2,043 research outputs found

    RHAS: robust hybrid auto-scaling for web applications in cloud computing

    Get PDF

    Requirements of the SALTY project

    Get PDF
    This document is the first external deliverable of the SALTY project (Self-Adaptive very Large disTributed sYstems), funded by the ANR under contract ANR-09-SEGI-012. It is the result of task 1.1 of the Work Package (WP) 1 : Requirements and Architecture. Its objective is to identify and collect requirements from use cases that are going to be developed in WP 4 (Use cases and Validation). Based on the study and classification of the use cases, requirements against the envisaged framework are then determined and organized in features. These features will aim at guide and control the advances in all work packages of the project. As a start, features are classified, briefly described and related scenarios in the defined use cases are pinpointed. In the following tasks and deliverables, these features will facilitate design by assigning priorities to them and defining success criteria at a finer grain as the project progresses. This report, as the first external document, has no dependency to any other external documents and serves as a reference to future external documents. As it has been built from the use cases studies that have been synthesized in two internal documents of the project, extracts from the two documents are made available as appendices (cf. appen- dices B and C)

    Developing Real-Time Emergency Management Applications: Methodology for a Novel Programming Model Approach

    Get PDF
    The last years have been characterized by the arising of highly distributed computing platforms composed of a heterogeneity of computing and communication resources including centralized high-performance computing architectures (e.g. clusters or large shared-memory machines), as well as multi-/many-core components also integrated into mobile nodes and network facilities. The emerging of computational paradigms such as Grid and Cloud Computing, provides potential solutions to integrate such platforms with data systems, natural phenomena simulations, knowledge discovery and decision support systems responding to a dynamic demand of remote computing and communication resources and services. In this context time-critical applications, notably emergency management systems, are composed of complex sets of application components specialized for executing specific computations, which are able to cooperate in such a way as to perform a global goal in a distributed manner. Since the last years the scientific community has been involved in facing with the programming issues of distributed systems, aimed at the definition of applications featuring an increasing complexity in the number of distributed components, in the spatial distribution and cooperation between interested parties and in their degree of heterogeneity. Over the last decade the research trend in distributed computing has been focused on a crucial objective. The wide-ranging composition of distributed platforms in terms of different classes of computing nodes and network technologies, the strong diffusion of applications that require real-time elaborations and online compute-intensive processing as in the case of emergency management systems, lead to a pronounced tendency of systems towards properties like self-managing, self-organization, self-controlling and strictly speaking adaptivity. Adaptivity implies the development, deployment, execution and management of applications that, in general, are dynamic in nature. Dynamicity concerns the number and the specific identification of cooperating components, the deployment and composition of the most suitable versions of software components on processing and networking resources and services, i.e., both the quantity and the quality of the application components to achieve the needed Quality of Service (QoS). In time-critical applications the QoS specification can dynamically vary during the execution, according to the user intentions and the Developing Real-Time Emergency Management Applications: Methodology for a Novel Programming Model Approach Gabriele Mencagli and Marco Vanneschi Department of Computer Science, University of Pisa, L. Bruno Pontecorvo, Pisa Italy 2 2 Will-be-set-by-IN-TECH information produced by sensors and services, as well as according to the monitored state and performance of networks and nodes. The general reference point for this kind of systems is the Grid paradigm which, by definition, aims to enable the access, selection and aggregation of a variety of distributed and heterogeneous resources and services. However, though notable advancements have been achieved in recent years, current Grid technology is not yet able to supply the needed software tools with the features of high adaptivity, ubiquity, proactivity, self-organization, scalability and performance, interoperability, as well as fault tolerance and security, of the emerging applications. For this reason in this chapter we will study a methodology for designing high-performance computations able to exploit the heterogeneity and dynamicity of distributed environments by expressing adaptivity and QoS-awareness directly at the application level. An effective approach needs to address issues like QoS predictability of different application configurations as well as the predictability of reconfiguration costs. Moreover adaptation strategies need to be developed assuring properties like the stability degree of a reconfiguration decision and the execution optimality (i.e. select reconfigurations accounting proper trade-offs among different QoS objectives). In this chapter we will present the basic points of a novel approach that lays the foundations for future programming model environments for time-critical applications such as emergency management systems. The organization of this chapter is the following. In Section 2 we will compare the existing research works for developing adaptive systems in critical environments, highlighting their drawbacks and inefficiencies. In Section 3, in order to clarify the application scenarios that we are considering, we will present an emergency management system in which the run-time selection of proper application configuration parameters is of great importance for meeting the desired QoS constraints. In Section 4we will describe the basic points of our approach in terms of how compute-intensive operations can be programmed, how they can be dynamically modified and how adaptation strategies can be expressed. In Section 5 our approach will be contextualize to the definition of an adaptive parallel module, which is a building block for composing complex and distributed adaptive computations. Finally in Section 6 we will describe a set of experimental results that show the viability of our approach and in Section 7 we will give the concluding remarks of this chapter

    Feedback Autonomic Provisioning for Guaranteeing Performance in MapReduce Systems

    No full text
    International audienceCompanies have a fast growing amounts of data to process and store, a data explosion is happening next to us. Currentlyone of the most common approaches to treat these vast data quantities are based on the MapReduce parallel programming paradigm.While its use is widespread in the industry, ensuring performance constraints, while at the same time minimizing costs, still providesconsiderable challenges. We propose a coarse grained control theoretical approach, based on techniques that have already provedtheir usefulness in the control community. We introduce the first algorithm to create dynamic models for Big Data MapReduce systems,running a concurrent workload. Furthermore we identify two important control use cases: relaxed performance - minimal resourceand strict performance. For the first case we develop two feedback control mechanism. A classical feedback controller and an evenbasedfeedback, that minimises the number of cluster reconfigurations as well. Moreover, to address strict performance requirements afeedforward predictive controller that efficiently suppresses the effects of large workload size variations is developed. All the controllersare validated online in a benchmark running in a real 60 node MapReduce cluster, using a data intensive Business Intelligenceworkload. Our experiments demonstrate the success of the control strategies employed in assuring service time constraints

    Brain enhancement through cognitive training: A new insight from brain connectome

    Get PDF
    Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive function

    A User Friendly Phase Detection Methodology for HPC Systems' Analysis

    Get PDF
    International audienceA wide array of today's high performance computing (HPC) applications exhibits recurring behaviours or execution phases throughout their run-time. Accurate detection of program phases allows reconfiguring the system for a better power/performance trade off; and can reduce the simulation time of programs by identifying regions of code whose performance is critical to the entire program. Program phases are also reflected in different behaviours the system goes through or system phases, which can be used as an alternative means of program phase detection for users lacking expertise. In this paper, we present an execution vector based (EV-based) phase detection, which is an on-line methodology for detecting phases in the behaviour of a HPC system and determining execution points that correspond to these phases. We also present a methodology for defining a small set of EVs representative of the system's behaviour over a fixed period of time and show that EV-based phase detection identifies recurring phases. Our methodology is illustrated with benchmarks and a real life application

    Adaptable Service Oriented Infrastructure Provisioning with Lightweight Containers Virtualization Technology

    Get PDF
    Modern computing infrastructures should enable realization of converged provisioning and governance operations on virtualized computing, storage and network resources used on behalf of users' workloads. These workloads must have ensured sufficient access to the resources to satisfy required QoS. This requires flexible platforms providing functionality for construction, activation and governance of Runtime Infrastructure which can be realized according to Service Oriented Infrastructure (SOI) paradigm. Implementation of the SOI management framework requires definition of flexible architecture and utilization of advanced software engineering and policy-based techniques. The paper presents an Adaptable SOI Provisioning Platform which supports adaptable SOI provisioning with lightweight virtualization, compliant with the structured process model suitable for construction, activation and governance of IT environments. The requirements, architecture and implementation of the platform are all discussed. Practical usage of the platform is presented on the basis of a complex case study for provisioning JEE middleware on top of the Solaris 10 lightweight virtualization platform

    A survey on elasticity management in PaaS systems

    Full text link
    [EN] Elasticity is a goal of cloud computing. An elastic system should manage in an autonomic way its resources, being adaptive to dynamic workloads, allocating additional resources when workload is increased and deallocating resources when workload decreases. PaaS providers should manage resources of customer applications with the aim of converting those applications into elastic services. This survey identifies the requirements that such management imposes on a PaaS provider: autonomy, scalability, adaptivity, SLA awareness, composability and upgradeability. This document delves into the variety of mechanisms that have been proposed to deal with all those requirements. Although there are multiple approaches to address those concerns, providers main goal is maximisation of profits. This compels providers to look for balancing two opposed goals: maximising quality of service and minimising costs. Because of this, there are still several aspects that deserve additional research for finding optimal adaptability strategies. Those open issues are also discussed.This work has been partially supported by EU FEDER and Spanish MINECO under research Grant TIN2012-37719-C03-01.Muñoz-EscoĂ­, FD.; Bernabeu AubĂĄn, JM. (2017). A survey on elasticity management in PaaS systems. Computing. 99(7):617-656. https://doi.org/10.1007/s00607-016-0507-8S617656997Ajmani S (2004) Automatic software upgrades for distributed systems. PhD thesis, Department of Electrical and Computer Science, Massachusetts Institute of Technology, USAAjmani S, Liskov B, Shrira L (2006) Modular software upgrades for distributed systems. In: 20th European Conference on Object-Oriented Programming (ECOOP), Nantes, France, pp 452–476Alhamad M, Dillon TS, Chang E (2010) Conceptual SLA framework for cloud computing. In: 4th International Conference on Digital Ecosystems and Technologies (DEST), Dubai, pp 606–610Almeida S, LeitĂŁo J, Rodrigues LET (2013) ChainReaction: a causal+ consistent datastore based on chain replication. In: 8th EuroSys Conference, Prague, Czech Republic, pp 85–98Araujo J, Matos R, Maciel PRM, Matias R (2011) Software aging issues on the Eucalyptus cloud computing infrastructure. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), Anchorage, Alaska, USA, pp 1411–1416Arief LB, Speirs NA (2000) A UML tool for an automatic generation of simulation programs. In: Worshop on Software and Performance (WOSP), Ottawa, Canada, pp 71–76Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58Bailis P, Ghodsi A (2013) Eventual consistency today: limitations, extensions, and beyond. Commun ACM 56(5):55–63Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on causal consistency. In: Intnl Conf Mgmnt Data (SIGMOD). NY, USA, New York, pp 761–772Balsamo S, Marco AD, Inverardi P, Simeoni M (2004) Model-based performance prediction in software development: a survey. IEEE Trans Softw Eng 30(5):295–310Barham P, Dragovic B, Fraser K, Hand S, Harris TL, Ho A, Neugebauer R, Pratt I, Warfield A (2003) Xen and the art of virtualization. In: 19th ACM Symposium on Operating Systems Principles (SOSP), Bolton Landing, NY, USA, pp 164–177Bennani MN, MenascĂ© DA (2005) Resource allocation for autonomic data centers using analytic performance models. In: 2nd Intnl Conf Auton Comput (ICAC), Seattle, WA, USA, pp 229–240Birman KP (1996) Building Secure and Reliable Network Applications. Manning Publications Co., ISBN 1-884777-29-5Bloom T (1983) Dynamic module replacement in a distributed programming system. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USABloom T, Day M (1993) Reconfiguration and module replacement in Argus: theory and practice. Softw Eng J 8(2):102–108Caballer M, Segrelles Quilis JD, MoltĂł G, Blanquer I (2015) A platform to deploy customized scientific virtual infrastructures on the cloud. Concurr Comput Pract E 27(16):4318–4329Calatrava A, Romero E, MoltĂł G, Caballer M, Alonso JM (2016) Self-managed cost-efficient virtual elastic clusters on hybrid cloud infrastructures. Future Gener Comp Syst 61:13–25Calcavecchia NM, Caprarescu BA, Nitto ED, Dubois DJ, Petcu D (2012) DEPAS: a decentralized probabilistic algorithm for auto-scaling. Computing 94(8–10):701–730Casalicchio E, Silvestri L (2013) Mechanisms for SLA provisioning in cloud-based service providers. Comput Netw 57(3):795–810Casalicchio E, MenascĂ© DA, Aldhalaan A (2013) Autonomic resource provisioning in cloud systems with availability goals. In: ACM Cloud Autonomic Computing Conference (CAC), FL, USA, Miami, pp 1–10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst 26(2):4Copil G, Trihinas D, Truong HL, Moldovan D, Pallis G, Dustdar S, Dikaiakos MD (2014) ADVISE—A framework for evaluating cloud service elasticity behavior. In: 12th International Conference on Service-Oriented Computing (ICSOC), France, Paris, pp 275–290Cotroneo D, Natella R, Pietrantuono R, Russo S (2014) A survey of software aging and rejuvenation studies. ACM J Emerg Technol 10(1):8:1–8:34Coutinho EF, de Carvalho Sousa FR, Rego PAL, Gomes DG, de Souza JN (2015) Elasticity in cloud computing: a survey. Ann Telecommun 70(15):289–309Dawoud W, Takouna I, Meinel C (2011) Elastic VM for cloud resources provisioning optimization. In: 1st International Conference on Advances in Computing and Communications (ACC), Kochi, India, pp 431–445de Juan-MarĂ­n R, Decker H, ArmendĂĄriz-ĂĂ±igo JE, BernabĂ©u-AubĂĄn JM, Muñoz-EscoĂ­FD (2015) Scalability approaches for causal multicast: a survey. Computing (in press)de Miguel M, Lambolais T, Hannouz M, BetgĂ©-Brezetz S, Piekarec S (2000) UML extensions for the specification and evaluation of latency constraints in architectural models. In: Workshop on Software and Performance (WOSP), Ottawa, Canada, pp 83–88Demers AJ, Greene DH, Hauser C, Irish W, Larson J, Shenker S, Sturgis HE, Swinehart DC, Terry DB (1987) Epidemic algorithms for replicated database maintenance. In: 6th ACM Symposium on Principles of Distributed Computing (PODC), Vancouver, Canada, pp 1–12Dustdar S, Guo Y, Satzger B, Truong HL (2011) Principles of elastic processes. IEEE Internet Comput 15(5):66–71Emeakaroha VC, Brandic I, Maurer M, Dustdar S (2013) Cloud resource provisioning and SLA enforcement via LoM2HiS framework. Concurr Comput Pract E 25(10):1462–1481Felter W, Ferreira A, Rajamony R, Rubio J (2015) An updated performance comparison of virtual machines and Linux containers. In: IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia, PA, USA, pp 171–172Fox A, Brewer EA (1999) Harvest, yield and scalable tolerant systems. In: 7th Workshop on Hot Topics in Operating Systems (HotOS), Rio Rico, Arizona, USA, pp 174–178Galante G, De Bona LCE (2012) A survey on cloud computing elasticity. In: 5th International Conference on Utility and Cloud Computing (UCC), Chicago, IL, USA, pp 263–270Galante G, De Bona LCE, Mury AR, Schulze B, Righi RR (2016) An analysis of public clouds elasticity in the execution of scientific applications: a survey. J Grid Comput 14(2):193–216Gambi A, Hummer W, Truong HL, Dustdar S (2013) Testing elastic computing systems. IEEE Internet Comput 17(6):76–82Garg S, van Moorsel APA, Vaidyanathan K, Trivedi KS (1998) A methodology for detection and estimation of software aging. In: 9th International Symposium on Software Reliability Engineering (ISSRE), Paderborn, Germany, pp 283–292Gey F, Landuyt DV, Joosen W (2015) Middleware for customizable multi-staged dynamic upgrades of multi-tenant SaaS applications. In: 8th IEEE/ACM International Conference on Utility and Cloud Computing (UCC), Limassol, Cyprus, pp 102–111Gilbert S, Lynch NA (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2):51–59Gong Z, Gu X, Wilkes J (2010) PRESS: PRedictive Elastic reSource Scaling for cloud systems. In: 6th International Conference on Network and Service Management (CNSM), Niagara Falls, Canada, pp 9–16Grozev N, Buyya R (2014) Inter-cloud architectures and application brokering: taxonomy and survey. Softw Pract Exp 44(3):369–390Hammer M (2009) How to touch a running system. reconfiguration of stateful components. PhD thesis, FacultĂ€t fĂŒr Mathematik, Informatik und Statistik, Ludwig-Maximilians-UniversitĂ€t MĂŒnchen, Munich, GermanyHasan MZ, Magana E, Clemm A, Tucker L, Gudreddi SLD (2012) Integrated and autonomic cloud resource scaling. In: IEEE Network Operations and Management Symposium (NOMS), Maui, HI, USA, pp 1327–1334Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: What it is, and what it is not. In: 10th International Conference on Autonomic Computing (ICAC), San Jose, CA, USA, pp 23–27Hermanns H, Herzog U, Katoen J (2002) Process algebra for performance evaluation. Theor Comput Sci 274(1–2):43–87Horn P (2001) Autonomic computing: IBM’s perspective on the state of information technology. Tech. rep. IBM PressHuebscher MC, McCann JA (2008) A survey of autonomic computing—degrees, models, and applications. ACM Comput Surv 40(3):7Hwang J, Zeng S, Wu F, Wood T (2013) A component-based performance comparison of four hypervisors. In: International Symposium on Integrated Network Management (IM), Ghent, Belgium, pp 269–276IBM (2006) An architectural blueprint for autonomic computing. White paper, 4th edIosup A, Ostermann S, Yigitbasi N, Prodan R, Fahringer T, Epema DHJ (2011) Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans Parallel Distrib Syst 22(6):931–945Ivanovic D, Carro M, Hermenegildo MV (2013) A sharing-based approach to supporting adaptation in service compositions. Computing 95(6):453–492Jiang Y, Perng C, Li T, Chang RN (2011) ASAP: A self-adaptive prediction system for instant cloud resource demand provisioning. In: 11th International Conference on Data Mining (ICDM), Vancouver, Canada, pp 1104–1109Johnson PR, Thomas RH (1975) The maintenance of duplicate databases. RFC 677, Network Working Group, Internet Engineering Task ForceKephart JO, Chess DM (2003) The vision of autonomic computing. IEEE Comput 36(1):41–50Kiviti A, Laor D, Costa G, Enberg P, Har’El N, Marti D, Zolotarov V (2014) OSv—Optimizing the operating system for virtual machines. In: USENIX Annual Technical Conference (ATC), Philadelphia, PA, USA, pp 61–72Knauth T, Fetzer C (2011) Scaling non-elastic applications using virtual machines. In: IEEE International Conference on Cloud Computing (CLOUD), Washington, DC, USA, pp 468–475Knauth T, Fetzer C (2014) DreamServer: truly on-demand cloud services. In: International Conference on Systems and Storage (SYSTOR), Haifa, Israel, pp 1–11Kramer J, Magee J (1990) The evolving philosophers problem: dynamic change management. IEEE Trans Softw Eng 16(11):1293–1306Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. Oper Syst Rev 44(2):35–40Lang W, Shankar S, Patel JM, Kalhan A (2014) Towards multi-tenant performance SLOs. IEEE Trans Knowl Data Eng 26(6):1447–1463Langner F, Andrzejak A (2013) Detecting software aging in a cloud computing framework by comparing development versions. In: IFIP/IEEE International Symposium on Integrated Network Management (IM), Ghent, Belgium, pp 896–899Lazowska ED, Zahorjan J, Graham GS, Sevcik KC (1984) Quantitative system performance. Computer system analysis using queueing network models. Prentice Hall, Upper Saddle RiverLeitner P, Michlmayr A, Rosenberg F, Dustdar S (2010) Monitoring, prediction and prevention of SLA violations in composite services. In: IEEE International Conference on Web Services (ICWS), Florida, USA, Miami, pp 369–376Li W (2011) Evaluating the impacts of dynamic reconfiguration on the QoS of running systems. J Syst Softw 84(12):2123–2138Lim HC, Babu S, Chase JS, Parekh SS (2009) Automated control in cloud computing: challenges and opportunities. In: 1st ACM Workshop Automated Control Datacenters Clouds (ACDC), Barcelona, Spain, pp 13–18Liu J, Zhou J, Buyya R (2015) Software rejuvenation based fault tolerance scheme for cloud applications. In: 8th IEEE International Conference on Cloud Computing (CLOUD), New York City, NY, USA, pp 1115–1118Lorido-Botran T, Miguel-Alonso J, Lozano JA (2014) A review of auto-scaling techniques for elastic applications in cloud environments. J Grid Comput 12(4):559–592Massie M, Li B, Nicholes B, Vuksan V, Alexander R, Buchbinder J, Costa F, Dean A, Josephsen D, Phaal P, Pocock D (2012) Monitoring with Ganglia. O’Reilly Media, Tracking Dynamic Host and Application Metrics at Scale. ISBN 978-1-4493-2970-9Matias R Jr, Andrzejak A, Machida F, Elias D, Trivedi KS (2014) A systematic differential analysis for fast and robust detection of software aging. In: 33rd IEEE Symposium on Reliable Distributed Systems (SRDS). Nara, Japan, pp 311–320Medina V, GarcĂ­a JM (2014) A survey of migration mechanisms of virtual machines. ACM Comput Surv 46(3):30Mell P, Grance T (2011) The NIST definition of cloud computing. Recommendations of the National Institute of Standards and Technology, Special Publication 800-145MenascĂ© DA, Bennani MN (2006) Autonomic virtualized environments. In: International Conference on Autonomic and Autonomous Systems (ICAS), Silicon Valley, California, USA, p 28MenascĂ© DA, Ngo P (2009) Understanding cloud computing: Experimentation and capacity planning. In: 35th International Computer Measurement Group Conference, Dallas, TX, USAMenascĂ© DA, Ruan H, Gomaa H (2007) QoS management in service-oriented architectures. Perform Eval 64(7–8):646–663Miedes E, Muñoz-EscoĂ­ FD (2010) Dynamic switching of total-order broadcast protocols. In: International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Las Vegas, Nevada, USA, pp 457–463Mohamed M (2014) Generic monitoring and reconfiguration for service-based applications in the cloud. PhD thesis, UniversitĂ© d’Evry-Val d’Essonne, FranceMohamed M, Amziani M, BelaĂŻd D, Tata S, Melliti T (2015) An autonomic approach to manage elasticity of business processes in the cloud. Future Gener Comp Sys 50(C):49–61Mohd Yusoh ZI (2013) Composite SaaS resource management in cloud computing using evolutionary computation. PhD thesis, Sc Eng Faculty, Queensland University of Technology, Brisbane, AustraliaMontero RS, Moreno-Vozmediano R, Llorente IM (2011) An elasticity model for high throughput computing clusters. J Parallel Distrib Comput 71(6):750–757Morabito R, KjĂ€llman J, Komu M (2015) Hypervisors vs. lightweight virtualization: a performance comparison. In: IEEE International Conference on Cloud Engineering (IC2E), Tempe, AZ, USA, pp 386–393Najjar A, Serpaggi X, Gravier C, Boissier O (2014) Survey of elasticity management solutions in cloud computing. In: Mahmood Z (ed) Continued rise of the cloud: advances and trends in cloud computing. Springer, Berlin, pp 235–263Naskos A, Gounaris A, Sioutas S (2015) Cloud elasticity: a survey. In: 1st International Workshop on Algorithmic Aspects of Cloud Computing (ALGOCLOUD), Patras, Greece, pp 151–167Neamtiu I, Dumitras T (2011) Cloud software upgrades: challenges and opportunities. In: IEEE International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), Williamsburg, VA, USA, pp 1–10Neuman BC (1994) Scale in distributed systems. In: Singhal M, Casavant TL (eds) Readings in Distributed computing systems. IEEE-CS Press, Los Alamitos, pp 463–489Padala P, Shin KG, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A, Salem K (2007) Adaptive control of virtualized resources in utility computing environments. In: EuroSys Conference Lisbon, Portugal, pp 289–302Parnas DL (1994) Software aging. In: 6th International Conference on Software Engineering (ICSE), Sorrento, Italy, pp 279–287Parzen E (1960) A survey on time series analysis. Tech. rep., n. 37, Applied Mathematics and Statistics Laboratory, Stanford University, Stanford, CA, USAPascual-Miret L, GonzĂĄlez de MendĂ­vil JR, BernabĂ©u-AubĂĄn JM, Muñoz-EscoĂ­ FD (2015) Widening CAP consistency. Tech. rep., IUMTI-SIDI-2015/003, Univ. PolitĂšcnica de ValĂšncia, Valencia, SpainPopek GJ, Goldberg RP (1974) Formal requirements for virtualizable third generation architectures. Commun ACM 17(7):412–421Potter S, Nieh J (2005) AutoPod: Unscheduled system updates with zero data loss. In: 2nd International Conference on Autonomic Computing (ICAC), Seattle, WA, USA, pp 367–368Rajagopalan S (2014) System support for elasticity and high availability. PhD thesis, The University of British Columbia, Vancouver, CanadaReinecke P, Wolter K, van Moorsel APA (2010) Evaluating the adaptivity of computing systems. Perform Eval 67(8):676–693Rolia JA, Sevcik KC (1995) The method of layers. IEEE Trans Softw Eng 21(8):689–700Roy N, Dubey A, Gokhale AS (2011) Efficient autoscaling in the cloud using predictive models for workload forecasting. In: 4th IEEE International Conference on Cloud Computing (CLOUD), Washington, DC, USA, pp 500–507Ruiz-Fuertes MI, Muñoz-EscoĂ­ FD (2009) Performance evaluation of a metaprotocol for database replication adaptability. In: 28th IEEE Symposium on Reliable Distributed Systems (SRDS), Niagara Falls, New York, USA, pp 32–38Saito Y, Shapiro M (2005) Optimistic replication. ACM Comput Surv 37(1):42–81Seifzadeh H, Abolhassani H, Moshkenani MS (2013) A survey of dynamic software updating. J Softw Evol Process 25(5):535–568Sharma U, Shenoy PJ, Sahu S, Shaikh A (2011) A cost-aware elasticity provisioning system for the cloud. In: International Conference on Distributed Computing Systems (ICDCS), Minneapolis, Minnesota, USA, pp 559–570Shen M, Kshemkalyani AD, Hsu TY (2015) Causal consistency for geo-replicated cloud storage under partial replication. In: International Parallel and Distributed Processing Symposium (IPDPS) Workshop, Hyderabad, India, pp 509–518Shen Z, Subbiah S, Gu X, Wilkes J (2011) CloudScale: elastic resource scaling for multi-tenant cloud systems. In: ACM Symposium on Cloud Computing (SOCC), Cascais, Portugal, p 5Simoes R, Kamienski CA (2014) Elasticity management in private and hybrid clouds. In: 7th IEEE International Conference on Cloud Computing (CLOUD), Anchorage, AK, USA, pp 793–800Singh S, Chana I (2015) QoS-aware autonomic resource management in cloud computing: a systematic review. ACM Comput Surv 48(3):42:1–42:46Smith CU (1980) The prediction and evaluation of the performance of software from extended design specifications. PhD thesis, Department of Computer Science, The University of Texas at Austin, USASmith CU, Williams LG (2003) Software performance engineering. In: Lavagno L, Martin G, Selic B (eds) UML for real. Design of embedded real-time systems, chap 16. Springer, Berlin, pp 343–365Solarski M (2004) Dynamic upgrade of distributed software components. PhD thesis, FakultĂ€t IV Elektronik und Informatik, Technischen UniversitĂ€t Berlin, Berlin, GermanySoltesz S, Pötzl H, Fiuczynski ME, Bavier AC, Peterson LL (2007) Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors. In: European Conference, Lisbon, Portugal, pp 275–287Soules CAN, Appavoo J, Hui K, Wisniewski RW, Silva DD, Ganger GR, Krieger O, Stumm M, Auslander MA, Ostrowski M, Rosenburg BS, Xenidis J (2003) System support for online reconfiguration. In: USENIX Annual Technical Conference. San Antonio, Texas, USA, pp 141–154Sridharan S (2012) A performance comparison of hypervisors for cloud computing. Master Thesis (paper 269), School of Computing, University of North Florida, USAStonebraker M (1986) The case for shared nothing. IEEE Database Eng Bull 9(1):4–9Sun D, Guimarans D, Fekete A, Gramoli V, Zhu L (2015) Multi-objective optimisation of rolling upgrade allowing for failures in clouds. In: 34th IEEE Symposium on Reliable Distributed Systems (SRDS). Montreal, QC, Canada, pp 68–73Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. The MIT Press, CambridgeToosi AN, Calheiros RN, Buyya R (2014) Interconnected cloud computing environments: challenges, taxonomy, and survey. ACM Comput Surv 47(1):7:1–7:47Vaquero GonzĂĄlez LM, Rodero-Merino L, CĂĄceres J, Lindner MA (2009) A break in the clouds: towards a cloud definition. Comput Commun Rev 39(1):50–55Varrette S, Guzek M, Plugaru V, Besseron X, Bouvry P (2013) HPC performance and energy-efficiency of Xen, KVM and VMware hypervisors. In: 25th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). Porto de Galinhas, Pernambuco, Brazil, pp 89–96Vasic N, Novakovic DM, Miucin S, Kostic D, Bianchini R (2012) DejaVu: accelerating resource allocation in virtualized environments. In: 17th nternational Conference on Architectural Support for Programing Languages and Operating Systems (ASPLOS), London, UK, pp 423–436Vaughan-Nichols SJ (2006) New approach to virtualization is a lightweight. IEEE Comput 39(11):12–14Vogels W (2009) Eventually consistent. Commun ACM 52(1):40–44Wada H, Suzuki J, Yamano Y, Oba K (2011) Evolutionary deployment optimization for service-oriented clouds. Softw Pract Exp 41(5):469–493Whitaker A, Cox RS, Shaw M, Gribble SD (2005) Rethinking the design of virtual machine monitors. IEEE Comput 38(5):57–62Wishart DMG (1969) A survey of control theory. J R Stat Soc Ser A-G 132(3):293–319Yataghene L, Amziani M, Ioualalen M, Tata S (2014) A queuing model for business processes elasticity evaluation. In: International Workshop on Advanced Information Systems for Enterprises (IWAISE), Tunis, Tunisia, pp 22–28Zawirski M, Preguiça N, Duarte S, Bieniusa A, Balegas V, Shapiro M (2015) Write fast, read in th
    • 

    corecore