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Abstract: Heart Rate Variability (HRV) evaluates the autonomic nervous system regulation and
can be used as a monitoring tool in conditions such as cardiovascular diseases, neuropathies and
sleep staging. It can be extracted from the electrocardiogram (ECG) and the photoplethysmogram
(PPG) signals. Typically, the HRV is obtained from the ECG processing. Being the PPG sensor
widely used in clinical setups for physiological parameters monitoring such as blood oxygenation
and ventilatory rate, the question arises regarding the PPG adequacy for HRV extraction. There
is not a consensus regarding the PPG being able to replace the ECG in the HRV estimation. This
work aims to be a contribution to this research area by comparing the HRV estimation obtained
from simultaneously acquired ECG and PPG signals from forty subjects. A peak detection method
is herein introduced based on the Hilbert transform: Hilbert Double Envelope Method (HDEM).
Two other peak detector methods were also evaluated: Pan-Tompkins and Wavelet-based. HRV
parameters for time, frequency and the non-linear domain were calculated for each algorithm and the
Pearson correlation, T-test and RMSE were evaluated. The HDEM algorithm showed the best overall
results with a sensitivity of 99.07% and 99.45% for the ECG and the PPG signals, respectively. For
this algorithm, a high correlation and no significant differences were found between HRV features
and the gold standard, for the ECG and PPG signals. The results show that the PPG is a suitable
alternative to the ECG for HRV feature extraction.

Keywords: PPG; heart rate variability; ECG; biomedical signal processing

1. Introduction

In the last decades, morbidity and mortality due to Cardiovascular Diseases (CVD)
have been decreasing [1,2]. Despite this progress, CVD continues to be one of the main
causes of death worldwide [3]. Strategies for the early detection of vascular disease may be
the key for preventing CVD.

Recently, an increased number of Heart Rate Variability (HRV) studies emphasized
its value as a prognostic tool and as a quick and non-invasive assessment of the auto-
nomic nervous function [4,5]. The HRV is used to evaluate the cardiovascular autonomic
regulation and the balance between the sympathetic and the parasympathetic nervous
system. Adverse changes in HRV could be used as a predictor of several diseases, such as
CVD and diabetic neuropathy [6]. Several features can be extracted from the HRV, such as
the Standard Deviation of Normal-Normal intervals (SDNN), which can show valuable
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information for different pathologies [7]. However, features derived from the HRV are
dependent on the peak detection accuracy over the PPG or ECG signals [8–10].

The HRV represents a time-series with the time differences between consecutive heart-
beat fiducial points. In the ECG and PPG, the R-peak and the systolic peak represent the
fiducial points, respectively. In the clinical context, the ECG is recorded with nine Ag/AgCl
electrodes [11]. However, for HRV analysis, typically, three leads are needed for accurate
detection of the R-peaks [12]. The ECG is susceptible to different noise sources, which can
be physiological, namely electromyography noise, or non-physiological, such as electrode
displacement and powerline interference [13]. For PPG acquisition, an optical sensor re-
sponsive to specific light wavelengths monitors the cyclical blood volume variations in
the tissue due to the pulsatile nature of arterial blood flow. The sensor is reusable and
patient–friendly, since it can be placed on the finger [14], earlobe [15], forehead [16] or
wrist [17].

The PPG and the motion artefacts frequency typically range from 0.5 to 4 Hz and 0.1 to
10 Hz, respectively [18]. This bandwidth overlap hinders the process of obtaining a clean
signal using ordinary filtering. Different approaches, such as moving average [19], adaptive
filters [20] and algorithms based on accelerometer data [21] have been proposed to reduce
these artefacts. Artefact removal in the PPG and the ECG is a challenging task given the
unpredictable nature of the noise sources regarding amplitude, bandwidth and stationarity.
It is expected that the noise removal operation efficiency will affect the accurate detection
of the fiducial points.

Different methodologies have been proposed for the detection of the QRS and the sys-
tolic peaks in the ECG and PPG signals, respectively, such as artificial neural networks [22],
wavelet transforms [23] and machine learning methods [24,25]. Table 1 presents a literature
survey of several sensitivity, positive predictive value and error detection rate results for
the ECG and PPG peak detection. Despite the different approaches, the sensitivity of the
algorithms for the ECG and PPG cases was above 90%, although direct comparison should
cautiously be made given that different databases were used.

Table 1. Performance evaluation in peak detection for ECG and PPG signals.

Study Signal Peak Detection Algorithm Number of
Subjects

Sensitivity
(%)

Positive Predictive
Value (%)

Error Detection
Rate (%)

Pan et al. [26] ECG Digital Filter 48 99.30 NA 0.67
Okada et al. [27] ECG Digital Filter 4 99.80 NA NA

Hadjileontiadis et al. [28] ECG Higher-Order Statistics 4 99.95 NA NA
Hamilton et al. [29] ECG Digital Filter 47 99.69 99.77 0.54
Dohare et al. [30] ECG Sixth Power of Signal 368 99.52 99.69 NA
Paoletti et al. [31] ECG Karhunen–Loève Transform 47 99.15 NA 0.85

Gutiérrez-Rivas et al. [32] ECG Finite-State Machine 89 99.54 99.74 NA
Cooman et al. [33] ECG Difference Operation 300 97.11 97.75 NA
Elgendi et al. [34] ECG Digital Filter 47 99.78 NA NA

Martínez et al. [35] ECG Phasor Transform 343 99.81 99.89 NA
Xiang et al. [22] ECG Convolutional Neural Network 47 99.77 99.91 0.32

Avanzato et al. [36] ECG Convolutional Neural Network 47 98.33 98.35 1.66
Li et al. [37] ECG Convolutional Neural Network 47 99.30 98.70 NA

Utomo et al. [38] ECG Moving Average 10 99.26 99.01 NA
Wu et al. [39] ECG Moving Average 48 99.65 99.39 NA

Vadrevu et al. [23] PPG Wavelet Transform 16 99.66 99.90 NA
Shin et al. [40] PPG Adaptative Threshold 18 98.84 99.98 1.18

Farooq et al. [41] PPG Adaptative Threshold 35 96.89 94.55 8.47
Argüello-Prada [42] PPG Adaptative Threshold 8 98.85 98.57 2.61

Jiang et al. [43] PPG Incremental-Merge
Segmentation 24 98.00 98.80 NA

Lin et al. [44] PPG Adaptative Threshold 21 98.50 99.85 0.15
Jang et al. [45] PPG Digital Filter 117 96.45 60.57 NA

Kuntamalla et al. [46] PPG Moving Average 47 99.82 98.88 NA
Elgendi et al. [47] PPG Moving Average 40 99.84 99.89 NA

Chakraborty et al. [48] PPG Hilbert Transform 212 99.98 100.00 0.00
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Peak detection is an essential step for an accurate HRV estimation. Additionally,
the PPG versus ECG performance has been evaluated through the computation of the
respective HRV features, such as the time and frequential metrics [49]. Table 2 shows
a summary of different studies that have compared HRV features from ECG and PPG
signals. Some studies [49–53] claim that the PPG shows high accuracy in HRV feature
determination. Other authors [54–56] have found that the PPG is not a reliable replacement
for the ECG, which seems to be in apparent disagreement with the overall good results
regarding PPG sensitivity in Table 1. However, one must bear in mind that a universal
database was not used.

Table 2. Comparison of HRV parameters from ECG and PPG signals.

Study Number of
Subjects

Sample Rate
(Hz)

Recording
Duration Peak Detection Algorithm Conclusion

Chang
et al. [54] 10 250 5 min ECG: First Derivative

PPG: Neighboring Peak Searching

Differences between the time and
frequency domain features were found

between the ECG and PPG

Constant
et al. [55] 20 500 5 min Derivative Processes HRV should be studied using the

ECG signal

Lu
et al. [56] 36 1000 5 min ECG: First Derivative

PPG: Neighboring Peak Searching
The PPG was less reliable than the ECG

due to its vulnerability to motion artefacts

Lam
et al. [57] 10 NA 90 min Discrete Wavelet Transform The PPG was a poor surrogate for

ECG HRV

Jam
et al. [58] 30 1250 25 min Double Difference and Interval

Processing

PPG cannot be applied as a HRV screening
tool for cardiopulmo-nary analysis with

a controlled breathing maneuver

Selvaraj
et al. [50] 10 1000 5 min NA A reliable HRV estimation can be obtained

from the PPG

Lu
et al. [51] 10 400 20 min Empirical Mode

Decomposition
HRV parameters for the PPG and ECG

were highly correlated

Teng
et al. [59] 16 1000 NA NA

During rest, the PPG and ECG derived
HRV were similar. After exercise session

the HRV diffe-rence increased

Bánhalmi
et al. [52] 50 500 (ECG)240

(PPG) 5 min Local Maximum and Moving
Window

HRV from the PPG demonstrated
high accuracy

Mejía-Mejía
et al. [53] 20 1000 2 min Derivative Calculation

HRV responds to cold exposure differently
in the ECG and PPG signals, especially in

peripheral locations

Vescio
et al. [49] 20 1000 −20 min

−24 h NA PPG was suitable for short and long-term
HRV monitoring

Kumar
et al. [60] 50 NA 10 min KUBIOS 1.1 platform A good agreement between HRV variables

from ECG and PPG was found

Lu
et al. [61] 42 200 (ECG)100

(PPG) 7 min ECG: First Derivative
PPG: Neighboring Peak Searching

HRV analysis of signals derived from the
ECG and earlobe PPG recordings are
almost identical in healthy subjects

The herein presented work aims to contribute to the clarification of PPG and ECG
comparative capabilities for accurate fiducial points detection in view of the application to
HRV analysis. To achieve this goal, the study was divided into the following steps:

• An evaluation of different algorithms for peak detection was performed for ECG and
PPG. The ground truth was the expert peak marking in both signals.

• In the herein presented work, three different peak detector algorithms were evaluated,
one of them being a novel methodology that performs peak detection without the need
to use thresholding, a common methodology in bio-signal peak detection. Even with
adaptive thresholding adjustment, missing peaks can occur due to tracking latency,
after wider signal variations.
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• An assessment of different HRV parameters was implemented to evaluate the similar-
ity of the results obtained from different peak detection methodologies. The ground
truth was the HRV parameters obtained via the expert peak marking in both signals.

2. Materials and Methods

A cohort of 40 healthy volunteers participated in the study, twenty females and twenty
males with an age of 36.4± 19.2 and 47.3± 21.7 years and a BMI of 22.9± 3.2 and 27.2 ± 4.5,
respectively. All participants signed an Informed Consent, and the working database was
anonymized. This research was approved by the Hospital da Senhora de Oliveira Ethics
Commission with Reference Number 86/2019.

Experimental ECG and PPG data were simultaneously recorded, for the same par-
ticipant, by the MP35 BIOPAC® system, Goleta, CA, USA. The ECG signals were ac-
quired using a 3 electrode lead set (SS2L) attached to the right wrist (‘Positive’), right
ankle (‘Ground’) and left ankle (‘Negative’). The PPG data was recorded from the index
finger with a BIOPAC® photoplethysmography sensor model SS4LA. The signals were
recorded with a 2000 Hz sampling frequency for at least five minutes. The subjects stayed
in a comfortable semi-recumbent position throughout the recording period and were re-
quested to minimize their body movement.

Data pre-processing included bandpass filtering, trimming and detrending. The
ECG and the PPG bandpass filters were set to 0.5 to 35 Hz [62,63] and 0.4 to 4 Hz,
respectively [64,65]. Three peak detector algorithms were tested on the ECG and PPG
signals: a modified Pan-Tompkins [26], Wavelet-based [66] and the Hilbert Double Enve-
lope Method (HDEM).

The Pan-Tompkins [26] algorithm applies low and high pass filters in order to reduce
background noise, such as powerline interference or muscle noise. The signal is then
squared to amplify the higher amplitude segments of the signals, and an adaptative
threshold detects the peaks [26].

Similarly for the PPG signal, a Filter Based Peak Detection (FBPD) algorithm was
implemented. This algorithm was inspired in the Pan–Tompkins method but kept in mind
the spectral characteristics of the PPG signal according to the criteria presented in [67]. The
rational behind the application of the FBPD algorithm was to be able to evaluate the Pan–
Tompkins ECG R peak detection results with a comparable filter-based algorithm applied
to the PPG systolic fiducial point recognition. Figure 1 represents the FBPD algorithms
steps for peak detection.
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Figure 1. The FBPD methodology for PPG peak detection.

The Wavelet algorithm (Figure 2) is based on an adapted version of the R-wave
peak detector introduced by Sahambi et al. [66] and Cardoso et al. [67]. The selected
wavelet function was the Mexican Hat [68]. The P and T waves are detected based on
the modulus maxima and zero crossings of the wavelet transform. The mother wavelet
was then optimized to reduce the effect of low and high frequency noise on the timing
characterization [66–68].
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To further improve peak detection, a new algorithm is proposed in this work. The
HDEM is based on the Hilbert envelope. The Hilbert transform description will herein be
presented by firstly introducing the Analytic Signal concept [69]. Consider a real signal
s(t) with spectrum S(ω) and j =

√
−1 . The complex signal z(t) only defined for positive

frequencies is given by the inverse transform of S(ω):

z(t) = 2
1√
2π

∫ ∞

0
S(ω)ejωtdt, (1)

Multiplication by 2 stems from the need to make the real part of the analytical signal
equal to s(t). However, the spectrum of s(t) is given by:

S(ω) =
1√
2π

∫ ∞

−∞
s(t)e−jωtdt, (2)

Replacing this value in Equation (1) it is obtained:

z(t) = 2
1

2π

∫ ∞

0

∫
s
(
t′
)
e−jωt′ ejωtdt′dω, (3)

Given the relation:
∞∫

0

ejωxdω = πδ(x) +
j
x

, (4)

The following is obtained:

z(t) =
1
π

∫
s
(
t′
)[

πδ(t− t′) + j
t− t′

]
dt′, (5)
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The Analytic Signal of s(t) is obtained by:

A[s] = z(t) = s(t) +
j
π

∫ s(t′)
t− t′

dt′, (6)

The Hilbert Transform of s(t) is the imaginary part of z(t):

H[s(t)] =
1
π

∫ s(t′)
t− t′

dt′, (7)

Figure 3 shows a block diagram of the Hilbert transform (HT) application to PPG
or ECG peak detection. The selected filter size is selected as N = 4× f s where fs is the
sampling frequency. Through the application of HT, the lower and upper signal envelopes
are obtained, being the first one discarded. In the next step, the HT is applied to the upper
envelope. From the output of this last step only the lower envelope is retrieved.
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This procedure will guarantee that this lower envelope will intercept the signal in
two points closely located to the peak to be detected, which can be easily retrieved by
obtaining the local maximum between the intersection points. However, wider signal
oscillations may render the interception points time offset relative to the peak value. To
solve this issue, a validation is performed within a 30-millisecond window around the
peak candidate. Unlike typical PPG and ECG peak detectors, no threshold value needs to
be established, an advantage of the HDEM. Figure 4 shows a visual representation of the
HDEM application to a PPG signal.
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To evaluate the peak detection performance of the different algorithms, the sensitivity
(Se), positive prediction value (PPV) and error detection rate (EDR) were determined. The
sensitivity is the probability of detecting a signal peak when it exists. The positive predictive
value is the probability of detecting a true signal peak among the detected peaks in the
signal. The error detection rate is the probability of the identified peak not matching a real
signal peak. These parameters are given by the following expressions [70]:

Se =
TP

TP + FN
, (8)

PPV =
TP

TP + FP
, (9)

EDR =
FP + FN
TP + FN

, (10)

where true positive (TP) is the number of correct peaks identified in the signal; false
negative (FN) is the number of peaks in the signal that were not detected, and false positive
(FP) is the number of misidentified peaks detected by the algorithm.

The inter-beat intervals (IBI) vector, another designation for the HRV, was extracted
from ECG and PPG peaks. Two features from each HRV domain were chosen to be
evaluated. In the time domain, the IBI Mean and SDNN were selected. In the frequency
domain, the Low Frequency (LF) power peak and High Frequency (HF) power peak were
chosen. The LF and HF frequency band ranged from 0.04 to 0.15 Hz and 0.15 to 0.4 Hz,
respectively [7]. The non-linear domain parameters, S1 and S2, defined as the standard
deviation of the Poincaré plot axis perpendicular to the line-of-identity and the standard
deviation along the line-of-identity axis, respectively, were obtained [71].

The algorithms’ performance evaluation was assessed with the paired T-test, the
Pearson correlation and the Root Mean Squared Error (RMSE). The paired T-test evaluates
if there is a significant difference between the average values of the two datasets, X1 and
X2, and is given by [72]:

t =
X1 − X2√
s2

1+s2
2−2ρs1s2

n

, (11)

where X is the mean of the dataset, s2
1 + s2

2 − 2ρs1s2 is the total variance, n is the number of
samples, ρ is the correlation and s2 is defined by [72]:

s2 =
∑(xi − x)2

n− 1
, (12)

where xi is the observation and x is the mean of the dataset.
The Pearson correlation was used to evaluate the HRV parameters. The Pearson

correlation coefficient (ρ) between A and B is defined as [73]:

ρ (A, B) =
1

N − 1

N

∑
i=1

(
Ai − µA

σA

)(
Bi − µB

σB

)
, (13)

where µA and σA are the mean and standard deviation of A, µB and σB are the mean and
standard deviation of B and N is the number of samples. The Pearson correlation ranges
from −1 to 1 with 0 representing no linear correlation between the variables.

A summary flowchart of the work methodology is presented in Figure 5. All data was
analysed with MATLAB® 2020a version, MathWorks, Inc., Natick, MA, USA.
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3. Results

A total of 21,275 peaks were previously identified by blind approach expert classi-
fication in the ECG and the PPG signals. This dataset was used as the gold standard in
the algorithm’s evaluation. For the ECG, the applied peak detection algorithms were:
Pan–Tompkins, Wavelet and HDEM. For the PPG the applied peak detection algorithms
were: FBPD, Wavelet and HDEM. For the Wavelet method the selected wavelet function
was the Mexican Hat as referred in [66,67]. The FBPD relies on a bandpass filter with cut-off
frequencies between 0.4 Hz and 4 Hz.

The results of the evaluation of the algorithm’s peak detection performance regarding
sensitivity, positive predictive value, error detection rate and the mean processing time
per case are presented in Table 3. Regarding sensitivity, the HDEM presented the best
results for the ECG and PPG. This method also showed the lowest error detection rate
for both signals. The FBPD applied to the PPG signal had the worst overall results, with
a sensitivity of 59.82% and a 42.15% error detection rate. Regarding the computational cost,
the HDEM and the Wavelet were the fastest and slowest algorithms, respectively in the
used platform base.

Table 3. Peak detection performance evaluation on ECG and PPG signals.

Signal Peak Detection
Algorithm Sensitivity (Se%) Positive Predictive Value

(PPV%)
Error Detection

Rate (EDR%)
Mean Processing
Time per Case (s)

ECG Pan-Tompkins 97.61 98.06 4.32 0.94
ECG Wavelet 97.66 98.04 4.30 4.71
ECG HDEM 99.07 98.17 2.78 0.82
PPG FBPD 59.82 96.80 42.15 0.12
PPG Wavelet 84.11 97.53 18.03 6.34
PPG HDEM 99.45 99.21 1.34 0.81
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Based on the peak detection, the IBI for each method was determined and the HRV
features were extracted and compared with the respective gold standard derived values.
The Pearson correlation, RMSE and a T-test were applied, and a significance level of 0.05 for
the latter was considered. The RMSE is measured in milliseconds. The results are presented
in Table 4. For the HRV parameters extracted from the ECG, the following comments apply:

• Good overall Pearson correlation values were obtained for all the methods.
• No significant differences were found between the HRV parameters relative to the

gold standard.
• Similar RMSE values for the three methods were obtained.

Table 4. Pearson correlation, T-test and RMSE results for HRV features.

Peak Detection
Algorithm Signal IBI Mean SDNN LF Power

Peak
HF Power

Peak S1 S2

Pan-Tompkins ECG
ρ 0.99 0.82 0.98 0.76 0.93 0.98

p-value 0.92 0.48 0.96 0.27 0.61 0.73
RMSE 0.02 55.00 1.17 × 10−2 9.20 × 10−2 40.15 39.49

Wavelet ECG
ρ 0.99 0.82 0.95 0.75 0.94 0.98

p-value 0.89 0.50 0.83 0.24 0.64 0.77
RMSE 0.02 54.17 1.91 × 10−2 0.10 38.85 40.71

HDEM ECG
ρ 0.99 0.72 0.92 0.82 0.88 0.97

p-value 0.88 0.19 0.96 0.46 0.58 0.85
RMSE 5.8 × 10−3 52.92 1.69 × 10−2 7.21 × 10−2 35.93 41.41

FBPD PPG
ρ 0.15 0.03 0.63 0.58 0.14 0.26

p-value 0.26 1.20 × 10−2 * 0.01 * 0.08 0.01 * 0.01 *
RMSE 63.33 1.25 × 104 4.15 0.15 1.19 × 104 1.27 × 104

Wavelet PPG
ρ 0.97 0.15 0.76 0.72 0.27 0.41

p-value 0.11 4.81 × 10−5 * 0.10 0.32 1.47 × 10−4 * 5.79 × 10−4 *
RMSE 0.16 8.48 × 102 3.83 × 10−2 0.13 8.05 × 102 7.88 × 102

HDEM PPG
ρ 0.99 0.97 0.91 0.95 0.98 0.99

p-value 0.88 0.63 0.67 0.37 0.79 0.24
RMSE 5.8 × 10−2 16.93 2.37 × 10−2 5.78 × 10−2 12.02 26.71

* The significant threshold p-value (0.05) was not attained.

Relative to the PPG HRV parameters, the following comments apply:

• Consistent low Pearson correlation values were obtained for the FBPD and the Wavelet
methods, except in the Wavelet IBI mean.

• The significant threshold p-value (0.05) was not attained in four (three) of the six HRV
parameters for the FBPD (Wavelet) methods.

• The HDEM excelled with the lowest RMSE values, p-values above the significant
threshold (0.05) and good Pearson correlation values.

Overall, the HDEM method was the best performing for the task under study.

4. Discussion

Recent studies have assessed the importance of different HRV parameters in the early
detection of cardiovascular diseases [74–76] with promising results, thus increasing the
research and clinical interest in such features. The PPG is a convenient way to measure
the HRV using a home-based device or in a clinical environment due to being a non-
invasive, low intrusive single sensor system with competitive production cost [77]. Data
compression algorithms may be used to reduce data sizes, an interesting feature for home-
based monitoring systems [78].

The herein presented work explored three algorithms for peak detection and evaluated
the obtained HRV parameters relative to the ground truth. Regarding the peak detection on
the ECG signal, the HDEM achieved the best sensitivity with 99.07% and an error detection



Symmetry 2022, 14, 1139 11 of 14

rate of 2.78%. On the PPG, this algorithm also achieved the best results with a sensitivity
and error detection rate of 99.45% and 1.35%, respectively. Regarding sensitivity, the pro-
posed HDEM algorithm for ECG and PPG pairs with the Table 1 results which rank above
99%, although comparisons should be made with caution given that different databases
have been used in the reported studies.

HRV parameters extracted from each evaluated peak detection algorithms were also
analysed. In the ECG, no significant differences were found between the gold standard
HRV derived values and the algorithms-based parameters. For the PPG, the HDEM was the
only method presenting p-values above the significant threshold (0.05) value. This deemed
the HDEM as the best performing algorithm within the presented framework. Additionally,
the HDEM computational cost stands as the lowest of the T-test validated algorithms.
Under the HDEM framework, it is concluded that the PPG and the ECG produce similar
sensitivity results, thus approving the PPG as an alternative to the ECG.

The following studies presented similar results to the herein achieved, but it must be
considered that different evaluation metrics were used as well as different datasets:

• Selvaraj et al. [50] and Vescio et al. [49] found a high correlation (0.97) between the
PPG and the ECG.

• Lu et al. [51] found a high correlation (0.99) between the PPG and the ECG.
• Bánhalmi et al. [52] found an IBI mean deviation between the ECG and the PPG of

0.01 to 0.06 milliseconds.
• The results presented by Lam et al. [57] are in agreement with the herein obtained

outcome for a wavelet transform-based algorithm. In both studies, the PPG extracted
HRV parameters scored poorly relative to the ECG.

• Chakraborty et al. [48] used the Hilbert Transform to detect PPG peaks in which
an amplitude threshold of 50% was defined. In the herein presented work, in the
HDEM algorithm no threshold value is required.

5. Conclusions

To summarise, the following highlights apply:

• Three peak detector methods were tested for the PPG and the ECG. In this context,
peak detection accuracy is crucial in applications such as HRV parameter extraction.

• The PPG has been found as a valid replacement to the ECG, regarding the extraction
of the HRV features. This may be of interest in applications where one may take
advantage of the reduced number of required sensors and their flexible location, for
the PPG acquisition.

• A new peak detector method (HDEM) was implemented whose main advantage is
precluding the need for a thresholding criteria definition. Thresholding usually leads to
missed peaks due to defective tracking of the signal amplitude or interference sources.

• As far as the HDEM is concerned, the low computational cost makes the method
suitable for real-time applications and home-based monitoring systems based on the
PPG or the ECG.
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