83 research outputs found

    Deploying rural community wireless mesh networks

    Get PDF
    Inadequate Internet access is widening the digital divide between town and countryside, degrading both social communication and business advancements in rural areas. Wireless mesh networking can provide an excellent framework for delivering broadband services to such areas. With this in mind, Lancaster University deployed a WMN in the rural village of Wray over a three-year period, providing the community with Internet service that exceeds many urban offerings. The project gave researchers a real-world testbed for exploring the technical and social issues entailed in deploying WMNs in the heart of a small community

    WING/WORLD: An Open Experimental Toolkit for the Design and Deployment of IEEE 802.11-Based Wireless Mesh Networks Testbeds

    Get PDF
    Wireless Mesh Networks represent an interesting instance of light-infrastructure wireless networks. Due to their flexibility and resiliency to network failures, wireless mesh networks are particularly suitable for incremental and rapid deployments of wireless access networks in both metropolitan and rural areas. This paper illustrates the design and development of an open toolkit aimed at supporting the design of different solutions for wireless mesh networking by enabling real evaluation, validation, and demonstration. The resulting testbed is based on off-the-shelf hardware components and open-source software and is focused on IEEE 802.11 commodity devices. The software toolkit is based on an "open" philosophy and aims at providing the scientific community with a tool for effective and reproducible performance analysis of WMNs. The paper describes the architecture of the toolkit, and its core functionalities, as well as its potential evolutions

    Supporting Internet Access and Quality of Service in Distributed Wireless Ad Hoc Networks

    Get PDF
    In this era of wireless hysteria, with continuous technological advances in wireless communication and new wireless technologies becoming standardized at a fast rate, we can expect an increased interest for wireless networks, such as ad hoc and mesh networks. These networks operate in a distributed manner, independent of any centralized device. In order to realize the practical benefits of ad hoc networks, two challenges (among others) need to be considered: distributed QoS guarantees and multi-hop Internet access. In this thesis we present conceivable solutions to both of these problems. An autonomous, stand-alone ad hoc network is useful in many cases, such as search and rescue operations and meetings where participants wish to quickly share information. However, an ad hoc network connected to the Internet is even more desirable. This is because Internet plays an important role in the daily life of many people by offering a broad range of services. In this thesis we present AODV+, which is our solution to achieve this network interconnection between a wireless ad hoc network and the wired Internet. Providing QoS in distributed wireless networks is another challenging, but yet important, task mainly because there is no central device controlling the medium access. In this thesis we propose EDCA with Resource Reservation (EDCA/RR), which is a fully distributed MAC scheme that provides QoS guarantees by allowing applications with strict QoS requirements to reserve transmission time for contention-free medium access. Our scheme is compatible with existing standards and provides both parameterized and prioritized QoS. In addition, we present the Distributed Deterministic Channel Access (DDCA) scheme, which is a multi-hop extension of EDCA/RR and can be used in wireless mesh networks. Finally, we have complemented our simulation studies with real-world ad hoc and mesh network experiments. With the experience from these experiments, we obtained a clear insight into the limitations of wireless channels. We could conclude that a wise design of the network architecture that limits the number of consecutive wireless hops may result in a wireless mesh network that is able to satisfy users’ needs. Moreover, by using QoS mechanisms like EDCA/RR or DDCA we are able to provide different priorities to traffic flows and reserve resources for the most time-critical applications

    On The Recovery Performance of Single- and Multipath OLSR in Wireless Multi-Hop Networks

    Get PDF
    International audienceIn this paper, we study and improve the recovery properties of single and multipath routing strategies when facing network failure situations. In particular, we focus our study on two MANET routing protocols: OLSR and its multipath extension MP-OLSR. In various wireless multi-hop network environments, especially in multiple chain topologies, we define and seek to evaluate the latency introduced by these protocols to find a new path after a link failure. Theoretical estimations and simulation results show that, under dual chain-topologies, this latency can be too long and incompatible with the needs of loss and delay constrained applications. As the source nodes cannot detect link failures immediately because of the delay incurred by the well-known nature of link state protocols in general, and of OLSR Topology Control (TC) messages in particular, these nodes keep sending packets along broken paths. We thus study the inconsistencies between the actual network topology and the nodes' own representation. After analyzing the consequences of this long latency, we seek to alleviate these problems with the introduction of adapted mechanisms. We propose three new different schemes and accordingly extend the original OLSR and MP-OLSR protocols in order to decrease the expected latency and improve the protocol performance. Simulation results show a steep decrease of the latency when using these new schemes in dual chain-topologies. We also discuss these results in terms of packet loss, end-to-end delay and overhead

    Feasibility of Using Passive Monitoring Techniques in Mesh Networks for the Support of Routing

    Get PDF
    In recent years, Wireless Mesh Networks (WMNs) have emerged as a promising solution to provide low cost access networks that extend Internet access and other networking services. Mesh routers form the backbone connectivity through cooperative routing in an often unstable wireless medium. Therefore, the techniques used to monitor and manage the performance of the wireless network are expected to play a significant role in providing the necessary performance metrics to help optimize the link performance in WMNs. This thesis initially presents an assessment of the correlation between passive monitoring and active probing techniques used for link performance measurement in single radio WMNs. The study reveals that by combining multiple performance metrics obtained by using passive monitoring, a high correlation with active probing can be achieved. The thesis then addresses the problem of the system performance degradation associated with simultaneous activation of multiple radios within a mesh node in a multi-radio environment. The experiments results suggest that the finite computing resource seems to be the limiting factor in the performance of a multi-radio mesh network. Having studied this characteristic of multi-radio networks, a similar approach as used in single radio mesh network analysis was taken to investigate the feasibility of passive monitoring in a multi-radio environment. The accuracy of the passive monitoring technique was compared with that of the active probing technique and the conclusion reached is that passive monitoring is a viable alternative to active probing technique in multi-radio mesh networks

    Topology forming and optimization framework for heterogeneous wireless back-haul networks supporting unidirectional technologies

    Get PDF
    Wireless operators, in developed or emerging regions, must support triple-play service offerings as demanded by the market or mandated by regulatory bodies through so-called Universal Service Obligations (USOs). Since individual operators might face different constraints such as available spectrum licenses, technologies, cost structures or a low energy footprint, the EU FP7 CARrier grade wireless MEsh Network (CARMEN) project has developed a carrier-grade heterogeneous multi-radio back-haul architecture which may be deployed to extend, complement or even replace traditional operator equipment. To support offloading of live triple-play content to broadcast-optimized, e.g., DVB-T, overlay cells, this heterogeneous wireless back-haul architecture integrates unidirectional broadcast technologies. In order to manage the physical and logical resources of such a network, a centralized coordinator approach has been chosen, where no routing state is kept at plain WiBACK Nodes (WNs) which merely store QoS-aware MPLS forwarding state. In this paper we present our Unidirectional Technology (UDT)-aware design of the centralized Topology Management Function (TMF), which provides a framework for different topology and spectrum allocation optimization strategies and algorithms to be implemented. Following the validation of the design, we present evaluation results using a hybrid local/centralized topology optimizer showing that our TMF design supports the reliable forming of optimized topologies as well as the timely recovery from node failures.Federal Ministry of Education and Research of the Federal Republic of German (F¨orderkennzeichen 01 BU1116,SolarMesh Energieeffizientes,autonomesgroßfl¨achiges Sprach- undDatenfunknetzmitflacher IP-Architektur

    Integration of multimetric path management into 802.11S for telemedicine quality of service provision

    Get PDF
    The merits of 802.11s as the wireless mesh network standard provide a low cost and high independent scalability telemedicine infrastructure. However, challenges in degradation of performance as hops increase and the absence of Quality of Service (QoS) provision need to be resolved. Reliability and timely manner are important factors for successful telemedicine service. This research investigates the use of 802.11s for telemedicine services. A new model of 802.11s based on telemedicine infrastructure has been developed for this purpose. A non deterministic polynomial path selection is proposed to provide end-to-end QoS provisioning in 802.11s. A multi-metric called QoS Price metric is proposed as measurement of link quality. The QoS Price is derived from multi layers values that reflect telemedicine traffic requirement and resource availability of the network. The proposed solution has modified the path management of 802.11s and added resource allocation in distributed scheme. This modification and resource allocation improvement of 802.11s were given the designation medQoS-802.11s. MedQoS- 802.11s could provide a link guarantee of telemedicine traffic transmission in the selected path. MedQoS-802.11s had been tested using ns3 simulation and real environment testbed. The result has shown that medQoS-802.11s could achieve the traffic guarantee for almost 95% telemedicine traffic with 58% for the resource intensive diagnostic video traffic. It has also shown that the cost of link path overhead is efficient with the transmission overhead having an increment of 6% compared to the original 802.11s. The concurrent connection results for single time transmission shows that medQoS-802.11s has a significant increase of up to 12% traffic than original 802.11s. The testbed results have verified the QoS guarantee of the intended telemedicine traffic per transmission time. In summary, the reliability and time guarantee of medQoS has highly improved 802.11s to transmit telemedicine traffic

    Gossip routing, percolation, and restart in wireless multi-hop networks

    Get PDF
    Route and service discovery in wireless multi-hop networks applies flooding or gossip routing to disseminate and gather information. Since packets may get lost, retransmissions of lost packets are required. In many protocols the retransmission timeout is fixed in the protocol specification. In this technical report we demonstrate that optimization of the timeout is required in order to ensure proper functioning of flooding schemes. Based on an experimental study, we apply percolation theory and derive analytical models for computing the optimal restart timeout. To the best of our knowledge, this is the first comprehensive study of gossip routing, percolation, and restart in this context
    corecore