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Abstract 29 

Wearable sensing devices (WSDs) have enormous promise for monitoring construction worker 30 

safety. They can track workers and send safety-related information in real-time, allowing for 31 

more effective and preventative decision-making. WSDs are particularly useful on construction 32 

sites since they can track workers' health, safety, and activity levels, among other metrics that 33 

could help optimize their daily tasks. WSDs may also assist workers in recognizing health-related 34 

safety risks (such as physical fatigue) and taking appropriate action to mitigate them. The data 35 

produced by these WSDs, however, is highly noisy and contaminated with artifacts that could 36 

have been introduced by the surroundings, the experimental apparatus, or the subject's 37 

physiological state. These artifacts are very strong and frequently found during field experiments. 38 

So, when there is a lot of artifacts, the signal quality drops. Recently, artifacts removal has been 39 

greatly enhanced by developments in signal processing, which has vastly enhanced the 40 

performance. Thus, the proposed review aimed to provide an in-depth analysis of the approaches 41 

currently used to analyze data and remove artifacts from physiological signals obtained via 42 

WSDs during construction-related tasks. First, this study provides an overview of the 43 

physiological signals that are likely to be recorded from construction workers to monitor their 44 

health and safety. Second, this review identifies the most prevalent artifacts that have the most 45 

detrimental effect on the utility of the signals. Third, a comprehensive review of existing artifact-46 

removal approaches were presented. Fourth, each identified artifact detection and removal 47 

appraoches was analyzed for its strengths and weaknesses. Finally, in conclusion, this review 48 

provides a few suggestions for future research for improving the quality of captured physiological 49 

signals for monitoring the health and safety of construction workers using artifact removal 50 

approaches. 51 

Keywords: Artifact Eradication; Construction Health; Construction Safety; Digital Construction; 52 

Noise Removal; Physiological Signals; Sensing Devices 53 
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 57 

1. INTRODUCTION 58 

Wearable sensing devices (WSDs) provide a great deal of potential for improving the safety of 59 

construction workers. They can monitor workers and transmit information concerning safety 60 

concerns in real time, which enables decision-making that is both more effective and more 61 

preemptive (Awolusi et al., 2018). WSDs are especially helpful on construction sites since they 62 

can monitor workers' health and safety as well as their activity levels, in addition to tracking a 63 

variety of other variables that could assist workers in optimizing their daily activities (Nath et al., 64 

2018). WSDs may also aid workers in recognizing health-related safety hazards (such as physical 65 

fatigue) and implementing proper measures to mitigate those risks when required (Nnaji et al., 66 

2021). However, the data that is produced by these WSDs is extremely noisy and cluttered with 67 

artifacts. These artifacts could have been introduced into the data by the subject's physiological 68 

state, the experimental apparatus, or the surroundings (Mayeli et al., 2021). These artifacts have 69 

a high degree of durability and are commonly discovered during field research. The quality of 70 

the signal will suffer whenever there are a significant number of artifacts. 71 

Monitoring health and safety using wearables is now within reach (Antwi-Afari et al., 2021, 72 

2022, 2023; Anwer et al., 2021a, 2021b, 2022; Ahn et al., 2019; Lee et al., 2017), but before this 73 

can be effectively implemented, continuous data collection from construction workers at 74 

construction sites and data analysis in real-time face several challenges (Ahn et al., 2019; Anwer 75 
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et al., 2021b). Specifically, there is a lack of well-established technologies that can be used to 76 

identify how to evaluate the data quality of wearable signals as a basis for data selection at this 77 

stage. In construction studies that make use of wearables, one factor that is usually underreported, 78 

particularly in quantitative terms, is the quality of the raw data that is gathered by the wearable 79 

devices (Ahn et al., 2019; Anwer et al., 2021b). In addition, the quality of the data can be 80 

portrayed in a variety of different ways, and the measurements of data quality may vary 81 

depending on the objectives of the associated research and project (Bangaru et al., 2020; Pal et 82 

al., 2019; Kleckner et al., 2017; Villeneuve et al., 2016). In addition, the quality of the data is a 83 

crucial factor in determining the integrity and validity of the information (Bent et al., 2020; 84 

Goldsack et al., 2020; Munos et al., 2016). Monitoring physiological signals, in comparison to 85 

monitoring many other signals, calls for a high temporal resolution. This is because physiological 86 

signals, such as heart rate, might be as brief as a few seconds (Ghosh et al., 2015; Masood & 87 

Alghamdi, 2019; Niu et al., 2019). For this purpose, having knowledge of the artifacts and 88 

techniques used to evaluate data quality and generate data reliability ratings is essential for 89 

subsequent analysis and, consequently, for the reliability of the results (Böttcher et al., 2022; 90 

Bangaru et al., 2020). It is possible for artifacts to be unique to a single modality or to occur 91 

simultaneously across several different modalities (Nathan & Jafari, 2017; Chen et al., 2021). 92 

Because of this, it is important to take each modality into consideration, both singly and in 93 

combination, when evaluating the quality of the data. 94 

The performance of artifact removal has recently been considerably improved due to recent 95 

advancements in signal processing, which have also greatly improved overall performance (Islam 96 
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et al., 2016; Urigüen & Garcia-Zapirain, 2015; Sweeney et al., 2012). Therefore, the purpose of 97 

the proposed state-of-the-art review was to give an in-depth evaluation of the approaches that are 98 

currently utilized to evaluate data and remove artifacts from physiological measurements 99 

obtained by WSDs while performing tasks associated with construction. To begin, this paper 100 

offers a summary of the physiological signals that are likely to be recorded from construction 101 

workers in order to keep an eye on their well-being and ensure their safety. Second, this study 102 

indicates the types of artifacts that are the most common and that have the most deleterious effects 103 

on the quality of the signals. Third, a detailed analysis of the various artifact removal approaches 104 

currently in use was provided for consideration. Fourth, each artifact identification and removal 105 

approach that had been identified was evaluated in light of the construction industry to determine 106 

its pros and cons. In conclusion, this review presents a few suggestions for future research to 107 

improve the quality of collected physiological signals utilizing artifact removal approaches for 108 

the purpose of monitoring the health and safety of construction workers. 109 

2. RESEARCH METHODOLOGY 110 

  The study approach can be divided into three primary stages, as outlined in Figure 1. The first 111 

step is to conduct a literature survey of previous published studies in the four electronic databases 112 

(e.g., Web of Science, IEEE Explorer, ASCE Library, and Scopus). These electronic databases 113 

were searched using a combination of keywords and their derivatives as follow: “Physiological 114 

signals” OR electrocardiogram OR “Heart rate” OR “Heart rate variability” OR 115 

Electrophysiology OR “data processing” AND artifacts OR Artefacts OR Noise OR “Motion 116 

artifact” OR “motion corrections” OR filtering OR cancellation OR filter OR “Artifact removal”  117 
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 118 

Fig. 1. Flow of adopted research methodology. 119 

OR “signal quality” OR motion artifacts removal OR filtering techniques OR noise suppression 120 

OR signal-to-noise ratio OR Signal processing OR Denoising OR muscle artifacts AND 121 

Wearables OR sensors OR wearable sensing device OR sensing technology AND Construction 122 

OR workers OR Industry OR Building. With the results from the first search in hand, a second 123 

search was done, this time focusing on articles about health and safety in the construction industry 124 

and physiological monitoring. The authors evaluated the abstracts of each publication to ensure 125 

that their inclusion matched within the scope of this review. Only papers published in English 126 

have been included in this review. For the purpose of monitoring construction workers' health 127 
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and safety, previous research has been searched through to discover a number of physiological 128 

signals that can be collected by employing WSDs. In addition, a literature review was conducted 129 

to determine the various artifacts that were obtained from physiological signals and the methods 130 

that were utilized to eliminate those artifacts. Challenges for the applications of artifacts removal 131 

approaches for real-time physiological monitoring in the construction industry were analyzed 132 

and discussed. There are a lot of high-impact research publications that have been examined, 133 

such as Automation in Construction, the Journal of Construction Engineering and Management, 134 

and the Journal of Civil Engineering and Management. In order to derive the suggestions and 135 

findings of the studies, a total of over 300 research papers—which were published between the 136 

years 2000 and 2023—were studied and examined. The second step of a research approach 137 

involves a discussion and analysis of the articles under consideration, and the third step consists 138 

of overall findings and recommendations for future study. Thus, the following methodology can 139 

be used as a template for analyzing studies that are comparable to the one being reviewed. One 140 

method used in research is content analysis, which involves examining the content of 141 

predetermined texts (Bengtsson, 2016; Assarroudi et al., 2018). However, content analysis has 142 

several drawbacks, including the fact that it can take a long time to complete, that information 143 

may be lost due to improper categorization, and that it may be biased (Grimmer & Stewart, 2013; 144 

Assarroudi et al., 2018). In situations where text mining techniques are computationally 145 

necessary, content analysis might be challenging to automate or computerize. As a result, content 146 

analysis has a higher margin of error. Content analysis' performance in text interpretation and 147 

analysis may suffer when dealing with complex texts. Therefore, to get a comprehensive 148 
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qualitative perspective on the evaluation of data processing and artifact removal approaches for 149 

physiological signals acquired by WSDs, this study employed a narrative review strategy 150 

(Gregory & Denniss, 2018). 151 

3. OVERVIEW OF PHYSIOLOGICAL SIGNALS 152 

The human body emits a wide range of physiological signals that can be monitored to determine 153 

a person's health, including perspiration (Jia et al., 2013), core or skin temperature (Nyein et al., 154 

2016), and electrical activity in the brain, heart, and muscles using techniques like 155 

electroencephalography (EEG), electrocardiography (ECG), and electromyography (EMG). An 156 

illustration of physiological signals and wearable sensing devices commonly used in the 157 

construction industry is given in Figure 2. EEG and ECG signals are regarded as fundamental 158 

physiological signals due to their capacity to predict wellbeing level in real time. The electrical 159 

activity of the heart produces an ECG, which is thought of as a nonstationary, non-linear time 160 

series signal (Han et al., 2017). The ECG is the most common signal used to check the health of 161 

the heart electrically. Capturing the electrical signal and rhythm of an ECG allows for the 162 

extraction of heart rate-like properties. ECG signals can be recorded either invasively or non-163 

invasively by attaching a series of potentials to the human body. Monitoring and analysis of 164 

ECGs have several uses in many fields, including construction (Li, 2018). 165 

Wearable devices can track ECG signals to calculate heart rate (HR) and stress levels by 166 

analyzing the cardiac waveform. In the construction industry, HR is the most popular 167 

physiological indicator of physical exertion (Abdelhamid and Everett 2002; Anwer et al. 2020; 168 

Chan et al. 2012; Gatti et al. 2014; Ueno et al. 2018; Wong et al. 2014). A greater HR was seen  169 
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 170 

Fig. 2. Illustration of physiological signals and wearable sensors commonly used for 171 

construction health and safety. ECG = electrocardiogram; EEG = electroencephalogram; EMG 172 

= electromyogram; BR = breathing rate; EDA = electrodermal activity; ST = skin temperature; 173 

and SMO2 = muscle oxygenation. 174 

when lifting and lowering from floor to floor compared to other lifting and lowering heights 175 

(Li et al. 2009). Similarly, Li et al. (2009) found that a lifting task performed twice per minute 176 

was associated with a higher HR than the same task performed once per minute. Furthermore, 177 

Anwer et al. (2020) found that HR significantly increased following a simulated fatigued task 178 

when compared to the HR scores at the beginning of the study. Recent studies have shown that 179 

incorporating multiple physiological signals in addition to HR can enhance fatigue prediction. 180 

Umer et al. (2020) used HR, thermoregulatory, and respiratory signals to predict 95% of physical 181 

fatigue levels in college students performing a simulated construction task. In a similar vein, 182 
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Aryal et al. (2017) reported that a combination of HR and skin temperature data was more 183 

accurate in predicting physical fatigue than each individual statistic alone (59% vs. 72%). This 184 

research demonstrates the value of integrating multiple physiological signals for fatigue 185 

prediction. 186 

Likewise, photoplethysmography (PPG) is an easy and inexpensive method of tracking vital 187 

signs like heart rate and breath rate. It is commonly used to take a reading from the skin's surface 188 

in a painless manner (Allen, 2007). PPG is an indirect technique of monitoring heart activity in 189 

contrast to ECG, and as a result, there is a time delay when using PPG to depict cardiac activity 190 

(Lu et al. 2009). PPG, on the other hand, only requires the use of a single optical sensor (an 191 

infrared emitter and detector), and the site at which the sensor is placed is more convenient (for 192 

example, the earlobe, the fingertip, or the wrist), both of which are advantages in comparison to 193 

ECG. Research and development in PPG have increased exponentially over the past few years 194 

due to advances in sensor technologies, methods for measuring physiological signals, cardiology, 195 

and numerous clinical applications. 196 

EMG signals are frequently investigated for rehabilitation therapy due to their ability to 197 

electrically simulate the characteristics of muscle activity (McManus et al., 2020; Fang et al., 198 

2020). Incorporating EMG sensors into devices for use in a variety of fields is now possible 199 

because of technological advancements in wearable devices. EMG sensors have been introduced 200 

for a wider range of applications due to the increase in wearable applications with highly 201 

customized aspects (Pourmohammadi & Maleki, 2020). One such application is physiological 202 

stress prediction through measuring trapezius muscle activation. The analysis of muscle 203 
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movement is aided by feature extraction from EMG signals. In addition, previous studies have 204 

demonstrated that detecting the surface EMG activity of the target muscle while performing a 205 

variety of tasks is an effective way for continuously monitoring muscle fatigue (Cifrek et al. 206 

2009). In the past, researchers have evaluated muscle fatigue in symptom-free college students 207 

and construction workers (such as masons) performing repetitive tasks by using surface EMG 208 

metrics (such as median frequency and root-mean square amplitude), such as median frequency 209 

and root-mean square amplitude (Anton et al. 2005; Calvin et al. 2016; McDonald et al. 2016; 210 

Yin et al. 2019). 211 

Due to the emergence of developing technologies in various industries, wearable 212 

technologies have attracted a lot of attention in recent years as a way to improve workers' health 213 

and safety and their overall quality of life. EEG is one of the rapidly developing technologies in 214 

this group for assessing workers' mental and cognitive states in a variety of work settings (Zhang 215 

et al. 2019). Cortical neuronal electrical activity can be recorded using an EEG (Sanei & 216 

Chambers, 2013). As computing platforms and sensory technologies advance so too do EEG 217 

systems, which have become increasingly portable, lightweight, ultra-low power (Awolusi et al., 218 

2018), wireless (Zhang et al., 2012), and affordable (Debener et al., 2012). Thus, there has been 219 

a rise in the use of portable and mobile EEG in a variety of settings (Ahn et al., 2019). Studies in 220 

the field of construction using EEG and mobile EEG to improve the built environment are known 221 

as neuro-architecture and neuro-urbanism (Banaei et al., 2015, 2017; Bower et al., 2019; 222 

Hekmatmanesh et al., 2019; Djebbara et al., 2020). Because of its low cost, great time precision, 223 

and portability, the EEG has proven to be an invaluable instrument in the field of construction 224 
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research. EEG has the advantage that it may be used for both in-lab and on-site research in the 225 

construction sector (Banaei et al., 2015, 2017; Bower et al., 2019; Hekmatmanesh et al., 2019; 226 

Djebbara et al., 2020). Recently, a portable EEG headset became commercially available, 227 

allowing for the noninvasive recording of EEG data with a maximum of 20 electrodes and a 228 

sampling rate of 256 hertz. As a result of this adaptability, it may be possible to record people's 229 

brain activity as they are working in their natural environments. Consequently, a number of 230 

studies have recently attempted to enhance workers' comfort by tracking their feelings (Hwang 231 

et al. 2018, Jebelli et al. 2017), cognitive load (Chen et al. 2016, 2017), and psychological stress 232 

(Jebelli et al. 2018). 233 

For in-vivo monitoring of tissue oxygenation, functional near-infrared spectroscopy (fNIRS) 234 

has recently been developed as an alternative brain imaging approach to EEG. With the help of 235 

infrared light of varying wavelengths and an estimate of the difference in optical absorption 236 

(Bunce et al., 2006), fNIRS can determine the concentration of hemoglobin (Hb) within the 237 

human brain (Sangani et al., 2015). Noninvasive brain function measurement (Huppert et al., 238 

2009; Holper et al., 2010), identification of cognitive tasks (Izzetoglu et al., 2004; Cui et al., 239 

2011), and brain-computer interface (Matthews et al., 2007; Khan & Hong, 2015) are the main 240 

areas of focus for fNIRS studies. The application of fNIRS in the identification of brain regions 241 

involved in the recognition of hazards suggests a neuropsychological foundation for judgment 242 

(Zhou et al., 2021). Their findings suggest that NIRS-based brain-computer interfaces could be 243 

of assistance in identifying and evaluating hazards in the building and construction sector (Zhou 244 

et al., 2021). Improvements in non-invasive fNIRS have allowed for the measurement of cortical 245 
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surface oxygenation and blood flow from secondary circulation. Because of its higher mobility 246 

and temporal resolution, fNIRS is the best technique for measuring stress and anxiety in 247 

ecologically valid settings (also known as fieldwork) (Quaresima and Ferrari, 2019). Other key 248 

physiological signals, such as electrodermal activity (EDA) and skin temperature (ST), can also 249 

be monitored through the measurement of skin response (e.g., thermoregulatory measures). 250 

Previous research has shown that there are robust associations between thermoregulatory 251 

parameters and fatigue onset following heavy workloads, such as construction tasks (Aryal et al., 252 

2017; Anwer et al., 2020). It is a standard procedure to employ infrared temperature sensors to 253 

track changes in skin temperature and other thermoregulatory functions as fatigue sets in. Skin 254 

temperatures in particular regions of the body (such as the face, ear, forehead, and temple) are 255 

affected by the underlying muscular activity, sweating patterns, and cutaneous blood flow in 256 

those regions (Formenti et al. 2017). Similarly, EDA is utilized for stress evaluation in the 257 

construction industry. EDA refers to the autonomic changes in the electrical characteristics of 258 

the skin caused by sweat secretion (Benedek and Kaernbach, 2010). Since perspiration is 259 

triggered solely by the sympathetic nervous system, EDA provides a valuable indicator of this 260 

system's activities (Kappeler-Setz et al. 2013, Poh et al. 2010). This means that EDA is not 261 

affected by parasympathetic nerve processes, unlike other autonomic physiological variables 262 

(Braithwaite et al., 2013; Picard et al., 2016). EDA has been used to better comprehend a person's 263 

mental and physical health under different conditions, such as in the workplace, during human-264 

computer interactions, or when dealing with traffic or automation (Boucsein 2012). Perceived 265 

risk is correlated with increased sympathetic nervous system activity (Herrero-Fernández 2016; 266 
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Schmidt-Daffy 2013), making EDA a useful tool in the field of safety research. Several 267 

ambulatory investigations have continually evaluated EDA to better comprehend affective events 268 

(Kappeler-Setz et al. 2013; Picard et al. 2016). There have been a few attempts to use EDA 269 

signals to better comprehend construction workers' emotional states (Guo et al., 2017; Jebelli et 270 

al., 2018b; Anwer et al., 2022). 271 

Muscle oxygenation (SMO2) and breathing rate (BR) are two other potential sources of 272 

information useful for ensuring worker safety on construction sites. The physiological demands 273 

of construction tasks have been quantified using these measures (Abdelhamid and Everett, 2002; 274 

Wong et al., 2014). An increase in SMO2 and energy expenditure, both of which can contribute 275 

to physical exhaustion, was found by Abdelhamid et al. (2002) in the construction industry. 276 

Construction tasks, such as bar fixing and bar bending, have been shown to increase SMO2 and 277 

energy expenditure, as reported by Wong et al. (2014). In particular, the frequency with which a 278 

person breathes can improve workload monitoring and modeling for construction tasks. Newer 279 

research has shown that BR is a more reliable indicator of physical exertion than heart rate and 280 

SMO2 measurements for a wide variety of exercises (continuous or intermittent), as well as under 281 

a range of experimental conditions that could affect physical exertion, such as hypoxia, muscle 282 

fatigue, heat exposure, and glycogen depletion (Nicol et al., 2014, 2016a, 2017a; Hayashi et al., 283 

2006). Given the significance of brain function, we can explain the robust connection between 284 

exertion and BR. The magnitude of central command controls the amount of physical effort, 285 

which can be thought of as the level of motor effort (Nicol et al., 2016b). A similar relationship 286 
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exists between physical exertion and BR since both are controlled by the brain during exercise 287 

(Nicol et al., 2017b). 288 

4. OVERVIEW OF SIGNAL ARTIFACT 289 

Notwithstanding the physiological signals that have been mentioned above and that are 290 

utilized in the construction industry, their full potential has not yet been explored. In construction 291 

studies, the quality of the raw collected data using wearables is often underreported, especially 292 

in quantitative terms. Data quality measures may also vary based on the objectives of the 293 

associated analysis and project, and data quality can be expressed in a variety of ways (Bangaru 294 

et al., 2020; Pal et al., 2019; Kleckner et al., 2017; Villeneuve et al., 2016). As an added note, 295 

the quality of the data is crucial to its consistency and accuracy (Bent et al., 2020; Goldsack et 296 

al., 2020; Munos et al., 2016). In this scenario, the accountability of subsequent analysis and, by 297 

extension, outcomes depend on familiarity with artifacts and methods for evaluating data quality 298 

and generating data reliability ratings. It is possible that the evaluation of data quality might 299 

benefit from taking into account both the individual and combined effects of the various 300 

modalities, as artifacts can affect only one or all of them. Despite the great potential of 301 

physiological signals for evaluating workers without interfering with their ongoing tasks, their 302 

application in the field is complicated by the signal artifacts manifested in the data, in particular 303 

those related to signal noise from the construction sites or from the frequency of workers' 304 

movements (Jebelli et al. 2018; Ahn et al. 2019). In this context, "signal artifacts" refer to any 305 

unwanted signals or signal distributions that interfere with the actual signal of interest (De Luca 306 

et al. 2010). There are two classification systems used to classify signal artifacts: category A and 307 
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category B. Category A classifies artifacts into intrinsic and extrinsic artifacts. Category B 308 

classifies artifacts into physiological and environmental artifacts. Artifacts in data that come from 309 

outside the data are called extrinsic artifacts, and those that are part of the data itself are called 310 

intrinsic artifacts. 311 

 312 

Fig. 3. Overview of types and sources of signal artifact found in physiological signals. ECG = 313 

electrocardiogram; EEG = electroencephalogram; EMG = electromyogram; HR = heart rate; and 314 

PPG = photoplethysmography. 315 

The possible sources of various signal artifacts are presented in Figure 3. The majority of 316 

the time, extrinsic signal artifacts are produced by external sources such as environmental noise 317 

and the motions of employees, motion artifacts, device powerline interference, electrode 318 

movement artifacts, and sensor deployment and positioning (Ahn et al. 2019). Intrinsic signal 319 

artifacts are those that come from within the body itself. Some examples of intrinsic signal 320 

artifacts are artifacts caused by respiration, pulse, skin, movements, muscles, and the eyes (Jebelli 321 
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et al. 2018b). Likewise, physiological artifacts are introduced because secondary physiological 322 

processes in the human body interfere with the basic physiological signal. Most unwanted 323 

components of EMG signals are introduced by cardiac signals and eye movement-associated 324 

abnormalities. However, an EEG signal is a weak signal that can be easily distorted by even a 325 

single blink of the eyelid. Capturing high-quality EEG signals in the field, for example, is more 326 

difficult than other physiological signals due to many intrinsic artifacts (e.g., eye blinking and 327 

face muscle movement). Furthermore, measuring physiological signals with a wristband-type 328 

biosensor at real-world construction sites remains difficult due to the large number of extrinsic 329 

signal artifacts and distortions caused by worker movements, sensor displacement, 330 

environmental noises, and lower sensor electrode quality compared to wired biosensors (Jebelli 331 

et al., 2019b). According to the findings of another investigation (Chae and Kang, 2021), 332 

extrinsic artifacts can be caused by either the presence of an electric device next to the EEG 333 

equipment or the presence of an electric node popping noise. The EEG devices can pick up on 334 

the electrical signal that is produced by the contractions of the heart. Additionally, because the 335 

EEG device is placed on the subject's head, any movement of the eyeball can cause a disturbance 336 

in the signal. Heartbeats can also interfere with EEG and EMG. It is possible to distinguish these 337 

aberrations from EEG and EMG readings because of the high signal strength of an 338 

electrocardiogram (Miljkovi et al., 2017). Extrinsic and intrinsic artifacts in EDA data, as in other 339 

types of physiological data, serve to mask the signal of importance. Noise from the subject's 340 

excessive movement and drifts in the EDA caused by environmental factors like humidity and 341 

temperature are examples of extrinsic artifacts. Muscle activation noise, irregular breathing, 342 
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heavy breaths, and coughing are examples of intrinsic artifacts in EDA (Chae et al., 2021). 343 

Similarly, the principal cause of environmental artifacts is the laying of connecting wires and 344 

mains power leads. These artifacts can also be introduced by electromagnetic interference (EMI) 345 

from certain electronic or electrical devices during the recording or data storage phase. 346 

Interference from radio frequency sources can cause inductive coupling between measurement 347 

cables, which in turn causes noise in the recording setup. These abnormalities, which are caused 348 

by the circuit components themselves, can be seen in the 1/f noise, shot noise, and thermal noise 349 

that are produced by recording devices (Prakash et al., 2021). Additionally, although a PPG 350 

sensor is intended to record numerous physiological signals, it also captures a considerable 351 

amount of undesired and unrecognized signals (e.g., noise from body and sensor motions, power 352 

line noise, and environmental noise) that interfere with the signal of interests (Jebelli et al., 353 

2019a). Several studies indicated many challenges of data collection of physiological signals on 354 

construction sites, such as the frequent movement of workers and the dynamic nature of the 355 

construction environment. In particular, standard signal preprocessing methods like digital 356 

filtering or amplitude thresholding have issues with distinguishing between artifacts and intended 357 

physiological signals due to the wide range of artifacts and their overlap with signal of interest 358 

in the spectrum and temporal domains. Therefore, conventional filters have a poor track record 359 

of success in eliminating signal distortion and other artifacts. With the help of modern 360 

improvements in signal processing techniques/algorithms, several researchers have tried to create 361 

effective ways for artifact detection and removal. As a result, there is a need for further 362 

advancement of wearable sensing technologies on construction sites to enhance data collection 363 
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of physiological signals for monitoring the health and safety of construction workers. In the 364 

following section, several of the filtering methods and algorithms that can be utilized to eliminate 365 

artifacts will be discussed. 366 

5. ARTIFACT REMOVAL APPROACH 367 

Removing or reducing signal artifacts is suggested prior to signal processing as they might 368 

obscure otherwise detectable signals (Ahn et al., 2019). There have been many different filtering 369 

algorithms created to decrease the impact of signal artifacts like these (Iriarte et al., 2003; 370 

Manoilov, 2006; Ram et al., 2011; Daly et al., 2013). Previous research utilized a variety of 371 

methods, such as wavelength shrinkage, to cut down on the amount of random noise that was 372 

picked up by the wearable sensor (Kang et al. 2017). Gibbs and Asada (2005) came up with an 373 

active noise-cancellation strategy to mitigate signal distortions brought on by movement of the 374 

body that occurred during the process of data collection utilizing wearable PPG sensing 375 

equipment. However, due to the substantially bigger signal artifacts that are observed in the actual 376 

world, these approaches might not be adequate for usage in construction sites. Therefore, the 377 

objective of this study is to provide an overview of several different methods for removing 378 

artifacts from physiological signals. This review will attempt to collate and discuss the most 379 

significant methods that have been utilized in previous research to eliminate artifacts throughout 380 

the process of acquiring physiological data. Researchers in several fields have used methods for 381 

eliminating artifacts in physiological data.  382 

Table 1 presents a comparison of several artifact removal approaches to improve the signal 383 

quality of sensors. A total of 12 studies developed and examined a few novel artifact removal 384 
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approaches to eliminate intrinsic and extrinsic artifacts and noises from EEG (Sweeney et al., 385 

2013; Hossain et al., 2022; Phadikar et al., 2022; Porr et al., 2022; Roy et al., 2017), fNIRS 386 

(Sweeney et al., 2013; Zhang et al., 2012; Hossain et al., 2022; Robertson et al., 2010; Izzetoglu 387 

et al., 2005, 2010; Nguyen et al., 2018; Chiarelli et al., 2015), and electrophysiological (Zhan et 388 

al., 2009) signals. Most of the included studies tested motion artifacts, while others examined 389 

different kinds of artifacts, including physiological artifacts and background noise. Sweeney et 390 

al. (2013) found Ensemble Empirical Mode Decomposition (EEMD) along with Canonical 391 

Correlation Analysis (CCA) techniques outperformed other methods for artifact removal from 392 

both fNIRS and EEG signals. Similarly, Hossain et al. (2022) proposed two innovative motion 393 

artifact removal approaches, including wavelet packet decomposition (WPD) and WPD 394 

combined with canonical correlation analysis (WPD-CCA) for fNIRS and EEG signals. Zhang 395 

et al. (2012) reported that adaptive filtering using the least-squares recursion method was found 396 

to provide faster convergence and a lower mean square error (MSE) than the least mean squares 397 

(LMS) adaptive filter. However, the findings of Robertson et al. (2010) reveal that independent 398 

component analysis (ICA) generated the best motion artifact removal results across all datasets. 399 

Moreover, Izzetoglu et al. (2005, 2010) compared Wiener, Kalman, and adaptive filter methods 400 

for fNIRS signals. While both the Wiener and Kalman filters were effective in eliminating motion 401 

artifacts from fNIRS signals, the Kalman filter had the added advantage of real-time application 402 

capacity. Furthermore, Phadikar et al. (2022) investigated a new automatic hybrid approach for 403 

denoising muscular artifacts from EEG signals using WPD and a modified non-local means 404 

(NLM). Likewise, Porr et al. (2022) used a deep neural filter based on deep learning models to 405 
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do simultaneous learning and noise reduction in real time from an EEG signal. Moreover, Roy 406 

et al. (2017) introduced a novel algorithm for EEG signals using Gaussian Elimination Canonical 407 

Correlation Analysis (GECCA) that is 18% faster than traditional CCA. 408 

Table 2 presents an overview of several artifacts’ removal approaches used in construction 409 

studies. A total of 13 studies are included in this review, which give detailed information about 410 

artifact removal approaches used for several physiological signals tested in construction-related 411 

studies. Most of the included studies tested PPG, EDA, skin temperature, HR, HRV, and EEG 412 

signals. All included studies have used bandpass filters, except one study that used a moving 413 

average filter (Newton, 2022) for removing artifacts from PPG signals. Likewise, while all 414 

included studies have used a low-pass filter, two studies used a high-pass filter (Lee et al., 2021; 415 

Shayesteh et al., 2023) for cleaning EDA data. A few studies have used the Hampel, high-pass, 416 

low-pass, and notch filters for cleaning the skin temperature signal (Jebelli et al., 2019a, 2019b; 417 

Lee et al., 2021). Three studies have used band pass filters (Chae et al., 2021; Shayesteh et al., 418 

2023; Xu et al., 2017), and two studies have used independent component analysis (ICA) (Chae 419 

et al., 2021; Shayesteh et al., 2023) for EEG data. 420 

6. DISCUSSION 421 

6.1. Discussion of several artifact removal approaches 422 

This review presents an overview of various physiological signal, artifacts, and artifact removal 423 

approaches used in both construction and non-construction scenarios. Physiological signal 424 

processing is an important area of study that needs more investigation into how to enhance the 425 

quality of output signals and better interpret data. WSDs are a common tool for recording 426 



Anwer et al., (2024) Evaluation of data processing and artifact removal approaches used for 
physiological signals captured using wearable sensing devices during construction tasks: A 
State-of-the-Art Review. Journal of Construction Engineering and Management. (Accepted) 

22 

 

physiological signals in order to keep an eye on the health and safety of construction workers. 427 

Capture signals are perpetually muddied by artifacts emanating from both within and without the 428 

system. Asking the subject to constrain their movement, removing potential sources of power 429 

line interference, and increasing the density of the electrode placement are all precautions that 430 

can be implemented. This approach, however, may not always be effective, particularly for long 431 

signal acquisition experiments and experiments involving movement and physical tasks such as 432 

construction. It is best to use a computational method to handle the artifacts. The artifact filtration 433 

phase is especially important because it affects feature extraction and ultimately how the data is 434 

interpreted. For instance, this review uncovered various artifact removal approaches that may be 435 

implemented in the processing of several physiological signals. 436 

Removing artifacts from a physiological signal can be done either before or after the signal 437 

is recorded. Most studies rely on traditional filtering methods, either implemented in hardware 438 

or as simple filtering algorithms, during the data acquisition process, i.e., in real time. Meanwhile, 439 

the highly developed algorithm is used to clean up the archived data from artifacts. When 440 

processing signals, conventional filtering is typically applied during the pre-processing stage. 441 

Filtering relies heavily on the correlation coefficients. To estimate the filter's coefficient, a 442 

researcher must know the desired order, filter type (FIR, IIR, etc.), and frequency response (band-443 

pass, low-pass, high-pass, etc.). For instance, the Kalman filter used in the pre-processing phase 444 

is an example of a static filtering approach because its filtering coefficients do not vary, while a 445 

filter whose coefficients do change based on optimization criteria is an example of an adaptive 446 

filter. There are many methods for static filtering, but the Wiener filter of the FIR variety stands 447 
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out as the most common. With linear time-invariant signals, it is particularly effective at 448 

minimizing the MSE between the desired signal and the estimated signal. Additionally, the 449 

adaptive filter estimates coefficients using a variety of algorithms like least mean square (LMS) 450 

and recursive least square error (RLS) based on the condition of optimization being applied. 451 

However, researchers need to know the nature of the artifacts to use these filters effectively on 452 

linear time-variant signals like EEG and fNIRS (Guerrero-Mosquera & Navia-Vázquez, 2012). 453 

Artifacts have been corrected from fNIRS, respiratory, and ECG signals using Kalman filters, a 454 

linear approximation of probabilistic Bayesian filters (Rheinberger et al., 2007; Hesar & 455 

Mohebbi, 2016; Sameni et al., 2007). 456 

Because most of the study that was conducted on construction only used conventional methods 457 

for eliminating signal artifacts, we discussed a few advanced artifacts removal methods that were 458 

utilized in situations that did not include construction domain. In addition, studies that were 459 

published in the construction area only provide a limited amount of information regarding the 460 

artifacts removal approaches that were applied, and they do not provide any performance metrics 461 

to assess the efficiency of the approach that was applied. In contrast, studies that did not involve 462 

construction domain not only investigated the efficacy of the various artifact removal approaches 463 

that they implemented, but they also evaluated and contrasted a variety of cutting-edge strategies 464 

for minimizing signal artifacts. We believe that these approaches can be useful for reducing the 465 

signal artifacts that are associated with environments involving construction. When analyzing 466 

physiological data from a human subject, it is common practice to combine the clean signal with 467 

artifacts produced by other physiological sources. In this case, the reference channels are the 468 
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artifacts themselves, which can be acquired independently by various devices. Examples of such 469 

reference signals or artifacts when processing EEG include EOG, EMG, and ECG. The goal of 470 

linear regression methods is to quantify the amount of noise in an otherwise well-characterized 471 

primary physiological signal. It has been possible to clean up EEG signals by subtracting out 472 

ECG and EMG noise using linear regression. However, only a small number of studies have 473 

adapted machine learning strategies, such as those that employ adaptive neural fuzzy inference 474 

systems and neural networks to eliminate artifacts (Jeyhani et al., 2015; Al-Jebrni et al., 2020; 475 

Chiang, 2015). Denoising ECG and EEG signals with deep recurrent neural networks and 476 

comparing the results to those of more traditional denoising methods has been studied (Antczak, 477 

2018). Sweeney et al., (2013) found the effectiveness of EEMD algorithms on the EEG and 478 

fNIRS data. However, the newly developed EEMD-CCA technique was found to be most 479 

effective in reducing signal artifacts during processing of fNIRS data. Additionally, Zhang et al. 480 

(2012) used a recursive least-squares (RLS) technique for adaptive filtering for removing signal 481 

artifacts associated with the physiological interference found in the fNIRS signal. The RLS 482 

method has shown faster convergence and reduced MSE, which makes this approach more 483 

effective at reducing the impact of physiological interference. Furthermore, Phadikar et al. (2022) 484 

combines wavelet packet decomposition (WPD) with a modified nonlocal means (NLM) 485 

algorithm to improve processing of EEG signals, which was found to be superior as compared to 486 

recently published denoising techniques. More recently, a new real-time deep learning algorithm 487 

was presented by Porr et al. (2022), which adaptively generates a signal counter to the noise, 488 

causing adverse interference. There are many different biological, industrial, and consumer 489 
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applications that could benefit from this approach, from industrial sensing to noise-cancelling 490 

headphones. 491 

In this review, we found that most studies in the construction industry studied PPG, EDA, 492 

skin temperature, HR, HRV, and EEG signals. Unfortunately, no studies have used new and 493 

improved approaches to the elimination of artifacts and noises in physiological signals during 494 

construction tasks. While some research did detail the artifact removal approaches, they 495 

employed, no comparative studies were found, nor were any artifact removal approaches 496 

formally designed. To clean up their physiological data, most studies solely utilized widely used 497 

and accessible tools, including band pass filters, moving average filters, low-pass filters, high-498 

pass filters, Hampel filters, and notch filters. Independent component analysis (ICA) for EEG 499 

data has been employed in only a handful of research studies (Chae et al., 2021; Shayesteh et al., 500 

2023). Intrinsic artifacts, as opposed to external sources, share frequency ranges with the EEG 501 

signals. Accordingly, such noise cannot be eliminated by employing bandpass filtering. As such, 502 

authors used ICA to filter out the noise and eliminate the intrinsic artifacts (Chae et al., 2021; 503 

Shayesteh et al., 2023). There has been extensive use of ICA (Jebelli et al., 2018c; Makeig et al., 504 

1995) to clean EEG signals by identifying and eliminating sources of intrinsic artifacts. This 505 

approach presupposes that the recorded EEG signal may be broken down into its constituent parts 506 

and examined as the sum of separate components (Jebelli et al., 2018c). By first deconstructing 507 

the EEG signal into its constituent parts, artifacts like blinking eyes and muscle activity may be 508 

filtered out individually. 509 

6.2 Advantages and limitations of various artifacts removal approaches 510 
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While this review discussed several artifacts removal approaches used in construction and non-511 

construction related research, they all have some strengths and weaknesses, which need to be 512 

discussed for better understanding and application.  513 

6.2.1 Empirical Mode Decomposition - Canonical Correlation Analysis (EEMD-CCA) approach: 514 

Certain scenarios demand for physiological signals to be processed in real time or online. Thus, 515 

an artifact removal approach would be selected for this application in such a way that it has the 516 

necessary minimal computational complexity to be suitable for real-time/online processing. In 517 

that circumstance, the performance of the artifact removal approach must be compromised 518 

against its computational complexity. However, there are programs that rely on offline 519 

processing. When this is the case, optimizing for performance over computational time becomes 520 

the primary concern. Sweeney et al. (2013) studied the computational cost of the EEMD-CCA 521 

algorithm to see if the better artifact elimination achieved by the CCA extension to EEMD came 522 

with any extra computational costs. It was discovered that CCA takes far less time to calculate 523 

than EEMD does, hence it does not significantly increase the computational complexity of the 524 

system. Furthermore, certain artifacts reduction approaches are only applicable to multi-channel 525 

recordings of physiological signals, whereas others can be used with single-channel recordings 526 

as well. However, for a single recording, wavelet or EMD-based algorithms can be used, 527 

selecting artifacts removal methods with the number of channels being considered is therefore 528 

crucial (Islam et al., 2016). For instance, Both the ICA and CCA algorithms are multi-channel 529 

signal processing methods, which means they require input from several channels. As a result, 530 

separate implementations of the ICA and CCA algorithms cannot be used to process single-531 
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channel data (Sweeney et al. 2013). Moreover, the CCA algorithm is computationally efficient 532 

in comparison to the ICA algorithm because it uses second-order statistics rather than higher-533 

order statistics (Sweeney et al., 2012c).       534 

6.2.2 Adaptive filtering with least-squares recursion approach: Similarly, adaptive filtering with 535 

least-squares recursion is a popular method for de-noising physiological signals (Zhang et al., 536 

2012). While there are certainly benefits to using this method, there are also drawbacks that must 537 

be acknowledged. Removing physiological interference from physiological signals is best 538 

accomplished by adaptive filtering utilizing least square recursion (Lu et al., 2009b). For instance, 539 

it can be used to filter out background noise resulting from factors like the heartbeat, breathing, 540 

and muscular action. The online processing of physiological signals is another potential use of 541 

this method, which can be executed in real-time. In addition, it can handle the non-stationary 542 

signals that are typical in the construction industry. Furthermore, the method utilized in this 543 

strategy is easy and simple to apply. The adaptive filter can improve results, but only if sufficient 544 

training data is provided. The effectiveness of a filter depends on its ability to accurately represent 545 

the signal it is designed to process in training data. Moreover, matrix operations, like those used 546 

in the least square recursion approach, can be computationally expensive for massive data sets. 547 

Furthermore, it can only be used to linear systems (Yang et al., 2016). The effectiveness of the 548 

filter may be diminished if the input signal is very non-linear. Overfitting to noise in the training 549 

data is another potential pitfall of the adaptive filter that might lead to inferior results in the test 550 

data. Regularization methods and careful selection of training data can help with this. 551 
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6.2.3 Wavelet packet decomposition and the canonical correlation analysis (WPD-CCA) 552 

approach: Wavelet packet decomposition and the canonical correlation analysis (WPD-CCA) 553 

technique were also explored in this review as a means of feature extraction and classification of 554 

signals (Hossain et al., 2022). There are advantages and disadvantages to this method, as well. 555 

By breaking a signal down into subbands with distinct frequency components, Wavelet packet 556 

decomposition combined with CCA can efficiently extract useful characteristics. The combined 557 

use of wavelet packet decomposition and CCA has been found to increase classification accuracy 558 

over individual methods, allowing the obtained features to be employed for signal classification 559 

(Hossain et al., 2022). The combination of WPD-CCA is noise-tolerant because it can pick out 560 

useful characteristics even when there is background noise. The features obtained using this 561 

method can be interpreted, leading to a deeper comprehension of the signal's properties. However, 562 

for big datasets, the computationally intensive operations involved in the wavelet packet 563 

decomposition in conjunction with CCA might be time-consuming (Hossain et al., 2022). In 564 

addition, the method's efficacy is reliant on the accuracy and completeness of the training data. 565 

It could be possible that the accuracy of the classification will be low if the training data is not 566 

indicative of the signal being classified. Like CCA alone, this method can only be used to linear 567 

systems. The performance may be unsatisfactory if the signal to be classified is substantially non-568 

linear. In addition, the success of the WPD is linked to the choice of wavelet basis (Li et al., 569 

2017). Decomposition may fail to successfully extract useful features if the incorrect basis is 570 

used. In addition, if the number of features extracted is immense in comparison to the size of the 571 

training dataset, there is a risk of overfitting, just as there is with adaptive filter. 572 
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6.2.4 Independent component analysis (ICA) approach: Another effective method for artifact 573 

elimination during physiological signal processing is independent component analysis (ICA), 574 

which is frequently used for electroencephalography (EEG) and magnetoencephalography (MEG) 575 

(Çınar and Acır, 2017). ICA is a blind source separation approach that can decompose a muddle 576 

of signals into their constituent parts, which can be useful for isolating the signal of interest from 577 

noise (Mijović et al., 2010). When dealing with complicated artifacts that are challenging to 578 

remove using other methods, ICA can be used to separate many sources of artifacts 579 

simultaneously. Numerous researchers and professionals have used ICA due to its simplicity of 580 

implementation and computational efficiency (Akhtar et al., 2012; Quiñones-Grueiro et al., 2019). 581 

ICA is a data-driven method that may be used in various contexts without any prior information 582 

about the origins of artifacts. However, it does have certain limitations. Artifacts' origins are 583 

assumed to be statistically independent in ICA, which might not be the case. The effectiveness 584 

of ICA may be hindered if the sources are not truly independent. Further, the extraction of a 585 

significant number of independent components is necessary for isolating the signal from the noise 586 

(Tripathi et al., 2021). The effectiveness of ICA may once again be constrained if there are 587 

insufficient components. Further, ICA can be vulnerable to noise and may not function well in 588 

loud situations, limiting its use in specific settings, such as the construction sector. Finally, ICA 589 

can be challenging to interpret since its output may not correspond exactly to the original artifact 590 

sources. This necessitates expertise and potentially some trial and error in interpreting the 591 

findings. 592 
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6.2.5 Weiner filtering approach: The Wiener filter is a type of linear filter employed in signal 593 

and image processing. It is a computationally efficient technique that is simple to implement in 594 

practical, real-time settings. Since it is an adaptive filter, it may be modified to fit a variety of 595 

signal scenarios and put to excellent use in many environments (Chandra et al., 2021). It can 596 

filter out extraneous noise from signals without significantly altering the original signal. Because 597 

of its flexibility, it finds widespread application in the field of signal processing, where it may be 598 

applied in both the time domain and the frequency domain (Khiter et al., 2020). However, in 599 

actuality, the assumptions made by the Wiener filter—that noise and signal are uncorrelated, and 600 

that noise is Gaussian distributed—may not remain true (Appathurai et al., 2019). Furthermore, 601 

it necessitates information about the power spectral densities of the signal and noise, which may 602 

not be readily available or may be difficult to estimate (Cai et al., 2018). Moreover, it is sensitive 603 

to the values of the filter parameters, and finding the best values for these might be difficult. Also, 604 

if the filter's assumptions fail to be fulfilled, it could cause artifacts or distortions in the signal. 605 

The Wiener filter is an effective tool for signal processing in general, and it benefits in situations 606 

when additive noise is present. However, it is sensitive to the details of the signal and the noise 607 

and requires thorough parameter tuning and validation to achieve its full potential. 608 

6.2.6 Deep Neural Filter (DNF) approach: The deep neural filter is a cutting-edge method for 609 

processing signals and performing filters. Signals having nonlinear dynamics can be modeled 610 

and filtered with the help of deep neural networks due to their ability to learn complex nonlinear 611 

correlations between input and output data. It is a potent tool for signal processing in a variety of 612 

contexts since it can be trained from start to finish without requiring any constructed features or 613 
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preconceptions about the data being processed (Lee, M. B., et al., 2021). They may be trained on 614 

massive datasets, which increases their precision and generalization ability. It has several 615 

applications in signal processing, such as noise removal, blur removal, deconvolution, and 616 

prediction. To get effective results, though, a lot of training data is needed, which might be 617 

challenging to collect for some uses. Since deep neural networks are computationally intensive 618 

and necessitate strong technology for training and execution (Li et al., 2020), their applicability 619 

may be constrained in particular scenarios such as physiological signals obtained during 620 

construction tasks. It can be challenging to interpret the results of deep neural networks, which 621 

can reduce their utility in many applications. Overfitting is another issue that could arise with 622 

deep neural networks, especially if the dataset used for training is too short or the model is too 623 

complicated (Baraldi et al., 2013). As a whole, deep neural networks show promise as a useful 624 

tool for signal processing, especially for problems with intricate nonlinear connections between 625 

input and output. However, they are only as efficient as the training data they are given, and the 626 

characteristics of the signal being processed. The high computing cost and lack of interpretability 627 

may also reduce their utility in some applications. 628 

Finally, adaptability is a key consideration when choosing an artifact removal approach 629 

because different types of artifacts affect and/or alter distinct physiological signals across various 630 

recording techniques and scenarios. To assess the potential of any artifact removal approach to 631 

detect and remove artifacts from a specific physiological signal, it is necessary to demonstrate its 632 

stability across various setups for experiments (or distinct applications or scenarios) and various 633 

participants. 634 
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6.3 Challenges and future directions of artifact removal approaches 635 

Artifact removal from physiological signals is an important task for analyzing physiological data 636 

captured during construction task due to nature of construction job. While there have been many 637 

advances in artifact removal approaches, there are still several challenges and future directions 638 

to consider. 639 

6.3.1 Lack of standardized evaluation metrics: There is a growing need for standardized 640 

evaluation metrics so that various artifact removal approaches can be compared with one another 641 

about their level of efficacy (An and Stylios, 2020). Metrics such as signal-to-noise ratio, 642 

distortion metrics, and physiological performance metrics are examples of these types of 643 

measurements. 644 

6.3.2 Integration of multiple techniques: Because of the complicated configuration of 645 

physiological signals and the wide variety of artifacts that may be present, it is highly likely that 646 

a number of methods will be required in order to successfully remove artifacts from the data 647 

(Sweeney et al., 2012b). To be able to attain the highest level of artifact removal performance 648 

possible, future research should concentrate on combining several approaches. 649 

6.3.3 Real-time implementation: Real-time implementation is essential for many applications of 650 

artifact removal, including construction work, for example. In the future, research should be 651 

focused on the development of real-time artifact removal programs that may be used in these 652 

types of situations. 653 

6.3.4 Interpretation of post-filtering results: It is essential to ensure that the findings of artifact 654 

removal approaches are correctly interpreted in order to avoid incorrectly interpreting the 655 
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underlying signal (Wirawan et al., 2022). The development of methodologies that can evaluate 656 

the effect that artifact removal has on applications that are developed later in the research process 657 

ought to be the top priority of future study. 658 

6.3.5 Generalizability across different physiological signals and populations: There are a lot of 659 

approaches for artifact removal that are developed and tested on particular physiological signals 660 

or individuals (Delorme et al., 2007). The development of methods that are applicable to a diverse 661 

set of physiological signals and population types need to be the primary emphasis of research 662 

that will be conducted in the future. 663 

6.3.6 Ethical considerations: Carelessly removing artifacts from a signal could result in the loss 664 

of essential information. Future study should take into consideration the ethical concerns of using 665 

artifact removal techniques for the purpose of construction-related research. 666 

Overall, the challenges and potential developments in artifact removal approaches emphasize 667 

the need for more study and innovation in this field. By resolving these issues, we may enhance 668 

signal processing for data obtained during construction tasks and enhance the accuracy and 669 

reliability of physiological signal analysis.  670 

8. CONCLUSION 671 

The findings of this review show that there is currently no gold-standard approach that is both 672 

effective and reliable across a wide range of scenarios. In light of this, it is conceivable that 673 

situationally-specific algorithms may emerge in the near future. Additionally, this review failed 674 

to identify any unique artifact removal approaches that can be used for cleaning physiological 675 

data captured from construction fields. However, this review presents an overview of many novel 676 
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artifact removal algorithms to improve the quality of physiological signals obtained from non-677 

construction domain. Therefore, it is recommended to examine and adopt such approaches in the 678 

construction field to improve the quality of physiological signals captured during construction 679 

tasks for further analysis and interpretation. For example, artifacts and noise in construction-680 

related physiological data can be removed using various filters and deep learning methods, 681 

including the Wiener filter, Kalman filter, adaptive filter, wavelet packet decomposition, and 682 

others. 683 
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Table 1. Comparison between different artifacts removal techniques. 1150 

Citations Types of filtering 
techniques 

Type of 
signals 
tested 

Types of 
artifacts 

Performance Metrics Conclusions 

Reduction of 
artifacts (%) 

ΔSNR (db) Others 

Sweeney et 
al., 2013 

Wavelet Denoising fNIRS 

EEG 

Motion 
artifacts 

fNIRS: 38.2 

EEG: 51.2 

fNIRS: 2.88 

EEG: 7.81 

- Due to the inclusion of the 
EEMD algorithm, a unique 
artifact removal technique, 
EEMD-CCA, was presented, 
which is capable of 
functioning on single-
channel measurements. 
However, when EEMD is 
used in conjunction with 
CCA, the outcomes are 
typically better. 

Empirical Mode 
Decomposition 
(EMD) 

fNIRS: 13.2 

EEG: 38.7 

fNIRS: 1.84 

EEG: 7.01 

- 

Ensemble Empirical 
Mode 
Decomposition 
(EEMD) 

fNIRS: 42.2 

EEG: 48.5 

fNIRS: 3.21 

EEG: 7.88 

- 

EMD – Independent 
Component Analysis 
(ICA) 

fNIRS: 14.9 

EEG: 40.0 

fNIRS: 2.12 

EEG: 7.22 

- 

EMD - Canonical 
Correlation Analysis 
(CCA) 

fNIRS: 17.3 

EEG: 39.6 

fNIRS: 1.98 

EEG: 6.98 

- 

EEMD-ICA fNIRS: 39.7 fNIRS: 3.42 - 
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EEG: 48.3 EEG: 8.02 

EEMD-CCA fNIRS: 46.4 

EEG: 48.5 

fNIRS: 3.44 

EEG: 8.04 

- 

Zhang et 
al., 2012 

Recursive least-
squares 

(RLS) adaptive filter 

fNIRS Physiological 
artifacts 

  MSE = small 

Convergence = fast 

Adaptive filtering using 
least-squares recursion was 
applied to eliminate 
physiological disturbance. 
For reducing physiological 
interference, the RLS 
method provides a faster 
convergence and a lower 
MSE than the LMS 
algorithm. 

least mean squares 
(LMS) adaptive filter 

  MSE = large 

Convergence = slow 

Hossain et 
al., 2022 

Wavelet packet 
decomposition 
(WPD) 

EEG 

fNIRS 

Motion 
artifacts 

EEG: 52.58 

fNIRS: 26.4 

EEG: 29.21 

fNIRS: 16.11 

- For EEG and fNIRS 
modalities, two innovative 
motion artifact removal 
approaches have been 
proposed: wavelet packet 
decomposition (WPD) and 
WPD combined with 
canonical correlation 
analysis (WPD-CCA). In 
terms of % reduction in 

WPD in combination 
with canonical 
correlation analysis 
(WPD-CCA) 

EEG: 55.88 

fNIRS: 41.4 

EEG: 28.86 

fNIRS: 12.41 

- 
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motion artifacts, the unique 
WPD (db1)-CCA and WPD 

(fk8)-CCA techniques 
performed best, while the 
WPD(db1)-CCA technique 
produced the highest average 
SNR for both EEG and 
fNIRS. 

Phadikar et 
al., 2022 

Wavelet packet 
decomposition 
(WPD) and a 
modified non-local 

means (NLM) 

EEG Muscle 
(EMG) 
Artifacts 

- - Average CC: 0.8675 

SSIM: 0.6809   

For the first time, a new 
automatic hybrid approach 
for denoising muscular 
artifacts from EEG is 
presented, in which WPD is 
paired with an optimized 
NLM algorithm. The 
suggested system removes 
muscular artifacts from the 
EEG signal regardless of 
how many artifacts are 
present; it can remove 
artifacts from multi-channel 
EEG data. 
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Robertson 
et al., 2010 

two-input recursive 
least squares (RLS) 
adaptive filter 

fNIRS Motion 
artifacts 

 λ760mm: 0.13 

λ830mm: 0.33 

 SNR improves moderately 
when the signal is regressed 
or adaptively filtered. 
Although the wavelet-based 
filtering method improves 
SNR, the SNR improvement 
for the dataset without 
known motion was not 
significantly better than 
regression or adaptive 
filtering. The approaches 
that take into consideration 
signal changes on all 30 co-
located channels, notably 
ICA and regression, 
generated the best motion 
artifact removal results 
across all datasets. 

wavelet-based filter  λ760mm: 0.89 

λ830mm: 0.58 

 

independent 
component analysis 
(ICA) 

 λ760mm: 3.20 

λ830mm: 3.67 

 

two-channel 
regression 

 λ760mm: 0.35 

λ830mm: 0.44 

 

multiple-channel 
regression 

 λ760mm: 3.01 

λ830mm: 2.54 

 

Izzetoglu et 
al., 2005 

Wiener filter fNIRS Motion 
artifacts 
(Head 
Motion) 

 ΔSNRSlow: 
5.2526 

ΔSNRMedium: 
9.0539 

ΔCCSlow: 0.2929 

ΔCCMedium: 0.2977 

ΔCCFast: 0.4407 

Wiener filtering was used to 
propose a novel strategy for 
motion artifact removal in 
NIR spectroscopy. The 
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ΔSNRFast: 
5.7574 

suggested technique requires 
no additional hardware or 
sensors and still performs 
best in terms of mean 
squares. Offline functionality 
is a disadvantage of the 
suggested algorithm. 

Adaptive filter  ΔSNRSlow: 
3.3560 

ΔSNRMedium: 
4.1722 

ΔSNRFast: 
2.7906 

ΔCCSlow: 0.1519 

ΔCCMedium: 0.0024 

ΔCCFast: 0.1431 

Porr et al., 
2022 

Deep Neural Filter 
(DNF) 

EEG Muscle 
(EMG) 
Artifacts 

 ΔSNRDNF = 
4.1±2.8 dB 

SNR was statistically better in 
DNF as compared to LMS (p = 
0.000026). 

To extract EMG from EEG, 
a novel electrode was 
designed that, in conjunction 
with the real-time deep 
learning system, implements 
a constantly adapting spatial 
Laplace filter. In this study, 
deep neural networks were 
used to do simultaneous 
learning and noise reduction 
in real time. 

The least mean 
squares (LMS) 

 ΔSNRLMS = 
1.8±1.3 dB 

Roy et al., 
2017 

Ensemble Empirical 
Mode 
Decomposition-

EEG Motion 
artifacts 

λDWT: 
66.8838 

ΔSNRDWT: 
17.7248 

- GECCA, a novel algorithm, 
is introduced in conjunction 
with EEMD and stationary 
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canonical correlation 
analysis (EEMD-
CCA) 

λSWT: 
66.2544 

ΔSNRSWT: 
17.2621 

wavelet transform (SWT) for 
the quick and efficient 
suppression of motion 
artifacts in a single-channel 
EEG data. To solve the 
linear equations, the 
suggested GECCA method 
employs a backslash 
operation. This enhances the 
approaches' computational 
efficiency. The proposed 
GECCA-based technique is 
18% faster than traditional 
CCA. 

Gaussian Elimination 
Canonical 
Correlation Analysis 
(GECCA) 

λDWT: 
86.0016 

λSWT: 
87.2759 

ΔSNRDWT: 
29.0387 

ΔSNRSWT: 
30.2080 

- 

Nguyen et 
al., 2018 

Adaptive-filtering 
with a recursive 
least-squares 
estimation method 

fNIRS Physiological 
artifacts 

  The obtained hemodynamic 
responses were analyzed using 
a one-way analysis of variance. 
The obtained hemodynamic 
responses for the Kalman filter 
showed statistically significant 
differences in the means (p = 
1.04×10−7). Mean 
hemodynamic responses were 
significantly different in the 

A unique adaptive-filtering-
based technique was 
presented to decrease 
physiological and surface 
noises. Noise was reduced 
on average by 77% for oxy-
hemoglobin (HbO) and 98% 
for deoxy-hemoglobin 
(HbR). 

Kalman filter   

Low-pass filter 
(LPF) 
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LPF (p = 3.1×10−6). Adaptive 
filtering using recursive least-
squares estimation, on the other 
hand, yielded no statistically 
significant results (p = 0.03). 
This demonstrates that the 
extracted hemodynamic 
response is more reliably 
provided by the adaptive-
filtering approach than by the 
LPF and Kalman filter 
techniques. 

Izzetoglu et 
al., 2010 

Kalman filter fNIRS Motion 
artifacts 

- ΔSNRSlow: 
8.5055 

ΔSNRMedium: 
7.8306 

ΔSNRFast: 
6.6282  

- A unique method for 
removing motion artifacts 
from NIRS measurements 
using Kalman filtering was 
proposed. It addresses 
artifacts by merging the 
benefits of existing adaptive 
and Wiener filtering methods 
into a single algorithm. The 
suggested approach has SNR 
comparable to Wiener 
filtering, but without the 

Wiener filter - ΔSNRSlow: 
5.2526 

ΔSNRMedium: 
9.0539 

- 
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ΔSNRFast: 
5.7574 

stationarity constraints and 
with efficient real-time 
application capacity. 

Adaptive filter - ΔSNRSlow: 
3.3560 

ΔSNRMedium: 
4.1722 

ΔSNRFast: 
2.7906 

- 

Chiarelli et 
al., 2015 

kurtosis-based 
wavelet algorithm 

fNIRS Motion 
artifacts 

 SNR: 96% MSE: 5% To remove motion artifacts 
from fNIRS data, a novel 
algorithm, kbWF, was 
presented. It results in larger 
MSE reductions and SNR 
enhancements than any other 
processes examined over a 
wide range of signal and 
noise levels. 

Wavelet filter (WF)  SNR: 70% MSE: 29% 

Principal component 
analysis (90%) 

 SNR: 36% MSE: 71% 

Principal component 
analysis (97%) 

 SNR: 14% MSE: 88% 

Targeted principal 
component analysis 

 SNR: 76% MSE: 26% 

Spline interpolation  SNR: 73% MSE: 34% 

Kalman filter   SIFTCoh: 
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Zhan et al., 
2009 

Electroph
ysiologica
l 

data 

Background 
noise 

5Hz: 0.85 

25Hz: 0.94 

45Hz: 0.88 

WaveletCoh: 

5Hz: 0.88 

25Hz: 0.94 

45Hz: 0.88 

In order to reduce noise in 
the interpretation of multi-
trial electrophysiological 
data, two major optimum 
filtering approaches were 
investigated. Wiener filtering 
with adaptive Wiener and 
decreased update Kalman 
filtering is used in a novel 
way to shape data into a two-
dimensional image format. 
These methods were able to 
outperform the noise, 
leading to more accurate 
estimates of coherence. 

Adaptive Wiener 
filter 

  SIFTCoh: 

5Hz: 0.82 

25Hz: 0.91 

45Hz: 0.91 

WaveletCoh: 

5Hz: 0.88 

25Hz: 0.91 

45Hz: 0.86 

Note: fNIRS, functional near-infrared spectroscopy; EEG, electroencephalography; SNR, Signal to noise ratio; MSE, Mean square error; EMG, Electromyography 

 1151 
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Table 2. An overview of several artifacts’ removal techniques used in construction studies.  1152 

Citations Type of signals  Types of artifacts Filtering 

methods 

Desired signal 

frequency range 

Approaches used 

Jebelli et 
al., 2019a 

PPG 

 

The existence of 
different 

sources and forms 
of noises (e.g., 
electrodes noise, 
excessive 
movement, 
adjustment of 

sensors, noise from 
power line, etc.) 
recorded in the 
signal. 

Band pass 0.5–5 Hz In order to get rid of this unwanted signal, a bandpass 
filter was created with a cutoff frequency range of 0.5 
Hz to 5 Hz. In the range of 0.05–0.05 Hz (EDL) and 
0.05-0.15 Hz (EDA), EDA can be found (EDR). The 
scientists employed a low-pass filter with a cutoff 
frequency of 1.5 Hz to remove all background noise 
from the EDA signal. A notch filter focused on the 
power-line frequency was also applied to further 
eliminate power-line interference in the recorded data. 
Additionally, a Hampel filter was implemented to 
smooth out the physiological data and remove any out-
of-the-ordinary spikes. 

Hampel 

Notch 

EDA Low pass 0–0.1.5 Hz 

Hampel 

Notch 

ST High pass >0.05 Hz 

Hampel 

Notch 

Jebelli et 
al., 2019b 

PPG The most common 
artifacts (e.g., 
environmental 

artifacts, sensor 
motion artifacts, 

Band pass filter 0.5–5 Hz 

 

Bandpass filter with low cutoff frequency of 0.5 Hz and 
high cutoff frequency of 5 Hz was designed to eliminate 
noise in the signal. Between 0 and 0.05 Hz (EDL) and 
0.05 and 1.5 Hz, low-frequency EDA occurs (EDR). The 
authors utilized a low-pass filter with a cutoff frequency 

Hampel filter 

Rolling filter 

Notch filter 
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EDA muscle movement 
artifacts, etc.) 
recorded in the 

signals. 

Low pass filter 0–0.1.5 Hz of 1.5 Hz to remove any non-EDA-related noise. In 
addition, a notch filter focused on the power-line 
frequency was applied to the recorded signals to cut 
down on power-line interference. Additionally, the 
physiological signals were filtered with a Hampel filter 
to remove any spikes by using the median value of the 
neighboring signals. 

Rolling filter 

Notch filter 

Hampel filter 

ST Hampel filter >0.05 Hz 

Low pass filter 

Notch filter 

Kim et al., 
2020 

 

 

 

 

IMU Signal artifacts and 
noise (e.g., 
electrode 

contact noise, 
movement artifacts) 

Butterworth low-
pass filter 

4 Hz The IMU data was filtered using a Butterworth low-pass 
filter with a 4 Hz cutoff frequency to get rid of the high-
frequency noise. To smooth out the EDA signals and 
remove the effects of the outliers, the authors applied a 
Bateman lowpass filter with a length of 12. 

HR Not reported Not reported 

EDA Bateman low pass 
filter 

Not reported 

 

Chae et al., 
2021 

EDA Extrinsic artifacts 
in EDA, include 
humidity and 
temperature around 

low-pass filter 3Hz This research utilized a low-pass filter of 3 Hz to the raw 
EDA signal to remove most of the extrinsic sounds 
recorded in the signal, which had a much smaller 
influence due to the considerably lower impact of 
intrinsic artifacts. 
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EEG the subject and 
noise from the 
subject’s excessive 
movement. 

Intrinsic artifacts in 
EDA, include noise 
from high 
activation of 
muscles, irregular 

respiration, deep 
breathing, and 
coughing. 

Extrinsic artifacts 
in EEG include 
electrode 

popping or 
mechanical noise. 

Intrinsic artifacts in 
EEG, include eye 
blinking, eye 

Bandpass filter The high- and 
low-frequency 
cutoffs were 
determined to be 
36 Hz and 0.5 
Hz, respectively 

The raw data from the EDA sensor was processed using 
Ladalab, free software for analyzing skin conductance 
data in MATLAB. Before further investigation, this 
software can help users filter and decompose skin 
conductance data. The EEG signals were also analyzed 
with EEGLab. Free software, EEGLab, has been 
developed for the analysis of EEG data by the Swartz 
Center for Computational Neuroscience (SCCN) at the 
University of California, San Diego. The tool is tailored 
to the needs of analyzing EEG data in MATLAB. 
EEGLab has been used in numerous research projects 
that analyzed electrophysiological data. 

Independent 
component analysis 
(ICA) 
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movement, and 
facial muscle 
movement. 

Umer et al., 
2022 

HRV Not reported median filtering Not reported To eliminate the artifacts, a threshold-based artifact 
correction method was used to each individual segment. 
Each data segment's average interbeat interval was 
calculated using median filtering. The data was then 
subjected to a threshold value, which enabled the 
identification of artifacts whenever an interbeat interval 
deviated noticeably from the mean. 

Shayesteh 
et al., 2023 

EEG Extrinsic artifacts 
(generated due to 

environmental 
noises) and 
intrinsic artifacts 
(generated due to 
human body 
functions, such as 
ocular artifacts or 

muscle artifacts). 

Fixed-gain filtering 0.5–45 Hz Artifacts in the EEG data were diminished by use of 
independent component analysis (ICA) and a fixed-gain 
filtering approach. In order to reduce the effect of 
background noise, the authors specifically employed a 
band-pass filter with a cutoff frequency range of 0.5-45 
Hz. Artifacts and genuine EEG signals were both 
extracted from 2D scalp map projections using image 
processing methods. They used a high-pass filter with a 
cutoff frequency of 0.05 Hz on the EDA signals in order 
to get rid of the low-frequency disturbances from the 
surrounding environment. In addition, a moving average 
filter was used to dampen the high-frequency 
disturbances in the EDA signals. Finally, a band-pass 
filter with a cutoff frequency range of 0.5-5 Hz was used 

ICA 

band-pass filter 

EDA High pass filter 0.05 Hz 

moving average 
filter 

PPG band-pass filter 0.5–5 Hz 
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to remove low- and high-frequency disturbances from 
the PPG signals. 

Aryal et al., 
2017 

HR 

 

Not reported third order one-
dimensional 
median filter 

Not reported EEG activity was recorded every second, heart rate (in 
beats per minute) was recorded every 15 seconds, and 
core body temperature (in degrees Celsius, with a 
resolution of 0.01 degrees) was monitored constantly 
and in real time. By applying a third order one-
dimensional median filter and a Savitzky-Golay filter to 
all of the sensor data, we were able to eliminate the big 
spikes in the signals earlier in the processing pipeline. 
To make the sensor results easier to interpret, we then 
used a moving average filter. After the noise was 
removed from the signals, they were inspected visually 
to ensure that the main trends were not altered. 

ST 

 

Savitzky-Golay 
filter 

EEG moving average 
filter 

Lee et al., 
2017 

HRV Not reported Not reported Not reported The HRVs of the workers were analyzed using the free 
and open-source academic application Kubios HRV 2.2 
(Kubios, Finland). Authors used the powerful artifact 
repair feature offered in Kubios HRV during processing 
data to erase the effects of artifacts created by the 
program. 

Lee et al., 
2021 

EDA Environmental 
factors (e.g., 

Moving average  

High pass filter 

0.05 Hz Applying a high-pass filter with a cutoff frequency of 
0.05 Hz to the raw EDA data eliminated low-frequency 
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PPG ambient light, 
thermal noise, 
motion, and 
electromagnetic 
sources) induce 
plenty high 
frequency noise 
into the signal of 
interest. 

 

Band-pass filter 0.5–4.0 Hz sounds brought on by variations in the impedance of the 
EDA sensor electrodes or ambient variables like 
temperature and humidity. High-frequency disturbances 
caused by user motions and electromagnetic interference 
were further suppressed by applying a moving-average 
filter with a six-data-point window. Using a band-pass 
filter between 0.5 and 4.0 Hz for PPG helped mitigate 
low- and high-frequency disturbances (including flicker 
noise, LED shot noise, and ambient light noises). Due to 
inadequate contact between the infrared thermopile 
temperature reader and human skin, the authors used a 
hamper filter to clean up the ST signals. 

ST Hamper filter  Not reported 

Newton, 
2022 

PPG Motion artifacts Moving average  Not reported By employing a PPG sensor, the Empatica E4 is able to 
track the volumetric change in blood flow to and from 
the hand throughout each cardiac cycle. Samples of 
blood volume pulse are taken at 64 Hz. The software in 
the device then selects peaks in the signals and logs the 
most likely time periods (more than 0.3 s and less than 
2.0 s) as the beats' separations. By averaging HR from 
the inter-beat intervals over a sliding 10-s window, the 
raw PPG data has had most of its severe motion artifacts 
eliminated. The raw data from the EDA sensor is 
sampled every 4 milliseconds. Raw data from the 
Empatica E4 is processed by the Matlab program 

 EDA adaptive smoothing  

automatic artefact 
correction 
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LedaLab (leda.de/), which is available for download 
under the GNU General Public License. LedaLab will 
perform adaptive smoothing and automatic artifact 
correction on the raw data to get it ready for further 
analysis. 

Xu et al., 
2017 

EMG Motion of the 
participants and 

electrode 
displacement 
caused signal 
artifacts. 

High pass filter 40Hz As a first stage in signal processing, applying a 
frequency filter helps get rid of extraneous noise. A 
fifth-order Butterworth high-pass filter is employed to 
filter out the noise at a sampling rate of 500 hertz 
because the electromyography (EMG) data is a high-
frequency signal. The maximum frequency allowed 
through the filter is 40 Hz. For this reason, the EDA 
signal is filtered using a Butterworth low-pass filter of 
fourth order with a cut-off frequency of 5 Hz and a 
sampling rate of 500 Hz. Using a sampling rate of 500 
Hz, we apply two filters to get rid of the background 
noise in the EEG recordings: a high-pass Butterworth 
filter with a cut-off frequency of 4 Hz and a low-pass 
Butterworth filter with a cut-off frequency of 40 Hz, 
both with eight orders. The BVP noise is filtered out 
using a fourth-order Band pass filter with low and high 
cut-off frequencies of 1 Hz and 8 Hz, respectively. 

EEG Band pass filter 4Hz – 40Hz 

ECG Band pass filter 3Hz – 45Hz 

EDA Low pass filter 5Hz 

BVP Band pass filter 1Hz – 8Hz 
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Note: PPG, Photoplethysmography; EDA, Electrodermal activity; ST, Skin temperature; EMG, Electromyography; EEG, Electroencephalography; ECG, 
Electrocardiography; BVP, Blood volume pulse; IMU, Inertial measurement unit; HRV, Heart rate variability; HR, heart rate; BR, Breathing rate  
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