 300 μm set by the micro-ring resonator
pitch, and the channel width was varied to assess risk of channel to channel leakage. Earlier attempts
of printing similar molds while using high resolution fused deposition modeling and stereolithography
printers failed to produce the necessary surface finish. Meanwhile, extremely high resolution 2 photon
process printers could not produce larger meso-scale features.

7
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Figure 2. 3D printed mold model for 10 channel device with 20 via-interconnections, 3 photonic ports,
and alignment marks.

2.2. Microfluidic Device Casting

The mold must be coated in a release agent prior to casting for a high-fidelity transfer of features
without damage to delicate components of both the mold and the cast. To achieve this, the mold (Figure 3a)
is placed in a vacuum chamber with 500 μL of Trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane (Sigma)
under vacuum for 15 min. [19], as shown in Figure 3b. PDMS (Sylgard 184, Dow) is a composite of two
materials: a pre-polymer, or material that can form into a polymer, and a crosslinking agent, which,
when mixed with the pre-polymer, connects the molecules in a network that forms an elastic substrate.
The pre-polymer and crosslinker are thoroughly mixed at the manufacturer’s recommended 10 parts
pre-polymer to one part crosslinker by weight and degassed under vacuum (15 mbar) for 45 min. [20].
This mixture is poured onto the silanized mold (Figure 3c) and it cures into an elastic substrate that
is patterned with the mold’s features. The mold is capped with a cleaned glass slide (Figure 3d) to
ensure an even top surface with smooth finish required for multilayer bonding.

A 500-gram weight is then placed on top of the glass to remove residual PDMS between contact
areas on the mold and glass in order assure thru-hole formation for vertical interconnections and
photonic ports rather than thin membranes. The mold, PDMS, and glass sandwich are placed on a
hot-plate at 95 degrees Celsius for 2 h to cure the elastomer. After the PDMS has cured, the cast device
is removed from the device and then trimmed with a razor to its final size (Figure 3e). This process is
repeated for each layer of the final multilayer device.

2.3. Alignment and Mechanical Sealing

Once layers 1 and 2 have been cast, a glass substrate with milled photonic ports (layer 3) is prepared
in order to provide mechanical support to the microfluidic channel networks. Layer 2, denoted as upper
PDMS in Figure 4a, is first bonded to layer 3 with oxygen plasma by placing them in a reactive ion
etch chamber with the mating surfaces exposed. Plasma introduces reactive hydroxyl groups on the
surface that facilitate irreversible chemical bonding [21]. The mating surfaces are then aligned under
magnification to maximize overlap between the photonic ports of the glass substrate and PDMS layer.

This assembly is placed on a hot plate at 65 degrees Celsius for 15 minutes to drive the reaction to
completion. This process is repeated for bonding layer 1 to the layers 2,3 assembly. Coarse alignment
is achieved by aligning corner holes in the glass substrate (Figure 4b) with holes on the PCB with
screws. Fine alignment is further manually achieved by leveraging optical transparency through
layers of the microfluidic stack for visual alignment of channels to sensing structures on-chip. Once
aligned, the channels are sealed to the chip through mechanical pressure by tightening corner screws.
Bonding the microfluidics to the chip exclusively through mechanical pressure allows for thorough
decontamination of the chip surface between tests by entirely removing the package for reuse of the
electronic-photonic chip. It also enables the rapid iteration of various channel geometries without
requiring a unique chip to test each geometry.
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Figure 3. Workflow for casting polydimethylsiloxane (PDMS) on the three-dimensional (3D) printed mold.
(a) The mold is (b) silanized in a vacuum chamber. (c) Mixed PDMS is poured onto the mold and (d) the
top surface is made uniform with a glass cap. (e) The PDMS is then cured and removed from the mold.

Figure 4. (a) Multilayer stack of glass substrate and cast PDMS pieces are aligned and then bonded
using oxygen plasma. (b) The assembly is then coarsely aligned to the printed circuit board (PCB)
before fine alignment of channels to sensing regions.
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3. Results and Discussions

3.1. Microfluidic Validation—Dye Test

We demonstrate the functionality of the described microfluidic packaging by injecting colored dyes
to detect leaks between channels. In Figure 5, colored dyes are injected into a 10-channel microfluidic
device with 150 μm edge to edge channel spacing using edge coupling tubing with 28-gauge needles.
One channel is kept empty as a reference. There was no cross contamination of dye in either the lower
chip-sized PDMS channels or the larger upper PDMS channels. This test was done on glass for high
contrast to best visualize any leaks. Once the proof of concept was verified while using dye on glass,
a 10-channel microfluidic package with a 200 μm edge to edge channel spacing was aligned to 5 μm
radius MRRs and optic fibers were aligned with grating couplers on-chip for photonic coupling.

Figure 5. Colored dyes run through the multi-layer microfluidic assembly.

3.2. Photonic Coupling and Bulk Sensitivity

Channels of the assembly were aligned to rings, as described above. Subsequently, 125 μm diameter
lensed fibers are lowered through the photonic ports while using micromanipulators on an optical table.
These fibers are aligned to on-chip grating couplers to couple laser light into a waveguide. When the
wavelength of the input light is at the resonant wavelength of an MRR, power couples into, and circulates
within, the micro-ring resulting in a power loss at the output coupler [22]. Figure 6 is an infrared image of
channels that are aligned to the MRRs of a fully integrated electronic-photonic system on-chip. Photonic
coupling is demonstrated by the circulating power emanating from the micro-rings.

The bulk sensing capability of the platform was then evaluated using the proposed microfluidic
packaging strategy. Light from a tunable laser (SANTEC TSL-510), which has the ability to change
the wavelength of light output under fine control, is guided to a row of ring resonators. For these
experiments, the light from the laser was swept from 1298 nm to 1308 nm. The laser performs multiple
wavelength sweeps of the ring row’s output at a step of 10 picometers (pm). The output power is
measured with a power meter (Agilent 8164B). For each sweep, the resonant wavelengths of the rings
are captured and their difference from the nominal resonances of the initial sweep (resonant shift) is
calculated. Figure 7 shows the resonant shift of three rings that were located in three different channels.
Channels 1 and 2 are exposed to water, while channel 3 is empty. A resonant shift of 650pm was
measured for the sensors under water. By characterizing the RI of water with an ATC refractometer (RI
= 1.3334), a bulk sensitivity of 1.95 nm/Refractive Index Unit is calculated by dividing the resonant shift
with the change of the RI from air to water (ΔRI = 0.3334). This high channel density and miniaturized
microfluidic device has the potential to integrate with a variety of silicon photonic devices.
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Figure 6. Power loss through micro-ring resonators while aligned to channels. This close up focuses on
3 channels from the 10-channel package of Figure 4.

Figure 7. Resonant shift of micro-ring resonators (MRRs) exposed to water and air.

4. Conclusions

Commercial projection micro stereolithography with sub 2 μm resolution paves the way for using
three-dimensional (3D) printed transfer molding to create silicon photonic compatible microfluidics.
The simultaneous success of fluidic, photonic, and electronic coupling using this rapid packaging
strategy underlies its versatility. The facile fabrication of multilayer dense channel networks with
smooth surface finish and photonic ports can solve key challenges for multi-fluid coupling, alignment
of channels to micron scale sensing elements, and photonic coupling to the device. This unlocks the
door towards compact and self-contained biophotonic sensors.
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Abstract: Novel, non-invasive wearable laser Doppler flowmetry (LDF) devices measure real-time
blood circulation of the left middle fingertip and the topside of the wrist of the left hand. The LDF
signals are simultaneously recorded for fingertip and wrist. The amplitude of blood flow signals
and wavelet analysis of the signal are used for the analysis of blood perfusion parameters. The aim
of this pilot study is to validate the accuracy of blood circulation measurements recorded by one
such non-invasive wearable LDF device for healthy young non-smokers and smokers. This study
reveals a higher level of blood perfusion in the non-smoker group compared to the smoker group and
vice-versa for the variation of pulse frequency. This result can be useful to assess the sensitivity of the
wearable LDF sensor in determining the effect of nicotine for smokers as compared to non-smokers
and also the blood microcirculation in smokers with different pathologies.

Keywords: wearable laser Doppler flowmetry; blood perfusion; wavelet analysis; smokers

1. Introduction

Tobacco smoking is a major single cause of global cancer deaths and has been labelled as the
biggest risk factor for premature deaths in industrialised countries such as the UK [1–3]. It is well
known that tobacco smoking directly affects the cardiovascular system [4] through several mechanisms
such as atherosclerosis, development of ischemic heart disease, and peripheral artery disease and when
combined with other risk factors such as hyperlipidaemia, hypertension and obesity [5]. Nicotine
and carbon monoxide, two major constituent chemicals in cigarettes, interfere with the ability of the
cardiovascular system to function normally. Exposure to nicotine and carbon monoxide change the
heart and blood vessels in ways that increase the risk of heart and cardiovascular disease [5,6]. Nicotine
causes human blood vessels to constrict [6], which limits the amount of blood that flows to human
organs. It is well known that the blood is the most important connective tissue in the human body that
is primarily responsible for the distribution of nutrients and oxygen and the removal of carbon dioxide
and metabolic waste products from organs. Any deviation in normal blood circulation, such as over or
underflow may indicate a major systemic abnormality. Thus, as an effect of smoking, the constant
constriction in the blood vessels results in stiff and non-elastic blood vessels. To compensate for this,
the heart starts pumping more blood around the body resulting in its enlargement and increased heart
rate [7]. This increased rate, an enlarged heart, and stiffer blood vessels make it harder to pump the
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blood and provide the body with the required amount of oxygen and nutrients [6]. These structural
changes in the blood vessels and heart increase the risk of high blood pressure and cardiovascular
disease, ultimately leading to higher mortality and morbidity among the smoking population bringing
significant financial burdens on the National Health System and the economy [8,9].

Continuous monitoring of human health and activity using wireless wearable devices will be
a key technology in the ubiquitous sensor network society for years to come. Recent advances in
the development of the latest-generation of watch-size wearable devices based on ultra-compact
semiconductor lasers have opened a new perspective for the implementation of compact blood flow
monitoring sensor systems for personalised medicine [10,11]. This wearable device is based on laser
Doppler flowmetry (LDF), which is closely related to the dynamic light scattering approach [12].
This technology is widely used for non-invasive measurements in living tissue optical parameters.
These devices use a single-mode fibre coupled near-infrared (NIR) laser irradiation which is scattered
and reflected from moving red blood cells (RBCs) [10]. Thereafter, these RBC movements generate the
frequency-shifted scattering of the initial illumination which is detected by one or two photodetectors
with the appropriate signal processing of both photocurrents (initial and reflected). This allows for
the subsequent evaluation of the intensity of the blood perfusion. These data are then analysed
with the Fourier approach of giving an estimation of the Doppler spectrum that means the LDF
records are proportional to the RBCs’ velocity. Thus, LDF is used for functional diagnostics of the
blood circulation system as well as significant diseases associated with cardiovascular disorders and
their complications. Furthermore, this method allows evaluation of the oscillatory processes in the
microcirculatory systems. Five rhythmic oscillations are isolated from LDF recordings with the help of
wavelet analysis; endothelial (frequency interval 0.0095–0.02 Hz), neurogenic (0.02–0.06 Hz), myogenic
(0.06–0.16 Hz), respiratory (0.16–0.4 Hz), and cardiac or pulse rhythm (0.4–1.6 Hz) [13]. Recent studies
on these wearable LDF devices have shown the high synchronisation of blood flow rhythms in the
contralateral limbs of healthy volunteers [11]. Additionally, it was reported that wearable devices
can measure the age-related changes in blood perfusion for healthy participants [10]. Although there
were quite a few numbers of articles available based on smoker’s blood microcirculation measured
by LDF [14–18], no research was conducted in understanding the comparable modulation of the
blood flow parameters in non-smoking and smoking volunteers using wearable LDF. Thus, this study
demonstrated the feasibility of the wearable device in distinguishing cardiovascular parameters
between non-smoking and smoking groups of volunteers. This preliminary research was necessary
for planning more expensive and large-scale pre-clinical trials. Within the framework of the work,
the strengths and weaknesses of the proposed LDF wearable approach were revealed. The applicability
of the sensor for participants was assessed and estimation of the size of the participant groups were
evaluated for obtaining sufficient statistical power of future studies.

2. Materials and Methods

2.1. Wearable Laser Doppler Flowmetry Monitor

The experiments were performed with two wearable LDF monitors “FET-1” (Aston Medical
Technology Ltd., http://www.amedtech.co.uk/) for recording the blood perfusion (Figure 1).
These devices consisting of three identical channels for recording blood perfusion, skin temperature,
and movements provide measurement at any desirable point of the human body. The system also
comprises a wireless data acquisition module.

Every wearable sensor in the system uses a VCSEL chip (850 nm, 1.4 mW/3.5 mA, Philips,
The Netherlands) as a single-mode laser source to implement fibre-free direct illumination of tissue.
The fibre probe movements can cause high-frequency intensity fluctuations due to speckle movement.
The intensity fluctuations can themselves produce an apparent Doppler shift [19,20] which will
highly disturb the initial data acquisition creating faulty conclusions. Fibre-free solution and direct
illumination of tissue by the laser diode make it possible to decrease these artefacts which are common
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in fibre-based LDF systems, as well as to avoid fibre coupling losses. To find a correlation between the
changes in the registered blood perfusion and actual body movements the integral accelerometer has
been embedded in the sensor.

 

Figure 1. (a) Laser Doppler flowmetry (LDF) based wearable device, (b) schematic of the principle of
LDF technique.

The measurement channel of the devices uses two identical primary signal processing channels.
This two-channel scheme provides a more accurate recording of the perfusion value (in particular,
the recording of the Doppler shift). Mathematically, the recorded signal is represented as:

PU =

ω2∫
ω1

ωS(U1(t) −U2(t))dω, (1)

where PU is perfusion index, S(U1(t) −U2(t)) is power spectral density of the difference signal from
two photodetector channels, U1(t), U2(t) is the signal from the photodetector converted to voltage.

The signal is also normalised to the constant component of the photocurrent. The radiation,
scattered on moving red blood cells, and the back-reflected signal are received by two photodiodes.
Next, the current is converted on the transimpedance amplifier, and the corresponding signal
amplification is performed. The next stage of processing is low-pass filtering, constant component
extraction, and high-pass filtering. Next, the variable component is normalised to a constant to avoid
the influence of different levels of reflection under different optical conditions. The final component
is a differential amplifier that protects the circuit from common-mode interference in the signal and
reduces the impact of motion artifacts. In general, the presented wearable devices have an identical
electronic circuit with stationary LDF devices [13,21,22] and allow the registration of the same signals.

2.2. Study Design

This pilot study was conducted in accordance with the principles set out in the Helsinki Declaration
of 2013 by the World Medical Association and was approved by the human ethics committee of Aston
University, Birmingham, UK (Ethics approval #1685). This pilot-study involved nine healthy volunteers
without pre-existing cardiovascular and other chronic medical conditions who are divided into
two groups: non-smokers and smokers. The average age of the non-smoker group was 34.2 ± 3.8 years
and the smoker group was 38± 4.7 years. Two females and three males were included in the non-smoker
group and smoker group consisted of 1 female and 3 males for this pilot study. None of the participants
had a history of cardiovascular disease (CVD) or other illness and they were not under any medications.
After being informed and explained the study design, every volunteer provided written consent and
filled a questionnaire to detail their current health conditions. A short history for the volunteers
including medication history, alcohol consumption for the last 24 hours, history of exercise (such as
cycling, treadmill, jogging), and a detailed history of smoking were taken.
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2.3. Testing Procedure

Blood perfusion parameters were collected in a sitting position, in a state of physical and mental
rest (avoid reading, writing, and talking). The hand of the volunteers was placed on a table at the
heart’s level and they were requested not to ingest any caffeine and alcohol-containing drinks at
least one hour and twelve hours prior to allocated measurements time, respectively. The index of
blood perfusion was recorded for 8 minutes, while the sensors were attached to the surface of the left
middle fingertip and the topside of the left wrist without applying any pressure on the study area.
The fingertip was chosen because it is rich in arteriolar venular anastomoses (AVA), whereas the wrist
is known to contain less AVA. The measurement was taken twice a day: morning (around 11.00) and
evening (around 18.00) for any 5 days in consecutive two weeks.

2.4. Data Proccesing and Analysis

Specialised software was developed to work with the system. This allowed for real-time control of
the course of the experiment and analysis of the recorded parameters. Figure 2 depicts an example of
the displayed parameters which show the raw data of blood perfusion, temperature, and the movement
for the fingertip and wrist in Figure 2a. After acquiring the data, the oscillation rhythms of each
measurement were analysed using the built-in module “wavelet analysis” [23] which is displayed
in Figure 2b. This wavelet analysis determines the maximum amplitude of blood perfusion and
corresponding data for each of the five oscillations mentioned in the previous section.

 

Figure 2. (a) Representative recordings of the blood perfusion (in brown), temperature (in blue) and
accelerometric movement (in black) for left fingertip (upper) and left wrist (lower), (b) representative
wavelet analysis for left fingertips (upper) and left wrist (lower).

The Morlet wavelet transform was used for the frequency analysis of registered signals [24–26].
In short, the LDF signal was decomposed using a wavelet transform as:

W(s, τ) =
1√

s

∞∫
−∞

x(t)ψ∗
( t− τ

s

)
dt, (2)

where x(t) is a target signal, τ is local time index, s is scaling factor, * means complex conjugation.
The Morlet wavelet defined in the form

ψ(t) = e2πite−t2/σ (3)
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was used with the decay parameter σ = 1. This wavelet allows one to ensure sufficient time-frequency
resolution and is well localized in the time domain.

Figure 2 shows that the forearm region has smaller variations of the LDF signal, and spectral
analysis shows pronounced peaks in the cardiac, myogenic, neurogenic, and endothelial ranges.
We excluded respiratory fluctuations from further statistical analysis due to the lack of pronounced
peaks, which may be due to recording signals in basal conditions without any functional tests [27,28].

Taking into account the relatively small sample sizes, nonparametric methods were used to
confirm the reliability of differences in the results, namely the Mann–Whitney U-test. Values of p < 0.01
were considered significant. Based on the results of this pilot study, we have performed sample size
estimations for minimisation of type two error in future studies:

n = 2SD2 (Zα/2 + Zβ)
2

d2 , (4)

where is the SD is standard deviation; Zα/2 = 1.96 at type 1 error of 5%; Zβ = 0.84 at 80% power; d is the
difference between mean values [29].

3. Results

Figure 3a, b shows the blood perfusion for all the individual participants including non-smokers
and smokers at palmer skin of the left middle finger and left wrist, recorded in morning and evening
sessions. It does not show any noticeable difference between non-smokers and smokers. After averaging
for all non-smokers and smokers, the study reveals a higher level of perfusion in the non-smoker group
as compared to the smoker group, showed in Figure 3c,d.

 
Figure 3. (a) Blood perfusion with standard deviation of left fingertip for every participant; (b) blood
perfusion with standard deviation of left wrist for every participant; (c) averaged blood perfusion
with standard deviation of fingertip for non-smoker and smoker, (d) averaged blood perfusion with
standard deviation of wrist for non-smoker and smoker (solid bar denotes non-smoker and patterned
bar denotes smoker).

The results depicted in Figures 4 and 5 reveal the comparisons of the wavelet analysis parameters
on the fingertip and wrist for both subject groups. The variations of the amplitude of the endothelial
(Ae), neurogenic (An), myogenic (Am), and pulse (Ap) are shown in Figure 4a,b for fingertip and wrist
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respectively. Amplitude measurements on the fingertip are consistently higher for the non-smoker
group as compared to the smoker group for all oscillations at both morning and afternoon sessions.
However, data received from the wrist does not show any conclusive variations between non-smoker
and smoker groups. This is possibly due to the lower number of AVAs in the wrist area resulting in a
lack of conclusive information. In addition, pulse amplitude data taken from both fingertip and wrist
exhibits a decrease for the smoker group at both morning and afternoon sessions.

 

Figure 4. Maximum amplitude with standard deviation of the endothelial, neurogenic, myogenic and
pulse mechanism for non-smoker and smoker at (a) fingertip, (b) wrist. Solid bar denotes non-smoker
and patterned bar denotes smoker.

 
Figure 5. Maximum peak frequency with standard deviation of the endothelial, neurogenic, myogenic
and pulse mechanism for non-smoker and smoker at (a) fingertip and (b) wrist. Solid bar denotes
non-smoker and patterned bar denotes smoker.

In Figure 5, the maximum peak frequencies are observed for endothelial, neurogenic, myogenic
and pulse rhythms. The oscillation frequency varies for the smokers as compared to non-smokers,
shown in Figure 5. It is clearly demonstrated that the pulse frequency is higher for the smoker
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group as compared to the non-smoker group at both morning and afternoon sessions for fingertip.
Additionally, the wrist shows the same pattern for the morning session. This indicates that smoking
raises blood pressure and increases the heart rate for smokers, which is confirmed in Figure 5a. For other
oscillations, the frequency shows higher value for smoker than non-smoker’s fingertip at both morning
and afternoon sessions, however, it is slightly different for wrist position.

4. Discussion

Here, we presented a pilot study to assess the feasibility of the wearable device in differentiating
cardiovascular parameters between non-smoking and smoking groups of volunteers. Due to the small
sample size, statistical analysis did not show significant differences, but the results show clear trends
for differences in the measured and calculated parameters.

Lower blood perfusion for the smokers was observed compared to non-smokers in Figure 3c,d.
This is probably due to the effect of nicotine, a major constituent of cigarette smoke. Nicotine constricts
the blood vessels as well as those in the skin and coronary blood vessels. This vasoconstriction of the
skin results in reduced cutaneous blood flow.

The amplitude of endothelial mechanism reduces for the smokers at fingertips, evidenced in
Figure 4a. It is known that endothelial cells inside of the blood and heart vessels help to regulate
blood clotting and vascular relaxation. These cells generally synthesize and release nitric oxide (NO)
which dilate the blood vessels of the body. However, nicotine induces the chance to increase the
endothelial dysfunction which is known to cause vasoconstricting substances and narrows the blood
vessels [30]. As a consequence, the blood perfusion reduces for the smoker group, evidenced in
Figure 3c,d. The plots for fingertip and wrist both show a decrease in amplitude of the neurogenic
oscillation for smokers. This is an indicator of higher neurogenic resistance and possible decreased
blood flow in the arterioles for the smoker group, which was noticed in the blood perfusion plot
of Figure 3c [13]. The source of myogenic oscillation is representative of the spontaneous activity
of smooth muscle cells that is associated with the regulation of blood pressure of the human body.
Nicotine increases blood pressure for smokers and consequently increases the tension of the vascular
wall resulting in the contraction of the vascular smooth muscle. The amplitude of myogenic oscillation
decreases for smokers as shown in Figure 4a. Measurements from the wrist show a similar amplitude
pattern in myogenic rhythm.

The pulse frequency was higher for the smokers as shown in Figure 5 because the cigarette
smoking increases the cardiac work by stimulating the heart rate approximately 10–15 bpm and the
blood pressure (acute increase 5–10 mm Hg) [31]. It was already discussed that nicotine constricts
the blood vessels, but it can also increase coronary blood flow by increasing the cardiac output,
causing subsequent flow-mediated dilation (FMD). It means that the heart needs to pump more due
to constriction of the blood vessels that increases the cardiac output as well as heart rate which was
evidenced in Figure 5. In addition, the prolonged exposure of carbon monoxide from a cigarette can
increase carboxyhemoglobin concentration to as high as 10% for the heavy smoker and may induce
anaemia as it binds more readily to haemoglobin than oxygen. As a result, it blocks oxygen-binding
sites and impairs the release of the oxygen that is able to bind. Carbon monoxide induced hypoxemia
enhances the chance of smoking-related thrombogenesis via increased blood viscosity as the body
compensates it by increasing red blood cell mass.

Overall, the current study showed that the wearable device (FET-1) is capable of differentiating
cardiovascular parameters between non-smokers and smokers. Our promising results demonstrate the
robustness of both the data acquisition and the spectral analysis methods employed to characterise
measured optical data. However, it is necessary to continue research in a broader way with a larger
sample size to provide a clinical and statistically significant difference in blood perfusion parameters
between non-smokers and smokers.
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5. Study Limitations and Future Directions

It is shown that most of our results should be considered as preliminary estimates because the
research has some limitations. The future work will focus on overcoming the limitations described below.

The number of studied subjects in this research was relatively small. High parameters divergence
together with low difference leads to low robustness of the results. Spectral characteristics of LDF
samples are characterised by high intra-subject variability. Our estimations have shown that the
sample size should be estimated in at least 80 subjects in every group under consideration to minimize
type II error.

This work had sufficient limitations due to the LDF sample length, which led to inaccurate
interpretation on low frequency oscillations. For reliable statistics, one should ideally include 10 cycles
for each of the frequencies under investigation. We had an 8 min recording, which was why the reliable
results can be obtained only for frequencies higher than 0.02 Hz. For lower frequencies, the results
presented demonstrate only the tendency towards to quantitative data.

6. Conclusions

The present pilot-study demonstrated that the applied wearable device (FET-1) is capable
of differentiating cardiovascular parameters between non-smokers and smokers. It presents the
results of blood perfusion measurements with the rhythmic oscillations using wearable VCSEL-based
sensor system. Studies have shown a comparatively low blood flow for smoker volunteers than the
non-smokers. This LDF based wearable sensor system has several advantages which open excellent
prospects for a new type of experiments. Power-efficient VCSEL-based devices perform the long-term
blood perfusion monitoring which is completely non-invasive. Experiments have shown that the
introduction of wireless wearable devices for recording blood microcirculation is a convenient solution
for use in medical diagnostics. The wearable implementation of LDF has a high potential in the field of
monitoring cardiovascular diseases and is also of great interest for the diagnosis of other conditions
associated with microvascular disorders. Portability and low sensitivity to motion artefacts make them
mobile and suitable for home use. Furthermore, the sensor device demonstrates the spectral analysis of
LDF signal using wavelet transformation to evaluate the regulatory mechanisms and to distinguish the
difference between non-smokers and smokers. The presented pilot study of the wearable VCSEL-based
LDF sensors provides early results that will need further validation with larger clinical studies.
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Abstract: An optical cavity-based biosensor (OCB) has been developed for point-of-care (POC) appli-
cations. This label-free biosensor employs low-cost components and simple fabrication processes
to lower the overall cost while achieving high sensitivity using a differential detection method.
To experimentally demonstrate its limit of detection (LOD), we conducted biosensing experiments
with streptavidin and C-reactive protein (CRP). The optical cavity structure was optimized further
for better sensitivity and easier fluid control. We utilized the polymer swelling property to fine-
tune the optical cavity width, which significantly improved the success rate to produce measurable
samples. Four different concentrations of streptavidin were tested in triplicate, and the LOD of the
OCB was determined to be 1.35 nM. The OCB also successfully detected three different concentra-
tions of human CRP using biotinylated CRP antibody. The LOD for CRP detection was 377 pM.
All measurements were done using a small sample volume of 15 μL within 30 min. By reducing the
sensing area, improving the functionalization and passivation processes, and increasing the sample
volume, the LOD of the OCB are estimated to be reduced further to the femto-molar range. Overall,
the demonstrated capability of the OCB in the present work shows great potential to be used as
a promising POC biosensor.

Keywords: biosensors; optical cavity-based biosensor; biomarker detection

1. Introduction

The early diagnosis of diseases, including cancers, infectious diseases, and cardiovas-
cular diseases, is vital in order to apply effective treatments and increase the chance of full
recovery [1–4]. Diagnostic technologies in the current healthcare system are mostly used at
centralized laboratories, involve costly and time-consuming processes, and are operated by
expert staff [2,5,6]. For example, enzyme-linked immunosorbent assay (ELISA), considered
as the gold standard diagnostic method, is labor-intensive, requiring complicated proce-
dures such as labeling and multiple washing steps [2,5,7,8]. Label-free optical biosensing
methods such as surface plasmon resonance (SPR) and total internal reflection ellipsometry
(TIRE) have been extensively investigated and developed [9,10]. SPR and TIRE biosensors
are label-free biosensors without complex procedures, and are highly sensitive with re-
duced assay times. However, some drawbacks, including high-cost, bulky size, and the
need for trained personnel to operate, remain to be improved [11,12]. With these limita-
tions in the current diagnostic technologies, it is difficult for people to monitor their health
status regularly, which would eventually increase the chance of being diagnosed with
diseases at late stages [3,7]. The problems become worse for people who are in financial
difficulties and living in developing countries with deficient healthcare systems [6,13].
To address these challenges existing in the conventional diagnostic field, a point-of-care
(POC) biosensor has emerged as a promising alternative, allowing patients to regularly
check their health condition at the bedside or near them without being dependent on
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central laboratory testing [4,6,14–17]. According to the World Health Organization, an ideal
POC test should satisfy the ASSURED (affordable, sensitive, specific, user-friendly, rapid,
equipment-free, deliverable to end-users) criteria [16,17]. One of the most widely available
and commercialized POC devices is based on lateral flow assays (LFAs) with their low cost,
ease of use, and speed [4,6,18]. However, limitations still remain with regard to LFAs in
terms of producing reproducible and sensitive test results [6,18,19].

An optical cavity-based biosensor (OCB) using a differential detection method has
been developed for the application of POC diagnostics [20–27]. The structure of an optical
cavity consists of two partially reflective surfaces in parallel, separated by a small gap
in between. The light propagating through the optical cavity experiences multiple beam
interference due to those two reflective surfaces, and produces a transmission spectrum
with a resonant characteristic. Because of the resonant characteristic, the optical cavity can
be used to detect small changes inside the cavity which, in turn, makes it an attractive
platform for biosensing applications. To use the optical cavity for biosensing, the sensing
area is functionalized with receptor molecules. When target biomolecules are adsorbed into
the receptors, a shift in the resonant response occurs. To detect the small resonant response
shift, the OCB measures the changes in optical intensities at two different wavelengths using
low-cost laser diodes and a CMOS camera instead of using an expensive spectrometer or a
tunable laser, lowering the total cost. The sensitivity of the OCB is enhanced by employing
a differential detection method. We designed the optical cavity structure so that the optical
intensities of two wavelengths are changing in opposite directions upon the capture of
target biomolecules, in order to have a significantly bigger change from the calculated
differential values. The differential detection method not only increases the sensitivity
but also offers other benefits for biosensing, such as power equalization (no initial power
variation depending on the measurement results), a larger dynamic range (the detectable
concentration range of the biomolecules), and a larger fabrication tolerance [23,28,29]. The
intensity measurement method also enables the simultaneous detection of multiple analytes
by immobilizing corresponding bioreceptors at different areas of the optical cavity surface
where the laser beams pass through. The capability of this OCB to detect small changes
in bulk refractive index was demonstrated by using refractive index fluids with proven
portability [25,27]. As a preliminary test to confirm the application of OCB in detecting the
binding events at the optical cavity sensing area, the attachment of biotinylated bovine
serum albumin (BSA) was measured on the streptavidin-functionalized surface [26].

In this present work, we demonstrate the OCB with streptavidin and C-reactive
protein (CRP), and determine the limit of detection (LOD) for these. The optimized optical
cavity design with simulations, surface functionalization steps, testing procedures, and
measurement results are discussed. We report the use of the OCB for biomarker (CRP)
detection for the first time.

2. Materials and Methods

2.1. Materials

(3-Aminopropyl) triethoxysilane (99%, APTES), streptavidin (lyophilized solid), and
bovine serum albumin (lyophilized powder, BSA) were purchased from Sigma Aldrich,
Inc, St. Louis, USA. Sulfo-NHS-Biotin (EZ-Link, powder) was purchased from Thermo
Scientific, Inc, Waltham, USA. Tris-HCl buffer (1M, pH 8.0) was purchased from Bio Basic,
Inc, Amherst, USA. Biotin-conjugated C-reactive protein antibody was purchased from
Novus Biologicals, LLC, Centennial, USA. Human C-reactive protein (≥97%, CRP) was
purchased from R&D Systems, Inc, Minneapolis, USA. Spin-on-glass (IC1-200, SOG) was
purchased from Futurrex, Inc, Franklin, USA. SU8 photoresist (SU8-2005) was purchased
from Kayaku Advanced Materials, Inc, Westborough, USA. UV glue (NOA 86H) was
purchased from Norland Products, Inc, East Windsor, USA.

24



Biosensors 2021, 11, 4

2.2. Schematic

A schematic of the OCB is shown in Figure 1a. Two low-cost laser diodes at different
wavelengths are used as light sources operated by laser diode drivers with the constant
current mode. The laser beams are collimated, combined by a 50:50 beam splitter (BS), and
alternatively propagate with one-second intervals using a rotating beam blocker. A neutral
filter (NF) is placed in the light path to attenuate the intensities of laser beams in order to
avoid the saturation of a CMOS camera (Discovery M15, Tucsen). The intensities of laser
beams, transmitted through an optical cavity sample (OCS), are measured by the CMOS
camera in real-time. Figure 1b shows each layer of the OCS structure, while Figure 1c
shows the cross section of it. The bottom and patterned top silver layers on 3-inch glass
substrates act as partially reflective surfaces. Spin-on-glass (SOG) layers are spin-coated on
top of the silver layers to protect them from possible damages during the sample fabrication
process and test, to facilitate the silanization-based surface functionalization process, and
to maximize the sensitivity. The microfluidic channel between SOG layers is created by SU8
patterns. The receptor molecules are functionalized at the center area of the microfluidic
channel, creating a sensing area. UV glue is used to bond the two separately processed
substrates at the end of the fabrication process. To introduce fluids to the OCS without
air bubbles, a syringe pump is used to add drops of fluids into the 3D printed input port
(volume capacity: 20 μL) through a bent syringe tip, while a low-cost vacuum pump is
attached to the 3D printed output port through tygon tubing to pull fluids from the input
port through the microfluidic channel.

Figure 1. (a) Schematic diagram of the optical cavity-based biosensor (OCB) showing two laser beams at two different
wavelengths (λ1 (blue) and λ2 (red)) alternatively propagating through the OCS with an interval of one second and reaching
the CMOS camera. (b) Structure of the OCS showing each layer and connected input and output ports. (c) Cross-sectional
view of the OCS showing the target biomolecule in a sample fluid being introduced into the microfluidic channel and
attached to the receptor molecules on the SOG surface.
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2.3. Simulation Results

As illustrated in Figure 1c, the target biomolecules in the sample fluid attach to the
receptor molecules which, in turn, causes output intensity changes in the two laser diodes.
For simulations, we employed the fixed index model enabling the approximation of the
number of the biomolecules attached to receptors on the sensing area to a sensing layer
thickness with a fixed refractive index [30]. We set the refractive index of the sensing layer
to 1.45, which has been widely accepted for various biomolecules such as proteins, DNAs,
and viruses [30–33]. FIMMWAVE/FIMMPROP (Photon design) was used to perform
the simulations. For benefits such as enhanced sensitivity, power equalization, a larger
dynamic range, and a larger fabrication tolerance, we employed a differential detection
method [23,25]. For the differential detection method, a differential value (η) is calculated
by the equation below.

η =
I1 − I10

I10
− I2 − I20

I20

I1 and I2 are the intensities (efficiencies for simulations) of λ1 and λ2, respectively, and
I10 and I20 are the initial intensities for I1 and I2, respectively [26].

To achieve the largest differential value change, we searched for the optimal cavity
width at which the efficiencies of two different wavelengths (out of available low-cost laser
diodes in the market) change the most in the opposite directions with the sensing layer
thickness increase. Since many different possible solutions exist, we narrowed our search to
use a silver thickness of 20 nm with the microfluidic channel height ranging between 5 μm
and 10 μm. We chose this channel height range to limit the fluid volume required to fill the
channel without significant fluid flow resistivity. Since the fluid flow resistivity is inversely
proportional to the third power of the height, if the height is too small, then the flow rate is
slower, and a stronger vacuum pump is necessary to handle the fluids. Considering that
the typical size of proteins is less than 20 nm, we focused on the simulation for a sensing
layer thickness up to 20 nm. From the simulation results, we found that the differential
value change depends on the SOG thickness. This means the local refractive index change
due to the sensing layer change is more influential on the resonant characteristic at certain
locations inside the cavity, which must be related to the electromagnetic field distribution
in the cavity. Based on the spin curve of the SOG, we considered the SOG thickness in the
range of 150 nm to 450 nm.

The simulation results for the optimized optical cavity structure are shown in Figure 2.
For the wavelengths of 830 nm (λ1) and 904 nm (λ2), the optimized optical cavity design
has a cavity width (silver-to-silver distance) of 8 μm, and an SOG thickness of 400 nm with
a silver thickness of 20 nm. As the sensing layer increased from 0 to 20 nm, the efficiency
of 830 nm decreased from 0.18 to 0.137 (−0.043), while the efficiency of 904 nm increased
from 0.063 to 0.077 (+0.014). With this opposite changing trend of two wavelengths, the
corresponding differential value changed from 0 to 0.481, showing a significantly larger
change compared to the individual wavelengths, with a better linearity.
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Figure 2. Simulation results showing efficiencies of 830 nm (blue) and 904 nm (red) wavelengths
and differential values (green) versus the sensing layer thickness in the range between 0 and 20 nm.

2.4. Sample Fabrication and Surface Functionalization Processes

The fabrication process of the OCS is straightforward without complex micro and nano
fabrication steps. First, a 3-inch glass substrate was drilled using a 1 mm diamond drill bit
to make the inlet and outlet of a microfluidic channel. A silver layer was sputter-deposited
on the drilled glass substrate and on another plain glass substrate. The top silver layer was
patterned through a photolithography process followed by a wet-etch process, as shown in
Figure 1b, for allowing UV illumination on the UV epoxy to cure and bond two substrates.
Then, SOG was spin-coated at 1200 RPM on the silver layer of both substrates and cured at
130 ◦C on a hot plate. On top of the SOG layer of the plain glass substrate, an SU8 layer
was patterned using a photolithography process to define the microfluidic channel. Finally,
we used a UV curable epoxy to bond the drilled and plain glass substrates in order to
form an optical cavity structure [26]. A top-view image of the fabricated optical cavity
microfluidic channel is shown in Figure 3a. The typical layer thicknesses of fabricated
devices are, on average, 22 nm (silver), 410 nm (SOG), 6.4 μm (SU8), and 1.08 μm (UV
glue). The microfluidic channel has a total length of 5 cm, a height of 7.5 μm (distance
between SOG surfaces), and a width of 500 μm, while the width at the sensing area is 1 mm.
The sensing area is 2.5 mm2, and the dotted circular area at the center with a diameter of
160 μm represents the area used for the data processing, calculating the average intensities
and differential values.

Figure 3b illustrates the functionalization steps on the SOG surface on the drilled
substrate. The oxygen plasma treatment was applied for 5 min to create hydroxyl groups
on the SOG surface. We performed the vapor-phase deposition of APTES by placing a
substrate in a desiccator with 0.5 mL of 99% APTES in a small container placed at the
bottom [34]. The entire desiccator was placed on a hot plate at 90 ◦C for 24 h to create
terminal amine groups (-NH2) on the surface. After the overnight incubation, unbound
APTES molecules were removed with DI water in an ultrasonic bath for 7 min, and the
glass substrate was baked at 110 ◦C for 10 min. To functionalize the sensing area, 5 mg/mL
of sulfo-NHS-biotin mixed in DI water was applied using a micropipette. It was then
incubated for 1 h to covalently immobilize the biotin on the surface through amide bonds,
while other areas were passivated with 1% BSA. The surface was then ready for the
streptavidin detection experiment. BSA was also applied to the plain substrate with the
SU8 pattern to passivate the bottom and side walls of the channel, so as to minimize the
nonspecific binding of streptavidin and other biomolecules.
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Figure 3. (a) Top view of the fabricated optical cavity microfluidic channel indicating the sensing area at the center and the area
for the data process. (b) The functionalization procedure of the spin-on-glass (SOG) surface for the immobilization of streptavidin.

2.5. Test Setup

Figure 4 shows the test setup on an optics table for experiments. Two laser diodes at
830 nm and 904 nm wavelengths were attached to collimators and mounted with kinematic
mounts. A 3D-printed beam blocker with a servo motor was located on top of a 50:50 beam
splitter to block the laser diode beams alternately. The side view in Figure 4 shows a BS,
an NF, a 45-degree mirror under the fabricated OCS in a 3D-printed sample holder, and
a CMOS camera. The total cost to build the whole system was low, at about USD 1100
excluding posts, mounts, and the syringe pump.
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Figure 4. Top and side views of the test setup for the optical cavity-based biosensor (OCB).

2.6. Fine-Tuning of the Optical Cavity Width Using Polymer Swelling

The optical response of any type of optical resonator is very sensitive to its cavity or
resonator size. Due to possible errors during the fabrication process, the cavity widths of
the fabricated OCSs show some variations. Even with a larger fabrication tolerance using
the differential detection method, it is challenging to successfully fabricate the OCSs with a
width accurate to within 40 nm, which leads to a low success rate in producing measurable
samples [25]. We overcame this problem using the polymer swelling property [35–37].
The microfluidic channel walls were formed of SU8 and UV epoxy polymers. When the
microfluidic channel was filled with DI water, the SU8 and UV epoxy in contact with DI
water slowly swelled over time. As the optical cavity size increased due to the swelling,
the optical intensities changed over time, following the resonance curve. At the optimal
cavity width, it was anticipated that the intensities of the two wavelengths would change
in opposite directions. During the swelling period, we monitored the optical intensity
changes of both wavelengths and conducted sensing experiments when the optical cavity
reached this optimal condition. The time it takes for this fine-tuning process varies from
less than 1 h to more than 10 h, as the initial optical cavity widths differ. The swelling rate
is rapid at the beginning and then slows over time. With this fine-tuning process, we were
able to achieve a very high success rate of producing measurable samples (>90%).

3. Results

3.1. Streptavidin Detection

Streptavidin is a 52.8 kDa protein with a dimension of 5.6 nm × 4.2 nm × 4.2 nm [38].
For a monolayer of streptavidin with a height of 5.6 nm, the simulated differential value
change due to this monolayer is 0.1266. For measurements, DI water was introduced first
through the microfluidic channel for optical cavity width fine-tuning. When the optical
cavity reached the measurable condition, 15 μL of streptavidin was then introduced with
a flow rate of about 0.9 μL/min for about 17 min. Finally, the channel was rinsed with
15 μL of DI water. Representative trends of four different concentrations of streptavidin
in DI water, 300 ng/mL, 1 μg/mL, 3 μg/mL, and 10 μg/mL, are shown in Figure 5 along
with the negative control. The average differential value for 2 min before the introduction
of streptavidin was set to 0 as the baseline. The change in the differential value due
to the binding of streptavidin was measured by averaging differential values between
25 and 27 min, which is 8–10 min after the DI water was introduced for rinsing. For the
negative control (black), the sensing area of this channel was blocked with BSA everywhere
without sulfo-NHS-biotin. As expected, when 1 μg/mL of streptavidin was introduced into
the negative control channel, no obvious change in the differential value was found, while
there were some fluctuations during the period with streptavidin in between 0 and 17 min.
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This could have been due to the non-specific interaction of streptavidin with BSA. Clearly,
some loosely attached streptavidin molecules were removed in the DI water rinse, and
the differential values stabilized. The differential value change for the negative control
was −0.00213, and the standard deviation was 0.00155. For the 10 μg/mL concentration
(yellow), the differential value started changing in 2 min and reached 0.074 in 5.5 min
with a slope of 0.0235/min after the introduction of streptavidin (at t = 0). The change
slowed down from 5.5 min but kept increasing up to 0.095 with a slope of 0.00163/min
until the DI water was introduced (at t = 17 min) for the rinse. As soon as the channel was
rinsed, the change decreased slightly and reached 0.085 (at t = 27 min) on average. The
result for the concentration of 3 μg/mL (green) shows that the differential value started
slowly increasing at around 5 min and reached to 0.04 with a slope of 0.0023/min. The
change stopped for about 3 min after the DI water rinse and then increased again to 0.055
with a slower slope of 0.0014/min. This could have been due to the binding of residual
streptavidin molecules on the surface during the DI water rinse. The changes in differential
values for the streptavidin concentrations of 1 μg/mL and 300 ng/mL started at 8 min and
12 min, respectively, with slower slopes (1 μg/mL: 0.00176/min; 300 ng/mL: 0.00089/min).
After the introduction of DI water, they showed a similar trend whereby the differential
value decreased for about 3 min and increased for the rest of the 7 min, reaching to 0.027
and 0.16, respectively. Those changes after the DI water rinse could also have been caused
by the unbound molecules.

Figure 5. Real-time measurements for 30 min showing the changing differential values after the
introduction of 15 μL of streptavidin for four different concentrations and the negative control
(10 μg/mL: yellow; 3 μg/mL: green; 1 μg/mL: blue; 300 ng/mL: red; and negative control: black).

The triplicate test results of four different concentrations are shown in Figure 6. The
differential value due to the binding of streptavidin was measured by averaging differ-
ential values between 25 and 27 min, as described earlier. The average standard devi-
ation of DI water was measured to be 0.00274. The average differential value changes
were 0.074 ± 0.018 (10 μg/mL), 0.039 ± 0.0091 (3 μg/mL), 0.024 ± 0.003 (1 μg/mL), and
0.013 ± 0.001 (300 ng/mL). The LOD of our OCB biosensor was determined by the average
sensor response crossing the 3σ line (0.00821), which was 71.3 ng/mL (1.35 nM). The
differential value of 10 μg/mL did not reach the anticipated value for a monolayer of
streptavidin (0.1266). There are a few possible hypotheses to explain this: (1) the strepta-
vidin molecules on the sensing area were oriented towards where the smaller side of the
molecule was in the beam propagation direction; (2) the actual refractive index change due
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to the immobilization of the streptavidin was less than the monolayer with the refractive
index of 1.45 used for simulation; or (3) the functionalization and passivation processes
were not sufficient to allow streptavidin molecules to form a densely-packed monolayer on
the sensing area without losing them through non-specific bindings on other passivated
surfaces. Out of these, the third is most likely. Even if the layer created by the immobilized
streptavidin molecules was thinner with a lower refractive index, and the differential value
for a monolayer of streptavidin was about 0.074 (average differential value change for
10 μg/mL), it is clear we were not able to form a densely packed streptavidin only on the
sensing area. Based on the given size of the streptavidin, the total amount of streptavidin
required to form a monolayer covering the entire sensing area of 2.5 mm2 is estimated
to be 12.4 ng. For the streptavidin concentration of 1 μg/mL, the total amount of strep-
tavidin in 15 μL of sample fluid is 15 ng. This indicates that, if all available streptavidin
molecules are attached densely only on the sensing area, then there are more molecules
than are necessary to form a monolayer. If a monolayer is formed and the assumption of
the differential value change (0.074) for a monolayer of streptavidin is valid, then the differ-
ential value is supposed to reach that level with 1 μg/mL. However, since the differential
value change for 1 μg/mL of concentration was only 0.024, the result clearly shows no
monolayer was formed. This suggests the sensing area was not well functionalized with
active biotin, and/or we lost many streptavidin molecules in other areas. If we improve
the functionalization and passivation processes to block other areas of target biomolecules
from being attached, so that all available target molecules are attached densely only on the
sensing area, the result can be significantly improved.

 

Figure 6. Differential values measured in triplicate versus four concentrations of streptavidin in a log scale.

3.2. C-Reactive Protein (CRP) Detection

CRP is a 115 kDa serum protein with a hydrated volume of 197.3 mm3, and is one of
the most frequently used cardiac biomarkers with high specificity to diagnose and monitor
cardiovascular diseases (CVDs), which are the leading cause of death worldwide [39]. The
American Heart Association (AHA) and the Center for Diseases Control and Prevention (CDC)
defined the risks of CVDs to be low for a concentration of CRP in humans below 1 μg/mL,
moderate for a CRP concentration between 1 and 3 μg/mL, and high for a CRP concentration
over 3 μg/mL [40]. The level of human CRP is also increased 1000-fold within 24–48 h in
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response to infection, inflammation, and tissue damage [41]. Figure 7 shows the measurement
results for three different concentrations of CRP (10 μg/mL, 1 μg/mL, and 100 ng/mL)
using the OCB. For CRP detection, we followed the same fabrication and functionalization
processes used for the streptavidin detection. To functionalize the sensing area with the CRP
antibody, we first introduced 30 μL of streptavidin with a concentration of 100 μg/mL to
the microfluidic channel and incubated for at least 30 min so that the streptavidin molecules
were immobilized on the biotin on the sensing area. After rinsing the channel with DI water
to remove unbound streptavidin molecules, 30 μL of biotin-conjugated CRP antibody with
a concentration of 100 μg/mL was introduced and incubated for at least 30 min so that the
biotin part of it was attached to the streptavidin-coated surface, while the CRP antibody
covered the surface. The microfluidic channel was rinsed with DI water to remove unbound
CRP antibody molecules and filled with it for fine-tuning the optical cavity through polymer
swelling. When the optical cavity was ready for the experiments, we introduced 15 μL of CRP
protein spiked in tris-HCl buffer with a flow rate of about 0.9 μL/min for about 17 min. Finally,
the microfluidic channel was rinsed with DI water, and the average differential value changes
were determined by averaging differential values between 8 and 10 min after DI water was
introduced. The measured average differential value changes were 0.141 (10 μg/mL), 0.061
(1 μg/mL), and 0.018 (100 ng/mL). Based on the measured average standard deviation in
the baseline data with DI water (σ = 0.00284), the LOD for CRP detection is determined to be
43.3 ng/mL (377 pM).

 

Figure 7. Differential values versus three concentrations of C-reactive protein (CRP) in a log scale.

4. Discussion and Future Work

The LOD of our OCB for streptavidin detection (1.35 nM) can be improved further.
First, the sensing area (2.5 mm2) where streptavidin was allowed to be attached was
larger than the area that was used for data processing (0.02 mm2; the area of a 160 μm
diameter circle). If we properly functionalize only this area with sulfo-NHS-biotin, so that
streptavidin molecules can be attached within the area of 0.02 mm2, then the LOD of the
OCB becomes 10.9 pM, assuming streptavidin molecules are attached on the sensing area
uniformly. Second, as we discussed earlier, the current functionalization and passivation
processes need to be improved further to allow more streptavidin molecules to be attached
only at the sensing area. If we consider the sensing area of 0.02 mm2 and lose only about
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20% of the target molecules (equivalently, 15 μL of 1 μg/mL streptavidin forms a monolayer
on 2.5 mm2), then we can estimate that the LOD can be improved further by an order of
magnitude, to 1.09 pM. Finally, the LOD will be improved proportionally by the amount of
sample fluid. This is simply because, to be able to detect the differential value changes, we
need a certain number of target biomolecules on the sensing area regardless of the total
volume of sample fluid. For a lower concentration sample, the sample fluid with a larger
volume will contain enough biomolecules to cause the differential value to change to
greater than 3σ. For example, the LOD can go down to 109 fM, which is a 10-times smaller
concentration than the 1.09 pM given by the previous LOD estimation, with a sample
volume of 150 μL (i.e., 10 times the 15 μL volume used in the previous analysis). The same
analysis can be applied to the LOD for the CRP detection. For the smaller sensing area of
0.02 mm2, the LOD for CRP can be improved to 3.02 pM from 377 pM with the sensing
area of 2.5 mm2. With improved functionalization and passivation processes, assuming
only 20% of target molecules will be lost, the LOD for CRP will be improved further to
302 fM. Finally, with the sample volume of 150 μL, the LOD can reach up to 30.2 fM.

The design presented in the work was optimized for a silver thickness of 20 nm. It is
possible to design an optical cavity structure with a better LOD with a thicker silver layer.
A thicker silver layer will increase the reflectance of the partially reflective mirrors which
will, in turn, increase the quality (Q) factor of the optical cavity (i.e., a sharper resonance
curve). With a sharp resonant response, the intensity changes of two wavelengths will
become steeper, as the sensing layer’s thickness increases, than those with the current
design. This will enhance the differential value change and, therefore, improve the LOD.
However, a thicker silver layer will also increase the absorption of light, increasing the
optical loss of two laser diodes. The optical loss at each partially reflective mirror will
reduce the sharpness of the resonant response. Therefore, an improved optical cavity
design with a thicker silver is possible, but it has to be experimentally optimized due to
these conflicting phenomena.

5. Conclusions

The optical cavity-based biosensor (OCB) has been developed for the purpose of POC
biosensing. It is a label-free system detecting the local refractive index change due to
the adsorption of target biomolecules on the receptor molecules. It is a low-cost system
with simple and straightforward fabrication processes and low-cost parts and components,
which achieves high sensitivity by employing the differential detection method. To demon-
strate the limit of detection (LOD) of the OCB experimentally, we conducted streptavidin
and CRP detection tests. For a silver thickness of 20 nm, the optimized optical cavity
structure has a cavity height of 8 μm and a SOG thickness of 400 nm for the wavelengths of
830 nm and 904 nm. The fabricated devices have typical layer thicknesses of 22 nm (silver),
410 nm (SOG), 6.4 μm (SU8), and 1.08 μm (UV glue). The SOG surface was functionalized
by the vapor-phase deposition of APTES followed by sulfo-NHS-biotin covalent bonding
for more reproducible and stable test results. The polymer swelling property was used to
fine-tune the optical cavity width. From the triplicate test results for streptavidin detection,
the LOD of the OCB was determined to be 1.35 nM with four different concentrations
of streptavidin. Human CRP was chosen to demonstrate our OCB’s ability to detect an
actual biomarker for the first time. With biotin-conjugated CRP antibodies as the receptor
molecules, the OCB successfully detected CRP with an LOD of 377 pM. All measurements
were done using a small sample volume of 15 μL in a short time, less than 30 min, once the
optical cavity reached the measurable condition after the fine-tuning process. We showed
that the LOD of our OCB can be improved further into the femto-molar range for both
streptavidin and CRP by reducing the sensing area, improving the functionalization and
passivation processes, and increasing the sample volume. The LOD of the OCB could be
possibly improved with a thicker silver layer, but it must be experimentally optimized.
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Abstract: For many years, successful noninvasive blood glucose monitoring assays have been
announced, among which near-infrared (NIR) spectroscopy of skin is a promising analytical method.
Owing to the tiny absorption bands of the glucose buried among a dominating variable spectral
background, multivariate calibration is required to achieve applicability for blood glucose self-
monitoring. The most useful spectral range with important analyte fingerprint signatures is the
NIR spectral interval containing combination and overtone vibration band regions. A strategy
called science-based calibration (SBC) has been developed that relies on a priori information of
the glucose signal (“response spectrum”) and the spectral noise, i.e., estimates of the variance of a
sample population with negligible glucose dynamics. For the SBC method using transcutaneous
reflection skin spectra, the response spectrum requires scaling due to the wavelength-dependent
photon penetration depth, as obtained by Monte Carlo simulations of photon migration based
on estimates of optical tissue constants. Results for tissue glucose concentrations are presented
using lip NIR-spectra of a type-1 diabetic subject recorded under modified oral glucose tolerance
test (OGTT) conditions. The results from the SBC method are extremely promising, as statistical
calibrations show limitations under the conditions of ill-posed equation systems as experienced for
tissue measurements. The temporal profile differences between the glucose concentration in blood
and skin tissue were discussed in detail but needed to be further evaluated.

Keywords: noninvasive glucose sensing; near-infrared spectroscopy; skin tissue reflection spectroscopy;
calibration modeling; science-based calibration (SBC)

1. Introduction

The advantages of tight glycemic control in people with diabetes mellitus have often
been documented since the diabetes control and complications trial (DCCT) studies were
completed [1–3]. Those studies proved that intensive insulin therapy in such patients
could dramatically delay many serious complications caused by an increase of glycation
of body proteins due to above-average blood glucose concentration, which can also be
connected to problems from micro- and macrovascular diseases leading, e.g., to retino-,
nephro-, and neuropathy. Most diabetic patients use the equipment for blood glucose
self-monitoring (SMBG) that tracks their glucose concentrations and enables them to adjust
their insulin dosage and achieve normoglycemia. Over the past few years, substantial
progress can be seen in research to find improved devices for diabetic patients, mostly
based on electrochemical and optical sensors; for an overview on current methods and
instrumentation, see recent reviews [4–11]. When undergoing intensive insulin therapy,
current surveillance still requires people with diabetes to use lancets to prick their fingertips
for blood sampling several times a day. Alternatively, they can use continuous glucose
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monitoring (CGM) devices that have recently been brought to the market. As so-called non-
adjunctive devices, these still require invasive blood testing from time-to-time. Such factory-
calibrated sensors are used for intermittently scanned continuous glucose monitoring
but still face limitations. Problems may occur in situations with rapid blood glucose
changes [12,13], and sensor glue can cause skin irritations [14]. Despite this, minimal-
invasive continuous glucose sensing systems have been suggested for glycemic control in
people with diabetes mellitus and critically ill patients [15].

A noninvasive measurement system certainly eliminates the inconvenience and pain of
multiple daily blood tests and, as observed with continuously monitoring devices, avoids
the invasiveness of today’s flash glucose monitoring sensors or microdialysis catheter
implants combined with ex vivo detection. Noninvasive instrumentation also allows a
larger number of measurements than using SMBG invasive devices.

A multitude of optical methods has been suggested for the development of noninva-
sive methods of blood glucose monitoring. To date, applied spectroscopic methods have
been based on vibrational spectroscopy and include mid-infrared, NIR and Raman spec-
troscopy, among other techniques such as fluorescence, polarimetry, and optical coherence
tomography, for which recent comprehensive reviews exist, e.g., [8–11]. New publications
based on mid-infrared [16] or Raman spectroscopy [17] have shown promising results for
achieving noninvasive assays, and earlier papers from both research teams provide more
insight into their measurement techniques [18,19].

For many years, NIR spectroscopy has found application in clinical chemistry. In
particular, glucose quantification in serum, plasma, or whole blood has been demonstrated
successfully by several authors; see, for example, [20–23]. Therefore, several projects were
started for the development of noninvasive assays based on skin measurements. An in-
teresting and fascinating book to read on the many fruitless efforts in the past has been
published by Smith [24]. Despite those failures, NIR spectroscopy offers a substantial
potential for medical applications, including noninvasive methodology for blood glucose
determinations; for an overview, see a recent book chapter [25]. Skin spectroscopy based
on transmission measurements requires thin skin folds or short-wave NIR spectroscopy
for transilluminating a fingertip or an earlobe [26]. For accessing information-rich spec-
tral intervals with first overtone and combination band vibrations, the diffuse reflection
technique has been favored when measuring skin.

The noninvasive sensing of glucose is experimentally challenging due to the tiny
glucose absorbance, a dominating high and variable background absorption of water,
baseline shifts, instrumental drift, lack of sensitivity, and poor precision. Multivariate
calibrations are required to allow for the obligatory selectivity [27] of reliable glucose
quantification with large-enough analyte absorbances above the noise level. Traditionally,
two different calibration modeling approaches are used. Analytical spectroscopists were
analyzing sample spectra by least-squares fitting with reference absorptivity spectra of
analytes contributing—in most cases—linearly to the sample spectrum, dependent on
their concentrations. The physics behind this is the validity of Beer’s law. This approach
for glucose sensing is known as “classical least squares” (CLS) calibration [28] and was
suggested by Maruo and Yamada [29] under the assumption that absorbance difference
spectra of human forearm skin versus that of a start spectrum can be modeled by a linear
combination of spectra of glucose, water, protein, fat, and a baseline for scattering.

The other more widely applied modeling technique relies on statistical calibration
(also called inverse calibration) based on traditional partial least-squares (PLS), principal
component regression (PCR), or, more recently, machine learning tools; for recently pub-
lished examples of use in noninvasive methodology testing, see Refs [16,17]. The reader
is also referred to our earlier publications for insight into previously favored calibration
modeling and its advantages and disadvantages [28,30]. For proving the required selec-
tivity, the net analyte signal (NAS) has been suggested as an approach to validate the
spectrometric model when separating the glucose spectral signature from those of the
tissue matrix components [31,32].
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Most projects for the development of noninvasive glucose assays, including our own
work, used statistical PLS calibrations with sophisticated data treatment and variable selec-
tion methods [33–36]. It could also be demonstrated that problems and pitfalls can arise
from overfitting due to the implementation of too many spectral variables or insufficient
model validation [33]. If a statistical calibration technique is used, there are additional
problems such as a nonspecific response or an implementation of spuriously correlated
spectral variance into the calibration model. Further evaluations of such spectrometric
assays, including a discussion of problems and perspectives, have been published in the
past [31,33].

Another approach, originally called “spectral Wiener filtering” and known from
time signal processing theory, has been developed and successfully tested. The results
of this approach are presented here, combining a priori information such as the spectral
absorptivities of the analyte of interest with estimates of the variance of the population
with negligible analyte concentration dynamics [37–39]. When compared to calibration
modeling based on PLS and with regard to workload, this method is also less expensive
allows, without an analytical reference method, the specificity of response to be proven
from first principles, and combines the best features of both worlds, i.e., of the physical and
statistical modeling approaches. Early users from the pharmaceutical industry, working
with process analytical technologies (PAT), referred to this as a “science-based” method, so
the name “science-based calibration” (SBC) method was created. The calibration method
has been implemented several times for pharmaceutical applications, such as in a tablet-
coating process using Raman spectra [40].

In the context of clinical chemistry for glucose quantification, this method was success-
fully tested on the NIR-spectra of plasma samples obtained using a thermostated cell with
a constant pathlength of 1 mm. Compared to previous PLS calibration models, the results
were favorable [33]. For transcutaneous spectra obtained by diffuse reflection, estimating
the glucose “response spectrum” is more difficult since the wavelength-dependent photon
penetration depth into the skin requires a wavelength-dependent scaling of the aqueous
glucose absorptivity spectrum. The scaling can be obtained from optical skin parameters
such as absorption and scattering constants. Results for glucose concentration in the lip
mucosa tissue of a diabetic subject, recorded under modified oral glucose tolerance test con-
ditions, will be presented using scaling parameters as obtained for dermis and lip spectra.
For the first time, results are shown for tissue glucose concentrations that differ, as expected,
from blood glucose measurement as the current gold standard for diabetes therapy. Several
publications addressed the time delay observed in measurements within the interstitial
tissue compartment as accessible with invasive needle-type biosensors. However, the
present results provide insight into integral tissue measurements with vascular, interstitial,
and intracellular glucose-containing aqueous compartments.

2. Materials and Methods

2.1. Spectrometer Hardware and Recorded Spectra

Within the so-called “therapeutic window”—as coined by biospectroscopists—with
wavenumbers between 16,600 cm−1 and 7700 cm−1, a transmission measurement, e.g., of a
fingertip, is feasible with tissue absorption small compared to scattering [26]. For shorter
wavenumbers, such NIR-spectral measurements lead to extremely low transmittance
values, whereas experiments using diffuse reflectance (DR) can easily be realized. Different
accessories were employed based on either quartz fibers or mirror optics (see Figure 1).
With fiber-optic probes, optimal distances between tissue illuminating fibers and detection
fibers can be arranged to reach a certain skin depth and to probe the dermis vasculature as
well (see also different fiber arrangements illustrated in Figure 1a). This approach made
use of an optimized accessory with a rotational ellipsoidal mirror, which produced the
highest signal-to-noise ratios, good reproducibility of the lip measurement, and allowed a
temperature control of the lip contact area at 37 ◦C [41].
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Figure 1. Diffuse reflection accessories used for skin measurements: (a) fiber-optic probes with fibers for illumination and
detection arranged differently; (b) mirror-based device providing tissue spectra with different probing depths.

In Figure 2a, examples of spectra of different layers of muscle tissue backed with a
reflecting gold-coated carrier substrate are shown that were measured in diffuse reflection.
It shows that the spectral intensities are accessory-dependent due to the accessible solid
angle for detection of the back-scattered photons. For some spectral intervals, an enlarge-
ment of the tissue thickness does not lead to larger absorbance values, indicating that
“saturation” was already reached at an even shorter penetration depth than the thinnest
layer of 0.8 mm would allow. For comparison, an absorbance spectrum from a 0.5 mm thick
tissue layer, enclosed by quartz windows and measured in transmission, is shown together
with water spectra that were measured in cuvettes of different pathlengths (see Figure 2b).
In comparison with absorbance spectra of liquid water, a transmission equivalent sample
thickness can be estimated for the spectra measured by diffuse reflection spectroscopy.

Mucous lip tissue was chosen for the transcutaneous measurements because it is rich
in capillary blood vessels (equivalent to an advantageously high blood volume inside the
probed tissue) and also provides good optical contact to the constructed diffuse reflection
accessory for recording high-quality in vivo spectra. NIR-spectra of the inner lip were
recorded using a Fourier Transform spectrometer (model IFS-66 from Bruker Analytische
Messtechnik, Ettlingen, Germany) and a liquid nitrogen-cooled InSb detector (Infrared
Associates, Suffolk, UK). An on-axis ellipsoidal mirror is the essential optics part of the
reflection accessory that collects the diffusely back-reflected radiation from the skin tissue
in a very efficient manner and much differently from commercially available accessories
or fiber-optic probes [41,42]. Reflectance spectra R(

∼
υ) = Is(

∼
υ)/I0(

∼
υ) were calculated with

Is(
∼
υ) and I0(

∼
υ), i.e., the single-beam lip spectrum and the reflectance standard, respectively.

Previously, also spectra of standards of different reflectivity were measured, but the one
with a reflectivity of 5%, also from Spectralon (Labsphere, North Sutton, NH, USA), was
preferred for matching the reference standard interferogram to that of the lip spectrum in
an optimal manner by comparing their interferogram maxima.
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Figure 2. Spectra of tissue phantoms of constant layer thicknesses illustrating wavelength-dependent
radiation penetration: (a) monitored with different accessories (for the first two spectra, a fiber-optic
probe of type I was used); (b) transmission spectra of water and tissue.

Before the lip measurements were started, the test person had to rinse their mouth
with plain water. After patting the lip dry, the spectra were taken reproducibly by slightly
pressing the inner lower lip (oral mucosa) against the half-spherical lens of the reflection
accessory. The duration of the lip measurements was 1 min for averaging 1200 single-sided
interferograms providing a spectral resolution of 32 cm−1 after Fourier-transformation
and phase correction. For examples of single-beam spectra of oral mucosa tissue and
gray Spectralon standard with 5% reflectance, see also Figure 3a. The lip spectrum and
noise level, obtained from two consecutive tissue measurements with baseline correction,
is given in absorbance equivalent units in Figure 3b. The log-converted single-beam lip
spectrum is also displayed, which shows differences only in a smooth and constant baseline
compared to the –log (reflectance) spectrum. The hardware noise within the log-converted
single-beam spectra is smaller by a factor of

√
2 than that found in the absorbance spectra

as calculated from two noise-loaded single-beam measurements.
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Figure 3. (a) Single-beam spectra of oral mucosa and a gray reflectance standard of 5% reflectivity,
measured by diffuse reflection; (b) log-converted single-beam lip spectrum and two lip reflectance
spectra as calculated from two respective series of five consecutively recorded lip tissue spectra
shown as average spectra with according standard deviation spectra (spectra were taken at the
beginning of our two-day measurements with capillary blood glucose values around 50 mg/dL and
around 400 mg/dL during the first day; all spectra were offset for better visualization) and enlarged
noise spectrum from two consecutive lip measurements after baseline correction.

2.2. Calibration Design and Reference Method

The measurements presented here were conducted as part of the initial proof-of-
concept study, and although a description of earlier outcomes has been published in
previous work [34,35], the dataset is nonetheless well-suited to provide additional insight
into various calibration strategies and issues involved. The experiments were in compliance
with ethical principles for human studies and required the consent of the informed subject.
Spectra of the lip mucosa of a male test person with type 1 diabetes mellitus were recorded
under the conditions of a modified oral glucose tolerance test (OGTT) over a two-day trial
with parallel measurements of capillary blood glucose concentrations.

The OGTT of the first day started in the morning at a low blood glucose concentration
after fasting. For reaching an increased blood glucose level after 90 min, a potion with 50 g
of glucose (Dextro OGT by Boehringer Mannheim, Germany) was ingested 20 min after
the initial blood glucose testing. Another load of carbohydrates was given so that when
the maximum blood glucose concentration was reached, an appropriate dose of insulin
was injected to achieve a steady reduction in glucose concentration within another 90 min.
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The test carried out during the second day started with a slightly larger than above fasting
level of blood glucose concentration of the subject. After the lapse of 90 min, the glucose
amount of 50 g was taken with some liquid. The total duration for the OGTT experiments
was 15 h for collecting our total 133 lip spectra.

Capillary blood glucose reference values were measured using a clinical chemistry-
established enzymatic assay (D-glucose, Boehringer Mannheim, Germany) based on both
enzymes of hexokinase (HK) and glucose-6-phosphate dehydrogenase (G6PDH), as pro-
grammed on the analytical instrument model ACP 5040 (Eppendorf, Hamburg, Germany).
The coefficient of variation for the reference measurements was less than 4%, as validated
by control sera, which is more accurate compared to many studies using test strip devices
with a 15% span of relative uncertainty. Over the two days, capillary blood was sampled
with 20 μL capillary pipettes from Brand (Wertheim, Germany) after pricking the fingertip
and subsequent recording of the exact sampling times. Blood glucose reference readings ob-
tained during this two-day experiment ranged from 30 mg/dL (1.7 mmol/L) to 600 mg/dL
(33.3 mmol/L). The population mean value (cav) calculated from these measured values
was 301 mg/dL (16.7 mmol/L) with a standard deviation of SD = 168 mg/dL (9.3 mmol/L).
As the times of blood sampling for our reference measurements did not match those of the
collected spectra (the time gap between two reference measurements was approximately
15 min), interpolation between the capillary blood measurements was carried out by spline
approximation for calculating the blood concentration values at the time of the spectral
lip measurements.

2.3. Optical Data for In Vivo Glucose Calibrations

For elucidating probed tissue volumes and photon penetration depths, the photon
fluence rate in turbid media can be estimated by different mathematical tools for calculating
the radiative transfer. The basis for such calculations are the tissue-optical properties, i.e.,
absorption and the scattering coefficients, μa and μs (in units of mm−1), respectively, and
the anisotropy of scattering g (dimensionless). Using the latter two parameters, also the
reduced scattering coefficient μ’s = μs (1 – g) can be calculated. From simple diffusion
theory, the optical penetration depth can be estimated as δ = (3 μa (μa + μ’s)) – 1/2. For
more information, the reader is referred to a tutorial on this subject [43]. As evident from
the wavelength-dependent optical tissue constants, the average optical pathlength for
radiation within mucosa tissue is wavenumber-dependent, as explicated above. Results
from Monte Carlo simulations of the radiation transport, simulating the “photon random
walk”, were presented in the past for the above-mentioned reflection accessory [41].

In Figure 4, optical constants from skin measurements are compiled from three recent
publications [44–46]. Besides absorption and scattering coefficients, also the anisotropy
factor g is shown in the inset of Figure 4b, which is responsible for the main forward
scattering characteristics of photons within the NIR spectral range. The optical data for the
epidermis and dermis from Salomatina et al. [45] are different from the other compilations,
which is certainly understandable for the thin epidermis layer.

In order to unambiguously detect glucose throughout a complex matrix of several
substances within the measured absorption spectrum, a sufficiently large contribution of
the analyte signal to the overall spectrum is required that is significantly different from and
above the experimentally observed spectral noise. Figure 5 shows the optical constants of
glucose obtained from spectral measurements of aqueous solutions in the laboratory. These
are of special importance in the field of in vivo NIR spectrometry since it is predominantly
the analyte absorption stemming from glucose in the aqueous tissue compartments, i.e., the
vascular space and interstitium, that are of interest. The spectra were obtained by scaled
subtraction of a pure water absorbance spectrum. The dips in the resulting spectra can be
explained by insufficient water compensation attributable to differences in the hydrogen
bonding network in pure water and in glucose solutions, respectively. It must be noted
that the features of glassy sugar, as-received from syrup preparations after water removal
by careful heating, show the same wavenumber dependency as the aqueous solution phase
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spectrum. Using this technique, the solution-opaque spectral ranges due to large water
absorptivities are now accessible, despite still uncompensated water absorption features
within the intervals of intense absorption bands. Spectra of crystalline glucose, as well as
glucose monohydrate, are also shown, which were scaled for comparison.

Figure 4. Optical constants of skin, dermis and epidermis from NIR-spectral measurements.
(a) μa(

∼
υ) = absorption coefficient; (b) μ’s(

∼
υ) = reduced scattering coefficient with μ’s(

∼
υ) = (1 − g(

∼
υ))

μs(
∼
υ); this parameter includes the scattering coefficient μs(

∼
υ) and the anisotropy factor g(

∼
υ); optical

constants were compiled from refs. [44–46]; obvious differences in the scattering coefficients within
the near-infrared (NIR)-spectral range must be noted.
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Figure 5. (a) Absorptivities of glucose calculated from transmission measurements of aqueous
solutions and of glass-like sugars from dehydrated syrup sample (scaled to the aqueous solution
phase absorptivities), as well as from glucose powder; (b) optical penetration depth based on
radiation diffusion theory (from Roggan et al. [46]) used for scaling the glucose response spectrum
for the noninvasive assay.

3. Chemometrics Based on SBC

As the level of familiarity with this method is rather low, a short outline and descrip-
tion of the mathematics is allowed. For the SBC method, the spectral analyte signal is
estimated from a physical point of view and the spectral noise by using statistical tools. This
can combine the accuracy of an inverse model with relatively low calibration effort and the
simplicity of interpretation of a physics-based classical approach. The computational effort
of calibration can be considerably diminished with respect to current routine practice using
statistical calibrations since the requirement for a large population of calibration samples is
no longer necessary. The previously intangible attribute of the analyte’s response specificity
is thus based on spectroscopic first-principles, eliminating the need for analytical reference
methods for calibration standards, which are essential for PLS calibrations. For computer
implementation, the SBC software package was programmed in MATLAB (MathWorks,
South Natick, MA, USA).

Theory and Background

The following NIR spectra are given in units of [AU], from which the analyte con-
centrations are determined. Here, the analyte of interest is glucose (given in mg/dL). If
all spectroscopic factors contributing to the spectrum are available, the experimental NIR
spectrum can be described with the following equation:

xT(t) = y(t) · gT + c1(t) · k1
T + c2(t) · k2

T + . . . + ibaseline
T(t) + . . . + inoise

T(t) (1)
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where the vector xT(t) is the experimental spectrum (the transpose sign “T” means that the
spectrum is written as a row vector). This vector xT(t), as well as its compounds, are time-
dependent functions of (t). The true, and here sought after, glucose concentration is given as
a scalar and described as the “analyte concentration” y(t). The “analyte response spectrum”
is gT with units of (AU/(mg/dL)); the concentrations (c1(t), c2(t), . . . cn(t)) and respective
response spectra (k1

T, k2
T, . . . kn

T) contain all information on spectral perturbations that
can be explained by tissue components (i.e., water, proteins such as collagen and albumin,
blood and interstitial fluid components, and others). The spectra ibaseline

T(t), . . . , inoise
T(t)

include all influencing factors that are produced by the spectrometer and its sampling
interface, such as, but not limited to, detector noise, baseline slopes, and shifts, for example,
from scattering differences, etc. As the SBC method summarizes all “non-glucose-related”
factors in a single expression, Equation (1) can be shortened to:

xT(t) = y(t) · gT + xn
T(t) (2)

where xn
T(t) represents all factors belonging to the experimental spectrum, such as effects

from instrumentation or spectra from interferents, but excludes contributions from the
sought-after analyte. The first term, denoted by “y(t) · gT”, is the “spectral signal”, whereas
the second term “xn

T” will be noted as “noise”.
The key issue of the SBC method is knowing the response spectrum of the analyte,

gT. However, for a noninvasive glucose measurement from diffuse reflection spectra of
skin, the situation is quite different from a transmission measurement with given sample
thickness as provided by a cuvette for measuring whole blood or blood plasma as in
routine clinical chemistry applications. The noninvasive approach requires not only the
glucose absorptivities but also the wavenumber-dependent “effective pathlength” within
the probed tissue for a chosen accessory for diffuse-reflection measurements.

The spectral signal and spectral noise can be described by their first- and second-order
statistics [37]. The spectral signal can be defined by a mean, y · gT, and a root-mean-
square (RMS) term, σy · gT, where gT is the analyte response spectrum. In the case of
people with type-I diabetes, the standard deviation σy for the varying blood glucose
levels y(t) can be as large as around 90 mg/dL. Spectral noise thus can be described by
a vector of mean, xn

T, and a covariance matrix Σ, where the latter provides all spectral
changes, which occur independently of the sought-after analyte, i.e., the variation from
interferents and additional instrumental effects. It is advantageous that for noninvasive
glucose measurements, the spectral noise Σ can also easily be determined by recording
N spectra from healthy people with near-constant glucose concentrations reflecting the
spectral tissue variations over time independent of blood glucose changes. By forming
these spectra xn

T into a matrix X, our covariance matrix Σ is calculated as

Σ ∼= X̃
T

X̃/(N − 1)[AU2] (3)

where the tilde (“~”) indicates a mean-centered matrix. If a “subject-specific” estimate of
the spectral noise is required, spectra from a single test subject can be sampled over time to
estimate the noise covariance. With regard to the instrument-to-instrument “noise,” the
determination of Σ virtually always has relatively low experimental effort since reference
values of the analyte concentration are not essential, as described above. In addition,
should there be any variation in the glucose levels that are present in the experimental
spectra collected for estimating Σ, the calibration method will still work (for further details,
we refer to ref. [33]).

By applying the notation above, the optimal regression vector (also known in literature
as “b-vector”) for the analyte determination is calculated by:

bopt(1) = Σ- g/(gT Σ- g) [(mg/dL)/AU] (4)
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with Σ- being the inverse of Σ. Please note that Equation (4) provides a mean-square
“prediction” error minimum under the condition of unity prediction slope, necessary for
measurement purposes, as illustrated by a scatter plot of predicted versus reference con-
centration values (indicated in the subscript). When bopt(1) is applied for the “prediction”
of the analyte concentration from a newly measured spectrum, xT

pred, its concentration
ypred is calculated by:

ypred = y +
(

xpred − x
)T · bopt(1) (mg/dL) (5)

with y being the mean analyte concentration and xT being the mean noise spectrum of the
individual spectra, which were employed for estimating Σ. With these definitions, the RMS
prediction error, also known as the standard deviation of (ypred − y), is calculated by:

SEPopt = (1/(gT · Σ- · g))1/2 (mg/dL) (6)

If we look into the dependencies of the b-vector optimum (Equation (4)) and the
detection limit (Equation (6)), neither are dependent on reference values since these only
depend on spectroscopic data.

The issue of selectivity in the multivariate calibration case has often been discussed
in the context of performance characteristics of analytical methods. The concept of “net
analyte signal”—see, e.g., refs. [27,31,32]—is useful and approximates the correct definition
in those stable measurement conditions where, after orthogonalization against all “other”
components, there is still a sufficient analyte response spectrum that is well above the instru-
ment noise floor. As noted in a previous publication, the net-analyte concept is insufficient
and inconsistent for routine experience in many NIR-spectroscopic and other challenging
applications with statistical calibration modeling [47]. The correct definition of selectivity
is mathematically straightforward when using the SBC-scheme and nomenclature [33].

A number of important advantages of SBC are evident from the discussion above:

• Laboratory-based analytical work is made virtually needless for calibration for al-
locating reference values (for validation, this will often still be necessary). Thus,
the workload of calibration is significantly lowered when comparing it to statistical
calibration effort with PLS;

• The “noise” spectra required for an estimate of the “skin noise” can be sampled
from healthy test subjects instead of from people with diabetes mellitus. The fact that
these “normal subjects” will show only a narrow glucose variance is certainly an
SBC advantage;

• Selectivity of response can easily be proven to regulatory agencies and concerned
practitioners. Method validation, which requires an application-specific assessment,
also becomes easier.

Finally, we remark that the SBC “method” is not an algorithm per se. It uses Equation
(4) to compute the b-vector, and for this, the user is asked to provide estimates of both
important calibration parameters, i.e., the signal g and the noise Σ. When both estimates
describe reality well, the resulting calibration is the so-called “matched filter” and achieves
the globally optimal mean-square error.

4. Results and Discussion

Some preliminary information must be mentioned before presenting the results from
our two-day OGTT test with a type-1 diabetic subject. For concentration prediction, we
used the—log (reflectance) spectra of the inner lip as absorbance equivalent data and an SBC
calibration vector calculated as follows: The calibration interval was from 8994–5477 cm−1

(115 data points).
First, the spectral noise, Σ, was estimated as the sum of four variance terms. As an

intrinsic term, the hardware noise can be found on the diagonal matrix elements of Σ,
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which was estimated to be 30 μAU RMS at 6300 cm−1. At other wavenumbers, this value
was scaled by the inverse of the intensity of the single-beam of the (average) lip spectrum,
thus becoming wavenumber-dependent. Second, offset noise—defined as a spectrally flat
baseline with an amplitude randomly varying with 50 mAU RMS – was added; third, the
spectral variation from the irreproducibility of the lip contact, also known as “lip-noise”
covariance, was calculated from a population of differences of spectra less than 8 min apart
to minimize residual glucose features. Forth, “water displacement noise” was constructed
by using a pathlength scaled water spectrum (see details of the pathlength scaling below),
calculated from absorptivity data from Bertie [48], and the amplitude scaled to 2% RMS of
displacement. The MATLAB™ codes used in the calculation of these four variance terms
were all very similar to the codes given in [33].

The “water displacement noise” was added to the estimate of Σ in order to break
the unspecific correlation (UC) that exists between the glucose concentration in the skin
and its water concentration. The unspecific correlation between the glucose and the water
concentrations is due to displacement, i.e., the water concentration is decreasing whenever
the glucose concentration is increasing and vice versa. This effect was determined to be the
dominant UC effect for the in vitro measurement of glucose [33], and therefore is expected
to be important also for the noninvasive case. With the covariance matrix set up in this
manner, its inverse was computed at full rank.

The glucose response spectrum used for the SBC calibration was calculated from
that of an aqueous solution measured by using a cuvette of 0.5 mm pathlength. It still
shows negative features around 7200 cm−1 due to water absorbance overcompensation
(see Figure 5a). For scaling the glucose absorptivity spectrum, the optical-penetration-
depth spectrum, as provided by Roggan et al. [46], see Figure 5b, was used. These values
were multiplied by a constant factor of 0.4 in order to account for the reduced glucose
concentration in tissue compared to whole blood or blood plasma, by which the spread of
experimental blood glucose concentration values was also reproduced.

The experiments with the lip measurements were carried out without an exact reposi-
tioning scheme, meaning that the position of the spectroscopically recorded lip area of ca
2 mm diameter was randomly distributed across an area of roughly one cm2. Repositioning
of the optical probe, for example, during an experiment using a rat animal model (see
ref. [32]) led to a significant scatter in glucose prediction, so that the quality of our lip
spectral data with regard to reproducibility and low-noise must be highly rated, especially
when the second-day spectra are taken into account with the test subject showing more
routine in lip measurements. Despite the temperature control of the lip contact area of the
accessory, still, temperature gradients can be manifested, as evident from a principal com-
ponent analysis (PCA) of the spectral population [36]. The dominating factors stem from
the water spectrum and its temperature dependency, but also other features arising from
methylene stretching overtones of the long-chain acyl groups found in the subcutaneous
fatty tissue become visible.

In Figure 6, the time-dependent reference blood glucose concentration values are
displayed together with the SBC predictions. The predicted and reference glucose concen-
tration values had been day-wise mean-centered to adjust for a constant offset experienced
here. The raw predictions were subtracted by 20 mg/dL to align with the fasting blood glu-
cose level when starting the monitoring over the day. The offset makes sense to “high pass
filter out” a noise component that was so far not included in the calibration Σ. As a possible
explanation, we suppose that the pure water spectrum declared as “water displacement
noise” and added to the estimate of Σ, was not quite appropriate, since there exist differ-
ences for the tissue water due to temperature and hydrogen-bonded molecules of various
tissue compounds, which can be sensitively detected within the NIR spectrum. An idea of
the complexity of water signatures within lip tissue can be obtained from a principal com-
ponent analysis (PCA) of the lip spectra, which has been earlier illustrated [36]. At least the
first five factors contributing to the spectral variance show features related to water and its
dependencies on temperature gradients and differences in the hydrogen-bonded network.
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Figure 6. Predictions of tissue glucose concentrations versus blood glucose values for the first day
(a) and the second day of the modified oral glucose tolerance test (OGTT) (b); tissue concentrations
were calculated with the SBC-calibration model using reflection lip spectra and glucose absorptivities
scaled with photon penetration depth (results were offset corrected, see also text). Spectra and
reference blood glucose concentration data are from previous publications [31,33]; calibration interval
was from 8994–5477 cm−1 (115 data points) with noise covariance calculated from differences of lip
spectra less than 8 min apart.

For the first day, during the starting phase, a slightly “running ahead” of the time
profile of the tissue glucose is observed compared to the reference capillary concentration
values from the fingertip, whereas for other periods, a significant time lag can be noticed.
A similar lack of time correlation can be observed for the second day (this trace is also
showing a reduced scatter when compared with the prediction data of the first day; note
the difference in the Y-axis scales). Two days’ worth of data from a single subject is not
a large enough data set to allow quantitative statements about “typical” time behavior,
but the following conclusions are clear. Relative to the time profile of the blood glucose
concentration, the time profile in the skin can lead or lag. In several publications, it has
been noticed that a glucose decrease in tissue can drop earlier than found for the vascular
compartment, i.e., a glucose decrement in tissue precedes hypoglycemia [49]. On the other
hand, also such a feature has been found for situations with a lead-in tissue for glucose
increments (see experiment shown in [32]). The lack of time-correlation displayed by
the examples in Figure 6 is concerning. The mechanisms causing this discrepancy will
need to be studied in the future, and their effects quantified for given segments observed
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for “typical” patients in typical environments. Especially for skin inserted CGM sensors,
the time delay between blood and interstitial glucose profiles has been recently studied
several times with two publications given here, one with three different sensors and a
second paper dealing with an in silico study [50,51]. In particular, the in silico study is
extremely interesting as glucose concentration differences of up to ±40 mg/dL between
blood and interstitium were obtained, and time delays up to 25 min were realized. At any
rate, even the simplest way of thinking about the glucose-in-the-skin as a time signal leads
to a second-order differential equation, i.e., with two inputs, carbohydrate intake making
the signal go up and injecting insulin, making it decrease. Which of these two effects wins
the race to the measured skin and thus determines the slope (d/dt) of the signal at the time
of measurement depends on what the subject did during the previous two hours. Given
that people are a bit unpredictable even when performing routines, there cannot be an
exactly fixed time-shift relationship to the glucose-in-the-blood. However, we can hope for
more-or-less repeatable tendencies of patient behavior.

The SBC method also allows measuring the effect of the hardware noise floor only,
i.e., by multiplying it into the b-vector for providing an estimate of the repeatability error,
which was calculated to be 35.5 mg/dL RMS. For further comparison, with these data
set at hand, several extensive studies have been carried out based on PLS calibrations,
and the reader is referred to our publications [33,36]. Best standard errors of prediction
could be achieved with variable selection, reaching a SEP = 36.6 mg/dL. Using an impulse
invariant designed Butterworth filter of first-order with a time constants of 10 min, the
time-dependent blood glucose profiles were shifted for allocating probably concentration
reference values more similar to tissue estimates, but SEP improvements of only 2.5 mg/dL
could be reached. Arnold and coworkers considered a time shift of 15 min between tissue
and blood glucose profile for rat skin [32]. An offset similar as experienced within our SBC
study could also be observed when using different daily data sets for calibration modeling;
see results illustrated in [33]. Arnold and coworkers investigated the tissue variability and
its impact on the PLS regression vectors. Differences in skin inhomogeneity led to vector
changes with the effect of offsetting the prediction results.

Since there is no least-squares fitting to blood glucose values (or any other reference
values) carried out in SBC calibration, the SBC predictions represent a direct measurement
of the glucose concentration in the tissue. Unlike statistical calibrations, PLS, etc., which
rely on the correlation between blood glucose reference values and skin spectra, and which
are therefore influenced by the dynamic glucose transport processes between vascular
and interstitial and intracellular compartments, SBC calibration is not influenced by these
processes. It just measures the glucose in the skin. Therefore, it is rather useless to state
SEP-values with systematic deviations as illustrated by in silico simulations, which yet
considered two compartments only, i.e., vascular and interstitial space. The methodology
applied by integral tissue spectroscopy will even show a larger complexity by taking the
intracellular compartment additionally into account. To reach similar results with PLS
calibrations, a large number of clamp experiments with steady-state conditions would
need to be performed to furnish the analyst with the appropriate number of calibration
samples and for allowing a comparison based on SEP or similar metrics used for sensor
quality assessment such as MARD values (average of the absolute error between all CGM
values and matched reference values). A comparison with other vibrational spectroscopy
methods [16,17], recently published and mentioned in the beginning, is difficult. Results
from the multiperson studies were given as MARD values of 12% for the mid-infrared
spectral measurements with photothermal detection, and spectral outliers previously
removed [16] or around 24% and larger for noninvasive Raman measurements [17]. For the
SBC study, a MARD of 23% can be calculated with the omission of six extreme outlier data.

Since spectroscopy probes the integral tissue glucose whereas reference values used
for validation rely on whole blood analysis, diffusion processes within the tissue, especially
between the vascular and interstitial compartments leading to a variable temporal shift
in both concentration time-series, will certainly need further investigations. It is not clear,
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unfortunately, whether it will be possible to predict capillary glucose concentration values
uniquely from tissue measurements unless other experimental options for avoiding such
complications are employed, e.g., the use of pulsatile spectroscopy (plethysmography).

5. Conclusions

The validation of calibration models for a noninvasive and transcutaneous blood
glucose assay based on NIR spectrometry of skin illustrates a rather critical aspect. For
the first time, the so-called “spectral Wiener filter” method, also known as a science-based
method of calibration (SBC), was applied to noninvasive glucose measurement. The
accuracy was tested on time-sequenced NIR-spectra collected over two OGTT days with
better performance on the second day, which allowed conclusions about the behavior of
the glucose concentration–time profiles in the blood and in the measured skin volume.

The accuracy achieved is far from that required for a viable noninvasive measurement.
Still, the results are useful in a number of ways. First, they demonstrate that SBC calibration
is possible also in the noninvasive case, i.e., that workload of calibration can be drastically
diminished compared to today’s routine practice with PLS usage. Second, the results
indicate that also in the noninvasive case, glucose can be measured in a selective way, i.e.,
without using unspecific correlation effects like water displacement as a signal, which
statistical calibrations have done in the past [35]. However, more work is needed here. The
precision of the presented FT-NIR measurement is not good enough, i.e., the prediction
scatters error is too large to allow reliable assessment of the magnitude of the prediction
slope, or rather: deviation from the ideal value of unity slope. The latter is necessary for
an exact, quantitative prove of selectivity of response [39]. The results shown in Figure 6
indicate a slope close to the desired value of one; for further discussion, see also ref. [33].
The accuracy of the scaling applied to transform the aqueous glucose absorptivity spectrum
into the response spectrum of the noninvasive case is hard to estimate but is believed to be
within several 10% of the true scaling, which is supported by the prediction of the blood
glucose concentration range.

The robustness of calibration also must be improved in the future, i.e., additional
variance contributions need to be added to the noise estimate Σ used in our SBC calibration
(with the corresponding potential price in sensitivity) [35]. With in vivo spectroscopy,
the variability from physiology, problems with repositioning of skin tissue, temperature
gradients, blood flow effects, photon penetration depths, etc., are required to be further
studied before calibration robustness for such application can generally be proven (e.g.,
avoiding systematic errors like the daily offsets experienced in our data set). The SBC
prediction results also reveal that a different type of instrument will be more advantageous
in the future because FT-NIR spectrometers are influenced by a relatively large hardware
(detector) noise in the NIR-spectral range. In summary, the SBC calibration produced in
the above way relies entirely on spectroscopy data and knowledge and does not use the
laboratory reference values at all. In this regard, it is similar to the established classical
calibration methods, but unlike these spectral fitting methods, the SBC result converges
against, and therefore in praxis comes much closer to the optimal Wiener filter result.

The fundamental problem to be overcome in the future, however, seems to be the
lack of time correlation between the glucose concentrations within the different tissue
compartments, i.e., within the vascular, interstitial, and intracellular space. While the
relationship of the temporal glucose profiles from the intravascular and the interstitial
compartments was studied intensively by various needle-type sensors, the intracellular
space also with phosphorylated glucose has so far been paid no attention apart from a few
attempts. The effects causing a mismatch between the glucose concentration in blood and
integral skin tissue need to be further evaluated. Though the optical spectroscopic methods
have always caught much attention, and many different approaches with demanding
hardware have been presented during the last 20 years, there seems to be no break-through
hovering on the horizon using NIR-spectroscopy of skin tissues. On the other hand, the
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SBC method can be considered a strong chemometric tool for regression and modeling
tasks, and further work into noninvasive testing will be worthwhile.
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Abstract: According to the WTO, there were 1.13 billion hypertension patients worldwide in 2015.
The WTO encouraged people to check the blood pressure regularly because a large amount of patients
do not have any symptoms. However, traditional cuff measurement results are not enough to repre-
sent the patient′s blood pressure status over a period of time. Therefore, there is an urgent need for
portable, easy to operate, continuous measurement, and low-cost blood pressure measuring devices.
In this paper, we adopted the convolutional neural network (CNN), based on the Hilbert–Huang
Transform (HHT) method, to predict blood pressure (BP) risk level using photoplethysmography
(PPG). Considering that the PPG′s first and second derivative signals are related to atherosclerosis
and vascular elasticity, we created a dataset called PPG+; the images of PPG+ carry information
on PPG and its derivatives. We built three classification experiments by collecting 582 data records
(the length of each record is 10 s) from the Medical Information Mart for Intensive Care (MIMIC)
database: NT (normotension) vs. HT (hypertension), NT vs. PHT (prehypertension), and (NT + PHT)
vs. HT; the F1 scores of the PPG + experiments using AlexNet were 98.90%, 85.80%, and 93.54%,
respectively. We found that, first, the dataset established by the HHT method performed well in
the BP grade prediction experiment. Second, because the Hilbert spectra of the PPG are simple and
periodic, AlexNet, which has only 8 layers, got better results. More layers instead increased the cost
and difficulty of training.

Keywords: blood pressure; photoplethysmography; derivatives of PPG; convolutional neural net-
work; ensemble empirical mode decomposition

1. Introduction

Patients with chronic hypertension will experience serious consequences if it is left
untreated, including a range of cardiovascular diseases affecting the heart [1]. But most
patients have no obvious symptoms in the early stages of the disease, so it is important to
check BP level regularly.

The traditional method of BP measurement uses a cuff-link-type BP meter. The “white
coat effect” refers to patients taking it in a medical setting with even less accurate BP than
when they take it at home [2,3]. Therefore, a single measurement datum is not enough to
reflect the human condition. Continuous measured BP is more accurate than single measured
BP [4]. In view of the shortcomings of clinical invasive continuous BP measurement, which
is difficult to perform and may cause serious harm to patients, noninvasive continuous BP
measurement is of great significance.

With increases in age and changes in the physical condition of human beings, the
elasticity of the blood vessel wall will decrease. When the resistance of blood flowing in
blood vessels increases, blood pressure will increase accordingly. This is the pathogenesis
of hypertension. Currently, there are three most commonly used noninvasive continuous
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BP detection methods. The first is the pulse transit time (PTT) theory method, which
refers to the time difference of the diffusion of pulse waves between two arteries in a
cardiac cycle. When BP in the blood vessels increases dramatically, the vascular tension
and speed of arterial pressure waves will increase, leading to shortened PTT [5]. However,
obtaining the time difference requires both electrocardiogram (ECG) and pulse wave
signals. It is also difficult to acquire the ECG. The second detection method is based on the
morphological theory of PPG [4,6,7]. The most common way to obtain the PPG signal is
to use a photoelectric sensor to detect changes in light transmitted or reflected by human
skin vessels [8]. PPG represents the change of human blood volume and characterizes the
systolic and diastolic processes of the heart, which are linked to BP. PPG′s first and second
derivative signals are related to atherosclerosis and vascular elasticity, which are factors
that influence BP. Luo Zhichang et al. [9] found that the tidal wave of the pulse wave signal
of high blood pressure will gradually approach the main wave, finally merge with it, and
even exceed the main wave. Therefore, the main wave of the PPG signal with hypertension
looks more rounded and curved than that of normotension. Thus, PPG is closely related to
BP. Therefore, PPG signal is increasingly applied to predict BP, blood oxygen, respiration
rate, and other data [10–12]. The third method combines the characteristic points of the
ECG and PPG signals to predict BP [13–15]. The reason for the rise of this method is that,
although PPG signals feature points that contain information related to SBP (systolic blood
pressure), it is not easy to determine the relationship between PPG and DBP (diastolic
blood pressure). Therefore, using PPG alone is bound to lead to inaccurate BP predictions.
Accuracy is improved by adding the ECG signal [16]. However, obtaining the ECG signal
remains a challenge in research because of current technology limitations.

Among the many studies on PPG signals, research on the derivatives of PPG has
attracted our attention. Figure 1 shows PPG and its first and second derivatives. Qawqzeh
et al. [17] analyzed the relationship between the first and second derivatives of PPG and
atherosclerosis. The second derivative of PPG (SDPTG) was found to be closely related to
atherosclerosis and could be used as an assistant technology to detect the disease. There
are many factors causing atherosclerosis in the human body, among which hypertension is
the most common one. Hypertension and arteriosclerosis cause and affect each other and
exist together. Based on this, Mengyang Liu et al. [18] used PPG and its second derivatives
to predict noninvasive BP. They retrained the experiment by adding 14 SDPTG features
based on the 21 time-scale PPG features, and the experimental results showed that SDPTG
can improve the accuracy of BP prediction. However, in real life, the morphological charac-
teristics of PPG and SDPTG vary from person to person, and there are certain difficulties in
the calibration and measurement of features, which bring great difficulty to the research.
Considering the difficulty mentioned above, many scholars have innovatively used CNN
to indirectly identify and extract feature points without manual calibration [19,20], which
greatly reduced the time-cost. The self-adaptability of the network structure to extract
feature points improves the universality of the experiment and makes the results more
convincing. In addition, Liang et al. [21] found that the method using CNN has a higher
accuracy than the method using PPG feature point fitting.

Figure 1. PPG (photoplethysmography) and its first derivative (PPG′) and second derivative (PPG”). The data comes from
the MIMIC database.
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The purpose of our paper was to use PPG and its first and second derivative signal to
predict BP level using a deep learning method. First, we segmented the PPG, extracted
the baseline, and regularized the signal. Then the Hilbert–Huang Transform method was
used to process the segmented signal and the generated image, and the corresponding BP
value of the signal was taken as the label. Finally, the CNN was used to train the dataset.
We looked at three questions; the first is to determine whether the training results of the
dataset established by the HHT method are good enough on the network. The second is
to explore whether more layers in the network are better for our datasets. The third is to
know whether the first and second derivatives of PPG carry BP-related information.

2. Materials and Methods

2.1. Dataset Source

Both the PPG and the ABP (arterial blood pressure) data used in this paper come
from the MIMIC database. Each signal has 10 s length and a sampling frequency of
125 Hz. In order to improve the generalization performance of the training frame and the
generality of the experiment, in addition to the continuous and stable signal, the continuous
unstable signal, and the noisy signal were retained. We divided the two signals into 2 parts
for 5 s each. After signal processing—including using 0.4–8 Hz Butterworth filter as
filtering, normalization, and baseline drift removal—the maximum values of systolic and
diastolic blood pressure were extracted from each segment of the ABP signal, and the
BP level corresponding to this segment of signal was determined by the 7th Report of
the Joint National Committee on Hypertension Prevention, Detection, Evaluation and
Treatment (JNC7). By analyzing the values of systolic and diastolic blood pressure (Table 1),
JNC7 classifies blood pressure into three categories: normotension (NT), prehypertension
(PHT), and hypertension (HT). The BP level shown by the ABP serves as the label for the
corresponding segment of the PPG signal.

Table 1. Blood pressure classification according to JNC7.

Classification
Systolic Blood Pressure

(mmHg)
Diastolic Blood Pressure

(mmHg)

normotension <120 and <80
prehypertension 120–139 or 80–89

hypertension >140 or >90

2.2. Signal Processing

PPG is a time-domain, nonlinear, and unstable human physiological signal. Therefore,
processing the signal can not only retain as much information as possible contained in
the original signal but can also provide images that meet the requirements for the deep
learning model required by the experiment, which is the main problem we studied in
this section.

Slapničar et al. [22] converted PPG and its first and second derivative signals into
spectrum diagrams and input three types of spectrum diagrams into the ResNet network
for training. This method required a good PPG signal, otherwise the derivative signals
would become seriously deformed. Liang et al. [21] used the features of PPG to convert
each segment of 5 s signal into a scalogram by using continuous wavelet transform (CWT).
CWT is based on the basis function pair, which lacks adaptability and is not easily used
to comprehensively describe the complex physiological characteristics of PPG, which is
nonlinear and nonstationary. To make up for the shortcomings of previous studies, we
decided to use the Hilbert–Huang Transform (HHT), which has the following advantages:

• The nonlinear and nonstationary problems of signals can be solved.
• The motion artifact is effectively removed from the signal.
• Spectra, after transformation, have specific physical meaning related to human physi-

ology.
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• One-dimensional signals are converted into two-dimensional signals to facilitate deep
learning.

2.3. HHT Based on Ensemble Empirical Mode Decomposition

The Hilbert–Huang Transform was proposed by N. E. Huang [23], who added the
empirical mode decomposition (EMD) method on the basis of the Hilbert Transform (HT).
EMD (the algorithm flow chart shown in Figure 2) can decompose nonstationary complex
signals into intrinsic mode functions (IMFs). Huang et al. believed that any signal is
composed of several IMFs; by filtering out the IMF components represented by the high-
frequency noise signal and motion artifacts, EMD can realize the smoothing processing
of nonstationary signals. By this method, the problem of morphological malformation of
the PPG′s derivative signals caused by motion artifacts of PPG could be alleviated [24,25].
The IMF components of different frequencies of the decomposed PPG signal represent
different physiological meanings. Previous studies have confirmed that different frequency
ranges of decomposed IMFs represent different physiological activities. Mitali et al. [26]
obtained surrogate respiratory signals at 0.2 Hz to 0.33 Hz. Chuang et al. [27] obtained
the related information regarding heart rhythm at 0.4 Hz to 0.9 Hz. IMFs contain the local
characteristics of the original signal at different time scales, so they can retain as much of
the original information and characteristics of a signal as possible. Since the basis function
is obtained by the EMD decomposition of the data itself, compared with the short-time
Fourier transform and wavelet decomposition, the EMD method is adaptable, and the
signal becomes more direct and intuitive after the Hilbert transform (Figure 3). Hilbert
transformation can be performed on the decomposed IMFs to obtain spectra as inputs to
the network.

 

start

Original PPG signal 

Find the local extremum of 

Fitting the upper envelope and lower envelope of 

Find the mean +

New PPG signal 

If meet the IMF’s 
conditions or not?

Is the monotonous 
function?

end

yes

no

no

yes

Figure 2. EMD (empirical mode decomposition) processing algorithm. IMF (intrinsic mode function)
conditions: (1) In the entire time range, the number of local extreme points and zero points of the
function must be the same or differ by one at most. (2) At any point in time, the average value of
the envelope of the local maximum of the function (upper envelope) and the envelope of the local
minimum (lower envelope) must be zero.
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Figure 3. Process of processing PPG signal and its derivatives by the HHT (Hilbert–Huang transform) method.

However, when processing noise signals and intermittent signals, the EMD method
will lead to the phenomenon of mode mixing, which seriously affects the accuracy of signal
decomposition. To remedy this disadvantage, Huang et al. [28] added white Gaussian
noise into the whole time-frequency space for several amounts of time, and several mean
values of IMF components were obtained as the final result, which was called EEMD
(ensemble empirical mode decomposition). The mode aliasing phenomenon was effectively
suppressed by the EEMD method. Besides, this method could be used to remove the motion
artifact of PPG signals effectively. To improve the generalization performance of the model,
in addition to the serious baseline drift of some PPG signals, we selected some signals with
high noise. Therefore, in this paper, we adopt the EEMD method, because this method is
better than the EMD method to deal with noisy signals.

The signal processed by the EEMD method is still a one-dimensional vector. Compared
with this data format, the features of the signal shown by the two-dimensional image are
more prominent. Combining the advantages of convolutional neural networks in the field
of image recognition and its own characteristics, images with more prominent feature
points require fewer layers, fewer calculations, and less complexity. Furthermore, the
spectra of the PPG signal after HHT are related to the time-instantaneous frequency–energy
distribution map. Observing the spectra of normotension and hypertension samples
(Figure 4b), we found that the instantaneous frequency of the energy distribution in the
spectra of the latter is higher than that of the former. Such significant information cannot
be obtained using a one-dimensional vector to represent the PPG signal. Therefore, we
used a two-dimensional signal as the input of the convolutional neural network.

We built the PPG+ dataset [29]; the PPG′s Hilbert spectrogram is the red channel of
the RGB image. The spectrograms of the PPG′s first and second derivatives are the other
two channels (Figure 3) to improve the information dimension and enhance the image′s
extractable features. These three channels combine to form an RGB image with resolution of
1247 × 770 (Figure 4c); the image length is 5 s (0–5 s), and the width is 13 Hz (0–13 Hz). The
sampling quality of the images is 24 bytes, which is 8 bits for each channel and 256 levels.
As the input to the network, HT spectra require preprocessing such as random aspect
ratio cropping, random flipping, and center cropping before entering the network. This
approach is important to enhance the data. Then, we normalized the processed image, and
the image size became 3 × 224 × 224. Furthermore, the control experiment’s inputs were
only the PPG signals′ spectrograms.

59



Biosensors 2021, 11, 120

Normotension (No. 408) Prehypertension (No. 230) Hypertension (No. 224) 

Figure 4. HHT spectrograms of three patients in different time periods. (a) PPG signals. (b) HHT spectra of PPG signals.
(c) RGB images of PPG and its first and second derivative (PPG+) spectrogram combination. No. 408, No. 230 and No. 224
are the numbers of the patients.

2.4. Model Fine-Tuning

Transfer learning is a branch of machine learning. The aim is to deal with a new
problem by transferring it to a problem that has been resolved. Transfer learning can
greatly reduce the experimental costs and training time of deep learning models and also
can be applied to the problem of small datasets. Many studies have shown that transfer
learning can improve the generalization ability of models [30].

Fine-tuning is a widespread practice in transfer learning, and it is suitable for small
datasets. One common practice is to remove the last layer of the pretrained network and
replace it with a new softmax layer, which relates to a specific problem. Considering the
characteristics of the model′s inputs, we used the AlexNet [31], ResNet18 [32], ResNet34
and GoogLeNet to train the data. AlexNet has five layers of convolutional layers and three
layers of fully connected layers. The ReLU, as the activation function, solves the gradient
dispersion problem. ResNet adds a residual block through a short-circuit mechanism
between every two layers of the ordinary network, transforms the difficult identity mapping
problem into a residual problem, solves network performance degradation with increasing
depth, and effectively alleviates the gradient dispersion or gradient explosion phenomenon
of deep neural networks. GoogLeNet has 22 layers. It connects multiple inception blocks in
series with other layers to improve the expressive ability of the network. Compared with
other networks, GoogLeNet has fewer training parameters and faster convergence speed.
The input size of GoogLeNet is 3*299*299, which is different than the other three networks.

In our work, the fine-tuning method removed the last fully connected layer when
training with AlexNet, added Dropout to ignore some neurons to prevent the model from
overfitting randomly, and finally added a fully connected layer with two outputs. When
it came to ResNet18 and ResNet34, the specific method was to reinitialize the last fully
connected layer and a linear layer with 512 input features and two output features. The
parameters did not need to be trained from scratch but only fine-tuned based on the
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original model parameters, which dramatically improved the training efficiency and saved
on training costs. Figure 5 shows the preprocessing of the signal and the classification
experiment.

 

Figure 5. PPG signals processing procedure and the classification experiment (AlexNet).

2.5. Classification Experiment

We built three classification experiments by collecting 582 data records from the
MIMIC database: HT (hypertension) vs. NT (normotension), HT vs. PHT (prehyperten-
sion), and (HT + PHT) vs. NT. Two datasets, PPG and PPG+, were trained on the following
networks with different layers: AlexNet, ResNet18, GoogLeNet, and ResNet34. Three
two-classification experiments were performed on each dataset for every network. We
designed the experiment for three purposes: First, to explore whether using our dataset to
predict blood pressure levels could get better results. Second, to verify whether the PPG+
dataset containing the information of the PPG itself and its first and second derivatives
was better than the PPG dataset for blood pressure prediction. Third, to consider whether
the higher the number of layers, the better the prediction results would be.

The programming language used for the experiment was Python; the library used
to call the model structure was PyTorch, and the model was trained on Anaconda. Code
was run using a desktop with an Intel i5-8500 as the CPU, 8GB RAM, and AMD Raden
R5 430 as the graphic card. After testing and optimizing the model many times, we chose
Adam as the optimizer of the model, and the learning rate parameter of the optimizer was
set to 0.001. Since our dataset was relatively small, we divided all data into training sets
and test sets in to the ratio 7:3. To improve the generalization performance of the model
and get more accurate results, we applied k-fold cross-validation to train the dataset and
averaged the results. Taking into account the limitations of computer performance and the
time-cost required for cross-validation, the value of k here was 5. We performed 25 epochs
for each fold. The fine-tuned AlexNet used a total of 57.01M parameters, and the amount
of calculation (floating point operations) was 0.71 GMAC (Memory Access Cost). After
testing, the model worked best when the dropout value was set to 0.6 (for AlexNet).

3. Results

In this paper, we randomly selected 582 data records of ABP and PPG from the MIMIC
database; each record was 10 s in length. We divided the 2 signals into 2 segments of
5 s each. Then the signal was filtered with a 0.4–8 Hz Butterworth filter and normalized.
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The EEMD method was used to remove the signal′s motion artifacts and baseline drift.
According to the blood pressure classification standard from JNC7, the ABP of each segment
was analyzed and then classified as the label of the corresponding PPG signal. Then we
performed Hilbert processing on the PPG and made two datasets of PPG and PPG+. The
images of the PPG+ dataset contain the first and second derivatives of PPG in addition to
the signal itself. Finally, we put these two datasets into four different layers of network
models for training. The results (Table 2) are represented by the F1 score, TPR (true positive
rate), and TNR (true negative rate).

Table 2. Classification performance of the proposed deep learning method. TPR stands for true positive rate and refers to
the sensitivity of the model. TNR is short for true negative rate and refers to the specificity of the model.

CNN Layers Trail
PPG PPG+

F1 Score TPR TNR F1 Score TPR TNR

AlexNet 8
NT vs. HT 96.33% 94.69% 97.93% 98.90% 99.27% 98.31%

NT vs. PHT 80.35% 78.98% 84.08% 85.80% 95.26% 71.88%
(NT + PHT) vs. HT 90.79% 90.39% 91.36% 93.54% 95.32% 91.74%

ResNet18 18
NT vs. HT 93.94% 94.51% 93.17% 94.09% 95.36% 92.33%

NT vs. PHT 82.34% 82.85% 82.89% 84.37% 84.51% 84.59%
(NT + PHT) vs. HT 87.35% 90.06% 84.62% 88.52% 88.87% 88.92%

GoogLeNet 22
NT vs. HT 89.48% 88.79% 90.61% 89.24% 90.19% 88.26%

NT vs. PHT 78.05% 77.73% 79.95% 80.03% 80.79% 77.47%
(NT + PHT) vs. HT 84.04% 81.51% 88.30% 83.46% 83.76% 83.14%

ResNet34 34
NT vs. HT 93.04% 93.04% 93.41% 94.01% 93.85% 94.26%

NT vs. PHT 81.33% 81.75% 82.75% 84.77% 83.71% 86.34%
(NT + PHT) vs. HT 86.76% 88.00% 83.23% 88.39% 87.15% 90.19%

We reached the following conclusions from the table:

• Our dataset performed well on convolutional neural networks, especially AlexNet. In
the NT vs. HT experiment, the F1 score was close to 99%, followed by (NT + PHT) vs.
HT, and the training effect was the worst in the NT vs. PHT. The two datasets showed
similar results on all the mentioned CNNs.

• When it came to the same network on the different datasets, the CNN performed
better on the PPG+ dataset than on the PPG dataset. The improvement of the F1 score
was evident in the NT vs. HT experiment of AlexNet.

• Compared to the results of different CNNs on the same experiment on the PPG+
dataset, we found that, although AlexNet has the least number of layers, the F1 score
was the highest on the experiment of NT vs. HT and (NT + PHT) vs. HT. As the
number of convolutional layers increased, the result did not improve but did decrease.
For NT vs. HT, the effect of ResNet34 of 34 layers was improved compared with
ResNet18 of 18 layers, but only a little.

From the results, the F1 score of AlexNet for our dataset was high: 98.90%. In the NT
vs. HT experiment of AlexNet by using the PPG+ dataset as an example, TPR refers to the
sensitivity of the model, which means that the number of normal blood pressure samples
predicted by the model accounting for 99.27% of the actual normal blood pressure samples.
TNR refers to the specificity of the model, which presents the sample size of hypertension
predicted by the model to be 98.31% of the actual sample size of hypertension.

The ROC (receiver operating characteristic) curve (Figure 6) characterizes the gener-
alization ability of the learner from the perspective of threshold selection. The closer it
is to the upper left corner, the lower the classification error rate of the model, the better
the threshold at this time, and the fewer false positives and false negatives there are. We
found that the ROC curve of the experiment of NT vs. HT is closest to the upper left corner,
which means our network performed best on it.

62



Biosensors 2021, 11, 120

Figure 6. The ROC (receiver operating characteristic) curve of the three classification trials of AlexNet.

Comparing the classification accuracy of AlexNet on the training set and the test set
(Figure 7), we found the epoch_accuracy curve of the training set and the test set were
very close, which means that the model performed well on our dataset, and there was
neither overfitting nor underfitting. The accuracy curves of NT vs. HT and (NT + PHT)
vs. HT were close to stable, indicating that the two have converged and the number of
training epochs was sufficient. The accuracy of NT vs. PHT on the test set fluctuates greatly,
and it has not converged yet, indicating that 25 epochs is not enough for this experiment.
However, through the performance on the training set, we can basically infer the future
trend of the accuracy curve of the test set. Therefore, upgrading hardware equipment and
increasing the number of epochs in the experiment to improve the training effect is part of
our future work.

  
(a) (b) 

Figure 7. Cont.
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(c) 

Figure 7. The diagram of epoch and accuracy (referred to as acc in the figure) of the NT vs. HT (a),
NT + PHT vs. HT (b) and NT vs. PHT (c) in AlexNet.

4. Discussion

We used a convolutional neural network to predict blood pressure levels using PPG
and its first and second derivative signals. The HHT method was applied to remove the
baseline and motion artifact of PPG signals, and then we converted the one-dimensional
signal into spectra as the input of the network. The blood pressure level represented by
ABP was used as the label of each spectrum. According to the information contained in
spectra, we established two datasets. One was called PPG+, which contained PPG itself and
its first and second derivative signals. The other one was called PPG, which only contained
the information in the PPG signal itself. Three binary classification experiments for each
dataset were trained on four network models with different layers, AlexNet, ResNet18,
GoogLeNet, and ResNet34. This study found that, although AlexNet had a small number
of layers, the training results were still the best on both datasets. The fine-tuned AlexNet
performed well in the NT vs. HT experiment, with an F1 score of 98.90%. The result
of experiments confirmed that the first and second derivatives of PPG could improve
training accuracy.

We noticed that the model performed best in NT vs. HT and performed poorly in NT
vs. PHT. ROC showed that NT vs. HT was closest to the upper left corner; the distributions
of these two types of data were far apart and easier to separate. The model performed
poorly in the HT vs. PHT experiment because the two types of data distribution were much
closer. In comparison, we also found that the PPG+ dataset had better performance than
the PPG dataset in the BP classification model, especially in the NT vs. HT experiment.
This confirmed that the first and second derivatives of the PPG signals carry information
about BP.

The first derivative of the PPG signal represented the blood flow velocity in the aorta,
and the second derivative signal represented the change in blood flow velocity (Figure 4c),
which is decided by the blood viscosity and elasticity of the blood vessel wall. The
hypertensive patients′ blood pressure is high, so when the aortic valve opens, blood flows
into the aorta quicker. If the blood vessel elasticity is lacking, the PPG signal′s descending
branch will be steeper than in ordinary people. The second derivative of the PPG signal
happens to reflect this. This is the reason that adding PPG derivative information to the
dataset can improve the accuracy of BP prediction.

In order to improve on the weak points of previous studies (Table 3), this paper
adopted the EEMD method to process signals. The resulting HHT spectra contained the
physical meaning of a particular PPG signal. The PPG signal represents the change of blood
volume in human blood vessels, and the derivatives of PPG signal contain information
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related to blood flow. Therefore, we added the first and second derivative signals of PPG
signals to the model to train on simultaneously.

Table 3. Comparison with well-established related work in terms of data source, feature, signal
processing, and method.

Author Data Source Feature Signal Process Method

Slapničar et al.
[22]

MIMIC
(510 subjects over

700 h)
PPG, PPG′, PPG” Spectro-temporal ResNet

Liang et al. [21]
MIMIC

(121 data records for
120 s each)

PPG CWT GoogLeNet

Our work
MIMIC

(582 data records for
10 s each)

PPG, PPG′, PPG” EEMD AlexNet

The purpose of converting a one-dimensional signal into a spectrum was not only to
satisfy the input format of the network model but also to make the information contained
in the PPG signal more prominent. The experimental results showed that the smaller the
number of layers, the better the training effect on our dataset. This result proved our
approach: the feature points become more obvious after the PPG one-dimensional signal
is converted into spectra, and better results can be learned without too many layers of
convolutional neural networks. This can reduce the cost of model training. Compared
with image recognition and classification problems such as cats and dogs, the input images
in this paper had fewer feature points and lower complexity. This might be one of the
reasons that the accuracy decreased or remained unchanged with more network layers in
the experimental results.

Since the dataset mentioned in the paper [21,22] was not available, we used GoogLeNet
to train the dataset for comparison. The F1 score of NT vs. HT in the PPG+ dataset was
89.24%. Although the result was poor compared with previous research, this result could
not be evaluated arbitrarily because of the different datasets. What was certain, however,
was that this result again confirmed our point that our dataset performed better on a net-
work with fewer layers. AlexNet with only eight layers performed better on both datasets
than some other networks with more layers. On the contrary, GoogLeNet, which has many
layers and many complex inception blocks, did not perform well on our datasets.

5. Conclusions

In this paper, we used the HHT method to establish a new dataset. The fine-tuned
AlexNet performed well on our dataset. The F1 score of the NT vs. HT binary classifica-
tion experiment can reach 98.90%. The signals processed by HHT have specific physical
meanings and obvious feature points, which were conducive to the learning of neural
networks. By comparing the performance of blood pressure classification experiments in
different network models, our study proved that the derivatives of PPG carry important
information on blood pressure, which means that PPG and its derivatives can be used to
replace the combination of ECG and PPG for blood pressure prediction. We also found that
a network structure with fewer layers had a better performance on our dataset. This can
reduce the amount of calculation and the time-cost of network training. We combined the
EEMD method with deep learning, providing new ideas for modern medical health testing
while providing a noninvasive, fast, and low-cost BP level assessment method for families
and low- and middle-income countries. However, this technology still has lots of room
for improvement. Our next target will focus on how to improve the classification accuracy
and how to predict BP values through deep learning and will explore more information
related to physiological activities from PPG and its derivative signals.
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Abstract: According to the World Health Organization forecasts, AntiMicrobial Resistance (AMR)
is expected to become one of the leading causes of death worldwide in the following decades. The
rising danger of AMR is caused by the overuse of antibiotics, which are becoming ineffective against
many pathogens, particularly in the presence of bacterial biofilms. In this context, non-destructive
label-free techniques for the real-time study of the biofilm generation and maturation, together with
the analysis of the efficiency of antibiotics, are in high demand. Here, we propose the design of a novel
optoelectronic device based on a dual array of interdigitated micro- and nanoelectrodes in parallel,
aiming at monitoring the bacterial biofilm evolution by using optical and electrical measurements.
The optical response given by the nanostructure, based on the Guided Mode Resonance effect with a
Q-factor of about 400 and normalized resonance amplitude of about 0.8, allows high spatial resolution
for the analysis of the interaction between planktonic bacteria distributed in small colonies and their
role in the biofilm generation, calculating a resonance wavelength shift variation of 0.9 nm in the
presence of bacteria on the surface, while the electrical response with both micro- and nanoelectrodes
is necessary for the study of the metabolic state of the bacteria to reveal the efficacy of antibiotics for
the destruction of the biofilm, measuring a current change of 330 nA when a 15 μm thick biofilm is
destroyed with respect to the absence of biofilm.

Keywords: bacteria biofilm; optoelectronic device; antimicrobial resistance; biosensing

1. Introduction

Bacterial infections represent one of the leading causes of death in developing na-
tions [1]. The infections are caused by food poisoning, which is often related to water
contamination or improper food preparation [2]. Furthermore, the large overuse and/or
misuse of antibiotics is causing a rapid growth in AntiMicrobial Resistance (AMR) world-
wide [3]. AMR is developed when the bacteria adapt to and resist antibiotics treatments,
which become ineffective to counteract a bacterial infection that can grow and spread in a
large community through direct contact, food, or the environment [4,5]. As a result of the
lack of powerful antibiotics, many bacterial infections, such as pneumonia, tuberculosis,
and gonorrhoea, are becoming more difficult to eradicate with a consequent higher mortal-
ity rate [6]. According to [7], the cost of AMR on public health is up to 100 trillion USD, and
AMR is expected to become the leading cause of death worldwide, with over 10 million
annually predicted by 2050. These consequences highlight that AMR is a widespread social
problem that cannot be underestimated or neglected anymore due to the large and rising
number of people potentially affected.

Many bacterial infections are caused by the non-eradication of bacterial biofilm, which
can be several times more resistant to antibiotics compared to planktonic bacteria [8,9].
This behavior is strictly correlated to the intrinsic nature of the biofilm, which consists
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of densely packed microbial cells that can grow and surround themselves with a self-
produced Extracellular Matrix (ECM). The ECM is composed of proteins, polysaccharides,
and nucleic acids that protect the bacterial biofilm from the environment, so making it
very resistant to external agents, such as antibiotics [10]. Moreover, a biofilm may include
different bacteria, and this makes the dissolution of biofilms more challenging [11]. In fact,
it has been demonstrated that even if a biofilm is treated by an antibiotic that is efficient
for a specific planktonic bacterium or small communities of bacteria with a concentration
much higher than Minimum Biofilm Inhibitory Concentration (MIC), which represents the
lowest concentration of drug to prevent the bacteria growth, the biofilm structure can be
completely unaltered, showing a continuous growth process also after the treatment [12].

2. Techniques for the Bacteria Detection and Analysis

To date, the most widely used diagnostics to detect the presence of bacteria and
analyze their evolution under several antibiotics’ treatment is the plate-count method,
which is based on the growth of bacteria on an agar plate [13,14]. However, this technique
is time consuming (24–72 h), because it requires many cell-division cycles as well as expert
users for the sample preparation and final analysis. The large time delay is the most
significant bottleneck of such a technique because several infections, such as sepsis, require
an immediate measure, also to avoid the formation of a biofilm [15]. The antibiotics are
commonly administered in the clinicians’ experience with a not-negligible failure rate, so
possibly leading to an outbreak of the resistance rather than by carrying out an accurate
diagnosis. Thus, novel diagnostic techniques that can rapidly detect and identify bacteria
and confirm the presence of a biofilm, ideally within 30 min, are needed. Furthermore,
these techniques should also enable study of the efficiency of antibiotics with a real-time
analysis during the treatment in order to define the most powerful antibiotic, the best
concentration, and the administration time for each infection [16].

During the last few years, several approaches have been investigated, mainly with the
use of optical techniques, such as Raman Spectroscopy or fluorescence, due to their high
resolution and real-time detection of individual bacteria [17–19]. However, these methods
are not label-free, becoming inefficient in the presence of bacteria mutations, and allow
investigating only a small area. Integrated optical devices have also been used for single
bacteria analysis with label-free techniques [20]. In particular, resonant cavities are able
to trap and identify single bacteria through the changes of the resonance response [21,22].
Emerging studies with a label-free optical-based approach have demonstrated real-time
monitoring of cell attachment and the development of bacteria on the sensor surface [23].
Optical devices have been used to investigate the antimicrobial susceptibility with in vitro
studies by adopting antibiotics with concentrations compliant with standard health pro-
tocols [23]. However, the simultaneous detection of several bacteria in the whole biofilm
volume is still challenging because of the mismatch between the biofilm thickness and
evanescent field penetration depth. In fact, the evanescent field of resonant cavities typi-
cally extends for few hundreds of nanometers, thus making impossible the detection of
multiple bacteria organized in a three-dimensional configuration as a biofilm that can reach
a thickness of several microns in the presence of macro-colonies in the maturation phase.

The mechanical trapping of bacteria has also been obtained by using microfluidic
devices [24,25], allowing the bacteria localization in specific areas to accurately detect and
analyze them with an atomic force microscope (AFM) [26]. The AFM technique guarantees
a very high resolution, also providing relevant information about the metabolic state of
bacteria and if they are live/dead, for example by observing a different motility with a
change of amplitude and noise in the electrical signal [26]. However, the mechanical trap-
ping has a trapping time not long enough to investigate the metabolic activity of bacteria
and their interactions in large communities, so making also difficult their differentiation in
the biofilm.

The aforementioned critical issues have been partly mitigated by Electrochemical
Impedance Spectroscopy (EIS) [27–31]. In particular, device configurations based on inter-
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digitated microelectrodes have been exploited for the analysis of the metabolic activity of
bacteria and their differentiation [27]. This approach is characterized by a great penetration
of the electric field in the biofilm, in contrast to the integrated optical devices where the
distribution of the evanescent field of the optical resonant mode within the biofilm is lim-
ited [32], as demonstrated in the next sections. Therefore, the electrical behavior guarantees
the capability of studying the biofilm evolution and the action of the antibiotics.

However, the lowest detection limit of EIS is around 10 CFU/mL [31], which means
no high resolution down to single cells. Moreover, the detection time is longer compared
to other trapping approaches, such as optical and mechanical ones, because, in case of
low initial concentration, the growth of the cells is required before achieving a detectable
change of impedance, which usually takes a few hours [33].

The resolution can be improved by different configurations of electrochemical biosen-
sors, such as interdigitated nanoelectrodes, which compared to the bulk configuration
of single electrodes allow the enhancement of the electric field in the device and then, a
stronger interaction between the field and the bacteria [34]. However, if the resolution
improvement is achieved at the expense of a shorter penetration length of the electric field,
the analysis of the bacteria metabolism in a biofilm would be impossible.

From this brief overview on the techniques for the detection and analysis of bacteria,
it is clear that a single interrogation technique is not sufficient for a full assessment of
the antibiotic susceptibility on planktonic bacteria and, in particular, on bacterial biofilms.
Multiple approaches should be used in parallel, leading to a multiparameter approach [35,36].

Here, we propose the design of a novel optoelectronic device based on an on-chip
dual array of interdigitated micro- and nanoelectrodes that combines together optical
and electrical techniques to monitor the growth of a biofilm and to analyze the effect
of antibiotics on the bacteria. The optical approach allows the detection of few bacteria
with a high spatial resolution to understand their interaction and which biological events
are involved during the initial phase of the biofilm formation. The electrical approach
allows the simultaneous study of the evolutionary phases of the bacterial biofilm and, by
analyzing the impedance changes, the evaluation of the biofilm growth and maturation,
and the efficacy of antibiotics for the disruption of the biofilm, which are useful in AMR
studies.

3. Dual Array of Interdigitated Electrodes: Architecture and Operation

The dual array is formed by an Interdigitated Micro Electrodes (IMEs) section and
an Interdigitated Nano Electrodes (INEs) section, which are both realized in Silicon-On-
Sapphire (SOS) technology and fed by an AC voltage (see Figure 1a). In order to perform
both optical and electrical measurements to study the properties of planktonic bacteria or a
bacterial biofilm in the whole sensor area, the two sections are arranged adjacent, spaced
from each other only by a few microns.

P-doping has been assumed for silicon, with an exponential decay of the electrical
conductivity from the surface in depth with a drop more than three orders of magnitude in
few tens of nanometers, as described in Section 4.1, reaching very low values of resistivity
at the surface, and also strongly reducing the optical losses correlated to the dopant
concentration [37]. The INEs section can be assumed as a top-illuminated subwavelength
grating, whose cross-section is sketched in Figure 1, that supports the Guided Mode
Resonance (GMR) effect [38]. It is correlated to the quasi-guided modes or leaky modes
of the structure, as shown by the grating in Figure 1a. The grating acts as a waveguiding
layer in the x-y plane, where the input light excites quasi-guided or leaky modes that
coherently scatter at each interface of the grating. Furthermore, leaky modes scatter power
downwards, along the vertical direction perpendicular to the grating (z-axis).

By properly engineering the grating features, such as the period, the refractive indices,
and the angle of incidence, the interference between the transmitted light and the down-
ward wave scattered by the leaky mode could generate reflected light along the negative
direction of the z-axis with maximum amplitude at resonance [39,40].
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Figure 1. (a) Configuration of the dual array of interdigitated micro- and nanoelectrodes in SOS technology for the
electrical detection of bacteria (in green) growth and metabolism. The section with nanoelectrodes represents an optical
sub-wavelength grating resonating at a specific wavelength when top illuminated, so enabling a simultaneous optical and
electrical detection of bacteria deposition; (b) Interdigitated Micro Electrodes (IMEs), where W is the width of the silicon
layer (W >> w), G is the gap between electrodes (G >> g); and Λm is the IMEs period; (c) Interdigitated Nano Electrodes
(INEs), where w is the width of the silicon layer, g is the gap between electrodes; and Λn is the INEs period. The output
signal of the Guided Mode Resonance (GMR) structure consists of the reflected optical signal (green arrows) by illuminating
the optical section with TE-polarized light (red arrows).

The structure exploiting the GMR effect has been designed to obtain a resonance
condition for λ > 800 nm, where the absorption losses of silicon decrease [41], with the aim
of achieving a higher extinction ratio and higher Q-factor, together with a strong energy
confinement close to the surface to enhance the light interaction with the bacteria. The
strong refractive index contrast between silicon and the surrounding medium allows a
high confinement of the electromagnetic field at the sensor surface, enabling the use of
the INEs section for hyperspectral imaging technique, as described in detail in [42], which
allows the refractive index imaging, thus localizing objects on the grating by detecting
the spatial resonance distribution. An inverted microscope configuration can be used to
characterize the sensor, with the light source illuminating from the top and the reflected
signal collected from the same side of the setup by a conventional CMOS camera.

In order to work at the bacteria scale, we assume as a best compromise in terms of
resolution and the large field of view an optical setup with an area of 1 mm2 and a spatial
resolution down to few microns. This allows having a large area but still exploiting the
advantages of near-field optics, in particular in terms of strong resolution. This approach
has been experimentally validated in the literature with simple and feasible systems [42].
This behavior is also useful to obtain additional information about the first stage of the
bacteria infection, when the bacteria cells enrich before they start to interact with each
other to form the biofilm. During the biofilm formation, the cells produce extracellular
polymeric substances (EPS), creating the surrounding matrix to protect the bacteria. The
main EPS components are polysaccharides, proteins, lipids, and DNA with dimensions
much smaller than the bacterial cells [43]. The real-time detection of the biofilm formation
with label-free techniques is very challenging, mainly because the matrix generation begins
when the first layers of bacteria close to the sensor surface are packed and arranged in
large communities. Under this condition, the monitoring of the chemical and biological
processes in these communities is difficult because the propagation length of the evanescent
field, of the order of few hundreds of nanometers, corresponds only to the first layer of
bacteria. Therefore, the optical approach is efficient for analyzing the first stages of the
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biofilm formation when bacteria begin to form colonies, while a different approach should
be investigated to clearly define the presence of a biofilm with its extracellular matrix. To
meet this latter requirement, the INEs section has been designed to allow simultaneous
optical and electrical measurements. In fact, several pairs of nanoelectrodes can be realized
in an interdigitated configuration, by connecting in turn the doped silicon structures to
two different metal electrodes, as shown in Figure 1c, so forming several capacitors at the
nanoscale. This system of interdigitated electrodes can allow easy monitoring of the large
change of the PH and the electrical properties of the solution induced by the secretion
of proteins, DNA, and other EPS components when the bacteria colonies start to create
the extracellular matrix [44]. In particular, the capacitance of the system changes when
the bacteria start to grow because of the strong interaction between the electric field and
the bacteria. Low-frequency values are usually used to detect changes of the system
capacitance, because under this condition, the bacterial membrane behaves as a barrier
to prevent the penetration of the electric field into the cytoplasm of the bacteria, which
usually has a much higher conductivity, in order to make more evident any change of
the impedance in proximity of the electrodes. The INE section supporting the GMR effect
guarantees the confinement of the electric field close to its top surface [34], where the
bacteria grow and the chemical processes happen, with an improved sensitivity compared
to other electrical approaches with different systems and configurations.

Therefore, the INEs provide high spatial resolution for imaging few bacteria through
an optical approach, to investigate the bacteria interaction to form colonies, and an electrical
approach to analyze the biofilm evolution, due to the presence of EPS components that
change the electrical properties of the solution, and, therefore, interfere with the electric field
distribution. This interaction induces a change of the capacitance Ci of the nanocapacitor
formed by each pair of nanoelectrodes, which depends on the electrical properties of the
surrounding medium and the electrode geometry [44]. The net capacitance of the system,
Ctot, is given by the sum of the single capacitances Ci in parallel combination.

A voltage of few millivolts and low frequency have been assumed, to have a low
power interacting with bacteria with consequent strongly reduced risks, such as bacteria
membrane collapses or changes of their metabolic state. An AC signal at low frequency,
i.e., f 1 ≈100 Hz, is necessary to detect any change of the system capacitance [45]. The net
impedance of the system is given by Z = 1/jωCtot = 1/jωNCi, where N is the number of
nanocapacitors in the interdigitated configuration. This corresponds to a maximum value
of current imax = V0/|Z| = ωV0NCi, which can be increased with the number of pairs of
electrodes, leading to the increase in the Signal-to-Noise Ratio (SNR) and the sensitivity.

Since a higher sensitivity also corresponds to a faster saturation of the impedance
change, due to the strong confinement of the electric field, which is not affected by the
impedance changes in the upper layers of the biofilm, the main limitation of the INEs is
given by the narrow dynamic range [46]. To monitor the biofilm upper layers, a great
penetration depth of the electric field is needed, with a resulting large dynamic range and
a lower sensitivity. For this reason, the sensor also includes an IMEs section placed next
to the INEs structure (see Figure 1a). Since the penetration depth L of the electric field
is proportional to the gap G and to the width W of the electrodes (L–W), features at the
microscale lead to a large penetration depth and dynamic range [47]. In particular, by
assuming W > 10 μm, any change of the metabolic state of the biofilm can be monitored as
an impedance change. To improve the SNR, an IMEs driving voltage frequency f 2 larger
than 1 kHz can be used, where the biofilm shows resistive behavior. According to the
above-mentioned net impedance equation, an increase in the electrodes’ driving voltage
leads to a decrease in the impedance Z, allowing improvement in the accuracy of the
detected changes in the biofilm with respect to the INEs section.

Although INEs- and IMEs-based biosensors have been already widely investigated,
see as examples [48,49], we note that the main novelty of the proposed optoelectronic
device is the combination of both optical and electrical approaches to perform on the same
platform and at the same time the efficient monitoring of the bacteria growth and the
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analysis of the resulting biofilm under antibiotics treatment. According to the above, it can
be said that the high sensitivity is provided by INEs through a strong confinement of the
electric field close to the top silicon surface, while the IMEs allow analyzing the growth
and the maturation of the biofilm and studying its full or partial disruption induced by
the antibiotic treatment for a complete, accurate, and real-time monitoring of the biofilm
properties and analysis of AMR to specific antibiotics. The driving voltages V1 and V2 for
INEs and IMEs, respectively, can be the same to simplify the setup of the system, while
an IMEs driving voltage frequency f 2 larger than the INEs one is preferred to improve the
SNR.

The system configuration could be realized following typical fabrication processes.
For example, a lithographic process followed by reactive-ion etching can be used to define
both the INEs and IMEs structures, while photolithography followed by metal evaporation
and lift-off can be applied for the metal pads (Figure 1).

4. Design of the Dual Array of Interdigitated Electrodes

4.1. Design of the INEs for Optical and Electrical Measurements

The optical section, as already mentioned, consists of a GMR structure with a sub-
wavelength grating in SOS technology. A doped silicon was assumed for doing electrical
measurements, with a dopant concentration ND = 1021 cm−3 at the surface and an exponen-
tial drop-off to ND = 1018 cm−3 within 20 nm, which can be achieved by thermal diffusion
doping [37,50]. This doping profile allows minimizing the optical losses, without any
worsening of electrical performance. The geometrical features of the silicon subwavelength
grating have been designed to enhance both electrical and optical performance. A reso-
nance condition around λ = λres ≈ 850 nm is required to minimize optical losses due to the
material absorption typical for silicon at lower wavelengths. To fulfill all the requirements,
including fabrication tolerances, we have determined a thickness t = 270 nm, a period
Λn = 440 nm, and a fill factor FF = 0.5, corresponding to w = g = 220 nm (see Figure 2a).
Furthermore, since the grating strength, and then the Q-factor, increases with the number
of periods, thousands of periods have been assumed, without affecting the ability to detect
the bacteria with a resolution of a few microns.

 

Figure 2. (a) Configuration of the GMR structure (LB: Lysogeny Broth); (b) Reflection spectrum;
(c) Energy confinement at the resonance wavelength λ ≈ 841.5 nm.

The reflection spectrum of the grating has been calculated by the 3D Finite Element
Method (FEM), assuming top out-of-plane excitation with TE-polarized and plane-wave
collimated light (the electric field is oriented perpendicularly to the grating period direction).

Reflection spectrum and mode distribution at the resonance frequency are reported in
Figure 2b,c, respectively.

The Lysogeny Broth (LB) (nLB = 1.333 + 5 × 10−7 i) has been assumed as the surround-
ing medium, which is a typical medium for bacteria, and the substrate is sapphire with
nsub = 1.732. A resonance condition at λres ≈ 841.5 nm has been calculated. At λres, with the
aforementioned doping profile, a refractive index of silicon nSi = 2.76 + 0.06 i at the surface
results, which increases up to nSi = 3.648 + 4 × 10−3 i at 20 nm far from the surface. The
resonance shows an amplitude higher than 0.8, which is normalized with respect to the
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input power, and a Full Width at Half Maximum (FWHM) = 2.12 nm, which corresponds
to Q ≈ 400. The proposed configuration represents the best compromise to achieve a high
Q-factor, large modal confinement, and high resonance amplitude, which is useful for
hyperspectral imaging and sensing.

The operation of the GMR structure in the presence of bacteria has been simulated by
assuming a uniform and homogeneous layer of bacteria with a thickness tlayer of the order
of hundreds of nm and refractive index nbac. For example, the Escherichia coli bacterium
was considered, with a diameter tbac of 500 nm, a length lbac of 2 μm, and a refractive
index nbac = 1.388 [51]. Since the length of the bacteria lbac is larger than the gap size g,
the penetration of bacteria in the grooves is not allowed. Therefore, the grooves have
been assumed to be filled by LB medium. The comparison between the 1D silicon GMR
surrounded by LB only and the same structure with the presence of bacteria in solution is
shown in Figure 3. A resonance shift Δλres of about 0.9 nm in the case of the bacteria layer
on the GMR structure, with a reflection change of about 0.02, was evaluated. This behavior
confirms a high resolution in detecting the presence of the bacteria, even when the surface is
not fully covered.

Figure 3. Reflection spectra for the case without bacteria (blue curve) and with bacteria (red curve)
on the GMR structure. Spectra calculated by 3D FEM approach.

Since the evanescent field of the optical mode extends and interacts with the biofilm
for a few hundred nanometers (<<tbac = 500 nm), beyond the first layer of bacteria, the
optical response results are insensitive to an increase in the layer thickness, as confirmed by
FEM simulations where the behavior of the reflected signal is the same for tlayer ≥ tbac with
negligible resonance shifts. However, during the biofilm formation, a clearer resonance
shift is also expected because of the release of small particles and molecules, possibly in
the grooves, which would further affect the effective index. As an example, in the extreme
case of filling the grooves with biomolecules secreted by the Escherichia coli bacteria (for
which we assume the same refractive as for the bacteria, nbac = 1.388), 3D FEM simulations
confirm a maximum resonance shift up to 7.5 nm. Therefore, in the presence of a biofilm, a
final value of the resonance shift in the range 0.9 nm < Δλres < 7.5 nm is expected.

When investigating the resonance shift in an array of several pixels, the resonance map
for each pixel can give information about the position of bacteria and the size of colonies.

However, due to the short penetration length of the evanescent field in the surrounding
medium, this approach cannot provide a very accurate analysis about the formation
of a biofilm and its maturation. This limitation justifies the choice of a more complex
biosensing platform by combining optical measurements with electrical ones. Hence, the
same interdigitated silicon nanoelectrodes have also been used for electrical measurements,
as shown in Figure 1a, where an applied voltage V0 = 10 mV enables the current flow
i1. In order to not interfere with the optical response, the metal pads of this structure
are far enough from the region used for optical measurements. An electrode length of
about 1 mm fulfills this requirement, also avoiding any power absorption of the medal
pads, with a consequent reduction of the interacting optical power. The main goal of the
INE structure is detecting the presence of bacteria and the first stage of bacterial biofilm
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formation. The maximum sensitivity can be reached by evaluating the changes of the
system capacitance, where the capacitance is given by C = εA/d, with ε being the relative
permittivity of the surrounding medium, A being the area of the electrodes, and d being the
distance between the silicon surface and the charged particles released by the bacteria [52].
Electrical measurements require strong confinement of the electric field at the surface of
silicon, which is achievable with a typical frequency f 1 ≈ 100 Hz. The relative permittivity
of LB medium at f 1 = 100 Hz has been assumed to be equal to ε = 60, and the electrical
conductivity σLB = 0.754 S/m. As the first step, the electrical behavior of the INEs has been
evaluated by 2D FEM simulations without the presence of bacteria to observe the electric
field distribution in the proximity of the electrodes. The grating length is much larger than
the grating period and the electrodes features; therefore, we have assumed a 2D simulation
as an optimal approximation of the real case of study. Figure 4 shows the distribution of
the current density J1 [A/m2] without bacteria. As expected, the energy decreases as a
function of the distance along the z-axis from the electrodes and increases with a peak of
the energy density (≈7 × 10−4 A/m2) at the silicon ridges. This behavior confirms the
suitability of the electrical measurements to monitor the biofilm at the silicon surface.

Figure 4. (a) Current density J1 [A/m2] distribution along the x-axis in the middle of the INEs
structure with f 1 = 100 Hz, V0 = 10 mV, Λn = 440 nm, and FF = 0.5; (b) Focus at the surface of the
electrodes with the energy confinement in few hundreds of nanometers. Plots calculated by 2D
FEM approach.

The total capacitance of the INE structure is directly proportional to the number of
pairs of electrodes. A number of couples N = 2000 and a length of electrodes of the order of
mm have been assumed in the model, which corresponds to a total width of the system of
N·Λ = 2000 × 0.44 μm = 880 μm. The footprint of the order of mm2 (=880 μm × ≈1 mm)
also guarantees a large area of the INEs section optimizing the optical reflection and
obtaining more information for large bacterial colonies. The capacitance of a system with
interdigitated electrodes is [53]:

C =
N · Q
2V0

= N · 2
V02 E = N · 2

V02

∫
Ω

WedΩ (1)

where Ω is the surrounding area of the electrodes close to their surface [m2], E is the energy
for each pair of electrodes [J], and We is the electric energy density [J/m2]. Assuming
V0 = 10 mV and f 1 = 100 Hz, the energy E is equal to 31 fJ, which corresponds to a total
system capacitance C = 1.24 μF. In the low-frequency regime (f 1 = 100 Hz), the system
behavior is capacitive, with a corresponding impedance Zc = 1/jωC, decreasing as C
increases. N = 2000 corresponds to Zc = 1.2 kΩ. The maximum value of the current i1,max is
given by [54]:

i1,max = max
(

C
∂V
∂t

)
= max

(
C

∂(V 0sin(ωt))
∂t

)
= 2π f 1CV0= 7.79 μA. (2)
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To simulate the biofilm formation and maturation in the LB, the well-established
Maxwell Mixture Theory (MMT) [55] has been used to define the electric properties of the
biofilm. In particular, the MMT method assumes the biofilm as a compound of uniformly
distributed spherical objects as the bacterial cells, which are covered by a shell to mimic
the external membranes, forming the so-called Extracellular Matrix (ECM) [46]. With these
assumptions, the dielectric permittivity and electrical conductivity of the biofilm can be
theoretically estimated. In particular, the relative permittivity of the region with the biofilm
ε*biofilm(ω) is given by [55]:

ε∗biofilm(ω) = ε∗ECM(ω)
2(1 − ϕ)ε∗med + (1 + 2ϕ)ε∗eq(ω)

(2 + ϕ)ε∗med + (1 − ϕ)ε∗eq(ω)
(3)

where ϕ is the fractional volume of the bacterial cells in the ECM that has been assumed
equal to 30% following a conservative approach [45],ε*MED is the complex permittivity
of the solution where the bacteria are immersed, and ε*eq(ω) is the equivalent complex
dielectric constant of the bacteria, expressed as [55]:

ε∗eq(ω) = ε∗mem(ω)
2(1 − θ)ε∗mem + (1 + 2θ)ε∗cyt(ω)

(2 + θ)ε∗mem + (1 − θ)ε∗cyt(ω)
(4)

with the complex permittivity of the ECM ε*ECM(ω) = εr_ECM + σECM/(jε0ω), the com-
plex permittivity of the bacterial cell membrane ε*MEM(ω) = εr_MEM + σMEM/(jε0ω), and
the permittivity of the bacterial cytoplasm ε*CYT(ω) = εr_CYT + σCYT/(jε0ω). Moreover,
θ = (R/(R + d)), with R and d being the radius of the bacteria and the thickness of the exter-
nal membrane, respectively, and the parameters ε0 and ω being the dielectric permittivity
in vacuum and the angular frequency of the applied signal, respectively. The conductivity
of the biofilm is calculated as εbiofilm = εr_biofilm + σbiofilm/(jε0ω). According to the MMT
theory, a negligible change would be obtained with a model that assumes bacteria with an
ellipsoidal shape instead of a spherical one. The parameters values used in the numerical
model to implement the MMT are reported in Table 1. The electrical properties are derived
by experimental measurements reported in the literature [46,56]

Table 1. Electrical properties of the parameters used in the MMT [46,56].

Conductivity [S/m] Relative Permittivity [a.u.]

Cytoplasm (CYT) 0.220 100
Membrane (MEM) 10−7 10.8

Extracellular Matrix (ECM) 0.680 60
Lysogeny Broth (LB) 0.754 60

An initial value of the capacitance C0 = 1.24 μF has been simulated by assuming
only LB medium above the nanoelectrodes. As already assumed in the optical analysis,
the presence of a biofilm layer with a thickness of 1 μm, above the nanoelectrodes, was
considered. Under this condition, the capacitance becomes C’ = 1.41 μF, the capacitance
relative change is ΔC/C0 = (C’ − C0)/C0~14%, and the maximum value of current is equal
to i1,max = 8.85 μA. This performance confirms the high sensitivity of the nanoelectrodes
because a change of the current values of about 14% is obtained when a single layer of
bacteria is placed on top of the nanoelectrodes (thickness = 1 μm). This behavior is strictly
correlated to the strong confinement of the electric field at the surface of the electrodes
and represents a significant advantage with respect to optical measurements in terms of
sensitivity to the biofilm formation and maturation. However, the electrical measurement
takes into account only an average change of the surrounding medium with a spatial
resolution > 1 μm, while the optical approach provides the spatial distribution of bacteria
along the grating with a much higher resolution, of the order of hundreds of nm, so
demonstrating the strong complementarity of the methods. Since the strong electric field
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confinement of the INE structure causes the saturation of the impedance value, even with a
single layer of bacteria in the biofilm, negligible changes of the impedance for a thicker layer
of biofilm were confirmed by FEM simulations. This restriction justifies the combination
of the INE and IME structures in order to also detect a thicker biofilm for the study of the
maturation phase and for the analysis of a possible biofilm disruption by using antibiotics
whose results are challenging only with the INE structure.

4.2. Design of the IMEs for the Detection of Biofilm Maturation or Disruption

The same thickness and doping distribution of the INEs described in Section 4.1 were
assumed for the configuration of the IMEs to realize the proposed array with a single
manufacturing process. As above introduced, the IMEs function is providing an accurate
analysis of the biofilm maturation and its possible disruption through an interaction of the
electric field distribution with the upper layers of the bacterial biofilm. A design different
from INEs, in terms of width W, gap G between the electrodes, and period Λm (see Figure
1c) is required. The electric field distribution for different values of width W is in Figure 5,
for different values of W (W = 5 μm, 10 μm, and 15 μm with W = G). The numerical results
confirm that a larger value of W and G allows confining the electric field farther away from
the electrodes, as required for the IME structure, at the expense of a decrease in the current
density J2 [A/m2] due to a worsening of the related capacitance value.

 

Figure 5. Current density J2 [A/m2] distribution in the IME structures with a value of width W = G of
5 μm (a), 15 μm (b), and 25 μm (c). The current values have been normalized to the maximum value
of current calculated for W = 5 μm. The dotted red line represents the distance from the electrodes,
where 95% of the total energy is confined. Plots calculated by 2D FEM approach.

The performance of the IME configuration without the bacterial biofilm was defined
by FEM simulations for different values of the width, assuming a number of electrodes
N = 100, aiming at preserving the device compactness. Figure 6 shows the change of the
capacitance for different values of W (assuming G = W) with respect to the capacitance C0
calculated when the IMEs are not covered by the biofilm layer.

The same model based on the MMT has been used to define the electrical performance
for IMEs, as already proposed for the nanoelectrodes. The presence of multiple layers of
bacteria has been considered for the biofilm, with each layer of bacteria assumed with a
thickness of 1 μm.

As expected, the capacitance changes quickly for small gap values due to the stronger
energy confinement, but this also corresponds to a more evident nonlinear behavior for a
thickness of the biofilm of few microns (see Figure 6a), which makes the rigorous analysis
of the biofilm behavior challenging, even with several layers of bacteria.

For example, a value of G = W = 5 μm presents a nonlinear behavior up to 5 μm,
where the capacitance reaches its saturation value. For a biofilm thickness larger than 5 μm,
the changes of impedance are negligible, making impossible the analysis of the upper
biofilm layers. On the contrary, a larger value of G provides a more evident linear behavior
of the capacitance change with respect to the thickness of the biofilm at the expense of
less sensitivity. In fact, for G = W = 100 μm, a linear behavior of the capacitance has been
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observed for a thickness of the biofilm of at least 15 μm. However, an impedance change of
about 10% has been calculated for a thickness of the biofilm of 10 μm, while the impedance
variation goes down to 5% with a thickness of 5 μm, which is six times lower than the
performance obtained with G = 5 μm for the same biofilm thickness.

 

Figure 6. (a) Change of the capacitance ΔC/C0 = (C’ − C0)/C0 in the IME structure for different
values of thickness of the bacterial biofilm as a function of the electrode width (W = G); (b) Change
of the capacitance ΔC/C0 as a function of the electrode width calculated for different values of the
biofilm thickness.

Figure 6b confirms the nonlinear trend of the capacitance for smaller values of G, which
becomes negligible with a larger W, in addition to a narrower dynamic range of the relative
capacitance change ΔC/C0 that also corresponds to a lower sensitivity. The conditions
G = W = 50 μm, and then, Λm = 100 μm, have been chosen as the best compromise in
terms of linearity and sensitivity, obtaining an impedance change up to 20% with a biofilm
thickness of 15 μm. Since the detection of the changes of capacitance at the interface of
the electrodes is not necessary, as required instead for the INEs, a frequency f 2 of 1 kHz
has been assumed for the simulation of the current (i2 in Figure 1a) changes with different
thickness of the biofilm in order to probe electrical changes in the bulk solution [57].

The electrical performance by varying the biofilm thickness is reported in Figure
7. A change of the current i2 from i2 = 1.76 up to 2.09 μA with a quasi-linear behavior
has been calculated, enabling the detection of the current change for each layer of biofilm
that confirms the ability to easily detect both the bacterial biofilm growth and maturation,
together with its possible disruption caused by the action of the antibiotics. A similar
behavior represents a significant improvement for AMR because an efficient, accurate,
and real-time analysis of the bacteria interaction and useful information about their life
in community and colonies can be achieved. Furthermore, the electrical measurements
of the IMEs ensure an accurate analysis of the metabolic state of the biofilm during the
whole process from the formation to the maturation and, possibly, the disruption for
specific antibiotics.

Figure 7. Current i2 [μA] in the IME structure with N = 100, f 2 = 1 kHz, and G = W = 50 μm for
different values of biofilm thickness. Plots calculated by 2D FEM approach.
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5. Discussions and Conclusions

An innovative label-free biosensing platform based on a dual array of interdigitated
electrodes for simultaneous optical and electrical measurements has been proposed for
the analysis of bacteria and their interaction. A multiparametric approach for the INEs
section offers high sensitivity to detect a very low concentration of planktonic bacteria and
possibly down to a single cell, also ensuring the following of the biofilm formation in the
initial stage. In addition, the electrical performance of the IMEs enables the monitoring
of the growth and the maturation of the biofilm to possibly investigate the efficiency of
the antibiotics. The overall performance, related to the merging of the micro and nano
scale, outperforms the competitive technologies, whose operation is limited to monitoring
a few biofilm formation stages. Therefore, the main advantage of the proposed system
is the capability to detect and monitor in real time a biofilm, also analyzing its metabolic
state and evolution phase. In its proof-of-concept form, the proposed optoelectronic
device has been used for the monitoring of Escherichia coli-based biofilm, but the device
could also be investigated to analyze biofilms formed by different strains and species of
bacteria. Therefore, the proposed detection method’s results are very promising due to
high sensitivity, low-cost fabrication, and real-time operation, paving the way to a real-time
and cost-effective solution to counteract the AMR phenomenon.
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