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Wearable sensors are becoming very popular recently due to their ease of use and
flexibility in recording data from home. They can range from simple adhesive sensors
to more sophisticated, stretchable implants to monitor health or for diagnosis. The basic
unit of a wearable sensor is the electrodes or wires, the power source, and the inter-
face/communication unit, which can be a smartphone or other types of signal receivers.
One of the most important features of a wearable sensor is flexibility: It has to flex, stretch
and twist without straining the sensory part and maintain the quality of the measured
signal. Most wearable sensors measure physiological signals and incorporate a real-time
decision system to interpret the signal and detect symptoms or measure context awareness.
Different system implementations and technological approaches are used for the design of
the state-of-the-art in wearable biosensors: some have advantages and some have short-
coming. The literature of such techniques is surveyed in order to provide direction for
future research improvements [1].

Technology is continually improving, making many tools and algorithms available
to developers with diverse applications and connectivity. Wearable sensors are benefit-
ing from the underlying versatile technologies enabling them to capture rich contextual
information that deliver a legitimately personalized experience. The extensive and di-
verse classification of wearable devices with wireless communication, data processing and
on-board classification is reported in a survey that highlights the challenges and future
solutions in this field [2].

The market of wearable sensors is growing exponentially, with an annual growth rate
of 20%. Moreover, the outbreak of COVID-19 had a tremendous impact on the evolution of
wearable device, driven by the requirements of home sensing and diagnosis devices [2].
Many systems have been developed for different applications, such as protection for the
elderly, health home monitoring, gait analysis, interactive media and animation that helps
people become familiar with such technologies [3].

In this Special Issue, special attention is given to the AI technologies that are utilized in
signal processing and diagnosis. Signals usually need filtering, conditioning and processing.
Advanced algorithms are computationally intensive and require fast hardware. This can
represent a major hurdle in developing such systems, and most developers revert to
performing the heavy signal processing on advanced computing systems such as GPUs,
computer clusters, cloud applications and edge computing. This serves wearable sensor
very well, as information can be transferred via the Internet, providing sophisticated
algorithms and high-speed processing power.

Papers published in this Special Issue are focused onto two subjects: health monitoring
using biological signal (EEG, ECG) and physical health monitoring (movements). The
subject of health monitoring focused on recording vital signs such as brain activities
(EEG) and applications to the cardiovascular system (ECG, HR, PPG); this issue includes
seven papers in this field. The application of EEG is rather difficult due to the need for
good wearable sensors that can detect the signal reliably. However, filtration and signal
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conditions are some of the techniques that can be used to extract meaningful information
from noisy signals. EEG can be used to monitor different activities; one particular example
is drowsiness detection, which is very useful for drivers who might lose attention during
driving [4]. On the other hand, the use of ECG signal processing using deep learning (DL)
algorithms tend to be the latest in the field. One particular application is the monitoring of
the hemodynamics using ECG and DL without the need for invasive sensing [5].

Other biological signal applications are mainly related to the cardiovascular system,
such as the detection of heart rate and blood pressure using either facial expressions [6]
or PPG sensors [7,8] respectively. Such measurements are not easy to realize with high
accuracy, hence, there is a need for DL systems to process images or signals in order to
obtain good accuracy. Finally, DL is also used for the detection heart rhythm anomalies, and
a short survey is presented in [9] that looks at the different techniques utilizing wearable
sensors. The final application is the use of ECG for the detection of myocardial infarction
(MI), which is one of the most prevalent cardiovascular diseases. An LSTM network is used
to detect MI based on ECG signal [10].

Physical health monitoring using wearable sensors is presented in two papers related
to physical movements, such as the prediction of joint momentum for the purpose of
predicting the force generated by the muscle using an ANN for the purpose of skeleton
control [11]. Another related work presented in [12] is based on the detection of chewing
event using EMG signals.

The last paper is a mini-review that addresses pain as a subjective feeling. The
review presents the correlation between pain and stress, and the measurement approach
uses wearable sensors. Various physiological signals (i.e., heart activity, brain activity,
muscle activity, electrodermal activity, respiratory, blood volume pulse, skin temperature)
as well as expression/behavior are listed as measurable signs using wearables sensors.
Wearable sensors used for healthcare monitoring systems can detect pain and stress. As
a consequence, pain leads to multiple symptoms such as muscle tension and depression;
hence, integrating modern computing techniques with wearable sensor measurements can
help in pain control [13].
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Abstract: Drowsiness is a risk to human lives in many occupations and activities where full awareness
is essential for the safe operation of systems and vehicles, such as driving a car or flying an airplane.
Although it is one of the main causes of many road accidents, there is still no reliable definition of
drowsiness or a system to reliably detect it. Many researchers have observed correlations between
frequency-domain features of the EEG signal and drowsiness, such as an increase in the spectral
power of the theta band or a decrease in the spectral power of the beta band. In addition, features
calculated as ratio indices between these frequency-domain features show further improvements
in detecting drowsiness compared to frequency-domain features alone. This work aims to develop
novel multichannel ratio indices that take advantage of the diversity of frequency-domain features
from different brain regions. In contrast to the state-of-the-art, we use an evolutionary metaheuristic
algorithm to find the nearly optimal set of features and channels from which the indices are calculated.
Our results show that drowsiness is best described by the powers in delta and alpha bands. Compared
to seven existing single-channel ratio indices, our two novel six-channel indices show improvements
in (1) statistically significant differences observed between wakefulness and drowsiness segments,
(2) precision of drowsiness detection and classification accuracy of the XGBoost algorithm and
(3) model performance by saving time and memory during classification. Our work suggests that
a more precise definition of drowsiness is needed, and that accurate early detection of drowsiness
should be based on multichannel frequency-domain features.

Keywords: drowsiness detection; EEG; frequency-domain features; multicriteria optimization; ma-
chine learning

1. Introduction

Drowsiness is the intermediate state between wakefulness and sleep [1]. Terms such
as sleepiness or tiredness are used synonymously with drowsiness in related studies [2–4].
Although it is intuitively clear what drowsiness is, it is not so easy to determine exactly
whether a person is in a drowsy state or not. The reason for this is the unclear definition
of drowsiness. Some researchers define drowsiness as stage 1 sleep (S1) [5–9], which is
also known as non-rapid eye movement 1 (NREM 1) sleep. Da Silveira et al. [10] used
S1 sleep stage data in their research of drowsiness. Johns [11] claims that the S1 sleep
stage is equivalent to microsleep (episodes of psychomotor insensitivity due to sleep-
related wakefulness loss [12]), while drowsiness is stated to occur before S1 sleep, but it
is not stated when it begins and what characterizes it. Researchers who do not use any
of the aforementioned definitions of drowsiness typically use a subjective assessment of
drowsiness, e.g., the Karolinska sleepiness scale [13]. In this paper, the term drowsiness is
used as a synonym for the S1 sleep stage.

In a drowsy state, people are not able to function at the level required to safely perform
an activity [14], due to the progressive loss of cortical processing efficiency [15]. Drowsiness
is, therefore, a significant risk factor for human lives in many occupations, e.g., for air traffic
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controllers, pilots and regular car drivers [16]. According to the reports from NASA [17]
and the National Transportation Safety Board [18], one of the main factors in road and
air accidents is drowsiness. Gonçalves et al. [19] conducted a study across 19 European
countries and concluded that in the last two years, 17% of drivers fell asleep while driving,
while 7% of them had an accident due to drowsiness. The high frequency and prevalence
of drowsiness-related accidents speak in favor of the development of early drowsiness
detection systems, which is the subject of this paper.

Many researchers are trying to solve the problem of early detection of drowsiness in
drivers. Balandong et al. [20], in their recent review, divided the techniques for detecting
driver drowsiness into six categories: (1) subjective measures, (2) vehicle-based systems,
(3) driver’s behavior-based systems, (4) mathematical models of sleep–wake dynamics,
(5) human physiological signal-based systems and (6) hybrids of one or more of these
techniques. Currently, the most common techniques used in practice are vehicle-based
systems [5], but these systems are mostly unreliable and depend largely on the driver’s
motivation to drive as well as possible [20].

Physiological signals are the promising alternative for reliable drowsiness detec-
tion [21]. The main problem with this approach is that these systems are often not easy
to use and are intrusive to drivers [20]. Nevertheless, many researchers are working on
small, automated and wearable devices [21–24], or on steering wheel devices [25,26] in
order to overcome these obstacles. Techniques for detecting drowsiness based on phys-
iological signals can be further subdivided according to the type of signal used, such
as electroencephalogram (EEG) [27], electrooculogram (EOG) [28] or electrocardiogram
(ECG) [29].

The most studied and applied physiological signal to detect drowsiness is the EEG.
In this paper, frequency-domain features of the EEG signal are analyzed and two novel
multichannel ratio indices for the detection of drowsiness are proposed. Besides the
frequency-domain features, there are also other types of features: (1) nonlinear features [30],
(2) spatiotemporal (functional connectivity) features [31] and (3) entropies [32]. These three
groups of features have a lower frequency of use compared to the frequency-domain
features, so in this paper, we focus only on frequency-domain features. Based on the
recent review [33] of EEG-based drowsiness detection systems, 61% of the included papers
used frequency-domain features, 38% used entropies, 10% used nonlinear features and
10% used spatiotemporal features (some papers used multiple groups of features, so the
sum of the percentages is greater than 100%). This shows the difference in the use of
drowsiness detection systems, and the difference is even greater in the general field of
neurophysiological scientific papers. Although the three feature groups mentioned above
are used less frequently, there are still a certain number of papers that include them,
especially entropies.

Frequency-domain features estimate the power spectral density in a given frequency
band. The bands typically used in the analysis of EEG signals are delta (δ, 0.5–4 Hz), theta (θ,
4–8 Hz), alpha (α, 8–12 Hz), beta (β, 12–30 Hz) and gamma (γ, >30 Hz). An increase in theta
activity [34] and an increase in alpha activity [35] indicate drowsiness. An increase in the
beta activity, however, is a sign of wakefulness and alertness [36]. There are several widely
used frequency-domain ratio indices for detecting drowsiness. Eoh et al. [36] proposed the
θ/α and β/α ratio indices, Jap et al. [37] proposed the (θ + α)/β, θ/β and (θ + α)/(α + β)
ratio indices and da Silveira et al. [10] proposed the γ/δ and (γ + β)/(δ + α) ratio indices.
These ratio indices provide improvement in the detection of drowsiness compared to the
frequency-domain features alone and are shown to correlate with drowsiness.

All these frequency-domain features and ratio indices are calculated from a single EEG
channel, i.e., from a single brain region. In recent research, Wang et al. [38] showed that the
significance of a decrease in delta and an increase in (θ + α)/β indices depends on the brain
region. This significant diversity of the correlation of features with drowsiness in different
brain regions is the motivation for this research. Since all currently used frequency-domain
features and ratio indices are based on a single channel (single brain region), this work aims
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to use the best distinguishing features of each brain region for the detection of drowsiness
and to combine them into a single multichannel ratio index feature.

In our work, we use a computational method based on multicriteria optimization to
extract the multichannel EEG-based frequency-domain ratio index features. This method
allows us to discover new multichannel ratio indices that show improvements in the
detection of drowsiness compared to single-channel ratio indices. Finally, with the use
of machine learning models, we prove that multichannel indices detect drowsiness with
higher accuracy, higher precision, reduced memory and faster computation compared to
single-channel features.

In the Materials and Methods Section, we show the methodology of our work, in-
cluding a description of the dataset, preprocessing and feature extraction methods used.
Novel multichannel ratio indices and the multi-objective optimization method are also
described there. In the Results Section, we present the results of our work, including
statistical analysis, drowsiness prediction and computational properties of the proposed
indices. In the Discussion Section, we discuss in more detail the topics covered in this
paper. Finally, in the last section, we conclude the paper.

2. Materials and Methods

2.1. Dataset, Preprocessing and Feature Extraction

The data used in this paper were obtained from the PhysioNet portal [39], in particular
from the 2018 PhysioNet computing in cardiology challenge [40]. The original dataset
contains data records from 1985 subjects, and each recording includes a six-channel EEG,
an electrooculogram, an electromyogram, a respiration signal from the abdomen and chest,
airflow and oxygen saturation signals and a single-channel electrocardiogram during the
all-night sleep. The records were divided into training and test sets of equal size. The sleep
stages [41] of all subjects were annotated by clinical staff based on the American Academy
of Sleep Medicine (AASM) manual for the scoring of sleep [42]. There are six types of
annotations for different stages: wakefulness (W), stage 1 (S1), stage 2 (S2), stage 3 (S3),
rapid eye movement (REM) and undefined.

In this research, we wanted to use a training set (992 subjects) to detect drowsiness.
The officially provided way of acquiring the data is through torrent download, but we
managed to download only 393 subjects completely, due to a lack of seeders. Of these 393
subjects, EEG signal recordings from 28 subjects were selected, based on the condition that
each recording had at least 300 s of the W stage and, immediately after that, at least 300 s of
the S1 stage. From each recording, a fragment of 600 s (300 s of W stage and 300 s of S1
stage) was used for analysis. In the original dataset, each EEG signal recording consists of
six channels (F3, F4, C3, C4, O1 and O2, based on the International 10/20 System), with a
sampling frequency of 200 Hz. Table 1 shows the identification numbers of all the selected
subjects. The subjects were divided into two groups, one group used for training of the
model (16 subjects) and the other one for the test of the obtained models (12 subjects). The
training set was used to obtain novel ratio indices (with the method described below) and
the test set was used to check these novel indices on the unseen data.

Table 1. The identification numbers of all the selected subjects. The training set is in the upper part
and the test set is in the lower part of the table.

tr03-0092 tr03-0256 tr03-0876 tr03-1389
tr04-0649 tr04-0726 tr05-1434 Tr05-1675
tr07-0168 tr07-0458 tr07-0861 tr08-0021
tr08-0111 tr09-0175 tr10-0872 tr13-0204

tr04-0653 tr07-0127 tr09-0453 tr13-0170
tr05-0028 tr08-0157 tr12-0255 tr13-0508
tr05-0332 tr09-0328 tr12-0441 tr13-0653
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Before feature extraction, the EEG signal must be filtered. For this purpose, the DC
component was removed from the signal and the signal was filtered with a Butterworth
filter to remove high-frequency artifacts and low-frequency drifts. We used the sixth-order
Butterworth filter, the low-cut frequency of 1 Hz and the high-cut frequency of 40 Hz. In
the selected fragments of the recordings, there was an insignificant number of eye-related
artifacts, so we decided not to use the independent component analysis for their removal
in order to prevent potential information loss due to component removal.

The signals were divided into epochs to calculate features. The epochs were five
seconds long with a 50% overlap between them. Frequency-domain features are often used
in EEG signal analysis. These features were extracted from the power spectral density
(PSD) of the signal. To obtain the PSD of the signal, Welch’s method [43] was used. Welch’s
method is used more often than Fast Fourier transform in the field of EEG signal analysis
since it produces PSD with lower variance. The standard frequency-domain features
were calculated, i.e., delta (δ, 0.5–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–12 Hz) and beta (β,
12–30 Hz) bands. We also calculated the less frequently used frequency-domain features,
i.e., gamma (γ, >30 Hz), sigma (σ, 12–14 Hz), low alpha (α1, 8–10 Hz) and high alpha (α2,
10–12 Hz) bands [44].

2.2. Novel Multichannel Ratio Indices

Ratios between frequency-domain features have often been used as new features in
different areas of EEG signal analysis [10,36]. All these features have a simple mathematical
formulation but often lead to an improvement in detection and reduction of dimensionality
for drowsiness. Moreover, they are calculated based on a single channel only. The idea
behind the novel indices we present in this work is to design the feature formulation in such
a way that frequency-domain features from different channels can be combined. Figure 1
illustrates the difference between these two approaches. For simplicity of visualization,
only four epochs, two channels (F3 and F4) and three features per channel are shown in
Figure 1.

Figure 1. A visualization of tables with features. The green color represents the possibilities for
creating a ratio index, the first table (top) are the possibilities reported in the related work to create a
single-channel ratio index, while the second table (bottom) are the possibilities explored in our novel
multichannel approach.

We define a new index, I, for each epoch, e, which is calculated as a ratio of the feature
values, F(e), for all six channels in the epoch, e. In both the nominator and denominator,
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the feature value of each channel, j, is multiplied with a dedicated coefficient, Cij or Kij
respectively, as indicated in the Equation (1):

I(e) =
∑i= f eatures ∑j=channels CijFij(e)

∑i= f eatures ∑j=channels KijFij(e)
(1)

The purpose of the coefficients is to reduce or even eliminate the influence of certain
channels of frequency-domain features, by setting the value in the range [0, 1〉, or increase
the influence of certain channels of the frequency-domain features by setting the corre-
sponding coefficient to a value in the range [1, ∞〉. There are 48 (6 channels and 8 features
per channel) C coefficients and 48 K coefficients.

The ideal output of I(e) should look like a step function (or an inverse step function),
which would indicate a clear difference between the two stages: W and S1. Figure 2
illustrates the main features of the output. The output can be divided into two parts: the
left one corresponds to stage W and the right one to S1. While the output in each part
should be as smooth as possible, i.e., with minimal oscillations, it is expected that there will
be a transition period between the phases, which may have significant oscillations. This
transition period would ideally be the step function, but in realistic settings, it is expected
that the transition between phases of brain activity will probably last several epochs and
would not be considered as either stage W or S1.

Figure 2. An illustration of all the elements needed for an evaluation of solutions of the multi-
objective optimization in drowsiness detection.

In order to determine the appropriate value of the coefficients that would provide the
output as close as possible to the ideal, at least two criteria must be taken into account: the
absolute difference between the mean values left and right of the transition window and
the quantification of the oscillations in each part. This can be defined as a multi-objective
optimization problem that we want to solve using a metaheuristic multi-objective evolu-
tionary optimization method, as described in the next section. To the best of our knowledge,
this state transition problem has never been approached with evolutionary computation.

2.3. Multi-Objective Optimization

The optimization of a step function that is representative of the problem of flat sur-
faces is generally a challenge for any optimization algorithm because it does not provide
information about which direction is favorable and an algorithm can get stuck on one
of the flat plateaus [45]. To overcome this challenge, instead of optimizing the function
according to one criterion, we define two objectives that we optimize simultaneously:
(1) to maximize the absolute difference between the mean value of I(e) output for the W
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and S1 stages, and (2) to minimize the oscillations of the output value around the mean
value in each stage. According to Figure 2, the left part of the I(e) output occurring before
the transition phase corresponds to the W stage, and the right part, occurring after the
transition phase, corresponds to the S1 stage. Since optimization problems are usually
expressed as minimization problems, where the first objective function, O1, is defined as
the inverse absolute difference between the mean value of I(e) of the left part (avgleft) and
the right part (avgright), Equation (2) is established:

O1 =
1∣∣∣avgright − avgle f t

∣∣∣ (2)

The second objective function, O2, expresses the oscillations in the function and
is defined as the number of times the difference between the output values of I(e) for
two adjacent epochs was greater than a given limit. The exact value of this limit will be
discussed later in this section as it is closely related to the specifics of the optimization
method used. The main goal of the objective function O2 is to minimize the influence of
the biggest flaw in the way that the objective O1 is calculated, i.e., to use the averaging
function. For example, if a possible solution is a completely straight line, except for a large
negative spike in the left part and a large positive spike in the right part, based only on
the objective function O1, this would be a good solution, while the objective function O2
would penalize this solution.

As mentioned above, the transition between two stages will probably take several
epochs and show significant oscillations of the function output values. According to the
annotation made by clinical personnel, the transition phase should be approximately in the
middle of the I(e) output, but it cannot be determined exactly how long it will last. In our
work, which is based on expert knowledge of human behavior in the case of drowsiness,
we assume that it lasts about one minute, which corresponds to about 30 epochs. Within
the transition window, neither one of the two objective functions is calculated, since it is
assumed to belong neither to the W nor to the S1 stages. We also allow it to move around
the center, shifting left and right, due to a possible error of the human observer who marked
the data.

The multi-objective optimization problem can now be expressed as min{O1,O2}, where
O1 and O2 are the conflicting objective functions, as defined above. The evolutionary meta-
heuristic algorithm NSGA-II [46] was applied to solve this multi-objective optimization
problem. The genetic algorithms (GAs) are normally used to solve complex optimization
and search problems [47]. NSGA-II is one of the most popular evolutionary multicriteria
optimization methods due to its versatility and ability to easily adapt to different types
of optimization problems. The strong points of this MO algorithm are: (1) the fast non-
dominated sorting ranking selection method used to emphasize Pareto-optimal solutions,
(2) maintaining the population diversity by using the crowding distance and (3) the elitism
approach, which ensures the preservation of best candidates through generations without
the setting of any new parameters other than the normal genetic algorithm parameters,
such as population size, termination parameter, crossover and mutation probabilities. Ad-
ditionally, it was often used for the elimination of EEG channels with the similar purpose as
in our case-dimensionality reduction [48]. This paper uses the implementation of NSGA-II
provided by the MOEA framework [49] and is based on the guidelines defined in [46,50].

NSGA-II was used with the following configuration. The chromosome was divided
into two parts: in the first part, genes represented the nominator coefficient values (Cij),
and in the second part, genes represented the denominator coefficient values (Kij). In each
part, the genes were grouped by frequency-domain features and channels, as illustrated
in Figure 3. The genes were encoded as real values in the range [0.0, 10.0], and standard
NSGA-II crossover and mutation operators were used to support operation on real values.
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Figure 3. An illustration of a chromosome structure in the proposed optimization problem solution.

Each solution is evaluated based on the values of objectives O1 and O2, as described
in the pseudocode in Algorithm 1. First, the chromosome is decoded (line 1). Then, for each
test fragment, two values are calculated: (1) the inverse absolute difference (IAD) between
the mean index value, I(e), of the left part and the right part, represented by the invAbsDiff
variable in the pseudocode, and (2) the oscillations in the function, represented by the
oscillation variable in the pseudocode (lines 3–5). Finally, the value of each objective O1 for
the given solution is defined as the average value of invAbsDiff for all test fragments, and
the value of objective O2 is defined as the average value of oscillation for all test fragments
(lines 7–8).

Algorithm 1. Evaluation.

1: decode chromosome to get coefficient values
2: for each fragment do

3: indexVals[[] = calculate index value for each epoch
4: invAbsDiff += IADCalc(indexVals[[], windowStart)
5: oscillation += OscillationCalc(indexVals[[], windowStart, winSize)
6: end for

7: objective1 = invAbsDiff/number_of_fragments
8: objective2 = oscillation/number_of_fragments

The algorithm for the IAD calculation is provided in the pseudocode in Algorithm 2.
The calculation of the IAD for each fragment was slightly modified compared to Equation
(1) to allow a faster convergence of the search algorithm. The transition phase was not
in the same position in each fragment but allowed to move more loosely away from the
center because the annotation in the original dataset was performed manually and there
was a possibility of human error in case the observer would register a transition from W
to S1 a little too early or too late. The algorithm allows the transition phase to begin no
earlier than 30 epochs from the fragment start, and end no later than 60 epochs before the
fragment end (line 2). The algorithm assumes the transition phase by looking for a window
of 30 epochs which has the maximum difference of index, I(e), values between the left and
the right part (lines 9–13).

The gradation of the absolute difference between the mean value of the left and the
right parts is also introduced (lines 19–22) to allow easier and faster convergence of the
algorithm. The optimization of the objective O1 can be considered as an optimization
problem with soft constraints that are related to how much O1 deviates from the optimal
value. However, it is quite difficult to determine the optimal value precisely a priori. As
indicated in [51,52], constraints are often treated with penalties in optimization techniques.
The basic idea is to transform a constrained optimization problem into an unconstrained
one by introducing a penalty into the original objective function to penalize violations of
constraints. According to a comprehensive overview in [51], the penalty should be based
on the degree of constraint violation of an individual. In [53], it is also recommended that
instead of having just one fixed penalty coefficient, the penalty coefficient should increase
when higher levels of constraint violation are reached. The greatest challenge, however, is
to determine the exact penalty values. If the penalty is too high or too low, evolutionary
algorithms spend either too much or too little time exploring the infeasible region, so it is
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necessary to find the right trade-off between the objective function and the penalty function
so that the search moves towards the optimum in the feasible space. As the authors have
shown in [54], the choice of penalty boundaries is problem-dependent and difficult to
generalize. Since we cannot strictly determine the optimal value of O1 in our case, we have
chosen several thresholds for the absolute difference value, with the penalty increasing
by a factor of 10 for each new threshold. The exact thresholds were selected based on the
experience gained from the first few trial runs of the algorithm. Based on the observations
from the trial runs, a third modification was also introduced: the difference is calculated
with a relative, instead of absolute, value of I(e). The relative value of I(e) is calculated by
using the lowest I(e) value as a reference point, instead of zero, i.e., the zero is “moved”, as
shown in code lines 16–18 in Algorithm 2.

Algorithm 2. IAD Calculation.

1: function IADCALC(indexVals[[], windowStart)
2: for j between 30 and (indexVals.size-60) do

3: maxAbsDiff = 0
4: left = 0
5: right = 0
6: avgLeft = average value of all Index values before j
7: avgRight = average value of all Index values after j+30
8: diff = ABS(avgRight–avgLeft)
9: if diff ≥ maxAbsDiff then

10: maxAbsDiff 0 diff
11: left = avgLeft
12: right = avgRight
13: windowStart = j
14: end if

15: end for

16: lowestVal = GETLOWESTVAL(indexVals)
17: movedZero = lowestVal–0.01*lowestVal
18: absDiff = ABS(right–left)/MIN(left–movedZero, right–movedZero)
19: if absDiff ≥ 5.0 then invAbsDiff = 1/absDiff
20: else if absDiff ≥ 1.0 then invAbsDiff = 10/absDiff
21: else if absDiff ≥ 0.5 then invAbsDiff = 100/absDiff
22: else invAbsDiff = 1000
23: end if

24: return invAbsDiff
25: end function

The pseudocode for calculating the oscillations in the function as the second objective,
O2, is provided in Algorithm 3. Again, the optimization of the oscillations can be considered
a constrained optimization problem, so that, in the same way as in the case of the IAD
calculation discussed previously, a gradation of the difference between the output values
of I(e) for two adjacent epochs is used to penalize the larger differences more severely (lines
7–10 and 15–18). The exact thresholds were chosen based on the experience gained from
the first few trial runs of the algorithm. In order to make the algorithm converge more
easily and quickly, the concept of “moved zero” was used again (lines 2, 3, 6 and 14).
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Algorithm 3. Oscillation Calculation.

1: function OSCILLATIONCALC(indexVals[[], windowStart, winSize)
2: lowestVal = GETLOWESTVAL(indexVals)
3: movedZero = lowestVal–0.01*lowestVal
4: oscillation = 0
5: for i between 1 and windowStart–1 do

6: absDiff = ABS((indexVals[i]-indexVals[i-1])/(indexVals[i-1] -movedZero))
7: if absDiff ≥ 5.0 then oscillation += 1000
8: else if absDiff ≥ 1.0 then oscillation += 100
9: else if absDiff ≥ 0.5 then oscillation += 10
10: else if absDiff ≥ 0.25 then oscillation += 1
11: end if

12: end for

13: for i between windowStart+winSize and indexVals.size()-1 do

14: absDiff = ABS((indexVals[i]-indexVals[i-1])/(indexVals[i-1] -movedZero))
15: if absDiff ≥ 5.0 then oscillation += 1000
16: else if absDiff ≥ 1.0 then oscillation += 100
17: else if absDiff ≥ 0.5 then oscillation += 10
18: else if absDiff ≥ 0.25 then oscillation += 1
19: end if

20: end for

21: return oscillation
22: end function

Finally, to further minimize the oscillations, and help the search algorithm converge
more quickly, the maximum change in the I(e) value between two adjacent epochs is set to
10% of the first of the two epochs. The mathematical formulation of this limit is provided
in Equation (3):

Index(e) =

⎧⎨
⎩

1.1 ∗ I(e − 1), i f I(e) > 1.1 ∗ I(e − 1)
0.9 ∗ I(e − 1), i f I(e) < 0.9 ∗ I(e − 1)

I(e), else
(3)

3. Results

The optimization algorithm was executed over 107 generations, using 100 randomly
selected chromosomes as a starting point. Ideally, the optimization algorithm would
have many C and K coefficients equal to zero and only a few non-zero coefficients in
order to obtain a simple and easily understandable mathematical formulation of a novel
multichannel ratio index. Unfortunately, even the best solutions of the optimization
algorithm had only up to 20 C and K coefficients equal to zero. Although such a novel
multichannel ratio index showed good behavior in detecting drowsiness, it is impractical
to use a formula with 76 coefficients. We consider anything above 15 coefficients to
be impractical.

In order to reduce the number of coefficients and to simplify the formulation of the
novel multichannel ratio index, some coefficients were manually set to zero. In order
to decide which coefficients have the least influence on the final solution, we counted
how often a large value of the coefficient is fixed to a certain frequency-domain feature.
By analyzing the coefficients of all solutions in the final population of the optimization
algorithm, we concluded that the most frequently selected features were δ, α, α1 and α2.
After manually fixing the coefficients of all other frequency-domain features to zero, the
search range for the optimization algorithm was reduced to half.

Although 48 C and K coefficients remained in the solution at that time, the algorithm
provided equally good results in terms of drowsiness detection, but with a much simpler
mathematical formulation. In addition to the 48 coefficients that were manually set to zero,
the algorithm often set many more coefficients to zero. A decision on the best solution in the
final population was made based on the O1 and O2 values of the optimization algorithm
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in combination with the number of coefficients set to zero after using the floor operator
on the coefficients. The floor operator was used to simplify the equation by removing the
decimal numbers. Preferred solutions are those with a higher number of coefficients set to
zero. Our choice was the solution with 13 non-zero coefficients, as shown in Equation (4):

I1(e) =
αF3 + 4αO2 + 9α1F3 + 3α1C3 + 9α1C4 + α1O2 + 4α2O1 + 8α2O2

δF3 + 3δF4 + 3δC3 + 2δC4 + 9δO2
(4)

All C and K coefficients were rounded to a lower value (floor operator). Here, e repre-
sents the current epoch and all the features on the right side were from that same epoch.

The goal of the second condition of the optimization algorithm was to minimize the
oscillations of the I(e) function. The results were much better with this condition than
without it, but the resulting function still oscillated strongly. In order to additionally
minimize the oscillations, a limitation was performed. The maximum change between any
two adjacent samples was set to 10% of the value of the first sample. Equation (5) shows
the mathematical formulation of this limitation of the maximum change:

Index1(e) =

⎧⎨
⎩

1.1 ∗ I1(e − 1), i f I1(e) > 1.1 ∗ I1(e − 1)
0.9 ∗ I1(e − 1), i f I1(e) < 0.9 ∗ I1(e − 1)

I1(e), else
(5)

where I1(e) is defined by Equation (4) and e is the current epoch. Limiting the maxi-
mum change of adjacent samples further improves the detection model, and therefore
Equation (5) presents the first novel multichannel ratio index.

We have tried to further simplify the formulation of the multichannel ratio index. This
time, brute force search for the best solution was applied with the following constraints: (1)
encoding of all C and K coefficients was set to integer values of zero or one for the sake of
simplicity, and (2) a maximum of five addends in the equation was allowed. With these
constraints, we obtained Equation (6):

I2(e) =
δF3 + δF4 + δO2

αC3 + α2O2
(6)

Again, similar to the first index, the maximum change was limited, so that the final
equation for the second ratio index was obtained as:

Index2(e) =

⎧⎨
⎩

1.1 ∗ I2(e − 1), i f I2(e) > 1.1 ∗ I2(e − 1)
0.9 ∗ I2(e − 1), i f I2(e) < 0.9 ∗ I2(e − 1)

I2(e), else
(7)

where I2(e) is defined by Equation (6) and e is the current epoch. After obtaining the
two novel indices, they were normalized to the range [0, 1] for each subject to eliminate
interindividual differences between the subjects.

The two novel multichannel ratio indices defined by Equations (5) and (7) were compared
with the seven existing indices θ/α and β/α [36], (θ + α)/β, θ/β and (θ + α)/(α + β) [37],
and γ/δ and (γ + β)/(δ + α) [10]. The indices γ/δ and (γ + β)/(δ + α) were calculated
based on the wavelet transform, i.e., in the same way as in the original paper. Figure 4
shows a comparison of our novel indices with the best and the worst channel for θ/α and
(θ + α)/β single-channel indices for subject tr08-0111. These two single-channel indices
were selected because they are the best predictors of drowsiness for a given subject among
all single-channel indices.
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Figure 4. The comparison of the two novel multichannel indices with the best and the worst channel for θ/α and (θ + α)/β
single-channel indices for subject tr08-0111. The white part of the diagram represents an awake state, while the yellow part
of the diagram represents stage 1 of sleep, i.e., a drowsiness state.
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3.1. Statistical Analysis

The Wilcoxon signed-rank test [55] was used to analyze the statistical differences
between the awake state and the S1 state. This test was chosen because it refers to data that
do not necessarily follow the normal distribution. Table 2 shows p-values for each subject
in the training set and each index. The significance level α0 = 0.01 was used together with
the Bonferroni correction [55] to reduce the probability of false-positive results, as the test
was repeated 144 times (16 subjects and 9 indices), giving us the final αp = 6.9 × 10−5. For
the existing indices, the p-value was calculated for each channel, but only the p-values of
the best channel (the lowest average of p-value for all subjects) are shown in Table 2.

The two novel indices show p-values lower than αp for most subjects. From this, we
can conclude that, for Index1, 14 of 16 subjects show two different distributions for the W
stage and the S1 stage, while 13 of 16 subjects show significantly different distributions
of the W stage and the S1 stage for Index2. There are only two existing indices where the
p-value is lower than αp in more than ten cases. These are θ/β and (θ + α)/(α + β), both
by Jap et al. [37].

Table 3 shows p-values for each subject in the test set and each index. Again, the two
novel indices, together with the (γ + β)/(δ + α) [10] index, show p-values lower than αp
for most subjects.

3.2. Drowsiness Prediction Analysis

An additional comparison of ratio indices was performed by analyzing the drowsiness
detection accuracy and precision, as obtained with the XGBoost algorithm [56]. Default
parameters were applied: learning rate eta equal to 0.3, gamma equal to 0 and a maximum
depth of a tree equal to 6. For a detailed comparison of the indices, classification accuracy
and precision were calculated for each subject. Namely, each subject has 238 epochs of
the measured signal, with the first half representing the W state and the second half the
S1 state. The algorithm classified the subject’s state for each epoch (238 classifications per
subject), and the accuracy for each subject was calculated based on these classifications.
The leave-one-subject-out cross-validation method was applied on the training set, i.e., the
algorithm was trained on the data of 15 subjects and tested on the subject excluded from
the training set, and this was repeated 16 times to evaluate drowsiness detection on each
subject from the training set. Table 4 shows the classification accuracy achieved on the
training set.

Table 2. Statistical significance p-values were obtained by the Wilcoxon signed-rank test for distinguishing the awake state
from the S1 state. The shaded green cells with bold text represent the lowest p-value for each subject in the training set. At
the bottom, the index having p-values lower than αp for most subjects is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β
(θ + α)/
(α + β)

γ/δ
(γ + β)/
(δ + α)

This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr03-0092 1.12 × 10−6 4.82 × 10−3 1.23 × 10−4 7.22 × 10−1 4.97 × 10−2 1.62 × 10−08 1.41 × 10−9 1.06 × 10−6 3.09 × 10−4

tr03-0256 3.92 × 10−8 1.43 × 10−13 2.42 × 10−6 6.88 × 10−4 1.11 × 10−3 4.04 × 10−2 3.60 × 10−1 9.08 × 10−3 1.51 × 10−9

tr03-0876 1.37 × 10−20 3.87 × 10−17 5.06 × 10−3 1.63 × 10−7 9.80 × 10−14 2.94 × 10−6 1.58 × 10−5 1.09 × 10−1 2.09 × 10−1

tr03-1389 9.77 × 10−11 1.35 × 10−8 9.64 × 10−2 2.06 × 10−1 2.86 × 10−4 1.27 × 10−1 1.91 × 10−1 1.82 × 10−1 3.01 × 10−1

tr04-0649 5.85 × 10−21 4.11 × 10−21 5.71 × 10−12 2.38 × 10−9 8.12 × 10−7 1.89 × 10−1 2.18 × 10−5 3.33 × 10−7 6.13 × 10−3

tr04-0726 2.96 × 10−20 3.19 × 10−20 5.90 × 10−20 2.31 × 10−16 9.40 × 10−9 2.78 × 10−14 2.62 × 10−15 2.36 × 10−19 2.19 × 10−20

tr05-1434 7.90 × 10−10 9.79 × 10−13 6.76 × 10−9 3.70 × 10−10 1.62 × 10−1 3.96 × 10−17 2.00 × 10−19 5.42 × 10−17 1.08 × 10−11

tr05-1675 1.71 × 10−13 1.85 × 10−11 1.24 × 10−9 7.82 × 10−3 1.48 × 10−1 1.10 × 10−14 4.47 × 10−16 1.58 × 10−2 4.62 × 10−10

tr07-0168 2.88 × 10−21 5.15 × 10−21 1.75 × 10−13 4.73 × 10−11 8.08 × 10−6 1.05 × 10−8 4.49 × 10−11 8.87 × 10−16 1.01 × 10−1

tr07-0458 8.34 × 10−11 1.77 × 10−16 1.66 × 10−4 1.77 × 10−4 5.51 × 10−1 1.32 × 10−2 6.62 × 10−3 3.68 × 10−4 4.17 × 10−1

tr07-0861 2.88 × 10−21 3.11 × 10−21 3.14 × 10−3 3.55 × 10−7 3.64 × 10−2 9.96 × 10−8 1.11 × 10−6 1.49 × 10−17 1.50 × 10−12

tr08-0021 2.88 × 10−21 2.88 × 10−21 4.09 × 10−2 2.54 × 10−9 4.55 × 10−8 3.34 × 10−10 4.91 × 10−5 4.19 × 10−13 2.10 × 10−6

tr08-0111 2.88 × 10−21 2.88 × 10−21 4.41 × 10−2 7.54 × 10−5 1.94 × 10−20 2.04 × 10−20 3.92 × 10−4 4.50 × 10−15 3.41 × 10−3

tr09-0175 7.78 × 10−5 7.92 × 10−2 4.64 × 10−2 3.10 × 10−4 5.35 × 10−14 2.23 × 10−5 2.68 × 10−6 7.18 × 10−2 1.30 × 10−5

tr × 10-0872 2.62 × 10−15 1.96 × 10−14 1.76 × 10−2 3.89 × 10−2 5.91 × 10−3 5.09 × 10−6 7.52 × 10−5 2.14 × 10−5 2.33 × 10−5

tr13-0204 1.71 × 10−3 6.62 × 10−1 6.30 × 10−4 4.91 × 10−5 6.36 × 10−5 2.91 × 10−10 2.63 × 10−10 5.59 × 10−1 2.16 × 10−2

No. subjects
with p < 6.9

× 10−5
14 13 6 9 8 12 11 9 8
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Table 3. Statistical significance p-values were obtained by the Wilcoxon signed-rank test for distinguishing the awake state
from the S1 state. The shaded green cells with bold text represent the lowest p-value for each subject in the test set. At the
bottom, the index having p-values lower than αp for most subjects is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β
(θ + α)/
(α + β)

γ/δ
(γ + β)/
(δ + α)

This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr04-0653 3.19 × 10−9 2.71 × 10−9 2.61 × 10−7 1.80 × 10−5 6.83 × 10−1 3.63 × 10−9 2.17 × 10−8 2.69 × 10−6 3.33 × 10−10

tr05-0028 1.26 × 10−9 2.36 × 10−7 3.78 × 10−3 2.99 × 10−1 3.45 × 10−1 3.56 × 10−1 5.16 × 10−2 1.70 × 10−1 4.36 × 10−2

tr05-0332 2.88 × 10−21 2.88 × 10−21 8.04 × 10−16 2.10 × 10−5 2.66 × 10−3 7.39 × 10−14 8.17 × 10−18 1.84 × 10−16 3.00 × 10−16

tr07-0127 3.71 × 10−18 1.27 × 10−15 8.92 × 10−2 1.44 × 10−2 3.44 × 10−5 1.38 × 10−2 2.51 × 10−5 9.07 × 10−16 3.36 × 10−16

tr08-0157 2.88 × 10−21 2.88 × 10−21 6.51 × 10−5 1.26 × 10−7 9.66 × 10−1 6.67 × 10−3 1.85 × 10−3 2.82 × 10−11 5.92 × 10−11

tr09-0328 1.80 × 10−10 1.14 × 10−2 7.90 × 10−10 9.56 × 10−7 1.70 × 10−7 2.01 × 10−1 1.92 × 10−3 3.54 × 10−2 7.01 × 10−5

tr09-0453 2.73 × 10−1 7.80 × 10−4 1.63 × 10−1 2.96 × 10−1 1.03 × 10−7 3.89 × 10−2 3.17 × 10−2 8.30 × 10−16 6.45 × 10−9

tr12-0255 1.37 × 10−2 5.55 × 10−10 4.31 × 10−19 2.17 × 10−18 1.89 × 10−16 2.20 × 10−19 8.22 × 10−19 1.11 × 10−7 2.33 × 10−7

tr12-0441 2.76 × 10−11 9.26 × 10−9 6.95 × 10−4 6.89 × 10−1 2.46 × 10−3 3.63 × 10−13 1.53 × 10−4 2.13 × 10−3 5.68 × 10−8

tr13-0170 7.59 × 10−7 3.60 × 10−5 3.74 × 10−2 4.73 × 10−2 1.91 × 10−4 9.71 × 10−4 2.16 × 10−2 6.07 × 10−17 5.23 × 10−16

tr13-0508 2.69 × 10−1 7.61 × 10−2 1.87 × 10−5 1.99 × 10−2 1.10 × 10−9 9.17 × 10−2 6.22 × 10−5 7.26 × 10−5 7.26 × 10−2

tr13-0653 1.09 × 10−16 7.36 × 10−20 4.90 × 10−8 4.16 × 10−4 8.05 × 10−2 1.66 × 10−2 1.03 × 10−9 3.47 × 10−2 1.40 × 10−5

No. subjects
with p < 6.9

× 10−5
9 9 7 5 5 4 6 7 9

Table 4. The classification accuracy was obtained with the XGBoost algorithm for each subject in the training set. The
shaded green cells with bold text show the highest accuracy obtained for each subject. At the bottom, the best mean accuracy
for each ratio index is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β
(θ + α)/
(α + β)

γ/δ
(γ + β)/
(δ + α)

This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr03-0092 0.5420 0.5252 0.6387 0.5168 0.5504 0.6092 0.6050 0.4684 0.5527
tr03-0256 0.5924 0.6303 0.5840 0.5504 0.5672 0.6345 0.6345 0.4473 0.4346
tr03-0876 0.6387 0.5672 0.6008 0.6218 0.4748 0.6471 0.6303 0.5781 0.5992
tr03-1389 0.3487 0.3908 0.4874 0.5588 0.5042 0.5378 0.4664 0.5696 0.5148
tr04-0649 0.6975 0.8025 0.5462 0.5462 0.5630 0.4832 0.5210 0.6118 0.5527
tr04-0726 0.7983 0.7605 0.6681 0.6176 0.5966 0.6134 0.6765 0.7637 0.7511
tr05-1434 0.3739 0.3697 0.4160 0.6218 0.7059 0.5882 0.6933 0.5485 0.5063
tr05-1675 0.6849 0.6513 0.6933 0.5546 0.6218 0.5630 0.7227 0.5781 0.5781
tr07-0168 0.7773 0.8193 0.6008 0.5504 0.5630 0.6092 0.6303 0.4473 0.5105
tr07-0458 0.3109 0.2689 0.5378 0.4748 0.5084 0.5378 0.5504 0.4684 0.4979
tr07-0861 0.6933 0.7269 0.5378 0.5420 0.5504 0.5168 0.5714 0.6540 0.6160
tr08-0021 0.7857 0.6387 0.5630 0.4874 0.4664 0.3866 0.4748 0.6329 0.6245
tr08-0111 0.6891 0.8025 0.7143 0.7101 0.7227 0.5462 0.4748 0.6287 0.6118
tr09-0175 0.6050 0.5252 0.5966 0.4748 0.5420 0.6218 0.6008 0.5401 0.6498

tr10-0872 0.6134 0.6008 0.5084 0.5168 0.4874 0.5252 0.4832 0.5274 0.4810
tr13-0204 0.5042 0.4538 0.6597 0.4790 0.6387 0.6471 0.6303 0.5570 0.5570
Average 0.6035 0.5959 0.5846 0.5515 0.5664 0.5667 0.5853 0.5638 0.5649

Index1 has the highest average accuracy and the highest classification accuracy for
3 of 16 subjects. Index2 has the second-highest average accuracy and the highest clas-
sification accuracy for 4 of 16 subjects, which is the most of all indices. θ/α [36] and
(θ + α)/(α + β) [37] are the only other indices with an average classification accuracy above
0.58, while θ/α [36] and θ/β [37] are the only other indices with the highest accuracy for
3 of 16 subjects. The β/α [36] index has the lowest average classification accuracy on the
training set (0.5515).

Table 5 shows the classification accuracy on the test set. Index1 has the highest average
accuracy and the highest classification accuracy for 3 of 12 subjects. Index2 has the third-
highest average accuracy and the highest classification accuracy for 4 of 12 subjects, which
is the most of all indices. The only other index with comparable accuracy is θ/α [36], with
the second-highest average accuracy. All other indices have at least 2.5% lower accuracy
than the two novel indices.

Table 6 shows the degree of precision of drowsiness detection on the training set.
Index2 has the highest average precision of drowsiness detection and the highest precision
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of drowsiness detection for five subjects, which is the highest of all indices. Index1 has the
second-best average precision of drowsiness detection. (θ + α)/(α + β) [37] and γ/δ [10]
have a precision of drowsiness detection comparable to Index1 and Index2, while all other
ratio indices have lower precision.

Table 5. The classification accuracy was obtained with the XGBoost algorithm for each subject in the test set. The shaded
green cells with bold text show the highest accuracy obtained for each subject. At the bottom, the best mean accuracy for
each ratio index is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β
(θ + α)/
(α + β)

γ/δ
(γ + β)/
(δ + α)

This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr04-0653 0.5672 0.6345 0.6303 0.5042 0.5168 0.5840 0.5630 0.5612 0.5738
tr05-0028 0.4454 0.4202 0.5294 0.5588 0.4664 0.4076 0.5462 0.5021 0.5443
tr05-0332 0.8067 0.8277 0.7563 0.5630 0.5294 0.6555 0.6134 0.5654 0.6118
tr07-0127 0.5462 0.6092 0.4916 0.5294 0.5252 0.5000 0.4118 0.4304 0.4051
tr08-0157 0.6303 0.6681 0.5294 0.5294 0.5000 0.5084 0.5294 0.5232 0.4810
tr09-0328 0.6050 0.5084 0.5966 0.5168 0.5000 0.5042 0.5672 0.5738 0.5401
tr09-0453 0.5588 0.5252 0.5714 0.5420 0.5294 0.5504 0.5840 0.5105 0.4557
tr12-0255 0.5420 0.5546 0.6639 0.5462 0.4748 0.5630 0.5924 0.6329 0.5654
tr12-0441 0.6891 0.5756 0.5840 0.5168 0.5378 0.5630 0.5798 0.6498 0.5274
tr13-0170 0.6008 0.5630 0.5924 0.5546 0.6261 0.6471 0.5336 0.5612 0.4430
tr13-0508 0.4538 0.5084 0.6555 0.6008 0.5588 0.6261 0.6092 0.5654 0.5443
tr13-0653 0.6807 0.6303 0.5210 0.5462 0.5630 0.5336 0.6008 0.5359 0.5063
Average 0.5938 0.5854 0.5935 0.5424 0.5273 0.5536 0.5609 0.5510 0.5165

Table 6. The precision of drowsiness detection was obtained with the XGBoost algorithm for each subject in the training set.
The shaded green cells with bold text show the highest precision obtained for each subject. At the bottom, the best mean
precision for each ratio index is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β
(θ + α)/
(α + β)

γ/δ
(γ + β)/
(δ + α)

This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr03-0092 0.5439 0.5439 0.5439 0.5439 0.5439 0.5439 0.5439 0.5439 0.5439
tr03-0256 0.6222 0.6348 0.5676 0.5349 0.5571 0.6127 0.6096 0.4270 0.3974
tr03-0876 0.6514 0.5800 0.6765 0.5973 0.4808 0.7397 0.7123 0.5804 0.6264
tr03-1389 0.2273 0.3774 0.4906 0.5455 0.5034 0.5391 0.4556 0.5519 0.5120
tr04-0649 0.7582 0.8273 0.5733 0.7895 0.7778 0.4878 0.5294 0.9063 0.6000
tr04-0726 0.8318 1.0000 0.7128 0.6373 0.6055 0.6627 0.7333 0.8370 0.7706
tr05-1434 0.4051 0.4083 0.1429 0.6028 0.7168 0.7692 0.7805 0.6571 0.5027
tr05-1675 0.6642 0.6011 0.6885 0.5607 0.6559 0.5862 0.7265 0.5425 0.5433
tr07-0168 0.7500 0.7923 0.5759 0.5375 0.5397 0.5730 0.5963 0.4488 0.5156
tr07-0458 0.2816 0.0492 0.5437 0.4789 0.5088 0.5446 0.5732 0.4500 0.4930
tr07-0861 0.6264 0.6688 0.5338 0.5342 0.5349 0.5105 0.5521 0.6216 0.5780
tr08-0021 0.7464 0.6854 0.6119 0.4717 0.4535 0.4000 0.4688 0.6325 0.6355
tr08-0111 0.6692 0.8214 0.7297 0.8205 0.7912 0.5314 0.4840 0.6500 0.5985
tr09-0175 0.6404 0.5263 0.5742 0.4762 0.5379 0.6142 0.6053 0.5273 0.6207
tr10-0872 0.6174 0.5909 0.5045 0.5130 0.4892 0.5254 0.4882 0.5349 0.4627
tr13-0204 0.5054 0.4545 0.6357 0.4820 0.6170 0.6636 0.6348 0.6032 0.5970
Average 0.5963 0.5976 0.5691 0.5704 0.5821 0.5815 0.5934 0.5946 0.5623

Table 7 shows the degree of precision of drowsiness detection achieved on the test set.
Index1 has the highest average precision. θ/α [36] and γ/δ [10] have 1% lower precision
than Index1, while all other indices have at least 4% lower precision. Index2 has the
second-highest average precision.
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Table 7. The precision of drowsiness detection was obtained with the XGBoost algorithm for each subject in the test set.
The shaded green cells with bold text show the highest precision obtained for each subject. At the bottom, the best mean
precision for each ratio index is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β
(θ + α)/
(α + β)

γ/δ
(γ + β)/
(δ + α)

This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr04-0653 0.5769 0.6569 0.6742 0.5030 0.5133 0.6000 0.5862 0.5795 0.5914
tr05-0028 0.3818 0.4296 0.5178 0.5385 0.4762 0.4214 0.5364 0.5000 0.5862

tr05-0332 0.7483 0.9333 0.7905 0.5547 0.5321 0.7846 0.6709 0.8571 0.8824
tr07-0127 0.5401 0.6512 0.4722 0.5294 0.5231 0.5000 0.3600 0.4309 0.4207
tr08-0157 0.5812 0.6087 0.5158 0.5574 0.5000 0.5048 0.5153 0.5122 0.4886
tr09-0328 0.6147 0.5078 0.5650 0.5137 0.5000 0.5041 0.5678 0.5620 0.5372
tr09-0453 0.5398 0.5176 0.5436 0.5301 0.5248 0.5306 0.5538 0.5049 0.4721
tr12-0255 0.5316 0.5351 0.6054 0.5342 0.4826 0.5393 0.5545 0.5886 0.5389
tr12-0441 0.8000 0.5789 0.5633 0.5093 0.5249 0.5478 0.5785 0.6496 0.5231
tr13-0170 0.6333 0.5466 0.5724 0.5355 0.6056 0.6296 0.5313 0.6944 0.3478
tr13-0508 0.4337 0.5091 0.6331 0.5674 0.5443 0.6154 0.6140 0.5478 0.5352
tr13-0653 0.7048 0.6000 0.5177 0.5314 0.5419 0.5213 0.5845 0.5392 0.5037
Average 0.5905 0.5896 0.5809 0.5337 0.5224 0.5582 0.5544 0.5805 0.5356

3.3. Computational Analysis

With regard to the classification and the use of machine learning algorithms, an
advantage of using the novel multichannel indices compared to the existing single-channel
indices is also the saving of memory and time, due to the reduction of dimensionality. The
accuracies of Index1 and Index2 from Table 4 were achieved with the model constructed
from the single feature only, while all other indices had six features since the dataset
contains six EEG channels. For this reason, storing the novel indices consumes six times
less memory. The time consumption was measured as an average of 100 executions. The
measured time included classifier initialization, classifier training, classifications on the
test subject and calculation of classification accuracy. Table 8 shows the results of time
consumption measurements. The use of the novel multichannel indices saves about 30% of
time compared to all other traditionally used single-channel ratio indices.

Table 8. The average time of 100 executions of the XGBoost classifier’s initialization, training, classifications on the test
subject and calculation of classification accuracy, expressed in milliseconds. The shaded green cells with bold text represent
the best values for each subject and the best average value.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β
(θ + α)/
(α + β)

γ/δ
(γ + β)/
(δ + α)

This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr03-0092 86.3772 86.9689 122.7764 124.0313 129.9221 129.5543 130.6956 128.6490 128.9000
tr03-0256 86.7446 87.1034 123.3161 123.2911 130.3844 130.2867 130.6147 128.6415 128.7518
tr03-0876 86.3508 87.0188 122.6970 123.5249 130.2485 130.7789 130.6456 128.7160 128.3419
tr03-1389 85.9344 86.8811 122.1586 123.8243 130.4414 130.1170 131.3382 129.2281 128.8390
tr04-0649 86.9833 87.5527 123.6650 124.0832 130.2565 130.0574 130.2316 129.2234 128.8357
tr04-0726 86.5498 87.5921 123.7690 123.6945 129.6285 129.6750 130.6256 128.9002 128.6363
tr05-1434 86.5450 86.6549 123.0505 130.6853 131.9267 130.6205 131.3138 130.6215 131.3438
tr05-1675 87.0534 87.4627 123.3135 130.0399 130.4660 129.1552 129.5943 130.5365 128.9256
tr07-0168 86.9143 87.2251 122.9559 129.6185 130.5158 130.1070 129.7780 129.6381 128.7795
tr07-0458 86.5651 86.8690 122.6074 129.9533 130.1468 130.2667 130.4915 128.8906 129.5788
tr07-0861 86.8634 87.2801 122.7545 130.2319 130.0104 128.1135 129.9124 129.3949 128.7760
tr08-0021 86.9239 88.9566 123.0910 130.0868 129.1948 130.0221 130.1670 129.3241 129.1652
tr08-0111 86.6697 87.4626 122.7216 130.3879 130.5019 130.4011 129.8419 128.8413 129.1940
tr09-0175 87.3240 87.3827 123.4803 129.6729 130.9953 130.1271 131.1785 128.7062 128.9786
tr10-0872 86.9690 87.5381 124.0918 130.5091 129.4638 130.6490 130.2964 129.4843 129.3599
tr13-0204 87.2509 87.1135 123.2010 131.7928 130.4062 131.4087 130.3568 128.9199 128.1530
Average 86.7512 87.3164 123.1031 127.8392 130.2818 130.0838 130.4426 129.2322 129.0350
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4. Discussion

The main idea of our research was to combine frequency-domain features from differ-
ent brain regions into a multichannel ratio index to improve frequency-domain features
for the detection of drowsiness and to gain new insights into drowsiness. The results
in Tables 2–8 suggest that two novel multichannel ratio indices improve the detection
of drowsiness based on the frequency-domain features and reduce the time required
for detection.

We must note that the main idea of this research was not to create the best possible
model for drowsiness detection but only to bring improvement into frequency-domain
features that are often used for drowsiness detection. Our focus was on developing
the method for obtaining these novel indices, which is explained in Section 2.3 “Multi-
Objective Optimization”. In order to confirm that our conclusions also hold for other
classifiers besides XGBoost, Table 9 shows the average accuracy on the test set obtained
with Naïve Bayes, k nearest neighbors, logistic regression, decision tree, random forest
and support vector machine classifiers (using the scikit-learn library at default settings).
The average accuracies of two novel indices vary from 56% to 65% among the algorithms.
All the algorithms show that our novel multichannel indices are better than existing
single-channel indices.

Table 9. The average accuracy was obtained on the test set with different classification algorithms. Each row is colored
with a pallet of colors ranging from dark green for the highest number in the row to dark red for the lowest number in the
row. The algorithms are: NB—Naïve Bayes, KNN—k nearest neighbors, Logistic—logistic regression, DT—decision tree,
RF—random forest and SVM—support vector machine.

Algorithm Index1 Index2 θ/α β/α (θ + α)/β θ/β
(θ + α)/
(α + β)

γ/δ
(γ + β)/
(δ + α)

This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

NB 0.6399 0.6535 0.5947 0.5462 0.5432 0.5308 0.5663 0.5316 0.5277

KNN 0.5785 0.5840 0.5588 0.5387 0.5399 0.5452 0.5525 0.5378 0.5277

Logistic 0.6396 0.6543 0.6029 0.5131 0.5383 0.5626 0.5735 0.5793 0.5613

DT 0.5717 0.5629 0.5456 0.5050 0.5074 0.5420 0.5267 0.5356 0.5223

RF 0.5719 0.5659 0.5762 0.5380 0.5360 0.5549 0.5501 0.5321 0.5222

SVM 0.6325 0.6526 0.6200 0.5695 0.5714 0.5731 0.5801 0.5541 0.5478

Our results were compared with the seven existing single-channel ratio indices that
are currently state-of-the-art frequency-domain features. The newest one was introduced
in 2016 [10], but all of these single-channel ratio indices are often used in the more recent
drowsiness detection papers [57–59].

The authors in the aforementioned research report 92% accuracy as the best-obtained
accuracy [57]. This accuracy was obtained based on the epoch-level validation. Epoch-level
validation is a cross-validation procedure on the epoch level, which means that there is a
very high probability that all subjects will have epochs in the training set and in the test
set at the same time. On the other hand, subject-level validation is validation where it
is ensured that subjects in the test set are not contained in the training set. An example
of a subject-level validation is the leave-one-subject-out cross-validation that we used in
this research. The only proper way for model validation is subject-level validation, as it
represents the real-life setting in which the data from a new subject are used only for testing
the model. Empirical tests conducted in related research showed a large difference in the
accuracies between epoch-level validation and subject-level validation [60].

In a study from Mehreen et al. [57], the authors also provide subject-level validation,
and the accuracy achieved was 71.5% based on 15 frequency-domain features. The highest
accuracy achieved in our research is shown in Table 9, and it was 65.45%, achieved by
logistic regression. This 65.45% accuracy is relatively close to 71.5%, and it must be noted

20



Sensors 2021, 21, 6932

that it was obtained based only on the Index2 feature, with a simple algorithm and without
any parameter optimization. Due to this, we are confident that the addition of our two
multichannel ratio indices would lead to an improvement in all state-of-the-art drowsiness
detection systems that use frequency-domain features. Again, our aim was not to create the
best possible drowsiness detection model but to prove that the novel multichannel indices
are better than the existing single-channel frequency-domain features.

The Equations (4) and (6) for these multichannel ratio indices, obtained after opti-
mizing the parameters with the optimization algorithm, suggest that alpha and delta are
two of the most important frequency power bands for drowsiness detection. Equation (6)
suggests that delta power in the frontal region describes drowsiness better than in the
central region, while alpha power in the occipital and central regions describes drowsiness
better than in the frontal region.

These results are consistent with several previous research papers on drowsiness de-
tection that reported the importance of increasing alpha power [22,35,61,62]. Delta power is
usually only present in deep sleep stages [36], so some researchers studying drowsiness do
not include delta in their research [63]. However, there is still much research that includes
delta power. The increase in delta power is considered to be an indicator of drowsiness [4].
Our research found that theta and beta powers are not as good drowsiness indicators
as alpha and delta powers, while many other research studies disagree. A decrease in
beta power was found to be an indicator of drowsiness in [4,36,64,65] and an increase in
theta power was found to be an indicator of drowsiness in [27,34,61,62,65]. Wang et al. [38],
in their study of microsleep events, found that alpha and delta rhythms characterize
microsleep events. As mentioned earlier, there is an inconsistency in terminology, and
some researchers consider sleep stage S1 as drowsiness [5–9], while Johns [11] considers
it equivalent to microsleep events in the driving scenario. We used the data from sleep
stage S1 and referred to it in this research as drowsiness. Since our results suggest that
delta and alpha are the most significant for the detection of drowsiness, as in the work of
Wang et al. [38] on microsleep events, our work suggests that sleep stage S1 may be more
similar to microsleep events than to drowsiness, but further research is needed to support
this as a fact.

Apart from the indication that drowsiness is closely related to microsleep events, it
may also be closely linked to driver fatigue. Some researchers even use the term fatigue as
a synonym for drowsiness [66]. Fatigue is a consequence of prolonged physical or mental
activity [67] and can lead to drowsiness [68]. Normally, rest and inactivity relieve fatigue,
however, they exacerbate drowsiness [69]. Lal and Craig [70] found that delta and theta
band activities increase significantly during fatigue. Craig et al. [71] reported significant
changes in the alpha 1, alpha 2, theta and beta bands, while they did not find any significant
changes in the delta band when observing driver fatigue. Simon et al. [68] report that alpha
band power and alpha spindles correlate with fatigue.

These three research papers [68,70,71] all use visual inspection to define the ground
truth of fatigue. This approach to defining the ground truth is prone to subjectivity. A
similar problem occurs when drowsiness is defined by using subjective drowsiness ratings,
such as the Karolinska sleepiness scale [72].

Driver drowsiness, driver fatigue and microsleep events are defined as different inter-
nal states of the brain, but show similar behavior when observing the features obtained
from the EEG. Possible explanations could be that fatigue, drowsiness and microsleep have
a similar effect on brain functions and cause the driver’s inability to function at the desired
level. Most researchers of these three driver states only use frequency-domain features,
while there are a number of other features (nonlinear features [30], spatiotemporal fea-
tures [31] and entropies [32]) that could be used. Further studies with these features could
find some features of the EEG signal that distinguish drowsiness, fatigue and microsleep.
Distinguishing features of these three brain states could lead to the exact definitions of
these terms. Precise and standardized definitions of fatigue, drowsiness and microsleep
would help researchers to compare their work more easily.
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Figure 4 shows that the proposed procedure for creating the novel ratio indices has
succeeded in creating step-like indices for a given subject. In addition to Index1 and Index2,
which show desirable behavior, the indices (θ + α)/β and θ/β show similar, favorable
behavior for a few channels. Figure 5 shows a comparison of novel ratio indices with the
best and the worst channel for γ/δ and (γ + β)/(δ + α) single-channel indices for subject
tr04-0726. Index1, index2, θ/α [36], (θ + α)/β, (θ + α)/(α + β) [37] and γ/δ [10] show
similar behavior. These indices seem to detect drowsiness well, but with about a 50 epochs
delay. Since several different single-channel indices that were previously shown to correlate
with drowsiness together with two novel multichannel indices show the same delay in
detecting drowsiness, this suggests that there may be shortcomings in the labeling of the
initial signals. The manual for scoring sleep [42] provides guidelines for labeling, and it
may be possible that the professionals who labeled the sleep signals labeled an approximate
time of transition from the W state to the S1 state, as it is known that labeling any kind of
several-hour-long EEG signal is a very tedious, hard and time-consuming job [73]. For this
reason, the loose transition window is applied in the optimization algorithm, as described
in Section 2.3.

The main shortcoming in applying our approach is the need to place six EEG electrodes
on the driver’s scalp while driving. Apart from being intrusive, there is also a problem
with noise in real-world applications that cannot be neutralized with the current state-of-
the-art filter technology. All electrophysiological signals measured with wearable devices
have a similar problem with intrusiveness and noise. ECG measurements, for example,
are somewhat less susceptible to noise than EEG. Several recent works have shown that
ECG can be used as a good predictor of sleep stages based on deep learning classifiers.
Sun et al. [74] combined ECG with abdominal respiration and obtained a kappa value of
0.585, while Sridhar et al. [75] obtained a kappa value of 0.66. Combining EEG and ECG
measurements has also been proposed in the context of driver drowsiness detection under
simulator-based laboratory conditions [76]. Despite the problems of intrusiveness and noise
susceptibility, research based on the electrophysiological signals brings a shift towards a
precise definition of drowsiness. Once there is an exact definition of drowsiness or at least
guidelines and manuals that accurately describe drowsiness (similar to the manuals for
evaluating sleep stages), a big step will be taken to solve the problem of early detection
of drowsiness [77]. It is doubtful that a wearable system based on electrophysiological
signals will ever be widely used in real-world driving, but they still need to be developed.
In our opinion, such wearable electrophysiological devices are more likely to be used for
calibration/validation of non-intrusive systems (such as the driving performance-based or
video-based systems) in controlled/simulated driving scenarios. In such scenarios, it is
possible to control ambient noise, leading to a reduction in the effects of noise sensitivity.

An additional limitation of this work is that we were able to download data from 393
of 992 subjects completely, and only 28 of these 393 subjects were included in our study
due to the inclusion condition that we described in Section 2.1 ”Dataset, Preprocessing and
Feature Extraction”. Although it is a small subset of data, with the use of 12 subjects as
a test set, we showed that the dataset is large enough to provide a good generalization
(as seen in Tables 3, 5 and 7). In a recent review paper about state-of-the-art drowsiness
detection [33], the authors reviewed 39 papers, and the average number of subjects in the
included works is 23.5, which also indicates that our number of subjects included in the
current study (28) is acceptable.
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Figure 5. The comparison of the two novel multichannel indices with the best and the worst channel for γ/δ and
(γ + β)/(δ + α) single-channel indices for subject tr04-0726. The white part of the diagram represents the awake state, while
the yellow part of the diagram represents the stage 1 of sleep, i.e., the drowsiness state.
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5. Conclusions

This paper presented two novel multichannel ratio indices for the detection of drowsi-
ness obtained by multi-objective optimization based on evolutionary computation. The
results suggested that alpha and delta powers are good drowsiness indicators. The novel
multichannel ratio indices were compared with seven existing single-channel ratio indices
and showed better results in detecting drowsiness measured with precision and in the
overall classification accuracy of both states using several machine learning algorithms.
Our work suggests that a more precise definition of drowsiness is needed, and that accurate
early detection of drowsiness should be based on multichannel frequency-domain ratio
indices. The multichannel features also reduced the time needed for classification. The
process of obtaining these indices by using a multi-objective optimization algorithm can
also be applied to other areas of EEG signal analysis.

Research such as this, together with research on small hardware for physiology-
based drowsiness detection, can eventually lead to an easy-to-use, non-intrusive device
that reliably detects drowsiness. In addition, research on a reliable and standardized
definition of drowsiness is needed and it would lead to improvements in the field of
drowsiness detection.
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Abstract: Remote sensing of vital signs has been developed to improve the measurement environment
by using a camera without a skin-contact sensor. The camera-based method is based on two concepts,
namely color and motion. The color-based method, remote photoplethysmography (RPPG), measures
the color variation of the face generated by reflectance of blood, whereas the motion-based method,
remote ballistocardiography (RBCG), measures the subtle motion of the head generated by heartbeat.
The main challenge of remote sensing is overcoming the noise of illumination variance and motion
artifacts. The studies on remote sensing have focused on the blind source separation (BSS) method
for RGB colors or motions of multiple facial points to overcome the noise. However, they have still
been limited in their real-world applications. This study hypothesized that BSS-based combining of
colors and the motions can improve the accuracy and feasibility of remote sensing in daily life. Thus,
this study proposed a fusion method to estimate heart rate based on RPPG and RBCG by the BSS
methods such as ensemble averaging (EA), principal component analysis (PCA), and independent
component analysis (ICA). The proposed method was verified by comparing it with previous RPPG
and RBCG from three datasets according to illumination variance and motion artifacts. The three
main contributions of this study are as follows: (1) the proposed method based on RPPG and RBCG
improved the remote sensing with the benefits of each measurement; (2) the proposed method was
demonstrated by comparing it with previous methods; and (3) the proposed method was tested in
various measurement conditions for more practical applications.

Keywords: heart rate measurement; remote HR; remote PPG; remote BCG; blind source separation

1. Introduction

Remote sensing of vital signs has been studied to improve the measurement burden.
In particular, camera-based methods allow one to measure heart rate using a smartphone
both anywhere and anytime. Despite the potential of camera-based methods, they have still
been limited in their applications in daily life due to the noise generated by illumination
variance and motion artifacts [1].

The camera-based method is based on two concepts, i.e., color and motion. First, the
color-based method uses the principle of photoplethysmography (PPG), and thus it is called
remote PPG (RPPG). RPPG measures the color variation generated by reflectance of blood
due to the cardiac cycle from the heart and the head through the carotid arteries [2]. The
color variance is most clearly measured at the green wavelength (i.e., 510~560 nm) since the
pulsations of the arteries are able to be monitored through elastic-mechanical interaction of
deep arteries with the superficial dermis [3]. However, the illumination variance of various
frequency ranges that occur in daily life distorts the color variance caused by the heartbeat,
so it is difficult to remove the noise using only green color. The studies on RPPG have
focused on the blind source separation (BSS) method from the RGB colors to overcome the
noise of illumination variance. Poh et al. [4] first proposed RPPG, which extracts the color
variation from the RGB colors and estimates the plethysmographic signal by using the BSS
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method based on independent component analysis (ICA). Xu et al. [5] reduced the noise
of illumination variance using the partial least squares (PLS) method and multivariate
empirical mode decomposition (MEMD). They evaluated their method in illumination
changing conditions and showed more improved accuracy than the ICA-based method.
Zhang [6] applied the separation of the luminance on RPPG by converting from RGB color
space to LAB color space. They demonstrated that the luminance separation is resistant to
natural, motion-induced, and artificial illumination variances. Although RPPG has been
improved to overcome the noise of illumination variance, it is still difficult to apply in daily
life since all RGB colors are affected by lighting at the same time and most proposed noise
removal methods were validated in limited scenarios.

Second, the motion-based method uses the principle of ballistocardiography (BCG),
so it is called remote BCG (RBCG). The RBCG measures the subtle motion generated
by the contraction of the heart and the ejection of the blood from the ventricles into the
vasculature [7]. The subtle motion is sensitive to measurement since its displacement is
small at about 0.5 mm [8]. Thus, the major motion such as head movement and facial
expression makes the measurement of subtle motion difficult. The studies on RBCG have
developed by applying the BSS method to the subtle motions extracted from as many
feature points as possible. Balakrishnan et al. [8] first proposed RBCG which extracts
the subtle motions from feature points of the forehead and nose regions and applied
the BSS method based on principal component analysis (PCA). Shan et al. [9] extracted
the subtle motion from one feature point of the forehead region and applied the ICA on
the displacement calculated in both the x-axis and y-axis. Haque et al. [10] increased
the number of feature points by combining good features to track (GFTT) with facial
landmark detection based on the supervised descent method (SDM). They demonstrated
that increasing the number of feature points overcomes the tracking noise for extracting the
subtle motion. Hassan et al. [11] improved the subtle motion extraction by the skin color-
based foreground segmentation and the motion artifact removal by the BSS method based
on singular value decomposition (SVD). Despite the improvement of RBCG, it is difficult
to apply this method in daily life due to the limitation of computational performance in
real time on the measurement device and of noise removal on irregular motion artifacts.

Recent studies on remote sensing have focused on the combining of RPPG with
RBCG. Shao et al. [12] developed the simultaneous monitoring of RPPG and RBCG. They
demonstrated that it potentially provides a low-cost solution based on a single camera in
daily life, but did not consider combining them together. Liu et al. [13] combined RPPG
with BCG measured using an additional motion sensor, not a camera. They corrected the
tracking noise caused by motion artifacts in RPPG by referring to BCG. They only used
BCG to remove motion artifacts in RPPG and did not consider their combination. Thus, it
is still necessary to develop the fusion method of RPPG and RBCG by considering their
interaction effect.

In summary, the BSS method has been developed to overcome the noise of illumi-
nation variance and motion artifacts in both RPPG and RBCG. Also, the fusion method
of RPPG and RBCG need to be further developed by considering their interaction effect.
Thus, this study hypothesized that the BSS-based combining of RPPG and RBCG can
improve the accuracy and feasibility of remote sensing in daily life. This study examined
the BSS methods using ensemble averaging (EA), PCA, and ICA to estimate heart rate
based on combining RPPG with RBCG. The proposed method was compared with the
previous methods, which only used the color variation (i.e., RPPG) or the subtle motion (i.e.,
RBCG). The contributions of this study can be summarized as follows: (1) the proposed
method based on RPPG and RBCG improved the remote sensing with the benefits of each
measurement; (2) the proposed method was demonstrated by comparing it with previous
methods; and (3) the proposed method was tested in various measurement conditions for
a more practical application.
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2. Proposed Method

This study proposed a fusion method to estimate heart rate based on RPPG and RBCG
by their ensemble averaging. Figure 1 depicts the procedure of the proposed method.
First, the face was detected and tracked from the consequence frame of facial video. Then,
photoplethysmographic and ballistocardiographic signals were extracted from the face by
RPPG and RBCG, respectively. These signals were combined with each other to minimize
noise and to maximize cardiac components. Finally, the heart rate was estimated from the
combined signal in the frequency domain.

Figure 1. Overview of proposed method.

2.1. Face Detection and Tracking

To extract color variation and subtle motion, the face was detected and tracked from
facial video. This study focused on low misdetection and fast inference time for practical
application. The Viola-Jones algorithm [14] is a basic and widely known face detection
using AdaBoost with Haar features. AdaBoost selected the candidates from an image
using simple Haar features and detected the face from the candidates using complex Haar
features to improve inference time. It is easy to use since it is implemented in the OpenCV
library [15], but it frequently mis-detected the face. Histogram of oriented gradients (HOG)
algorithm [16] is also a representative face detection algorithm implemented in the DLIB
library [17]. It computed the spatial gradients from an image and detected the face using
histogram of gradient orientation. Although it has less misdetection than the Viola-Jones
algorithm, it can detect only the frontal face and has a slow inference time.

Recently, face detection methods using deep learning have been proposed and have
shown more enhanced performance than the Viola-Jones and HOG algorithms. Although
their algorithm was complex and difficult to implement, they are easier to use than before
by development of open-source framework such as Tensorflow [18]. Thus, this study
employed the single shot detector (SSD) [19] with ResNet [20] trained by WIDER FACE
dataset [21]. The ResNet extracted a high dimensional feature map which has facial features
such as contrast or facial contour from an image. The SSD detected the face from the feature
map by extracting image pyramids of various sizes. It has been implemented and available
in OpenCV library [22] recently.

In addition, face tracking is important to extract the same facial region from successive
frames. The facial region was divided into sub-regions by cropping the middle 50% of the
width and top 20% of the height (i.e., forehead) and the middle 50% of the width and middle
25% of height (i.e., nose). Then, 80 facial points were determined within the sub-regions by
dividing the forehead region into 32 cells and the nose region into 48 cells, respectively. The
facial points were tracked on xy-coordinates by the Kanade-Lucas-Tomasi (KLT) tracker [23].
By empirically considering tracking accuracy and computing cost, the window size of the
small subarea cells was determined as the detected face size divided by 10. If the tracked
facial points suddenly moves more than 10 pixels, the facial points were re-defined in
the forehead and nose regions as described above. Then, the similarity transformation
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matrix was extracted from locations of the facial points on the previous and next frames
to estimate the transformation of the facial region. The similarity transformation matrix
hypothesized three characteristics (i.e., translation, rotation, and scaling). Finally, the facial
region on next frame was tracked from previous frame by the similarity transformation
matrix. Figure 2 shows the procedure of face detection and tracking.

Figure 2. Procedure of face detection and tracking.

2.2. Photoplethysmographic Signal Extraction

Color variation caused by the heartbeat was prominent in the cheek area [24], so that
the photoplethysmographic signal was extracted by the RGB spectrums on the middle 50%
of the width and middle 25% of height (i.e., nose), on the left 20–35% of width and top
45–70% of height (i.e., left cheek), 220–35% of width and top 45–50% of height (i.e., right
cheek). Each RGB signal was normalized by subtracting its mean since the mean indicates
melanin components (i.e., skin color) [25]. Then, RBG signals were combined with each
other based on pulse blood-volume vector (PBV) modeling [26] for each face area. The
combined signals were filtered by a second order Butterworth bandpass filter with a cut-off
of 0.75–2.5 Hz corresponding to 45–150 bpm. Finally, the photoplethysmographic signal
was extracted by applying the ICA on the filtered signals and selecting the signal with the
highest signal to noise ratio (SNR) from three components. The SNR was calculated from
the frequency domain of each component as:

SNR = max(PS)/(∑PS − max(PS)), (1)

where SNR is a signal to noise ratio and PS is a power spectrum of the signal. Figure 3
depicts the procedure of photoplethysmographic signal extraction.

Figure 3. Procedure of photoplethysmographic signal extraction.

2.3. Ballistocardiographic Signal Extraction

Ballistocardiographic head movements were generated up and down by the heartbeat
so that the ballistocardiographic signal was extracted by the y-coordinate of each facial
point on successive frames. In this study, the 80 ballistocardiographic signals were extracted
from the 80 facial points and were normalized by subtracting its mean to make the unit
the same as RPPG. The normalized signals were filtered by a second order Butterworth
bandpass filter with a cut-off of 0.75–2.5 Hz. Voluntary head movements distorted the
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signals to have a large amplitude, so that the signals were corrected as the mean if the
amplitude is larger than twice the standard deviation. Also, facial expressions distorted
the signals extracted from specific muscles (e.g., smile moves the cheek and eye muscles).
Thus, the SNR was calculated from each signal and the signals which have lower SNR
than mean SNR were removed in the next step. Finally, the ballistocardiographic signal
was extracted by applying the PCA on the filtered signals and selecting the signal with the
highest SNR from five components. Figure 4 shows the procedure of ballistocardiographic
signal extraction.

Figure 4. Procedure of ballistocardiographic signal extraction.

2.4. Signial Combining

This study hypothesized that RPPG are robust to the motion artifacts and sensitive
to the illumination variance, whereas RBCG are robust to the illumination variance and
sensitive to the motion artifacts. Thus, the photoplethysmographic signal and the ballis-
tocardiographic signal had combined with each other to improve robustness to both the
illumination variance and the motion artifacts. This study tested three BSS methods (i.e.,
EA, PCA, and ICA) to combine RPPG and RBCG. EA was hypothesized to reduce the
random noise by averaging repetitive signals and has verified its enhancement as a fusion
method in a previous BCG study [27]. EA was calculated as:

EA = (RPPG + RBCG)/2, (2)

where RPPG is a signal extracted by RPPG and RBCG is a signal extracted by RBCG. In ad-
dition, PCA and ICA are the representative BSS methods to reduce the various noise. PCA
and ICA were applied on PPG signal and BCG signal extracted from Sections 2.2 and 2.3
and two components were extracted because the BSS applied on two signals. Then, the
combined signal was selected from two components by highest SNR, respectively. Figure 5
depicts the procedure of signal combining.

2.5. Heart Rate Estimation

The heart rate estimated from the frequency domain of the signal. The power spectrum
was converted from the combined signal by fast Fourier transform (FFT). This study
extracted the band of power spectrum between the ranges of 0.75 and 2.5 Hz corresponding
to the ranges of 45 and 150 bpm. The dominant frequency was identified with the highest
power from the band of power spectrum. The heart rate was calculated by multiplying by
the dominant frequency and 60 as:

HR = 60 × freq, (3)

where HR is a heart rate and freq is a dominant frequency. The heart rate for RPPG (i.e.,
HRRPPG) was estimated from the PPG signal extracted by Section 2.2, whereas the heart
rate for RBCG (i.e., HRRBCG) was estimated from the BCG signal extracted by Section 2.3.
The heart rates for proposed methods (i.e., HREA, HRPCA and HRICA) were estimated
from the combined signals based on RPPG and RBCG extracted Section 2.4.

33



Sensors 2021, 21, 6764

Figure 5. Procedure of signal combining.

3. Experiments

The experiments were conducted to evaluate the proposed method according to
three measurement conditions in this study. The measurement conditions were determined
by illumination and motion artifacts (i.e., normal, facial expressions, and human computer
interactions). The experimental procedure was approved by the Institutional Review Board
of the Sangmyung University, Seoul, Korea (BE2018-35).

3.1. Experiment 1: Normal

This experiment is to collect the normal dataset without illumination variance and
motion artifacts. The participants consisted of 20 persons (12 males) and were asked to sit
1 m away from a camera for 3 min with a stationary state. The facial video was recorded
by an RGB webcam (Logitech Webcam C270) with 640 × 360 resolution at 30 fps. Also, the
ECG signal was simultaneously measured by an ECG measurement system with Lead-I
(BIOPAC Systems Inc., Goleta, CA, USA) at a sampling rate of 500 Hz. It was employed as
a ground-truth for the evaluation of the proposed methods.

3.2. Experiment 2: Facial Expressions

This experiment is to collect the dataset with facial expressions. The 20 persons who
participated in experiment 1 were also asked to sit in front of a camera for 3 min with a
stationary state. They then followed the six basic facial expressions (i.e., happiness, sadness,
surprise, anger, disgust, and fear), which were displayed on the monitor for 30 s in random
order to minimize the ordering effect. The facial video and the ECG signal were recorded
and measured at the same manner in experiment 1.

3.3. Experiment 3: Human Computer Interactions

This experiment is to collect the dataset including illumination variance and motion
artifacts occurred in human computer interactions. The 17 persons (8 males) were partic-
ipated and asked to watch the four videos to cause to some emotions. Then, they wrote
their emotions on self-report by two-dimensional model [28]. While watching the videos
and writing the self-report, they asked to freely express the facial expressions and move
their head. Also, the illumination on the face was changed by reflecting the light from the
video. The facial video was recorded by an RGB webcam (Logitech Webcam C270) with a
1920 × 1080 resolution at 30 fps. The ECG signal was also measured at the same manner in
experiment 1.
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4. Results

This study demonstrated the improvement of proposed fusion methods by comparing
them with previous RPPG and RBCG methods. The heart rate of ECG was calculated by
the QRS detection algorithm [29] and determined as the ground-truth for evaluation of the
proposed methods. The proposed method was verified by calculating the four metrics and
by representing the one plot as follows: mean absolute error (MAE), standard deviation of
absolute error (SDAE), root mean squared error (RMSE), Pearson’s correlation coefficient
(CC), and the Bland-Altman plot. MAE, SDAE, and RMSE describes the difference of mean
heart rate and variation, respectively. CC determines the statistical similarity of heart rates
over time, so that the coefficient value indicates a strong positive similarity if it is approach-
ing to the one. The Bland-Altman plot represents graphically the statistical differences by
assigning the mean (x-axis) and difference (y-axis) between the two measurements. The
line on the plot is indicated the 95% limits of an agreement based on mean difference and
the ±1.96 standard deviation of the differences. The statistical parameters were calculated
from the heart rates for RPPG (i.e., HRRPPG), RBCG (i.e., HRRPPG), and the proposed
methods (i.e., HREA, HRPCA and HRICA) by comparing them with ECG.

4.1. Experiment 1: Normal

Table 1 shows the estimation of heart rates from the normal dataset using RPPG,
RBCG, and the proposed fusion methods (i.e., EA, PCA, and ICA). All fusion methods
were more accurate than RPPG and RBCG. In addition, the ICA-based fusion method
showed the lowest errors in the normal dataset (MAE = 1.04, SDAE = 0.91, RMSE = 1.39,
CC = 0.999).

Table 1. Estimation of heart rates from the normal dataset without illumination variance and motion
artifacts.

Methods MAE (bpm) SDAE (bpm) RMSE (bpm) CC (r)

RPPG 1.84 1.66 2.49 0.981 **
RBCG 2.56 2.26 3.48 0.927 **

Fusion (EA) 1.05 0.93 1.42 0.996 **
Fusion (PCA) 1.08 0.99 1.49 0.996 **
Fusion (ICA) 1.04 0.91 1.39 0.999 **

MAE, mean absolute error; SDAE, standard deviation of absolute error; RMSE, root mean square error; CC,
Pearson’s correlation coefficient. Two asterisk represents significant correlation levels at p-value < 0.01. The lowest
error and highest correlation values are bolded.

The Bland-Altman plots of estimated heart rates from the normal dataset without
illumination variance and motion artifacts using RPPG, RBCG, and the proposed fusion
methods are shown in Figure 6. The mean errors were 2.19 with 95% limits of agreement
(LOA) in −3.43 to 7.81 (RPPG), −1.93 with 95% LOA in −8.35 to 4.49 (RBCG), 0.37 with
95% LOA in −1.19 to 1.93 (EA), 0.34 with 95% LOA in −1.26 to 1.94 (PCA), and 0.18 with
95% LOA in −0.63 to 0.98 (ICA). The heart rates estimated using the ICA-based fusion
method showed the lowest mean difference and variances.

4.2. Experiment 2: Facial Expressions

The heart rates were estimated from the dataset with facial expressions using RPPG,
RBCG, and the proposed fusion methods as shown in Table 2. All fusion methods showed
lower errors than RPPG and RBCG. In addition, the errors of the PCA-based fusion method
were lower than one of other methods (MAE = 2.76, SDAE = 2.34, RMSE = 3.23, CC = 0.968).

Figure 7 shows the Bland-Altman plots of the heart rates estimated from the dataset
with facial expressions using RPPG, RBCG, and the proposed fusion methods. The mean
errors were 5.54 with 95% limits of agreement (LOA) in −6.39 to 17.48 (RPPG), −2.48 with
95% LOA in −8.56 to 3.59 (RBCG), 2.48 with 95% LOA in −4.59 to 9.55 (EA), 2.20 with
95% LOA in −4.04 to 8.45 (PCA), and 1.87 with 95% LOA in −4.12 to 7.86 (ICA). The heart
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rates estimated using the PCA-based fusion method showed the lowest mean difference
and variances.

Table 2. Estimation of heart rates from the dataset with facial expressions.

Methods MAE (bpm) SDAE (bpm) RMSE (bpm) CC (r)

RPPG 3.13 2.59 4.09 0.947 **
RBCG 3.94 4.07 5.71 0.920 **

Fusion (EA) 3.06 2.56 4.53 0.955 **
Fusion (PCA) 2.76 2.34 3.23 0.968 **
Fusion (ICA) 2.99 2.53 4.17 0.972 **

MAE, mean absolute error; SDAE, standard deviation of absolute error; RMSE, root mean square error; CC,
Pearson’s correlation coefficient. Two asterisk represents significant correlation levels at p-value < 0.01. The lowest
error and highest correlation values are bolded.

Figure 6. Bland-Altman plots of heart rates estimated from the normal dataset without illumination variance and motion
artifacts using interactions using (a) RPPG, (b) RBCG, (c) EA, (d) PCA, and (e) ICA. The lines are the mean errors and
95% LOA.

4.3. Experiment 3: Human Computer Interactions

Table 3 shows the estimation of heart rates from the dataset in human computer
interactions using RPPG, RBCG, and the proposed fusion methods. All fusion methods
showed lower errors than RPPG and RBCG. Unlike the other datasets, the EA-based fusion
method showed lowest errors in this dataset (MAE = 4.79, SDAE = 2.13, RMSE = 5.181,
CC = 0.629).

Figure 8 shows the Bland-Altman plots of the heart rates estimated from the dataset
in human computer interactions using RPPG, RBCG, and the proposed fusion methods.
The mean errors were 6.05 with 95% limits of agreement (LOA) in −9.71 to 21.81 (RPPG),
−12.35 with 95% LOA in −32.88 to 8.18 (RBCG), −0.09 with 95% LOA in −15.49 to 15.32
(EA), −0.49 with 95% LOA in −15.14 to 15.16 (PCA), and 0.25 with 95% LOA in −16.15
to 16.65 (ICA). The heart rates estimated using the EA-based fusion method showed the
lowest mean difference and variances.
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Table 3. Estimation of heart rates from the dataset in human computer interactions.

Methods MAE (bpm) SDAE (bpm) RMSE (bpm) CC (r)

RPPG 5.68 2.93 6.53 0.713 **
RBCG 14.06 6.75 15.86 0.051

Fusion (EA) 4.79 2.13 5.81 0.629 **
Fusion (PCA) 5.42 4.2.84 6.13 0.622 **
Fusion (ICA) 5.66 3.59 6.48 0.617 **

MAE, mean absolute error; SDAE, standard deviation of absolute error; RMSE, root mean square error; CC,
Pearson’s correlation coefficient. Two asterisk represents significant correlation levels at p-value < 0.01. The lowest
error and highest correlation values are bolded.

Figure 7. Bland-Altman plots of heart rates estimated from the dataset with facial ex-pressions interactions using (a) RPPG,
(b) RBCG, (c) EA, (d) PCA, and (e) ICA. The lines are the mean errors and 95% LOA.

Figure 8. Bland-Altman plots of heart rates estimated from the dataset in human computer interactions using (a) RPPG,
(b) RBCG, (c) EA, (d) PCA, and (e) ICA. The lines are the mean errors and 95% LOA.

37



Sensors 2021, 21, 6764

5. Discussion

In this study, the fusion method based on RPPG and RBCG was developed to enhance
the heart rate estimation using EA, PCA, and ICA. This study evaluated the proposed
method on three datasets according to illumination variance and motion artifacts as follows:
(1) normal, (2) facial expressions, and (3) human computer interactions. The proposed
method was more accurate than the previous RPPG and RBCG in all datasets. This result
indicated that with the advancement of fusion methods based on RPPG and RBCG, ECG
could eventually be replaced by remote sensing in daily life. Thus, this study strongly
encourages the fusion method based on RPPG and RBCG as a requirement to estimate
heart rate using a camera more accurately.

Overall, this study has drawn four significant findings. First, PCA and ICA were
better than EA in the datasets including less noise such as normal and facial expressions.
It indicated that the BSS algorithms can be improved if RPPG and RBCG are enhanced
by reducing the noise. On the other hand, EA was better than PCA and ICA in daily life
not yet.

Second, experiment 3 evaluated the proposed method and the previous RPPG and
RBCG in human computer interactions environment which is similar to daily life. As
shown in the Bland-Altman plots (Figure 7), the previous RPPG and RBCG estimated
the heart rate higher (LOA in −9.71 to 21.81) and lower (LOA in −32.88 to 8.18) than the
ground-truth (i.e., ECG), respectively. It indicated that RPPG has high frequency noise
whereas RBCG has low frequency noise. The illumination variance has high frequency
because it appears at a high rate that humans cannot perceive. On the other hand, the
motion artifacts have low frequency because they occur instantaneously and briefly. RPPG
and RBCG are sensitive to the illumination variance and motion artifacts, respectively, so
that the result is acceptable. Note that the proposed method reduced both illumination
variance and motion artifacts (LOA in −15.49 to 15.32) since it has low frequency and high
frequency noise evenly and little.

Third, this study showed significant results compared to other fusion methods. Par-
ticularly, Liu et al. [13] developed a fusion method, combined RPPG with BCG measured
using an additional motion sensor, and showed MAE of 6.20 bpm in motion state. Although
the measurement condition is different, our proposed method showed MAE of 4.79 bpm in
experiment 3 including illumination variance and motion artifacts. Note that it indicates
possibility of combining PPG and BCG with only a camera without an additional sensor.

Finally, this study presented the fusion method based on RPPG and RBCG to enhance
the heart rate estimation using a camera. Although it should be more improved, a novel
approach was developed for the possibility of practical use of remote sensing in daily life.
Many studies have been presented before, but it has not been developed as a product
for real users due to restrictions on the use environment. The product for real users
should be developed and tested to minimize the measurement burden and to improve the
use environment, so that it can be used in practical domains such as self-driving cars or
non-face-to-face communication.

6. Conclusions

This study developed a fusion method to estimate heart rate from facial videos based
on RPPG and RBCG. The proposed methods using EA, PCA, and ICA had compared them
with the previous RPPG and RBCG. As a result, the proposed methods showed enhanced
accuracy from three datasets according to illumination variance and motion artifacts.
The findings are a significant step toward ensuring the enhanced development of RPPG
and RBCG. This study is expected to contribute to enhanced heart rate measurement by
overcoming noise of illumination variance and motion artifacts and consequently improve
the possibility of applications of remote sensing in daily life.
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Abstract: This study evaluates cardiovascular and cerebral hemodynamics systems by only using
non-invasive electrocardiography (ECG) signals. The Massachusetts General Hospital/Marquette
Foundation (MGH/MF) and Cerebral Hemodynamic Autoregulatory Information System Database
(CHARIS DB) from the PhysioNet database are used for cardiovascular and cerebral hemodynamics,
respectively. For cardiovascular hemodynamics, the ECG is used for generating the arterial blood
pressure (ABP), central venous pressure (CVP), and pulmonary arterial pressure (PAP). Meanwhile,
for cerebral hemodynamics, the ECG is utilized for the intracranial pressure (ICP) generator. A
deep convolutional autoencoder system is applied for this study. The cross-validation method with
Pearson’s linear correlation (R), root mean squared error (RMSE), and mean absolute error (MAE)
are measured for the evaluations. Initially, the ECG is used to generate the cardiovascular waveform.
For the ABP system—the systolic blood pressure (SBP) and diastolic blood pressures (DBP)—the
R evaluations are 0.894 ± 0.004 and 0.881 ± 0.005, respectively. The MAE evaluations for SBP
and DBP are, respectively, 6.645 ± 0.353 mmHg and 3.210 ± 0.104 mmHg. Furthermore, for the
PAP system—the systolic and diastolic pressures—the R evaluations are 0.864 ± 0.003 mmHg and
0.817 ± 0.006 mmHg, respectively. The MAE evaluations for systolic and diastolic pressures are,
respectively, 3.847 ± 0.136 mmHg and 2.964 ± 0.181 mmHg. Meanwhile, the mean CVP evaluations
are 0.916 ± 0.001, 2.220 ± 0.039 mmHg, and 1.329 ± 0.036 mmHg, respectively, for R, RMSE, and
MAE. For the mean ICP evaluation in cerebral hemodynamics, the R and MAE evaluations are
0.914 ± 0.003 and 2.404 ± 0.043 mmHg, respectively. This study, as a proof of concept, concludes that
the non-invasive cardiovascular and cerebral hemodynamics systems can be potentially investigated
by only using the ECG signal.

Keywords: non-invasive system; hemodynamics; electrocardiography; arterial blood pressure; central
venous pressure; pulmonary arterial pressure; intracranial pressure; deep convolutional autoencoder

1. Introduction

In the intensive care unit (ICU), the most precise health monitoring system is utilized
to thoroughly observe the critically ill patients. Hemodynamics is the blood physical phe-
nomena in the circulatory system and a fundamental standard utilized in the ICU. Arterial
blood pressure (ABP), pulmonary arterial pressure (PAP), and central venous pressure
(CVP) are hemodynamics measures related to the cardiovascular system. Meanwhile, the
intracranial pressure (ICP) is applied pressure due to the fluid inside the skull, measured
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for the cerebral hemodynamics system evaluation. These measures are essential for the
patients in the ICU.

For the cardiovascular hemodynamics, CVP evaluation is fundamental for heart failure
patients. It is significant in measuring the cardiac preload and blood volume information.
However, the measurement requires the central venous catheter, which is highly invasive.
Meanwhile, another important investigation of cardiovascular hemodynamics is PAP,
which is the driven force given by the heart to pump the blood from the heart to the
lung. Elevated PAP is detected for pulmonary hypertension. This evaluation, similar
to CVP, is highly invasive through right heart catheterization. Further, ABP is the least
invasive system compared to CVP and PAP in the cardiovascular hemodynamics system.
For the cerebral hemodynamics, ICP is critical to the brain condition. The elevated ICP
can have a significant indication for traumatic brain injury (TBI), and hemorrhagic stroke
patients [1–3]. However, besides their benchmark accuracy, these evaluations are highly
invasive procedures and potentially lead to infection [4]. Therefore, these measurements
are not suitable for a monitoring system.

Recently, non-invasive technologies have been developed for the monitoring of the car-
diovascular and cerebral hemodynamics systems. Specifically, for the cardiovascular-based
hemodynamics, the utilization of artificial intelligence (AI) with photoplethysmography
(PPG) has been widely used for ABP evaluations non-invasively. A study was applied
to a single PPG signal with artificial neural networks (ANN) to predict ABP [5]. Fur-
thermore, electrocardiography (ECG) and PPG, with ANN and long short-term memory
(LSTM) methods were applied for the evaluations [6]. Backpropagation with a genetic
algorithm (GA) was also used for hemodynamics evaluation [7]. Meanwhile, another study
utilized ballistocardiography (BCG) and ECG alongside the PPG with convolutional neural
networks (CNN) and a gated recurrent units (GRU)-based technique [8]. Additionally,
other studies investigated the continuous arterial blood pressure evaluation based on the
single PPG signal using the LSTM network [9] and hybrid GA-based optimization with a
convolutional autoencoder [10]. However, even though the PPG provides a well-classified
result of the blood pressure estimation, the sensor is very sensitive to motion artifacts for
vertical movement and several typical activities [11,12].

Several previous studies have also been conducted for non-invasive CVP and PAP
measurements. An ultrasound-based system was developed for the non-invasive CVP
without central venous access [13]. In addition, a linear regression method by utilizing
ICU patient data was implemented for evaluating the CVP signal using echocardiography
with comparison to right heart catheterization [14]. Another study also performed a
linear regression method from heart failure patients. The patients were under right heart
catheterization for the CVP evaluation. The inferior vena cava utilizing echocardiography
was applied for the input signal. For the non-invasive PAP system, a study utilized
electrical impedance tomography of the input of the system [15]. This previous study
was initiated for healthy subjects. However, a single-lead ECG system is more suitable
compared to these methods for an intensive monitoring system.

For the cerebral hemodynamics, several previous studies were investigated. Most
of them used the ABP and cerebral blood flow velocity (CBFV). A study by Jaishankar
et al. [2] utilized ABP and CBFV as inputs for interpreting the ICP and the frequency-
based method was selected for the evaluation. Another study applying a Bayesian-based
approach was conducted by Imaduddin et al. [3] from the patients with TBI, hydrocephalus,
and hemorrhagic stroke, using ABP and CBFV signals in order to evaluate the ICP. The
utilization of ABP makes these previous studies less invasive, but not fully non-invasive.

In general, ECG is the more regularly used measurement to evaluate the cardiovascular
activities for a longer period. Most importantly, ECG is a non-invasive system. Furthermore,
it has been fundamentally applied for the physiological signal evaluation of arrhythmia [16],
anesthesia [17,18], and sleep-related evaluations [19–21].

Prior studies have investigated the interconnection between ECG alterations and
cardiovascular hemodynamics. It was an indication of increased P wave incidence from
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the ECG that correlates to hypertension [22]. The P wave also appeared later from the ECG,
especially when the diastolic blood pressure was greater than 120 mmHg in hypertensive
patients compared to the normal subjects. Another P wave phenomenon was also revealed.
A study depicted that the hypertensive patients have a wider P wave compared to the
normal subjects [23]. Furthermore, a higher T wave with extended PR intervals was also
seen on hypertensive patients [24]. In addition, ST segment depression [25] and higher QRS
amplitude also exhibited the information of hypertension [26]. Meanwhile, the ECG can be
potentially used for pulmonary hypertension evaluation [27,28]. Recently, a single ECG
signal has been utilized to investigate the hypertension system [29,30]. As it can be seen,
some previously conducted studies have morphologically enlightened some relationship
between cardiac electricity and blood pressure.

On the other hand, an ECG also shows several promising results when evaluating
the cerebrovascular hemodynamics. The brain–heart interaction studies revealed several
relationships between these associating signals. ECG abnormalities—increased corrected
QT (QTc) interval, much higher P wave amplitude, higher QRS amplitude, and longer ST
segment—appeared in patients with head injury compared to healthy subjects [31,32]. Fur-
thermore, another study also revealed that the more obvious the abnormalities, the more
deteriorated the consciousness level of the patients. Meanwhile, subarachnoid hemorrhage
condition (SAH) can be seen morphologically in T and R wave abnormalities [33]. Specifi-
cally, in head trauma, abnormalities are discovered from prolonged QTc [34]. Furthermore,
this previous study also depicted that the more severe SAH, the more prolonged QTc. For
intracranial investigation, morphologically, some changes appeared in the ECG—U wave,
T wave, ST-T segment, QT interval, J wave [35,36]. In addition, ECG is considered as the
secondary effect of traumatic brain injury (TBI) [37].

As previously mentioned, the evaluation of hemodynamics is significant, especially for
cardiovascular- and cerebral-related conditions. However, most of the precise procedures
are measured invasively. Therefore, the aim of this study is to generate cardiovascular and
cerebral hemodynamics monitoring systems non-invasively using the ECG signal and a
deep convolutional autoencoder system.

2. Materials and Methods

This study used two databases from PhysioNet [38]: Massachusetts General Hospi-
tal/Marquette Foundation (MGH/MF) Waveform Database [39] and Cerebral Hemody-
namic Autoregulatory Information System Database (CHARIS DB) [40]. For the hemo-
dynamics system, the shorter window size was evaluated, and the better prediction was
obtained. This compensates for the rapid change in some circumstances. However, the
ECG is unpractical to be analyzed in very short period. This is due to, for normal subjects,
the QRS cycle being sometimes not fully formed within a too short period. Therefore, the
2 s window of signal was selected for the input and output system. It was then combined
and randomly separated from all the patients for training and testing with no overlapping
selection.

A deep convolutional autoencoder (DCAE) system was used for the signal generation
model. The DCAE model is a modified model from the original U-Net model used in a
biomedical image generator segmentation system [41]. This modified model deploys a
multi-atrous U-Net based deep convolutional autoencoder (MA-UDCAE) system, which
was originally applied by [10]. Figures 1 and 2 show the MA-UDCAE model structures for
both cardiovascular and cerebral hemodynamics systems.

Figure 1 shows the convolutional autoencoder system applied to the cardiovascular
hemodynamics system. For the first half, the encoder system decreases the shape of the
layer. Meanwhile, the decoder increases the shape of the layer. This structure consists
of several layers: convolution layer (CV), down pooling layer (DP), up sampling layer
(UP), and merging layer (ME). Initially, the input of this system is the ECG. The next layer,
the first convolution layer (CV_01) with multi dilation is applied. The next layer of this
multi-dilation layer is merged into ME_01 followed by the down pooling (DP_01) layer. For
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the down pooling, this study utilizes the max pooling system. The second convolution layer
(CV_02) is used and merged into the ME_02 layer. Later, the ME_02 layer is down pooled
into DP_02. This block—the convolution layer, concatenation, and down pooling—is
replicated until the 4th layer. For the decoder, this system is identical to the encoder system.
However, the down sampling system is switched into the up sampling. Furthermore, the
U-Net based system is also applied into this system. A layer in encoder is merged with the
decoder layer. There are four merging layers: DP_03-ME_07, DP_02-ME_09, DP_01-ME_11,
and input layer ME_14. Finally, several convolution layers are applied before the output
layer, which has three channels: ABP, CVP, and PAP signals.

Figure 1. Cardiovascular hemodynamics MA-UDCAE model structure. Note: CV: convolution layer;
ME: merge layer; DP: down pooling layer; UP: up sampling layer.

Figure 2 shows the cerebral hemodynamics system, which is identical to Figure 1.
However, this figure has two merged layers. Furthermore, this system only has a single
output channel—intracranial pressure signal (ICP). Initially for the encoder, the ECG input
processed by the multi-altrous convolution system (CV_01), followed by the merging layer
(ME_01), and a down pooling layer (DP_01). The next block is identical—the convolutional
layer is followed by the concatenating layer and down pooling layer. For the decoder block,
the first up sampling layer (UP_01) is also processed by the convolutional layer (CV_04)
and concatenating layer (ME_04). Moreover, in this decoder system, the ME_02 is merged
with ME_04 to form the ME_05 layer, similar to ME_07 by combining between ME_01 and
ME_06 layers. Finally, the last layer is the ICP waveform.
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Figure 2. Cerebral hemodynamics MA-UDCAE model structure. Note: CV: convolution layer; ME:
merge layer; DP: down pooling layer; UP: up sampling layer.

Initially, the Massachusetts General Hospital/Marquette Foundation (MGH/MF)
Waveform Database was used for the cardiovascular hemodynamics system. It contains
several physiological signals: ECG, ABP, CVP, and PAP. This system was uniformly sampled
for 360 Hz. From this database, this study uses only the lead II ECG signal, as the input
signal, to initially generate the waveforms of ABP, CVP, and PAP, as the outputs. The
utilization of the lead II ECG signal is due to this lead being mostly utilized in ECG record
consideration [42]. Furthermore, the systolic and diastolic pressures of ABP and PAP were
calculated by taking the maximum and minimum values, respectively, from the signal.
Meanwhile, the mean CVP value was taken from averaging the 2 s CVP waveform. There
were 59,401 and 14,850 of 2 sec segments, respectively, for training and testing.

Furthermore, the Cerebral Hemodynamic Autoregulatory Information System Database
(CHARIS DB) was used for the intracranial pressure (ICP) evaluation. This database was
sampled for 50 Hz. The input signal was the ECG signal, meanwhile the output signal
was the ICP signal. A 2 s window was also selected, both for the input and output sys-
tems. Furthermore, there were 1,451,281 and 362,560 of 2 sec segments, respectively, for
training and testing. Even though this database contains smaller number of patients, the
data collection was much longer compared to the dataset utilized for the cardiovascular
hemodynamics system.

For pre-processing the data and post-processing the result, MATLAB R2014b (Math-
Works, Inc., Natick, MA, USA) was utilized. The data were initially filtered manually
by visualization. The input and output signal must be appropriate for the training and
testing. If either the input or output signal is noisy, both will be deleted. For training the
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deep convolutional autoencoder system, Python 3.6 was utilized with TensorFlow (Ver.
1.15.2) [43] and Keras (Ver. 2.3.1) under Google Colaboratory (Google Inc., 1600 Amphithe-
atre Parkway Mountain View, CA, USA). In more detail, the training of both cardiovascular
and cerebral hemodynamics systems were conducted with the checkpoint system.

For the evaluation, a 5-fold cross-validation was performed with shuffled training
data. Generally, this strategy is performed to evaluate the regularity of the data to the
model. Furthermore, Pearson’s linear correlation (R), root mean squared error (RMSE), and
mean absolute error (MAE) evaluations were conducted. Furthermore, the Bland–Altman
plot was conducted for the further evaluation. R, RMSE, and MAE evaluations are shown
in Equations (1)–(3).

Rx,y =
∑n

i=1(xi − x)(yi − y)√[
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

] (1)

MAE =
1
n

n

∑
i=1

|xi − yi| (2)

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (3)

where xi is the reference, yi is the predicted result, n is the number of samples, x is the
mean of the reference, and y is the mean of the predicted result.

3. Results

The multi-atrous deep convolutional autoencoder models were applied to both cardio-
vascular and cerebral hemodynamics systems using a single ECG signal. Pearson’s linear
correlation, root mean squared error, and mean absolute error evaluations were deployed
as performance indicators. Finally, a Bland-Altman plot was conducted to investigate the
performance of the deep learning for both cardiovascular and cerebral hemodynamics
models. The models initially generated the hemodynamics waveform. This waveform gen-
erating system is fundamental due to it accommodating the morphological cardiovascular
conditions [44]. Finally, from the generated waveform, the systolic, diastolic, or the mean
values were extracted.

3.1. Cardiovascular Hemodynamics

The Massachusetts General Hospital/Marquette Foundation (MGH/MF) Waveform
Database was used for this cardiovascular hemodynamics system. The ECG was used
to generate the ABP, CVP, and PAP signals. The model was trained for 500 epochs, as
shown in Figure 3. As it can be seen, the model starts to saturate at 400 epochs. The
training and validation curves are relatively stable. The 5-fold cross-validation results
show 0.942 ± 0.001, 7.833 ± 0.061 mmHg, and 4.959 ± 0.044 mmHg, respectively, for the R,
RMSE, and MAE of ABP waveform evaluations. Furthermore, the CVP evaluation records
are: 0.852 ± 0.002, 3.155 ± 0.018 mmHg, 2.024 ± 0.020 mmHg for R, RMSE, and MAE,
respectively. Finally, for the PAP waveform evaluation, the evaluations of R, RMSE, and
MAE are 0.873 ± 0.002, 4.853 ± 0.031 mmHg, and 3.263 ± 0.034 mmHg. The detail about
the waveform evaluations is given in Table 1.

Furthermore, the systolic and diastolic pressures were calculated for the ABP and
PAP. Meanwhile, the mean CVP value was also predicted from the waveform. For the
ABP system, the systolic and diastolic pressures, the R evaluations are 0.894 ± 0.004
and 0.881 ± 0.005, respectively. The RMSE evaluations are 8.997 ± 0.401 mmHg and
4.726 ± 0.129 mmHg, respectively. The MSE evaluations are, respectively, 6.645 ± 0.353 mmHg
and 3.210 ± 0.104 mmHg. Furthermore, for the PAP system, the systolic and diastolic
pressures, the R evaluations are 0.864 ± 0.003 mmHg and 0.817 ± 0.006 mmHg, respectively.
The RMSE evaluations are 5.833 ± 0.075 mmHg and 4.360 ± 0.179 mmHg, respectively.
The MSE evaluations are 3.847 ± 0.136 mmHg and 2.964 ± 0.181 mmHg, respectively.
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Meanwhile, the mean CVP evaluations are 0.916 ± 0.001, 2.220 ± 0.039 mmHg, and
1.329 ± 0.036 mmHg for R, RMSE, and MSE, respectively. The details about these evalua-
tions are shown in Tables 2–4.

Figure 3. MA-UDCAE model convergence for cardiovascular hemodynamics.

Table 1. Waveform evaluations of cardiovascular hemodynamics.

CV
ABP CVP PAP

R RMSE (mmHg) MAE (mmHg) R RMSE (mmHg) MAE (mmHg) R RMSE (mmHg) MAE (mmHg)

1 0.941 7.874 4.950 0.850 3.168 2.032 0.871 4.863 3.270
2 0.942 7.915 5.036 0.854 3.124 1.994 0.874 4.805 3.207
3 0.941 7.819 4.927 0.851 3.156 2.015 0.872 4.863 3.262
4 0.942 7.797 4.938 0.852 3.165 2.045 0.872 4.888 3.295
5 0.943 7.761 4.945 0.855 3.162 2.032 0.875 4.847 3.281

Mean 0.942 7.833 4.959 0.852 3.155 2.024 0.873 4.853 3.263
STD 0.001 0.061 0.044 0.002 0.018 0.020 0.002 0.031 0.034

Table 2. Systolic and diastolic arterial blood pressure evaluations.

CV

Arterial Blood Pressure

R RMSE (mmHg) MAE (mmHg)

SBP DBP SBP DBP SBP DBP

1 0.890 0.875 8.980 4.906 6.517 3.344
2 0.894 0.884 9.640 4.575 7.260 3.093
3 0.892 0.878 8.926 4.782 6.593 3.217
4 0.895 0.881 8.905 4.638 6.482 3.123
5 0.900 0.888 8.534 4.730 6.371 3.272

Mean 0.894 0.881 8.997 4.726 6.645 3.210
STD 0.004 0.005 0.401 0.129 0.353 0.104

Table 3. Mean central venous pressures.

CV
Central Venous Pressure

R RMSE (mmHg) MAE (mmHg)

1 0.916 2.232 1.332
2 0.918 2.156 1.277
3 0.915 2.219 1.312
4 0.916 2.228 1.369
5 0.917 2.264 1.353

Mean 0.916 2.220 1.329
STD 0.001 0.039 0.036
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Table 4. Systolic and diastolic pulmonary arterial pressure evaluations.

CV

Pulmonary Arterial Pressure

R RMSE (mmHg) MAE (mmHg)

SBP DBP SBP DBP SBP DBP

1 0.859 0.818 5.864 4.295 3.863 2.892
2 0.864 0.813 5.769 4.457 3.766 3.042
3 0.863 0.810 5.819 4.329 3.817 2.938
4 0.864 0.817 5.766 4.598 3.717 3.218
5 0.868 0.827 5.947 4.122 4.070 2.730

Mean 0.864 0.817 5.833 4.360 3.847 2.964
STD 0.003 0.006 0.075 0.179 0.136 0.181

The waveform evaluation result is shown in Figure 4. This figure also investigates
the information of systolic, diastolic, and mean pressures from ABP, CVP, and PAP. Most
importantly, the ability of MA-UDCAE deals with several conditions of the ECG, ABP, CVP,
and PAP signals within two seconds and is also given in this figure. From Figure 4a, it can
be seen how a relatively normal heartbeat generates normal ABP, CVP, and PAP signals.
From this figure, the model predicts accurate systolic, diastolic, and mean values. In
Figure 4b, ECG has a higher heart rate. In this case, the subject has very low ABP infor-
mation, high CVP, and high PAP measures. A high error is given from the systolic ABP
in the last period of the CVP waveform. However, the PAP is relatively good. Normal
heart rate ECG is given in Figure 4c. However, this subject has relatively high systolic ABP,
and relatively high CVP and PAP. Furthermore, Figure 4d shows relatively higher ECG
heartbeat for generating normal ABP, normal CVP, and high PAP. It can be seen that the
systolic PAP has a relatively high error.

Figure 4. MA-UDCAE-generated waveforms of ABP, CVP, and PAP: (a) Normal ECG with nor-
mal hemodynamics; (b) Fast ECG with abnormal hemodynamics; (c) Slow ECG with abnormal
hemodynamics; (d) Normal ECG with abnormal hemodynamics. Note: Systolic reference (Sr); dias-
tolic reference (Dr); systolic prediction (Sp); diastolic prediction (Dp); mean reference (Mr); mean
prediction (Mp).
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Finally, the Pearson’s linear correlation and Bland–Altman plot are given in Figures 5 and 6.
Figure 5 shows the Pearson’s linear correlation result. It can be seen that the correlation
coefficient of systolic ABP and diastolic ABP are 0.89 and 0.86, respectively. Meanwhile,
the SPAP and DPAP are, respectively, 0.86 and 0.81. Finally, the mean CVP is 0.92. Figure 6
shows the Bland–Altman plot for the cardiovascular hemodynamics system. For systolic
ABP, the reference and prediction have the mean difference of −4.182 mmHg, −1.96 STD
of −21.268 mmHg, and +1.96 STD of 12.904. For the diastolic ABP, it has a mean difference
of 0.202 mmHg, −1.96 STD of −9.987 mmHg, and +1.96 STD of 10.391. Furthermore,
for the systolic PAP, the mean difference is 0.668 mmHg, −1.96 STD of −10.563 mmHg,
and +1.96 STD of 11.899 mmHg. For diastolic PAP, the mean difference is −1.827 mmHg,
−1.96 STD of 6.140 mmHg, and +1.96 STD of −9.794 mmHg. Finally, the mean CVP has
mean difference of −0.121 mmHg, −1.96 STD of 4.099, and +1.96 STD of −4.341 mmHg.
The graphs show some negative values appearing in the prediction. This situation likely
happens due to the complexity of patient monitoring, and the method for selecting the
systolic and diastolic peaks using maximum and minimum values.

Figure 5. Pearson’s linear correlation coefficient results. Note: Red dotted line is the diagonal line.
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Figure 6. Bland–Altmann plots for cardiovascular hemodynamics system. Note: Red line is the mean,
and dash-dot lines are ±1.96 standard deviations.

3.2. Intracranial Pressure

For the intracranial pressure evaluation, the Cerebral Hemodynamic Autoregulatory
Information System Database (CHARIS DB) was utilized. The MA-UDCAE model was
also applied for the ECG signal to understand the ICP pattern. For the evaluation of the
deep learning system from the ECG to ICP, the MA-UDCAE model was applied. This
system was conducted for 20 epochs. The mean absolute error was used for the evaluation.
The ICP training convergence is shown in Figure 7.

After the training season, the testing data were subsequently evaluated into the trained
model. Some of the ECG-generated ICP waveforms can be seen in Figure 8. These results
are selected based on the variation of the reference ICP. From this figure, it can be seen that
the model is not only reasonably robust in handling the data that has either a relatively
low or high ICP index, but also gives some information on how the model decodes the
ICP waveform.
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Figure 7. The MA-UDCAE model convergence for intracranial pressure.

Figure 8. MA-UDCAE-generated waveform of ICP. Note: Mean reference (Mr); mean predic-
tion (Mp).
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Furthermore, in more detail, for the intracranial pressure waveform evaluations, the
cross-validation results generate 0.887 ± 0.003, 5.306 ± 0.041 mmHg, and 2.765 ± 0.026 mmHg,
respectively, for R, RMSE, and MAE. For the mean ICP evaluation, the R, RMSE and MAE
evaluations are 0.914 ± 0.003, 4.582 ± 0.044 mmHg, and 2.404 ± 0.043 mmHg, as shown in
Table 5. The intracranial evaluations for Pearson’s linear correlation and Bland–Altman are
shown in Figure 9. Pearson’s linear correlation for the ICP is 0.89, as given in Figure 9a.
From this figure, it can be seen that the model likely starts to generate a bigger error when
dealing with an ICP higher than 30 mmHg. In addition, Figure 9b shows the Bland–Altman
plot for ICP evaluations. Results in Figure 9b support Pearson’s linear correlation. As it can
be seen, the mean difference is 0.492 mmHg, −1.96 STD of −8.32 mmHg, and +1.96 STD of
9.310 mmHg. Even though it has relatively low prediction error, the model gives lower
accuracy on higher ICP measures. The entire ICP evaluation is shown in Table 5, indicating
that all evaluations of R, MAE, and RMSE have fairly low standard deviation values.
However, some negative values can be seen appearing in the prediction. This situation
likely happens due to the complexity of the patient data.

Table 5. Intracranial pressure evaluations.

CV
R RMSE (mmHg) MAE (mmHg)

Waveform Mean Waveform Mean Waveform Mean

1 0.890 0.917 5.330 4.592 2.786 2.435
2 0.884 0.912 5.342 4.603 2.762 2.398
3 0.885 0.910 5.333 4.637 2.758 2.393
4 0.888 0.914 5.254 4.550 2.792 2.453
5 0.889 0.915 5.269 4.526 2.726 2.343

Mean 0.887 0.914 5.306 4.582 2.765 2.404
STD 0.003 0.003 0.041 0.044 0.026 0.043

 

(a) (b) 

Figure 9. Intracranial pressure evaluations: (a) Pearson’s linear correlation result for intracranial pressure evaluation. Note:
Red dotted line is the diagonal line; (b) Bland–Altmann plot for intracranial pressure evaluation. Note: Red line is the mean,
and dash-dot lines are for ±1.96 standard deviations.
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4. Discussion

The novelty in this study is the utilization of a non-invasive ECG signal to investigate
cardiovascular and cerebral hemodynamics. Initially, the models generated the cardiovas-
cular hemodynamics ABP, PAP, and CVP from MGHDB. This study used two databases
from PhysioNet: Massachusetts General Hospital/Marquette Foundation (MGH/MF)
Waveform Database and Cerebral Hemodynamic Autoregulatory Information System
Database (CHARIS DB). The MA-UDCAE deep learning model was deployed for model-
ing these systems.

Most of the previously conducted studies as shown in Table 6 utilized PPG signal as an
input of the model. Slapničar et al. [45] used PPG signal of 510 subjects of MIMIC III from a
PhysioNet and ResNet-based model to investigate hypertension. This previous study had
a MAE of 9.43 mmHg and 6.88 mmHg, respectively, for SBP and DBP. Chowdhury et al.
administered the PPG signal of 126 subjects and a regression model. Their results achieved
a correlation coefficient of 0.95 and 0.96, respectively, for SBP and DBP, and MAE of SBP
and DBP are, respectively, 3.02 mmHg and 1.74 mmHg [46]. Meanwhile, Zadi et al. [47]
applied the ARMA algorithm to PPG signals from 15 subjects. They achieved an RMSE of
7.21 mmHg and 5.12 mmHg for SBP and DBP, respectively. However, none of these studies
provides information about the continuous waveform evaluation.

Table 6. Cardiovascular hemodynamics evaluations. Note: RMSE and MAE are in mmHg.

Studies Dataset
Input
Signal

Cont. ABP Method Perf. Eval. Waveform SBP DBP

Tanveer et al.
[6]

39 subjects, MIMIC,
PhysioNet ECG + PPG No ANN + LSTM

RMSE N/A 1.26 0.73
MAE N/A 0.93 0.52

R N/A 0.999 0.998

Wu et al. [7] 27 subjects ECG + PPG No RMSE N/A 3.404 3.289

Eom et al. [8] 15 subjects ECG + PPG
+ BCG No CNN + Bi-GRU +

Attention
MAE N/A 4.06 ± 4.04 3.33 ± 3.42

R2 N/A 0.52 0.49

Sideris et al.
[9]

42 subjects, MIMIC,
PhysioNet PPG Yes LSTM

RMSE 6.04 ± 3.26 2.58 ± 1.23 1.98 ± 1.06
R 0.95 ± 0.05 N/A N/A

Sadrawi et al.
[10]

18 Patients, NTUH,
Taiwan PPG Yes GDCAE

RMSE 3.46 3.41 2.14
MAE 2.33 2.54 1.48

R 0.984 0.981 0.979

Fan et al. [30]
MIMIC II,
PhysioNet ECG No BiLSTM + FCN

RMSE N/A 12.3 6.88
MAE N/A 7.69 4.36

Slapničar et al.
[45]

510 subjects, MIMIC
III, PhysioNet PPG No Spectro

temporal ResNet MAE N/A 9.43 6.88

Chowdhury
et al. [46]

222 records, 126
subjects PPG No

Gaussian process
regression

RMSE N/A 6.74 3.59
MAE N/A 3.02 1.74

R N/A 0.95 0.96
MSE N/A 45.49 12.89

Aguirre et al.
[48]

1131 subjects,
MIMIC, PhysioNet PPG Yes Seq2seq +

Attention

RMSE 8.67 15.96 7.4
MAE 7.39 12.08 5.56

R 0.98 N/A N/A
R2 N/A 0.39 0.41

Zadi et al. [47] 15 subjects PPG No ARMA RMSE N/A 7.21 5.12

Proposed
250 subjects,
MGH/MF,
PhysioNet

ECG Yes MA-UDCAE
RMSE 7.83 ± 0.06 8.99 ± 0.40 4.73 ± 0.13
MAE 4.95 ± 0.04 6.64 ± 0.35 3.21 ± 0.10

R 0.94 ± 0.00 0.89 ± 0.00 0.88 ± 0.01

Several previous studies, shown in Table 6, have utilized PPG signal as their input,
and investigated the waveform evaluation. Sideris et al. [9] performed evaluation of con-
tinuous blood pressure using PPG signals with the LSTM method, delivering an RMSE
of 6.04 ± 3.26 mmHg, 2.58 ± 1.23 mmHg, and 1.98 ± 1.06 mmHg, respectively, on SBP
and DBP evaluations, and a waveform correlation coefficient of 0.95 ± 0.045. Meanwhile,
Sadrawi et al. [10] utilized PPG for arterial blood pressure estimation, reporting 0.984 lin-
ear correlation and MAEs of 2.54 mmHg and 1.48 mmHg for the systolic and diastolic,
respectively. Furthermore, Aguirre et al. [48] utilized PPG signal of 1131 subjects from
the PhysioNet database using the Seq2seq algorithm to evaluate the hemodynamics. This
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study also investigated the arterial blood pressure waveform. The generated waveform
had a correlation coefficient of 0.98. Meanwhile, the MAE of systolic and diastolic were
12.08 mmHg and 5.56 mmHg, respectively [48].

On the other hand, prior studies as shown in Table 6 also correlated ECG signal
with blood pressure estimation. Tanveer et al. [6] used a combination of ECG and PPG,
utilizing ANN and LSTM. This study reported 0.93 mmHg and 0.52 mmHg for SBP and
DBP, respectively, on the MAE estimations. This earlier study has very high correlation
coefficients, 0.999 and 0.998, respectively, for the SBP and DBP. Another study by Wu
et al. [7] also used ECG and PPG with the hybrid ANN method, and produced 3.404 mmHg
and 3.289 mmHg, respectively, for SBP and DBP. Meanwhile, a study by Eom et al. [8]
conducted an investigation of multiple input signals, ECG, PPG, and BCG, combined
with CNN, Bi-GRU, and attention methods. This previous study produced an MAE of
4.06 ± 4.04 and 3.33 ± 3.42, respectively, for SBP and DBP evaluations. Meanwhile, it had
0.52 and 0.49 for the R2 evaluations for the SBP and DBP, respectively. The study that only
used the ECG signal to investigate hypertension was conducted by Fan et al. [23]. This
previously conducted study reported the MAE for the systolic and diastolic as 7.69 and
4.36 mmHg, respectively.

For a comparison of intracranial pressure evaluation, this study is compared to several
sub-studies, given in Table 7. These previously conducted works were undertaken by
utilizing the ABP and cerebral blood flow velocity (CBFV). Imaduddin et al. [3] used these
signals to estimate the ICP from 13 patients with the Bayesian system. This previous study
provided an RMSE of 3.7 mmHg. Another study conducted by Jaishankar et al. [4] had
RMSEs of 5.1 mmHg and 4.5 mmHg, respectively, for 13 pediatric and 5 adult subjects. This
prior study utilized the spectral method. Even though the CBFV is a non-invasive system,
the ABP is classified as an invasive technique. This study reported 4.582 ± 0.044 mmHg
RMSE from five cross-validation systems. This result is slightly inferior compared to the
previously compared study. However, the novelty of this study is the utilization of the
non-invasive ECG signal as the input signal to generate the ICP waveform with further
evaluation of the mean ICP.

Table 7. Intracranial pressure evaluations. Note: RMSE and MAE are in mmHg.

Studies Dataset Input Signal Method Performance Evaluation Mean ICP (mmHg)

Imaduddin et al. [3] 13 subjects ABP + CBFV Bayesian
model RMSE 3.7

Jaishankar et al. [4]
13 pediatric

subjects ABP + CBFV
Spectral

approach RMSE
5.1

5 adult subjects 4.5

Proposed
13 subjects,
CHARISD,
PhysioNet

ECG MAUDCAE
RMSE 4.582 ± 0.044
MAE 2.404 ± 0.043

R 0.914 ± 0.003

The association between ECG and hemodynamics is related to the fact that ECG and
ABP have a very close relationship in time-related terms, especially in the evaluation of
the heart-related system. This may have some similarity in CVP, PAP, and ICP due to
the blood circulation. Furthermore, the systolic peak and the R peak intervals are shifted
in some transmitting time. However, more investigation is required to be performed
morphologically for the full cycle between the ECG and cardiovascular and cerebral
hemodynamics signals, especially for CVP and ICP.

In order to evaluate the network performance, an ablation study was performed. The
autoencoder structure was utilized based on [10]. From this previous study, specifically for
hemodynamics, the UNET-based model provided a better result compared to the classical
autoencoder network. Hence, based on reference [10], the structure was modified by
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utilizing the multi-atrous system. For simplification, this study investigates the results only
at 25 and 5 epochs, respectively, for the cardiovascular and cerebral hemodynamics systems.

The ablation network evaluation was also conducted in our study, given in Figure 10. For
the cardiovascular system, the ablated network convergence is shown in Figure 10a. Several
ablations were conducted. The decreased layers are sequentially the layer connections
between DP_04 and CV_05, DP_03 and CV_06, DP_02 and CV_07, DP_01 and CV_08, and
the input layer and CV_09. From this figure, it can be seen that the first ablated layer
attaching between DP_03 and CV_06 tends to have a faster convergence rate compared to
others. However, the results are relatively similar at the 25th epoch. For testing, the deleted
connection systems tend to have some oscillation during this early period compared to the
non-ablated networks.

 

(a) (b) 

Figure 10. Ablation network: (a) cardiovascular hemodynamics; (b) cerebral hemodynamics.

The cerebral hemodynamics ablation study was conducted by removing the concate-
nating layers. The first deleted layer is the connection between ME_02 and CV_04. The
next one is between ME_01 and CV_05. The results are shown in Figure 10b, where in the
training phase, most of the cross-validation models without ablation have relatively lower
MAE values at the 5th epoch compared to the ablated models. In this system, the deleted
connection models tend to saturate earlier compared to the system without any ablated
connection. Furthermore, the ablated networks also have a slower convergence rate at
the testing.

This study has several limitations due to the selection of systolic and diastolic tech-
niques being sensitive to noise. In more detail, the noise has a positive effect on the systolic
and a negative effect on the diastolic pressure. This phenomenon will generate higher error
during the evaluation.

Due to the data limitations, one of the main limitations of this study is the testing data
separated randomly from all patients instead of patient-based partition. Even though the
data were not fully interpreted, this strategy will let the model learn and memorize some
patterns of the output through the input. Another limitation is the high dependency on the
quality of the ECG signal. The mitigations of the dataset unbalancing can be investigated
further [49] and other deep learning structures can be applied in future [50–52].
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There are also concerns regarding the evaluations of arrhythmia conditions. In this
study, some of the arrhythmia ECG factors affecting the cardiovascular and cerebral hemo-
dynamics systems have been investigated. In addition, the cardiovascular hemodynamics
dataset was well annotated for some arrhythmia conditions. However, for the cerebral
hemodynamics, the heartbeat in the dataset was not labeled. Nevertheless, it is still possible
for the rapid and irregular beats to be investigated. The premature ventricular contraction
(PVC) and supraventricular premature/ectopic beats were evaluated. Figure 11 shows
how arrhythmia affects the cardiovascular hemodynamics. It can be seen that most of the
abnormal ECG signals are relatively good in generating the ABP. However, there are some
shifts in the SBP and DBP, as shown in Figure 11a,f. Bigger differences are shown for CVP
and PAP signals. The generated ICP from the abnormal ECG is shown in Figure 12. From
Figure 12a,b, the R-R interval irregularity has a worse effect on the ICP prediction com-
pared to the arrhythmia generated from the rapid R interval. However, deeper evaluation
with many more additional arrhythmia cases to investigate the effect of arrhythmia on the
hemodynamics should be performed in the future.

Figure 11. Arrhythmic ECG predictions for cardiovascular hemodynamics. (a) rapid R waves with
premature beat; (b) rapid heart rate with downward R waves; (c) Slow heart rate with relatively
small downward R wave; (d) Slow heart rate with bigger downward R wave; (e) Rapid upward R
wave with irregular interval; (f) Rapid heart rate with multiple downward R wave.
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Figure 12. Arrhythmic ECG evaluations for the intracranial pressure. (a) Irregular interval heart rate;
(b) Irregular and rapid heart rate; (c) Rapid heart rate with downward shifted R waves; (d) Rapid
heart rate.

Since this study is preliminary and a proof of concept, it may not provide superior
results compared to previous studies that used multi-input signals such as the combination
of PPG and ECG, in which the shape of the PPG signal is much more identical to ABP
signal compared to the ECG and ABP signal. However, as with preliminary and proof of
concept studies, this study can be a finding of using the ECG in hemodynamics investi-
gations. Finally, the cross-validation test using the same group of subjects in our current
study was inner loop cross-validation, which only rotates the validation data and training
data. However, to make the results more convincing, the testing data need to be rotated
into training and validation, which is known as outer loop cross-validation, and is to be
considered in future works. In addition, the pre-processing of the data was initially filtered
manually by visualization. This manual filter may not be practical for the study. We still
need further investigation about using automatic filtering to filter all these vital signs for
future work.

5. Conclusions

In order to design the most precise health monitoring system to solve the hemodynam-
ics system in ICU, in this study, as a proof of concept, a deep convolutional autoencoder
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system has been implemented for a non-invasive system by only using a single ECG sig-
nal and utilizing two databases for cardiovascular and cerebrovascular hemodynamics
systems. For the preliminary result, it can be seen that ECG has great potential in generat-
ing the ABP, CVP, PAP, and ICP waveform, as well as their essential information for the
extensive evaluations.
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Abstract: Myocardial infarction (MI) is one of the most prevalent cardiovascular diseases worldwide
and most patients suffer from MI without awareness. Therefore, early diagnosis and timely treatment
are crucial to guarantee the life safety of MI patients. Most wearable monitoring devices only provide
single-lead electrocardiography (ECG), which represents a major limitation for their applicability in
diagnosis of MI. Incorporating the derived vectorcardiography (VCG) techniques can help monitor
the three-dimensional electrical activities of human hearts. This study presents a patient-specific
reconstruction method based on long short-term memory (LSTM) network to exploit both intra- and
inter-lead correlations of ECG signals. MI-induced changes in the morphological and temporal wave
features are extracted from the derived VCG using spline approximation. After the feature extraction,
a classifier based on multilayer perceptron network is used for MI classification. Experiments on
PTB diagnostic database demonstrate that the proposed system achieved satisfactory performance to
differentiating MI patients from healthy subjects and to localizing the infarcted area.

Keywords: electrocardiography; vectorcardiography; myocardial infarction; long short-term memory;
spline; multilayer perceptron

1. Introduction

Myocardial infarction (MI) has long been recognized as the main cause of death worldwide.
According to the data from the World Health Organization (WHO) [1], cardiovascular diseases,
including MI, were estimated to account for 31% of deaths worldwide in 2017. In the United States,
about 110,000 Americans died of MI in 2015 and the estimated annual incidence of MI is 605,000
new attacks [2]. MI results from an occlusion of the coronary artery and insufficient blood supply
to the myocardium. It can be further classified into various subtypes depending on the localization
of infarcted area. In clinical setting, MI is diagnosed using 12-lead electrocardiography (ECG) [3] as
well as 3-lead vectorcardiography (VCG) [4]. ECG signals are recorded from different locations of
the body to capture the three-dimensional view of the human heart. The standard ECG has 12 leads,
including six limb leads (I, II, III, aVR, aVL, aVF) and six chest leads (V1 to V6). Figure 1 shows the
three-dimensional view of 12 standard leads on the xyz-coordinate axis system. According to electrode
positioning, the 12 ECG leads can be used to localize different types of MI, such as inferior leads
(II, III, aVF), septal leads (V1, V2), anterior leads (V3, V4), and lateral leads (I, aVL, V5, V6). A typical
waveform of the ECG beat consists of a P wave, a QRS-complex, and a T wave. These characteristic
waves correspond to the sequence of depolarization and repolarization of the atria and ventricles.
ECG signs suggestive of MI include ST-segment deviation or changes in the shapes of Q-wave and
T-wave, using which physicians can localize damage to specific areas of the heart. However, it may be
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noted that 12-lead ECG requires ten electrodes for recording and some of the leads contain redundant
information. Instead, VCG requires a minimum of four electrodes and it monitors cardiac electrical
activity in three orthogonal planes of the body [5]. Generally, Frank leads (Vx, Vy, Vz) scanned in
orthogonal xyz axes are used for VCG measurements. The main advantage of VCG is that it uses fewer
leads than 12-lead ECG for medical diagnostic applications. Moreover, different studies [6–8] have
demonstrated that VCG provides a higher sensitivity for the diagnosis of MI as well as ischemic heart
diseases. In this study, VCG signal is processed to extract clinically significant features that will allow
for MI classification.

Figure 1. The three-dimensional view of 12 ECG leads on the xyz-coordinate axis system.

MI is also known as a silent heart attack that usually occurs without clear symptoms.
Hence, early diagnosis and timely treatment are crucial to improve the recovery rate of MI patients.
In recent years, several computer-aided diagnostic methods have been proposed for automatic
MI detection and localization [9–18]. Most of these approaches extract the clinically significant
features from the ECG signal and then apply an appropriate classifier in the classification stage.
Various informative features have been extracted to represent the ECG beats, such as morphological
features [10] as well as frequency and wavelet-based features [11,12]. Moreover, some studies have
attempted to use directly measured or derived VCG to identify changes in the VCG morphology such
as the QRS and T-wave loops [16–18]. For classification, different machine learning algorithms
have been investigated, including k-nearest neighbors (KNN) [10,12], artificial neural network
(ANN) [11], recurrent neural network (RNN) [13] and convolutional neural network (CNN) [14,15].
Furthermore, several researchers [13–15] have proposed end-to-end approaches for MI detection and
localization. These methods obviate the need to extract features at the cost of higher computational
complexity. ECG abnormalities due to MI may be observed in the ST-segment deviation or changes in
the shapes of T-wave and Q-wave. Generally, it is a prerequisite to identify characteristic waves of
ECG beats before performing the feature extraction. Although various methods have been proposed
for ECG wave delineation [19–22], they still have some limitations for characterization of MI beats.
To address this constraint, we apply spline curve fitting [23,24] to the entire heartbeat to model all of the
characteristic waves and use fitted coefficients as features. The advantage of using the entire heartbeat
is that the QRS complexes and P and T waves can be included in the curve fitting so that poor quality
features resulting from delineation errors can be avoided. Moreover, the VCG signal is semiperiodic in
nature and has numerous clinically relevant turning points in each heartbeat. Such signals require
a higher-order polynomial to fit, leading to severe oscillations of the fitted curve which cause the
overfitting problem [25]. By contrast, the spline’s flexibility in approximating curves with different
degrees of smoothness at different locations is ideal for representing the semiperiodic VCG signal.
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Another problem which requires further investigation is to test the feasibility of single-lead ECG
in classifying different types of MI. Several wearable devices which use single-lead ECG to facilitate
continuous ambulatory monitoring have recently appeared on the market [26]. While these devices
make regular ECG recording possible, their practical applicability for cardiac diagnostics remain
limited. This is because physicians need checking ECG patterns to diagnose by correlating information
from two or more ECG leads. For example, abnormalities in chest leads (V1 to V4) are suggestive of a
problem in the posterior wall of the heart and no abnormalities will be detected by a single lead [27].
The ability to transform from single-lead ECG to 12-lead ECG enables the wider use of wearable
devices for clinical diagnostic applications. However, prior attempts to synthesize 12-lead ECG or
3-lead VCG from a single lead have not been successful. Most existing lead transformation approaches
require at least two synchronously acquired leads [28–40], hampering their applicability to the present
context. This has motivated our investigation into trying to synthesize the 3-lead VCG from single-lead
ECG signal. Since lead I is provided by most wearable devices, we propose a derived VCG system by
considering the lead I ECG signal as input and three Frank leads as output of the system.

A lot of emphases have been recently put on derived ECG systems due to the increasing demand
of personalized healthcare applications. The methods of lead synthesis can be categorized in terms
of reconstruction algorithms and lead configuration. The lead configuration for ECG synthesis
can be divided into two groups: use of subsets of 12-lead ECG [28–31] and use of Frank VCG
leads [32–40]. A common assumption in previous works was that the heart-torso electrical system is
linear and quasi-static, which allows for the use of linear transformation to derive the 3-lead VCG from
reduced-lead set of the 12-lead ECG. These can either be patient-specific or generic transformation
of which the former is learned using data from a single patient, while the latter requires data from a
group of patients. Previous studies have shown the possibility to derive the 12-lead ECG from the
three Frank XYZ leads through Dower transformation [34] and vice versa through the inverse Dower
transformation [35]. Similarly, Kors et al. [36] derived the transformation matrix using the regression
analysis method. In [37], Dawson et al. derived the linear affine transformation between 3-lead
VCG and 12-lead ECG, which achieved higher accuracy than Kors and inverse Dower transformation.
Another strategy can be seen in [31,32], where nonlinear methods such as ANN were used to synthesize
the 12-lead ECG and 3-lead VCG from leads I, II, and V2. It was found that nonlinear transformation
are appropriate for ECG data with diversity resulting from variation in individuals and measurement
positions. A weakness for majority of the reviewed methods is that they only exploited the inter-lead
correlation between spatially aligned samples of the lead signals. It is important to note that, in addition
to spatially correlated information in different leads, temporally correlated information can also be
found between different waves within a single lead. System design approaches that consider both
intra- and inter-lead correlation are expected to provide better solutions to the VCG synthesis problem.
This task can be accomplished by using RNN [41] as it can use the learning capabilities of ANN and
could further improve it by representing the spatio-temporal correlations between the lead signals.
In this work, we proposed a patient-specific transformation for VCG synthesis by applying a long
short-term memory (LSTM) network [42] with sliding window approach.

This study focuses on two issues: synthesis of 3-lead VCG and extraction of VCG features,
to develop an MI classifier that is suitable for wearable devices with only a single lead recording.
The first part of this study focuses on developing a method of VCG reconstruction from lead I ECG
using a LSTM network to exploit both intra- and inter-lead correlations of ECG signals. The second
part of this study develops a novel spline framework for parametrically representing the derived
Frank lead signals. After extracting features by the spline approximation, a classifier is used for the
classification of healthy and 11 types of MI.

2. Methods

This study proposes a new method for automatic MI classification using the single-lead derived
VCG. As shown in Figure 2, the proposed method consists of four stages, i.e., preprocessing,
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VCG synthesis, feature extraction, and classification. The raw ECG signals are preprocessed to
remove various kinds of noise associated with them. Next, a patient-specific reconstruction method
is used to synthesize the 3-lead VCG from lead I ECG. In the feature extraction stage, the clinically
significant features are extracted from three derived Frank leads that quantify the VCG abnormalities
due to MI. Later in the classification stage, the most likely ECG class has to be predicted from the
analysis of the feature data.

Figure 2. Block diagram of the proposed MI classification system.

2.1. Preprocessing

The raw ECG signal is typically contaminated by high-frequency noises caused by power-line
interference, electromyographic noises due to muscle activity, motion artifacts caused by patient’s
movements, and radio frequency noises from other equipments. Moreover, baseline wander is
low-frequency (0–0.5 Hz) interference in the ECG signal caused by respiration, body movement and
changes in electrode impedance. These noises degrade the quality of ECG signals and introduce
ambiguity in the MI classification. Hence, the preprocessing is generally performed to to remove
various types of noises associated with the input signal. The guidelines for the standardization
and interpretation of ECG, published by the American Heart Association [43], advise using a cutoff
frequency of 0.05 Hz for the high-pass filter and 150 Hz for the low-pass filter in adults. Thus, in this
study, the raw ECG signal is down-sampled to 500 Hz and then filtered using a band-pass filter with
a bandwidth between 0.5 and 150 Hz to remove noise and baseline wander. A similar approach has
been used in several other studies [16,44].

2.2. VCG Synthesis

Synthesis of 3-lead VCG from reduced-lead set of 12-lead ECG [32,35–40] has been
investigated in the past to satisfy the need for more wearing comfort and ambulatory situations.
Most methods [35–40] are based on linear transformation and the differences between them are in
coefficients of transformation matrices. In [32], Vozda et al. used nonlinear methods such as ANN
to synthesize the 3-lead VCG from quasi-orthogonal leads I, II, and V2. Most current approaches
to VCG synthesis focus on the inter-lead correlation, with less emphasis placed on the intra-lead
correlation. The ECG signals from leads I, Vx, Vy, and Vz are shown in Figure 3. It can be observed that,
in addition to spatially correlated information in different leads, temporally correlated information
can also be found between different waves within a single lead. The lead signals are narrow angle
projections of the same electric heart vector and hence correlations can be found among the signals of
various leads. Moreover, the cardiac cycle is quasi-periodic in nature and hence intra-correlations are
evident between different characteristic waves. A model which can simultaneously learn the intra-
and inter-lead correlations of ECG signals is expected to further improve the reconstruction accuracy.
This is because synthesizing a VCG lead essentially involves estimating morphology of the waveform
and timings of the characteristic waves. The morphology information holds significant similarity
within a lead and hence it can be obtained by exploiting the intra-lead correlation. Similarly, inter-lead
correlation can be used to derive the temporal information because timings of the characteristic waves
are highly correlated between synchronously recorded leads. This can be achieved by using RNN [41]
based models as they can combine information from the present and previous inputs to decide the
present output. Recognizing this, we propose a patient-specific VCG synthesis method based on a
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sliding-window approach together with LSTM network [42]. At the model estimation stage, the LSTM
parameters were estimated for each individual by considering the lead I ECG as input and Frank XYZ
leads as output of the model.

Figure 3. ECG waveforms of measured lead I and Frank XYZ leads.

The LSTM network is commonly used for time series modeling because it solves the gradient
vanishing problem by incorporating gate units and memory cells. In an LSTM, the error information
is preserved and is back-propagated through the layers which essentially helps the model to learn
over a large number of time-steps. The system architecture of the proposed VCG synthesizer is
shown in Figure 4. The system starts by applying a sliding window which spreads a segment of
currently available lead I data across the input neurons of LSTM. Then, we use an LSTM network to
reconstruct three Frank leads by applying a transformation based on the data series in each window.
Let xt denote the lead I ECG data at time t and let y(1)t , y(2)t , y(3)t denote the Frank X, Y, Z lead data,
respectively. For a sliding window of size L, suppose that the pair (st, yt) at time t contains the data
series st = {xt−L+1, xt−L+2, . . . , xt} and its corresponding target output yt = {y(1)t , y(2)t , y(3)t }. Given a
set of T training data pairs {(st, yt), t = 1, 2, . . . , T}, learning the derived VCG model consists of
finding a function F which minimizes the mean square error between the original signal yt and its
reconstructed signal ŷt = F(st). Proceeding in this way, we transform the VCG synthesis problem into
a supervised learning problem.
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Figure 4. System architecture of the proposed VCG synthesizer.

An LSTM model has the units composed of a memory cell, an input gate, an output gate and a
forget gate. The structure of the LSTM unit is shown in Figure 5. An LSTM unit computes a mapping
from the input xt to output yt by calculating the network unit activations using Equations (1) to (5)
iteratively from t = 1 to T.

ft = σ(Wf xt + Uf ht−1 + b f ) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc) (3)

ot = σ(Woxt + Uoht−1 + bo) (4)

yt = ht = ot ◦ tanh(ct) (5)

where W, U, and b denote the weight matrices and bias vectors which need to be learned during
training. The operator ◦ denotes the element-wise product and σ is the sigmoid function. ct is the
cell state, ht is the hidden state, and ft, it, ot represent the forget gate, input gate and output gate,
respectively. A series of experiments were performed to optimize the LSTM topology used for the
VCG synthesizer. The networks with 1, 2, and 3 hidden layers and different number of neurons
in hidden layers were tested. It was found that a network with two hidden layers and 30 neurons
in each hidden layer achieved the best accuracy of transformation. The LSTM was trained using
backpropagation through time (BPTT) algorithm [45], combined with the stochastic gradient descent
algorithm. Adam optimizer was used in the model fine-tuning phase to further determine the LSTM
parameters. Selected through iterative experiments, a time-step of 1, a mini-batch size of 128, and an
epoch number of 300 were used to minimize the mean square error of the VCG synthesizer.
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Figure 5. Structure of the LSTM unit.

2.3. Feature Extraction

In the feature extraction stage, Frank XYZ leads of the derived VCG were individually processed
in the following steps. First, we detect the R peak in each QRS complex using the Pan-Tompkins
algorithm [20] and split the signals into heartbeat segments between two neighboring R peaks. Since the
heartbeats may have different lengths, each heartbeat is period normalized to a fixed length of
400 samples via cubic spline interpolation. This choice was based on the observation that the average
heartbeat length is about 0.8 s, which corresponds to 400 samples for a sampling frequency of 500 Hz.
To make different lead signals comparable to each other, the min-max normalization was applied to
scale both the amplitude and time in the range of [0,1], as described in [46]. For the i-th heartbeat with
length Ni, let αi = Ni/400 denote the time scaling factor and let β

(1)
i , β

(2)
i , β

(3)
i denote the amplitude

scaling factor of Frank X, Y, Z lead, respectively. Once the heartbeats have been segmented and
normalized, spline curve fitting [23] is applied to the entire heartbeat to model all of the characteristic
waves and fitted coefficients are used as VCG representing features. Two advantages are provided.
First, by using the entire beat, the method not only obviates the need for ECG wave delineation but also
provides better representation of all regions of ECG beats for MI classification. Second, splines provide
an efficient and accurate representation of VCG signals with semiperiodic patterns. VCG signals are a
special type of semiperiodic signal which exhibits different degrees of smoothness in different intervals.
Such signals require a higher-order polynomial to fit, leading to severe oscillations of the fitted curve
which cause the overfitting problem [25]. To address this problem, we develop a framework for an
efficient representation of Frank lead signals using splines.

Splines are piecewise polynomial approximations of a signal defined by constraint points on
each piecewise segment known as knots. Since VCG signal has numerous clinically relevant turning
points, the spline represented as a linear combination of p-degree B-spline basis function has been
chosen as the approximation function. The knot vector {ζ j}m

0 = {ζ j, 0 ≤ j ≤ m} is a non-decreasing
sequence, where the first (p + 1) knots are all equal to 0.0025 and the last (p + 1) knots are all equal
to 1. The knots from ζp+1 to ζm−p−1 correspond to interior knots which are generated via the knot
averages [25] according to Equation (6).

ζk =
(τk+1 + τk+2 + · · ·+ τk+p)

p
, p + 1 ≤ k ≤ m − p − 1 (6)

where {τp+1, τp+2, . . . , τm} is an arithmetic sequence with the first term τp+1 = 0.0025 and the last
term τm = 1. The spline curve approximation can be expressed in the form of Equation (7).

u(t) =
n

∑
i=0

aiBi,p(t), (7)
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where n = m − p − 1 and ai represents the i-th B-spline coefficient. Bi,p(t) denotes the i-th p-degree
B-spline basis function which is computed recursively [25] using Equations (8) and (9).

Bi,0(t) =

{
1, ζi ≤ t ≤ ζi+1
0, otherwise

(8)

Bi,j(t) =
t − ζi

ζi+j − ζi
Bi,j−1(t) +

ζi+j+1 − t
ζi+j+1 − ζi

Bi+1,j−1(t) (9)

The vector of coefficients {ai, 0 ≤ i ≤ n} is calculated by using the least square spline
approximation. Generally, the B-spline approximation of VCG signal yielded better performance
with an increase in the value of n. Figure 6 shows the original heartbeat and the spline fitting curve
with n = 23 using one MI sample and one healthy sample. Experimentally, it was found that the use of
n = 15 gives a good trade-off between computational efficiency and the quality of fit. Each normalized
heartbeat is transformed into 16 features {a0, a1, . . . , a15}, and three VCG leads during the time of
a given heartbeat have 48 features. Together with the time scaling factor αi and amplitude scaling
factors {β

(1)
i , β

(2)
i , β

(3)
i }, the complete heartbeat of 3-lead VCG is transformed as a 52-dimensional

feature vector.

Figure 6. Comparison between original heartbeats (blue) and fitting curves (red) for healthy and
MI subjects.

2.4. Classification

The system performance of MI classification depends critically on the underlying classifier,
which builds a model of how to best predict which class a test ECG beat belongs. In this study,
a classifier based on multilayer perceptron network (MLP) is used for classification into 12 classes of
ECG beats. The MLP is a class of feedforward ANN model and widely used in many fields, such as
object recognition, pattern classification, and biological data analysis. Among the reasons for this
popularity are its nonlinearity, parallelism, learning and generalization capabilities [47]. A MLP
is a network composed of parallel layers of neurons. In building MI classifiers, the input layer
receives spline-fitted features from the derived VCG, and the output layer provides the predicted
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ECG classes. The relations between the input and output layers are expressed through the weights
and biases of the hidden layer. All of the weights were initialized to small random numbers and then
subjected to incremental changes by the error backpropagation algorithm based on the cross-entropy
loss function [48]. To optimize the classifier design, we tested the MLP with 1, 2, and 3 hidden
layers and the number of neurons in each hidden layer was tuned by a grid search from 50 to 500
in steps of 25. Based on the results, we chose the MLP network with 52 input nodes (one for each
spline-fitted feature), 12 output nodes (one for each ECG class) and two hidden layers which had
300 and 275 nodes, respectively. To describe the intensity of neural firing, a neuron output was
generally obtained by applying an activation function to the weighted sum of its inputs. Due to
its ability to enable fast training, the rectified linear unit (ReLU) activation function [47] was used
for the hidden layer. However, the ReLU nonlinearity is not applicable for the activation of the
present output-layer neurons because their respective output values represent a categorical probability
distribution. With this consideration, we applied the softmax function for the output layer to generate
values which are in the unit interval and summed to one. Since MI diagnosis involves the simultaneous
discrimination of several ECG classes, we considered the one-hot encoding [49] scheme for solving the
categorical data classification problem. Specifically, the MLP outputs are represented as binary vectors,
each vector consists of 0 s in all cells with the exception of a single 1 in an entry corresponding to the
most likely class.

3. Evaluation Parameters

In this study, ECG records were taken from the Physikalisch-TechnischeBundesanstalt (PTB) [50]
diagnostic database. The PTB database consists of 549 ECG records from 290 subjects and each
record contains 12 ECG leads and 3 Frank VCG leads. From the database, a total of 26,080 heartbeats
from 52 healthy subjects and 143 MI patients were included in the analysis. Table 1 shows the
number of heartbeats for each type of MI and healthy subjects in this study. These data were
further divided into 12 classes of ECG beats: anterior (AMI), anterior-lateral (ALMI), anterior-septal
(ASMI), anterior-septal-lateral (ASLMI), inferior (IMI), inferior-lateral (ILMI), inferior-posterior (IPMI),
inferior-posterior-lateral (IPLMI), lateral (LMI), posterior (PMI), posterior-lateral (PLMI), and healthy
control (HC).

Table 1. Number of beats for different types of MI and healthy subjects in this study.

Class Number of Beats

Anterior (AMI) 2800
Anterior-Lateral (ALMI) 2534
Anterior-Septal (ASMI) 4114

Anterior-Septal-Lateral (ASLMI) 134
Inferior (IMI) 4569

Inferior-Lateral (ILMI) 3143
Inferior-Posterior (IPMI) 336

Inferior-Posterior-Lateral (IPLMI) 1063
Lateral (LMI) 159

Posterior (PMI) 137
Posterior-Lateral (PLMI) 288

Healthy Control (HC) 6803

Root-mean-square-error (RMSE) and correlation coefficient (CC) were chosen to test the accuracy
of derived VCG by the individual methods in relation to the measured VCG. RMSE measures the
similarity of two recordings and it is defined as Equation (10), where V is the original value of the
measured VCG, V̂ is the value of the derived VCG, and N is the number of samples. Instead, CC is a
statistic that measures the correlation between two recordings, which is defined in Equation (11).
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RMSE =

√√√√ 1
N

N

∑
i=1

(Vi − V̂i)2 (10)

CC =
∑N

i=1Vi · V̂i√
∑N

i=1V2
i ∑N

i=1V̂2
i

(11)

To test the feasibility of the proposed MI classifiers, the performance analysis is based on
the accuracy (ACC), sensitivity (SEN), and specificity (SPE) represented in the form of confusion
matrix [51]. These performance metrics are related to the number of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). The accuracy is the proportion
of correctly classified samples to the total number of samples, and it is defined as Equation (12).
Sensitivity, defined in Equation (13), measures the proportion of positives that are correctly identified.
Instead, specificity measures the proportion of negatives that are correctly identified and defined as
Equation (14).

ACC =
TP + TN

TP + FP + TN + FN
(12)

SEN =
TP

TP + FN
(13)

SPE =
TN

FP + TN
(14)

4. Results

Computer simulations were conducted to evaluate the validity of the proposed method in
differentiating 11 types of MI and healthy subjects. A preliminary experiment was first conducted to
examine the performance dependence of VCG synthesis on the sliding window size L employed in
constructing the LSTM models. In this experiment, ECG recordings from 20 HC subjects and 20 MI
patients were used. Table 2 presents the RMSE and CC between measured and derived Frank XYZ
leads. Based on the results, we empirically chose L = 150 in the sequel.

Table 2. RMSE and CC between measured and derived Frank XYZ leads.

Window Size Performance V̂x V̂y V̂z

50 CC 0.9939 0.9789 0.9890
RMSE 13.2215 16.9526 14.2964

100 CC 0.9956 0.9843 0.9933
RMSE 11.6335 14.6710 10.8368

150 CC 0.9963 0.9862 0.9940
RMSE 11.0374 14.0393 10.0226

200 CC 0.9962 0.9855 0.9939
RMSE 11.2348 14.3675 10.2153

We next compare the reconstruction performance of using MLP [32] and LSTM for learning
the derived VCG models. All the experiments were based on the evaluation of RMSE and CC and
experimental results were obtained by five-fold cross-validation. ECG recordings from 52 HC subjects
are denoted as dataset DS1, and ECG recordings from 143 MI patients are denoted as dataset DS2.
For comparison purposes, the MLP consists of one input layer with 150 neurons, one output layer with
three neurons, two hidden layers and 150 neurons per hidden layer. The results of VCG synthesis by
five-fold cross-validation are presented in Table 3. The results clearly demonstrate that the LSTM is
preferred to MLP for use in constructing the VCG synthesizer because the LSTM can exploit both intra-
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and inter-lead correlations of ECG signals. Further analysis indicates that the average CC of three
Frank leads using LSTM were 0.9943 and 0.9807 for dataset DS1 and DS2, respectively, suggesting
that the MI patient data was less accurately reconstructed than HC subjects. Visual inspection of
the reconstructed signals showed that the derived VCG signals were not significantly different from
the measured signals. A typical example for measured and derived Frank XYZ leads is depicted in
Figure 7.

Table 3. Five-fold cross validation and average CC and RMSE between measured and derived Frank
leads for the MLP and LSTM models.

Folds Performance Model
DS1 DS2

V̂x V̂y V̂z V̂x V̂y V̂z

Fold 1
CC MLP 0.9947 0.9732 0.9830 0.9815 0.9396 0.9716

LSTM 0.9977 0.9881 0.9941 0.9909 0.9680 0.9885

RMSE MLP 17.2434 21.4437 21.4656 24.4987 28.9382 28.5079
LSTM 11.4825 14.3947 10.2566 16.9540 20.7532 16.9667

Fold 2
CC MLP 0.9949 0.9745 0.9835 0.9784 0.9388 0.9718

LSTM 0.9981 0.9898 0.9963 0.9895 0.9686 0.9879

RMSE MLP 17.3081 20.4252 21.2486 24.3083 29.0842 28.3771
LSTM 11.1590 12.6073 9.7404 15.9387 20.9914 17.4463

Fold 3
CC MLP 0.9946 0.9719 0.9835 0.9773 0.9398 0.9720

LSTM 0.9979 0.9878 0.9959 0.9864 0.9659 0.9875

RMSE MLP 17.6641 20.9450 21.6205 24.2560 29.7097 28.2240
LSTM 11.1632 13.1473 10.0268 16.9523 21.6060 16.9857

Fold 4
CC MLP 0.9952 0.9746 0.9843 0.9798 0.9390 0.9716

LSTM 0.9986 0.9901 0.9966 0.9880 0.9695 0.9883

RMSE MLP 16.6822 20.1005 20.9287 24.3547 29.1888 28.4182
LSTM 10.0381 12.0188 9.3277 16.0953 20.4111 16.7269

Fold 5
CC MLP 0.9950 0.9758 0.9800 0.9784 0.9349 0.9692

LSTM 0.9985 0.9922 0.9929 0.9847 0.9618 0.9844

RMSE MLP 16.9020 20.3295 21.7694 25.3288 30.9232 29.7329
LSTM 10.0791 11.5885 9.6506 17.9217 22.7715 18.0954

Mean
CC MLP 0.9949 0.9740 0.9829 0.9791 0.9384 0.9712

LSTM 0.9982 0.9896 0.9952 0.9879 0.9668 0.9873

RMSE MLP 17.1600 20.6488 21.4066 24.5493 29.5688 28.6520
LSTM 10.7844 12.7513 9.8004 16.7724 21.3066 17.2442
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Figure 7. Comparison between measured (blue) and derived (red) Franks leads for healthy and
MI subjects.

Next, we assess the performance of MLP classifiers for the classification of normal and 11 MI
classes. One problem with the PTB database is the high imbalance between the number of heartbeats
belonging to each ECG class. Training an MLP classifier with unbalanced data usually leads to a certain
bias towards the majority class. Recognizing this, we applied the Synthetic Minority Over-sampling
Technique (SMOTE) [52] before starting the training process. Moreover, we used 5-fold cross-validation
technique to train and test the MLP classifiers. We began testing the MLP classifiers for the situation
where MI classes were identified solely by means of single-lead feature data. The classification
performance for each ECG class is summarized in Table 4. Simulation results indicated that using lead
I yielded an overall accuracy of 50.72%, suggesting that it cannot provide sufficient cues for reliable
classification. To elaborate further, we show in Table 5 the confusion matrix of all the 12 classes for
lead I ECG beats. It was found that the notably low classification accuracy can be attributed to the
high confusions made across anterior MI group (AMI, ALMI, ASMI, ASLMI) and inferior MI group
(IMI, ILMI, IPMI, IPLMI). For instance, 14.71% of the ECG beats notated in ASMI were classified
as representing IMI and 8.84% of the IMI beats were classified as being ASMI. Furthermore, results
indicate that derived Frank leads V̂y and V̂z are preferred to lead I ECG for use in constructing the MI
classifier. Notably, the use of lead V̂z yielded an overall accuracy of 82.09%, compared with 50.72%
for lead I and 81.45% for V̂y. The confusion matrices obtained using derived Frank lead V̂y and V̂z are
shown in Tables 6 and 7, respectively. Further analysis indicates that anterior and inferior MI groups
are dominant in the MI groups that benefited the most from exploitation of derived VCG leads. In case
of inferior MI group, the average sensitivity has increased from 56.9% in lead I to 87.1% in lead V̂y.
Similarly in case of anterior MI group, average sensitivity obtained for lead I and V̂z is 60.25% and
88.9%, respectively. We speculate that this might be attributed to the difference in closeness between
Frank leads and 12 ECG leads. Support for such a speculation can be found in [39], where the authors
showed that Frank lead Vy is most likely associated with inferior leads (II, III, aVF), and Frank lead Vz

is closest to subset of anteroseptal leads (V1, V2, V3). We can also see from Figure 1 that leads V1, V2

and V3 are located near the negative Z-axis in the sagittal plane. Similarly, it can be found that leads II,
III and aVF are oriented along the Y-axis.
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Table 4. Classification results of MLP classifier with single-lead signal.

Classes
I V̂x V̂y V̂z

ACC(%) SEN(%) SPE(%) ACC(%) SEN(%) SPE(%) ACC(%) SEN(%) SPE(%) ACC(%) SEN(%) SPE(%)

AMI 90.55 51.89 95.20 91.74 58.39 95.75 95.73 79.71 97.66 95.76 79.57 97.70

ALMI 91.33 51.10 95.66 93.01 57.54 96.83 96.68 87.10 97.72 97.58 88.60 98.54

ASMI 85.28 37.99 94.13 88.35 56.73 94.27 93.60 75.62 96.96 95.41 87.29 96.93

ASLMI 99.40 100.00 99.40 99.75 100.00 99.75 99.89 98.51 99.90 99.99 100.00 99.99

IMI 80.87 38.26 89.93 81.94 33.44 92.24 93.49 81.02 96.14 92.08 73.95 95.93

ILMI 86.19 54.82 90.49 87.81 61.47 91.42 95.82 84.16 97.41 94.69 83.33 96.25

IPMI 99.09 92.26 99.18 99.36 89.88 99.48 99.78 94.94 99.84 99.70 93.15 99.78

IPLMI 93.95 42.24 96.15 93.17 35.18 95.63 98.76 88.33 99.20 97.67 81.84 98.34

LMI 98.12 98.11 98.12 99.00 99.37 99.00 99.69 100.00 99.68 99.83 98.11 99.84

PMI 99.24 100.00 99.23 98.49 100.00 98.48 99.51 100.00 99.51 99.89 100.00 99.89

PLMI 96.92 90.63 97.00 97.25 87.85 97.36 99.65 98.96 99.65 99.76 96.88 99.79

HC 80.49 58.78 88.15 85.20 69.98 90.57 90.30 78.99 94.29 91.83 80.21 95.93

Table 5. Confusion matrix for MI classification using measured lead I ECG.

Notated
Predicted

Total ACC(%) SEN(%) SPE(%)
AMI ALMI ASMI ASLMI IMI ILMI IPMI IPLMI LMI PMI PLMI Norm

AMI 1453 255 150 0 335 228 21 97 44 2 39 176 2800 90.55 51.89 95.2

ALMI 154 1295 219 54 228 141 37 57 2 128 129 90 2534 91.33 51.1 95.66

ASMI 273 217 1563 25 605 555 41 101 129 10 125 470 4114 85.28 37.99 94.13

ASLMI 0 0 0 134 0 0 0 0 0 0 0 0 134 99.4 100 99.4

IMI 219 279 404 65 1748 372 72 144 51 35 177 1003 4569 80.87 38.26 89.93

ILMI 173 82 113 0 281 1723 26 204 122 3 5 411 3143 86.19 54.82 90.49

IPMI 5 8 3 0 9 0 310 0 0 0 0 1 336 99.09 92.26 99.18

IPLMI 31 68 77 1 84 155 2 449 53 1 19 123 1063 93.95 42.24 96.15

LMI 2 0 0 0 0 1 0 0 156 0 0 0 159 98.12 98.11 98.12

PMI 0 0 0 0 0 0 0 0 0 137 0 0 137 99.24 100 99.23

PLMI 0 1 1 0 7 3 0 5 0 0 261 10 288 96.92 90.63 97

HC 260 111 322 11 618 726 12 356 87 20 281 3999 6803 80.49 58.78 88.15

Table 6. Confusion matrix for MI classification using derived Frank Y lead.

Notated
Predicted

Total ACC(%) SEN(%) SPE(%)
AMI ALMI ASMI ASLMI IMI ILMI IPMI IPLMI LMI PMI PLMI Norm

AMI 2232 44 113 0 137 55 4 32 5 32 4 142 2800 95.73 79.71 97.66

ALMI 35 2207 49 15 87 25 3 9 0 34 1 69 2534 96.68 87.1 97.72

ASMI 161 78 3111 9 176 103 12 25 0 0 36 403 4114 93.6 75.62 96.96

ASLMI 0 1 0 132 0 0 0 0 0 0 1 0 134 99.89 98.51 99.9

IMI 95 116 157 2 3702 136 6 72 12 2 38 231 4569 93.49 81.02 96.14

ILMI 8 15 50 1 130 2645 4 21 26 0 3 240 3143 95.82 84.16 97.41

IPMI 3 0 4 0 5 1 319 0 0 0 0 4 336 99.78 94.94 99.84

IPLMI 26 7 5 0 43 27 2 939 2 1 0 11 1063 98.76 88.33 99.2

LMI 0 0 0 0 0 0 0 0 159 0 0 0 159 99.69 100 99.68

PMI 0 0 0 0 0 0 0 0 0 137 0 0 137 99.51 100 99.51

PLMI 0 1 0 0 0 2 0 0 0 0 285 0 288 99.65 98.96 99.65

HC 217 276 289 0 252 244 10 40 37 58 6 5374 6803 90.3 78.99 94.29

Next, we examine whether combining multiple derived Frank leads would improve the
classification performance. Table 8 shows the MLP classifier results for healthy and 11 types of
MI ECG beats obtained using various lead configurations. Our proposed method yielded the best
performance with an overall accuracy of 99.15%, sensitivity of 99.16% and specificity of 99.92% in
MI classification, by using 52 features obtained from the derived Frank XYZ leads. The results also
indicate that the ability of derived VCG to correctly identify the MI classes is almost identical to that of
measured VCG. Table 9 shows the confusion matrix of all classes obtained using MLP classifier on the
derived Frank XYZ leads. A comparison between Tables 5 and 9 indicates that the improvement can
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be seen in the following areas. First, the derived VCG can reduce a significant portion of confusions
across anterior and inferior MI groups. For instance, only 0.15% of ECG beats notated in ASMI were
misclassified as representing IMI, the corresponding value for lead I being 14.71%. Second, the derived
VCG significantly increased the sensitivity of healthy subjects to 99.68%, compared with 58.78% for
lead I, 78.99% for V̂y, and 80.21% for V̂z. The results clearly demonstrate that MI classification by
computational means is significantly improved when clinically significant features relating to the
derived VCG are taken into account.

Table 7. Confusion matrix for MI classification using derived Frank Z lead.

Notated
Predicted

Total ACC(%) SEN(%) SPE(%)
AMI ALMI ASMI ASLMI IMI ILMI IPMI IPLMI LMI PMI PLMI Norm

AMI 2228 74 272 1 76 24 8 14 5 6 9 83 2800 95.76 79.57 97.7

ALMI 45 2245 96 0 38 11 18 7 1 2 1 70 2534 97.58 88.6 98.54

ASMI 103 76 3591 2 105 87 4 13 0 0 0 133 4114 95.41 87.29 96.93

ASLMI 0 0 0 134 0 0 0 0 0 0 0 0 134 99.99 100 99.99

IMI 147 94 186 0 3379 254 18 80 14 3 28 366 4569 92.08 73.95 95.93

ILMI 18 17 35 0 202 2619 2 109 11 2 10 118 3143 94.69 83.33 96.25

IPMI 7 3 1 0 5 5 313 1 0 0 0 1 336 99.7 93.15 99.78

IPLMI 3 2 3 0 137 31 3 870 0 0 0 14 1063 97.67 81.84 98.34

LMI 0 0 0 0 2 0 0 1 156 0 0 0 159 99.83 98.11 99.84

PMI 0 0 0 0 0 0 0 0 0 137 0 0 137 99.89 100 99.89

PLMI 0 0 0 0 0 0 0 6 3 0 279 0 288 99.76 96.88 99.79

HC 212 77 82 0 311 448 3 184 8 15 6 5457 6803 91.83 80.21 95.93

Table 8. Classification results of MLP classifier with various lead configurations.

Leads ACC(%) SEN(%) SPE(%)

I 50.72 68.01 95.22
V̂x 57.54 70.82 95.90
V̂y 81.45 88.95 98.17
V̂z 82.09 88.58 98.24

V̂x + V̂y 93.36 95.52 99.34
V̂y + V̂z 96.99 97.74 99.70
V̂x + V̂z 83.68 89.80 98.42

V̂x + V̂y + V̂z 99.15 99.16 99.92
Vx + Vy + Vz 99.14 99.39 99.92

Table 9. Confusion matrix for MI classification using derived Frank XYZ leads.

Notated
Predicted

Total ACC(%) SEN(%) SPE(%)
AMI ALMI ASMI ASLMI IMI ILMI IPMI IPLMI LMI PMI PLMI Norm

AMI 2762 5 9 0 7 4 0 1 0 0 3 9 2800 99.72 98.64 99.85

ALMI 10 2504 6 0 2 2 2 0 1 0 0 7 2534 99.78 98.82 99.88

ASMI 9 12 4078 1 6 2 3 3 0 0 0 0 4114 99.73 99.12 99.85

ASLMI 0 0 0 134 0 0 0 0 0 0 0 0 134 100 100 100

IMI 5 3 4 0 4528 11 1 7 0 0 4 6 4569 99.7 99.1 99.83

ILMI 3 3 8 0 3 3119 1 1 1 0 1 3 3143 99.8 99.24 99.88

IPMI 3 0 0 0 3 0 329 0 0 0 0 1 336 99.94 97.92 99.97

IPLMI 2 3 3 0 6 8 0 1039 0 1 0 1 1063 99.85 97.74 99.94

LMI 0 0 0 0 0 0 0 0 159 0 0 0 159 99.99 100 99.99

PMI 0 0 0 0 0 0 0 0 0 137 0 0 137 99.99 100 99.99

PLMI 0 0 0 0 0 0 0 1 0 0 287 0 288 99.97 99.65 99.97

HC 2 2 4 0 10 1 1 1 0 1 0 6781 6803 99.81 99.68 99.86

5. Discussion

In recent years, numerous approaches were proposed to identify various types of MI from ECG
records. The numbers of ECG leads and MI classes are important factors correlated with diagnosis
efficiency, and should be noted when comparing their relative performances. Table 10 summarizes the
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studies employing different techniques in MI classification with the same PTB database. Arif et al. [10]
used 12 lead ECG signal and time domain features such as T-wave amplitude, Q-wave and ST-level
elevation, reporting overall accuracy of 98.8% on ten different MI classes with a KNN classifier.
Alternatively, Noorian et al. [11] used ANN classifier and wavelet coefficients as features extracted
from the derived VCG. Acharya et al. [12] have evaluated ten MI classes with 12 types of nonlinear
features based on wavelet transform. They obtained an accuracy of 98.74%, sensitivity of 99.55%,
and specificity of 99.16% by only using lead V3 ECG signal. Lui et al. [13] combined the power of CNN
and RNN, and achieved 92.4% sensitivity and 97.7% specificity for classification of MI as well as other
cardiovascular diseases. Baloglu et al. [14] proposed an end-to-end approach based on deep CNN and
reported an overall accuracy of 99.78% by using 12 lead ECG signal for classification into 11 types of
ECG beats. In [15], a multi-lead attention mechanism integrated with CNN and bidirectional gated
recurrent unit was applied for MI classification based on six classes of 12-lead ECG records, namely
HC, AMI, ALMI, ASMI, IMI, and ILMI. Towards addressing the challenges in identifying MIs using
wearable devices, our work, as well as some earlier studies [12,13], was focused on single-lead rather
than 12-lead exploration. Results reported in this paper are generally better than those of MI classifiers
in the literature, with its performance only slightly lower than that of [14]. However, our proposed
method applies single-lead derived VCG for classification into 12 types of ECG beats, in which ASLMI
with larger necrotic area is ignored in [14]. Overall, the proposed method obtained an accuracy of
99.15%, sensitivity of 99.16% and specificity of 99.92%. With this performance, our proposed model has
the potential to provide an early and accurate diagnosis of MI in wearable ECG monitoring devices.

Table 10. Comparison of this study with other studies using the PTB diagnostic database.

Ref Leads No. of Classes ACC(%) SEN(%) SPE(%)

Arif et al. (2012) [10] 12 leads 11 98.80% 98.67% 98.71%
Noorian et al. (2014) [11] 12 leads 10 95.35% 99.09% 94.23%
Acharya et al. (2016) [12] V3 11 98.74% 99.55% 99.16%
Lui nad Chow (2018) [13] I 4 95.25% 92.40% 97.70%
Baloglu et al. (2019) [14] 12 leads 11 99.78% 99.84% 99.98%

Fu et al. (2020) [15] 12 leads 6 99.11% 99.02% 99.10%
Proposed method I 12 99.15% 99.16% 99.92%

6. Conclusions

This paper proposed a new method for automatic MI classification using single-lead derived VCG.
We first emphasized the importance of exploiting both intra-lead and inter-lead correlation for learning
the derived VCG models. This task was accomplished by using a patient-specific transformation based
on LSTM network with sliding window approach. Performance is further enhanced by using B-spline
curve fitting to extract clinically significant features from the three derived Frank leads. After feature
extraction, a classifier based on MLP network is used for classification into 12 types of ECG beats.
Combined performance from 52 healthy subjects and 143 MI patients demonstrate the validity of the
proposed MI classification system with an accuracy of 99.15%, sensitivity of 99.16% and specificity
of 99.92%.
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Abstract: Hypertension affects a huge number of people around the world. It also has a great
contribution to cardiovascular- and renal-related diseases. This study investigates the ability of a deep
convolutional autoencoder (DCAE) to generate continuous arterial blood pressure (ABP) by only
utilizing photoplethysmography (PPG). A total of 18 patients are utilized. LeNet-5- and U-Net-based
DCAEs, respectively abbreviated LDCAE and UDCAE, are compared to the MP60 IntelliVue
Patient Monitor, as the gold standard. Moreover, in order to investigate the data generalization,
the cross-validation (CV) method is conducted. The results show that the UDCAE provides
superior results in producing the systolic blood pressure (SBP) estimation. Meanwhile, the LDCAE
gives a slightly better result for the diastolic blood pressure (DBP) prediction. Finally, the genetic
algorithm-based optimization deep convolutional autoencoder (GDCAE) is further administered to
optimize the ensemble of the CV models. The results reveal that the GDCAE is superior to either the
LDCAE or UDCAE. In conclusion, this study exhibits that systolic blood pressure (SBP) and diastolic
blood pressure (DBP) can also be accurately achieved by only utilizing a single PPG signal.

Keywords: photoplethysmography; continuous arterial blood pressure; systolic blood pressure;
diastolic blood pressure; deep convolutional autoencoder; genetic algorithm

1. Introduction

Blood pressure (BP) is the pressure driven by the blood circulation to the artery wall. Meanwhile,
hypertension or high blood pressure (HBP) is an excessive amount of a given force against blood
vessels. In addition, according to World Health Organization (WHO), HBP affects more than one
billion people in the world [1].

With having an impact on many people, HBP can incite several diseases. It has a solid contribution
to cardiovascular and renal diseases [2]. HBP also contributes to stroke and ischemic heart diseases [3].
Furthermore, HBP can generate vascular damage of the retina related to cardiovascular-based fatality [4].
These aforementioned studies make HBP-related inspection become significant.

Photoplethysmography (PPG), one of the vital signs, has been a solid indicator for some
medical-related investigations. PPG has been deployed as the heart rate measurement in motion
artifact-interfered conditions with an empirical mode decomposition-based filter and time-frequency
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evaluation [5]. It also has been utilized, alongside electrocardiography, for atrial fibrillation in acute
stroke patients [6]. Another study involved the PPG morphological feature for hypertension early
identification [7]. Moreover, Phillips et al. applied PPG sensors to non-invasively evaluate hemoglobin
concentration [8]. Meanwhile, Perpetuini et al. supervised a general linear model-based PPG to
evaluate the ankle–brachial index, which was initially measured using a commercial instrument as the
gold standard [9]. In a recent study, entropy-based PPG evaluations have been successfully applied to
distinguish between healthy and diabetic patients [10].

There are many previous studies that effectively demonstrate the substantial interconnection
between PPG and BP. A study investigated the relationship of PPG with intermittent systolic and
diastolic blood pressures using multi-scale entropy and ensemble neural network [11]. Sideris et al.
evaluated continuous arterial blood pressure (ABP) using long short-term memory (LSTM) from
patients in an intensive care unit (ICU) using only a PPG signal [12]. Furthermore, the hybrid of LSTM
and artificial neural network (ANN) was performed via ECG and PPG to measure BP [13]. In addition,
autoregressive moving average to investigate the blood pressure also by using features of the PPG
signal related to the specific breathing conditions was performed and showed a quality evaluation [14].
Another study used multiple signals from ECG and PPG, and ballistocardiograms (BCG) were used
to investigate systolic blood pressure (SBP) and diastolic blood pressure (DBP) by utilizing hybrid
artificial intelligence (AI) methods [15]. Meanwhile, Slapničar et al. utilized 510 subjects of a single
PPG signal with a ResNet deep learning model [16].

Generally, AI has been widely used in many fields. It has been used simultaneously with
computational fluid dynamics in order to optimize the control scheme by adjusting the triangular
membership function for the cooling system in a heat exchanger [17]. A hybrid AI, combining the
extreme learning machine with the cuckoo search algorithm, was applied for biodiesel production [18].
Meanwhile, a study used neural network with the multi-armed bandit algorithm for solid oxide
fuel cell problems [19]. Moreover, Zaidan et al. applied an AI-based model for gas turbine engine
inspection [20].

Specific to medical-related studies, AI was utilized for detecting the depth of anesthesia, involving
multi-vital signs [21]. Another study applied entropy-based calculation to extract the feature from
one vital sign, which is the EEG. Meanwhile, the 5-s intermittent data from other vital signs were
later combined with the extracted entropy value from the EEG. A wearable device-related study also
utilized ANN in classifying arrhythmia [22]. Fast Fourier transform (FFT) was also administered to
evaluate arrhythmia in the frequency domain. Moreover, the ANN model was also implemented to
predict pneumonia [23,24].

Besides being widely utilized, AI has generalization problems [21]. The ensemble technique is
likely used to help the model to deal with this difficulty and increase the accuracy of the models.
However, selecting all the models for the ensemble system has not always been the best solution [25].
The combination of fuzzy clustering, ANN and the genetic algorithm (GA) was administered for the
ensemble model for highly unbalanced data evaluation in emergency medical services [26]. The GA was
called to investigate which models should be allocated to have a good ensemble system. Furthermore,
this related study examined the quality of the model based on the area under the curve (AUC) from
the receiver operating characteristic (ROC) as the fitness function. The result from this study [26] was
convincingly supported by the study by Zhou et al. [25]. The ensemble model will definitely increase
the accuracy of the result. Nevertheless, selecting several classifiers is likely to produce a better result
than combining all of them [25].

Recently, ANN algorithms are moving towards a deeper structure, called deep neural network [27].
This system has been administered to substantial studies. Other methods, such as the convolutional
neural network (CNN), have been used to predict arrhythmia with a very precise result with reference
to a cardiologist [28]. Another powerful evidence by the CNN-based evaluation technique has also
been performed to solve the seizure problem using encephalograms (EEG) [29]. Moreover, a study
to evaluate the depth of anesthesia that utilized short-time Fourier transform (STFT) and CNN [30]
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was investigated to evaluate a four-class system classification in anesthesia from this related study in
comparison with several CNN models.

As revealed in the aforementioned details, PPG, as one of the vital signs, is highly potentially able
to estimate the blood pressure system. Further, the AI method, especially the deep neural network,
has been very widely utilized in many areas particularly medical-related fields either in the classification
or the regression system. Moreover, with the help of the GA, as the optimizer, the ensemble model of
the deep learning algorithm is prospectively utilized. Hence, the aim of this paper is to investigate
generative continuous ABP using deep neural network models via a deep convolutional autoencoder
(DCAE) by utilizing only a single PPG sensor. Finally, the GA will form the ensemble model from the
evaluation of the cross-validation models.

2. Materials and Methods

This study has been approved by the Research Ethics Committee, National Taiwan University
Hospital (NTUH) in Taiwan. Furthermore, written informed consent was received for permission
by the patients. In total, a dataset of 18 patients during surgical operation was used for the
evaluation. The dataset was acquired using an MP60 IntelliVue Patient Monitor (Koninklijke Philips
N.V, Amsterdam, Netherlands) that is connected to a PC. More detail about the data collection can be
seen on a study conducted by Liu et al. [31].

Regarding the dataset and the deep learning evaluations, the sampling rate of the PPG and
ABP is 128 Hz. The window size evaluation was based on each 5-s signal, both the PPG and ABP.
This phenomenon means that each 5-s PPG signal is able to predict the corresponding 5-s of the
ABP signal. Initial total data were 42,498 sequences of 5-s windows of PPG and ABP. The data were
manually filtered based on their signal quality due to the diathermy effect or nurse activities. Manual
filtration was performed by eye by evaluating if either the PPG signal or the ABP signal was noisy.
The evaluation was based on the PPG and ABP signal shapes. Finally, the abnormal sequences of these
5-s signals were discarded. This reduced the data amount by about 14% to 36,516 sequences. In this
study, the range of the data was limited between 10 and 250 mmHg. Some noisy ABP signals were likely
affected by the high-frequency noise. The dataset was randomly divided into 85% and 15% respectively
for the training and testing data. MATLAB R2014b (The MathWorks, Inc., Natick, Massachusetts, USA)
was utilized for pre-processing the data and post-processing the results. TensorFlow (Ver. 1.15.2) [32]
and Keras (Ver. 2.3.1) were utilized in Google Colaboratory (Google Inc., California, USA) for the deep
learning training using Python 3.6. The training was conducted for 200 epochs with a batch size of
16 with Adam optimizer [33]. The model checkpoint was also set for the training system. Further,
the training data were shuffled. Finally, the cross-validation (CV) method was conducted to investigate
the model regularity.

The evaluations were conducted based on mean absolute error (MAE), root mean squared error
(RMSE), and Pearson’s linear correlation coefficient. Furthermore, the Bland–Altman plot model was
provided for comparison purposes. These evaluations are given in Equations (1-3). The Pearson’s
linear correlation coefficient evaluates between the MP60, as the gold standard, and the generated
continuous arterial blood pressures. It also investigates the systolic blood pressure (SBP) and diastolic
blood pressure (DBP) values, by taking the maximum and minimum values from the continuous
signal, respectively for SBP and DBP, between the MP60 IntelliVue Patient Monitor and the models.
The given error is in mmHg. The Rx,y value is in range between 0 and 1. The model and the reference
are perfectly correlated when the given Rx,y value equals 1.

MAE =
1
n

n∑
i=1

∣∣∣xi − yi
∣∣∣ (1)

RMSE =

√√
1
n

n∑
i=1

(xi − yi)
2 (2)
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Rx,y =

∑n
i=1(xi − x)(yi − y)[∑n

i=1(xi − x)2∑n
i=1(yi − y)2

] 1
2

(3)

where xi is the reference, yi is the estimated result, n is the number of samples, x is the mean of the
reference, and y is the mean of the predicted result.

This study evaluates two DCAE models. Basically, the autoencoder structure has the latent
space between the input and the output layers. The first model is generated based on the LeNet-5
CNN model [34]. Originally, this model worked for the digit recognition system. The architecture of
this model is relatively simple compared with other models. The convolution layer in this model is
regularly followed by subsampling. For the classification system, there are several fully connected
layers installed to the network. This study uses only the convolution layer with the subsampling from
the original LeNet-5 model to form the encoder. Meanwhile, the decoder utilizes the opposite way of
the encoder. The summary of the LeNet-5-based deep convolutional autoencoder (LDCAE) utilized in
this study can be seen in Figure A1 in Appendix A. From this figure, it can be seen that the original 5 s
of the one-dimensional PPG signal and the sampling rate of 128 Hz, with a size of 640 points, are used
for the input layer. For the encoder, this study applies an increasing filter size. All convolution layers
administer the rectified linear unit (ReLU) activation function, shown in Equation (4). This structure
also uses the same padding. After the input layer, for the encoder, the first convolution layer starts
with 16 filters and ends with 64 filters. However, the decoder works with initially 64 filters to 16 filters.
The output layer is equal to the input layer. This layer is the 5-s ABP signal. This model has equal total
parameters and trainable parameters, which total about sixty thousand parameters.

f(X) =max(0,X) (4)

where X is the input signal.
Another model is the deep convolutional autoencoder based on the U-Net architecture [35].

This model was originally applied for biomedical segmentation. One of the reasons behind the
uniqueness of the U-Net model is the concatenating between a layer in the encoder and another
layer in the decoder that has the same feature map. The detailed structure of the U-Net-based
deep convolutional autoencoder (UDCAE) used in this study is shown in Figure A2 in Appendix A.
In parallel with the LDCAE model, this model also has an input size of 640 data points of the PPG.
The encoder and decoder structures are also very identical to the LDCAE. However, the first filter
in the encoder has 32 filters and ends with 256 filters. Further, the concatenated layer filters in the
decoder are formed by considering the filter from the encoder layer. The UDCAE also utilizes the
ReLU activation function. This UDCAE model has an equal total number of settings and trainable
parameters, which total about three hundred thousand parameters. These numbers of parameters are
much bigger compared with the LDCAE structure.

Moreover, a 10-fold cross-validation (CV) system is conducted to evaluate the data generalization
to the models. This CV method uses a leave-testing-out cross validation technique, meaning that
the CV model shuffles only the training part and keeps the testing data outside the shuffling system.
The highest average BP of the CV fold, combining the DCAE models, is selected as the best single model.

Finally, this study deploys genetic algorithm (GA) optimization, named the genetic deep
convolutional autoencoder (GDCAE), to ensemble the ten CV models for each LDCAE and UDCAE.
Each CV model has equally distributed weights, meaning each model will have the chance to be
combined with other models. Therefore, the GA will have a total of 20 bits for each chromosome.
The chromosomes are encoded in 32 bits binary format. Zero means the model is not selected and
one means the model is selected. The GA is set with a single point crossover, 95% mutation rate and
2000 generations. The fitness function is given by Equation (5). This equation is a modified version of
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Equation (3). Specifically, Equation (5) calculates the average Pearson’s linear correlation coefficient
between SBP and DBP, meaning that the weights are equally distributed.

Rbp =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑n

i=1

(
xi,sbp − xsbp

)(
yi,sbp − ysbp

)
[∑n

i=1

(
xi,sbp − xsbp

)2∑n
i=1

(
yi,sbp − ysbp

)2] 1
2

+

∑n
i=1

(
xi,dbp − xdbp

)(
yi,dbp − ydbp

)
[∑n

i=1

(
xi,dbp − xdbp

)2∑n
i=1

(
yi,dbp − ydbp

)2] 1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5)

3. Results

This study utilizes deep convolutional autoencoder (DCAE) models to generate the continuous
arterial blood pressure signal (ABP) by using single photoplethysmography (PPG). The results produced
by the models are compared to investigate the better model compared to the MP60 IntelliVue Patient
Monitor as the gold standard. The evaluations cover the continuous arterial blood pressure signal with
systolic and diastolic blood pressures.

The training of the DCAE models can be seen in Figure 1 where UDCAE converges faster and
better than the LDCAE model. Furthermore, for the testing phase, the UDCAE model also provides
a preferable result compared with the LDCAE. In addition, the UDCAE model shows relatively
less fluctuation.

Figure 1. The training (a) and testing (b) of the LeNet-5 based deep convolution autoencoder (LDCAE)
and U-Net-based deep convolutional autoencoder (UDCAE) models.

Figure 2 shows the input of the PPG signal and its corresponding output of the continuous ABP
signals, generated by the DCAE-based models for the testing results. It can be seen that both models,
LDCAE and UDCAE, successfully produce continuous ABP. In addition, Figure 2 also reveals that SBP
and DBP can be accurately estimated. Both models display a fine estimation result in that the PPG has
either a significant or non-significant second peak.
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Figure 2. The photoplethysmography (PPG) input signal and arterial blood pressure (ABP) results
between LDCAE and UDCAE models in comparison to MP60 IntelliVue Patient Monitor.

After performing the continuous ABP, the evaluation of SBP and DBP is further investigated.
The maximum value of a 5-s segment is defined as SBP. Meanwhile, the minimum value is DBP.
This approach is deployed for both the DCAE models and the MP60, as the gold standard. The evaluation
of SBP and DBP can be seen on the error distribution graphs shown in Figure 3. From this figure,
both LDCAE and UDCAE are compared to the MP60 IntelliVue Patient Monitor values. It can be
seen that the UDCAE model produces a better outcome by delivering a higher frequency of results
approaching zero than the LDCAE model.

Furthermore, to investigate the model prediction accuracy of SBP and DBP, the results are
compared to the MP60 using Pearson’s linear correlation coefficient, which shows heterogeneous
outcomes. The UDCAE has a slightly better result in the SBP prediction. Meanwhile, the LDCAE
displays insignificantly better results for the DBP estimation. The detailed evaluation is shown in
Figure 4.

Another powerful approach given by the DCAE models is the ability to generate a continuous
ABP signal that is not interfered by any noise since a good-quality PPG is supplied. From Figure 5,
it can be seen that some signals produced by the MP60 IntelliVue Patient Monitor are relatively noisy.
However, this has been overcome by the DCAE models. Moreover, the predicted SBP and DBP values
are comparable, by comparing them to either the preceding or the succeeding cycles.

Cross-validation is later performed in order to evaluate the data generalization and ensemble
combination. The results show that the data have very high generalization. Good generalization is
given by the standard deviation of the Pearson’s linear correlation for SBP, DBP and the waveform
evaluations, given in Table 1. Moreover, the relatively small standard deviation of RMSE and MAE for
SBP, DBP and the waveform error evaluations are shown in Table 2.
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Figure 3. The error comparison between DCAE-based models and MP60 IntelliVue Patient Monitor.

Figure 4. The Pearson’s linear correlation comparison between DCAE-based models and MP60
IntelliVue Patient Monitor.
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Figure 5. The comparison of the noisy MP60 ABP signal and the generated ABP signal by the LDCAE
and UDCAE models.

Table 1. The Pearson’s Linear Correlation Coefficient Evaluation of LDCAE and UDCAE Models from
the Cross-Validation (CV) Method. Note: bold value is the best single CV model.

CV

Correlation Coefficient

SBP DBP Waveform
Average

LDCAE UDCAE LDCAE UDCAE LDCAE UDCAE

1 0.956 0.958 0.958 0.953 0.968 0.974 0.9612
2 0.960 0.961 0.954 0.942 0.969 0.974 0.9600
3 0.962 0.965 0.951 0.941 0.968 0.975 0.9603
4 0.958 0.969 0.962 0.953 0.968 0.976 0.9643
5 0.954 0.964 0.963 0.962 0.966 0.975 0.9640
6 0.951 0.960 0.959 0.956 0.966 0.974 0.9610
7 0.956 0.957 0.947 0.951 0.967 0.973 0.9585
8 0.959 0.964 0.949 0.956 0.968 0.976 0.9620
9 0.957 0.963 0.947 0.946 0.966 0.975 0.9590
10 0.958 0.968 0.963 0.947 0.967 0.975 0.9630

Mean 0.957 0.963 0.955 0.951 0.967 0.975
STD 0.003 0.004 0.007 0.007 0.001 0.001
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Table 2. Error Evaluations of SBP and DBP from LDCAE and UDCAE Models.

CV

SBP DBP

LDCAE UDCAE LDCAE UDCAE

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1 4.69 3.44 4.62 3.26 3.10 2.22 3.06 1.82
2 4.63 3.39 4.30 3.11 3.25 2.18 3.87 2.23
3 4.91 3.72 4.81 3.42 3.09 2.04 3.38 1.92
4 5.19 3.80 3.85 2.73 2.76 2.00 3.25 1.95
5 5.11 3.64 4.12 3.01 2.70 1.86 3.01 1.96
6 6.48 4.85 5.11 3.47 2.86 2.03 3.02 1.78
7 5.02 3.61 4.48 3.07 3.40 2.14 3.25 1.99
8 4.88 3.57 4.54 3.14 3.26 2.12 3.17 1.90
9 4.63 3.39 5.18 3.65 3.27 2.08 3.30 1.77
10 6.39 4.93 5.12 3.71 2.79 1.04 3.29 1.82

Mean 5.19 3.83 4.61 3.26 3.05 1.97 3.26 1.91
STD 0.68 0.57 0.45 0.31 0.25 0.34 0.25 0.14

The selection of the best single model from the CV results is evaluated based on Pearson’s linear
correlation coefficient given in Table 1. It can be seen that the fourth CV model provides the highest
average value between SBP and DBP, which is 0.9643. Hence, this model is selected as the best
single model.

After having the CV models, both from LDACE and UDCAE, the genetic algorithm-based
optimization deep convolutional autoencoder (GDCAE) is subsequently performed. The GA will
work as the selector of the DCAE models that will be combined for the ensemble system. As the
result, the CV models 1, 2, 3, 4, 5 and 10 are selected by the GA from the LDCAE model. Meanwhile,
GA selects all the UDCAE models, except the first model. The results also show the reliability of the
fourth model of the LDCAE and UDCAE systems.

The convergence of the GDCAE is shown in Figure 6. Several chromosome sizes of 4, 8, 16, 32 and
64 are investigated. The average result from the SBP and DBP of GDCAE is 0.98004. This GDCAE result
is better compared with the average value of SBP and DBP from the best single CV model, 0.960 and
0.961 for the LDCAE and UDCAE models, respectively. By having this combination, the GA-optimized
reconstructed signal is later performed. The results also provide some improvements in comparison
with the best CV model in Pearson’s linear correlation coefficient and error evaluations, which can be
seen in Table 3.

Table 3. Comparison between the LDCAE, UDCAE and GDCAE Models.

Method
Correlation Coefficient Error [mmHg]

Waveform SBP DBP Waveform SBP DBP

LDCAE R = 0.968 R = 0.958 R = 0.962 RMSE = 5.10
MAE = 3.52

RMSE = 5.19
MAE = 3.80

RMSE = 2.76
MAE = 2.00

UDACE R = 0.976 R = 0.969 R = 0.953 RMSE = 4.25
MAE = 2.77

RMSE = 3.85
MAE = 2.73

RMSE = 3.25
MAE = 1.95

GDCAE R = 0.984 R = 0.981 R = 0.979 RMSE = 3.46
MAE = 2.33

RMSE = 3.41
MAE = 2.54

RMSE = 2.14
MAE = 1.48

Furthermore, the Bland–Altman evaluation results can be seen in Table 4 and Figure 7. Even though
the GDCAE has a slightly inferior result for the mean value to the LDCAE and UDCAE respectively for
DBP and SBP, the GDCAE has lower standard deviation compared with other models. Furthermore,
for GDCAE, the 95% confidence band, ± 1.96 of standard deviation of the difference, produces smaller
distances compared with LDCAE and UDCAE both for SBP and DBP. Qualitative results are shown in
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Figure 7, which is a good indication that the GDCAE model provides better prediction results between
the 95% confidence band compared with the LDCAE and UDCAE models.

Figure 6. Genetic deep autoencoder (GDCAE) generation convergence.

Figure 7. Bland–Altman plot. (a) LDCAE systolic blood pressure (SBP); (b) UDCAE SBP; (c) GDCAE
SBP; (d) LDCAE diastolic blood pressure (DBP); (e) UDCAE DBP; (f) GDCAE DBP.
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Table 4. Bland–Altman DCAE Model Comparison.

Methods

Mean
[mmHg]

STD [mmHg]
−1.96 STD
[mmHg]

+1.96 STD
[mmHg]

SBP DBP SBP DBP SBP DBP SBP DBP

LDCAE −2.274 −0.468 4.661 2.717 −11.410 −5.793 6.862 4.857
UDCAE −0.686 1.099 3.790 3.057 −8.114 −4.893 6.742 7.091
GDCAE −1.659 0.665 2.978 2.030 −7.496 −3.314 4.178 4.644

4. Discussion

Initially in this study, the PPG signal is trained by using DCAE models, LeNet-5- and U-Net-based
models, to generate a continuous arterial blood pressure (ABP) signal. In this step, the PPG- and
MP60 IntelliVue Patient Monitor-generated continuous arterial blood pressure signals are compared.
Moreover, systolic and diastolic blood pressures are evaluated by root mean squared error (RMSE),
mean absolute error (MAE) and the Pearson’s linear correlation coefficient between the models with
the MP60 IntelliVue Patient Monitor as the gold standard. Finally, the GA-regulated DCAE based on
the cross-validation results is deployed to ensemble the model and evaluate the system.

In order to investigate the quality of the proposed methods, a comparative study to the
previously organized research was conducted. The comparison method included the dataset, input
signal, methodology, generative system, error evaluations and linear correlations. The details of the
comparative studies are given in Table 5. Sideris et al. [12] utilized the forty-two-patient dataset
from MIMIC PhysioNet, originally a two hundred-patient dataset, after applying some filtering steps
based on the quality of the blood pressure signal. This study also only used a single PPG signal.
The overlapped window size was used in order to form either the training or testing data. Further,
LSTM, one of the deep neural network methods, was applied for the prediction. One of the essential
achievements from this study is the ability to generate a continuous arterial blood pressure signal.
As it can be seen, the capability of LSTM is able to produce continuous arterial blood pressure by
only utilizing the PPG signal. However, it did not mention specifically about the RMSE of the DBP.
Nevertheless, in this study, they provided a table consisting of the tabulated RMSE result of SBP,
DBP and ABP. With full respect to all the authors in this study [12], we re-evaluate the ABP and SBP
results based on the corresponding table. This is conducted to recalculate the mean and standard
deviation, which were found to have very identical results to their reported results. Hence, we perform
the DBP calculation, in parallel to the aforementioned method for the ABP and SBP calculations.
The results of DBP, for mean and standard deviation, are 1.98±1.06 mmHg. In comparison with our
study, this study has slightly better results in the RMSEs of SBP and DBP error evaluations. However,
in this study, the GDCAE provides a better outcome in the waveform error evaluation, which is 0.984.
Moreover, our GDCAE also delivers a superior solution for the correlation coefficient for the waveform
evaluation. Meanwhile, Sideris et al. [12] did not provide any information about the SBP and DBP
correlation coefficient results.
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Another study related to blood pressure evaluation was conducted by Tanveer et al. [13]. This study
applied multiple vital signs, which are ECG and PPG. This study used the dataset of thirty-nine
patients, from originally ninety-three patients, of the MIMIC I PhysioNet database. This study had
16-s and 40-s window sizes, with 125 Hz of sampling frequency. This study also deployed the LSTM
method, similar to the study performed by Sideris et al. [12], alongside the ANN. This study provided
an outstanding result in the error estimation in mmHg. Based on the combination of LSTM and ANN
methods, their study produced significantly small RMSEs, which are 1.26 mmHg and 0.73 mmHg,
respectively for SBP and DBP. Moreover, the MAEs for SBP and DBP are respectively 0.93 mmHg and
0.52 mmHg. Identical to the error evaluation, the Pearson’s linear correlation coefficient evaluation
is also an exceptional finding. Nearly perfectly correlated systems are produced, which are 0.999
and 0.998 for SBP and DBP, respectively. This result is produced by the longer size, which is the 40-s
window size system. However, this method has a drawback. It did not provide the information about
generative continuous arterial blood pressure.

A study investigated by Zadi et al. [14] used fifteen young subjects. This study evaluated the
blood pressure based on two conditions, which are normal breath and breath hold. The autoregressive
moving average (ARMA) was deployed in the modeling. This study produced a relatively good result.
It has RMSEs of 7.21 and 5.12 mmHg, respectively for systolic and diastolic blood pressure. However,
neither correlation coefficient for waveform, SBP nor DBP was provided. Moreover, there was no
available generative continuous ABP signal investigation.

Another comparative study is the finding by Eom et al. [15]. This study was conducted on fifteen
subjects. It used several vital signs, which are ECG, PPG and BCG. The 5-s window size was also used
in this study. The combination of CNN, bidirectional gated recurrent unit (Bi-GRU) and attention
mechanism. The result showed the produced MAEs and standard deviations are 4.06 ± 4.04 and
3.33 ± 3.42 mmHg, respectively for SBP and DBP. However, this study has a disadvantage, which is no
generative continuous blood pressure estimation was performed.

The latest study conducted by Slapničar et al. [16] utilizing 510 subjects using a single PPG with
a ResNet-based model is used. The results showed 9.43 and 6.88 mmHg of MAE respectively for
SBP and DBP. Nevertheless, there is no given information about generative continuous arterial blood
pressure evaluation.

As it can be seen from the aforementioned information comparing our proposed methods to
previously performed studies, our study shows assorted advantages. Our proposed methods, working
based on the deep autoencoder and using only a single PPG signal, provide a leading achievement
for the correlation coefficient for the waveform of the generative continuous blood pressure signal.
Additionally, our proposed methods produce highly correlated results of the estimated SBP and DBP
to the MP60 IntelliVue Patient Monitor, as the gold standard.

However, this study has several limitations. The number of the patients utilized in this study is
relatively small. In addition, most of the utilized patient data are during surgery. This unconscious
condition may reduce the noise interfering the PPG signal, especially for the motion artifact. For this
reason, automatic-based filters should be applied in future work for conscious subjects. Furthermore,
the algorithm to evaluate SBP and the DBP from a 5-s sliding window can be improved. This technique
is selected based on the consideration that either SBP or DBP do not fluctuate significantly within five
seconds. Furthermore, more advanced statistical analysis can be applied. In addition, the noisy PPG
signal can contribute to the low-quality continuous ABP prediction, as it can be seen in Figure 8.
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Figure 8. Low-quality generated continuous ABP result.

5. Conclusions

This study demonstrates that deep convolutional autoencoder methods with GA-based
optimization have successfully evaluated the continuous arterial blood pressure system by only
using a single PPG signal. In addition, supporting the previous studies, this study also shows
straightforward information that the PPG is highly correlated with continuous arterial blood pressure.
Hence, the SBP and DBP measurements can be precisely achieved by only using a single PPG signal.
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Appendix A

 

Figure A1. LeNet-5 based deep convolution autoencoder (LDCAE) structure.
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Figure A2. U-Net based deep convolution autoencoder (UDCAE) structure.
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Abstract: Photoplethysmography (PPG) is an easy and convenient method by which to measure heart
rate (HR). However, PPG signals that optically measure volumetric changes in blood are not robust to
motion artifacts. In this paper, we develop a PPG measuring system based on multi-channel
sensors with multiple wavelengths and propose a motion artifact reduction algorithm using
independent component analysis (ICA). We also propose a truncated singular value decomposition
for 12-channel PPG signals, which contain direction and depth information measured using the
developed multi-channel PPG measurement system. The performance of the proposed method is
evaluated against the R-peaks of an electrocardiogram in terms of sensitivity (Se), positive predictive
value (PPV), and failed detection rate (FDR). The experimental results show that Se, PPV, and FDR
were 99%, 99.55%, and 0.45% for walking, 96.28%, 99.24%, and 0.77% for fast walking, and 82.49%,
99.83%, and 0.17% for running, respectively. The evaluation shows that the proposed method is
effective in reducing errors in HR estimation from PPG signals with motion artifacts in intensive
motion situations such as fast walking and running.

Keywords: photoplethysmography; motion artifact; independent component analysis; multi-wavelength

1. Introduction

Photoplethysmography (PPG) is an optical method used to detect volume changes in blood in the
peripheral circulation. PPG can determine these volume changes from the surface of the skin, and is a
low-cost and noninvasive method. This technique provides useful information related to cardiovascular
systems such as heart rate, oxygen saturation, blood pressure [1], and cardiac output [2,3], and is also
used to determine stress levels by analyzing the response of the autonomic nervous system based on
pulse rate variability (PRV) [4].

Recently, wearable PPG sensors have attracted attention because they can continuously measure
and monitor heart rate (HR), and numerous devices in the form of bands or watches (e.g., Apple
watch, Fitbit, and Samsung Gear) are being used to monitor instantaneous heart rate using PPG. While
these PPG-based devices have the advantages of being lightweight, portable, and easy to use, the
distortion of the signal due to motion artifacts in the PPG signal is a challenge to overcome. Currently,
these devices are only used for general wellness purposes because they are accurate only in limited
conditions such as resting or walking slowly.

PPG uses a sensor composed of light-emitting and light-receiving elements. When light is
irradiated to the body tissue by the light-emitting element, it is transmitted, reflected, and scattered
by the Beer–Lambert law in the tissues, blood vessels, and blood of the body and detected by the

Sensors 2020, 20, 1493; doi:10.3390/s20051493 www.mdpi.com/journal/sensors
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light-receiving element [5,6]. In general, a green, red, or infrared light-emitting diode (LED) is used as
a light-emitting unit, and a photo diode (PD) is used for a light-receiving unit [7]. LEDs used for PPG
measurements generally have a wavelength of 400–1000 nm. Short wavelengths do not reveal much
cardiac activity and blood vessel information due to low skin penetration depths, but are less affected
by motion artifacts due to the shorter light path. In the case of long wavelengths, the penetration depth
of the skin is deep, which can clearly indicate activity of the heart and blood vessels such as the dicrotic
notch, but these are affected by motion artifacts because of the long light path [8].

The normal frequency range for PPG signals is 0.5 to 5 Hz, while for motion artifacts it is 0.01 to
10 Hz [9–11]. Therefore, it is not easy to obtain a clean signal by applying a general filter to a PPG signal
contaminated by motion artifacts. In order to solve this problem, adaptive filters or moving average
filters are commonly used in the industrial field. However, satisfactory performance in removing
or reducing motion artifacts has not yet been achieved, and various signal processing methods for
reducing motion artifacts of PPG signals have been proposed.

Poh M.-Z. et al. developed an earlobe-wearable PPG measuring device and presented a method of
removing motion artifacts by applying adaptive noise cancellation (ANC) using an accelerometer [12].
The correlation between the heart rate calculated via electrocardiogram (ECG) and the heart rate
measured via PPG was shown as a performance evaluation. The results showed a correlation coefficient
of 0.75 (p < 0.001) when ANC was applied while running. Due to the size of the earlobe-wearable
measurement system, it is difficult to apply in everyday life and it may be inconvenient when
measuring because the attachment method uses neodymium magnets. In addition, the ANC method
requires an additional sensor, such as an accelerometer, because it must provide a reference signal for
motion artifacts.

In a recent study, Zhang Y. et al. proposed the use of optical signals rather than accelerometers as the
motion reference for the cancellation of motion artifacts [13]. The proposed framework uses the infrared
(IR) PPG signal as the motion reference and the green PPG signal for HR estimation. This approach helps
to reduce burden on additional hardware such as accelerometers and the computational complexity.

Reddy K. A. et al. proposed the CFSA (Cycle-by-cycle Fourier Series Analysis) method using
Fourier series analysis for each cycle using the autocorrelation of PPG signals [14]. The results show
that randomly applied Gaussian noise is removed. However, due to the limitation that CFSA can only
be applied to periodic signals, it is difficult to apply to situations where loss of periodicity occurs due
to distortion caused by motion artifacts during the actual PPG measurement.

In order to improve the performance of the noise reduction algorithm, methods using a
multi-channel PPG system have been proposed. Warren K. et al. measured six-channel PPG signals at
the forehead using six red and infrared LEDs [15]. They proposed an algorithm that selects the channel
with the least influence of noise by quantifying the amount of motion artifacts for each channel during
exercise. As a result, it was possible to automatically select an accurate channel from the measured
multi-channel PPG signals. However, since the algorithm does not include noise reduction, and selects
the signal with the lowest noise level from the measured signals, it is difficult to apply when motion
artifacts exist in all channels.

It is necessary to design a filter suitable for multiple channels, and various algorithms such as
independent component analysis (ICA), principal component analysis (PCA), and singular value
decomposition (SVD) have been actively studied [9,16–19]. PCA is used to find an orthogonal linear
transformation that maximizes the variance of variables, whereas ICA is used to find the linear
transformation of the basis vectors that are statistically independent and non-Gaussian. Unlike PCA,
the major feature of ICA is that the basis vectors are neither orthogonal nor ranked in order. The PPG
signal and the motion artifacts are independent components of the detected signal, so ICA or PCA can
be used to separate the cleaned PPG signal from these artifacts. However, in most studies, the number
of PPG channels used for verifying a multi-channel signal processing algorithm is limited, and the
relationship between the multi-channel signal and the algorithm is not clear.
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In this study, we develop a multi-channel PPG measurement to consider the effects of motion
artifacts on the direction of the sensor module and the change of penetration depth in the skin according
to the wavelength. Further, we propose a multi-channel motion artifact reduction algorithm based on
the signals obtained through this system. Using a multi-channel PPG system, 12-channel PPG signals
for three wavelengths are acquired in four directions (up, down, left, and right). We present a method
by which to reduce motion artifacts through applying ICA and a truncated SVD to 12 channels of
PPG signals. We extract the independent components using an ICA of three channels of PPG signals
measured in each module, then select the most pulsatile components. Using PCA, the statistical
method by which the basis vectors are ranked in order, we can obtain the cleaned PPG signal. PCA can
be implemented with powerful, robust techniques such as singular value decomposition (SVD) [20].
Ultimately, we implement PCA with SVD.

2. Materials and Methods

Our research focuses on reducing motion artifacts using multi-channel PPGs. In this section,
we introduce our in-house-built wearable multi-channel PPG measurement system and describe the
proposed motion artifact reduction algorithm using a multi-sensor module. We also describe in detail
the experimental protocol and data acquisition using the measurement system.

2.1. Wearable Multi-Channel PPG System

We developed a wearable multi-channel PPG system consisting of the main system, inertial
measurement units (IMUs), and PPG sensors, as shown in Figure 1a. The sensor module connected to
the main system has sensors arranged in four directions perpendicular to its center, with each sensor
consisting of a green, red, and infrared LED and one PD (Figure 1b). In addition, the sensor module
includes a nine-axis IMU to detect movement.

(a) (b)

Figure 1. In-house-built wearable multi-channel PPG acquisition system: (a) wearable PPG hardware
system consisting of a main system, sensor module (PPG and IMU), and battery; (b) the direction and
wavelength (G: green; R: red; IR: infrared) of the sensor for each channel when the wearable system is
worn on the wrist.

The system architecture of the in-house-built wearable multi-channel PPG measurement system
is shown in Figure 2. The main system consists of an ARM Cortex TM-M4-based microcontroller
(STM32F407VGT, STMicroelectronics, Geneva, Swiss), an analog front-end (AFE4900, Texas Instruments,
Dallas, TX, USA), and a Bluetooth module (PAN1321i, Panasonic, Osaka, Japan). The sensor module
was designed and implemented using four SFH7050 sensors (OSRAM, Munich, Germany) and
one motion sensor (MPU9250, InvenSense, San Jose, CA, USA). SFH7050 is a sensor for heart rate
monitoring or oximetry. It is an integrated sensor that contains three LEDs (green, red, and IR) of
different wavelengths.
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Figure 2. System diagram of the wearable multi-channel PPG acquisition system including PC
application software (S/W). The solid line indicates a wired connection (USART (Universal Asynchronous
Receiver/Transmitter), SPI (Serial Peripheral Interface) and I2C (Inter-Integrated Circuit)) while the
dashed line indicates a wireless connection.

The readings of the PPG sensor are acquired via the analog front-end under the control of the
microcontroller, then the amplified digital signals are sent to the microcontroller using serial peripheral
interface (SPI) communication. Motion sensor data are transmitted to the microcontroller via I2C
communication. The main system includes a Bluetooth module so that the data can be transferred
to a PC via wireless communication. Additionally, we have implemented in-house data acquisition
software for wireless transmission and storage to the PC.

The PPG signal of each channel was acquired at a 100-Hz sampling rate with a 24-bit high
resolution, while the three-axis acceleration data were acquired at 16 bits and 100 Hz. In this paper, we
use the vector sum magnitude of three-axis acceleration to determine the degree of motion.

2.2. Data Acquisition

The subjects were seven healthy males and one female without cardiovascular disease between
the ages of 20 and 30 years (mean age: 27.1 years). This study was approved by Hanyang University
IRB (IRB Approved no. HYI-17-048-4) and informed consent was received from all subjects before
the experiment.

Since ECG is characterized by robustness to motion artifacts, most studies use ECG as the ground
truth [21,22]. Therefore, in this study, the experiment was conducted using the polar chest strap
electrode with high reliability in ECG measurement. In addition, the electrode was wetted with water
before the experiment to minimize contact noise between the skin and the electrode. The R-peak could
be easily extracted from the measured ECG through the Pan–Tompkins algorithm.

PPG and ECG were measured in walking, fast walking, and running environments that may
occur in everyday life. The developed multi-channel PPG measurement system was worn on the
subject’s wrist to measure 12-channel PPG and acceleration signals. The ECG signal to be used as a
reference for the heart rate was obtained at a sampling rate of 300 Hz using the developed prototypes
of ECG acquisition systems [23] based on ADS1298 (Texas Instruments, Dallas, TX, USA) and the
chest strap (Polar Pro Strap, Polar Electro, Ltd., Kempele, Finland). In order to minimize the time
delay difference between the multi-channel PPG and ECG systems, two systems can simultaneously
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perform Analog-to-Digital Conversion (ADC) and transmit measured data based on trigger signals
transmitted from the in-house program. Figure 3 shows a photograph of a subject wearing an ECG
and multi-channel PPG measurement system. The ECG system for measuring the signal to be used
as a reference for HR is mounted on the chest strap, and the main system of the multi-channel PPG
measuring system is fixed with a stretchable band on the arm. The sensor module is also fixed with a
wrist support band.

Figure 3. The picture of the subject being equipped with an ECG and multi-channel PPG measurement system.

Experimental protocols consisted of resting, walking, fast walking, and running sessions.
The measured signals were normalized using PPG measured during the first 1-min resting session.
In order to minimize the effect between sessions, each session had a 1-min rest period. In the walking
(about 1 m/s) session, the subjects walked for 2 min at the typical pace of their daily activities.
Next, 2 min of fast walking (about 1.8 m/s) and 2 min of running (about 2.2 m/s) were performed.
The experiment was carried out by the subject reciprocating a distance of 20 m in the corridor of the
building. Subjects were allowed to move along both sides close to the wall instead of the center of the
corridor for a smooth turn of the subject at both turning points. In order to maintain the subject’s speed
at each session, the observer induced the subject to reach a fixed time at the start of the round trip.
By conducting this protocol two times for each subject, a total of 16 datasets were obtained (one additional
dataset whose ECG was damaged by the lead fault of the electrode was excluded). The number of beats
for walking, fast walking, and running were 2757, 2913, and 3563, respectively, for a total of 9233 beats.

2.3. Motion Artifact Reduction Algorithm Based on Multi-Sensors

The penetration depth of radiation in human skin is known to increase with increasing
wavelengths [24]. When measuring PPG in different directions and locations on the wrist, different
signals are detected for the same movement due to the diversity of the directions and distribution
of blood vessels in the skin of the wrist. Therefore, in the presence of motion artifacts caused by
movement, multi-channel PPG signals measured by sensors with multiple wavelengths and in various
locations contain information about blood vessel characteristics under the skin and movement in
various directions and depths.

In this study, we extracted three independent component signals via preprocessing and
independent component analysis for three channels of PPG signals with three different wavelengths
(green: solid line arrow; red: dashed line arrow; infrared: dotted line arrow) for each of the four

101



Sensors 2020, 20, 1493

sensors, as shown in Figure 4. Among these signals, the signal with the component pulsating the most
was selected, and a reconstructed PPG signal was obtained by applying the truncated SVD to a total of
four pulsating component signals selected one by one.

Figure 4. Block diagram of signal flows for each sensor and proposed algorithm.

Figure 5 shows the detailed proposed algorithm. The raw signals measured by the sensors
contained various noise components such as power line interference, baseline drift, and ambient noise.
In order to remove or reduce these noises, digital filtering was performed using a 3-order Butterworth
band pass filter with cutoff frequencies of 0.5 and 5 Hz.

Figure 5. Flowchart of the proposed multi-sensor-based motion artifact reduction algorithm. (MMR is
defined as Maximum to mean ratio).
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In little or no motion environments, all channel signals can be measured with high quality.
Therefore, heart rate can only be obtained by detecting peak points in PPG signals without any special
processing. In this case, we used a signal with a green wavelength that is known to be measured well
on the wrist. To quantify the motion, we used the three-axis accelerometer of the IMU mounted on
the sensor module. High-pass filtering was performed to remove the gravity component from the
acceleration, and the vector sum (accsum) was calculated for three axes of the gravity-free accelerometer,
as shown in Equation (1). The threshold of the presence or absence of motion was set to the vector sum
value to distinguish resting and walking.

accsum =
√
(acc2

x + acc2
y + acc2

z) (1)

In the presence of movement, PPG signals are a mixture of pulsation and motion artifact components.
In this multi-PPG system, the PPG measured by sensors facing different directions showed the change
of blood volume of various depths at each location, so the pulsatile component of each sensor can
be extracted through ICA algorithms. However, because the output components of the ICA appear
in random order and the signals can be reversed, a reverse-check and pulsatile component selection
algorithm is required. The reverse-check algorithm (shown as a dotted box in Figure 5) performs
differential and peak detection on each independent component (IC), calculates the average of the peak
values, and applies the same process to the inverted signal. Due to the morphological characteristics of
the PPG, the IC signal with the largest average peak value among the inverted and non-inverted signals
becomes the correct PPG. Therefore, the IC with a large average value is the output.

The number of outputs of the ICA is the same as the number of input channels, and the output
signals are randomly output regardless of the order of the input signals. The pulsation component is
periodic because it is a change of blood volume that occurs with every beat of the heart. Therefore,
by analyzing the periodicity for each IC signal, it is possible to select an IC with a pulsation component.
We applied fast Fourier transform (FFT) to IC signals of each sensor module and selected one pulsatile
component based on the maximum to mean ratio (MMR) in power spectral density.

As shown in Figure 4, the four components selected based on the MMR were pulsatile components
measured at different locations. The truncated SVD [25] was applied to reduce the motion artifacts
remaining on the pulsatile components extracted from four sensor modules with different directions,
and to obtain the PPG signal that best reflected the change in blood volume. By applying the truncated
SVD, the PPG is reflected in the largest singular value. Therefore, reconstruction using only this
singular value yields a pure PPG signal with motion artifacts removed.

Figures 6–8 show an example of applying the proposed motion artifact reduction algorithm to a
subject’s data. Figure 6 shows the 12-channel PPG signals measured in the running state most affected
by motion artifacts. The x-axis represents the time elapsed after 70 s, including 1 min of resting and
10 s of running.

Figures 7 and 8 show the results of applying the algorithm to each step shown in Figure 5. Figure 7
shows the 12 ICs after passing the ICA. Figure 8a shows four ICs selected through pulsatile component
selection for each sensor module, and Figure 8b shows the results of applying the truncated SVD.

Figure 6 shows a 12-channel PPG signal measured from sensors placed in four directions while
running at about 8 km/h. The four rows represent signals measured by the four sensor modules, and
each column is a frequency-specific (green, red, and infrared) signal that can reflect information of the
same depth. It can be seen that all channels are contaminated by motion artifacts. The R-peak time
points extracted from the ECG are marked with the symbol (�), and purple dotted lines represent the
heart rate. The Pan–Tompkins algorithm was used to detect R-peaks from ECG data [26]. In this paper,
all algorithms (including the motion artifact reduction algorithm) were implemented in Matlab 2019
(MathWorks Inc, Natick, MA, USA).

Figure 7 shows the 12 independent components (ICs) applying ICA to the 12-channel input PPG
signals shown in Figure 6. This represents the same number of ICs as the number of input signals
and includes pulsatile, motion artifacts, and other noise components for the signals acquired from
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each sensor. Each component appears in random order and some may appear as inverted signals.
Each sensor module has three ICs for PPG signals from three wavelengths, which are the signals shown
in each row of Figure 7.

In Figure 7, the most periodic signals for the IC signals and their inverted signals for each sensor
module are IC1, IC1, and IC3 for the sensor modules 1, 2, and 3, respectively; the signals for sensor 4
are unclear. The results of applying the reverse-check and pulsatile component selection algorithm
to select these pulsatile components are shown in Figure 8a. One pulsatile signal was selected for
each sensor. In this example, the signals selected for each of the sensor modules 1, 2, and 3 are the
reversed signals of IC1 and the reversed signal of IC1 and IC2. After applying the truncated SVD to
the four selected ICs, reconstruction using only the largest singular value yielded a pure PPG signal
with motion artifacts reduced, as shown in Figure 8b.

Figure 6. Twelve-channel PPG signals measured while running at about 8 km/h.

Figure 7. ICA components of 12-channel PPG signals.
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(a)

(b)

Figure 8. Selected independent components and motion artifact reduced PPG signals. (a) Selected ICs
applying the reverse-check and pulsatile component selection algorithm, (b) reconstructed PPG signal
based on the truncated SVD.

3. Experimental Results

In order to evaluate the proposed algorithm, the motion artifact reduction algorithm was applied
to the signal measured by the multi-channel PPG measurement system, and the indexes for evaluating
the performance of the algorithm were calculated by comparing the ECG with the reference signal.
Sensitivity (Se) as Equation (2), positive predictive value (PPV) as Equation (3), and failed detection rate
(FDR) as Equation (4) were used as performance indexes [27]. In these equations, TP (True Positive) is
the number of peaks detected, FN (False Negative) is the number of peaks non-detected, and FP (False
Positive) is the number of artifacts or noise classified as peaks. Algorithms based on the best signal
selection [15], ICA [28], or SVD [25] were compared with the proposed method and evaluated using
performance indexes.

Se =
TP

TP + FN
× 100% (2)

PPV =
TP

TP + FP
× 100% (3)
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FDR =
FP
TP
× 100% (4)

Figure 9 shows the results of applying the proposed method and algorithms based on the best
signal selection, ICA, or SVD to the measured data at about 8 km/h. The R-peak time points extracted
from the ECG as a reference for the heartbeat are indicated by the (�) symbol and purple dotted lines.
Compared with other methods, the proposed algorithm is clearest in terms of the heart rate extraction
of PPG signals and had a low FDR.

Figure 9. Example of applying the proposed method and algorithms based on best signal selection,
ICA, and SVD during running at about 8 km/h.

Table 1 shows Se, PPV, and FDR as performance indexes for peak detection on 12-channel data
measured during walking, fast walking, and running. As the intensity of the motion increases,
Se decreases and PPV changes less. From the results, it can be seen that as the motion artifacts became
more severe, the false negative (FN) for beat detection increased a lot while the false positive (FP)
tended to fall slightly. In terms of wavelength, the green wavelength channels Ch1, Ch4, Ch7, and
Ch10 had high sensitivity.

Table 1. Comparison of the results of Se, PPV, and FDR for the 12-channel signals acquired during
walking, fast walking, and running conditions.

Conditions
Performance
Parameters

Channels

Ch1 Ch2 Ch3 Ch4 Ch5 Ch6

Walking

Se (%) 93.66 91.14 92.22 97.07 88.33 91.27
PPV (%) 97.63 92.19 94.03 99.10 92.77 93.99
FDR (%) 2.43 8.47 6.35 0.91 7.79 6.39

Ch7 Ch8 Ch9 Ch10 Ch11 Ch12

Se (%) 96.59 88.46 90.36 96.48 90.39 92.10
PPV (%) 99.47 92.96 95.96 98.30 92.68 94.80
FDR (%) 0.53 7.57 4.21 1.73 7.90 5.49

Fast
walking

Ch1 Ch2 Ch3 Ch4 Ch5 Ch6

Se (%) 84.17 80.47 82.80 93.69 77.07 79.73
PPV (%) 98.23 94.10 95.70 99.08 94.07 95.48
FDR (%) 1.80 6.27 4.49 0.93 6.30 4.73

Ch7 Ch8 Ch9 Ch10 Ch11 Ch12

Se (%) 91.03 78.95 82.74 90.05 80.50 84.64
PPV (%) 99.43 93.60 95.21 98.58 94.29 95.04
FDR (%) 0.57 6.84 5.03 1.44 6.06 5.22
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Table 1. Cont.

Conditions
Performance
Parameters

Channels

Running

Ch1 Ch2 Ch3 Ch4 Ch5 Ch6

Se (%) 72.48 67.67 68.68 76.53 66.54 68.21
PPV (%) 99.42 99.12 99.41 99.60 99.43 99.17
FDR (%) 0.58 0.89 0.59 0.40 0.57 0.84

Ch7 Ch8 Ch9 Ch10 Ch11 Ch12

Se (%) 77.28 67.53 69.36 76.60 66.14 66.94
PPV (%) 99.57 99.05 99.29 99.69 98.75 99.04
FDR (%) 0.43 0.96 0.72 0.31 1.27 0.97

Table 2 shows the performance parameters Se, PPV, and FDR from algorithms based on the best
selection method, SVD, ICA, and proposed method for the data measured in walking (2757 beats),
fast walking (2913 beats), and running (3563 beats). As the movement increased with walking, fast
walking, and running, the detection rate of heart beats decreased. The performance of the proposed
method for walking was 99%, 99.55%, and 0.45% for Se, PPV, and FDR, respectively. The performance
of the proposed method was higher than that of the other algorithms, and the SVD-based algorithm
had the lowest accuracy. For the fast walking and running conditions, the proposed method showed
the best performance, as well as for these two conditions with a lot of motion.

Table 2. Comparison of the results of Se, PPV, and FDR from algorithms based on the best signal
selection method, SVD, ICA, or the proposed method for signals acquired under the walking, fast
walking, and running conditions.

Conditions Performance Best Signal Selection SVD ICA Proposed

Walking
Se (%) 97.07 91.30 98.65 99.00

PPV (%) 99.10 92.89 99.03 99.55
FDR (%) 0.91 7.65 0.98 0.45

Fast walking
Se (%) 93.69 82.33 95.42 96.28

PPV (%) 99.08 93.71 99.06 99.24
FDR (%) 0.93 6.71 0.95 0.77

Running
Se (%) 77.28 68.00 79.98 82.49

PPV (%) 99.57 99.09 99.81 99.83
FDR (%) 0.43 0.92 0.19 0.17

4. Discussion

ECG is a representative signal for calculating heart rate that measures the bio-potential generated
by electrical signals that control the expansion and contraction of the heart. Another signal is that
of PPG, a light-based technology to sense volumetric changes in blood in peripheral circulation as
controlled by the heart’s pumping action. ECG produces an electrical signal that is robust in the
presence of motion artifacts and has the advantage of stably extracting heartbeats even compromised
by motion. However, ECG signals are obtained by measuring a weak electrical potential difference
between two points, and thus cannot be measured on a single arm. In the case of using both hands
with more electrical potential difference, the user must intentionally make contact with the electrode.
In contrast, PPG has an advantage over ECG in terms of user convenience and wearability, as it can
take measurements in any location with a high concentration of blood vessels.

Over the past decade, there HR monitors and wearable fitness equipment have been made
commercially available. Many people use HR monitors to inform their training and to access
aerobic fitness.

In the clinical field, physicians and trainers often refer to physiological and behavioral data
such as energy consumption, step counts, sleep/wake information, and HR obtained from patients’
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wearable devices. Energy consumption is calculated using HR and accelerometer motion information.
If accurate HR information is provided, more accurate energy consumption can be estimated. Accurate
HR monitoring is an essential component of a systematic exercise prescription because a target HR is
set to guide patient-specific exercise intensity.

As another field of the clinical application of HR, heart rate variability (HRV) is widely used
to investigate the state of autonomic nervous systems and related diseases. HRV is calculated
using beat-by-beat HRs, and accurate HR detection is required because HR errors lead to false ANS
(Autonomic nervous system) analysis.

Currently, many devices are being used to monitor heart rate in the form of bands or watches
(e.g., Apple watch, Fitbit, and Samsung Gear), and these PPG devices have the advantages of being
lightweight, portable, and easy to use. However, the PPG signal is very vulnerable to motion artifacts.
It is well known that the depth of penetration of light into human skin increases with decreasing
wavelength [29]. Therefore, the wavelength of the LED and the direction of the PPG sensor module are
important factors for analyzing the influence of motion artifacts in the PPG signal. In this study, we
developed a 12-channel PPG measurement system with up, down, left, and right directions using three
wavelengths (green, red, and infrared) for each direction. In addition, we proposed a multi-channel
PPG motion artifact reduction algorithm based on independent component analysis and truncated
singular value decomposition. In this study, PPG signals were measured at multiple skin penetration
depths according to LED wavelength. In addition, PPG signals for each position and direction of blood
vessels in the skin were measured through sensor modules with up, down, left and right directions.
In order to apply independent component analysis to multi-channel PPG signals, signal inversion
and pulsation component detection ability were confirmed by comparing MMR in the power spectral
density through FFT. Furthermore, truncated singular value decomposition was applied to the detected
pulsating components to reduce motion artifacts. When the proposed algorithm was applied to
the signal measured during running using the developed system, a sensitivity of 82.49%, a positive
predictive value of 99.83%, and a false detection rate of 0.17% were obtained. These results are due
to the motion artifact reduction algorithm applied to the multi-channel PPG measurement system
using various wavelengths and directions of the sensor modules. As the wavelengths increased, the
change in blood volume at a deeper depth could be measured. Therefore, each PPG has a different
amount of information, and when applied to the ICA algorithm, a pulsatile component can be obtained.
In addition, the pulsatile components acquired from the sensor modules in different directions are
represented as a single PPG signal that shows the change in blood volume without being affected by
motion through the truncated SVD.

The proposed algorithm extracts the independent component signals from PPG signals with
different wavelengths measured for each sensor module, as shown in Figure 4. In addition, in order to
compare the effect of the wavelength and the direction of the sensor, we applied the proposed algorithm
for PPG signals with the same wavelength in each senor module. This approach did not provide clear
results as compared with the use of ICA-based algorithms for each sensor module. This means that
signals measured by LEDs of the same wavelength in each sensor are measured through different
positions and paths of light, so that information on motion artifacts is inconsistent when applying
independent component analysis. Therefore, applying independent component analysis to the signals
measured by the same sensor module rather than the same wavelength signals can increase the motion
artifact reduction performance.

The limitation of this study is that the protocols for PPG measurement were limited to walking, fast
walking, and running; therefore, more detailed protocols need to be set up to remove the noise caused
by various kinds of movements in real life. Additional experiments and research are needed to develop
real-world applications. As further work, we plan to quantitatively analyze the effects of motion
artifacts on PPG signals at various speeds on the treadmill. In addition, long-term measurements are
required to analyze the various features in the signal measured during physical activity. We will try to
diversify the protocols and measure data in various environments through long-term experiments.
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The proposed method is effective for monitoring heart rate. Furthermore, if the beat-to-beat
interval can be obtained precisely like the R-peak of ECG in the presence of motion artifacts, it can be
applied to various fields, such as emotion or stress, by analyzing the autonomic nervous system based
on pulse rate variability.
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Abstract: We present an eating detection algorithm for wearable sensors based on first detecting
chewing cycles and subsequently estimating eating phases. We term the corresponding algorithm class
as a bottom-up approach. We evaluated the algorithm using electromyographic (EMG) recordings
from diet-monitoring eyeglasses in free-living and compared the bottom-up approach against two
top-down algorithms. We show that the F1 score was no longer the primary relevant evaluation metric
when retrieval rates exceeded approx. 90%. Instead, detection timing errors provided more important
insight into detection performance. In 122 hours of free-living EMG data from 10 participants, a total of
44 eating occasions were detected, with a maximum F1 score of 99.2%. Average detection timing errors
of the bottom-up algorithm were 2.4 ± 0.4 s and 4.3 ± 0.4 s for the start and end of eating occasions,
respectively. Our bottom-up algorithm has the potential to work with different wearable sensors that
provide chewing cycle data. We suggest that the research community report timing errors (e.g., using
the metrics described in this work).

Keywords: automated dietary monitoring; eating detection; eating timing error analysis; biomedical
signal processing; smart eyeglasses; wearable health monitoring

1. Introduction

Eating occasion detection is at the core of automated dietary monitoring (ADM) in humans,
targeting healthy diet management [1,2]. We regard intake to consume food pieces with dietary activities
including ingestion, chewing, and swallowing [3] as an eating occasion if all dietary activities start
and end in a given temporal relation. Meals or snacks are typical examples of eating occasions. Eating
occasions thus have a start and end denoting the timing of intake beginning and intake completion.
For solid and semi-solid food, chewing (i.e., the cyclic opening and closing of the jaw) is typically the
longest activity within eating occasions [3]. We therefore consider chewing as representative of eating
occasions, denoted as eating events in this work.

Recording chewing to interpret eating has been attempted in a variety of approaches intended
for free-living ADM (see Section 2), as accurate eating event timing detection is essential for diet
management. For example, users could be reminded to check vital parameters such as glucose level
when the initial moment of an eating event is detected. Similarly, users could be asked to confirm
food details or take a photo of leftovers immediately after an eating event ends. In both examples it is
important that timing errors of the eating event detection are minimal. Hence, timing errors determine
whether an eating event detection approach is suitable across the ADM application spectrum.

Detecting dietary activities, including eating events, in wearable or ambient sensor data is a
complex pattern analysis and modelling problem due to the inter- and intra-individual variability in
free-living behaviour patterns. Approaches to eating event detection and analysis can be categorised
as top-down or bottom-up sensor data processing: In the top-down approach, eating events are
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detected by applying sliding windows to the sensor time series and applying feature pattern models.
If necessary, further information details such as chewing cycles, intake gestures, etc. could be derived
using the detected eating events. Conversely, in a bottom-up approach, individual dietary activities are
modelled and the result is subsequently used to detect eating events. The early abstraction in bottom-up
processing may help to deal with varying dietary activity patterns. Furthermore, bottom-up processing
fits into hierarchical data processing schemes of resource-constrained wearable and IoT systems, where
instead of raw data, derived parameters or events are communicated between system components.

This investigation proposes a bottom-up eating detection algorithm and compares it with two
top-down algorithms. The bottom-up eating detection algorithm first detects individual chewing cycles.
Retrieved chewing cycles are then used to detect eating events and estimate start and end of eating
occasions. In contrast, top-down algorithms apply sliding windows over the sensor time series to
detect eating events. The bottom-up algorithm proposed here is potentially agnostic to the particular
sensor used, as long as chewing cycle information is acquired. In particular, the following contributions
are made:

1. We present a bottom-up algorithm for eating event detection based on chewing time-series data.
The algorithm works based on chewing cycle information and has only four parameters.

2. We evaluate and compare bottom-up and top-down eating event detection algorithms in
data of a free-living study, where participants continuously wore unobtrusive diet monitoring
eyeglasses. The diet eyeglasses recorded electromyographic (EMG) data of the temporalis muscles.
We analysed retrieval performance as well as start and end timing errors of detected eating events.

3. We describe and analyse a procedure to derive eating event reference data in a free-living context.
Our approach combines participant self-reports with a mostly unobtrusive chewing reference
measurement. The analysis confirms that our reference estimation approach reached a timing
resolution of less than one second in free-living behaviour data.

2. Related Work

ADM has received increasing research interest over the last decade, where eating event detection
based on data from various body-worn and ambient sensors has been frequently considered. Most
investigations that considered quantitative performance for eating event detection focused on detection
accuracy or retrieval metrics. In this investigation, we highlight that timing errors are critical for
detection performance and investigate timing errors specifically.

Eating event detection has often been approached by top-down data processing. For example,
Dong et al. used a wrist motion sensor to detect eating, reporting 81% accuracy in 449 hours of free-living
data [4]. Thomaz et al. also used a wrist-worn three-axis accelerometer to monitor eating in free-living
conditions [5]. The random forest classifier yielded 66% precision and 88% recall for one day of data and
intra-individual analysis. Bi et al. implemented a headband carrying a bone-conducting acoustic sensor
and reported eating detection performance of over 90% [6]. Farooq et al. used accelerometer-equipped
eyeglasses to detect food intake in the lab and in short-term free-living [7]. The highest F1 score
of 87.9% ± 13.8% (mean ± standard deviation) was achieved with a 20 s sliding window using a
k-nearest neighbour classifier. Studies involving multiple sensor modalities are a recent trend in eating
event detection applications. Wahl et al. implemented an eyeglasses prototype equipped with an
inertial measurement unit (IMU), an ambient light sensor, and a photoplethysmogram (PPG)sensor
for the recognition of nine daily activities, including eating [8]. The classification reached an average
accuracy of 77%. Merck et al. realised a multi-device monitoring system involving in-ear audio, head
motion, and wrist motion sensors, which could recognise eating with 92% precision and 89% recall [9].
Papapanagiotou et al. proposed an ear-worn eating monitoring system based on PPG, audio and
accelerometer, achieving an accuracy up to 93.8% and class-weighted accuracy up to 89.2% in eating
detection [10]. Bedri et al. used an ear-worn system for chewing instance detection. An F1 score of over
80% and accuracy of over 93% was reported [11]. Timing error for eating start was 65.4 s. The authors did
not report the timing error at eating ends. Doulah et al. investigated the effect of the temporalresolution
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of eating microstructure analysis, including the duration of eating events [12]. The analysis did not
yield insight into start and end time estimates for eating events. In our prior investigation of top-down
eating detection based on free-living EMG recordings, a one-class support vector machine (ocSVM)
yielded an F1 score of 95%. Timing error analysis showed 21.8 ± 29.9 s for eating start and 14.7 ± 7.1 s
for eating end [13].

For the bottom-up data processing approach, dietary activities that characterise eating are
modelled, and eating is subsequently derived from these activities. Chewing has frequently been
investigated as a basis for subsequent eating analysis. Amft et al. investigated chewing detection for
ADM using an ear-plug acoustic sensor, capturing vibration patterns during chewing [14]. Bedri et al.
proposed earwear using proximity sensors for the detection of tiny deformations of the outer ear during
chewing [15]. Eating could be detected with 95.3% accuracy with a user-dependent classification.
Zhang et al. was the first to use smart eyeglasses to detect chewing, analysing EMG electrode positions
in eyeglasses frames and the effect of hair on the EMG signal [16]. EMG electrodes were embedded
into the eyeglasses’ temples, and chewing cycles were detected with a precision and recall of 80%.
In subsequent work [17], a refined version of the eyeglasses was used for eating detection, yielding an
accuracy of above 95% in natural, free-living data. Furthermore, it was demonstrated that soft foods
such as banana provide identifiable EMG signatures. Chung et al. incorporated a force-sensitive load
cell in eyeglasses hinges to monitor temple movement during chewing, head movement, talking, and
winking. A classification of these activities yielded an F1 score of 94% [18]. Farooq et al. attached a
strain sensor at the temporalis muscle area to obtain chewing cycle information [19]. With additional
accelerometer data, the authors reported an F1 score of 99.85% for recognising eating from other
physical activities in laboratory recordings.

So far, timing performance has been rarely reported, partly because methods to derive eating
reference in free-living studies were missing. Here, we evaluated three algorithms in free-living EMG
recordings with a realistic ratio of eating vs. non-eating time. All algorithms can be used with one
or more sensors and in multimodal configurations. In particular, the bottom-up algorithm builds on
chewing cycle information extracted from sensor data, and thus can be applied with other sensors
besides EMG by adapting the chewing cycle extraction. Our current work focuses in particular on the
analysis of timing errors.

3. Eating Event Detection Algorithms

We propose a bottom-up eating event detection algorithm and compare it to two top-down
algorithms. As input for all algorithms we consider a multi-source sensor data stream of chewing
cycle measurements, corresponding to a random process Xn(t), where n indexes the random variables
(e.g., sensor channels or features) and t is the time index. For example, the sensor could be an EMG
monitor measuring the temporalis muscle contraction or acoustic transducers measuring vibration
patterns due to food fracture. An overview of the algorithm pipelines for all algorithms considered is
shown in Figure 1. Below, we formally describe the algorithms.

3.1. Bottom-Up Algorithm

The idea of this algorithm is to estimate eating events from the density of chewing cycles, where a
relatively high frequency of chewing cycles indicates eating. After pre-processing multi-source sensor
signals Xn(t), chewing cycle onsets Cn were detected. Subsequently, a sliding window of length w0,
was applied around each retrieved onset of Cn (i.e., with a step size of one onset). Then, the sliding
window moved to the next detected onset. At every onset, we calculated chewing cycle frequency fn

as the number of detected onsets per time interval w0. A chewing segment start tn, start was detected
as the first onset in Cn at the signal start or an onset after a preceding detected chewing segment,
where fn equalled or exceeded θ0. The end of a chewing segment tn, end was determined as the onset
in Cn where fn equalled θ0 and the (θ0 − 1)-th subsequent fn equalled 1. Detection results of n sensor
sources were combined and post-processed by eliminating gaps between adjacent groups of chewing
segments. The details of each step are described below.
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Bottom-up eating event detectionTop-down eating event detection

Input: Random process Xn(t), e.g. time series of multi-source sensor data

Signal pre-processing

Chewing segment detection

Fusion of multi-source detection

Gap elimination

Signal pre-processing

Chewing cycle detection

Chewing segment detection

Fusion of multi-source detection

Output: Eating events

Gap elimination

Variant 1: 
Threshold-

based
algorithm

Variant 2: 
ocSVM 

detection 
algorithm

Figure 1. Overview of the top-down and bottom-up eating event detection algorithms investigated in
this work. White processing blocks indicate functions shared by the algorithms. Shaded processing
blocks are specific functions for each algorithm. Both top-down algorithms follow the same detection
pipeline with different implementations of the “Chewing segment detection” block. ocSVM: one-class
support vector machine.

3.1.1. Signal Pre-Processing

Pre-processing steps vary depending on the type of sensors used. It is likely that the human body
acts as an antenna and picks up power line noise. Thus, we applied a notch filter to raw signal Xn(t) to
eliminate potential power line interference at frequency fnf. In this study, we used dual-channel smart
eyeglasses EMG data sampled at 256 Hz per channel. Hence, Xn(t)(n = 1, 2) represents EMG data
in this case. The notch filter frequency was set to fnf = 50 Hz. Baseline wander and motion artifacts
were removed using a high-pass filter with a cut-off frequency of fhpf = 20 Hz—a typical value for
EMG signal processing. The resulting data Xn, hpf were rectified for detection. The pre-processed and
rectified data were abbreviated as Xn. The pseudo code is in Algorithm block 1.

Algorithm block 1 : Signal pre-processing.

Input: Multi-source free-living data Xn(t)

Parameter: Notch filter band-stop frequency fnf, high-pass filter cut-off frequency fhpf

Output: Pre-processed data Xn

1: Xn,nf = NotchFilt(Xn(t), fnf)

2: Xn,hpf = HighPassFilt(Xn, nf, fhpf)

3: Xn = |Xn, hpf|

3.1.2. Chewing Cycle Detection

Chewing cycle detection was performed by adapting the EMG onset detection principle initially
proposed by Abbink et al. [20]. Every chewing cycle has an onset time corresponding to the moment
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when the muscle contraction starts, and an offset time corresponding to the contraction end. Hence, the
number of onsets should represent the number of chewing cycles. First, a sliding window of size w was
applied to Xn. The value of w should be no larger than the duration of a typical chewing cycle. Here
we used 0.4 s (100 samples for the EMG signal), as chewing cycle frequency typically ranges between
0.94 and 2.17 Hz [21]. We derived a conditional summation of sensor samples within the window: For
samples 0 to w/2 within the current window starting at i0, we derived index1 = ∑w/2

i=0 1 if Xn[i0 + i] <
θC. For samples in the second half-window, index2 = ∑w

i=w/2+1 1 if Xn[i0 + i] > θC was summed.
Finally, index = index1 + index2 was derived. Parameter θC was set to μ+ 3× σ, where μ was the mean
and σ the standard deviation derived from baseline noise of Xn. Both μ and σ were estimated across
training data of all participants. The amplitude of the baseline noise was assumed to be Gaussian
distributed and threshold θC was set to cover 99% of the confidence interval. As the window with
size w was slid with a step size of one sample, an index in range [0, w] was obtained for each sample,
forming a new time series In per signal source n. To determine chewing onsets, we derived points of
In that exceeded θP × w, with θP in the range [0, 1]. Considering the chewing frequency, the temporal
distance between neighbouring detection points of In should be larger than tinterval = 1/3 s. Detected
chewing cycle onsets were sequentially saved in a list Cn. The pseudo code is shown in Algorithm
block 2.

Algorithm block 2 : Chewing cycle detection.

Input: Pre-processed data Xn

Parameter: EMG burst threshold θC, sliding window size w, peak threshold θP, peak interval tinterval

Output: A list of detected chewing cycle onsets Cn

1: index = 0, In ← ∅, Cn ← ∅

2: for (i = 1, i < w/2, i ++) do

3: if Xn[i] < θC then

4: index+ = 1
5: for (i = w/2, i < w, i ++) do

6: if Xn[i] > θC then

7: index+ = 1
8: for (i = w/2 + 1, i < length(Xn)− w/2, i ++) do

9: if Xn[i − w/2 − 1] < θC then

10: index− = 1
11: if Xn[i − 1] < θC then

12: index+ = 1
13: if Xn[i − 1] > θC then

14: index− = 1
15: if Xn[i + w/2] > θC then

16: index+ = 1
17: In.append(index)
18: for (i = 0, i < length(In)− 2, i ++) do

19: if Ii < Ii+1 and Ii+1 > Ii+2 and Ii+1 > θP then

20: Cn.append(i + 1)

21: i+ = tinterval

3.1.3. Chewing Segment Detection

We applied a sliding window of size w0 to Cn, with the start of the window located at the first
chewing cycle onset Cn[0], and subsequently slid to the adjacent onset until reaching the end of Cn.
With the window starting at Cn[j], the chewing cycles in the window were counted and noted as the jth
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chewing cycle frequency fn[j]. We applied a criterion fn[j] ≥ θ0 to confirm that onset Cn[j] belonged to
a chewing segment. Correspondingly, the first onset in Cn that also satisfied the criterion fn[jstart] ≥ θ0

was considered as the start of the first chewing segment tn, start[0]. An onset with fn[jend] = θ0 and
fn[jend + θ0 − 1] = 1 indicated that Cn[jend + θ0 − 1] was the only onset in the latest window, that is,
the final onset/end of the k-th estimated chewing segment, denoted as tn, end[k]. The next onset after
tn, end[k] that satisfied the criterion fn[j] ≥ θ0 was considered as the (k + 1)-th chewing segment start
tn, start[k + 1]. The pseudo code is shown in Algorithm block 3.

Algorithm block 3 : Chewing segment detection.

Input: List of detected chewing cycle onsets Cn

Parameter: Sliding window size w0, chewing cycle frequency threshold θ0

Output: Detected chewing segment starts and ends (tn, start, tn, end) from each signal source n

1: tn, start ← ∅, tn, end ← ∅

2: function FIND_START_AND_END(Cn, j, θ0, w0)

3: fn, end = onset count in interval [Cn[j], Cn[j] + w0]

4: if fn, end == 1 then

5: tn, end.append(Cn[j + θ0 − 1])

6: for (i = j + θ0, i < length(Cn), i ++) do

7: fn, start = onset count in interval [Cn[i], Cn[i] + w0]

8: if fn, start >= θ0 then

9: tn, start.append(Cn[i])

10: break
11: return i

12: else

13: FIND_START_AND_END(Cn, j0 + fn, end + θ0 − 1, θ0, w0)

14: for (j = 1, j < length(Cn), j ++) do

15: fn[j] = onset count in interval [Cn[j], Cn[j] + w0]

16: fn[j + 1] = onset count in interval [Cn[j + 1], Cn[j + 1] + w0]

17: if tn, start == ∅ and fn[j] >= θ0 then

18: tn, start.append(Cn[j])
19: if fn[j] >= θ0 and fn[j + 1] < θ0 then

20: step = FINDSTARTEND(Cn, j, θ0, w0)

21: j+ = step + θ0 − 1

3.1.4. Fusion of Multi-Source Detection

The fusion of N sensor or feature channels was made by taking the union of source-specific
chewing segments:

Tmerge =
N⋃

n=1

Kn⋃
k=1

[tn, start[k], tn, end[k]], (1)

where Tmerge was a list of the merged chewing segments of N sources, and Kn was the number of
chewing segments in Channel n. All detected segments were collected chronologically regardless of
any overlapping among sources. For the evaluation data used in this investigation, bilateral EMG
channels yielded two lists of chewing segments. Hence, N = 2.
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3.1.5. Gap Elimination

In free-living, eating is often accompanied by interrupts (e.g., conversations). Thus, an eating
event is usually represented by several chewing segments in Tmerge, where the gaps indicate interrupts
without chewing cycles. Depending on the detection application and choice of eating event definition,
it is reasonable to combine temporally close segments into one final eating event. We denote the start
and end of the k-th segment Tseg[k] in Tmerge as start[k] and end[k] respectively, and the gap between
Tseg[k] and Tseg[k + 1] as Tgap[k]. We generated a new list Tconcatenated by removing all gaps that were
smaller than tgap:

Tconcatenated =
⋃
k∈S

(Tseg[k] ∪ Tgap[k] ∪ Tseg[k + 1]), (2)

where
S = {k | start[k + 1]− end[k] < tgap}. (3)

An estimated eating event start T̂start[q] and end T̂end[q] with (q = 1, 2, ..., Q) were thus obtained as the
start and end of every segment in Tconcatenated, where Q was the number of segments (i.e., detected
eating events) in Tconcatenated. In the present investigation, tgap was set to 5 min.

3.2. Top-Down Algorithms

Two top-down algorithm variants were considered with different chewing segment detection
blocks (see Figure 1): Threshold-based top-down and ocSVM top-down. Several blocks of the top-down
and bottom-up pipelines were identical, including signal pre-processing (Section 3.1.1), fusion of
multi-source detection (Section 3.1.4), and gap elimination (Section 3.1.5). Here we concentrate on the
individual variants of the chewing segment detection.

3.2.1. Threshold-Based Top-Down Algorithm

A sliding window of size w1 and step size s1 was applied to Xn. We computed the chewing
intensity feature F in each sliding window and applied threshold θ1. If F > θ1, the window was
reported as chewing. For the present investigation, we considered EMG readings as time series
containing chewing information and extracted EMG work as chewing intensity feature F. EMG work
was defined as the summation of rectified EMG samples within the sliding window. For the EMG data,
s1 was 256 samples (1 s). The pseudo code is shown in Algorithm block 4.

Algorithm block 4 : Chewing segment detection.

Input: Preprocessed signals Xn

Parameter: Sliding window size w1, window step size s1, chewing intensity feature threshold θ1

Output: Detected eating starts/ends from each signal source n: tn, start and tn, end

1: tn, start ← ∅, tn, end ← ∅

2: for (i = s1, i < length(Xn)− w1, i+ = s1) do

3: extract Fprevious from Xn[i − s1 : i + w1 − s1]

4: extract Fcurrent from Xn[i : i + w1]

5: extract Fnext from Xn[i + s1 : i + w1 + s1]

6: if Fprevious < θ1 and Fcurrent > θ1 then

7: tn, start.append(i)
8: if Fcurrent > θ1 and Fnext < θ1 then

9: tn, end.append(i + s1)
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3.2.2. ocSVM Top-Down Algorithm

We applied a non-overlapping sliding window of size w2 to the EMG data. An ocSVM model was
trained based on the windows to detect chewing segments using the same features as described in [13].
The radial basis function (RBF) was used as the kernel. The hyper-parameters γ and ν were varied,
where γ weighted the non-support vectors’ influence on the hyper plane, and ν was an upper bound
on the fraction of margin errors as well as a lower bound of the fraction of support vectors relative
to the number of training samples. The ocSVM predicted the class of each sliding window as either
eating or non-eating.

4. Evaluation Methodology

We evaluated the algorithms using a free-living dataset collected from smart eyeglasses with
integrated EMG electrodes. Details of the eyeglasses design and data collection process can be found
in [17]. Here we summarise the relevant data collection procedures, as well as evaluation methods.

4.1. Participants and Recording Protocol

The dataset was collected from a group of 10 participants (6 male, 4 female, average age of
25.1 years, average BMI of 23.8 kg/m2) each wearing the smart eyeglasses for one day of regular
activity without script or specific protocol. The study was approved by the Ethical Committee of FAU
Erlangen-Nürnberg. All participants were healthy and consented to participate after having received
oral and written study information.

Each participant received a pair of 3D-printed smart eyeglasses mechanically fitted to their head
using a personalisation procedure similar to [22], ensuring that the effect of hair, loss of contact
between skin and electrodes, or movement was minimal. In each temple of the eyeglasses frame, dry
stainless-steel electrodes of 3 mm × 20 mm (EL-DRY-STEEL-5-20, BITalino, Lisbon, Portugal) were
integrated, yielding a two-channel EMG recording system on each side of the head. The EMG electrode
pairs were positioned to capture activity of the temporalis muscle. A reference EMG channel was
recorded from the right temporalis muscle via gel electrodes attached to the skin at the corresponding
forehead region. All EMG channels were acquired with an EMG recorder (ACTIWAVE, CamNtech,
Cambridgeshire, United Kingdom) at a sampling rate of 256 Hz per channel.

Participants were suggested to wear the eyeglasses during one entire recording day (i.e., attaching
the system right after getting up and ending before going to bed at night). Recordings were conducted
in free-living conditions without dietary constraints. Participants chose their diets and conducted other
daily activities at their choice. Participants were asked to log activities in a paper-based 24-h activity
journal with 1 min resolution, including any food intake as well as start and end times of eating events.
As Figure 2 show:

Figure 2. Illustration of the EMG eyeglasses and study: (A) Eyeglasses frame with electromyographic
(EMG) electrodes symmetrically integrated on the temples. (B) Study participant wearing the EMG
eyeglasses. Reference EMG electrodes were attached to the skin at the right forehead temporalis
muscle position.
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4.2. Data Corpus

By the end of the recording, we collected a total of 122.3 h of free-living data including 44 eating
events ranging from 54 s to 35.8 min, which summed up to 429 min of eating for all participants
combined. Eating took up 5.8% of the whole dataset. Participants took off eyeglasses for a total time of
12 min during the recordings, which corresponds to 0.16% of the total recordings. Known activities
reported by participants in the activity journal included cooking, eating, walking, transportation,
attending lectures, performing office work, having conversations, doing housework, brushing teeth,
playing video games, going to the cinema, and engaging in physical exercise. Through visual inspection
we observed various artefacts in the data corpus including, for example, suspected teeth grinding [17].

4.3. Free-Living Eating/Non-Eating Reference Construction

Obtaining accurate reference information on eating events in unsupervised free-living studies
is particularly challenging. Here, we propose a combination of participant activity journal and EMG
reference recordings. All eating events were annotated using a custom Matlab annotation software.
Our annotation process comprised two steps: coarse manual annotation using the activity journal and
fine-tuning through reference EMG recordings. Coarse manual annotation was realised by searching
the journal for the participant-logged start time Tstart[i] and end time Tend[i] of each annotated eating
event, indexed i. As manual journaling is often imprecise in identifying event times, a fine-tuning
step was used to adjust coarse eating event times: Start and end times TS[i] and TE[i] of eating event
i were adjusted by visually searching the reference EMG data for chewing cycle patterns in the
neighbourhood of approx. ± 1 min (journal resolution) around the coarse annotations Tstart[i] and
Tend[i]. Since each chewing cycle had a duration of around 1/3 s, the fine-tuned eating event labels TS[i]
and TE[i] resulted in a chew-accurate eating/non-eating reference with resolution of approximately
1/3 s. The derived start and end times were considered as eating/non-eating reference for algorithm
evaluation. The eating/non-eating reference construction is illustrated in Figure 3.

… … … … … …

1 min           1 min Chewing cycles                     1 min           1 min

TS Tstart TE Tend

Time

Figure 3. Illustration of the free-living eating/non-eating reference construction. Tstart and Tend are
start and end times of an eating event obtained from the participant journal, while TS and TE are the
corrected start and end times derived by searching the EMG reference ± 1 min around Tstart and Tend.
The eating/non-eating reference construction is described in Section 4.3.

Type 1 errors (false positives) could occur in the eating/non-eating reference if an activity journal
entry could not be matched to any chewing-like pattern in the reference EMG signal. We inspected
all entries in the participant journal and compared them to the reference EMG signal. In the present
dataset, all participant-annotated events could be matched to the EMG reference.

Type 2 errors (false negatives) could occur in the eating/non-eating reference if participants
omitted annotations. To amend potential omissions from the activity journal, we first inspected the
entire reference EMG data for chewing-like signal patterns that did not correspond to any entry in
the journal. For each chewing-like pattern found, we inspected the activity journal to obtain insight
into the participant’s momentary context. We observed that concise activations in the EMG reference
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occurred occasionally without corresponding eating annotations (e.g., during a lecture). Yet, EMG
activations were typically short (i.e., less than five consecutive activations with lower EMG work
compared to confirmed chewing). Given a non-eating context and the clear non-chewing signal
patterns, we attributed the activations to teeth grinding. Jaw motion during speaking does not involve
profound temporalis muscle activation, as there is hardly any teeth clenching and thus substantially
lower EMG work than during chewing [16]. In addition, non-chewing muscle activity is typically
non-periodic, thus observable and distinguishable during time series inspection. Overall, we did not
find Type 2 errors in the dataset, supporting our eating/non-eating reference construction approach for
free-living recordings.

4.4. Evaluation Metrics

A grid search over the window length parameters wi and thresholds θi with i = 0, 1, 2, and
θ2 = (γ, ν) representing the combination of the ocSVM hyper-parameters was performed to investigate
optimal parameter combinations. To evaluate the eating event detection algorithms, we derived the
overlap between retrieved eating events and any eating/non-eating reference label. The precision and
recall of each algorithm were calculated according to: Recall = Ttp

Tgt
and Precision =

Ttp
Tret

, where Tgt was
the summed duration of all P eating events according to the constructed eating/non-eating reference
labels, calculated as:

Tgt =
P

∑
p=1

(Tend[p]− Tstart[p]), (4)

while Tret was the summed duration of all Q detected eating events by the algorithm:

Tret =
Q

∑
q=1

(T̂end[q]− T̂start[q]), (5)

and Ttp was the summed overlap duration between retrieved eating events and the
eating/non-eating reference:

Ttp =
P

∑
p=1

Q

∑
q=1

(min(Tend[p], T̂end[q])− max(Tstart[p], T̂start[q])), (6)

given the following premise:

min(Tend[p], T̂end[q])− max(Tstart[p], T̂start[q]) > 0. (7)

T̂end[q] and T̂start[q] were the start and end time points of the qth retrieved eating event, Q was the
number of retrieved eating events, and P was the number of eating events in the eating/non-eating
reference. All times were computed at a resolution of 1 sample (1/256 s). Finally, the F1 score was
calculated as the harmonic mean of precision and recall.

The evaluation was performed using leave-one-participant-out (LOPO) cross-validation. In each
evaluation fold, the EMG data were split into a training set of nine participants and a test set of one
participant. This process was repeated 10 times until every participant’s data were in the test set
once. Training data were used in a grid search to estimate performance under different parameter
combinations. Optimal parameter combinations were chosen according to the training data performance
and applied with the test data to estimate algorithm performance. The test results of all folds were
averaged to obtain the total algorithm performance. For the bottom-up algorithm, w0, θ0, and θP were
analysed. For the threshold-based top-down algorithm, w1 and θ1 were analysed, and for the ocSVM
top-down algorithm, w2, γ, and ν were analysed.
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4.5. Detection Timing Errors

We further investigated the detection timing error of every algorithm. The average start and end
timing errors of the algorithms were calculated as follows:

ΔTS =

∑Q
q=1 min

( ∣∣∣T̂S[q]− TS[p]
∣∣∣
∣∣∣∣

p=1,2,...,P

)
Q

, (8)

and

ΔTE =

∑Q
q=1 min

( ∣∣∣T̂E[q]− TE[p]
∣∣∣
∣∣∣∣

p=1,2,...,P

)
Q

. (9)

ΔTS and ΔTE were the average absolute detection errors at the start and end of eating events.
To investigate retrieval performance in detail and identify the algorithms’ behaviour, different

optimisation objectives were analysed. Using the grid search over the parameter space, the best
performance point according to maximal F1 score (termed PX), minimal start timing error ΔTS (termed
PS), and minimal end timing error ΔTE (termed PE) were derived.

5. Results

Algorithm detection performances according to the test data are shown in Figure 4 for varying
parameter combinations. The threshold-based top-down algorithm could not reach meaningful F1
scores, indicating that detecting eating events is not a trivial task. The performance map of the ocSVM
algorithm shows a periodic landscape due to the variation of parameters γ and ν. The best performance
of the bottom-up algorithm was achieved with θP = 0.7. The bottom-up algorithm had a smooth
landscape across the parameters. For all algorithms, the three performance points (PX, PS, PE), did
not coincide at the same parameter settings. To illustrate the performance points quantitatively, they
are summarised in Table 1. The bottom-up algorithm yielded comparable performance values across
all performance points (PX, PS, PE). At best, the bottom-up algorithm reached an F1 score of 99.2%,
yielding a start/end error (ΔTS and ΔTE) of 2.4 ± 0.4 s and 4.3 ± 0.4 s, respectively. The results show
that the bottom-up algorithm outperformed the top-down algorithms.

Table 1. Performance comparison among algorithms using optimal parameter settings for each
performance point (PX, PS, PE). For timing metrics, mean performance ± std. dev. are shown.
For example, the bottom-up algorithm reached an F1 score of 99.2% at best, where the start/end
error was 2.4 ± 0.4 s and 4.3 ± 0.4 s, respectively.

Metric
Performance Points

PX PS PE

F1 score (%)
Threshold-based top-down 36.7 0.03 0.001

ocSVM top-down 95.1 90.9 93.2
Bottom-up 99.2 97.8 97.7

ΔTS (s)
Threshold-based top-down 152.4 ± 21.7 10.1 ± 3.0 185.9 ± 35.9

ocSVM top-down 30.0 ± 36.4 18.8 ± 27.9 53.2 ± 61.7
Bottom-up 3.0 ± 0.6 2.4 ± 0.4 4.8 ± 2.9

ΔTE (s)
Threshold-based top-down 177.4 ± 12.1 265.8 ± 86.5 63.0 ± 11.9

ocSVM top-down 25.9 ± 39.4 26.9 ± 38.3 15.2 ± 19.0
Bottom-up 4.9 ± 0.3 6.4 ± 0.5 4.3 ± 0.4
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Figure 4. F1 score, average start and end timing errors for test data and each eating event detection
algorithm using grid search over the parameter space. The highest F1 score location was denoted as
PX, while PS and PE indicate the minimal start timing error ΔTS and minimal end timing error ΔTE,
respectively. The bottom-up algorithm performance was obtained with fixed peak detection threshold
θP = 0.7.

Figure 5 shows the effect of varying the peak detection threshold θP of the bottom-up algorithm,
indicating robust retrieval and timing performance (PX, PS, PE) for a parameter range of 0.65 < θP < 0.8.
The best retrieval and timing performances were achieved at θP = 0.7.

Figure 5. Retrieval and timing performance of the bottom-up algorithm at different peak detection
thresholds θP. In the timing error diagrams, caps on vertical line ends indicate the standard deviation.
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Figure 6 illustrates retrieved eating events as point pairs across F1 scores, where the line ends
represent average start and end timing errors (ΔTS and ΔTE). ΔTS and ΔTE were obtained by varying
the algorithm parameters and averaging the individual timing errors obtained for specific retrieval
performances. For the bottom-up algorithm, the graph shows the performance obtained by varying
sliding window size w0 and chewing cycle frequency threshold θ0 at fixed peak detection threshold
θP = 0.7. There was no parameter combination for the threshold-based top-down algorithm that
yielded an F1 score above 40%. In contrast, bottom-up and ocSVM top-down algorithms provided
retrieval performances of up to 99% and 95% respectively. With increasing F1 score, timing errors
tended to decline. It can be derived from Figure 6 that the relation between start and end timing errors
varied between algorithms. For the bottom-up algorithm and F1 score >80%, the start timing error
ΔTS became smaller than the end timing error ΔTE.

Figure 6. Relation of retrieval and timing performance of all three algorithms. ΔTS and ΔTE were
obtained by varying algorithm parameters. Blue lines link average start and end timing errors of all
eating events at a given algorithm parameter set. With increasing F1 score, timing errors declined.
Note that timing error analysis could be performed only for eating events retrieved by an algorithm.
The bottom-up algorithm (θP = 0.7) achieved the highest F1 score at smallest timing errors among all
algorithms investigated. Point pairs were down-sampled for visualisation.

Figure 7 shows examples of the detected eating event starts and ends. The bottom-up algorithm
yielded similar detected labels to the eating/non-eating reference whereas the ocSVM top-down
algorithm incurred larger timing errors for some eating event instances.

Figure 7. Cont.
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Figure 7. Examples of data situations with the corresponding retrieval results of bottom-up and ocSVM
top-down algorithms obtained at each algorithm’s performance point PS (left column) and PE (right
column). As the diagrams illustrate, the ocSVM algorithm may anticipate or delay eating events’ starts,
as ocSVM deploys a time-domain sliding windowing with a given step size, whereas the bottom-up
algorithm did not.

6. Discussion

The F1 score describes the algorithm’s retrieval performance by retrieved and missed eating
instances, while timing errors reveal the accuracy of estimated event timing. Considering the varying
eating durations in a free-living context, the two metrics are not necessarily similar in their sensitivity,
thus we argue here that both are relevant metrics for evaluation. Among the few investigations on
event timing in ADM, Dong et al. [4] reported event start-timing errors of 0.6 minutes, and end errors
of 1.5 min. The authors determined intake from bites using arm motion, while the present investigation
was based on chewing. Bedri et al. [11] evaluated eating event detection using a metric called delay,
measuring the time from the beginning of an eating event until it was recognised. The average delay
reported was 65.4 s. In contrast to the investigation of Bedri et al. [11], we also evaluated the timing
error at the end of eating events. Our bottom-up algorithm yielded average start/end timing errors of
2.4 s and 4.3 s.

We believe that the bottom-up method is practically useful for eating event start and end detection,
as well as, for example, sending reminders, sampling user responses, and gathering environmental
variables. Study participants did not complain or reject wearing the eyeglasses for one day. Hence,
the combination of the bottom-up algorithm and smart eyeglasses could be adopted in unconstrained
free-living applications. In contrast to several previous investigations of eating detection that require
the training of many parameters, our bottom-up approach requires that only four parameters be
set (w0, θ0, θP, and tgap). Our analysis indicates that performance was unaffected by parameter changes
across a wide value range (i.e., shown as a smooth performance space in Figure 4). Pattern learning
may work reliably when trained on sufficient data with proper features. Considering the variability
in free-living behaviour and the unbalanced distribution of eating and non-eating times, substantial
training data is needed to implement any learning method and therefore a minimal number of free
parameters is key. The bottom-up method outperformed our top-down methods, with a higher F1
score and lower detection timing errors. We attribute the higher performance yielded in the present
investigation to the expert knowledge incorporated in the bottom-up approach.

In both top-down and bottom-up methods, the sliding window size wi influenced the algorithm
performance. In top-down methods, a small sliding window of length wi contained fewer data samples,
which usually led to less representative features. Thus, the lowest timing errors were typically not
achieved with smallest sliding window sizes (e.g., wi < 10 s). Similarly, in the bottom-up method, both
window size w0 and the second parameter θ0 influenced the detection performance. Hence, a small
window size w0 did not always give the best performance.

The timing errors of top-down methods were highly dependent on the combination of sliding
window length and window step size. Large sliding window sizes included more dietary activity
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information, but usually failed in accurately detecting the starts and ends of eating events as the
window was filled with both eating and non-eating data. Figure 7 shows impressively that the ocSVM
top-down algorithm indeed incurred larger timing errors due to the larger sliding window size.
In our previous investigation [13], we adopted window overlaps and majority voting on windows
with differing results. We observed that retrieval performances differed marginally when comparing
overlapping and non-overlapping windowing approaches. The bottom-up algorithm was not affected
by the window parameterisation problem, as the window step size is determined by distance of
neighbouring chewing onsets. Thus, eating and non-eating rarely coincided in one window.

The bottom-up algorithm is based on chewing cycle detection, which decouples the eating event
detection from the sensor type. The detection leverages event frequency information (i.e., chewing
cycle frequencies), which can be obtained with different chewing monitoring approaches. We expect
that the algorithms could be applied with various sensors or sources that provide chewing cycle
information, including acoustics [1], ear canal deformation [15], strain on head skin [19], eyeglasses
temple motion [18], etc.

The present investigation analysed relevant free parameters of the proposed algorithms to
determine their stability. For example, the sweep of the peak detection threshold θP showed desirable
performance trends (Figure 5) allowing us to set θP to a proper range—approximately [0.65, 0.8].
In addition, the pipeline block “gap elimination” used the parameter tgap = 5 min to merge temporally
close eating detections. The parameter tgap supports our informal definition of eating events as
temporally linked sequences of dietary activities during one meal or snack [3] and was set based
on experience. Varying tgap means to change the representation of eating occasions (i.e., meals and
snacks), which is outside of the scope of this investigation.

While this investigation focuses on the retrieval performance, the computational complexity of
the algorithms is an important consideration for wearable resource-limited systems. In a detection, the
computational complexity is O(n) for the threshold-based top-down algorithm, and O(nsv × n) for
the ocSVM top-down algorithm. Here, n is the input data dimension and nsv is the number of support
vectors of the ocSVM model. The complexity of the bottom-up algorithm is decided by the chewing
cycle detection method. For the proposed bottom-up algorithm, the corresponding complexity is
O(n). With a proper chewing cycle detection approach, the bottom-up algorithm is suitable to execute,
for example, on wearables at a minimal computational cost. The delay due to processing was not
addressed in this investigation. However, with the low complexity of all algorithms, processing delay
is expected to have a negligible effect compared to the algorithm timing errors.

This investigation was supported by a new method to obtain reference data on eating times
in a free-living context, where we combined the participants’ activity journals with reference EMG
measurements. While the activity journals yielded rather coarse timing, they provided us with context
information on the users’ behaviour. The reference EMG measurement complemented the journal with
accurate timing resolution of individual chewing cycles. However, adherence to journals is known to
decline quickly over several days of measurement [23]. Hence, it is reasonable to assume that journals
alone would be too inaccurate. We avoided video recordings to retrieve eating/non-eating reference
due to privacy concerns and the potential impact of cameras on natural, free-living behaviour.

One limitation of our study is that only young healthy participants were involved. For other
populations, the eating structure could vary, which could generate different eating durations. However,
our present investigation already showed that eating events ranging from short snacks of 54 s to
35.8 min meals could be recognised. Other populations may benefit from different pre-processing steps
or other sensors to apply the discussed bottom-up algorithm. We are planning longer-term studies in
the future.

7. Conclusions

We proposed a bottom-up eating event detection algorithm that uses chewing cycle information as
input and compared it to two top-down algorithms, including threshold-based and ocSVM algorithms.
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Evaluation of the algorithms was performed using free-living data with smart eyeglasses recording
EMG data bilaterally from the temporalis muscles. Our results indicate that the F1 score became
less meaningful at high retrieval rates above 0.9. The analysis of timing errors revealed substantial
differences of several tens to hundreds of seconds on average between top-down and bottom-up
algorithms. The grid search analysis showed smooth performance transitions during parameter
variation for the bottom-up algorithm. We conclude that timing error analysis is an important
component in performance estimation, besides a relevant retrieval metric, as the F1 score. We suggest
that the research community report timing errors (e.g., using the metrics described in this work).
The bottom-up algorithm yielded the overall best results with the lowest timing errors of 2.4 ± 0.4 s
for eating start and 4.3 ± 0.4 s for eating end. The bottom-up algorithm is thus suitable for eating
event detection.
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Abstract: Introduction: Human joint moment is a critical parameter to rehabilitation assessment and
human-robot interaction, which can be predicted using an artificial neural network (ANN) model.
However, challenge remains as lack of an effective approach to determining the input variables for
the ANN model in joint moment prediction, which determines the number of input sensors and the
complexity of prediction. Methods: To address this research gap, this study develops a mathematical
model based on the Hill muscle model to determining the online input variables of the ANN for the
prediction of joint moments. In this method, the muscle activation, muscle-tendon moment velocity
and length in the Hill muscle model and muscle-tendon moment arm are translated to the online
measurable variables, i.e., muscle electromyography (EMG), joint angles and angular velocities of the
muscle span. To test the predictive ability of these input variables, an ANN model is designed and
trained to predict joint moments. The ANN model with the online measurable input variables is tested
on the experimental data collected from ten healthy subjects running with the speeds of 2, 3, 4 and 5
m/s on a treadmill. The variance accounted for (VAF) between the predicted and inverse dynamics
moment is used to evaluate the prediction accuracy. Results: The results suggested that the method
can predict joint moments with a higher accuracy (mean VAF = 89.67±5.56 %) than those obtained
by using other joint angles and angular velocities as inputs (mean VAF = 86.27±6.6%) evaluated by
jack-knife cross-validation. Conclusions: The proposed method provides us with a powerful tool to
predict joint moment based on online measurable variables, which establishes the theoretical basis for
optimizing the input sensors and detection complexity of the prediction system. It may facilitate the
research on exoskeleton robot control and real-time gait analysis in motor rehabilitation.

Keywords: artificial neural network; joint moment prediction; extreme learning machine; Hill muscle
model; online input variables
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1. Introduction

Human joint moment prediction is crucial to rehabilitation evaluation [1–3], athlete training
evaluation [4–6], prosthesis and orthosis design [7–9], intramedullary device design [10–12] and
human-robot interaction [13–21]. The precise prediction of joint moment can be fulfilled by the use of
instrumented implants [22] which measures the relevant parameters of joint load in real time. However,
this approach is not always feasible since only few people (likely those suffering from musculoskeletal
deficits) have implants.

Although computational models can serve as alternative methods for joint moment prediction
when the implants are not available, they face a challenge of eliminating the measurement error.
This is due to the individual differences in the anatomical and functional characteristics of the
musculoskeletal system [22]. Furthermore, the joint moment is not easily measured in real time.
Previous studies [23–26] indicated that this challenge may be addressed by using the artificial neural
network (ANN) model, because of its excellent adaptive ability to individual characteristics [27,28].
For example, Uchiyama et al. [29], used an ANN model to predict the elbow joint moment with the
inputs of EMG signals, elbow and shoulder joint angles, while Luh et al. [30], and Song and Tong [31]
utilized an ANN model with EMG signals, elbow joint angle and angular velocity for the same purpose.
Hahn [32] intelligently predicted the isokinetic knee extensor and flexor moment with the inputs of
EMG signals, gender, age, height and body mass. Ardestani et al. [33], combined the EMG signals
and ground reaction force (GRFs) with ANN model to study the lower limbs’ joint moment. Recently,
Xiong et al. [34], used the optimized EMG signals and joint angles as the inputs of ANN model to
calculate the lower extremity joint moment.

As listed above, different studies used different input variables in their ANN models to predict
joint moments. However, the number of input variables determines the number of sensors and the
complexity of the system. It is yet to develop a mathematical model to determine the optimal online
measurable input variables. This model will provide a theoretical basis for designing a system with
few sensors and high accurate of joint moment prediction. Therefore, the purpose of this study is
to introduce a novel method for determining the online measurable input variables for human joint
moment intelligent prediction.

In this method, musculoskeletal geometry [35,36] comprised of Hill muscle models [37,38] are
utilized for representing the muscle mechanical response. Furthermore, the input variables to predict
joint moment based on the Hill muscle model includes four time-varying variables: the muscle
activation, muscle-tendon moment arm, velocity and length are found [39], that generally cannot be
measured online in vivo. Thus, a surrogate model is built for each tested muscle to convert these four
input variables to the online measurable variables, i.e., muscles EMG, the muscle actuates joints’ angles
and angular velocities.

To test the predictive ability of the online measurable input variables, a commonly used ANN
model, i.e., Extreme Learning Machine (ELM), is designed and trained to predict joint moments. The
ELM is a feedforward ANN [40], which has a much lower computational cost than traditional machine
learning algorithms, especially for the single hidden layer mode [41–43]. The method is tested on the
experimental data of ten healthy male subjects running at different speeds, i.e., 2, 3, 4 and 5 m/s on
a treadmill. The ELM predictions are validated against inverse dynamics and compared with those
obtained by jack-knife cross-validation with other online measurable variables as inputs [29–31,34].

2. Materials and Methods

2.1. Experimental Data

The lower limbs’ kinematics and dynamics experimental data of ten healthy male subjects
(height 1.77 ± 0.04 m, age 29 ± 5 years, mass 70.9 ± 7.0 kg) was obtained from an open database
(https://simtk.org/projects/nmbl_running; accessed on, 18 October 2019). In the experiment, the motion
data, EMG signals and ground reaction force were measured, while the subjects ran at different speeds
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of 2, 3, 4 and 5 m / s on the treadmill. At least six gait cycles were recorded for each speed. The EMG
signals included gluteus medius, rectus femoris, gluteus maximus, vastus lateralis, biceps femoris long
head, vastus medialis, tibialis anterior, soleus, gastrocnemius medialis and gastrocnemius lateralis.
All the EMG signals were rectified, filtered and normalized. The motion and force data were filtered
accordingly. A complete description of these data can be found in [44].

After obtaining the experimental data, all the ten subjects’ moment of ankle plantar-dorsiflexion,
knee flexion-extension, hip adduction-abduction and hip flexion-extension are firstly calculated by
using the inverse dynamics method [45] with opensim software, then the moment, force, motion and
EMG signals are resampled to obtain 101 time points of each gait cycle. All the inverse dynamics
moment will be used as the target value of the ANN model’s training samples.

2.2. Determination of Online Measurable Variables

In order to obtain the online measurable input variables, the Hill muscle model [37,38] and
musculoskeletal geometry [35] is used to establish a mathematical model of input-output relation for
joint moment prediction. The data processing pipeline is shown as Figure 1.

 
Figure 1. Data processing pipeline of the method based on Hill muscle model, where l(θ) is a
polynomial function of the muscle spans joint angles.

In the Hill muscle model, the muscle moment about the spanned joint [46] is indicated by:

M = r·FM
o ·[a(emg(t− d))· fl( l− lTs

lMo cosφ
)· fv( v

10·lMo
) + fp(

l− lTs
lMo cosφ

))] cos(φ) (1)

where M and r are the muscle moment and moment arm about the joint it actuates, FM
O is muscle’s peak

isometric force, a() is the muscle’s activation which can be calculated as a function of EMG data, t is the
time, d is the electromechanical delay, v and l are muscle-tendon velocity and length, φ is pennation
angle of the muscle, lMo is the optimal fiber length and lTS is the tendon slack length. The relationship of
muscle-tendon length, muscle fiber length, tendon length, pennation angle can be seen in Figure 2.
fv(), fl() and fP() represent muscle force-velocity, active force-length and passive force-length curve.
FM

o , d, φ, lTs and lMo are assumed to remain constant for the individual. l, v and r are time variables that
can be calculated as polynomial functions of joint angles and angular velocities with the same constant
coefficients [47,48]. When θ is the muscle spans joint angles, those time variables can be expressed
as follows:

l(t) = l(θ) (2)
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v(t) =
∂l(t)
∂t

=
∂l(θ)
∂t

=
∂l(θ)
∂θ

∂θ
∂t

= v(θ,
•
θ) (3)

r(t) = −∂l(θ)
∂θ

= r(θ) (4)

where θ(t) and
•
θ(t) are the muscle spans joint angles and angular velocities; l(θ) is muscle-tendon

length which is polynomial functions of the muscle spans joint angles;v(θ,
•
θ) is muscle-tendon velocity

which is the first derivative of l(θ) with respect to time t; r(θ) is muscle-tendon moment arm which is
the first derivative of l(θ) with respect to θ. The sign of the variable is used to determine the direction
of the moment.

Figure 2. A diagram of muscle-tendon unit that shows the relationship of muscle-tendon length, muscle
fiber length, tendon length, pennation angle. Where l is the muscle-tendon length, lm is the muscle
fiber length, lt is the tendon length, φ is the pennation angle.

From Equations (1)–(4), the muscle moment about the spanned joint can be calculated as a function
of the muscle’s EMG signal, and the muscle actuates joints’ angle and angular velocity (Figure 1):

M(emg,θ,
•
θ) = r(θ)·FM

o ·[a(emg(t− d))· fl(l(θ))· fv(v(θ,
•
θ)) + fp(l(θ))] cos(a) (5)

where d is an electromechanical delay, and its value is generally 10-100ms [49]. From Equations (1)–(5)
the j-th joint moment is represented by the following equation:

Mj =
m∑

i=1

M(emg(i),θ(i),
•
θ(i)) (6)

where m is the number of muscles associated with the joint moment.
It can be seen from Equation (6) that the online measurable input variables for the human joint

moment prediction are joint moment-associated muscles’ EMG signals, and their muscles actuates
joints’ angles and angular velocities.

2.3. The Designed ANN

To confirm the predictive effect of the online measurable input variables, the ELM is designed and
trained as the ANN model to predict joint moments, which is a feedforward ANN algorithm [40]. It
can be seen from Equation (6) that different joint moments correspond to different inputs which is not
suitable to use the multi-output ANN model, so the ELM only has one output neuron. Its structure is
generally shown as Figure 3, which is divided into an input layer, a hidden layer and an output layer.
Its expression is provided as follows:

O = βg(W·X + b) (7)

132



Sensors 2020, 20, 1185

where X is the input, O is output, W = [W1, W2, · · · , WL] is the matrix of input-to-hidden-layer weights,
β = [β1, β2, · · · , βL] is the matrix of hidden-to-output-layer weights, b = [b1, b2, · · · bL] is the matrix
threshold of the hidden node and g() is the activation function. The distinguishing feature of ELM
from the traditional feedforward neural network is that W and b are randomly selected and does
not need to be adjusted during the training process, and β are calculated in the training process [45].
The feature makes the process of determining network parameters without iterations, reduces the
adjustment time of network parameters, and greatly improves the learning speed. The ELM is widely
used in regression analysis and classification [41,50].

Figure 3. Structure of the designed ELM.

The ELM is trained to predict four DOFs’ moment in the right leg: ankle plantar-dorsiflexion (Ankle
PDF), knee flexion-extension (Knee FE), hip adduction-abduction (Hip AA) and hip flexion-extension
(Hip FE), and the inverse dynamics moment is used as the target value of the training sample. It can
be seen from Table 1 with Equation (6) that the input variables of Hip FE’s joint moment prediction
contains the EMG signals of four muscles and three joint angles and angular velocities. There are 10
input variables in total.

Table 1. The list of EMG signal sources and their muscle actuates.

EMG Signal Source Actuates

Gluteus maximus Hip AA, Hip FE,
Gluteus medius Hip AA, Hip FE

Biceps femoris long head Knee FE, Hip AA, Hip FE
Rectus femoris Knee FE, Hip AA, Hip FE
Vastus medialis Knee FE
Vastus lateralis Knee FE

Gastrocnemius lateral Knee FE, Ankle PDF, Ankle IE
Gastrocnemius medial Knee FE, Ankle PDF, Ankle IE

Tibialis anterior Ankle PDF, Ankle IE
Soleus Ankle PDF, Ankle IE

133



Sensors 2020, 20, 1185

2.4. Prediction Evaluation

Considering that Equation (6) is obtained under the assumption that FM
o (muscle’s peak isometric

force), d (the electromechanical delay), φ (pennation angle of the muscle), lTs (the tendon slack length)
and lMo (the optimal fiber length) are remain constant for the individual, which is not suitable for
training multiple subjects at a time, so per ELM only trains one joint moment of a subject. A generic
three-layer ELM is designed and trained using two strategies for evaluating the generalization ability of
the method at two different levels: (1) training with all four speeds (level 1) and (2) training only with
the three low speeds (2, 3 and 4 m/s) (level 2). During the supervised training, the inverse dynamics
moment is used as the target value of the training samples. The variance accounted for (VAF) [51] is
used to evaluate the accuracy of the ELM, its expression is as follows:

VAF = [1−var(ŷ− y)
var(y)

] × 100% (8)

where y is the inverse dynamics moment and ŷ is predicted joint moment. For each speed, six gait
cycles (6 × 101 = 606) are selected for training and testing. Since a complete gait cycle data may contain
all gait features at the current speed, training and testing must take the whole gait cycle as input or it is
easy to cause feature loss to make the prediction result unstable. Therefore, the data set is smaller, a
greater percentage of 30% as testing data set and 70% as training data set must be used to train and
test the ELM, so four (6 × 0.7 = 4.2) gait cycles (4 × 101 = 404 time points) data are randomly selected
from each tested speed for training, and the remaining two (6 × 3 = 1.8) gait cycles (202 time points)
for testing. Then, in order to set the appropriate number of neurons in the hidden layer for better
prediction effect, an experiment is done to observe the relationship between the number of neurons in
the hidden layer and the prediction accuracy. In the experiment, four gait cycles data are selected from
each speed for training, and two gait cycles for testing. The ten subjects’ average predicted accuracy
evaluated by the VAF (%) are shown as Figure 4.

Figure 4. The ten subject’s average predict accuracy evaluated by the variance accounted for (%) with
the increase of neurons.
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It can be seen from Figure 4 that the value of VAF increased rapidly with the increase of neurons
at the beginning, but the value of VAF slowed down when the number of neurons exceeded 10.
Considering the structural complexity of ELM and the time cost for training, the number of neurons in
the hidden layer is set to 20.

3. Results

When training with all four speeds (level 1), the trained ANN model is used to predict the lower
limbs’ joint moment of all subjects at different speeds. Joint moment prediction of a typical subject
at each speed are shown in Figure 5. As shown, the general pattern of lower limb joint moment can
be predicted well at each speed. Comparing with inverse dynamics moment, there only have some
difference in minimum and maximum values of waveforms (cross-correlation coefficient > 0.987). The
VAF of the predicted joint moment for Ankle PDF, Knee FE, Hip FE and Hip AA at level 1, with the
mean VAF (± standard deviation) of 97.15± 0.99%, 94.23± 2.99%, 95.39± 3.62% and 95.01± 7.46% as
shown in Table 2.

Figure 5. Joint moment prediction of a typical subject at each speed when all four speeds are used for
training (level 1).

Table 2. Joint moment prediction performances for level 1, evaluated by VAF (%).

Participants Hip FE Hip AA Knee FE Ankle PDF

subject 1 97 94.50 96.47 98.11
subject 2 96.98 95.80 96.90 97.61
subject 3 94.85 87.02 86.69 73.89
subject 4 97.69 96.17 98.20 98.27
subject 5 96.86 92.15 95.12 96.94
subject 6 96.37 93.58 94.65 96.40
subject 7 97.78 96.74 95.46 96.65
subject 8 97.88 96.54 97.62 98.42
subject 9 98.15 96.46 98.02 96.22
subject 10 97.94 93.37 95.73 97.62
mean 97.15 94.23 95.39 95.01
Std 0.99 2.99 3.62 7.46
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When training with the three low speeds (level 2), the trained ANN model is also used to predict
the lower limbs’ joint moment of all objects at different speeds. Joint moment prediction of a typical
subject at each speed are shown in Figure 6. As shown, the errors between the predicted and inverse
dynamics moment were slightly increased, when compared to the corresponding errors at level 1
(cross-correlation coefficient > 0.984), especially the speed of 5m/s. The VAF of the predicted joint
moment for Ankle PDF, Knee FE, Hip FE and Hip AA at level 1, with the mean VAF (± standard
deviation) of 94.31± 7.13, 93.04± 3.62, 92.08± 2.93% and 89.95± 2.31% as shown in Table 3.

Figure 6. Joint moment prediction of a typical subject at each speed when only the three low speeds
are used for training (level 2).

Table 3. Joint moment prediction performances for level 2, evaluated by VAF (%).

Participants Hip FE Hip AA Knee FE Ankle PDF

subject 1 88.31 94.06 93.04 97.50
subject 2 88.09 94.26 93.48 96.82
subject 3 89.80 86.52 84.55 74.20
subject 4 92.07 94.84 97.58 98.06
subject 5 85.36 89.84 92.40 95.92
subject 6 89.17 90.44 92.73 95.66
subject 7 92.14 94.56 92.68 95.85
subject 8 92.81 94 96.20 97.72
subject 9 91.67 93.43 96.49 94.89

subject 10 90.08 88.81 91.32 96.51
mean 89.95 92.08 93.04 94.31
Std 2.31 2.93 3.62 7.13

In order to examine generalizability over multiple conditions, a more exhaustive validation of the
test result data is conducted using jack-knife cross-validation [52] which all cross-validation subsets
consist of only one data set each. In the jack-knife cross-validation, six gait cycles at each speed are
taken as one data set, and there are four data sets in total. In each test, three data sets are selected as
training sets and one data set as test set, and their average VAF of ten subjects ‘predicted joint moment
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for Ankle PDF, Knee FE, Hip FE and Hip AA are shown in Table 4. As shown in Table 4, the obtained
results have little difference from level 2.

Table 4. Joint moment prediction performances for jack-knife cross-validation, evaluated by VAF (%).

Participants Hip FE Hip AA Knee FE Ankle PDF

mean 81.07 91.88 92.68 93.09
Std 16.37 14.10 13.67 13.42

Furthermore, the method (EAV) is compared with other combination of inputs using jack-knife
cross-validation by VAF (Figure 7).

Figure 7. Comparison of performance by jack-knife cross-validation for several combination of inputs:
EAV = relevant muscles’ EMG, and their muscles actuate joints’ Angles and angular Velocities; EA =
relevant muscles’ EMG and their muscles actuate joints’ Angles; EV = relevant muscles’ EMG and their
muscles actuate joints’ Angles; EJAV= relevant muscles’ EMG, the Joint’s Angle and Angular velocity;
EJA = relevant muscles’ EMG and the Joint’s Angular velocity; E = relevant muscles’ EMG signals.

They are five different inputs as following: (1) Relevant EMG signals and their muscles actuate
joints’ Angles (EA); (2) Relevant EMG signals and their muscles actuate joints’ angular Velocities
(EV); (3) Relevant muscles’ EMG signals, the Joint’s Angle and angular Velocity (EJAV); (4) Relevant
muscles’ EMG signals and the Joint’s Angle (EJA); (5) Relevant muscles’ EMG signals as inputs (E).
The relevant muscles’ EMG signals means that the joint moment-associated muscles’ EMG signals.
Take EAV (VAF= 89.67± 5.56%) as reference and compare with the above inputs respectively, It can be
seen that the VAF of the moment predicted by the EA (VAF= 86.21± 6.60%), EV(VAF= 45.48± 5.08%),
EJAV(VAF= 66.80± 5.91%), EJA(VAF= 54.41± 5.70%), and E(VAF = 15.39± 4.81%) are almost reduced
by 3.85%, 49.27%, 25.50%, 39.31% and 82.83%.

4. Discussion and Conclusions

This study demonstrated that the ELM with the online measurable input variables could be used
as a real-time surrogate model to predict joint moments under different gait speeds. Compared with the
previous studies [29–33,53–55], this research extends our knowledge by establishing the mathematical
model of input-output relation in the human joint moment prediction based on the Hill muscle model.
The online measurable input variables are obtained for the ANN model. It does not need ground
reaction force and marker trajectories which increases the number of input sensors and the complexity
of prediction. The novel method has high prediction accuracy with VAF = 96.07± 3.484%. Thus, the
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proposed method is suitable for online rehabilitation assessment and human-robot interaction which
need to obtain joint moment in real time.

It can be seen from Equations (1)–(6) that the muscles actuate joints are very limited, while
inertial magnetic measurement systems are good at measuring the limited joints’ angles and angular
velocities [56], so unlike previous computational models, such as inverse dynamics [57,58] and
EMG-driven models [39,46,59], the method can online predict joint moment without essential 3D
motion capture and complicated calculation, which make the hospitals and laboratories to predict joint
moments without site requirements, even in a free state. It can also adapt to the individual differences
in the process of training, and does not need the musculoskeletal model or the scaling of specific
objects, thereby reducing the error caused by individual differences. Furthermore, the training time is
less than one second.

Compared level 2 with level 1 and the jack-knife cross-validation results (Table 4), the results
suggest that the proposed method has a good generalization ability. Thus, in practice, a reduced
amount of training data can be used when a large amount of data is not available. It can be seen from
Figure 7 that EAV has the best prediction results in all joints compared with other inputs, which verifies
the accuracy of the method proposed in this paper. Comparing our method with EA, the latter’s VAF
only reduced by 3.85%. Thus, it can be concluded that the effect of angular velocities on joint moment
prediction is relatively small. Comparing the method with E, the latter’s VAF reduced by 82.83%. This
indicates that: (1) the EMG value alone cannot represent the value of the joint moment [60], and (2) the
joint angle has a great influence on the joint moment prediction. From Figure 7, It can also be found
that the EJAV has good prediction results, so it can be concluded that the effect of the joint moment’s
angle and angular velocity on joint moment prediction is very important. This is the reason why the
musculoskeletal model use joint’s angles and angular velocities as inputs to calculate joint moments.
As the ANN model can adapt to the individual differences in the process of training and the muscle
model is applicable to all muscles of any human body whether male or female, old or young and health
or not, so the proposed method can also be applied to other joints of any human body theoretically.

It should be mentioned that the current study has some limitations. Firstly, there are only 10
muscles’ EMG data of the right leg used in the method, which can’t represent all muscles associated
with the joint. our approach will be developed in a larger set in the future. Secondly, the gait patterns
in the experimental only include run gait patterns, which is very limited. In the future study, more gait
data will be collected, such as squatting, cutting and so on. Finally, the sample is only composed of
young male subjects with similar anthropometry and age, which cannot ensure the diversity of the
training samples. Data samples from different groups of people will be collected in the future, such as
children, old people, women, patients and so on.
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Abstract: Pain is a subjective feeling; it is a sensation that every human being must have experienced
all their life. Yet, its mechanism and the way to immune to it is still a question to be answered. This re-
view presents the mechanism and correlation of pain and stress, their assessment and detection
approach with medical devices and wearable sensors. Various physiological signals (i.e., heart activity,
brain activity, muscle activity, electrodermal activity, respiratory, blood volume pulse, skin tempera-
ture) and behavioral signals are organized for wearables sensors detection. By reviewing the wearable
sensors used in the healthcare domain, we hope to find a way for wearable healthcare-monitoring
system to be applied on pain and stress detection. Since pain leads to multiple consequences or
symptoms such as muscle tension and depression that are stress related, there is a chance to find
a new approach for chronic pain detection using daily life sensors or devices. Then by integrating
modern computing techniques, there is a chance to handle pain and stress management issue.

Keywords: pain detection; stress detection; wearable sensor; physiological signals; behavioral signals

1. Introduction

Pain is a highly inter-variated and subjective feeling. What makes one person feel
excessive pain may not be exactly same for another. In order to reach a general perception
of pain, people have been constantly looking for a relevant scale or index try to quantify this
sensation objectively for hundreds of years [1]. To extract more information that helps better
understanding of pain, required numerous studies based on experiments and clinical ob-
servations. Since pain generated in both types of scenarios is linked to the same original
sensation that is embedded in the human body, the mechanism of the pain is being clari-
fied by conducting more and more experiments or observing the symptoms in the clinic.
Back in 1846, when the first anesthetic (ether) was publicly demonstrated for general
anesthesia by Morton at Massachusetts General Hospital in Boston (MA, USA), the ma-
jority thought the agony of pain has become history. However, looking back from now,
that event might just be the beginning of our understanding of the mechanisms of pain.
In general anesthesia during surgery, anesthesiologists use their knowledge of anesthetics
to make subjects go into unconsciousness and block the sensation of pain for the purpose
of performing the surgery more smoothly, but pain is a strong sensation that not only
exists during surgery but also can exist potentially in any moment of our lives. It acts as
more than just an unpleasant experience to everyone but also plays the role of a useful
reminder to avoid potential injuries or tissue damage. Thus, pain research is not only about
how to stop it, but more importantly what is the problem that this sensation is implicitly
pointing to. Their causation of some pains is easy to identify, and thus can easily taken care
of by treating the causative wounds or injuries. However, not all types of pain have a clear
or obvious reason responsible for it. Other kinds of pain have no clear correlated injuries
or wounds that need to be cured. Sometimes this type of pain is observed even after the
original injuries have healed. Unfortunately, pain is also tricky to study for two reasons:
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pain-inducing tests are rarely viable in research; in fact, it is hard to design a pain-related
experiment without ethical conflicts with human rights. For this reason existing pain-
inducing tests (e.g., hot plate test, tail flick test, etc.) solely use animals as experimental
subjects or focus on the relation between a pre-existing pain condition with some specific
movement (e.g., back pain-inducing test [2] examines the pain condition during move-
ments of lying supine, rolling over, and sitting up). The challenge of designing a proper
pain-inducing test leads to the second difficulty, which is that pain detection is thus limited
in the medical field or clinical aspects. Most pain-related research is done by observing
patients in the clinics or during surgery. The devices used in measuring pain are usually
expensive and only viable in hospitals and mostly used in surgery rooms. Thus, this review
article aims first to emphasize the association between pain and stress and then, by adapt-
ing resourceful tests and wearable sensors-based detection techniques for stress detection,
it aims to overcome the bottleneck of the universal pain detection problem.

2. Review Scope

Different from previous reviews that were centered around the compliance and us-
ability different among self-report pain scaling [3] such as Visual Analogue Scale (VAS),
Verbal Rating Scale (VRS) and the Numerical Rating Scale (NRS) in clinical use, this review
also brought up other pain scaling approaches that are based not solely on subjective
self-reporting but rather objective physiological signals for pain detection. Such equipment
is only applicable in hospitals for inter- or post-surgery studies. Its potential to be universal-
ized by wearable sensors is discussed in this review. On the other hand, although reviews
on the topic of stress detection [4] are often based on physiological signals and algorith-
mic approaches for feature extraction, wearable sensor systems for stress detection are
rarely discussed with pain detection and its integration for health monitoring systems
in mind. Furthermore, the difficulties of applying pain-inducing experiments urges this
paper to dive into the relations between pain and stress, their mechanisms, correlations,
assessment, and applied medical devices and wearable sensors. The purpose of this review
is summing up the modern physiological and behavioral-based techniques for both pain
and stress detection. Then we also discuss the demands for a wearable-based monitor-
ing system, the evaluation of the system and its possibilities to overcome the issues of pain
management and stress management.

3. Mechanism of Pain

The mechanisms of pain are being clarified by more and more studies and research.
The pain process is coming to be understood as a dynamic phenomenon [5]. The noci-
ceptive signal travels from receptors (nociceptors) to peripheral nerves then to the spinal
cord and then to cerebral structures where the thalamus transmits the signals to the so-
matosensory cortex, frontal cortex and limbic system. Although the sensation of pain is
being carried by nerve fibers [6], different types of nerve are used for different sensations
as shown in Table 1. The first kind of nerve fiber is A-alpha nerve fibers; its diameter is
about 13−20 μm long. Its signal conduction speed is about 80−120 m/s and it is in charge
of carrying information related to position and spatial awareness. The second type of nerve
fiber are called A-beta; its diameter is 6−13 μm and it conducts touching signals at a speed
of 35−75 m/s. The third type of nerve fibers are A-delta ones; despite the fact they have a
smaller diameter (around 1−5 μm) and slower speed for conducting signals (5−35 m/s),
information such as sharp pain and temperature are delivered through them. The last
type of nerve fiber is C fibers which have the smallest diameter at around 0.2−1.5 μm
and the slowest signal conducting speed at 0.5−2.0 m/s but they can carry information
such as dull pain, temperature, and itching. The different speeds of signal conduction may
cause the sensation of a sequence of signals in subjects. For example, since t A-delta fibers
are larger and surrounded by myelin (a lipid-rich substance that acts as an insulator for
nerve cell axons), when someone pricks their finger, they are expected to sense the sharp
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sensation followed by a slower ache due to the difference of speed between A-delta fibers
and C fibers.

Table 1. Different kinds of nerve fiber.

A-alpha A-beta A-delta C

Myelinated/unmyelinated Myelinated Myelinated Myelinated Unmyelinated
Size (diameter) 13–20 μm 6–13 μm 1–5 μm 0.2–1.5 μm
Speed of signal

transmission in meter
per second

80–120 m/s 35–75 m/s 5–35 m/s 0.5–2.0 m/s

Related perception Position and spatial
awareness touching Sharp pain and

temperatures sensation
Dull pain temperatures

and itches

On the path of transmitting pain to the brain, nerve fibers go through the dorsal horn
that acts as a relay station or gateway for the signals [7]. Inside the spinal cord, the dorsal
horn intervenes in the transmission of nerve signals; it either amplifies the nociceptive
signal and pass it through or decreases the amplitude of the signal and ends it. This gate-
like behavior, first proposed by Melzack and Wall, is known as the “gate control theory of
pain” [8]. According to this theory, when a pain signal reaches the spinal cord and the cen-
tral nervous system (CNS) it could be either amplified, reduced, or blocked by the system.
This kind of condition is commonly observed in cases after subjects have experienced a
severe injury and suffering paralysis of the lower limbs. The intervention of pain signals
is also related to the types of nerve fiber. That is, signals carried by different nerve fibers
have different priority in the sensation mechanisms at the spinal cord [9]. One instance is
when people rub a wounded body part, which seems to attenuate the sensation of pain.
This is due to the modulating effect of the counter-mechanism on large-diameter afferent
fibers inhibiting the transmission and small-diameter afferent fibers facilitating the trans-
mission [10]. Thus, when the A-beta fibers synapse is activated, it has the tendency to close
the gate then mediate the sensation of C nerve fibers. However, there do exist some cases
(e.g., phantom limb pain) that gate control theory alone cannot explain. It also involves the
mechanism of the brain [8].

Finally, besides the interactions between nerve fibers and the spinal cord, there are
other factors that may deviate the perception of pain. Factors that could affect the per-
ception of pain are emotions [11] and psychological state [12]. Different mindsets and
expectations toward the pain could either enhance the pain experience or reduce it. Per-
sonal beliefs and values under social or cultural influences may alter the perception of pain
or vice versa [13]. Physical state changes (e.g., age, health status, etc.) could also worsen
the perception of pain [14].

4. Classification of Pain

Generally, pain is evaluated in multiple aspects such as the location of the pain, the pos-
sible causes, the frequency of the pain occurrence, its intensity and the period of the pain.
Classifying pain benefits the communication between patients and clinicians which hence
facilitates the assessment task, helps formulate treatment planning and increases the preci-
sion of diagnoses in the clinic. In reality, however, not all pains have clear causes linked to
them or have an adequate treatment for the pain. Some pains might have apparent causes
but no adequate treatment (e.g., deep tissue disorders, peripheral nerve disorders, etc.)
while pains like trigeminal neuralgia have adequate treatment without the causation being
known. Then there are other pains that neither have clear causes nor treatment such as back
pain and fibromyalgia [15]. Due to the complexity of pain causes and adequate treatments,
there exists numerous methods for the classification of pain. Such classifications are expand-
ing and new types of pain are being overserved in the clinic. The classification itself can
sometimes ironically be confusing to clinicians [16]. However, there is a general consensus
on pain classification that is agreed upon by a majority of researchers and clinicians.
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4.1. Classification of Pain by Its Mechanisms

One of the most common classification techniques is based on the different mecha-
nisms that originate the pain [17], which classifies it into the following types:

4.1.1. Nociceptive Pain

Pain caused by injuries to body tissues is classified as nociceptive pain. This is the
pain that comes after a cut, burn or fracture type of body tissue injury. Other pain of
this type can commonly be observed in subjects who have undergone surgery during
the postoperative period. This type of pain is described as aching, sharp or throbbing.
Since the pain is caused by a body tissue injury, any movement (e.g., coughing, touching,
etc.) related to the injured part can amplify the pain sensation.

4.1.2. Neuropathic Pain

Neuropathic pain originally meant the pain caused by a primary lesion, the dysfunc-
tion or transitory perturbation of nerves or the peripheral or central nervous system until
it was redefined by International Association for the Study of Pain (IASP) taxonomy as
“pain that caused by a lesion or disease of the somatosensory system”. Neuropathic pain is
not a single disease; it is a syndrome caused by different diseases and lesions for which
some of the underlying mechanisms might be unknown [18]. Sometimes neuropathic pain
is depicted as a burning, tingling, and numbness sensation. People suffering neuropathic
pain can also feel excessive pain from minor stimuli such as a light touch.

4.1.3. Nociplastic Pain

Nociplastic pain are defined in the IASP 2017 taxonomy as “pain that arises from
altered nociception despite no clear evidence of actual or threatened tissue damage caus-
ing the activation of peripheral nociceptors or evidence for a disease or lesion of the
somatosensory system causing the pain”. Nociplastic pain is a relatively new term com-
pared with nociceptive pain and neuropathic pain. In fact, there was only nociceptive
pain and neuropathic pain before the IASP added the third mechanistic descriptor to its
taxonomy. The call for the third mechanistic descriptor was to fill the lack of a proper
valid pathophysiological descriptor among patient groups having fibromyalgia, complex
regional pain syndrome (CRPS) type 1, or other instances of “musculoskeletal” pain and
functional visceral pain disorders. As stated in [19]: “This group comprises people who
have neither obvious activation of nociceptors nor neuropathy but in whom clinical and
psychophysical findings suggest altered nociceptive function”. However, signs of this
altered nociception have not yet been characterized by IASP [20] and it requires more
studies on patients suffering from chronic pain. Furthermore, there is also a proposal for
definition modification of nociplastic pain as “pain that arises from altered nociceptive
function” in [21].

4.2. Classification of Pain by Its Time Period

The most common classification is concerned with the time duration of the pain.
That is, by observing how long the symptom lasts, the pain could also be divided in two
types: acute pain and chronic pain [22,23].

4.2.1. Acute Pain

The term acute pain often refers to the occurrence of damage to tissues. It is a short-
lived pain that works as a warning sign from the body. In most cases (i.e., broken bones,
surgery, dental work, labor and childbirth, cuts, burns), the pain last fewer than six months
and disappears once the injury or disease is cured or healed.

4.2.2. Chronic Pain

The features of chronic pain (e.g., osteoarthritis, frequent headaches, low back pain, etc.)
are its long duration and its complicated mechanism. It usually lasts for more than
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six months, even after the original injury was healed. Due to its stubbornness, people liv-
ing with chronic pain may develop symptoms of anxiety, depression, or other conditions
(e.g., tense muscles, lack of energy, limited mobility, etc.).

5. What Is Stress and what is Its Correlation with Pain?

Pain and stress are interleaved and connected in many ways and the consensus of the
highly intertwined relations between these two mechanisms has been established in [24].
Stress is a feeling of emotional strain and psychological stress and a state of threatened
homeostasis and a reaction that breaks the balance of physiological processes. The sources
of stress could be the experience of the pain or the consequences of ongoing pain or
other psychological reasons. Experiencing pain is stressful enough, especially when it is
not negligible, but what is worse is when the pain lasts for a longer time, then it could
lead to a vicious cycle. For example, people suffering back pain could easily develop stress
by further induced muscle tension or spasms [25]. The muscle tension produces more
pressure on the nerves, not only causing more pain and stress but also squashing the nerve
harder and exacerbating the pain. On the other hand, the consequences of ongoing pain
usually last longer than half a year and this kind of chronic pain would have a greater
impact to the patient’s quality of life [26]. The stress and frustrated mood brought by
the chronic pain are already tough, but the restricted movement or low physical activity
in fear of amplifying the pain furthermore are even worse in these situations. People in
the fear of being in pain tend to avoid any potential movement that does or may induce
the pain. The avoidance and anticipation of pain that causes a lot of stress is the beginning
of the vicious cycle. This kind of symptom are called “pain catastrophizing” [27]. It is
a negative cognitive-affective response toward actual pain or the anticipation of pain.
Furthermore, experiencing stress could also affect the endocrine system balance and then
induce endocrine disorders which are linked back to chronic pain [28].

Upon encountering stress, the human body would respond with three components:
adrenal medulla, hypothalamus and pituitary gland. These three components constitute the
so called hypothalamic-pituitary-adrenal axis (HPA) which react to the stress by releasing
hormones (the adrenal medulla could release norepinephrine) helping or exciting other
parts of the organism through the sympathetic nervous system (SNS) [29]. When the SNS
is activated, the subject’s heart rate and blood pressure would increase in a short period
of time; their breathing may get faster, adrenalin levels raise as do the blood sugar and
cholesterol levels. The blood flow would also be redirected from lower priority organs
such as the organs in the digestive system to higher priority vital organs such as the heart
and the brain. The function of the immune system would be driven up since there is
an immediate danger and the body needs to handle the “fight or flight” situation [30].
However, if this situation cannot be resolved immediately (e.g., chronic pain), this self-
protecting mechanism might harm the body instead and becomes maladaptive in the
long term. Excessive or prolonged activation of the SNS causes muscle tension, headaches,
high blood pressure or even promotes the development of cancer [31]. People who are
physically inactive due to a stress state could rather end up with depression.

6. Assessment for Pain and Stress

6.1. Pain Assessment

Pain is gradually being accepted as the fifth vital sign [32] since this was firstly
proposed by American Pain Society (APS) in 1996. Different kinds of pain (i.e., acute pain
or chronic pain) are assessed separately and serve different purposes. The assessment for
acute pain is to avoid provoking the pain onset and to monitor the effect of the suppressant
that is used. Contrarily, the goal of assessing chronic pain is collecting related signs in
the early stages or to gather enough symptoms to track down the origin of the pain.
In practice, there are multiple scales and measures that are helpful for tracking pain-
related treatment outcomes. These kinds of measurement are resources for clinicians to
select a treatment plan and validate the treatment effects. Commonly used measures for

147



Sensors 2021, 21, 1030

pain are: (1) Self-report measures: self-report measurement is a subjective score related
to pain given by the subject ranging from 0 (no feeling of pain) to 10 (extreme pain).
It usually refers to a numerical pain rating scale, and similar measurements are VAS [33];
(2) Physical performance tests: the 5-minutes walking, stair-climbing task, 15 meters
walking, sit-to-stand and loaded forward-reach test [34] and the Abbey Pain Scale for
the non-verbal individuals (e.g., patients with dementia) [35]; (3) Physiological response
measures: the physiological and autonomic response measures are the most objective and
physiological approach to pain. By observing the changes of multiple physiologic signals
such as skin conductance and heart rate and other signals, researchers can formulate a valid
index for pain evaluation (e.g., analgesia nociception index [36]). However, the correlation
of such measurement with pain are still under debate. Since the idea of using such
measurement is to apply the physiological signals that are the subject of the activation
of the automatic nerve system. However, the activity of the automatic nerve system
(mainly about the balance of sympathetic nervous system and parasympathetic nervous
system) may be reacting not only to pain but also other factors. Thus, the physiological
measurement in most cases is used in the surgical room where the subject is unconscious
so the physiological approach is the only way to obtain any relevant information for
pain monitoring.

To date, numeric pain scales based on the patient’s self-reporting is still the easiest
and most popular assessment for pain. However, the lack of an objective assessment for
pain may cause the overuse of opioids and to their addiction in clinic. This problem could
further lead to opioid-related unintended deaths [37].

6.2. Stress Assessment

Similar to pain assessment, one way to assess stress is by a self-report scale in a
clinical environment. Rather than a subject filling out a questionnaire, the VAS provides
a rapid quantitative assessment in a 10-points range [38]. Since stress is defined as a
state in which homeostasis is threatened, the adaptive processes that are activated would
cause both physiological and behavioral changes. In order to comprehend this stress
response mechanism, numerous studies have been conducted observing the physiological
and behavioral changes in the body under stress induction tests. The observation of
physiological or pathophysiological changes in response to stress is fundamental to the
development of novel pharmacological agents for stress management [39]. In the rapid
development of modern society, people are dealing with stress and work fatigue on a
daily basis; thus, like pain assessment, stress assessment could also benefit from observation
during daily life. Without further inducing stress to the subjects, such cases are associated
to fatigue and work-related stress [40] in the concern about the mental and physical health
of employees.

Stress Induction Tests

Setting up stress-inducing scenarios helps researchers collect and validate the stress-
correlated physiological signals or behavioral signals. These stress induction tests usually
involve asking the subject to finish a certain task or perform a certain action in a specific
condition designed by researchers; then the researchers could conclude which signals are
related to stress by monitoring the changes of signals during the tests.

• Trier Social Stress Test

The original Trier Social Stress (TSST) consists of an anticipation period and a test
period for 10 minutes each [41]. During the test, subject is told to take role of a job applicant
and prepare for a 5-minutes speech. An audience of three persons plays as interviewers
and managers. The subject must convince the interviewers of his/her suitability for
the imaginary job without touching any topics that is previously noted before the test.
If the subject finishes his/her presentation early, he/she will be asked to continue by the
interviewers. Then after the speech period is over, the subject is asked to do a mental
arithmetic which is counting down numbers from 1,022 in steps of 13. Once the subject
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makes a mistake, he/she will need to start all over from number 1,022 again. Following the
mental arithmetic test, the subject is given details of the experiment and will be allowed to
take a rest while his/her physiological signals are still under monitoring. There are other
kinds of TSST variations such as using the virtual reality (VR) to reduced cost [42].

• Stroop Color-Word Inference Test

The idea of the Stroop color-word inference is asking the subject to read out the color
of the words while that word is printed in different color of the word is represented literally.
The stress is induced by the contradiction between the linguistic and visual perceptions.
The Stroop color-word test has been widely used in psychology for a long time [43]. It has
the advantages of high reliability and stability in measuring for individual differences with
only relatively simple rules. The performance of Stroop color-word test also has a positive
outcome in VR environment [44].

• Cold Pressor Test/Hot Water Immersion Test

In the cold pressor test, the subjects are asked to put their hand into a bucket of cold
water and keep there it as long as they can. The subjects should notify the researcher when
they first feel that the cold water starts causing pain to their hands. Then at any time after
the first notification is given, the subjects are free to remove their hands when they feel the
pain is unendurable. Then according to the timing of two notifications (i.e., when does
the subject start feeling pain and when they remove their hands due to the intolerable
pain) and the continually collected blood pressure and heart rate, researchers can further
analyze the physiological features of stress. The cold pressor/hot water immersion test are
basically the same and the only different is the temperature of the water that is being used
in the test. The cold pressor test is efficient experimental stress induction [45] which has
been observed to reliably increase HPA activity [46].

• International Affective Picture System Test

In psychological studies, one of the most common tests for emotion and attention
research is the International Affective Picture System (IAPS). By providing pictures ranging
from simple daily objects to extreme pictures that involve violent or erotic contents, the test
induces stress or emotion in the subject. A relevant application is used to detect IAPS stress
levels in human pilots [47].

6.3. Physiological Signals for Assessment
6.3.1. Heart Activity

Since stress causes fundamental disturbances in the autonomic nervous system (ANS)
which has major effects on heart activity [48], some useful detection methods for stress
are based on heart-related signals [49]. Heart activity could be represented by an electro-
cardiogram (ECG), which is recorded by measuring the electrical activity of heartbeats.
Usually, a normal heartbeat includes three distinguishable waves: the P wave, QRS com-
plex wave and T wave. Most of the studies on heart activity are related to three aspects of
the heart: time domain, frequency domain and non-linear features of heart. The research in
the time domain focuses on parameters such as heart rate (HR), inter-beat (RR) intervals
and heart rate variability (HRV) [50]. For RR intervals, it could be further studied as
its mean value, the standard deviation or root mean square. Frequency domain studies
analyze the components in the low-frequency (LF), high-frequency (HF) or the LF/HF
ratio. As for the non-linear features there are algorithms such as entropy, complexity,
Poincare Plots [51], recurrence and fluctuation slopes.

6.3.2. Brain Activity

The brain activity is recorded as the electroencephalogram (EEG) for brain-related
research (e.g., emotion changes, stress-related studies [52] or consciousness studies for anes-
thesia, etc.). The four bands of the EEG signal are alpha (8−13 Hz) which indicates the sign
of calmness and balanced state of mind; beta (13−30 Hz), which is related to emotional
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and cognitive processes which correlates to stress; delta (0.1−4 Hz) which is associated
with deep sleep stages (e.g., high brain activity in this range are being viewed as a sign of
unconsciousness) and theta (4−8 Hz) that generates the theta rhythm which is a neural
oscillation in the brain that is linked to interpretation of cognition [53] and behavior such
as learning, memory and spatial navigation.

6.3.3. Muscle Activity

Muscle tension usually comes along with stress. Researchers are studying changes of
muscles activities in human body under certain stress-presented activities [54]. The state
of muscles like stretching and releasing could be monitored by electromyogram measure-
ments. Electrodes placed on certain areas of muscle could detect the potential changes
due to the locomotion of the body. After obtaining the measurement of muscle activity,
statistical techniques can be used to enhance the understanding of the signals. Such appli-
cations are often referred to “myomonitoring” and can be adopted by studies in the interest
of muscle tension (e.g., monitoring mandibular closure maximum intercuspation of the
teeth [55]), and muscle fatigue (with a sonic approach [56]).

6.3.4. Electrodermal Activity

EDA is a useful indicator for neurocognitive stress by giving the change of electrical
properties of skins. When a stress-inducing scenario is applied on a subject, the body is
expected to start sweating; this further increases the skin conductance [57]. The long-term
shifts in tonic level are called skin conductance level (scl); and the transient responses within
seconds are the galvanic skin response (GSR). The tonic and phasic measurement are the
two main aspects of EDA. One example of using EDA to validate pain stimulation is given
in [58]. Posada-Quintero et al. proved that thermal grill stimulation is highly correlated
with VAS. In this research, the observed EDA also shows significant increases as the
stimulation level goes up. A systematic review of EDA data collection and signal processing
presented in [59] by Posada-Quintero and Chon provides a summary of EDA recording
devices, signal analysis methods, and the synthesis framework for EDA-related research.

6.3.5. Blood Volume Pulse

Blood volume pulse (BVP) provides the changes of volume in blood between each
heartbeat and it fluctuates along with the changes in heartbeats. BVP is measured by optical,
non-invasive sensors by comparing the light absorbed by the blood. Xie et al. used BVP for
identifying strong stress and weak stress [60].

6.3.6. Skin Temperature

Stress influences both the core and peripheral body temperature [61]. While the core
temperature tends to rise in response to stress, the distal skin locations tends to decrease.
When acute stress is present, it triggers peripheral vasoconstriction which causes a rapid
drop in skin temperature [62].

6.4. Behavioral Signals for Assessment
6.4.1. Speech

Voice patterns can be quite different for a person under stress or not. Multiple features
related to the voice patterns could be altered when stress is present such as the changes in
pitch [63], tone and speaking rate, or even the words they choose in the speech.

6.4.2. Facial Expressions

Natural habits, such as facial expressions are the reflection of the psychological state
and the indication of emotion that a person is experiencing. Lots of researchers are trying
to capture these subtle-signs and correlate them with stress situations through facial
electromyography (EMG) [64] or image recognition based on facial expression [65].
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6.4.3. Keystroke and Mouse Dynamics

In modern times, most people use computers on a daily basis. The way they use
them could provide clues about their mental state or emotions in the present. The speed of
typing and mouse dynamics could provide useful clues to indicate whether a person is
stressed or not [66,67]. The use of excessive strength when hitting a keyboard and clicking
a mouse is no doubt an obvious sign of an upset mind.

6.4.4. Body Gestures and Movements

A stressful person also displays signs of their state of mind with their body actions
such as jaw clenching, constant finger rubbing, or even posture changes while they are
standing or sitting. Multiple behavioral features are provided in [68] for stress detection.

6.4.5. Mobile Phone Usage

A person experiencing stress could either choose to fight it or flee from it. Using a cell
phone might provide an easy way to forget about the stress. By distracting themselves with
various features built into a smartphone, the stress may seem to fade away temporarily.
Mobile phone addiction could also be a sign of anxiety [69] which is common symptom for
people under stress. One study [70] finds a significant correlation between mobile phone
use and stress.

6.4.6. Questionnaires and Surveys

Questionnaires and surveys are already being widely used in psychological research
for assessment of psychological state. By asking subjects questions that serve to identify
a specific mental approach, subjects might expose their deepest concerns or stress on
their minds. Sometimes, even the subject could not know the source of their own stress
which requires questionnaires or consultation by a psychologist to unravel.

7. Medical Devices or Wearable Sensors used in Pain and Stress Detection

In this section, the common devices and wearable sensors that are suitable for detecting
pain and stress are organized. Pain within a short time-period usually can be located by
the person themselves or be detected by a clinician in a clinical environment. Even in
surgery when the subject is unconscious, there are devices to provide a valid index for
the degree of pain being experienced [71]. However, sometimes pain like chronic pain or
stress are intermittent rather than constant. This features highly irregular seizure timings
which are hard to detect in a specific time window using traditional medical devices or
clinical assessments; in fact, relevant diagnoses are mostly dependent on self-reporting
which is based on the subject’s memory to get any relevant information. In this case,
wearable sensors could be used to collect data when subjects are not in the clinic and
monitor both physiological and behavioral signals for longer periods which provides
useful information for clinicians [72].

7.1. Medical Devices Used in Pain Detection

Nociception is the most relevant and effective approach for pain detection. Even though
pain is a subjective perception, nociception is a physiological reaction to the nociceptive
stimuli; this nociceptive stimulus is based on the reaction of the autonomic nervous system
(i.e., the balance of the sympathetic nervous system and parasympathetic nervous system).
Then by analyzing the corresponding physiological signal variation caused by the activ-
ity of autonomic nervous system, researchers manage to formulate an index useful as a
pain reference. A popular way to monitor the balance of the sympathetic nervous system
and parasympathetic nervous system is by analyzing the heart rate variability. Other meth-
ods use the number of skin conductance fluctuations per second (NFSC), the size of pupil
and its variability when illuminated, blood vessel contraction, EMG, EEG, and changes of
body temperatures, etc. Heart rate variability and plethysmography are widely used in
both types of research since these two signals are easier to obtain during surgery and they
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are highly sensitive to the activity of autonomic nervous system. The two most common
medical devices used in assessing pain are the analgesia nociception index that is based on
the heart rate variability and the surgical pleth index that is based on plethysmography.

7.1.1. Analgesia Nociception Index

The analgesia nociception index (ANI) is a technology that provides a measurement
of the parasympathetic tone on a scale from 0 to 100. It has been used in the surgical
room or post-operative room for pain assessment. By analyzing the electrocardiographic
data which reflecting parasympathetic activity, the ANI provides a reference to the sym-
pathetic/parasympathetic balance that allow doctors to control surgical stress. The ANI
has shown a correlation to the self-rating system in the postoperative period after volatile
agent and opioid-based anesthesia in [73]. Since this index is solely based on the phys-
iological signals rather than being a self-rating system, it could be applied to patients
under general anesthesia or in critically ill condition who have communication problems.
Besides, in a study of ANI in pain-related surgical conditions (e.g., during labor [74], la-
paroscopic abdominal surgery [71]), there is also other research such as [75] that find the
relations between ANI and emotional status. Basically, mechanisms that are correlated to
parasympathetic changes could adopt ANI as a measurement tool.

7.1.2. Surgical Pleth Index

The surgical pleth index (SPI) is a digital monitor based on the patient’s hemodynamic
responses to surgical stimuli and analgesic medications during general anesthesia [76].
SPI measures the sympathetic activity as a reaction to painful stimuli; it creates a single
index (using a scale from 0 to 100) by integrating the photoplethysmographic amplitude
and photoplethysmographic pulse interval with algorithms. The SPI has been proved to
correlate with self-reporting systems [77]; however, the appropriate selection of SPI target
values has not been established yet. The representation of different score ranges of SPI
(e.g., prediction of moderate-to-severe postoperative pain [78]) is still a major topic in the
research field.

7.2. Wearable Sensors Used in Stress Detection

Assessments for stress detection could benefit from the proper use of wearable sensors
for data collection based on the physiological/behavioral signal of interest. The useful
physiological signals that are of interest in stress detection research are heart activity (ECG),
brain activity (EEG), muscle activity (EMG), skin conductance (EDA), BVP, and skin/body
temperatures and relevant wearable sensors and devices for stress detection are organized
in Table 2. Most of the behavioral signals could be obtained by smartphone sensors [79]
or recorded by video cameras for image analysis and voice analysis. Each sensor used in
stress detection is listed in the following paragraphs, with additional details of the sensor
placement illustrated in Figure 1.

• Empatica E4 wrist band: this device is a wrist band is a real-time physiological data
streaming and visualization sensor. As a medical-grade wearable device, it enables
researchers to collect multiple physiological data such as BVP for HRV analysis,
and EDA that reflects the constantly fluctuating electrical properties of a certain area
of skin and peripheral skin temperature. Besides, it also captures motion activity with
a 3-axis accelerometer [80–83].

• AutoSense: this is a wireless sensor suite that packs six sensors in a small form factor
which are capable of collecting cardiovascular, respiratory and thermoregularity mea-
surements through radio transmission and processes collected signals for detecting
the general stress state of subjects. The wearable sensor has advantages of exces-
sive lifetime while fully charged which allows prolonging its use for constant data
collection [84–86].
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• SleepSense: this is a belt-like sensor which adopts a piezoelectric film sensor for
converting chest or abdominal respiration motions to analog voltages and thus, pro-
vides an indication of respiration waveforms [87,88].

• BN-PPGED: this is a physiological sensor for measuring BVP via optical plethysmo-
graphic methods and EDA activity. The sensor could be worn as a wristband with an
additional two electrodes situated on two fingers [89].

• Cardiosport TP3: this is also a belt-like wearable sensor. By attaching the sensor pod
to the chest strap, the TP3 will be activated to collect HR and millisecond RR intervals
as long as the HR is detected [90].

• Q-sensor: this is a wireless sensor designed by the Massachusetts Institute of Technol-
ogy that aimed to “detect and record physiological signs of stress and excitement by
measuring slight electrical changes in the skin.” The emotion detection sensor could
benefit individuals with autism who usually do not show his/her stress outward
and helping to manifest the emotions before breakdown. The sensor could obtain
the accelerometer data and skin conductance by measuring inner wrists of subject’s
hand [70].

• Wahoo chest belt: Wahoo chest belt is equipped with a sensor which collects HRV
data on a chest belt. Besides provides the heart rate and calorie burn data for workout
evaluation, the HRV data could also be an indicator of the autonomic nervous system
activity [91].

• BioHarness 3: this is physiological monitoring telemetry device that are usable for
subjects in the workplace. The device can store and transmit data such as HR, HRV,
respiration rate, and 3-axis accelerometer data through Bluetooth [92].

• Shimmer sensor: the shimmer sensor is a monitoring wearable sensor for EDA. Com-
posed of two finger electrodes and a main unit, the shimmer sensor can transmit data
to personal computer or other devices through Bluetooth connections [92].

• MindWave mobile EEG headset: it is an EEG headset capable of logging single
channel EEG raw data at a 512 Hz sampling rate then provides index of attention and
meditation of the user after power spectral density analysis [92].

• DataLOG: this is a portable EMG signal collection and monitoring devices designed
by Biometrics. It could be placed on the arm, the leg or waist for various fields studies
like human performance, sports science, medical research, industrial ergonomics,
gait laboratories, and educational settings [93].

Table 2. Wearable sensors used in stress detection.

Type of Signal
Commercialized Wearable Sensors Used in

Relevant Research

Wearable Sensors Not Yet
Commercialized but Used in

Relevant Research

Heart activity Empatica E4 wrist band, AutoSense,
Cardiosport TP3, Wahoo chest belt, BioHarness 3

Brain activity MindWave mobile EEG headset Device 1, Device 2
Muscle activity DataLOG Device 3

Electrodermal activity Empatica E4 wrist band, BN-PPGED, Q-sensor,
Shimmer sensor

Respiratory AutoSense, SleepSense
Blood volume pulse/pulse plethysmograph Empatica E4 wrist band, BN-PPGED

Body/skin temperature Empatica E4 wrist band, AutoSense
Three-axis accelerometer data Empatica E4 wrist band, Q-sensor

Notes: Empatica E4 wrist band is used in [80–83]; AutoSense is used in [84–86]; SleepSense is used in [87,88]; BN-PPGED is used in [89];
Cardiosport TP3 is used in [90]; Q-sensor is used in [70]; Wahoo chest belt is used in [91]; BioHarness 3, Shimmer sensor, and MindWave
mobile EEG headset are being used as an integrated system for stress monitoring in [92]; DataLOG is used in [93]; Device 1 is a EEG
wearable sensor developed in Online Predictive Tools for Intervention in Mental Illness (PTIMI) project funded by European Union [94];
Device 2 is a noninvasive physiological sensor for stress assessment presented in [95]; Device 3 is used in [96] which they collect the EMG
signals of the left trapezius muscle and then remove the contained ECG signal components.
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Figure 1. Illustration of sensors placement on human body.

8. Wearable Sensors in Healthcare

Wearable sensors are under rapid development and have been applied in many fields
through the years, especially in healthcare. Recently, due to the severe pandemic, wear-
able sensors are also being used for COVID-19 detection [97]. The expanding needs of
wearable sensors in healthcare domain is motivated by the increasing healthcare costs;
the success application of wearable sensors in such domain is the result of advanced tech-
nologies of microelectronics and wireless communication [98]. The increasing healthcare
costs are highly related to the ageing world population [99]. Constant monitoring for
physiological and psychological advantages chronic diseases prognosis and detection in
the early stage. A real-time feedback information about subject’s health status could greatly
improve the accuracy and capability to identify abnormal condition and prevent it in ad-
vance. Wearable sensors are the applicable solution for such tasks; in fact, a type of system
based on wearable sensors are called the wearable health–monitoring systems (WHMS)
which can be adopted for supervising subjects that are elderly people, have chronic disease
or special abilities [100].

According to Alexandros et al. [98], WHMS are founded with a base of various types of
miniature sensors, wearable or implantable for the purpose of measuring physiological sig-
nals. The collected parameters are transmitted through wireless or wired link to a central
node (e.g., microcontroller board) to processing and display the information to the users.
Then, these aggregated vital signs can be sent to the medical center for further analyses and
diagnoses by medical professionals. A WHMS has multiple components (i.e., sensors, wear-
able materials, smart textiles, power supplies, communication modules, central processing
unit (CPU), software and advanced algorithms, etc.). Yet, it also has to meet several criteria
for practical use such as light weight and small size in order to enhance its comfortableness,
and low radiation and mild heat dissipating to ensure safety. Finally, appropriate security
during the data transmission for privacy concerns. After all of the above requirements
are satisfied, the overall WHMS also has to be low-cost and affordable for majorities or
even the underprivileged minority. Several available WHMS were reviewed by Alexandros
and Nikolaos [98] according to the maturity level of the system. The maturity level of
system is evaluated to their ability to measure multiple parameters, the detail level of the
data documentation, the popularity of the system based on its citation number, the applied
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hardware technologies in the system and the algorithms used for feature extraction and
decision support. A maximum maturity level WHMS also must face problems like battery
lifetime shortage and private information security. However, integrating with modern
techniques such as cloud computing, fog computing resources, the WHMS can further
improve their performance with minimum cost on electronic components, processing
unit and even save more space for individual sensors. Such integrations [101] release the
frontier data collecting unit from massive computing tasks which may free more space and
drop power consumption to the sensors. Then using smart phone as data transmission
and processing relay station to construct a more comprehensive and compatible platform,
and with federated learning an explicit data could be reproduced to implicit data which
reduce the risk of data leakage and accelerate the process for optimizing diagnosis model.

9. Discussion

Pain and stress are useful mechanisms that help humans survive and is also a part of
evolution. With the proper induction of the unpleasant feeling, individuals could sense
the danger that is happening or might be harmful to its body; it is especially useful when
the danger that caused the threat is beyond the individual’s knowledge. Pain and stress
serve as warning signals to acknowledge any incidents that are potentially harmful or fatal.
This mechanism also prevents the same or similar incidents that might happen again by
introducing stress before the harmful incident can cause further damages. This kind of
experience based on threat learning could help to address threats and are useful but not
harmful to the body in the short term. However, under the rapid development of hu-
man society, these mechanisms for survival instinct are no longer needed as much as they
used to be; contrarily, the downside of these two mechanisms in the long term has gradu-
ally surfaced. Pain-inducing tests are much less effective compared to stress-inducing tests,
and any experiment that may induce pain affects human rights. Thus, a possible solu-
tion for pain monitoring might rely on more research to find out more details about the
relationship between pain and stress, then using WHMS is expected to resolve the pain
management issue.

Pain management is a raising issue worldwide [102]. The access to pain manage-
ment has been defined as a human right, despite the differences in social status and
economic condition. Everyone should be able to be free from suffering pain, but in reality,
it is truly sad that not everyone could afford a physical examination in the hospital or
treatment resources. Pain management is also a public health issue [103]. In addition, in
developed countries, the aging population also must face chronic age-related diseases [104].
On the other hand, stress management also demands people’s attention as it is a common
issue in modern society. Stress management techniques and relevant education are all
necessary for students [105] and for workers [106], for everyone to meet their needs.

Fortunately, with the help of well-developed techniques, devices for monitoring pain
or stress are becoming more and more accessible. The use of wearable sensors may allow
the diagnose of pain and stress no longer restricted to hospital but everywhere by online
doctors or artificial intelligence (AI) models.

10. Conclusions

Pain is an annoying feeling that everyone must have experienced; yet it is a subjective
sensation to everyone. What is considered painful by one person might not be interpreted
the same by others. The mechanisms of pain are so far being understood as a signal that
travels from receptors to peripheral nerves, to the spinal cord, then to cerebral structures.
Different nerve fibers have their own priority and duty for carrying sensations. There are a
few classifications for pain according to their characteristics and mechanisms. One way
to classify pain is by using the time-period of the pain duration. If the pain lasts less than
6 months, it is called acute pain; otherwise, if it lasts more than 6 months, it is known as
chronic pain. Acute pain usually comes with a specific causation and the perception of it
is constant until the causation to the pain has been removed or the causing injury healed.
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Chronic pain, on the contrary, does not affects the subject for a much longer time but the
symptoms are often intermittent, which raises challenges to detect or to find the origins
of that pain. Moreover, having a persistent pain issue leads to the development of stress
which is also hard to detect or treat. A person suffer either from pain or stress could
end up with both, due to the vicious cycle. Luckily, with multiple physiological signals
and behavioral signals collecting by wearable sensors, there is hope for detection to seek
moderate treatment in the early stage. Available physiological signals for stress detection
on wearable sensors are heart activity, brain activity, muscle activity, electrodermal activity,
respiratory, blood volume pulse, skin temperature. Furthermore, wearable sensors canwork
with multiple components (e.g., communication modules, CPU, advanced algorithms, etc.)
to construct a wearable health-monitoring system for chronic disease detection and health
status monitoring.

This article has presented the mechanisms of pain and stress, the correlation be-
tween them, their assessment, and their detection devices as well. Finally, wearable sensor-
based health-monitoring systems are presented and discussed in the hope of solving the
imbalanced resources global-wide for diagnosing pain and pain treatment issues. The low
cost and easy to use features of wearable sensors might provide a perfect solution for this.
Awareness about the importance of pain management is rising along with the promotion
among humanity. Integrated with AI algorithms and cloud computing resources, wearable
sensors could act as more than a component that collects data but as a foundation of a
health monitoring and treatment system. Furthermore, by analyzing and quantifying pain
and stress, they provide an opportunity to deal with the worldwide issues of pain t and
stress management.
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Abstract: Cardiovascular diseases (CVDs) are the number one cause of death globally. An estimated
17.9 million people die from CVDs each year, representing 31% of all global deaths. Most cardiac
patients require early detection and treatment. Therefore, many products to monitor patient’s heart
conditions have been introduced on the market. Most of these devices can record a patient’s bio-metric
signals both in resting and in exercising situations. However, reading the massive amount of raw
electrocardiogram (ECG) signals from the sensors is very time-consuming. Automatic anomaly
detection for the ECG signals could act as an assistant for doctors to diagnose a cardiac condition.
This paper reviews the current state-of-the-art of this technology discusses the pros and cons of the
devices and algorithms found in the literature and the possible research directions to develop the
next generation of ambulatory monitoring systems.

Keywords: Review; ECG; Signal Processing; Machine Learning; Cardiovascular Disease;
Anomaly Detection

1. Introduction

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the
number one cause of death globally. An estimated 17.9 million people die from CVD, representing 31%
of all global deaths. Four out of five CVD deaths are due to heart attacks and strokes, and one third of
these deaths occurs prematurely in people under 70 years of age [1]. An electrocardiogram (ECG) can
record a patient’s heart electrical signal activities over a long period [2] by measuring voltages from
electrodes attached to the patient’s chest, arms, and legs. ECGs are a quick, safe, and painless way to
check for heart rate, heart rhythm, and signs of potential heart disease.

A twelve lead ECG is today’s standard tool and is used by cardiologists for detecting
various cardiovascular abnormalities. However, heart problems may not always be observed on
a standard 10-second recording from the 12-lead ECG measurements performed in hospitals or clinics.
Therefore, long term ECG monitoring that tracks the patient’s heart condition at all times and under any
circumstance has become possible with the development of new sensing technologies. Portable ECG
recording devices such as the Apple Watch [3], AliveCor [4], Omron HeartScan [5], QardioMD [6], and,
more recently, the Astroskin Smart Shirt [7] are revolutionizing cardiac diagnostics by measuring a
patient’s 24/7 cardiac activities and transmitting this information to a cloud service to be stored and
processed remotely.

By itself, this massive data set is not very useful to the medical community as they usually do
not have enough time or resources to read through long ECG recordings (two to three weeks) to
detect any possible heart problems. For this technology to work, new automatic and reliable heart
anomaly detection algorithms must be developed to assist doctors in coping with this massive data
set. Our aim in this paper is to review the current state-of-the-art that address the challenges of
performing ambulatory ECG anomaly detection and to highlight possible solutions. In order to
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do so, we will first review the medical background associated to ECG analysis and then review
the state-of-the-art of automated anomaly detection in ambulatory and non-ambulatory contexts.
We will then conclude by discussing the possible research directions to develop the next generation of
ambulatory monitoring systems.

2. ECG Monitoring and Its Signals

2.1. Standard 12-lead ECG

A standard 12-lead electrocardiogram provides views of the heart in both the frontal and
horizontal planes and views the surfaces of the left ventricle from 12 different angles. A 12-lead
ECG has six limb leads (I, II, III, aVF, aVL, and aVR), and six chest leads (V1–V6). The standard
12-lead ECG is used as a standard clinical dysrhythmia analysis tool for chest pain or discomfort,
electrical injuries, electrolyte imbalances, medication overdoses, ventricular failure, stroke, syncope,
and unstable patients. It is widely used in clinics and hospitals for heart disease diagnosis [8].
However, when the patient needs to be monitored continuously, a 12-lead ECG is impractical as the
patient needs to be attached to 10 electrodes.

2.2. Three-lead vs. 12-lead ECGs

Due to the fact that the standard 12-lead ECG is impractical for continuous ECG recording,
therefore, three (3)-lead ECGs are widely used in portable ECG devices for a 24-h recording.
Frank’s lead system [9] is a 3-lead system that is practical for clinical use. In addition, much research
has been done to show that a 3-lead ECG is useful to make a valid diagnosis. Antonicelli [10] was able
to validate the accuracy of a 3-lead telecardiology (tele)-ECG compared to a 12-lead tele-ECG in an
older population. Their study demonstrated a high level of concordance between the ECG diagnosis
using a simple home telecardiology device (3-lead tele-ECG) and more complex instruments, like the
12-lead tele-ECG, as well as the standard 12-lead ECG. The study also demonstrated that a simple
3-lead tele-ECG could be used to detect cardiac alterations, such as arrhythmias, atrioventricular
blocks, and re-polarization abnormalities, with good agreement with the observations measured by a
12-lead tele-ECG and the standard 12-lead ECG.

Kristensen et al. also evaluated how well an inexpensive portable three-lead ECG monitor (PEM)
can detect patients with atrial fibrillation (AF) compared to a standard 12-lead ECG [11]. In their
study, the results demonstrated that the sensitivity of diagnosing AF using PEM recordings was
86.7% and the specificity was 98.7% when compared to a 12-lead ECG. According to cardiologists,
the misclassification of three PEM recordings was due to interpretation errors and not related to the
PEM recording. In their article, they concluded that PEM devices could be used to diagnose AF.
Dehnavi et al. performed an analysis of 3-lead vectorcardiogram (VCG) signals for the detection of
cardiovascular diseases [12]. In the study, the authors experimented with detecting ischemia using a
VCG algorithm using 3-lead and 12-lead ECGs and demonstrated a similar performance in both cases.

Furthermore, many researchers have tried to reconstruct a 12-lead ECG signal from 3-lead
signals. Piotr Augustyniak reviewed and compared two transformation functions between 3-lead
VCG and 12-lead ECGs [13]: the Dower and Levkov transformations. The author then tested how a
synthesized 12-lead ECG and a VCG compared to an actual 12-lead ECG. The results showed that
the synthesized 12-lead ECG was 10.08% distorted and the synthesized vectocardiogram was 6.347%
distorted. Atoui [14] introduced a neural network-based model that could derive a standard 12-lead
ECG from a serial 3-lead ECG. As a result, the derived 12-lead ECG from the ANN model has an
average correlation coefficient of 0.93 compared to the actual 12-lead ECG.

Figueriedo et al. proposed using a 3-signal-lead sensor to synthesize a 12-lead ECG [15].
The authors used a linear equation to combine the collected signals from a 3-signal-lead sensor to
output the 12-lead ECG. H. Zhu et al. proposed a novel, lightweight synthetic method [16], which could
reconstruct the standard 12-lead ECG from 3-leads: I, II, and V2. The proposed method is called the
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adaptive region segmentation-based piece wise linear (APSPL) method. It consists of adaptive region
segmentation, linear regression operation, and ECG sequence restoration.

Moreover, Nelwan et al. [17] and Drew et al. [18,19] have done several studies demonstrating
that it is possible to reconstruct a standard 12-lead ECG from a reduced lead set ECG. I. Tomasic et al.
performed a study [20] to investigate how a regression trees algorithm can be used to transform a 3-lead
ECG into a synthesized 12-lead ECG. Their study demonstrated that the regression trees algorithm can
synthesized an accurate 12-lead reconstruction and that the reduced ECG lead set, contains enough
information to detect most heart anomalies.

2.3. Normal ECG Signals

To detect anomalies on ECG signals, one must first know what a normal heartbeat looks like.
In [8], a normal rhythm (see Figure 1) is defined as the result of an electrical impulse that starts
from the sinoatrial (SA) node, propagates through the heart muscles, and then to the patient’s chest.
A normal rhythm is composed of the following segments in sequence: a P wave generated by the atrial
depolarization, the QRS complex generated by the ventricular depolarization, and a T wave and U
wave generated by ventricular re-polarization. In normal ECG signals, the P wave, QRS complex,
and T wave should be similar over time at a frequency ranging from 60 to 100 bpm. A normal ECG
signal should have paced rhythm (PR) intervals within 0.12–0.2 s, and QT intervals less than half of
the corresponding RR interval. Also, in a normal ECG signal, the variation between the shortest PP
interval/RR interval and the longest PP interval/RR interval should be less than 0.04 s (see Figure 2).

Figure 1. Normal sinus rhythm (NSR) [21].

Figure 2. A normal electrocardiogram (ECG) signal and the corresponding notation [21].
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2.4. Abnormal ECG Signals

The anomalies in ECG signals can be categorized into three subsets: irregular heart rate, irregular
rhythm and ectopic rhythm. The heart rate could be counted by measuring the PP/RR intervals on the
ECG. If the PP/RR interval is long, this indicates a low heart rate, otherwise, it indicates a high heart
rate. If the heartbeats start from SA node, but the PP/RR intervals are longer than 1 s, this may indicate
sinus bradycardia (Figure 3a), which indicates that the heart is pumping too slow. When the PP/RR
intervals are shorter than 0.6 s, this may be the sign of Sinus Tachycardia (Figure 3b). Moreover, if the
variations between the PP/RR intervals are too large, this may indicate Sinus Arrhythmia, Sinus Block,
and Sinus Arrest (Figure 3c–e).

These ECG anomalies may indicate a patient’s current conditions. For instance, Sinus Bradycardia
may be associated with hypothyroidism, hyperkalemia, sick sinus syndrome, sleep apnea syndromes,
carotid sinus hypersensitivity syndrome, and vasovagal reactions. Sinus Tachycardia is commonly
associated with anxiety, excitement, pain, drug reactions, fever, congestive heart failure, pulmonary
embolism, acute myocardial infarction, hyperthyroidism, pheochromocytoma, intravascular volume
loss, and alcohol intoxication or withdrawal. Sinus Block, and Sinus Arrest can be caused by hypoxemia,
myocardial ischemia or infarction, digitalis toxicity, and a toxic response to drugs [22].

Figure 3. Abnormal sinus rhythms: (a) sinus bradycardia, (b) sinus tachycardia, (c) sinus arrhythmia,
(d) sinus block, (e) sinus arrest [21].

Even if the heartbeat starts from the SA node, the heartbeat signal shape could be abnormal as
well. For example, in the ECG signal, the ST segment and the T wave could have abnormal shapes;
these are usually called ST-T changes. The ST-T changes could indicate hyperkalemia, ischemia, and so
on [23]. Some examples of ST-T changes can be found in Figure 4.

Ectopic rhythms are started from a source other than the sinus node. For example, Atrial Rhythms
begin in the atria. In this case, the P wave is shaped differently from the P wave beginning in the
SA node. There are several abnormal rhythms that can occur when the Atria is firing the heartbeat:
Premature Atrial Contraction, Wandering Atrial Pacemaker, Atrial Tachycardia, Atrial Flutter, Atrial
Fibrillation. Examples are shown in Figure 5. The Premature Atrial Contraction is a very common
heartbeat that could be caused by emotional stress, excessive intake of caffeine, and hyperthyroidism.
If Premature Atrial Contraction consecutively occurs three or more times, the rhythm is considered as
Atrial Tachycardia. It may cause light-headiness or even fainting. Atrial Flutter and Atrial Fibrillation
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are two distinct but closely related tachyarrhythmias. They could lead to many symptoms, such as
palpitations, light-headiness, fainting, angina, and congestive heart failure.

Figure 4. Examples of ST-T changes.

Figure 5. Abnormal Atrial Rhythms: (a) Premature Atrial Contraction, (b) Wandering Atrial Pacemaker,
(c) Atrial Tachycardia, (d) Atrial Flutter, (e) Atrial Fibrillation [21].

Junctional Rhythms are another kind of ectopic rhythm. These occur when the atrioventricular
(AV) junction paces the heart. In such a case, the P wave on the ECG signal may disappear or become
negative. There are several anomaly examples shown in Figure 6: Premature Junctional Complex,
Junctional Escape Rhythm, Junctional Tachycardia. The Premature Junctional Complex usually has the
same cause as the Premature Atrial Contraction described previously. A Junctional Escape Rhythm
could be caused by sick sinus syndrome, digitalis toxicity, excessive effects of beta-blockers or calcium
channel blockers, acute myocardial infarction, hypoxemia, and hyperkalemia. One of the most common
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anomalies is the Junctional Tachycardia, the Atrioventricular nodal re-entrant tachycardia (AVNRT).
This is an arrhythmia that results from a rapidly recirculating impulse in the nodal part of the AV
junction, and could be caused by digitalis toxicity [22].

Figure 6. Abnormal Junctional Rhythms: (a) Premature Junctional Contraction, (b) Junctional Escaped
Rhythm, (c) Junctional Tachycardia [21].

Ventricular Rhythms is another kind of ectopic rhythm. It occurs when an ectopic site within
a ventricle assumes responsibility for pacing the heart. As a result, the ventricular heartbeats and
rhythms usually have QRS complexes that have abnormal shapes and longer lengths. The following are
the examples of abnormal Ventricular Rhythm: Premature Ventricular Contraction, Ventricular Escaped
Rhythm, Accelerated Idioventricular Rhythm, Ventricular Tachycardia, and Ventricular Fibrillation,
Ventricular Asystole. We can see the ECG signals in Figure 7. Individuals with Premature Ventricular
Contraction may have the marker of severe organic heart disease associated with an increased risk of
cardiac arrest and sudden death from Ventricular Fibrillation. Ventricular Tachycardia consists of three
or more consecutive Premature Ventricular Contraction, and it could lead to more life-threatening
Ventricular Fibrillation. With Ventricular Fibrillation, the ventricles do not heartbeat in any coordinated
fashion but instead, fibrillate or quiver asynchronously and ineffectively. It will cause the patient to
become unconscious immediately [22].

Figure 7. Abnormal Ventricular Rhythms: (a) Premature Ventricular Contraction, (b) Ventricular
Escaped Rhythm, (c) Accelerated Idioventricular Rhythm, (d) Ventricular Tachycardia, (e) Ventricular
Fibrillation, (f) Ventricular Asystole [21].
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As depolarization and re-polarization are slow in the atrioventricular (AV) node, this area is
vulnerable to blocks in conduction. Therefore, when a delay or interruption happens during impulse
conduction from the atria to the ventricle, AV blocks may occur. AV blocks, also called Heart blocks,
are classified into: First-degree AV blocks; Second-degree AV blocks (types I and II); Third-degree AV
blocks (complete) see Figure 8. Among the heart blocks, the lower degree heart blocks could lead to
Third-degree AV blocks, also called Complete Heart blocks, which are the most severe heart anomaly.
With the Complete Heart blocks, the atria and ventricle are pacing independently, which could slow
down the ventricular rate, and eventually lead to fainting [22].

Figure 8. AV Blocks: (a) First-degree AV blocks, (b) Second-degree AV blocks type I, (c) Second-degree
AV blocks type II, (d) Third-degree AV blocks [21].

3. Automatic Heart Anomaly Detection: A State-of-the-Art

3.1. Automatic Heart Anomaly Detection

The objective of detecting anomalies in ECG signals consists of finding the irregular heart rates,
heartbeats, and rhythms. To achieve this goal, an anomaly detection system must be able to find them on
all heartbeat sequences; therefore, to obtain the essential metrics as stated in Section 2. Also, the system
looks at the entire recording to detect any irregular rhythm segments such as an inconsistent R-R
interval and ectopic rhythms. Therefore, an anomaly detection system is composed of five different
sub-systems: noise removal (Section 3.2), heartbeat detection (Section 3.3), heartbeat segmentation
(Section 3.3), heartbeat classification (Section 3.4), and rhythm classification (Section 3.5).

A typical heartbeat anomaly detection system can be seen in Figure 9. The noise reduction process
intends to minimize its effect on signal interpretation caused by the recording device or patient’s
movement. The heartbeat detection aims to find the location of the heartbeats to calculate the heart
rate. The heartbeat segmentation extracts the entire heartbeat based on a known heartbeat location.
The heartbeat classification checks for any abnormal heartbeat shape on the ECG signal. The irregular
heart rhythm classification is similar to the heartbeat classification, but instead of checking only one
heartbeat shape, it checks a period signal on the ECG record. Pertinent research found in the literature
relating to the five sub-systems are introduced in the following sections.

Figure 9. Typical Heartbeat Anomaly Detection.
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MIT-BIH Database

Before explaining the sub-systems of the anomaly detection, the MIT-BIH Arrhythmia
Database [24,25] need to be described first, as it is widely used in the ECG analysis related research.
It was the first generally available set of standard test materials for the evaluation of the arrhythmia
detector. It contains 48 half-hour excerpts of two-channel ambulatory ECG recordings from 47 subjects.
The ECG data was collected with Del Mar Avionics model 445 two-channel reel-to-reel Holter recorders.
The database has the annotation labels for 16 different heartbeat types and 15 different types of rhythms.
All the selected research in this review used the MIT-BIH database, which allows us to test and compare
the performance of the algorithms.

The annotation labels and the corresponding heartbeat types and rhythm types used in this
database are listed below. The heartbeat types are:

1. Normal (N)
2. Left bundle branch block beat (LBBB)
3. Right bundle branch block beat (RBBB)
4. Atrial premature beat (PAC/APC)
5. Aberrated atrial rremature beat (a)
6. Nodal(junctional) premature beat (J)
7. Supraventricular premature beat (S)
8. Premature ventricular contraction (PVC)
9. Fusion of ventricular and normal beat (F)

10. Atrial escape beat (e)
11. Nodal (junctional) escape beat (j)
12. Ventricular escape beat (E)
13. Paced beat (P)
14. Fusion of paced and normal beat (f)
15. Classifiable beat (Q)
16. Atrial/Ventricular flutter beat (!).

The rhythm types are:

1. Atrial bigeminy (AB)
2. Atrial fibrillation (AF)
3. Atrial flutter (AFL)
4. Ventricular bigeminy (B)
5. 2◦ Heart block (BII)
6. Idioventricular rhythm (IVR)
7. Normal sinus rhythm (NSR)
8. Nodal (A-V junction) rhythm
9. Paced rhythm (PR)

10. Pre-excitation (PREX)
11. Sinus bradycardia (SBR)
12. Supraventricular tachyarrhythmia (SVTA)
13. Ventricular trigeminy (T)
14. Ventricular flutter (VFL)
15. Ventricular tachycardia (VT).
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3.2. Noise Removal

ECG signals may be distorted by many other artifacts that have nothing to do with the heart
functions. The ECG artifacts have various and uncertain forms. Some physiologic artifacts could
mimic true dysrhythmia, leading to false diagnostics [26]. Therefore, noise removal is a necessary step
for anomaly detection in ambulatory ECGs.

There are two main groups of artifacts: non-physiological and physiological artifacts. The first is
caused by equipment problems, such as power-line interference, and the other one is caused by muscle
activities, skin interference or body motion such as baseline wander, electromyogram, and motion
artifacts. For example, the motion wander could significantly affect the measurement of the ST segment
in an ECG signal [27]. Among all the artifacts, the motion artifact is the most challenging noise to
remove as the noise spectrum overlaps the ECG signal [28]. Various ECG motion artifact examples are
shown in Figures 10 and 11 [29].

Figure 10. ECG Artifact examples: (a) Baseline Wander, (b) Power line Interference, (c) Muscle
Interference.

Figure 11. ECG Motion Artifact.

In this section, various noise removal algorithms in the research literature are categorized and
compared. There are four conventional methods used for noise removal in ECG signals.

The first approach consists of using digital low-pass, high-pass, band-pass, and notch filters to
remove the noise. Many studies, such as [30–35], use a combination of low-pass and high-pass filters
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to remove the corresponding noise on an ECG signal. The low-pass filter cut-off frequency is in the
range of 11 Hz to 45 Hz, and it mainly suppresses the high-frequency noise. The high-pass filter cut-off
frequency is in the range of 1 Hz to 2.2 Hz, and it focuses on removing the baseline wander in the
signal. In [30,32], notch filters range from 50 Hz to 60 Hz and are used for removing the power-line
interference. Band-pass filters with cut-off frequencies from 0.1 to 100 Hz are used by [36] to remove
the noisy components of electronic noise. The advantage of using a fixed digital filter is that it is easy
to implement and is highly efficient.

The second approach is to use a discrete wavelet transform (DWT) to remove the noise components
from a signal. Wavelet transform is a powerful method for analyzing non-stationary signals, such as
ECGs [37]. The DWT noise removal method is used in [38–40]. This method decomposes the signal
into the approximation and detail coefficients by using a wavelet function. The selection of the wavelet
function in the wavelet transform is the most important task, which depends upon the type of signal [41].
The commonly used Mother Wavelet basis functions are Daubechies filters (Db), Symmlet filters (Sym),
Coiflet filters (C), Battle-Lemarie filters (Bt), Beylkin filters (Bl), and Vaidyanathan filters (Vd) [42].

According to studies in [41–43], the Daubechies filters of order 4 and 8 (Figure 12), and the
Symmlet filters of order 5 and 6 (Figure 13) are the best wavelet functions for ECG signal analysis due
to their similar signal structure to the QRS complex. After decomposing the ECG signal, a threshold
method is applied to the DWT coefficients. A clean ECG signal could be reconstructed from the
thresholded DWT coefficients.

Figure 12. Daubechies wavelets.

Figure 13. Symlet wavelets.

DWT relies on the choice of the wavelet basis [44]. The level of DWT may be different between
different data sets; therefore, re-implementation is needed. Another wavelet analysis method is the
empirical mode decomposition (EMD). The EMD is an adaptive and fully data-driven technique that
obtains the oscillatory modes present in the data [44]. The EMD, similar to the wavelet analysis,
decomposes a time series signal into individual components without leaving the time domain. In EMD,
the high-frequency components are called the intrinsic mode function (IMF), and the low-frequency
part is called the residual. The procedure can be applied to residuals iteratively until no IMFs can be
extracted. The IMFs must satisfy two conditions:
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• The number of extremas and zero-crossings must be equal or differ at most by one;
• All local maximas and minimas must be symmetric to zero.

After decomposition using EMD, an IMFs and one residual signal will be obtained. Let c(t) be the
IMFs, we will have c1(t) to cn(t) from higher frequency components to lower frequency components.
Then digital filters or thresholds can be applied to the IMFs that contain the noise. After processing,
the signal can be reconstructed using the following equation:

x(t) =
n

∑
i=1

ci(t) + r(t) (1)

where x(t) is the reconstructed signal, c(t) is the IMFs, and r(t) is the residual signal.
In [45–47], the authors performed an EMD on the MIT-BIH database to suppress the high

frequency noise and the baseline wander. Ensemble empirical mode decomposition (EEMD) [48]
fixed the EMD shortcoming of mode mixing. The mode mixing can cause serious aliasing in
the time-frequency distribution, and also makes the physical meaning of individual IMF unclear.
The EEMD adds one extra step comparing to the EMD. By adding white noise to the original signal
before decomposing the signal into IMFs using EMD. Many noise removal works were found using
the EEMD, such as [49–51].

The previous approaches work well when the noise is in a fixed frequency range. However, there
are some cases where these approaches could fail. The first one is in motion wander removal. Raimon
Jane et al. stated in [27] that the motion wander frequency may not always be below 0.05 Hz. It could
depend on the frequency of the heart rate, which could be less than 0.8 Hz. Also, a fixed digital filter
could introduce nonlinear phase distortion and key point displacement [52]. These two approaches
could not remove the motion artifact from the ECG signal, as its spectrum completely overlaps with
the ECG signal. Therefore, many approaches use adaptive filtering to solve the proposed problem.

In 1991, Thakor et al. [28] introduced the least mean squares (LMS) adaptive filter (ARF) to reduce
the baseline wander, 60 Hz power line noise, muscle noise, and motion wander. In their research,
two adaptive filter structures were proposed. The first one has the primary input as s1 + n1, while the
reference input is noise, n2, which could be recorded from another generator that is correlated with n1.
The second one is an ECG that is recorded from several electrode leads, the primary input is s1 + n1

from one of the leads, the reference input is S2 from another lead that is noise-free. In both cases,
the signal s1 can be extracted by recursively minimizing the mean squared error (MSE) between the
primary and the reference inputs. The MSE can be calculated as:

E[ε2] = E[(s1 − y)2] + E[N2
1 ]. (2)

The least mean squares (LMS) algorithm was used to minimize the MSE. The LMS algorithm could be
written as:

Wk+1 = Wk + 2μεkXk (3)

where Wk is a set of filter weights at time k, Xk is the input vector at time k of the samples from the
reference signal, ε = primary input dk− filter output y, and parameter μ is empirically selected to
produce convergence at a desired rate. The error εk can be calculated as:

εk = dk − yk (4)

where dk is the desired primary input from the ECG to be filtered, and yk is the filter output that is the
best least squares estimate of dk.

As LMS adaptive filters are sensitive to scaling of the input, a power normalized least mean
squares has been introduced to solve this problem [53]. Another convention adaptive filter type is the
recursive least square (RLS) adaptive filter. The RLS algorithm recursively finds the filter coefficients
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that minimize a weighted linear least-squares cost function relating to the input signal. It is known for
its excellent performance when working in time-varying environments but at the cost of increased
computational complexity and some stability problems [54]. The algorithm updates the filter weight
vector using the following equations:

w(n) = wT(n − 1) + k(n)en−1(n), (5)

k(n) = u(n)/(λ + xT(n)u(n)), (6)

u(n) = w−1
λ (n − 1)x(n), (7)

where w(n) is the weights vector of iteration n, x(n) is the input signal, and λ is a small positive
constant very close to but smaller than 1.

The filter output yn−1(n) and the error signal en−1 are calculated using the filter tap weights of
the previous iteration and the current input vector as in the following equations:

yn−1(n) = wT(n − 1)x(n), (8)

en−1 = d(n)− yn−1(n). (9)

An adaptive filtering approach could remove baseline wander, motion artifacts, power-line interference,
and the muscle noise; however, it requires a reference input that is correlated to the original noisy input.
Obtaining a clean ECG signal is very difficult to acquire. Due to the added complexity for the data
collection, many studies have considered using an accelerometer as the reference noise signal for the
adaptive filter. For example, in [55], Raya et al. explored the possibility of using both a signal axis and
dual-axis accelerometer signal as the noise reference input to a least mean square (LMS) adaptive filter
and a recursive least square (RLS) adaptive filter. As a result, the RLS adaptive filter outperformed
the LMS adaptive filter. Using an accelerometer signal showed better results than using a dual-axis
accelerometer signal. The authors believed that the use of one axis reference input, particularly the
y-axis, was sufficient to minimize the noise.

3.3. Heartbeat Detection and Segmentation

Heartbeat detection is often related to the detection of an irregular heart rate and inconsistent
RR-intervals, which are explained in Section 2. Heartbeat detection is also the key step to extract the
heartbeats from the ECG signal to be used for classification. Heartbeat detection consists of three main
parts: P wave detection, QRS complex detection, and T wave detection. Therefore, it is usually related
to heartbeat segmentation. Heartbeat segmentation usually means segmenting a heartbeat from its
start point (onsite) of P wave to its endpoint (offsite) of the T wave.

However, the P wave and T wave may not be detectable in certain types of abnormal heartbeat,
and the QRS complex is the most obvious waveform. Thus the location of the QRS complex is often
used to locate the origin of the heartbeat; see Figure 2. There are many studies that detect the R peak
location in the QRS complex.

The Pan–Tompkins algorithm [56] is one of the most popular and earliest algorithms that
has been implemented (Figure 14). It is widely used in many applications due to its robustness
and computational efficiency. The algorithm uses a filter bank that consists of band-pass filters,
a differentiator, a squaring filter, and a moving window integrator to reduce the signal noise so that
only R wave information is present. Inspired by the Pan–Tompkins algorithm, many researchers,
such as [57–60] developed their own filter banks to improve the accuracy of the detection. In order to
reduce the detection of false positives, [58,60] used a predefined amplitude threshold, [59,60] used a
predefined RR interval length threshold.
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Figure 14. The Pan–Tompkins Algorithm.

Zidelmal et al. introduced a QRS detection method based on wavelet decomposition [61].
In the algorithm, the authors decomposed the raw ECG signal using a discrete wavelet transform,
then reconstructed the signal by selecting only the sub-signals that contained ECG information.
To detect the QRS complex, a threshold was set to select the peaks that have a large amplitude.
Similar works have been done in [62].

Manikandan et al. introduced a new algorithm that uses a Shannon energy envelop and
Hilbert-transform (SEEHT, Figure 15) to detect the QRS complex location [63]. In the preprocessing
stage of their algorithm, a band-pass filter is applied to the raw ECG signal to remove the baseline
wander and high-frequency noise. After that, a differentiator and normalizer is applied to the clean
signal to highlight the QRS complex components. The Shannon energy of the processed signal is
calculated using the following equation:

s[n] = −d2[n]log(d2[n]), (10)

where d[n] is the processed signal. The calculated Shannon energy sequence is then processed by a
zero-phase filter to preserve the sharp peaks around the QRS complex and smooth out the noisy peaks.
In the peak finding algorithm, a Hilbert transform is applied on all the candidate R peaks to obtain the
R wave envelope. In each R wave envelope, the zero-crossing locations indicate an R peak.

Inspired by SEEHT, [64] introduced An R-peak detection method based on peaks of Shannon
energy envelope(PSEE) that improves the computational inefficiency of the Hilbert transform by using
both predefined amplitude thresholds and predefined RR interval length thresholds. An improved
R-peak detection method based on Shannon energy envelope (ISEE) [65] improved further the SEEHT
and PSEE algorithms by using a filter bank consisting of a moving average filter, a differentiator, a
normalizer, and a squaring filter to eliminate the noisy peaks. The filter bank computational costs is
less than the Hilbert transform and does not use a predefined threshold. Most recently, Park combined
discrete wavelet transform and ISEE to detect R peaks on the ECG signals [66].

As explained previously, the P and T waves represent important information and the heartbeat
segmentation depends on the P and T wave detection. Therefore, a good detection of the P and T
waves is critical for diagnosis. Pal and Mitra proposed an algorithm that could detect the PQRST peak
points [67]. The algorithm is based on discrete wavelet decomposition. It reconstructs the signal from
selected wavelet coefficients, which are related to peaks such as: R, QS, and PT. For example, when the
algorithm is detecting the R peak, a signal is reconstructed with d3, d4, and d5 coefficients, and this
preserves the information for the R peaks but diminishes the other peaks.
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Figure 15. SEEHT R-peak detection algorithm.

A few years later, Banerjee also developed a T wave and QRS complex detection algorithm
based on discrete wavelet decomposition and adaptive thresholding [68]. Karimipour uses discrete
wavelet transform and adaptive thresholding to detect the QRS complex location, and give an
estimate of the P-wave and T-wave locations [69]. In practice, many studies, such as [31,70] used the
’ecgpuwave’ detector from PhysioNet for heartbeat segmentation [25]. However, because the P and
T wave detection works well with normal heartbeats, but not for many abnormal heartbeat types.
Many researchers choose manual annotation, such as [71], or a fixed window, such as [32,33,38,71,72],
for their heartbeat segmentation.

In Table 1, we compare the performance of some of the heartbeat detection algorithms that have
been tested on the MIT-BIH Arrhythmia database. [24].

The metrics used to compare each algorithm are calculated as follow:

• TP: Number of correctly detected heartbeats
• FP: Number of incorrectly detected heartbeats
• FN: Number of missed heartbeats
• Sensitivity (SEN) = TP / (TP+FN)
• Positive Detection (+P) = TP / (TP+FP)
• Detection Error Rate(DER) = (FP+FN) / TP
• Accuracy (ACC) = TP / (TP+FP+FN).
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Table 1. The heartbeat detection performance comparison using the MIT-BIH data set.

Method Year Total Heartbeats TP FP FN SEN +P DER ACC

Pan–Tompkins [56] 1985 116,137 115,860 507 277 99.76% 99.56% 0.68% 99.33%
FBBBD [57] 1999 91,283 90,909 406 374 99.59% 99.56% 0.86% 99.15%

S.W.Chen [58] 2006 102,654 102,195 529 459 99.55% 99.49% 0.97% 99.04%
DOM [60] 2008 116,137 115,971 58 166 99.86% 99.95% 0.19% 99.81%
S.Choi [59] 2010 109,494 109,118 218 376 99.66% 99.80% 0.54% 99.46%

Z.Zidelmal [61] 2012 109,494 109,101 193 393 99.64% 99.82% 0.54% 99.47%
SEEHT [63] 2012 109,496 109,417 140 79 99.93% 99.87% 0.2% 99.80%

S.Banerjee [68] 2012 19140 19126 20 20 99.90% 99.90% 0.21% 99.79%
PSEE [64] 2013 109,494 109,401 91 93 99.92% 99.92% 0.17% 99.83%

F.Bouaziz [62] 2014 109,494 109,354 232 140 99.87% 99.79% 0.34% 99.66%
A.Karimipour [69] 2014 116,137 115,945 308 192 99.83% 99.74% 0.43% 99.57%

ISEE [65] 2016 109,532 109,474 116 58 99.95% 99.89% 0.16% 99.84%
WTSEE [66] 2017 109,494 109,415 99 79 99.93% 99.91% 0.16% 99.84%

3.4. Irregular Heartbeat Classification

Irregular heartbeat classification focuses on the shape of the heartbeats, and aims at classifying the
type of a single heartbeat. As discussed previously, the heartbeat shape may vary when the heartbeat
starts from an ectopic location. For example, a premature heartbeat may have a missing P wave.
The abnormal shape of a heartbeat may indicate potential heart disease. By classifying and annotating
the types for all the heartbeats on the ECG, one could easily notice the frequency of anomalies that
happens in the heart to make an appropriate diagnosis and treatment. Heartbeat classification consists
of two main parts: feature extraction and model training.

3.4.1. Feature Extraction

The feature extraction step converts the raw ECG signal to machine-readable information.
Based on the existing research, there are two common features: morphological features and derived
features. The morphological features describe the heartbeats based on the observations of the signal
itself. There are many morphological features (see in Table 2) that have been used in various studies.

Other derived features are calculated from the ECG signal. There are many different methods are
proposed in the literature:

• Vectorcardiography (VCG) vector;
• DWT coefficients produced by Discrete Wavelet Transform (DWT);
• Independent components from Independent Component Analysis (ICA);
• PCA components generated from Principal Component Analysis (PCA);
• IMFs from Empirical Mode Decomposition (EMD)/Ensemble EMD (EEMD);
• DTCWT coefficients from Dual Tree Complex Wavelet Transform;
• Eigenvector methods;
• Dynamic Time Warping (DTW) distance.
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Vectorcardiography (VCG) is one of the ECG analysis tools. It displays the various complexes of
the ECG. It provides the possibility to use vector analysis on the cardiac electric potentials [80].

Discrete Wavelet Transform (DWT) decomposes the signal into many sub-signals
(detail coefficients) with different frequency ranges, as described in Section 3.2. Not only could
the DWT method be used to remove unwanted noises, it could also find features for the heartbeats as
the heartbeat waves are much clearer in the specific detail coefficients, such as D4 and D5. Therefore,
much research, such as [38,71], uses features from the detail coefficients to classify the heartbeat.

The conventional DWT technique lacks the property of shift-invariance due to the downsampling
operations at each stage of DWT implementation. Hence, the energy of the wavelet coefficient changes
significantly for a small-time shift in the input pattern. The Dual-Tree Complex Wavelet Transform [81] is a
simple technique that overcomes the DWT shortcomings. The DTCWT uses two sets of filters: one is used
for level 1 decomposition, and the other one is used for the higher levels. In the first level decomposition,
the original signal is decomposed into two Trees, and each Tree contains two sub-band signals. One tree
could be interpreted as the real part of a complex wavelet, and the other tree could be the imaginary part.
For each tree, the conventional DWT is applied for further decomposition [32]. The DTCWT method was
used by Thomas to extract heartbeat features to classify the heartbeat type [32].

Similar to DWT and DWCWT, the ICA, PCA, and EMD/EEMD also decompose the signal into
many sub-signals. The difference is that the ICA and PCA aims to reduce the input size to minimize the
computation speed. The EMD/EEMD, as explained in Section 3.2, does not require the knowledge of
the level of scale and the basis function that is needed in DWT. The ICA method has been used in [71]
to produce the independent components to be part of the heartbeat feature set. The PCA method used
in [82] reduces the input size for higher efficiency. Rajesh et al. computed the heartbeat features from
IMFs by applying the EMD/EEMD method to the ECG signal.

Eigenvector methods are used for estimating the frequencies and powers of signals from
noise-corrupted measurements. These methods are based on an eigendecomposition of the correlation
matrix of the noise-corrupted signal [83]. In [83], Ubeyli et al. used three kinds of eigenvector methods
to generate the feature set: Pisarenko, Multiple Signal Classification (MUSIC), and Minimum-Norm.
The Pisarenko method is particularly useful for estimating a PSD that contains sharp peaks at the
expected frequencies. The MUSIC method is a noise subspace frequency estimator and could eliminate
the effects of spurious zero on the noise subspace. The Minimum-Norm method aims to differentiate
spurious zeros from real zeros, and it uses a linear combination of all noise subspace eigenvectors.

Dynamic Time Warping measures the similarity between two heartbeat segments. It computes the
distance between these two heartbeat segments. Therefore, if we let one of the heartbeat segments to
be the sample heartbeat of a specific type, and the other one to be the test heartbeat, then the distance
indicates the similarity score between the test heartbeat and the sample heartbeat. The similarity score
could be used as a feature that represents the heartbeat, such as in work by [74,76]. Details of the
features of each method reviewed can be seen in Table 3.
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3.4.2. Model Training

Once the feature vectors are extracted from the raw ECG signal, then they can be used by a
model for training and classification. There are several methods that have been proven to be valid for
identifying heartbeat types. They are clustering, traditional machine learning classification, and deep
learning classification.

The clustering aims to find the similarity between the two groups (heartbeat segments) by
computing the distance between the two groups. The conventional distances for ECG signals are the
Euclidean Distance and Dynamic Time Warping Distance. [84].

The Euclidean distance is the most common distance when comparing two groups with the
same dimensions. An example of using Euclidean distance for abnormal heartbeat detection can be
found in Chuah and Fu’s [76]. They introduce an adaptive window discord discovery (AWDD) to
detect the anomaly in ECG recordings. It was developed from a brute force discord discovery (BFDD)
algorithm [85]. The algorithm finds candidates with an abnormal heartbeat by selecting the largest
Euclidean distance when comparing the heartbeats to each other. Also, they have set a threshold for
the Euclidean distance to reduce the false alarm rate. The Euclidean distance only works when both
heartbeat segments are the same length.

K-mean clustering is a popular clustering method that builds on the Euclidean distance.
The K-mean clustering clusters the heartbeat segments into many different clusters. Veeravalli et al.
developed an algorithm for real-time and personalized anomaly detection from wearable health care
ECG devices [86]. The K-means cluster algorithm is used to cluster all the heartbeat classes. To avoid
calibration of the technique for individual users, they assigned the most frequent heartbeat segments
as the normal heartbeat segments. The authors tested their algorithm on the MIT-BIH database and
the European ST-T Database. They were able to achieve 97.1% sensitivity and 99.5% specificity.

Sivarake and Ratanamahatana proposed a robust and accurate anomaly detection algorithm
(RAAD) that reduced the false alarm detection rate on ECG anomaly detection [34]. They extracted
heartbeat morphological features to be their input feature vectors. Then, they calculated the
dynamic time warping distance to measure the similarity between two variable-length heartbeats.
In their experiment, they tested their algorithm on INCARTDB01-05 [25], the MIT-BIH arrhythmia
database [24,25], and the MIT-BIH long term database [25]. Overall, their algorithm achieved 94.35%
accuracy and a 0% false alarm rate.

Another major method is the traditional machine learning classification algorithms: Kth
nearest neighbor(KNN), Linear Discriminant Analysis(LDA), Quadratic Discriminant Functions(QDF),
Support Vector Machine(SVM), and Multilayer perceptron neural network(MLPNN). These algorithms
build a mathematical model based on the provided training data. The trained model could correlate
the input data with its corresponding label. Many research could be found in this field.

Ivaylo Christov et al. used both the ECG morphology features and VCG features to represent
the heartbeat, and then train the feature vectors and its labels with Kth nearest neighbor. As a result,
the classification performance on both feature sets is over 96% for five heartbeat types (N, PVC, LBBB,
RBBB, and P) [30].

Philip de Chazal et al. used linear discriminant analysis as a classification algorithm. The input
feature vectors are ECG morphology features. As a result, this algorithm could perform around 97%
accuracy on MIT-BIH database with five heartbeat types (N, S, V, F, and Q) classification [31].

Mariano Llamedo et al. validated a heartbeat classification method for Normal, Supra-ventricular,
and Ventricular heartbeats based on ECG interval features, morphological features, and DWT
features [38]. The feature vectors are trained with quadratic discriminant functions. The model
had a 94% overall classification accuracy on the test dataset.

Li et al. uses the concept of transductive transfer learning to detect the abnormal instance on
an ECG signal. They trained a model to learn from a labeled data set to detect irregular heartbeats,
and then they use a kernel mean matching (KMM) algorithm [87] to enable knowledge transferring
between a labeled data set and unlabeled data set. The model they used was a weighted transductive
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one-class support vector machine, which could solve the problem of imbalanced data set [78].
The authors performed experiments on records 100, 101, 103, 105, 109, 115, 121, 210, 215, and 232 from
the MIT-BIH database. They achieved a 87.89% average accuracy.

Ye et al. classified 16 heartbeat types by using both morphological and dynamic features of ECG
signals. Then, both morphological and dynamic features were trained by the support vector machine
for the classification. Also, two channels of the ECG signal in the database were trained separately and
generated two models. Both models were used for the final classification part. The authors introduced
two ways of making a final decision: one is rejection, which requires both models to make the same
decision, and the other one is Bayesian, which is based on the fusion of both model’s results [71].
The experiment result of this research is compared in Table 4.

Zhang et al. built 46 feature vectors to represent the heartbeat to classify the abnormal
heartbeat shape on MIT-BIH database [74]. In the study, the authors apply the ecgpuwave tool
from PhysioNet [25] to detect the boundaries of the P wave, QRS complex, and ST waves. Then they
have collected five types of features, which are five inter-heartbeat intervals, five intra-heartbeat
intervals, 29 morphological amplitudes, six morphological areas, and morphological distance. The five
types of features could generate a feature vector with 46 morphological features. In the classification
step, the author used the support vector machine to learn the patterns of the feature vectors.
Additionally, both channels of the ECG signal have a trained support vector machine model. The results
of both models are considered in the final classification result. The result table of the paper shows that
the algorithm has nearly 90% accuracy for four heartbeat types (N, F, V, and S) classification.

Thomas et al. introduced an automatic ECG arrhythmia classification idea using dual-tree complex
wavelet-based features to detect normal, paced, RBBB, LBBB, and PVC heartbeats. The authors proposed
a feature extraction technique based on a dual-tree complex wavelet transform (DTCWT) technique.
Then the feature vectors were input to a multilayer perceptron neural network for abnormal heartbeat
detection [32]. The experimental results of this research are compared in Table 4.

Kandala Rajesh et al. used ensemble empirical mode decomposition (EEMD) features to classify
normal PVC, PAC, LBBB, and RBBB heartbeats. For the classification tool, a sequential minimal
optimization SVM was used to train and classify the different heartbeat types [33]. The experimental
results of this research are compared in Table 4.

Wess et al. implemented a multi-layer perceptron (MLP) classifier to detect anomalies in ECG
signal. To reduce the size of feature vectors, the author applied PCA on the extracted heartbeats.
Finally, the processed feature vectors were used as inputs to train an MLP neural network. The trained
model could be used for classifying the anomalies in the ECG signal [82]. The authors were able to test
their model on the MIT-BIH database with an overall accuracy of 99.82%.

Most researchers have used traditional methods to solve the problem. Traditional machine
learning classification methods do not require a considerable amount of training data, and they do
not need a lot of computational power. Recently, due to the development of GPUs, deep learning has
been proven to be reliable and fast for classification problems. Compared to traditional algorithms,
deep learning does not require cardiology experts to extract features since the network can extract
the features automatically. Instead, a deep learning model needs many labeled data for training.
Luckily, public data sets could be easily found on the Internet. Therefore, many studies using various
deep learning architecture have published new algorithms to classify heartbeats.

The Ubeyli algorithm uses Eigenvectors as the feature vectors and a recurrent neural network as
the classification tool. In the experiment, normal, congestive heart failure, VT, and AFIB rhythms were
trained and tested [83]. The experiment result of this research is compared in Table 4.
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Chauhan and Vig developed a predictive algorithm that could detect normal, PVC, PAC,
paced heartbeats via deep LSTM (long short-term memory) neural network (Figure 16). In their
algorithm, the features extraction/selection step is neglected, raw ECG data, and corresponding labels
are used as inputs to the stacked (two-layer) LSTM neural network. In the experiment, they split the
MIT-BIH database into four sets: a non-anomalous training set (SN), non-anomalous validation
set (VN), mixture of both abnormal and normal validation sets (SN+A) and the test sets (tN+A).
The LSTM network was trained on SN , and used VN for early stopping. The trained LSTM network
was then applied to SN+A to find the threshold for detecting abnormal heartbeats. Finally, the chosen
threshold was used on tN+A to discriminate regular and anomalous heartbeats while predicting [79].
The presented model was able to achieve a 97.5% precision with a 46.47% recall on the test set (tN+A).

Kiranyaz et al. presented a fast and accurate patient-specific ECG classification and monitoring
system. In their experiment setup, they picked five heartbeat types, N, V, S, F, and Q, from 20 ECG
records (100–124) from the MIT-BIH database as the training samples. The raw heartbeat segments
were submitted to a 1-D adaptive convolutional neural network (CNN) for pattern recognition.
The 1-D convolutional neural network acted as a feature extraction tool as well as a classification tool.
The classification times for this model is 0.58 and 0.74 ms for 64 and 128 sample heartbeat resolutions,
respectively. The speed is more than 1000x faster than the real-time requirement [36]. The experiment
result of this research is compared in Table 4.

Figure 16. Long short-term memory layers.

Sahoo et al. made an improvement to Rai’s algorithm [39] by using multi-resolution wavelet
transform and machine learning to detect Normal, LBBB, RBBB, and Paced heartbeats [75]. The authors
used Q-peak, R-peak, S-peak, T-peak, QR-interval, ST-interval, RR-interval, and QRS duration as
the input feature vector and used a MLP and a SVM classifier as the classification tool. In their
experimental results, the overall classification accuracy of normal, LBBB, RBBB, and Paced heartbeats
were 96.67% for the SVM classifier and 98.39% for the MLP classifier. The algorithm was tested on the
MIT-BIH database [24].

In addition to training with a public data set, some researchers used a patient-specific approach
to train the model. The first step of a patient-specific approach is to train an initial classifier with the
public data set. Then the second step requires a local cardiologist to review and correct the produced
labels by the initial classifier. The final step consists of training the initial classifier with corrected labels
to produce the final classifier to this specific patient. The patient-specific approach could eliminate the
inter-patient variations of the ECG signals. Biel et al.’s research shows that the variance in different
human heartbeats can be very high [88]. Many research works, [31,89–93], have proven that by using a
patient-specific model, the detection algorithms have a higher accuracy than the traditional systems in
practical cases.

3.5. Irregular Rhythm Classification

Different irregular heartbeat classifications can be found in the literature. Rhythm classification
focuses on finding abnormal rhythm among normal rhythms. To find a rhythm anomaly, the algorithm
needs to process more than one heartbeat.
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Ge et al. [94] used an auto-regressive (AR) modeling technique to classify the Normal, PAC, PVC,
SVT, VT, and VF rhythms. The algorithm uses Burg’s algorithm to compute the AR coefficients X.
In their paper, the authors have attempted two ways to classify the AR coefficients of X: a generalized
linear model (GLM) and multi-layer feed-forward neural network. The GLM equation is:

Y = Xβ + ε, (11)

where Y = [y1, y2, ..., yN ] is an N-dimensional vector of the observed responses, X is the N * P matrix of
the AR coefficients, β is a P-dimensional vector, ε is an N-dimensional error vector. The GLM outputs,
y1 to yN , compared to predefined conditions to classify various heartbeat types. An artificial neural
network with the AR coefficients as inputs was used for training and classification. Their experimental
results show that artificial neural networks perform better than GLM.

Ozbay et al. integrated a type-2 fuzzy clustering and discrete wavelet transform in order to build
a neural network-based ECG classifier to detect Normal, Br, VT, SA, PAC, P, RBBB, LBBB, AF, and AFI
results [95]. The proposed diagnostic algorithm can distinguish 10 different rhythm types. The system
was formed by combining fuzzy clustering layers, feature extraction layers, and a final classifier layer.
The fuzzy clustering layer select segments represents the arrhythmia class in the ECG. A wavelet
transformation was applied to the ECG segments to generate features. The authors have trained three
Type-2 Fuzzy Clustering Neural Network models (T2FCWNN-1, T2FCWNN-2, and T2FCWNN-3)
with three different training data sets. The three training data sets have the same amount of ECG
segments. However, the length of each ECG segment is 101 sample points, 52 sample points, and 27
sample points. As a result, the T2FCWNN-3 had the lowest training time, which is 4.86 s and test error
rate, which is 0.23% among all three models.

Patel et al. used a thresholding technique to detect arrhythmias on ECGs collected from a mobile
platform [35]. In the paper, they first used the Pan–Tompkins [56] algorithm to detect the R peaks on
the ECG recordings. Then they characterized SB, ST, PVC, PAC, and Sleep Apnea using a predefined
threshold to classify different rhythms. Their system a 97.3% detection accuracy.

Rajpurkar et al. developed an algorithm that could out-perform a board-certified cardiologist in
the detection of 12 types of arrhythmia using a 34-layer CNN [96]. The network took a 30 s long raw
ECG signal recording as input, and the output was a sequence of label prediction. The model output a
new prediction every second. The training data set contained 64,121 ECG records from 29,163 patients,
and the testing data set contained 336 records from 328 patients. The model performed with 80.9%
precision, 82.7% sensitivity, and a 0.809 F1 score.

Acharya et al. used two 11-layer CNNs to detect AFIB, AFL, ad VF(VFL) from normal heartbeat
rhythms [40]. The two networks, Net A and Net B, used a 2-second raw ECG recording and 5-second
raw ECG recording as inputs, respectively and output the corresponding label. In the algorithm, no
wave detection was performed on the input data. Before submission to the 1-D deep CNN, the ECG
segments were Z-score normalized. The result of Net A and Net B are compared in Table 5.
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3.6. Heartbeat/Rhythm Classification Algorithm Comparison

In the previous sections, we reviewed many algorithms that classify the ECGs in various categories.
We can see in Table 4 the classification results performed using the MIT-BIH database. In addition,
some algorithms’ performance metrics were converted to binary classification, which detects normal
and abnormal heartbeats. The reason is that computer diagnoses are not 100% accurate. We still
need doctors to make the final diagnosis as they are the only ones who know the context. The
methods should be focusing on binary classification, which classifies all abnormal heartbeat as one
class. The terms used in the table are explained:

• TP: Number of correctly detected abnormal heartbeats
• FP: Number of incorrectly detected abnormal heartbeats
• TN: Number of correctly detected normal heartbeats
• FN: Number of incorrectly detected normal heartbeats
• Sensitivity = TP/(TP+FN)
• False Alarm Rate= 1 - Specificity = FP/(FP+TN)
• Accuracy = (TP+TN)/(TP+FP+TN+FN)

Similarly, Table 5 compares all methods that classify the rhythms on MIT-BIH database. In
addition, the table has only shown the algorithms that provided enough information to compute
our metrics.

4. Discussion

4.1. Challenges for Heart Anomaly Detection with Ambulatory Electrocardiograms

There are still several challenges in heart anomaly detection:

• ECG signals may be contaminated with motion noise as the patient is constantly moving.
The noisy signal may have a similar morphology to abnormal cardiac signals resulting in false
positive. It is easy for the human eye to identify these conditions; however, for computers, it is
much harder to separate the noise from the signal.

• The model training requires a labeled ECG signal. In order to label the ECG data set, trained
personnel are needed. In addition, the labeling process is very time consuming. For example,
a 10 s one ECG signal has 2500 data points, and the continuous monitoring usually takes 24–48 h.

• The ECG heartbeat data is highly imbalanced. Over 99% of the heartbeat data is the normal case
and only 1% of the heartbeat data presents 16 abnormal cases. Therefore, the highly imbalanced
dataset makes it more difficult to adjust the learning step. Several options could be explored to
reduce the effect of imbalanced data, such as database re-sampling or using the cost-sensitive
method, kernel based method, or active learning [97].

4.2. Future Works

The next generation of heart anomaly detection algorithms should be able to deal with ambulatory
health measurements taking advantage of multiple synchronized measurements from: accelerometer,
real-time blood pressure (based on pulse transit time), skin temperature, and upper and lower chest
breathing sensors. An excellent review of the state-of-the-art of body sensor fusion work can be found
in Gravina et al. [98]. One commercial example of such a data fusion system is Astroskin from Carre
Technologies Inc. The Astroskin space-grade garments offer state-of-the-art continuous real-time
monitoring for 48 h of blood pressure, pulse oximetry, 3-lead ECG, respiration, skin temperature, and
activity. Using Astroskin, one can develop new fusion algorithms that can compensate for ECG motion
artifacts by correlations with synchronized accelerometer and breathing data.

This can be accomplished by using advanced LSTM and recurrent neural networks (RNN).
An example of this approach can be found in Shrimanti et al. [99] where ECG, peak blood oxygenation
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signal (PPG), and accelerometer measurements were combined using a LSTM and RNN to compute
in real-time motion compensated blood pressure. Such technology could open the door to real-time
patient-specific anomaly detection that goes far beyond simple ECG measurements, for example
correlating cardiac and respiratory events with patient activities.

4.3. Conclusions

In this survey, we have first introduced the definition of anomaly detection on ambulatory
electrocardiograms (ECG) and its importance. We then discussed the basic medical background
(Section 2) of electrocardiogram interpretation and the type of anomalies that need to be detected.
Most electrocardiogram anomalies can be categorized into two major categories: irregular heart rates
and irregular heart rhythms. The irregular heart rates on ECG could indicate bradycardia, tachycardia,
heart block, arrhythmia, and so on. The irregular heart rhythms could be ectopic heartbeat when
checking a period of ECG signal.

Therefore, based on the different irregularities on the ECG, anomaly detection can be divided
into several categories: heartbeat detection (Section 3.3) for detecting the location of each heartbeat;
heartbeat segmentation (Section 3.3) for segmenting the heartbeats from the entire ECG signal;
heartbeat classification (Section 3.4) for classifying the type of one heartbeat; and rhythm classification
(Section 3.5) for classifying the type of a period of ECG signal. In addition, as the ECG signal is
frequently contaminated with electrical noise and motion artifacts, noise removal (Section 3.2) is
important for anomaly detection on the ambulatory ECG.

From the literature, we have reviewed the conventional methods for each part. For the noise
removal on ECG, fixed digital filters, discrete wavelet transform, empirical mode decomposition,
and adaptive filters have been used by many researchers. For heartbeat detection, many researchers
used fixed digital filters, discrete wavelet transform, and Shannon energy envelopes to remove the
noise and unwanted waves while preserving the R peak information. They then used the R peak
location to compute the heartbeat. For heartbeat segmentation, the most common method was to use a
predefined window to segment the heartbeat signal from the entire signal.

For the literature on heartbeat classification, authors used morphological features and derived
features to represent the heartbeat signal. The morphological features were calculated from the
ECG signal, and derived features were computed using other methods, such as discrete wavelet
transform, independent component analysis, empirical model decomposition, and many more.
Both morphological and derived features are then used for training in order to generate a mathematical
model of the heartbeat signal.

The most popular models used k nearest neighbor, linear discriminant analysis, support vector
machines, multilayer perceptron neural networks, and deep neural networks, such as CNN and RNN.
Similarly for the rhythm classification, the algorithms take a period of ECG signal as the input to
the model.

The current challenges of anomaly detection for ambulatory electrocardiograms are analyzed
in this paper. We determined three major challenges. First, the reduction of motion artifacts on the
ECG signal interferes with the anomaly detection. Second, model training requires a massive amount
of labeled data that are had to come by. Third, ECG databases have very imbalanced data making it
difficult for deep learning model training.
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