
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

An experiment translation through automatic generation & a secure routing protocol
implementation FUUREX

Van de Sype, Julien; Guillaume, Laurent

Award date:
2010

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/an-experiment-translation-through-automatic-generation--a-secure-routing-protocol-implementation-fuurex(994d12a7-d1e7-4475-954f-79431b836ec8).html

Facultés Universitaires Notre-Dame de la Paix
Faculté d'Informatique

Second Master

Master thesis

An Experiment Translation Through
Automatic Generation

&

A secure routing protocol implementation:
FUUREX

Julien Van de Sype

Laurent Guillaume

Academic year 2009-2010
Supervisors: Laurent Schumacher - Roberto Canonico

Faculté d'Informatique - rue Grandgagnage, 21
B-5000 Namur, Belgique

Tél : +32 (0)81 72 50 02 - Fax : +32 (0)81 72 49 67

1

Facultés Universitaires Notre-Dame de la Paix
Faculté d'Informatique

Second Master

Master thesis

An Experiment Translation Through
Automatic Generation

&

A secure routing protocol implementation:
FUUREX

Julien Van de Sype - jvdsype@student.fundp.ac.be

Laurent Guillaume - guillala@student.fundp.ac.be

Academic year 2009-2010
Supervisors: Laurent Schumacher - Roberto Canonico

Faculté d'Informatique - rue Grandgagnage, 21
B-5000 Namur, Belgique

Tél : +32 (0)81 72 50 02 - Fax : +32 (0)81 72 49 67

ABSTRACT

Abstract

Computer investigation in the scienti�c community often leads to the design of new theories and their
sometimes empirical validation. In order to save time and because of the lack of available equipment,
researchers compare their �ndings to a simulation from which they will draw conclusions about the results.
Unfortunately these tools are more or less far from reality. Implementations coded by researchers should
therefore also be tested by other means closer to reality.

On one hand, this master thesis presents the reader with an approach to facilitate the joint use of a
simulator and a testbed in the context of testing software involving wireless networks. On the other hand,
it describes the novel security brought by the AODV routing protocol augmented with a mechanism of
reputation.

We propose the development of a tool based on the XML language to automatically generate de-
scriptions of common experiments between the simulator and the testbed. The second part focuses on
the implementation of a secure routing protocol through a joint collaboration between the participating
nodes in the wireless network.

Our platform currently manages the NS2 simulator and an OMF testbed, wherein we have also
enabled the exploitation of the modi�ed routing protocol. Moreover, the range of tools considered can
be expanded easily.

Researchers now use a solution jointly operating two tools which help save time when testing appli-
cations and as well as secure implementation of the AODV protocol.

Keywords: XML, testbed, OMF, NS2, AODV, Wireless Mesh Network

Résumé

Les recherches informatiques dans le milieu scienti�que donnent souvent lieu à la création de nouvelles
théories ainsi qu'à leur validation, quelque fois empirique. Pour un gain de temps et par manque de
matériel disponible, les chercheurs confrontent leurs trouvailles à un outil de simulation dont ils tireront
des conclusions sur des résultats obtenus. Malheureusement ces outils étant plus ou moins loin de la
réalité, les implémentations des chercheurs devraient être également testées par d'autres moyens plus
proches de la réalité.

Nous proposons le développement d'un outil se basant sur le langage XML a�n de générer automa-
tiquement des descriptions d'expérimentations communes aux simulateur et aux testbeds. La seconde
partie s'intéresse à l'implémentation de la sécurisation du protocole de routage AODV grâce à une col-
laboration commune entre noeuds participants au réseau sans �l.

Notre plate-forme gère actuellement le simulateur NS2 ainsi que le testbed OMF, dans laquelle nous
avons également rendu possible l'exploitation du protocole modi�é. De plus, la gamme d'outils prise en
compte peut être éto�ée aisément.

Les chercheurs disposent maintenant d'une solution exploitant conjointement les deux outils permet-
tant un gain de temps pour le test d'applications ainsi que d'une implémentation sécurisée du protocole
AODV.

Mots clés: XML, testbed, OMF, NS2, AODV, réseau maillé sans-�l

Acknowledgement

We would like to express our deepest and sincere gratitude to our thesis supervisor, Professor Laurent
Schumacher for all the advice, the corrections, enlightenments and support we received throughout this
year. We are really glad and pleased he o�ered his guidance and his network orientation knowledge.

We gratefully acknowledge Professor Roberto Canonico for the supervision and the help he brought
us during these three months in Naples. We would like also to underline his never ending enthusiasm on
the XML project.

We would also wish to record our gratitude to Giovanni Di Stasi, the PhD Student who backed us
up taking his time to answer our numerous questions and providing us with a crucial technical support.

We would like to thank Francesco Oliviero for his researches in wireless routing protocol security
which made our security approach in our thesis possible.

Our gratitude also goes to Professors Wim Vanhoof and Patrick Heymans for their help in the nu-
merous tricky problems we encountered. They helped us tackle them, and get a better overview on the
subject.

Next we would like to thank Alessio Botta and Francesco Paolo for their enlightenments during the
research period.

Finally, our regards and blessing go to all those who supported us in any respect during the completion
of the project.

4

Contents

1 Introduction 13
1.1 Objectives . 14

1.1.1 Automatic experiment generation . 14
1.1.2 Implementation of a reputation protocol . 15
1.1.3 Thesis contents . 15

I Automatic generation 16

2 State of Art 17
2.1 Presentation of simulators, emulators and testbeds . 17
2.2 Simulators . 17

2.2.1 Network Simulator . 17
2.2.2 The other simulators . 18

2.3 Testbeds . 18
2.3.1 PlanetLab . 18
2.3.2 WILE-E . 19
2.3.3 Emulab . 20

2.4 Testbeds management framework . 20
2.4.1 OMF . 20
2.4.2 Castadiva . 21

2.5 Pros and cons . 21
2.6 Languages used by testbeds and simulators . 22

2.6.1 OMF language . 22
2.6.2 Network Simulator 2 language . 22

3 Network Simulator 23
3.1 Introduction . 23
3.2 The components of NS2 . 23
3.3 Why NS2 ? . 25
3.4 Related contribution . 25
3.5 NS Future . 25

4 The OMF Platform 27
4.1 Introduction . 27
4.2 Why OMF ? . 27
4.3 OMF components . 28

4.3.1 Node handler aka the 'Experiment Controller' . 28
4.3.2 Node agent aka 'Resource Controller' . 28
4.3.3 Grid service aka 'Aggregate Manager' . 29

4.4 Process an OMF experiment . 29
4.5 Description of an OMF experiment . 29
4.6 Why this version of OMF? . 31
4.7 Database settings . 31

5

4.8 Our contribution . 34

5 The automatic generation 35
5.1 What is XML? . 35
5.2 XML for this project . 36
5.3 XSL . 36
5.4 Completeness of our work . 36
5.5 Related works . 38

5.5.1 XML Description Language for Web−based Network Simulation 38
5.5.2 LETSQoS scenario generator . 38
5.5.3 Modeling Computer Networks for Emulation . 38
5.5.4 Another Modeling language . 38
5.5.5 Conclusion . 39

5.6 Analysis and comparison with other projects . 39
5.6.1 LETSQoS scenario generator . 39
5.6.2 Modeling Computer Networks for Emulation . 42

5.7 Our XSD solution . 46
5.7.1 Result of XSD modi�cations . 46

5.8 Performed experiments . 48
5.9 OMF di�culties . 60

5.9.1 Output process failed . 60
5.9.2 Infernal process loop . 60
5.9.3 Version obsolescence problems . 61

5.10 Remarks . 62
5.10.1 Node con�guration . 62
5.10.2 Test of the addLink feature . 63
5.10.3 Node location in NS2 . 63

5.11 XSLT processor . 64
5.12 XSL Transformation process . 65
5.13 Methodology . 66
5.14 Contribution . 66

6 Limits and Perspectives 67

II Reputation Protocol 70

7 State of the art 71
7.1 Types of networks . 71

7.1.1 Mesh Network . 71
7.1.2 Wireless Mesh Network . 71
7.1.3 Routing protocol in WMN . 73

7.2 Network security requirements . 74
7.2.1 Contextualization . 74
7.2.2 Secure Routing Protocol for Wireless Mesh Networks 74

8 AODV-REX: A secure routing protocol 76
8.1 AODV . 76

8.1.1 Description . 76
8.1.2 Principle . 76

8.2 Reputation EXtension - Mechanisms used by AODV-REX 81
8.2.1 Local reputation . 81
8.2.2 Global reputation and packet reputation . 82
8.2.3 Reputation model and Watchdog module . 83
8.2.4 Reputation calculation . 83
8.2.5 Consequence on metrics and path selection . 85

6

9 AODV-FUUREX 86
9.1 AODV-UU . 86
9.2 AODV-FUUREX: a modi�cation of AODV-UU . 86

9.2.1 Released versions of AODV-UU . 87
9.2.2 Problems encountered during development process 87
9.2.3 The sni�er . 88
9.2.4 Path selection . 88
9.2.5 Theoritical limits . 89

9.3 Methodology . 91

10 Experimentation 92
10.1 AODV-UU vs AODV-FUUREX . 92
10.2 Reputation results and consequences on the routing table 93

11 Limits and Perspectives 95
11.1 Unresolved routing issues . 95

11.1.1 RREP propagation . 95
11.1.2 Single spot of juncture . 96
11.1.3 Preventing RREQ cycles . 97

12 Thesis conclusion 98

13 Appendix 99
.1 The modi�cations made to the XSD �les from XDLWNS 100

.1.1 network Description (Fig 5.11, Fig 5.12) . 101

.1.2 Tra�c (Fig 5.15) . 104

.1.3 SimulationCommand (Fig 5.19) . 106

.1.4 Time representation in the XML scenario description 107

.1.5 Problem of granularity and concepts . 107
.2 Packet processing in AODV-UU . 107
.3 Main structures used by AODV-FUUREX . 112

.3.1 Routing table . 112

.3.2 Reputation table . 112

.3.3 Ack-packets table . 113
.4 AODV-FUUREX Experiment . 114
.5 validity of our XML tool . 116

7

List of Figures

1.1 The �rst objective is to provide a generic description language and an automatic trans-
formation tool . 14

2.1 PlanetLab organisation: 1,086 nodes at 505 sites . 19
2.2 Netgear WG302 and net4826 SOEKRIS . 19
2.3 WIreLEss Experimental (WILE-E) infrastructure . 20

3.1 The linking between C++ and oTCL . 25

4.1 System Architecture from a User's Perspective Basic functionalities 28
4.2 OMF process . 29
4.3 HelloWorld experiment . 30
4.4 Structure of the OMF database . 33

5.1 An example of a listing of cars . 35
5.2 Common part of OMF and NS2 platforms . 36
5.3 Markow state models gives the probability to switch of state 44
5.4 Sequence of element(s) . 46
5.5 Choice among the children . 46
5.6 Add comments/notes to each element . 46
5.7 Adding multiplicities on di�erent kinds of element . 46
5.8 Di�erent kind of optional element (multiplicity = 0..1) . 46
5.9 Di�erent kinds of element that cannot be instantiated . 46
5.10 Scenario element and its children . 47
5.11 Network description element and its children . 52
5.12 Node element and its children . 53
5.13 Routing element and its children . 54
5.14 Protocol element and its children . 55
5.15 Tra�c element and its children . 56
5.16 Pattern element and its children . 57
5.17 CBR element and its children . 58
5.18 Expo_on_o� element and its children . 58
5.19 simulationCommand element and its children . 59
5.20 Structure of the network laboratory in Naples . 64
5.21 Example of a XSL part . 64
5.22 Example sorted child . 64
5.23 Example sorted child . 65

6.1 A feature diagram denotes a combination of features [Wei10] 68
6.2 Idea of our approach . 68

7.1 Example of mesh network . 71
7.2 wireless mesh network deployed in a city [JS] . 72
7.3 Hybrid wireless mesh network [JS] . 73

8.1 Where is node D? . 77

8

8.2 Route discovery process - node B generates a RREQ message 78
8.3 Node C has a fresh route to node D - node C generates a Route REPly (RREP) message 79
8.4 Node B compares the sequence number of its routing table with the one present in the

RREP message . 80
8.5 Watchdog process on node n1 (UML sequence diagram) 82
8.6 . 85

9.1 Launching of AODV-FUUREX . 87
9.2 Route decision in 3 phases: (1) RREQ - (2) RREP - (3) RREP_REP_ACK 89

10.1 resource usage of AODV-UU and FUUREX . 92
10.2 Experiment topology . 93
10.3 Reputations seen by node 105 . 93
10.4 hops count to node 108 from node 105 . 94

11.1 Scenario . 96

1 Sequence of element(s) . 100
2 Choice among the children . 100
3 Add comments/notes to each element . 100
4 Adding multiplicities on di�erent kinds of element . 100
5 Di�erent kind of optional element (multiplicity = 0..1) . 100
6 Di�erent kinds of element that cannot be instantiated . 100
7 General packet processing . 108
8 RREQ processing . 109
9 RREP processing . 111
10 Structures needed by the routing mechanism . 112
11 Structures needed by the reputation mechanism . 113
12 Structures needed by the watchdog mechanism . 113

9

List of Tables

3.1 TCL NS-speci�c code samples . 24

5.1 Topology information . 40
5.2 Node information . 40
5.3 Link information . 40
5.4 CBR �ow . 41
5.5 Tra�c intensity layer . 41
5.6 Packet layer . 41

10

Acronyms

ANML Another Modeling Language
AODV Ad-hoc On-Demand Distance Vector routing
AODV-UU Ad-hoc On-Demand Distance Vector routing - Uppsala University
AS Autonomous System
CBR Constant Bit Rate
CIA Con�dentiality, Integrity, Availability
CONFIDANT Cooperation Of Nodes: Fairness In Dynamic Ad-hoc NeTworks
DITG Distributed Internet Tra�c Generator
DML Data Manipulation Language
DSDV Destination-Sequenced Distance Vector routing
DSL Digital Subscriber Line
DSR Dynamic Source Routing
DTD Document Type De�nition
EBNF Extended Backus-Naur Form
FTP File Transfert protocol
FUUREX Fundp Uppsala University REputation eXtenstion
GMF Graphical Modeling Framework
GML Graphic Modeling Language
GUI Graphic User Interface
HTML Hypertext Markup Language
MAC Media Access Control
OEDL OMF Experiment Description Language
OLSR Optimized Link State Routing protocol
OMF cOntrol and Management Framework
oTCL object-Tool Command Language
OTG Orbit Tra�c Generator
NS Network Simulator
REFACING RElationship-FAmiliarity-Con�dence-INteGrity
RERR Route ERRor
RREQ Route REQuest
RREP Route REPly
RREP-ACK Route REPly ACKnowledge
RTF Rich Text Format
SQ3 Space Quest 3
TCL Tool Command Language
TCP Transmission Control Protocol
TTL Time To Live
UDP User Data Protocol
UML Uni�ed Modelling Language
W3C World Wide Web Consortium
WMN Wireless Mesh Network
XDLWNS XML Description Language for Web−based Network Simulation
WILE-E WIreLEss Experimental
XML eXtended Markup Language
XSD XML Schema De�nition

11

XSL Extensible Stylesheet Language
XSLT Extensible Stylesheet Language Transformations

12

Chapter 1

Introduction

The cost in the domain of the network development has nowadays become a real problem. In order to
perform wide scale experiments, a large number of hosts, routers, switches,... is required. But many
companies or even universities do not want to invest much money into hardware that becomes quickly
obsolete. The simulation happens to be a solution to that problem. People are able to virtually create
their wide-scale scenario and perform their experiment at a way lower cost than with a conventional
hardware-based set-up. However, this virtual network has the drawback of missing the e�ects that could
a�ect the experiment in real conditions. Although some disturbances can be introduced in the scenario,
those experiments are not as realistic as the real ones. The testbeds should overcome this issue. A
testbed is a set of computers gathered in order to perform experiments. That hardware enables to carry
out the experiment in realistic conditions under planned restrictions.

These tools thus act on two di�erent levels, one in the real world and the other in the virtual world.
Testbeds and simulators are complementary since the weaknesses of one are counterbalanced by the
other's strength.

In practice, developers often use the simulators. Simulators are of better value in terms of cost and
quality of results they are able to provide. Even if it was wise to combine simulators and testbeds, such
a pairing would often require an additional e�ort from the developers. They will have to write a second
implementation to be run on the testbed and would secondly require the availability of such tools. Some
projects are attempting to overcome the availability problem by allowing outside access to their testbed
for developers from all around the world.

The test of these applications using both tools is made by running a scenario created by the user in
which s/he has depicted a real world situation that s/he would like to reproduce. When a researcher
wants to take advantage of the bene�ts o�ered by the tools combination to test their software (compare
/ validate the results), s/he should con�gure them separately although they follow the same scenario.

It is in this context that we address the �rst part of the thesis, consisting in �nding a way to facilitate
the management of the same scenario on both platforms. This �rst goal is detailed in the following section.

With this in mind, we tested this approach with a real case involving the security of wireless com-
munications.

More and more companies and industries are now building and creating their business with their
customers and create links with new potential customers through the Internet bubble. Residential
customers are also deploying wireless networks in order to provide to all family members with an Internet
connection from a single access point. Universities are based on the same pattern of wireless use as
residential customers. Because of the swarm of new users, the numbers of services available are increasing,
which makes this type of market a thriving business.

Nevertheless, the side e�ect of this technology is the technology itself. The physical support for
propagating packets is based on airwaves resulting in a weakening of these networks' security compared
to wired links, especially as the airwaves can be intercepted and sni�ed by anyone within range.

The security problem can be exploited to lower quality of service through the interception of messages
and attacks. Preventing a company from providing services to its users is not only limited to a �nancial
loss and but it can go further by directly a�ecting the image of company, re�ecting the con�dence of

13

customers towards it.
It is in this context that we implemented and tested a security solution to counter the actions of

malicious network devices in a wireless network. This point is discussed in the next section.

1.1 Objectives

1.1.1 Automatic experiment generation

The �rst goal is to create a generic language to describe a scenario of network experiment. Once this
description is done, the scenario described is processed in two di�erent ways to be instantiated for a
simulator and a testbed.

Both tools are platforms used to test softwares, routing protocols, algorithms, etc. Indeed, when
researchers are developing computer programs, they need to be tested in laboratories to be used in
production once validated.

Therefore it is interesting to collect and verify the data they produce in order to draw conclusions.
The �rst tool is a simulator system, i.e., a software that virtualizes the whole test environment: devices
and communications are virtual. The second tool is a testbed, i.e., several real devices (unlike the
simulator) communicating with each other and managed by a software playing the role of a controller.

These two tools are therefore intended to perform an experiment to collect data and to provide
feedback to the user so that s/he could study them. As discussed in the previous section, one is virtual
while the other acts in the real world. They are thus complementary.

By describing a scenario of a networking experiment, the user wants to test his/her application (for
example, a routing algorithm). S/he then designs a scenario in which a speci�ed number of devices (called
"nodes" in a network topology), which may or not communicate with each other. It also speci�es, for
example, that node A will generate tra�c to node D via node B, etc. Thus, this scenario determines the
parameters that each device will receive.

However, both tools use two di�erent languages to describe an experimental scenario. So, the �rst
aim of this thesis is to �nd a fairly generic way to express this scenario only once and only for the wireless
part of a network topology, as well as to provide an automatic transformation tool.

Figure 1.1: The �rst objective is to provide a generic description language and an automatic transfor-
mation tool

Using various tools, the generic description is transformed once in the language for the simulator and
once in the language for the testbed, as shown in Figure 1.1.

To sum up, our �rst objective is to de�ne a common description language for network experiments
to automatically produce description �les for simulators and testbed platforms.

14

1.1.2 Implementation of a reputation protocol

Because the need in wireless network is now a bigger problem, mechanisms should be deployed to secure
communication. As the entities communicate over the air, any malicious node can intercept the conver-
sation and act in a deviant way, so the exchange between nodes is either wrong or broken. To prevent
such situation from happening, new modules and theories have been developed. We will implement one
of them, called RElationship-FAmiliarity-Con�dence-INteGrity (REFACING), on a well-known wireless
routing protocol named Ad-hoc On-Demand Distance Vector routing (AODV).

Starting from the AODV source code, we are going to add the required features to embed the
REFACING model and it will therefore be possible to test the modi�ed routing protocol on a platform.

1.1.3 Thesis contents

This thesis is organized in two parts. The �rst one which deals with the automatic generation tool,
presents the situation by a state of the art at chapter 2. Chapter 3 introduces the components of the
simulator exploited in this project, while chapter 4 focuses on describing the testbed plaform we got to
use. Chapter 5 discusses the existing researches and the solution we propose. Chapter 6, the last chapter
of the �rst part, addresses the limits and perspectives of our work.

The �rst chapter of the second part, concerning the security mechanism in a wireless routing protocol,
introduces the concepts of wireless networks and lays the foundations of the security issues in those ones.
Chapter 8 describes the operating principles of an existing insecure wireless routing protocol as well as
the means to make it secure in accordance with a new theory. Chapter 9 looks at the implementation of
the protocol used in this project. A list of comments takes place in this chapter as well as an analysis of
the theory limits explained in the previous chapter. Experimentations on our implementation and the
results we got are expressed in Chapter 10. We �nish this second by an analysis of the implementation
limits and the solutions we proposed in regards to them. Finally chapter 12 is devoted to our thesis
conclusion.

15

Part I

Automatic generation

16

Chapter 2

State of Art

This chapter introduces the notions and concepts in the context of the �rst objective we have set. It
describes the existing tools and the environment in the context of our objective of generating a network
experiment in an automatic way.

2.1 Presentation of simulators, emulators and testbeds

Tests of network applications can be achieved in three di�erent ways :

• Simulators

• Emulators

• Testbeds

Every single of these three methods can perform the application and thus test and check its behavior
in di�erent conditions. Let us de�ne and consider the advantages and disadvantages of them.

2.2 Simulators

The simulators are part of an experimental work. We will therefore analyse what simulators are and
what they are used for.

Simulator A simulator is a system to mimic the behavior of a set of machines in order to run ex-
periments in a given context. It is often used for the study of real-life complex systems for which the
all combined parameters are too complicated or too expensive to be run in normal scale. A model is
therefore made to be as close as possible to reality, so the analysis is as real as can be. Nowadays,
simulators in computer science are used to check the behavior of new designed softwares or theories. It
allows to test them in an environment that tends to be as realistic as possible.

2.2.1 Network Simulator

The Network Simulator (NS) is the most famous simulator in its domain, as shown in [AY06]. It was
created as a division of the original REAL network simulator in 1989. The software then underwent
several changes to adapt through work of researchers. The second release, also known as NS2, was
distributed in 2005. This is currently the most used version, mainly thanks to its combination of Tool
Command Language (TCL) language and commands, and its C++ capability and appliance. The last
version so far was released in 2009 under the name NS3. It lost its TCL part, but major changes have
been done to �x problems in the NS2 version.

In our thesis, we will only focus on the second version of NS. This release had three great changes
that are important to consider.
The �rst one was incorporated in the very �rst version of the software: the wired links between nodes.

17

So, all nodes are then set together thanks to physical connection. The second change was the one made
by the University of Cantabria [CC07]: the wireless links to build up the topology. But only the 802.11x
standard has been implemented. And the last change was done by Francesco Oliviero at the University
Federico II of Naples [OR07], who added a reputation protocol - that will be discussed in a further section
- to identify and remove a node that behaves suspiciously and whose �shy behavior makes the network
e�ciency going down.

2.2.2 The other simulators

Other simulators that we could use instead of NS exists. Here is a short list of them:

• Marionnet

• Netkit

• SNNS (Stuttgart Neural Network Simulator)

• GNS3 (Graphical Network Simulator)

• JNS (Java Network Simulator � Clone of NS)

All are simulators able to graphically model a network with a single machine at a lower cost. These
are great and well-known simulators. However, none of them includes the wireless part of a network, as
they are all designed to model wired networks. And because of that lack of evolution and maintenance,
they currently cannot keep up with the NS functionalities.

2.3 Testbeds

In this whole thesis, we will often address and use the notion of testbed. Let us de�ne and explore what
testbed refers to.

Testbed A testbed is a set of managed experimental resources (often computers or small wireless de-
vices), which can be con�gured and controlled by experimenters/researchers for a speci�c period of time,
to perform experimental evaluations of algorithms, schemes or prototypes. Testbeds enable the realiza-
tion of experiments that are often run on real-world scenarios, under controlled realistic environment. It
consists of speci�c hardware, operating systems, network infrastructure and con�guration [cO09b].

A testbed can be viewed as di�erent devices owning several network interfaces, often managed by a
central controller which provides help and tools to run experiments on these devices in a very simple way.
It proves useful in the test of routing protocol implementation, in the test of applications by ensuring
conditions fairly close to reality, unlike simulators.

Testbeds can be divided in two categories, the local and the global scale ones. The local testbeds
are located in a single area in the world, like a room, a laboratory or a University whereas the global
testbeds have nodes spread all around the world. The classi�cation does not depend on the number of
nodes present in the testbed, but on the location it actually has. [cO09a]

2.3.1 PlanetLab

PlanetLab [Pla09] is a worldwide testbed to which many countries contribute in adding their nodes in
that topology.

It is a global research network providing a large scale infrastructure for the development of new
network services. Since 2003, more than 1,000 researchers from industrial and academic world have used
the testbed for developing applications such as peer-to-peer systems, distributed storage, distributed
hash tables, network mapping and query processing.

Each research project is assigned into a slice, i.e., a virtual access to some of the nodes in the network.
PlanetLab currently consists of 1,086 nodes at 505 sites all around the world.

18

Figure 2.1: PlanetLab organisation: 1,086 nodes at 505 sites

To join the PlanetLab testbed, the institution responsible for the application must have at least one
partner which is already member of the PlanetLab consortium.

2.3.2 WILE-E

A prototype testbed called WILE-E is deployed in a laboratory in the University Federico II of Naples.
It is composed of seven wireless nodes, managed by a testbed controller. The nodes internet access is
provided through a gateway and PlanetLab developers can connect to the testbed manager to perform
experiments.

The four older nodes NETGEAR WG302 have 32 MB of memory RAM. Those nodes embed a Linux
based operating system called OpenWrt (Busybox v1.14.4). However, even if they have two antennas,
the �rst one is only dedicated to the 802.11a while the second can only be used for the 802.11g protocol.

Figure 2.2: Netgear WG302 and net4826 SOEKRIS

The new generation is composed of three nodes, the net4826 SOEKRIS Engineering with 128 MB of
memory RAM. This generation embeds a Linux operating system called Voyage (version 4.0).

Currently deployed in the University Federico II of Naples, the testbed is composed of the nodes
described above, a gateway which provides Internet and a server acting simultaneously as a manager for
the testbed (see �gure 2.3) and as PlanetLab (see 2.3.1) node for external researchers who want access
to this infrastructure.

19

Figure 2.3: WILE-E infrastructure

2.3.3 Emulab

EmuLab [Emu09] is part of global testbeds and is a really similar project to the one made by PlanetLab.
Although the Emulab testbed is spread all around the world, the core system is located at the

University of Utah, U.S. (with around four hundred machines). Two thousand sites compiling an average
of 2,500 nodes and machines can be added to this core.

This testbed is considered as a facility and a software system. It provides a high number of nodes to
run experiments, but also some emulation and simulation stu�s to couple the conditions of testing. That
advantage is thus twofold: allowing users to make and study their trials on di�erent platforms under
speci�c conditions and at di�erent places.

The speci�city of this testbed is the access to a large number of experimental environments for the
di�erent needs a user could have. Those environments are :

• Emulation environment

• Resilient Overlay Networks and PlanetLab synergies

• 802.11a/b/g standard

• Software-de�ned radio

• Motes within network

• Simulation environment

These environments make Emulab one of the most user favourite testbeds.

2.4 Testbeds management framework

2.4.1 OMF

The cOntrol and Management Framework (OMF) is a set of software tools to control, measure and
manage networking testbeds. This software system can be used with several heterogeneous systems,
each one consisting of di�erent kinds of devices. That is why this software suite, acting as a platform, is
deployed on testbeds using di�erent kind of hardware, in Australia, Europe, and in the U.S.

20

Initially, OMF was developed for the Orbit wireless testbed, a radio grid that is currently being
developed for the evaluation of next-generation wireless network protocols [OL09]. Since 2007, the OMF
capacity has been extended to consider a wider range of testbeds using di�erent types of networks. These
modi�cations have made OMF to become an open source framework, kept regularly updated by taking
into account new technologies providing support for wired and wireless networks.

The Federico testbed (WILE-E) is managed by this framework. OMF will be described in details in
the dedicated chapter 4.

2.4.2 Castadiva

Castadiva [JHM09], which provides an open-source management tool, is also a testbed composed of two
piles of routers, 21 Linksys routers in total. The operating system of Castadiva is a Linux distribution,
named Open-WRT, running on wireless nodes. This testbed is presented as two stacks of routers that are
piled up. The project is coupled with a simulator, namely NS2, as it is also considered by the creators to
be the widest used software of its category. The testbed is made up so the sole experiment description
is written in TCL and the interpreter will then browse the �le and will be able to run both the testbed
and the NS2 simulator from that single point of input. This is an example of what this thesis wants to
achieve.

The user interface of Castadiva can handle the experiments to be run on the testbed. That Graphic
User Interface (GUI) can control all the testbed features, from de�ning the topology to setting all the
�ows parameters. It allows to de�ne all the parameters step-by-step, and even see the simulation to be
run in real time, like it could be with the NS2 animator nam. That user interface is an open-source GUI,
which can be found at http://castadiva.sourceforge.net. This testbed is a local Spanish testbed.

This project is the closest to the one we will present in our thesis. However, it is important to
notice that the base language is di�erent, which is probably the biggest di�erence in the purpose of our
respective work (eXtended Markup Language (XML) instead of TCL).

2.5 Pros and cons

Considering the simulation, it is probably the cheapest way to carry out experiments at low cost. It is
also easier to run complex scenarios which can include a great number and/or a great variety of devices.
In the sole case where both the simulation parameters and the models used are correct, the simulation
can be considered as realistic.

In order to analyse a protocol (or something else), it is not possible to use its original implementation
in the simulator. This is why developers have to create another implementation, which is quite di�erent
from the original one. Moreover, the cost of certain operations from the real work is not easily quanti�-
able. It is so either because too many factors are coming in the frame, or because the behavior is hard
to model and all those elements are thus di�cult to reproduce.

It is di�cult to know if the models, a reduction and an abstraction of reality, do ignore certain
important aspects of reality. Therefore, for all of these reasons, we noticed that we should not only rely
on a simulator as a proof to validate the good working of the software.

An emulator is an hybrid environment coupling both simulation and real-world environment. The
applications and the protocols are using a real implementation whereas the rest is simulated. It is a good
compromise to reduce the gap with the simulation-related reality.

On the other side with testbeds, it is possible to use realistic parameters without any di�culties. The
running of the given network application can be done in an environment closer to reality and the should-
be conditions. The cost of operations is no more a problem, even if it is dependent on the hardware and
can be measured easily. It is still not the real world but we are getting closer to a realistic behavior.

In counterpart, testbeds happen to be more expensive, harder to con�gure and to manage. To these
disadvantages, we can add the scaling limit of the testbed for which an experiment involving hundreds of
nodes would be almost impossible. An experiment including only a few nodes can not be representative
of reality.

For the reasons mentioned above, it is meaningful to use a combination of both tools and we believe
that this approach should be conducted during research works.

21

http://castadiva.sourceforge.net

2.6 Languages used by testbeds and simulators

2.6.1 OMF language

A Domain-speci�c Language [AvD10] is employed in OMF to describe an experiment and has been called
OMF Experiment Description Language (OEDL).

Ruby language [Rub10] is the basis of OEDL on which some statements and commands needed in
OMF have been added. Since this interpreted and oriented object language is quite 'human-readable',
the grasp of Ruby is easier and does not require much learning from the user to be able to write an
experiment.

2.6.2 Network Simulator 2 language

The network simulator we are using in our experiment scenarios has been mostly written in C++,
and some modules in TCL. All its modules and features required those two languages. However, the
experiment �les required for input are based on the TCL language, and C++ features are added for an
easier code.

It enables easy-written experiments, and that is one reason why the translation from XML to an
experiment �le targeted to NS2 was possible without complex or irresolvable problems.

22

Chapter 3

Network Simulator

This chapter introduces the components used in the NS2 simulator, explains our contribution and the
perspectives in this �eld.

3.1 Introduction

In the network development, it is sometimes desirable to get an accurate idea on how our designed
topology can behave using di�erent protocols in a particular environment. Some tools are available to
run a virtual experiment helping us to record some information about the network �ows and behavior.
One of those tools is NS2, a network simulator. A network simulator is a software able to virtually create
a set of machines and data �ows between them according to a speci�cation received in input in order
to test internet protocols. For instance, NS2 uses TCL-based �les (pronounced "Tickel") describing
the experiment and all the elements to properly build a network. We can de�ne the links between a
sender and receiver along with their bandwidth, rate and packet size. Then we can specify the machines
protocols, the numbers of channels (in wireless) as well as the tra�c model and its speci�cations.

3.2 The components of NS2

In the previous chapter, we introduced the fact that NS2 is a network simulator, and was written in the
TCL programming language. But the major part of the network simulator is written in C++. Those
two languages are used to de�ne the di�erent modules of the simulator.

Basically, the NS simulator software has three major parts that compose it and its extensions.
The �rst part is the routing protocol implementation. The routing protocol implementation is a part

of the whole simulator, but has its own de�nition in it. It is then possible to de�ne several routing
protocols (the basic one being AODV, but it is also feasible to declare the Optimized Link State Routing
protocol (OLSR) or the Destination-Sequenced Distance Vector routing (DSDV) routing protocol) with
each of them having their own directory. So, the routing protocol has its own part in the simulation
organisation. The routing protocol is implemented in C++, as well as the whole main simulator part.

The second part is the experiment description. The simulator allows to describe the experiments in
object-Tool Command Language (oTCL), an object-oriented language (Table 3.1 illustrates the required
TCL code to run an experiment on the NS platform). When NS2 is interpreting the TCL �les, it launches
an event scheduler. This event scheduler is responsible for the tra�c time handling as well as the time
to begin and �nish the events and when to start and stop the experiment.

The link between those two di�erent languages is made by TCL, which will make the linking and
translation from the TCL language (and the experiment objects) to the C++ one as shown on Figure
3.1. This translation is mainly made to reduce the interpretation time of the simulation.

23

TCL code Meaning
Flows de�nition

set trSource(a) X,Y De�nes the source node �ow "a"
with position (X,Y)

set trSink(a) X,Y De�nes the sink node �ow a with
node position (X,Y)

Tra�c de�nition
set sink(k) [new Agent/Loss-
Monitor]

Declares the kth sink according
to a sink model

$ns_attach−agent
$node_($trSink(k)) $sink(k)

Attaches the kth sink function to
the kth sink node

set sourc(k) Tra�c A�ects the Tra�c de�nition to
the kth source node

Nodes de�nition
$ns_change−numifs XY Initializes the number of channel

for the node to XY
$ns_add−channel XZ
$chan_(Y)

Adds the channel number XZ to
be at value Y

set node_(X,Y) [$ns_ node] De�nes a node with position val-
ues (X,Y)

$node_(X,Y) set X_ A Gives the value A to the coordi-
nate X

Nodes de�nition
$ns_at s,t $sourc(k) {start,stop} {Start,Stop} the tra�c source

numbered k at second(s) s,t
$ns_at s,t record $sink(k) $f(l) Start logging the received band-

width at second(s) s,t of kth sink
in the lth log �le

Table 3.1: TCL NS-speci�c code samples

24

Figure 3.1: The linking between C++ and oTCL

Finally, the results from the compilation by the simulator can be read by the nam tool, the network
animator. It gives a graphic representation of the topology and scenario of the experiment.

3.3 Why NS2 ?

The choice of the second version of the simulator in our work instead of the third version is partly based
on arguments from the University Federico II. The main reason is because of the changes made on the
NS experiment �les. The third version enables only C++ �les in input whereas the NS2 one allows TCL
experiment descriptions. The removal of the TCL ability represents a loss for the current user. The TCL
is an interpreted language. We can therefore modify some parameters in real-time during the experiment
whereas it cannot be done in NS3, because the �les have to be compiled. It is thus easier to use the
TCL implementation to add new possibilities and commands to the framework. Besides, TCL has been
basically created for de�ning rapid scripts and easy to use applications, which is what is actually sought
for. Moreover, the NS3 version is only based on the C++ language, which implies more knowledge and
complex experiment description than the previous version.

In addition, the add-on to enable the normal wireless network as well as the wireless mesh network
on NS2 makes it a must in the domain of simulators and a reference for both wired and wireless network.

It is also important to notice that many other works similar to ours, have also considered NS2 for
the translation to a simulator script. This strengthened our mind on the choice of NS2 as a good target
for a simulator, which was imposed anyway.

Professor Canonico, our advisor in Naples, told us they are currently using NS2 for their simulations.
The University basically prefers to keep that version instead of using the new one and making their old
scripts and way of writing experiment obsolete. Our second motivation to use NS2 was the fact that
we were starting from the work of Prof. Canonico, a work made six years ago for the same simulator.
The XML project started at that time already had its set of XML Schema De�nition (XSD) descriptions
and all the elements described were all de�ned properly at that time (a research paper has also been
published [RCG03]).

For all those reasons, we opted for NS2 in the simulator part of this research.

3.4 Related contribution

Related to the NS simulator, we contributed by adding wireless network elements over the already existing
wired elements in the XML / XSD / Extensible Stylesheet Language (XSL) document.

As we will detail it in the following chapter, we created an automatic translation module to convert
the generic experiment description written in XML into two platform-speci�c �les, namely OMF and
NS2. This transformation makes the translation for the wireless part over the existing implemented
wired module possible. It allows from a single experiment description �le to obtain two NS-speci�c
environments that can be run either in a wired network or in the wireless one.

3.5 NS Future

After investigations, we found out that a group of researchers came up with a similar idea of an automatic
translation for the NS3 version, as detailed in [HWP09]. Even if NS2 is widely used for now, with this
new easier way of describing an experiment for the third version of NS, we can suggest that the newest

25

version will become the new reference. The old NS2-speci�c �les will just have to be re-encoded to pass
to the new release, once the wireless is enabled.

26

Chapter 4

The OMF Platform

This chapter presents the tool we mastered to conduct experiments in the real-world network. First,
it presents a brief history of OMF and the utility of such a system for the software validation. It also
discusses the working of the tool and illustrates it with an example, in modelling the di�erent concepts
of OMF. Then the software version used is justi�ed and we show how the database stores information
about equipment. Finally, our contribution is introduced.

4.1 Introduction

OMF (cOntrol and Management Framework) is a testbed cOntrol, Measurement and Management Frame-
work. In other words, OMF is a set of tools to control, measure and manage networking testbeds. This
controller has the function to setup all the devices belonging to the experiments, to carry out experiments
and to gather measurements during the experiment.

Initially, OMF was developed for the Orbit (Open Access Research Testbed for Next-Generation
Wireless Networks) wireless testbed. Orbit is a radio grid that is currently being developed for evaluation
of next-generation wireless network protocols [OL09]. But since 2007, a lot of developments have been
performed and extensions have been added in OMF. These modi�cations have become an open source
framework which provides support for wired and wireless networks.

Currently, this framework can be used with several heterogeneous systems, with a lot of devices.
That is why it is deployed and used on di�erent testbeds in Australia, Europe, and in the U.S.

4.2 Why OMF ?

OMF aims at providing a means of executing experimentations in a real and controlled environment.
New networking technologies are developed thanks to several di�erent factors such as new discoveries in
scienti�c �elds, by the expansion of Internet or with the creation of new end-user services (Video-On-
Demand).

Therefore, we need to evaluate the new networking technologies before they go out of the laboratories
and are included in a commercial product, which may be brought to market. By evaluating a new
technology, researchers want to check the behaviour of the new produced part under speci�c conditions
to ensure that everything is working as it should.

As explained in Section 2.1, researchers have three kinds of relevant solutions to evaluate the behaviour
of the future product, respectively named simulators, emulators and testbeds.

The advantages of the latter can not be ignored because they o�er some features not available in the
others. Implemented applications in a real and controlled environment will provide results really close to
reality. Thus, describing and performing a network experiment in a testbed is the best solution in terms
of realistic behavior. The original software implementation can be exploited and no simplifying model
of the reality is used.

However, testbeds tend to be harder to con�gure and manage. Yet, they are still a simpli�cation as
their size is usually smaller than a real deployment (less than hundred nodes). Such a testing in a real
deployment would require an additional cost.

27

Being given that many testbeds are built only for a speci�c project with limited lifespan (they are
dismantled by the end of the project), the use of long-term dedicated testbeds (not linked to a speci�c
project but rather to an organisation) enables network developers to exploit it for a long period, which
avoids wasting money and resources.

Finally, OMF is an active open-source project which o�ers the functionalities that we can expect from
a testbed management tool. Considering the possibilities of maintaining the framework, the developer
team is available and can be reached without di�culty, which is a great advantage in case of trouble
with the con�guration.

This open-source framework is currently exploited at the University Federico II to manage the WILE-
E testbed.

4.3 OMF components

Figure 4.1 presents the main components of the OMF architecture [cO09a].

Figure 4.1: System Architecture from a User's Perspective Basic functionalities

4.3.1 Node handler aka the 'Experiment Controller'

The node handler acts as a director for the testbed. It is the entity in charge of deploying, controlling
and executing an experiment on behalf of the user who describes it in OEDL (high-level language for
OMF). It cooperates with the aggregate manager to con�gure the resources needed by an experiment.
Once the resources are correctly set up, the node handler can communicate with the Resource Controller
present on each node and send the commands to realize the experiment.

4.3.2 Node agent aka 'Resource Controller'

The node agent, present on each node of a testbed, listens to commands coming from the node handler,
executes them and returns results to it. The node agent is also used to perform some management tasks
on the node like installing a new disk image available on the grid service.

28

4.3.3 Grid service aka 'Aggregate Manager'

The grid service manages all the resources belonging to a testbed. It stores the disk images that can be
loaded on the nodes. The grid service has the capacity to shut-down nodes, to boot them, to provide
information about the inventory of the available resources, to give remote access to the database, etc.
The database stores information about the nodes hardware such as Media Access Control (MAC) address,
location, etc. in order to con�gure them correctly for an experiment.

4.4 Process an OMF experiment

Here is an activity diagram illustrating the processing of an OMF-experiment:

Figure 4.2: OMF process

Activity measure and collect data is carried out during the whole experiment, not only once. Then
the experiment controller can take decisions based on the "on-the-�y" data, such as reducing the bit rate
of a network interface if the error rate is increasing too much.

4.5 Description of an OMF experiment

This section is dedicated to explain to the reader a basic experiment on the testbed platform, which is
the kind of description our tool will create. The experiment we chose as reference example is The basic

29

"Hello World" [cO10a].

Figure 4.3: HelloWorld experiment

Developing the "Hello World" Experiment Description

#
A) Define the ' sender ' group , which has the unique
node [1 , 1] . Nodes in t h i s group w i l l e xecu te the
app l i c a t i o n ' t e s t : proto : sender '
#
defGroup (' source ' , [8 , 1 0 0]) { | node |

node . prototype (" t e s t : proto : udp_sender" , {
' des t inat ionHost ' => ' 192 . 1 6 8 . 0 . 1 0 2 ' ,
' l oca lHost ' => ' 192 . 1 6 8 . 0 . 1 0 0 ' ,
' packetS ize ' => 256 ,
' rate ' => 8192

})
node . net .w0 .mode = "master "

}

This �rst section of the experiment de�nes a source group called source which owns a prototype and
includes the node [8,100]. The coordinates [8,100] correspond to the last two numbers of the IP address
used by OMF to access the node (respectively 192.168.8.100). In order to separate this management
interface from the interface dedicated to the experiment, a di�erent IP address on each node has to be
assigned (respectively 192.168.0.100 for wlan0).

A prototype is a kind of application which is used to generate tra�c �ow. This prototype is de�ned
as well as all its parameters. The source group is set into 'master' mode (acting as an access point). The
element packetSize is expressed in bytes, whereas the element rate is in bits per second (bps).

#
B) Define the ' r e ce i v e r ' group , which has the unique
node [8 , 1 0 2] . Nodes in t h i s group w i l l e xecu te the
app l i c a t i o n ' t e s t : proto : r e ce i v e r '
#
defGroup (' s ink ' , [8 , 1 0 2]) { | node |

node . prototype (" t e s t : proto : udp_receiver " , {
' l oca lHost ' => '192 . 1 68 . 0 . 1 0 2 '

})
node . net .w0 .mode = "managed"

}

30

This second part of the experiment de�nes a sink group which is the source group counterpart. It there-
fore con�gures the node as 'managed' (client, also known as station). The prototype used is sink-speci�c
and has for sole parameter, the localhost IP address of the node [8,102].

#
C) Conf igure the w i r e l e s s i n t e r f a c e s o f A l l the Nodes
invo l v ed in t h i s experiment .
#
al lGroups . net .w0 { |w|

w. type = 'g '
w. channel = "6"
w. e s s i d = " he l l owor ld "
w. ip = "%192.168.0.%y" # the '%' t r i g g e r s some s u b s t i t u t i o n s

}

This third slice declares the common parameters of the wireless interfaces of each node.

#
D) When a l l the nodes are turned On and a l l the
app l i c a t i o n s are i n s t a l l e d and ready , we can
s t a r t to perform the experiment
#
whenAl l In s ta l l ed () { | node |

wait 30
a l lGroups . s t a r tApp l i c a t i o n s
wait 20
a l lGroups . s t opApp l i ca t i on s
wait 10
Experiment .done

}

The last part is used to set up the nodes, to start and to stop the experiment. It is important to note that
the statement stopApplications is strictly necessary to allow OMF to close the experiment and properly
save the traces recorded from the tra�cs.

4.6 Why this version of OMF?

The University Federico II has installed the version 4.0 and will not consider installing the latest one
(5.2). Indeed, the current version properly �ts in with the needs and hardware that the university is
currently owning. The university has two types of nodes and that is the reason why the university is
currently not considering upgrading the installed version. The problem with the most recent version
of OMF is the memory requirements to run the software (the node agent) on the nodes. This new
OMF software now is consuming 25 MB instead of 15 MB with earlier release. The new version could
be installed on the new nodes but not on the old ones! So, because of the lack of memory of the old
nodes, the university prefers to stick to the currently deployed version. That basically means they cannot
support all the new features and the new discovered bugs are not �xed unless if developers patch them
by hand, which would require signi�cant e�ort.

4.7 Database settings

When we �rst had to design our experiments, some problems appeared while no conclusive results
showed up. After investigating our experiments again and again and after checking every single word
of it, we found there was an external problem. Information about the hardware used in the testbed
nodes was missing in the OMF database and performing an experiment without them has a wrong node

31

con�guration as a consequence. Therefore, we added information in the database of OMF to �ll the gap.
The database is a Mysql database, version 5.0.51. The data access was granted with the user name orbit.

%> namur@omf−conso l e :~ $ mysql −u o rb i t −p
%> Enter password :

We then switch to the speci�c schema using

%> mysql> \u inventory
%> Database changed

All the tables are available from now on. The database is currently designed in ten tables. As shown
in the next �gure, the database structure is currently designed such as:

32

Figure 4.4: Structure of the OMF database

INVENTORIES The table lists the time information of the processes used in the environment.

LOCATIONS This table lists the position of the nodes (through the de�nition of coordinates) and
the location of the testbed (thanks to the de�nition of the world location).

33

MOTHERBOARDS This table details the information related to the speci�cation of the mother-
boards, hold by the nodes and associated to the network interfaces.

NODES The table speci�es the characteristics of the nodes along with their con�guration settings.

PXEIMAGES This tables records all the information for the disk images used to be loaded on the
wireless device as an operating system.

TESTBEDS This table enumerates all the information over the testbed and its location.

DEVICE_KINDS, DEVICE_OUIS & DEVICE_TAGS Those tables store information that
is useful only for the inventory. Those tables are optional [cO09c]. On the base of all those information,
we had to add: the MAC addresses of the network interfaces (needed by iptables during the experiments)
and the other basic information about the interface the IP-addresses of the nodes (Ethernet card).

4.8 Our contribution

Our �rst contribution to the OMF part was to �ll the WILE-E database in with the nodes information.
Since the topology depicted in the experiment description can not be applied without that information,
which would result in a wrong node agent con�guration, this phase was needed. Then we designed and
performed new experiments to make sure the testbed was working �ne. That enabled us to discover that
the current version of OMF was too old to support the supposedly working features (implemented in any
newer version). Finally, our last and biggest contribution was to make the XSL to automatically create
the related experiment from the XML.

34

Chapter 5

The automatic generation

This chapter discusses the choice of the XML language to represent a network experiment scenario. It
introduces the concepts and shows that the language is adapted to our needs. In the next point, the
completeness of our approach is developed. The chapter also includes a list of various projects related to
network experiment modelling with which we could compare and improve our tools. After this section,
we present the solution we have built from an existing XML project. Finally, it depicts the di�culties
we had to face and it explains the methodology we followed.

5.1 What is XML?

The XML [Con10] language is based on text-format tags and was created by Dan Connolly. The main
use of XML is to transfer data on the Internet in a generic format between two hosts or servers. In a
similar way than for HTML data is encapsulated into tags (see Figure 5.1). The language is said to be
"extensible" because the user de�nes himself/herself his/her own tags and the entire layout s/he would
like to give to his/her document. The two properties of an XML document are to be well-formed and
validated. The XML has its own way to ensure it is indeed well-formed, but requires an outer agent to
prove its validation.

This document has several ways to be validated. There is the old way of the Document Type
De�nition (DTD), allowing to de�ne the di�erent names and types that can be used in the XML. Or,
there is a more recent version for the validation of XML documents called the XSD schema. The XSD
schema has its de�nition closer to the XML one, which ensures the designer to keep the same set of mind
for constructing his/her validators. The XSD schema is yet way more powerful than its counterpart
DTD, not only because it can de�ne the whole layout of the document and the type of elements in the

Figure 5.1: An example of a listing of cars

35

document, but also because it can make some reference-constraints in the whole document between those
elements as well as it is possible to determine how many times a single element appears.

5.2 XML for this project

Finally, both the XML and the XSD schema are useful to de�ne a set of data (XML) and to ensure
those data are properly de�ned (valid) and well-formed. We decided to use an XML-based description
language rather than a programming language for two reasons:

• The XML code is easy to understand, process, and extend.

• The descriptions in XML are more likely to be interchanged with other projects than scripts in a
given special language.

5.3 XSL

XSL is a set of recommendations to realize some "transformations" on a XML document to produce
another type of document (e.g., Hypertext Markup Language (HTML), XML, text). Indeed, the XSL is
the sheet de�ning the style that will be applied to the XML.

This job is performed by a Extensible Stylesheet Language Transformations (XSLT) processor that
takes a �le which holds the data to translate (XML �le) and a �le with transformations rules (XSL �le
written in XML) and produces a third �le in a speci�ed format. In other words, from the data contained
in the XML, the XSL is able to build a brand new �le from the rules and laws de�ned in the style sheet.

The XSL sheets are mainly used on the Internet to produce HTML document that will be interpreted
by a browser and then displayed.

Although the word "transformation" is not very relevant because the process does not change a �le
into another one (it creates a new �le without any modi�cation to the �rst one), this is this word that
was accepted.

5.4 Completeness of our work

In this section we will discuss the completeness of our approach.
The completeness such as we de�ne it, represents the capacity to consider all the common elements

from the both platforms to be included in our work (see Figure 5.2). There is actually no formal nor
semi-formal way to precisely prove that our work is currently complete and takes into account everything
that should be taken care of.

Figure 5.2: Common part of OMF and NS2 platforms

In order to approach the languages, we �rst had to delimit the parts we wanted to consider in both
OMF and NS2. To do so, we considered the NS2 wireless functionalities as well as the OMF wireless
feature. We started from the work done by Professor Canonico [RCG03], and we assumed his work was
complete and gathered all the concepts to run a experiment (his work was made for a wired environ-
ment). His work provided us with the basics and a starting point to our work. Since we worked on the

36

wireless environment, many elements present in the wired setting are also available in the wireless one.
We just had to add our wireless concepts for NS2 and OMF and remove the wired-speci�c components.
Concerning the OMF platform, we also focused on the wireless features but in this case, we started from
scratch.

We delimited the conceptual elements scope by taking the common part of the sets of concepts NS2
and OMF on which we applied the methodology described in Section 5.13.

The conceivable experiments available from our language are the ones de�ned in the language syntax
constraints, i.e., XSD. If the experiment descriptions respect those restrictions, then our language and
its translation processes can represent and convert them in a valid way for the concerned platforms.

We �nished the process by the elaboration of a representative set of experiments that used most of
the characteristics we implemented in our tool (see Section 5.8). The di�erent steps were:

1. Imagine the experiments using the di�erent representative features

2. Create the well-formed (XML standard) and valid (respecting the XSD speci�cation) XML �les

3. Automatically generate the experiment descriptions runnable on the di�erent platform, thanks to
our tool

4. Run those experiments and �nally check the results compared to the expected ones

37

5.5 Related works

5.5.1 XML Description Language for Web−based Network Simulation

The work [RCG03], created by Professor Roberto Canonico from the University Federico II of Naples, has
the ambition to model a network from a generic description. This work is composed of four distinguishable
elements:

• a description of the topology

• a description of the di�erent tra�c �ows in the experiment

• a description of the events

• a description of the di�erent �les created

The �les created in his work XML Description Language for Web−based Network Simulation (XDLWNS)
are divided in three parts:

• The network description

• The tra�c description

• The simulation commands

Each of those parts implements one or two of the logic parts de�ned above. This work was the �rst
step of ours, since we made some modi�cations in the schema (XSD) provided to us.

5.5.2 LETSQoS scenario generator

The project LETSQoS scenario generator [OHH02], a joint venture from the Darmstadt University of
Technology and the University of Munich was created to model the same type of network (still without
wireless) but using other languages than XML, which is called Graphical Modeling Framework (GMF)
[Ecl10]. It is a graphic model of the network and tends to generate the experiments after designing the
topology and the setup of the parameters. But the creators claimed that if they reach the limits of their
own language, they will then switch to XML.

5.5.3 Modeling Computer Networks for Emulation

This scienti�c report [DHR] gives some techniques to describe an emulation scenario de�ning the network
topology, link parameters and di�erent ways to represent dynamic changes. The authors propose as well
a description language based on XML as possible solution to a future automatic generation of description
�le for an emulator.

We compared this work to ours taking into account the di�erences we observed to improve our project.

5.5.4 Another Modeling language

Another Modeling Language (ANML) [Kid02] is a language created for describing communication net-
work models. A model can simply be the representation of a network topology with speci�c properties.
For example, a model could be three networks de�ning some nodes linked together inside each network
and those networks are interconnected by some links with speci�c bandwidth. These models have to be
compatible with some ANML schemas, like the DTD for XML, de�ned by the application developers or
by the users themselves.

ANML schema language is used to de�ne the structure: it speci�es which components and attributes
can exist in the model. These schemas describe the links, components that can be hold in the model,
the associated attributes (properties) having to be used in the model and the composition rules of what
we are allowed to model.

Furthermore, ANML language is based on Data Manipulation Language (DML), which is the base of
Graphic Modeling Language (GML), used in LETSQoS scenario generator [OHH02]) and in XML. The
syntax of ANML comes from DML, while the logical structure comes from XML. The ANML language

38

is formally de�ned thanks to an Extended Backus-Naur Form (EBNF) grammar [Gar10] represented by
a set of rules called productions. Regarding the schema language, it draws of the DTD. Finally, the
way they considered the representation of a topology could be interesting and is adapted for large scale
networks. However, by comparison to our approach, it seems to be a bit more complicated but they have
the advantages that they can reuse several times the same component de�ned only once (e.g., a router
with a proc_delay = 0.000005, while in our work we have to copy/paste the same code). Moreover the
dynamic part is not considered in their project.

As we were searching for an easy and complete way to model an experiment, we have chosen to take
the XML language which allowed us to de�ne what we wanted.

5.5.5 Conclusion

There may have been many other ways of modeling a network in a programming language, a scripting
language or a graphical language, but XML by its own is probably the best one to model and describe
a design as general as possible. It is that quality we want to stress, to motivate the use of XML in our
own project.

5.6 Analysis and comparison with other projects

In analysing other works and projects, we got some comparison elements with XDLWNS project, which
enabled us to add or transforms some features in it. In this way, we selected the best ideas to include in
our work (based od XDLWNS).

5.6.1 LETSQoS scenario generator

The LETSQoS scenario generator project [OHH02] aims to develop a mean to automatically generate
scenarios for simulation (e.g., with NS2) or for real-world experiments on a testbed which represents the
same goal as ours. However, the major di�erences reside in the facts that:

• they do not manage wireless topologies

• they do not manage events and trigger actions

• they are using a language quite di�erent from XML

• topology design is made by using a graphical interface (GUI)
Due to the available time in our project, this goal has a low priority. We are considering that user
will have to �ll in the XML �le manually.

General topology description

The authors of the LETSQoS scenario generator have described in details the syntax used in their topol-
ogy �le. Thanks to this information, we had the possibility to compare the common concepts between
LETQoS and XDLWNS projects, that allows us to improve our modeling and o�ers the possibility to
evaluate both approaches. The enumerated elements below (Table 5.1) have been considered on their
presence irrespective of their implementation form.

In LETSQoS scenario generator, the authors chose to use GML without being sure that was the best
way. Maybe using XML as a �le format would have been a better choice. If GML parsing or validation
becomes a bottleneck, then they might switch to XML but they did not.

So, it con�rms that our XML-based approach seems to be a good idea. Nevertheless, this language,
being more generic and verbose, needs a more complex translation process because we use a lot of tags
and attributes to express the same information than in GML, a more speci�c one, which is suitable for
modeling network graphs in a very straightforward way.

Conclusion: The same way is considered to represent the network in both projects. We have noticed
some slight di�erences that can be changed easily.

39

LETSQoS scenario generator Table reference
Node 5.2
Link 5.3

CBR �ow 5.4
Tra�c 5.5
Packet 5.6

Comment Implemented but not detailed in this document
Creator Not implemented: Information added

Table 5.1: Topology information

LETSQoS scenario generator XDLWNS project
ID Implemented
Type Implemented (e.g., Border Router or End Sys-

tem attributes)
Properties (e.g., RSVP capable, properties
"Queuing = RED")

Partially implemented (e.g., RSVP capable
not present)

Position (x,y) Implemented
Label (additional) Not implemented: Information added (e.g: ex-

amples of name: "source","relay",...). In our
case, this information is mandatory

Tra�c: Information about the tra�c coming
from this node. It is expressed by a simple
string. (e.g., tra�c "50%WWW, 50% IPTel")

Partially implemented but on a di�erent level.
Tra�c at application layer cannot be ex-
pressed but can be formulated through a lower
abstraction level (e.g., CBR �ow generator,
exponential,...)

Table 5.2: Node information

LETSQoS scenario generator XDLWNS project
Direction (link unidirectional or bidirectional) Not implemented: information added (e.g.,

full duplex or not)
From/To Not implemented but the name "From/To"

in LETSQoS scenario generator is ambigu-
ous: in the case of unidirectional link, a node
is both source and destination. It is not
relevant in wireless environment to consider
mono-directional link. If no link is speci�ed
in wireless, then the nodes in the transmission
range of each other using the same channel
can communicate together. The unique case
we de�ne links is to restrict the network com-
munication to these sole links and to prevent
any other data transmission.

Label (additional) Not implemented and not useful
Properties (e.g., delay model,...) Implemented to specify a static value for delay

and bandwidth. In the case we keep informa-
tion about wired link, we should consider the
case using a dynamic delay model.

Bandwidth Implemented in the properties

Table 5.3: Link information

40

LETSQoS scenario generator XDLWNS project
Start Time Implemented
End Time Implemented
Interval between two Packets Implemented
Target node, target port Implemented

Table 5.4: CBR �ow

LETSQoS scenario generator XDLWNS project
Period Used with 'Burst Time', and 'idle
Time'

Number of Bytes sent Not available. We con-
sider rather a rate property

Source Node, port Implemented
Target Node, port Implemented

Table 5.5: Tra�c intensity layer

Tra�c layer

In this part, we analyze tra�c description by taking into account di�erent levels of abstraction to express
IP tra�c. Those levels are characterized by the layers presented below. This comparison enables us to
check if our approach based on the work XDLWNS is �exible enough to express di�erent types of tra�c.

Application Mix Layer : The mix of the di�erent applications running on one node is described. An
edge node could, e.g., be characterized as giving access to 100 users generating web tra�c, 50
File Transfert protocol (FTP) users and 150 voice-over-IP sessions. As mentioned above, it is not
implemented at this abstraction level. However, it might be a good idea to express tra�c this way.

Session Layer : A complete session consisting of possibly more than one �ow is described. A web
session, for example, is characterized by user parameters and the characteristics of the reading
times (times between the download of two web pages). It is never used.

Flow Layer : The �ow layer, a higher and far more abstract layer than the packet and intensity layers,
describes individual �ows.

• Flow Type User Data Protocol (UDP) / Transmission Control Protocol (TCP)

• Flow Parameters

Table 5.4 lists parameters describing a Constant Bit Rate (CBR) �ow.

Tra�c Intensity Layer : The tra�c intensity layer (Table 5.5) can be seen as an aggregation of several
packets that fall in one period (e.g., one second). The time is split into equal length periods and
tra�c is characterized by the amount of data sent in these periods.

Packet Layer :Tra�c on the packet layer (Table 5.6) is described by specifying the properties of indi-
vidual packets.

LETSQoS scenario generator XDLWNS project
Packet Generation Time Not available
Packet Size Implemented
Source Node, source port Implemented
Target Node, source port Implemented

Table 5.6: Packet layer

41

Tra�c models

A tra�c model describes how the tra�c of one type is generated. Most of the relevant tra�c models of
the project are synthetic models: they use probability distributions like exponential, Poisson, Pareto to
generate tra�c on one (or more) tra�c layer(s).

In NS2 and in OMF, synthetic tra�c model like exponential, expo_on-o�, can be used, while the
Pareto and the Poisson models can not be represented because of their availability on only one platform.

Conclusion

Although the application mix layer and session layer are never used in our approach, the tra�c for
three others layers are used in XDLWNS with some di�erences. Depending on the research needs, the
implementation of the application mix layer would be a good idea. Both LETSQoS and XDLWNS do
not present any wireless concept.

5.6.2 Modeling Computer Networks for Emulation

A scienti�c report entitled Modeling Computer Networks for Emulation written by Daniel Herrscher
[DHR] has as main objective to provide a way to express a scenario in an appropriate description language
to generate automatically an experiment. The authors analyzed the requirements for an emulation
scenario description language and proposed a possible solution.

Our work looks for the best way to express network experiments for testbeds and simulators in a
generic language. The work accomplished by Professor R. Canonico in his paper [RCG03] concerns only
simulators while D. Herrscher deals with emulators, which are a bit di�erent (Refer to Chapter 2). Al-
though those works have been done to be used by di�erent tools, their goals are quite similar (i.e. generic
description of experirments). That is why it is relevant to compare them and to keep the best ideas of
both. Since the information required by a simulator is di�erent from the one used by an emulator (see
Section 2.5), we made a comparison based on this knowledge.

"The scenario speci�cation has to describe both the network topology and certain
link properties. The topology description concept has to include point-to-point con-
nections as well as multipoint-connections like LANs. Regarding the connections, all
properties a�ecting the network performance in any way have to be modeled". [DHR]
� Introduction

This is what both Mr. Canonico and Mr. Herrscher represented. They indeed made the same kind
of research on links between nodes.

These two works do not treat the wireless component of a network and we have added this functionality
in our tool.

"Since in real networks, some properties will change over time, a realistic network
model has to re�ect such changes as well. We propose a modeling language that
includes these parameters and o�ers concepts for dynamic changes." [DHR] � Intro-
duction

This is one of the most interesting parts of the document. Indeed, XDLWNS made six years ago did
not manage the changing properties over time and therefore lacks this important part. In the following
part, we analyzed the tips the paper proposes to model and checked how we could implement those ideas
in the continuation of XDLWNS project.

Parameters to include in a network description Here is a set of recommended parameters for
modeling.

"Bandwidth Limitation, Delay (propagation delay, serialization delay, queuing delay),
packet loss must be included in a network description." [DHR] � Parameters Summary

42

For a point-to-point or multipoint link, the author recommends the following set of parameters to be
modeled:

• Bandwidth limitation

� maximum bandwidth (bit/s)

� queue length (bytes or packets)

� type of bandwidth sharing (simplex, half-duplex, or duplex)

• Delay

� �xed delay (ms)

� variable delay (stochastic function leading to a millisecond value)

• Packet loss

� probability value

� additional burst loss model

XDLWNS takes into account those ones: the queue type that speci�es the length, the technique and
the RED con�guration, the maximum bandwidth, the �xed delay and the variable delay used in tra�c
pattern. However, the packet loss is not considered but we could add this information either on a link
or in a tra�c generator.

The dynamic parameters Everything concerning the variable delay components always has to be
modeled in a dynamic model. More generally, all the variable parameters are supposed to be part of the
dynamic section. Some of those parameters could be:

• the packet loss (especially in wireless networks).

• the bandwidth limitation (may also vary, considering the adaptive bandwidth in 802.11b).

• the propagation delay (can change if a communication partner is moving).

It is important to note that events are not taken into account in the XDLWNS project. So we had
to �nd how to express them. Both Mr. Herrscher and Mr. Canonico decided to use the XML-language
as a network topology generic descriptor.

Possibilities to model tra�c and dynamic behavior

We analysed how the tra�c can be represented in an adequate way. Here are several models using two
di�erent approaches:

Time�based At certain time, an update of a property is done.

Packet�based It describes the behavior of each packet (e.g., medium access).

Time�based: the table model the table consists of tuples with triggers and actions. An action is
formed to update some parameters or some dynamic models. We used often time values or packet counts
as triggered conditions.

This kind of representation can be useful to represent an update of bit rate of a wireless link if there
are too many errors, or simply the start/stop application action at a given time (see [DHR] � Dynamic
Parameters Table).

<bandwidth type = " ha l f−duplex ">
<tab l e base="ms">

<act i on at="0"> <value >11000</value> </act ion>
<act i on at="2000"> <value >5500</value> </act ion>
<act i on at="4000"> <value >2000</value> </act ion>
<act i on at="8000"> <value >1000</value> </act ion>

43

Figure 5.3: Markow state models gives the probability to switch of state

<ac t i on at="10000"> <value>0</value> </act ion>
</table>

</bandwidth>

Legend:

Attribute type of bandwidth tag takes its value in the set of simplex, half-duplex, full-duplex, that
represents the kind of the link.

Attribute base of table tag takes its value in the set of ms, s. It is the unit of time used by the action
tag.

Attribute at in the action tag is the time trigger to change the property of something.

This table is like a time-line: after 4 seconds, the property will vary from 5500 to 2000.

Packet�based: Gaussian distribution it is appropriate to represent stochastic functions that ex-
plain how a value of a variable is updated by giving the properties of the variation (an expected value
and the mean deviation).

It is useful to model the variation of the bandwidth of a wireless node moving away from an ac-
cess point as it is a simulated environment (see [DHR] � Dynamic Parameters Gaussian Distribution).
Conversely, we do not need to do the same for a wireless testbed because this variation is intrinsic to
reality.

<var iable_delay>
<gauss ian base=" packets " mean="5" dev i a t i on="1" />

</var iable_delay>

Packet�based: Markov state models this model, more powerful than the previous one, gives the
probability to switch from a state into another one. It is particularly relevant to express something like
a loss model or change of bandwidth over time.

We can imagine using this representation in combination of a table model in which each value is
replaced by a Markov state model (at a certain time, a di�erent state model will be used).

Figure 5.3 and the following example (see [DHR] � Dynamic Parameters Markov State Model) show
a way to express a Markov state model about the burst loss behavior. Of course, other models could be
considered for a packet-based representation.

<lo s s >
<markov i n i t i a l="normal" base=" packets ">

<s t a t e id="normal">
<value >0.00001</value>
<t r a n s i t i o n id=" burst " p r obab i l i t y=" 0.000001 "/>

</state>
<s t a t e id=" burst ">

<value>1</value>
<t r a n s i t i o n id="normal" p r obab i l i t y=" 0 .1 " />

</state>
</markov>

</lo s s >

44

Our idea is to create a dynamic part, which would be a dedicated section in an experiment description.
This section includes the actions that happen at di�erent scheduled times (i.e., the time when the �rst
log is recorded, the time to shut down a speci�c network interface, etc.) according to the will of the
experimenter and the other actions that cannot be foreseen (i.e., the transmission rate which is adjusted
based on error rate during the experiment).

This section could also be called the events subdivision because it determines the moment when an
action should occur and it gathers all the special events that can take place in the experiment.

45

5.7 Our XSD solution

This section presents our solution to implement the wireless functionality. The documents in annex .1
will detail the elements we added, removed or modi�ed from XDLWNS.

All the following elements in the next point are common to NS2 and OMF.

5.7.1 Result of XSD modi�cations

Because a schema is more readable and comprehensible than a source code, we details our project thanks
to a graphical representation. We focus on the most important XML tags we used by explaining the
semantic of them.

This graphical representation comes from the XML editor Altova XMLSpy [Alt10] which is a very good
tool to edit and develop XML, XSD and XSLT. In the following �gures, we adopted this representation:

Figure 5.4: Sequence of element(s) Figure 5.5: Choice among the children

Figure 5.6: Add comments/notes to each
element

Figure 5.7: Adding multiplicities on di�erent kinds
of element

Figure 5.8: Di�erent kind of optional ele-
ment (multiplicity = 0..1)

Figure 5.9: Di�erent kinds of element that cannot
be instantiated

The description of an experiment is organized in three main parts:

networkDescription holds the network topology description

tra�c describes the con�guration of the �ows that will happen during the experiment

simulationCommand contains all the events and planned actions during the conduct of the experiment

Attribute xmlName has to contain the name of the XML �le. This information is needed because
the XSLT processor cannot access other data than those in the XML tree.

Figure 5.11 details the network Description part.
Element as is the Autonomous System that will contain some nodes. If the user is not familiar with
this concept, s/he can put its id attribute to 1 and give a name that would represent a set of nodes.
Element topologyModel holds all the information about the description on the wireless nodes, as shown
in the next picture.

46

Figure 5.10: Scenario element and its children

Figure 5.12 concerns the information about a node, which represents a device in the real world.
Attribute id : unique number used as an identi�er in the whole experiment
Attribute name : unique name in the whole experiment
Attributes x,y : the identi�er of the node in the testbed and in the network simulator
Attributes posX,posY : the node absolute position in the infrastructure
Attribute nomadicity : the value of the random motion of the related node
Element cfgNetInterface : contains information about the con�guration of the network interfaces
Attribute mode : values are "ad-hoc", "master" or "managed"
Attribute type : values are "a", "b" or "g" ("n" not yet available on the platforms)
Attribute channel : value of the radio channel (e.g., 1 to 11 for 802.11g - 802.11 only available though)
Attribute essid : name of the wireless connection
Attribute device : represents the network interface (w0 or w1)

Figure 5.13 shows the routing part of the network experiment.
Element routingDaemon : information about the routing protocol/static routes used by a speci�c node.
Element aodv : by specifying a network interface, AODV daemon will be executed on the node.

Figure 5.14 explains the protocol used on the node. We kept the layer 4 information which is exploited
to con�gure the protocol type in both platforms.

• If a node is a tra�c generator (source), then it has to specify the transport protocol used (UDP /
TCP). For a node, id attribute of UDP or TCP elements is a unique number (inside the protocol
element). However, in the same experiment two di�erent nodes could have the same identi�er.

• If a node is a receiver (sink), then it has to use the Null element

• If a node is only a relay, then let the protocol element empty

Let us take an example of an experiment composed by three nodes in which the �rst one (1) is both a
source (UDP) and a sink. The second one (2) is only a sink and the last one is set up as a source (UDP).
In this case, the con�guration will be:

Node (1) = <udp id="1"> <Null id="2">
Node (2) = <Null id="1">
Node (3) = <udp id="1">

Figure 5.15 describes the tra�c �ow produced on each source node.
Element pattern : represents a �ow between a source and a destination.
Attribute id : identi�es a particular pattern in the whole experiment, that is why this number has to be
unique.
Element src, dst : hold information to identify nodes. In case of need, it will be possible to extend the

47

destination element to take in account a broadcast sender.

Figure 5.16 focus on the tra�c pattern describing the �ows.
Elements src and dst : contain enough information to retrieve the IP address of a network interface of
a node.
Attribute nodeId : number which has to be the unique identi�er of a node.
Attribute netInterface : the network interface (w0,w1,...). Currently WILE-E nodes are equipped with
only two interfaces.
Element tra�cModel : the child of the element pattern and is enough generic to be implemented in
di�erent ways in NS2 and in OMF.
At this moment, only CBR element (in UDP) is implemented in OMF and in NS2.

Figures 5.17 and 5.18 explain respectively the parameters required for a CBR �ow generator and for
a Expo_On_O� generator.
Attribute packetSizeUnit : has to take a value in the set "bits, Kbit, Mbit"
Attribute rateUnit : has to take a value in the set "bps, Kbps, Mbps"
Attribute intervalUnit : the value between two CBR �ows

Figure 5.19 illustrates the commands to control the simulation.
Element simulationCommand : contains all the time-related components.
Attributes startTime and stopTime : refer to the start time / stop time of an experiment. In OMF,
the user has not to be worried about the period of time needed by the devices initialization because the
startTime attribute is the moment from which all the devices are already set up and ready to start the
real "experiment" (not the initialization).
Attributes startLog and stopLog : are speci�c to NS2 and refers to the time of beginning / ending the
log process for the simulator.
Element actions : kind of table in which each line represents an action that is triggered on a speci�c
time. At this moment we manage the start/stop tra�c but due to bugs in OMF and non implementation
in NS2, downInterface and upInterface cannot be used.
Attribute idTra�c : number pointing out a speci�c pattern. at attribute speci�es the time to accomplish
the action.
Attribute nodeId : unique number and play the role of an node identi�er.
Attribute netInterface : refers to the network interface (w0 or w1)

5.8 Performed experiments

We �nally performed �ve experiments to check the validity of our work. Those experiments have been
selected because they are exploiting di�erent OMF features like simple �ow, multi-�ows with multiple
senders and multiple receivers. We think they positively represent the common set of features o�ered
by the OMF platform and the NS2 simulator. Our tool makes it possible to express these kinds of
experiments. Those experiments can be found in their XML format in the appendix, Section .5

48

Experiment:
CBR UDP �ow from 105 to 104

Result: successful (all the packets reached the destination)

Experiment:
CBR UDP �ow from 105 to 101
CBR UDP �ow from 100 to 102

Result: successful (all the packets reached the destination)

49

Experiment:
CBR UDP �ow from 105 to 100
CBR UDP �ow from 100 to 102

Result: successful (all the packets reached the destination)

Experiment:
CBR UDP �ow from 105 to 104
CBR UDP �ow from 101 to 102
CBR UDP �ow from 102 to 100

Result: successful (all the packets reached the destination)

50

Experiment:
CBR UDP �ow from 105 to 100
CBR UDP �ow from 101 to 100
CBR UDP �ow from 102 to 100
CBR UDP �ow from 104 to 100

Result: FAILED Only 3 �ows reached the destination.
Some �ows did not have been logged into the OMF database.

51

Figure 5.11: Network description element and its children

52

Figure 5.12: Node element and its children

53

Figure 5.13: Routing element and its children

54

Figure 5.14: Protocol element and its children

55

Figure 5.15: Tra�c element and its children

56

Figure 5.16: Pattern element and its children

57

Figure 5.17: CBR element and its children
Figure 5.18: Expo_on_o� element and its chil-
dren

58

Figure 5.19: simulationCommand element and its children

59

5.9 OMF di�culties

We had to deal with an important problem during the whole project concerning OMF: the lack of doc-
umentation. The documentation provided on the website [cO09d] was incomplete and was sometimes
not up to date. It therefore took a lot of time to master all the characteristics used in OMF. The best
way to proceed, after reading the basics, consisted in reading a great number of existing experiments
found on the website. Unfortunately, due to the particular structure used to present this information,
which is based on the open source media Wiki, this task was not very obvious. Indeed, the information
related to a given topic was scattered all over the website. So, the major drawback is that there is not a
single place where the experiments are stored. Moreover, as a consequence of the point above, the wiki
structure does not enable to organize the website like a tree (with a root and a hierarchy). It makes the
navigation quite random and we never know what the next page will be like. Additionally, the provided
examples were really straightforward and the attempt to make more complex experiments was a tricky
task. It is di�cult to �nd information as we do not know what it is possible to do or not.

We also faced a second problem of some importance, which is the source of most of the errors obtained.
The OMF version running on WILE-E is not the most recent one and is considered to be deprecated
from di�erent points of view. As we will see, some errors are caused because some features are not yet
implemented or due the fact that some bugs were discovered and subsequently corrected.

Here is a listing of problems or errors encountered during our experimentations with the OMF plat-
form.

5.9.1 Output process failed

While trying to test some of our experiment scenarios, the result data were missing. The output process
did not work properly and it may result in di�erent situations:

• A socket bind error with no database �le containing the experiment data (Space Quest 3 (SQ3)
�le, the OMF database �le) generated.

• SQ3 database �le is created, but there was no data in the receiver part ("in" table).

• SQ3 database �le is created, but there was no data neither in the receiver part ("in" table), nor in
the sender part ("out" table).

Solution: Once one gets incomplete results �les or if those �les are not created at all, we recommend
to kill the service. It will start up again automatically. To do this, we had to run the following command
line:

sudo k i l l a l l oml2−s e r v e r

5.9.2 Infernal process loop

If the problem above did not happen, an other was causing pain using 100% of the processor. The process
oml2-server went mad and the OMF platform was therefore unavailable.

Solution: There is no real solution to resolve the problem. So, to continue to use the testbed, we
had to run the next command:

sudo k i l l a l l oml2−s e r v e r

Oml2-server kill consequence

After killing the oml2-server process, we had to wait a few minutes before the next experiment execution.
Here is the console output:

60

INFO i n i t : NodeHandler Vers ion 4 . 4 . 0 (1921)
INFO i n i t : Experiment ID : wi le−e_2009_12_16_09_20_24
FATAL s e r v i c e_ca l l : Exception : Serv i ceExcept ion (http : / /192 . 1 68 . 8 . 2 00 : 5 022/

oml2/ s t a r t ? id=wi l e e&domain=wile−e)
INFO ExecApp : App l i ca t ion ' commServer ' f i n i s h e d
INFO run : Experiment wi le−e_2009_12_16_09_20_24 f i n i s h e d a f t e r 0 :15

5.9.3 Version obsolescence problems

The following problems are due to the fact that the OMF installed version is obsolete, as the version is
4.4.0 whereas the latest version is 5.2.

Generator glitch

While trying to run some experiments, we discovered some recurrent errors. Those errors are either from
the generator Distributed Internet Tra�c Generator (DITG) or from the prototypes that con�gure it.
Because of the lack of time at the end of the internship traineeship, we failed to determining what the
exact answer to that problem is. As an alternative, we also used the second version of Orbit Tra�c
Generator (OTG), but some other errors arose. However, it seems that OTG2 is working for simple
experiments. We contacted the OMF developers for an experiment that was supposed to run properly,
and they told us our version of OMF was deprecated. So, we somehow believe that the generator has its
part of responsibility in the generated errors as well as the prototypes have.

Interface shut-down error

We tried to turn o� a wireless interface during an experiment with the command found in an experiment
(mpath-experiment.rb [cMFO10]) on the OMF website. That is why we made some experiments using
the following command

group (' re lay2 ') . net .w0 . down = 1

as found on the website. Each time, we got the same execution error:

ERROR EXECUTION_ERROR: Execution Error on node : 'n_8_101 ' − Error Message :
CONFIGURE' with ' net /w0/down ' Value to s e t parameter to

After checking the log �les, it happened that 'CONFIGURE' with `net.w0.down' is received properly on
the Node Agent, but for some reasons it cannot be executed. This might be a bug that was �xed since
then. We messaged the OMF developers, who have tested the same experiment in their testbed (OMF
release 5.2) and it worked �ne.

Add route to topology

Before creating experiments with dynamic routing protocols, in the beginning of our project, we wanted
to add some static routes on each node to forward tra�c to the destination. This could be done by using
this experiment line [cO10c]:

net .w0 . route ({ : op => 'add ' , : net => ' 1 0 . 1 . 0 . 5 ' , : gw => ' 1 0 . 1 . 0 . 2 ' , : mask =>
' 2 5 5 . 2 5 5 . 0 . 0 ' })

It happened that no error was generated but after experimenting some tests, we saw that no new route was
added to the Linux routing table of each node. This might be a feature implemented in the latest OMF
version. We tackled this problem by manually putting the following command in the OMF experiment
description:

group (' relay2_1 ') . exec (' route ' , [' add ' , '− host ' , ' 1 0 . 1 . 0 . 5 ' , 'gw ' ,
' 1 0 . 1 . 0 . 2 ' , ' metric ' , ' 2 '])

61

Problem encountered with parameters modi�cation during execution

While making some experiments in our early steps of understanding the OMF platform, we were asked to
create an experiment which has to modify the bit rate of a wireless card during the experiment. We made
that experiment using the few hints we read from the OMF website and tested what we had made up (the
prototype used was "OTG2"). Although after several attempts without any reported problems and even
if the experiment was correctly designed, the result did not come out. We messaged the OMF developers
to know what was wrong with our experiment. It turned out that the experiment was properly designed
but the version of OMF was too old to handle the problem. The current version is 4.4.0. The version
that can deal with the new addings was the next one, which unfortunately cannot be set up due to the
lack of nodes RAM memory. Because of the old version, some experiments were made impossible as the
feature is not implemented in the current version installed so far. However, we alleviate the problem by
correcting the version in adding the code from the trunks.

Node Application failure

One of the problems we had to deal with was the application run by the nodes crashing for no reason.
The sole hypothesis we had to explain was the non up-to-date version of the platform installed.

This is the console output:

INFO exp : Request from Experiment Sc r ip t : Wait for 2 s
INFO exp : Request from Experiment Sc r ip t : Wait for 8 s
INFO exp : Request from Experiment Sc r ip t : Wait for 30 s
ERROR NodeApp : ERROR: −−udp : l o (unknown opt ion)
ERROR NodeApp : Usage : otr2 [−h|−−help [component]] [−−udp : loca l_host=[name]]
ERROR NodeApp : [−−udp : loca l_port=INT] [−−udp : dst_host=[name]] [−−udp : dst_port=INT]
ERROR NodeApp : [−p|−−pro toco l udp] [−g|−−s ink udp | nu l l] [−− f low : id=INT]
ERROR NodeApp : [−d|−−debug−l e v e l FIXED] [− l |−− l o g f i l e FIXED] [−v|−−ve r s i on] [−−exit]
ERROR NodeApp : [−−pause] [−−resume]
INFO exp : − Stop a l l the app l i c a t i on s
INFO exp : Request from Experiment Sc r ip t : Wait for 20 s
ERROR EXECUTION_ERROR: Execution Error on node : 'n_8_100 ' − Error Message : 'STDIN' with ' app : otr2 exit ' −

Error while wr i t ing to standard−IN o f app l i c a t i on ' app : otr2 ' (l i k e l y caused by a a c a l l to ' sendMessage '
or an update to a dynamic property)

INFO exp : −−−−−− Now Stop the experiment
INFO Experiment : DONE!
So lut ion : reboot a l l the nodes
INFO exp : − Start a l l the app l i c a t i on s
INFO exp : Request from Experiment Sc r ip t : Wait for 45 s
ERROR NodeApp : ERROR: −−cb (unknown opt ion)
ERROR NodeApp : Usage : otg2 [−h|−−help [component]] [−−udp : loca l_host=[name]]
ERROR NodeApp : [−−udp : loca l_port=INT] [−−udp : dst_host=[name]] [−−udp : dst_port=INT]
ERROR NodeApp : [−−udp : broadcast=on | o f f] [−−udp : nonblock=on | o f f] [−−cbr : s i z e=bytes]
ERROR NodeApp : [−−cbr : i n t e r v a l=msec] [−−cbr : ra t e=kbps] [−p|−−pro toco l udp | nu l l]
ERROR NodeApp : [−g|−−generator cbr | expo] [−− f low : id=INT] [−d|−−debug−l e v e l FIXED]
ERROR NodeApp : [− l |−− l o g f i l e FIXED] [−v|−−ve r s i on] [−−exit] [−−pause] [−−resume]
ERROR NodeApp : Exception : Socket Bind Error
ERROR NodeApp : Exception : Socket Bind Error
ERROR NodeApp : ERROR: −−udp : loca l_por (unknown opt ion)
ERROR NodeApp : ERROR: −−udp : l o c (unknown option)
ERROR NodeApp : Usage : otr2 [−h|−−help [component]] [−−udp : loca l_host=[name]]

5.10 Remarks

This section compiled all miscellaneous kinds of useful information.

5.10.1 Node con�guration

• OLSR
To run OLSR [OLS10] on the recent nodes, since they are set up with only Read-Only partitions,
a symbolic link that redirects a lock �le into /tmp directory has to be created by the following
commands :

remountrw
l o c a l h o s t : / e t c# ln −s /tmp/ o l s r d . conf . l o c k o l s r d . conf . l o c k
remountro

• Filtering Rules
On the oldest nodes : Remove the �ltering rules (Executed automatically in the XSL �les).

62

5.10.2 Test of the addLink feature

The functionality addLink is used in the de�nition of the topology in OMF. After de�ning which nodes
are participating in the experiment we are creating, we then declare the links between those nodes. The
addLink feature has the particularity to remove all the other links that are not explicitly de�ned between
the �rst node of the addLink and all the others. Even though the addLink has that particularity, it is
not properly detailed in the documentation made by the OMF developers on their website [cO10b].

Adds a l i n k between nodes x and y and con f i g u r e s i t with the
c h a r a c t e r i s t i c s de f i ned in the ' spec ' .

' spec ' i s a hash with the f o l l ow i n g va l i d keys { : r a t e , : per , : delay , :
asymmetric }

: r a t e − s e t the l ink ' s r a t e in Mbps
: per − s e t the l ink ' s packet e r r o r ra t e in percent (0 . 3 for 30%)
: de lay − s e t the l ink ' s de lay in ms
: asymmetric − s e t i f t h i s l i n k i s asymmetric or not (' true ' or ' false ')

Note : Only ' asymmetric ' has an e f f e c t on the l ink , a t r a f f i c shaping
component i s

cu r r en t l y being added to OMF in order to implement the other
a t t r i b u t e s .

Simple example of an addLink use:

defTopology (' mainTopology ') { | topo |
n1 −> n2
myNodes = {

"n1" => " [8 , 1 0 0] " ,
"n2" => " [8 , 1 0 1] " ,

}
topo . addNodes (myNodes)
topo . addLink ("n1" , "n2")

}

This example declares two nodes, node n1 and node n2 and creates a link from the node n1 to the node
n2.

Available features not implemented
By using the current version (4.4.0) of OMF, some available features are still not implemented yet in the
source code. However, no error is generated. It just does not produce absolutely any e�ect. This is the
case for the link property provided in the addLink feature (describe above): 'per', 'rate', 'values' are not
implemented yet.

5.10.3 Node location in NS2

To perform a common experiment with the same topology on OMF and NS2, the virtual static placement
of the nodes in the simulator has to be similar to this of the real nodes. Indeed, their location is based
on the con�guration of the laboratory 'Informatica e Systemistica - Network lab'. The reference point
we choose, is on the top left corner when you enter into the laboratory. Then, in order to give a position
to the other nodes, the squares on the roof (size: 50x50 cm) helped to determine the relative placement
from the reference point to any other node.

The schema of the laboratory looks like the following plan:

63

Figure 5.20: Structure of the network laboratory in Naples

5.11 XSLT processor

As previously explained, the transformation of XML documents into HTML, text or others formats
is accomplished through the execution of an XSLT processor on this document. XSL �les, which are
written in the XML language, de�ned the rules to apply when the processor meets some speci�c tags in
the source document.

Figure 5.21: Example of a XSL part

Since classical XSLT processors implement only the World Wide Web Consortium (W3C) speci�ca-
tions, the choice in the set of available actions seems to be quite restrictive in speci�c cases. W3C being
a great standard, it takes a while to add new concepts and functionalities in the XML standards.

In order to o�er a less restrictive data �lling in the XML �le and to simplify the post-processing step
for OMF, we have to work on sorted data. However, the XML standard provides only the display of
these sorted values and no further processing is possible.

That is why many manufacturers have compensated this issue by adding new extensions in their
XSLT processors while remaining compatible with the standard set of W3C. In our case, thanks to an
intermediate variable which stores the result of the sort command in a result tree fragment (Rich Text
Format (RTF)), we can convert the sorted RTF to a node-set on which we can process information as if
we were in the real XML tree.

To support these extensions, the XSLT processor has to be EXSLT-aware. To the best of our
knowledge, we can �nd the Saxon processor (professional/enterprise edition, not the free home edition)
[oS10] and the free Xalan processor [xal10] both are built in Java. We �nally used the latter.

Figure 5.22: Example sorted child

64

First data are sorted in chronological order and then in alphabetical order.
Second step consisted in putting these results in a variable ('sortedChildren').

Figure 5.23: Example sorted child

Third step was the conversion of the variable, which contained a tree, to a node-set. This way, we
were able to work on data sorted by time and name [XML10].

5.12 XSL Transformation process

To enable the transformation, �rst download the XSLT Xalan processor (xalan−j_2_7_1−bin-2jars.tar.gz)
on the website from the Apache foundation
http://xml.apache.org/xalan-j/downloads.html.
This processor, written in Java, has the big advantage to be multi-platforms and to be free. Moreover,
it can be run by command lines, like a script. Then unzip the �le in the directory of your choice. You
will have to �rst import some libraries in your class path before running the XSLT processor.

• Under Windows, you can create an automatic script which takes 3 arguments:

1. xml �le to transform

2. txt �le for the output

3. xsl �le for the transformation rules

java −c l a s spa th D:\ xalan−j_2_7_1\xalan . j a r ;D: \ xalan−j_2_7_1\ xerces Impl . j a r ;
D: \ xalan−j_2_7_1\xmlapis .

j a r ;D: \ xalan−j_2_7_1\ s e r i a l i z e r . j a r ;D: \ xalan−j_2_7_1\ samples \ xalansamples .
j a r

org . apache . xalan . x s l t . Process −IN %1 −OUT %2 −XSL %3

• Under Linux: you can create an automatic script which takes as argument:

java −j a r xalan . j a r −IN myXML. xml −XSL myXSL. x s l −OUT myResult . txt

65

5.13 Methodology

No scienti�c methodology has been produced or de�ned on how to add the consideration of a new network
tool to a generic description language. Therefore, we established and proposed a methodology in four
steps to include the management of this tool.

• Establish a �rst structure of a network description (if the generic network description does not
exist yet); For example, de�ne a "topology" part, "tra�c" parts and "event" parts.

• Considering a concept c and a set of the existing concepts soc exploited in the XSD three of our
tool. We analyse a new network tool and we discover a concept c. Should we include the concept
c in soc (set of existing concepts)?

� If c has no default value and c /∈ soc : add this concept in the XSD with no default value;

� If c has no default value and c ∈ soc with no default value in soc: c is already de�ned and
mandatory in the XSD;

� If c has no default value and c ∈ soc with a default value in soc : c is already de�ned in the
XSD. Drop the default value already de�ned of this concept to force the user to specify a new
one;

� If c has a default value and c /∈ soc : do not add c. The default value of the network tools
will be used.

� If c has a default value and c ∈ soc with no default value in soc : c is already de�ned using
no default value. Keep this state to force the user to specify a new one;

� If c has a default value and c ∈ soc with a default value in soc : c is already de�ned using a
default value. If the two default values are the same, keep the default value to this concept c,
else remove this default value to force the user to specify a new one.

• Create the XSL translation;

• Generate and test to remove all the errors.

The backwards compatibility due to these changes is not maintained since our tool has been designed
solely to always generate experience descriptions for both platforms. Indeed, for the proper functioning
of experiments on the two platforms, it is compulsory to specify the parameters needed for each tool.
For example, in order to generate two experiment descriptions from a single scenario, as OMF is using
real interface, the IP-addresses of network interfaces are required while this concept is absent in NS2. If
we had chosen to make the speci�c settings not mandatory, then the user would not have known whether
s/he had or not to give a value to these parameters in order to perform an experiment.

Nevertheless, if the user still wants to use our tool to generate a description for only one platform,
s/he has to �ll in all the required items, even if they are not used by the destination platform.

In the case of the IP-address example, it might be possible to construct a method for the automatic
assignment of IP-addresses to the nodes depending on the network topology described. We have restricted
the functionalities compared to the objective that we set out initially (see Section 1.1.1).

5.14 Contribution

Our contribution was to reshape the XSD (and thus, the XML) to handle the wireless network. This
means to add elements, remove the unused ones and update some of them to make an attribute more
explicit for its use. We have done many tests on WILE-E to discover some bugs that we have taken into
account. The tool we created allows designing experiments for NS2 and OMF and was tested in Naples.
Finally we proposed a methodology to add new network platform to an existing network description tool.

66

Chapter 6

Limits and Perspectives

In this chapter, we analyze the limits of our tool and consider the possible perspectives of this project.

From a technical point of view (the automatic generation of experience), our tool is currently targeted
for the platforms NS2 and OMF. The user describes a scenario of experiment in XML language, and our
tool automatically converts it to make the scenario usable on di�erent platforms. Other languages may
be included following the methodology we have described (see Section 5.13).

It is quite easy to add new features like a routing algorithm or a new type of tra�c generator. The
XML representation was indeed well designed for this purpose and to this kind of case. In fact, taking
into account AODV has required only minor changes in our implementation.

Moreover, even if our tool is divided into several parts (XML, XSD and XSL), it does not use di�erent
programming languages but only one which is based on XML, reducing therefore the e�ort of learning.

Currently, the XML translator does not have a graphic interface, the user has to �ll the �elds provided
in by hand. From a cognitive point of view, a GUI would improve the usability and the ease of our tool,
while reducing the number of possible errors due to manual handling.

As seen in Section .1.4, in our tool the temporal events have been encoded in an identical way to the
one adopted by NS2 in contrast to OMF. The latter requires a computation in order to express these
events. It turns out that the complexity in the XSL to support a new type of events increases with the
number of kinds of events you add.

What our tool does not: if the user describes a scenario incorrectly (e.g., using a network card that
does not exist in reality) using a syntax that complies with the structures authorized by our language,
then there will be no error in our application as it only plays the role of compiler and ignores how the
operating platforms work.

Concerning the results of an experiment, a logical extension of our tool would be the establishment of
an automatic comparison of results generated by the platforms. We should consider both output formats
and their con�guration to make the comparison possible, which is far from being obvious.

Another interesting perspective might help to overcome the problem of backward compatibility (see
Section 5.13) of our tools. So far, our approach takes into account the common characteristics of all
platforms, with the exception of speci�c binding parameters of each of them.
Two points have attracted our attention:
Firstly, the user wishing to create an experiment for a single platform should specify certain irrelevant
�elds (e.g., IP-address for the simulator). Secondly, the speci�c features of the platform have been re-
duced.

Our idea, which we brie�y introduce below, could counteract these obstacles. In a few words, it
consists in starting from feature diagrams to generate XSD �les tailored to the user's request (Figure
6.1).

The concept of feature diagrams is quite easy to understand: it is a visual notation which lists all
the con�guration possibilities of a product (it might be something else) in the form of an "and-or" tree
starting from a general root. The features are represented as the nodes of this tree and each of them
must be either mandatory (�lled circle) or optional (empty circle). We can also specify that only one

67

child node can be instantiated by using alternatives.
Feature diagrams are currently exploited, for instance, in the mobile phone product lines to list all

possible con�gurations of the devices.

Figure 6.1: A feature diagram denotes a combination of features [Wei10]

In our case, one could imagine that it describes the structures allowed in our XML scenario of
experiment description. For example, if the user wishes to only use NS2, then the sub-tree of the node
representing this concept will list all the mandatory and optional features to use. Similarly, if the user
wishes to use a combination of NS2 and OMF, the allowing structures will be listed in other tree nodes.
Figure 6.2 shows an example of what such an approach could look like.

Figure 6.2: Idea of our approach

Once this diagram is modelled, the feature diagram will be translated into XSD �les re�ecting the
authorized features, used in XML.

Although this idea is still incipient, we think it could solve the problem of backward compatibility
requiring an additional step in the development of our tool.

From a societal point of view, we could assert that too often, only the simulators are used to validate
and study the applications developed by researchers. As we have seen, these simulators are an abstraction
of reality that just model some aspects that seem important to the simulator designers.

But reality is much more complex than what can be said and seen from it. This simpli�ed complexity
in favour of a better control of the world by the humans may truncate the results. Admittedly, simulations
are for instance useful to study phenomena not directly accessible to humans (e.g., black holes in outer
space), but one must really be aware that the results are obtained from a very simpli�ed replica of the
real world. Indeed, designers know from the world only the part they can perceive from it but the real
world can not be reduced to these few observations. So, the implementation of the simulator contains
only what man knows about the world, not the world as it is and as complex as it can be.

Therefore, based on this principle, the results obtained by the simulation must be questioned and
validated by other means closer to reality. Our project in the context of this goal, thanks to the capacity

68

of using a testbed, can produce some results closer to reality. However, we are aware that the real tests
are performed in laboratories and the real conditions are not always reproduced.

69

Part II

Reputation Protocol

70

Chapter 7

State of the art

With the presentation of wireless networks, this chapter provides the foundations for understanding the
background of our second goal.

7.1 Types of networks

7.1.1 Mesh Network

The Mesh Network is a network topology without any central hierarchy wherein the hosts are intercon-
nected. This topology looks like a �shing net, unlike the wireless classical centralized solutions in which
nodes are connected with a single base-station.

To reach its destination peer, the tra�c can jump from node to node until it succeeds in reaching it.
To make the multiple hops possible, each node acts as an independent router, while keeping its feature
of independence with respect for the other nodes: a node in Mesh Network does not care whether it is
interconnected with another network or not.

As shown on the Figure 7.1, there are at least two di�erent paths to reach each node of this infras-
tructure. As a result, the network may typically be very reliable, as there is often more than one way
between a source and a destination.

Figure 7.1: Example of mesh network

The great reliability o�ered by the decentralised architecture (avoid the single point of failure) is a
"self-healing" feature. The network can still operate when one node breaks down or a connection goes
bad because the tra�c takes simply another available path.

Most of the time, mesh networks will be exploited for a wireless connectivity as explained in the next
point.

7.1.2 Wireless Mesh Network

Wireless Mesh Network (WMN) [JS, IFAab04] is a wireless network based on a mesh topology (see
previous section 7.1.1). WMN delivers wireless services by more and more deployments on campus,

71

metropolitan area, company networking and neighborhood Internet access, etc. This technology, directly
in competition with broadband ones like cable, xDigital Subscriber Line (DSL), Internet satellite access,
is a non-negligible alternative because of its advantages. It allows deploying a low-cost solution in areas
where wired connections would be too expensive to make up.

The success of this technology is probably depending of several factors. The possibility to use low cost
conventional devices like PDAs, access points to connect or extend the existing network makes CapEx
(Capital Expenditure) very low. Moreover the technology can be set up incrementally by adding nodes
progressively, at the desired frequency. A mesh network is reliable and o�ers redundancy and by adding
some new nodes, the reliability and the network coverage grow up.

WMNs are made up from mesh routers and mesh clients, where mesh routers have a minimal mobility
and form the backbone. Figure 7.2 shows a situation wherein users (small squares, in grey) provide
Internet access with an important coverage area through the use of seven gateways (large rectangles, in
red) to connect to the Internet.

Figure 7.2: wireless mesh network deployed in a city [JS]

Mesh clients, usually laptops, cell phones, desktops, PDA's, or smartphones can be either stationary
or mobile. Depending of the type of WMN (Infrastructure/Backbone WMNs, Client WMNs or Hybrid
WMNs), client themselves can provide peer-to-peer networks among them without the need of any mesh
router at the condition that they act as routers to forward tra�c. Figure 7.3 shows an example of hybrid
WMNs : mesh clients can communicate among them directly through their own network (at the bottom
of the picture) without using the mesh router, or they can use the existing �xed infrastructure in order
to access the Internet or also other mesh clients.

72

Figure 7.3: Hybrid wireless mesh network [JS]

The mesh routers, the second type of components, are often �xed nodes and provide the backbone
infrastructure by means of routing protocols. Most of the time, the tra�c from and to the gateways
(often connected to Internet) is forwarded by these devices.

If mesh routers have the bridging functions, then the conventional clients equipped with the same
radio technology as the routers can directly communicate with them, otherwise they have to use a wired
technology. To avoid interferences and improve bandwidth at the router level, one type of radio is usually
used for the infrastructure and another type for the clients. These networks can be interconnected with
other ones like Internet or IEEE 802.11 thanks to the help of gateways and bridging functions in mesh
routers.

Concerning the reliability of WMNs, if a node can no longer operate, it does not prevent the rest of
the group from communicating together by using new network paths which have been calculated to send
tra�c through one or more intermediate nodes. The self−healing as well as the set up of a new node
recon�gures the network node in a fully automatic way.

The wireless mesh network is a specialization of the ad-hoc network and thus routing protocols
from the latter can be exploited in a WMN deployment. It o�ers a more structured and permanent
environment than in ad-hoc where the communications are generally user to user and not �xed to any
kind of infrastructure. Due to the high interconnectivity of the components, the routing protocol will
often use a complex process to compute its routing table.

7.1.3 Routing protocol in WMN

Since the WMN is a type of ad-hoc network, it does not own routing protocols and uses those from
ad-hoc networks. For greater e�ciency, they need to be adapted to ensure performance and safety.

The mobile routing protocols are generally divided into two classes according to their way of discov-
ering the network and establishing their routing table: proactive and reactive.

A proactive protocol knows all the network topology at any time, i.e., which node is present and
how to reach it. This protocol creates and maintains a path to all hosts on the network. On the one
hand, this principle enables sending tra�c in a fairly fast way since it has all the necessary information
concerning the destination. On the other hand, it requires a high bandwidth and a lot of information
from the routing table. The proactive routing protocols include: OLSR, DSDV.

A reactive protocol does not know the network topology, i.e., it must decide which way to take to
access a distant node before carrying tra�c to this node. Therefore, this protocol adds an entry in the

73

routing table when it must contact this node and after a time of inactivity, the entry is deleted. This
principle avoids spending bandwidth needlessly by the fact that it transfers only the minimal information
strictly necessary to reach a node. Indeed, its routing table has no super�uous entries, which will perhaps
never be used.

Unfortunately, this technique introduces a latency of several seconds before the transmission of data,
time during which the resolution of the route and its adding in the routing table takes place. Reactive
routing protocols include: AODV, Dynamic Source Routing (DSR).

7.2 Network security requirements

7.2.1 Contextualization

Wireless networks must deal with several types of attack di�erent from the ones in wired environments.
Due to the over-the-air propagation of packets, the tra�c is not only received by the destination, but
also by the other wireless devices within the transmission range. A malicious user, who can get an access
quite easily to this infrastructure, has a lot of opportunities to compromise it.

In a wireless network, with the current existing security mechanisms, it is possible to achieve the
goals of Con�dentiality, Integrity, Availability (CIA). This means protecting information and information
systems from unauthorized access, use, disclosure, disruption, modi�cation or destruction [Uni].

However, denials of service aimed at compromising the network infrastructure by preventing it from
functioning properly still threaten the availability of services. An attacker who wants to break down
or to corrupt its target will focus on important assets of the wireless network. Black hole and gray
hole attacks, concepts coming from a survey of secure wireless ad-hoc routing [HP04], must be cited as
examples regarding their dangerousness aimed at considerably reducing or interrupting the availability
of a network service.

A black hole is viewed like the space-phenomenon which absorbs entities around it: a routing black
hole on a malicious node attracts tra�c, by distributing forged routing information, with the intention
of dropping all the data packets. Since a lot of routing protocols base their metrics on a hop count to
reach the destination, the malicious mechanism could be used to announce to other nodes its knowledge
of very short distance routes to the nodes of the network.

Coming from this principle, a compromised device can be considered as grey hole if it only drops
some speci�c packets. For instance, only routing packets would be forwarded and data packets would be
discarded.

Among the available solutions (see [Oli07]) some require cooperation between all the components
of a wireless environment to tackle these problems. Nodes collaborate by exchanging messages in an
uninterrupted way and simultaneously they focus on the detection of suspicious behavior and actions to
be taken to reduce the malicious activities.

7.2.2 Secure Routing Protocol for Wireless Mesh Networks

The problems of security concerns lead to the design of new trust-based modules, where the observation
of neighbors' behavior contributes to attribute a value of trust to nodes, and thus their reliability index.
Two of those mechanisms are Watchdog and Pathrater.

Watchdog is the module taking care of checking the successful packet forwarding from a node to
another one. To act so, thanks to the over the air propagation of the data, this mechanism is capable
to detect malicious behavior from nodes by listening on the same channel as its neighbors (every single
node taking part in the network topology is set up with the same channel). It checks if its neighbor
has correctly forwarded the data packets or not. It also detects the sel�sh behaviors without signi�cant
overhead. However, it requires a high storage, and itself needs to be secured against spoo�ng attacks
which may badly a�ect the reputation systems depending on it. We will use this module as an extension
to the reputation mechanism implemented in the routing protocol AODV.

Pathrater is a module combining the Watchdog information principle with the link reliability infor-
mation. Nodes are accessible according to the metrics computed from Watchdog data. It thus refuses
forwarding through nodes with misbehavior performance.

Those two modules are used to elaborate new theories e.g., REFACING or Cooperation Of Nodes:
Fairness In Dynamic Ad-hoc NeTworks (CONFIDANT) [Oli07], to tackle the misbehavior a node could

74

have. This theory states the use of local and global reputations associated to a forwarding node behavior.
This reputation model lengthens the hop-count-based metrics of the path which uses the malicious node,
according to the trust into this node. As a consequence, the path through this node acting in a deviant
way, will never be used.

75

Chapter 8

AODV-REX: A secure routing protocol

This chapter presents the routing protocol (in our case, AODV) and the extension to that routing pro-
tocol. This extension is inspired from the Ph.D. thesis of Francesco Oliviero.

We will �rst detail the routing protocol principle in order to understand how the underlying crafted
reputation protocol works. However, it is important to keep in mind that the choice of the routing
protocol is of no importance since the original idea was to prove that the reputation protocol is e�ectively
correct. We chose AODV to be able to test the extension on the same routing protocol on simulators
and testbeds.

The routing protocol is based on the collaboration nodes, and therefore keeps information of others
behavior. This is the local information and global information. This system is based on the REFACING
reputation model [Oli07], exploiting the local and global reputation.

Let us �rst introduce the routing principles and its basic principle.

8.1 AODV

8.1.1 Description

AODV is a routing protocol for mobile ad-hoc networking. Although initially scheduled for ad-hoc
networks, it has been used in WMN's.

AODV allows wireless devices to exchange data by transmitting these ones through their neighbors
if they cannot directly communicate. In this way, tra�c is routed to the destination with the help of
intermediate devices that support the rest of the routing process.

The mechanism exploited by AODV enables to save bandwidth: on the one hand, each node uses
the information from the packet it captures, even without having made a request, to update its routing
parameters. On the other hand, it creates and maintains a route only if the routing process needs it (see
reactive protocol in Section 7.1.3).

Nevertheless, since the node does not know in advance the path to a destination where no data were
delivered for a moment, a mechanism for creating a new route, taking a certain time, is required.

AODV also manages the fact that nodes do not contain any loops in their routing tables. This
prevents from storing incorrect paths and spreading them through the network.

8.1.2 Principle

We will explain the main concepts of AODV as de�ned in the RFC3561 [Gro03], in order to provide
the necessary tools to be able to understand Ad-hoc On-Demand Distance Vector routing - Uppsala
University (AODV-UU) (from Uppsala University), a C language implementation of AODV, which is
presented in the next section.

AODV de�nes four types of UDP control messages, each containing routing information for a speci�c role:
Route REQuest (RREQ) - RREP - Route ERRor (RERR) - Route REPly ACKnowledge (RREP-ACK).

76

RREQ Message generated for discovering a path to a destination when no route is known.

RREP Message generated by the destination or intermediate node as an answer to a RREQ message.
It holds enough information to create a route to the destination.

RERR Error message which is sent to inform that a destination is unreachable.

RREP-ACK Message generated if an explicit request for an acknowledgement has been made. It
follows the reception of a RREP message.

A neighbor is a node with which it is possible to communicate directly. At regular intervals, each
node sends a hello message by broadcast. This one is a RREP message in which the contents of some
�elds are �lled in order to distinguish them from normal RREP packets.

Figure 8.1: Where is node D?

RREQ A node wants to send a message to another one which is not a neighbor and does not know a
route to it. Then to discover a new route, it broadcasts a RREQ message. On Figure 8.1, the network
topology is built with four wireless nodes using the same transmission channel. The circle represents the
communication range of their wireless materials. Therefore, each host can only transmit data directly to
its neighbors.

77

Figure 8.2: Route discovery process - node B generates a RREQ message

There are numerous �elds in the message (see Section 5.1 from RFC3561 [Gro03]) but we will only
discuss about the relevant ones which are the most important to understand the mechanism. The RREQ
message contains information about the source, the destination, IP packet lifetime and a unique identi�er
which associated with the address of the sender can di�erentiate each RREQ across the network. On
the example of Figure 8.2, node B wants to communicate with node D which is not a neighbor. It then
begins the route discovery process by broadcasting a RREQ message.

After sending the route request, node B expects a RREP response within a certain delay. If the
associated timer expires, it will generate a new RREQ with a longer packet lifetime and a new identi�er
number.

78

Figure 8.3: Node C has a fresh route to node D - node C generates a RREP message

Following the reception of a RREQ message, a node can react in three ways. In the �rst case, it
does not know the requested destination and rebroadcasts this message to its neighbors. This RREQ is
forwarded until its lifetime (Time To Live (TTL)) is less than 1. In the second case, either the node itself
is the destination or is only an intermediate node with a route up-to-date to the destination. It then
generates a RREP to the originator of the RREQ packet. In the last case by comparing the sequence
numbers (presented in next point), the node knows the a path to the destination is not fresh enough and
thus rebroadcasts this message to its neigbors.

RREP In �gure 8.3, node C has a route to node D. It informs node B that it has the route and also
tells node D that it will soon receive tra�c. As node A does not know how to reach the requested
destination it forwards the RREQ message by broadcast.

79

Figure 8.4: Node B compares the sequence number of its routing table with the one present in the RREP
message

Sequence numbers They are used to compare the freshness of locally maintained information about
their neighbors, with the actual state of their neighbors. At each emission of a control message from
one of the four types, the host will increment a local sequence number. Each wireless device records the
sequence number of the nodes with which they are interacting.

Since a higher sequence number means a fresher route, the node knows that it has to refresh the
information in the routing table. How does it work? On reception of a control message, it compares the
sequence number encapsulated in the packet with the last sequence number it knows about these nodes
and updates its information if needed.

In Figure 8.4, node C that did not have a fresh route enough to node D has rebroadcasted the
RREQ. Node D, directly concerned by this message, generates a RREP to node B. All the nodes that
intercept this message update their routing tables if necessary (i.e., if the sequence number they know
for a destination is inferior to the one speci�ed in the AODV control message).

RERR An error message is generated to inform that a destination is not or no more reachable by
using a route that would pass through the node at the origin of the message.

A broadcast of a RERR message can occur in di�erent situations.

• A node detects that it can no longer communicate with a neighbor. It then invalidates all its routes
using this node. The unreachable host is also reported by a RERR message broadcasted to the
predecessors, i.e., those nodes which are using the node that detect the link break, to reach the
unreachable destination.

A node that receives a RERR for at-least one of these routes that will be invalidated, marks as
invalid all its paths stating that node and forwards the AODV control message to its predecessor(s).

• A node receives a data packet that it is supposed to forward to a destination that it does not know.
So, the sender thinks wrongly that the correct route to the destination passes through that node.
Therefore, the node that got this data packet informs the sender by an error message.

In both cases, when a node receives such an error message, it removes all the routes that mention
this node from its routing table. It then propagates this message to its predecessor(s).

80

8.2 Reputation EXtension - Mechanisms used by AODV-REX

In this part, we will consider the reputation mechanism principles, its propagation setting and how to
calculate the reputation values. This is mainly a reformulation based on the article A Reputation-based
Metric for Secure Routing in Wireless Mesh Networks [OR07].

First of all, let us introduce the important notions to understand the reputation model.
The goal of the mechanism is to detect a malicious node that does not correctly forward the tra�c

which goes through it and prevent future data from following this path. The reputation, which is
expressed by a number between 0 and 1, indicates how much a node can be trusted by others through
a history of its behavior when forwarding data packets. The reputation mechanism is based on three
reputation values: the local reputation, the global reputation and the current reputation spread in the
RREQ packets.

1. The local reputation is the one held by a given node about its neighbors. In this given node,
each of its neighbor(s) is associated with a di�erent local reputation, representing the reliability
with which those nodes successfully forward the packet sent to them. The Watchdog module is in
charge of updating this reputation.

2. The global reputation is based on the observations by the network nodes about a given one. It
is a merging of all the reputations that the neighbors of this given node have calculated about it.

3. The current reputation, propagated through the network, is a merge of both local and global
reputations that can be exploited to determine the real behavior of a node. In other words, it
represents how much a node is trusted by the whole network plus how much each node trust that
given node (only when that node is a neighbor). By merging the local and global reputations, this
mechanism prevents a malicious node from precisely identifying which of its neighbors has begun
to propagate a bad reputation about its behavior. By doing so, the deviant does not know how to
react to stop this propagation.

8.2.1 Local reputation

We have to keep mind that each node has its own Watchdog module. The local reputation is kept
updated by that module which ensures the smooth transfer of data carried by the neighboring node is
done through the mechanism explained in the diagram of Figure 8.5.

81

Figure 8.5: Watchdog process on node n1 (UML sequence diagram)

In our scenario, the node n1 wants to send a data packet to the node n3 which is not a direct neighbor.
Following its routing table, it sends this message to the node n2, which is the next hop in the previously
established route. The sender also starts a timer for a delay 'd' for this packet.

At the reception, the node n2 can react in di�erent ways:

• n2 processes this message and forwards it to n3 without altering the content. Node n1 receives
a copy of this message (due to wave propagation in a wireless environment), compares this with
the previously sent packet to n2, con�rms that it is the same content and assigns a positive local
reputation to n2.

• n2 processes this message, alters the content and forwards it. Node n1 receives a copy of this mes-
sage (due to the waves propagation in a wireless environment), compares this with the previously
sent packet to n2, detects the changes of content and then assigns a negative local reputation to
n2.

• n2 processes this message but it never forwards it (or at least, n1 does not hear it). The timer at
node n1 expires and it then assigns a negative local reputation to n2.

Watchdog updates a local reputation list containing the result of the last forwarded data packets.
Thanks to this mechanism, we have a history for each neighbor at our disposal.

8.2.2 Global reputation and packet reputation

Upon receiving a message encapsulating a reputation value, a global reputation is calculated from this
value and some local informations and this value is added to a second list containing a history of the last
global reputations obtained about a node.

Just before sending a message, the reputation process takes place: by the combination of the two
previous lists, a value representing the current reputation of a node, is calculated and then in turn
encapsulated in the message for sending.

82

The last step of the reputation extension principles modi�es the basic metrics (hop count) of the
routing table to force data to avoid a detected malicious path: the current reputation is translated into
a number which is added to the normal hop count. A bad trust results in a high number, while a good
one tends to 0.

A direct consequence of this will be the lengthening of the path if it goes through unreliable nodes.
As the aim is to keep the choice of the shortest path, the paths including malicious nodes would not

be considered as relevant (the path becoming too long).
By doing so, the process would "transform" the principle of the shortest path �rst (the source wants

to reach the destination in a minimum number of hops) into the most trustworthy shortest path �rst
(the source wants its packet to be handled by reliable nodes only). The underlying idea is to keep every
node in the graph and not remove them from the moment they act deviously, especially if one of them
is the single point to access the rest of the network.

8.2.3 Reputation model and Watchdog module

This reputation protocol is using the REFACING mechanism along with the Watchdog module.
This reputation extension is based on a new theory, REFACING that is organised in four layers. Let

us detail those di�erent layers.
(1) The �rst layer has a role of determining the existence of a relation between the nodes. If two nodes
can interact, information from this layer will be provided to the second layer.
(2) The second layer will quantify the degree of interaction between the nodes. However, this level of
communication between nodes has still no e�ect on the value of trust given to them.
(3) The third layer will then take care of the con�dence nodes can have about each other. The trust
value will determine how the nodes have interacted between themselves.
(4) Finally, the fourth layer will take care of the behavior history. It will observe how the interactions
occurred in the past, and attribute a positive value if the node is reliable, and a negative one otherwise.
All those interaction values will then be computed to give a general trust value about the other nodes. The
sub-layers bring information about how the interaction can be treated. The more nodes are interacting,
the more we can suppose they can trust each other.
In a practical way, this model includes the local reputation and the global reputation provided by the
other nodes of the network to determine the reputation value spread between the nodes. This is done
by the cooperation of the third and fourth layer.

8.2.4 Reputation calculation

The dissemination of reputation is done through the AODV process and is therefore based on its routing
messages to propagate the reputation data. The following formulas are extracted from the thesis and
scienti�c article written by Francesco Oliviero [Oli07] [OR07].

Let us introduce the notation describing the reputation calculation:

• RA[B](i) refers to the reputation of node B at node A at the ith iteration

• RG
A[C](i) represents the global reputation of C at node A at the ith iteration

• R̄L
A[B] is the average of local reputation of B at node A

• R̄G
A[B] stands for the average of the global reputation of B at node A

• R̄ω
A[B] represents the evaluation of reputation data received from node A about node B

The reputation computation starts when a node tries to send data and broadcasts the RREQ mes-
sage. This message contains the reputation information which will be spread and mixed up with the local
and global reputation every node stores about every other nodes. Let us de�ne a scenario to illustrate
the reputation calculation. Node C requests a route and therefore sends a RREQ message. Node B re-
ceives that packet and because it cannot reply to the request, inserts the reputation data it holds about
node C and rebroadcasts the message. When node A receives the packet from node B and if node A is
reputation-compliant (in our example, it is), node A will check the packet if it contains reputation data.
If so, node A will take care to check the validity of this information, in case a deviant node would like

83

to ruin another node reputation (e.g., the malicious node B could transmit a falsi�ed reputation about
the node C). Node A will therefore weight this information (1) then compare it with the last reputation
it knows about node C (2).

Rω
B [C](i) = RA[B](i− 1) ∗RB [C](i) (1)

∆CAB
= |RG

A[C](i− 1)−Rω
B [C](i)| (2)

After the check of validity, the global reputation of node C can be updated with

RG
A[C](i) = 1

2 (1 + ∆CAB
) ∗RG

A[C](i− 1) + 1
2 (1−∆CAB

) ∗Rω
B [C](i) (3)

When a node is removed from topology, it can be reintegrated at the condition it has proven to have
a recent not objectionable behavior. The local reputation (from direct neighbors observation) and global
reputation are making this reintegration possible by the way of a Weighted Moving Average (ωlr) with

R̄x
A[B] = ωlr

∑N−1
i=1 (1− ωlr)

i−1
Rx

A[B](i) + (1− ωlr)N−1 ∗Rx
A[B](N) where x ∈ {G,L} (4)

the average value of node B at node A weighted with its behavior history.

However, when a RREQ message is received or a Watchdog timer expires because the neighbor has
not forwarded the packet in the given delay, we then need to update the reputation of that neighbor.
The reputation is calculated with (4) and the variation from the last reputation value with (2). The
formula is thus

RA[B](i) = R̄A[B](i− 1) + ∆BA
(i− 1) (5)

To evaluate the ∆BA
value, we will compare the distance between R̄L

A[B] and R̄G
A[B] to check if both

values assent to each other with

∆LG
BA

= |R̄L
A[B]− R̄G

A[B]| (6)

The determination of ∆LG
BA

is determined in agreement with a given threshold. If the ∆LG
BA

is lower
than this threshold, global and local reputation agree. If it is not, they disagree . Let us see how to
compute the value computing ∆BA

(7.a) ∆BA
= Γ ∗ (1− R̄A[B]) ∗ (1−∆LG

BA
)

2 � Agreement

(7.b) ∆BA
= −Γ ∗ R̄A[B] ∗ ∆LG

BA

2 � Disagreement

A negative value is calculated in case of disagreement to reduce the reputation value, as node B shows
a misbehavior. The ∆ term is

84

Γ = α ∗RA[B] + β ∗ ID + ω ∗ V R
A [B] (8)

where

• α+ β + ω = 1 (9)

• α = 0.6;β = 0.2;ω = 0.2 (10)

• ID is the Interaction Degree between two nodes

• V R
A [B] is the Variance of reputation of node B at node A

Once the new reputation value is calculated, the average reputation and the variance (as described
above) have to be updated with the formulas :

V R
A [B] =

N∗V R
A [B](i−1)+(RA[B](i)−R̄A[B](i))∗(RA[B](i)−R̄A[B](i−1))

N+1 (11)

R̄A[B](i) = R̄A[B](i− 1) + RA[B](i)−R̄A[B](i−1)
N+1 (12)

8.2.5 Consequence on metrics and path selection

The path metrics in the network routing is based on the number of hops between a given node and its
destination: this is the shortest path �rst route selection. The formula (5) is the base of the new metric
calculation. The hop count in AODV is determined through the message RREP. The new solution will
attribute a new metric model, switching from the shortest path �rst to the most shorted trustworthy path
�rst. In the old model, when a RREP message is received, the hop count is always incremented by one.
In the new model, it tends to increment the hop count according to the trust a node has in its neighbors.
The more faith it can have in a neighbor, the lower the hop count value is. In the opposite case, the less
con�dence it has in a neighbor, the greater the value. This way, if a RREP message sequence number
from node b is greater than a the one from node a when received at node c, while the reputation of node
b issmaller than a then the selected path will the one passing though b.

The hop count is calculated thanks to a Reputation Metric

RM ĀB = b(1−RA [B]) ∗NDc (13)

Figure 8.6:

where

• RA[B] is the reputation of node B at node A

• ND is the Network Diameter, the maximum network diameter de�ned by the AODV protocol

Depending on the RA[B] value, the Reputation Metric (13) one is either equal to the maximum network
diameter (RA[B] = 0) or is equal to 0 if the neighbor reputation is maximal.

The approach based on the increment of the distance by the Reputation Metric (13) in the RREP
message ensures an intrinsic security of the protocol: by adopting this mechanism a subverted node
cannot modify the distance, since the RM is added by downstream node. Such node might modify the
distance in the RREP message received, but anyway its reputation is re�ected in the RM computed by
downstream nodes. [OR07]

85

Chapter 9

AODV-FUUREX

After explaining the main concepts of AODV, we will consider an open-source AODV routing protocol
implementation on which we have grafted the reputation mechanism developed by F. Olivierio. We
then give some explanations which we consider relevant to mention about FUUREX and the reputation
theory.

9.1 AODV-UU

AODV-UU [Nor10a] is an implementation of the Ad hoc On-demand Distance Vector routing protocol
which is compliant with the IETF RFC 3561 and was created in Sweden at the Uppsala University,
hence the UU-su�x.

Initially coded in C language to be run under Linux, AODV-UU is implemented as a user-space
daemon with kernel components. A port to the simulator NS2 has been accomplished in recent releases
of the implementation, and thus contains some C++ code. The version used in our project is the 0.9.6,
published on 2010-05-29 on the SourceForge website [Nor10b].

If the reader wishes to bene�t from implementation details, s/he can see the original source code
in which we have added many comments respecting the Doxygen syntax [Hee10], or s/he can directly
consult the documentation generated by Doxygen. These two types of information are appended to this
document in computerized form. In addition, when we modi�ed this implementation, we established
several Uni�ed Modelling Language (UML) activity diagrams to assist us in mastering the code. You
can �nd these charts in appendix .2.

9.2 AODV-FUUREX: a modi�cation of AODV-UU

Starting from the AODV-UU version, we implemented the reputation protocol as described in the repu-
tation process. We called our new implementation 'AODV-FUUREX', which stands for AODV - Fundp
Uppsala University REputation eXtenstion. Figure 9.1 show the starting output of our implementation.

86

Figure 9.1: Launching of AODV-FUUREX

During the implementation of the security mechanism in AODV-UU, we faced several obstacles, some
of them were more di�cult to circumvent than others.

9.2.1 Released versions of AODV-UU

At the beginning of this project, the latest release of AODV-UU was published on December 8, 2007.
As discussed in the introduction section, AODV-UU acts in user-space but also in kernel-space (module
kaodv), which posed some problems. After dealing with all the problems related to the kernel version, a
new version (0.9.6) was released on May 29, 2010 which �xed some bugs and made it compatible with
the latest Linux kernel. We then transferred all our modi�cations onto the new one for the sake of
compilation simpli�cations.

9.2.2 Problems encountered during development process

Since release 0.9.5 of AODV-UU, new kernels have been introduced in later versions of Linux. For this
reason, the compilation with recent versions of Linux fails (kernel version > 2.6.20).

The kernel loaded on the most recent nodes of WILE-E is version 2.6.19, under which the compilation
worked without problems. Considering the limited performance of such devices, no compiler (gcc in this
case) is installed on the nodes. But to successfully compile, we simply have to install the kernel sources
on the target machine (or Header). We learnt this information from the AODV-UU MakeFile �le.

However, the older nodes of WILE-E have a 2.6.24 kernel version, which is too young compared to
the existing implementation. Therefore, we got errors during the "make" compilation. The functions
calls of the kernel being modi�ed (e.g., changes in number of arguments), the compilation of the kernel
component went wrong. No documentation in the code of AODV-UU and no maintenance were available.
We contacted the author of the implementation and he wrote us he was not maintaining the sources.
He gave us a link to what he has left about this work. However, the link provided us with no relevant
information and the documents which were supposed to be hosted were not available. Fortunately,
Giovanni Di Stasi (PhD student in Naples in charge of the WILE-E testbed) has developed a special
patch to be applied before compiling, which has solved the problems of incompatibility (the new version
does not require the patch anymore).

These old nodes also require a Cross Compiling, using speci�c tools to build the �les (e.g., compiler-
speci�c embedded chips), which cost us time to �nd the right con�guration ("make arm").

As for the problems encountered on the testbed in Naples (see Section 9.2.5), it took between 10
and 15 minutes to run an experiment and collect the results. In this condition, the development and
debugging of an algorithm is really not easy or feasible as it greatly reduces productivity.

In order to save time we considered the use of a network of virtual machines (VirtualBox / VmWare)
in which we would have launched a Fundp Uppsala University REputation eXtenstion (FUUREX) wired

87

interface (although it is intended for wireless). We thought of making a network topology consisting of
three nodes so that the tra�c was forced to pass through an intermediary.

(A) <�> (B) <�> (C)

At node B, two network interfaces were necessary, but unfortunately the kernel module of AODV-UU
prevents the algorithm from running simultaneously on two interfaces.

Following this problem, we considered the idea of using only one interface on each node but by adding
�ltering rules (for MAC addresses). With this technique node A and node C, being on the same LAN,
could not communicate directly. This also proved to be a failure because the tra�c did not move through
the virtual wired network.

Finally, we opted to use our own equipment (laptops) as a solution for the development and testing
to save time. Our supervisor, Prof. Schumacher, supplied us with additional computers and a version
of Ubuntu 8.04 was installed on each of them. Then we applied the same topology as described above,
using iptables[net10] (MAC �ltering), which had worked perfectly in the early stages of the development.

The next stage was requiring to enable promiscuous mode on wireless network cards but this feature
is only available on a small range of speci�c cards (requiring a special hardware, and speci�c drivers)
and our laptops lacked this feature. Consequently, all functions related to packet sni�ng, implemented
for Watchdog, were due to be tested directly on the testbed in Naples.

WILE-E still being under development, we were forced us to adapt our deployment techniques during
the project and �nd solutions to the encountered problems (e.g., changing the main �le). We would
like to stress the fact that the improvements made by Giovanni Di Stasi have signi�cantly reduced the
deployment time on WILE-E, allowing us to use it as a platform for development and testing.

9.2.3 The sni�er

A sni�er is a piece of program able to monitor packets on a network interface depending on di�erent
�lters. This program was required to allow Watchdog to track the packets that have to be forwarded by
the neighbors. So, the node running the sni�er can �lter other packets as well as its own. However, to be
able to capture those packets, a special hardware for the network card is required, so the given network
interface can be set on promiscuous mode and e�ectively work (compared to others that can be set on
promiscuous mode but no real result comes out). Thus, not every network interface can use this mode.

The sni�er we have implemented is designed in user-space only.

9.2.4 Path selection

We were faced with a problem concerning the route selection process according to the reputation values.
As explained in the basic version of AODV (see Section 8.2), the creation of a new route has to be
done by the sending of a RREQ and by the reception a RREP message. If several routes exist towards
the destination, the originator accepts only the �rst RREQ message, while other packets which arrive
subsequently are simply dropped. This ensures to select the fastest path to it, but not the most reliable.

Conversely, the challenge with the reputation mechanism is to select the shortest route, which is not
necessarily the fastest. This has the consequence that, henceforth, the destination will no longer ignore
the RREQ messages that have been rooted by di�erent paths to it.

Two scenarios are possible: either the choice of the path is decided by the originator and the recipient
will be noti�ed, or it is done at the recipient end which will notify the originator. Each of both approaches
has pros and cons.

The �rst idea, inspired by the work of Francesco Oliviero while deviating a bit from it, requires a
three-phase process:

• The originator sends a RREQ by broadcast.

• The destination receives several RREQ and replies to each message by a RREP.

• The originator receives several RREP to which it adds the reputation information which is at its
disposal. It �nally chooses the safest route and informs the destination, which will have to expect
to receive data via this path. This situation is shown in Figure 9.2.

88

The second idea consists in two phases:

• The originator sends a RREQ by broadcast. This packet, reaching an intermediate node, is directly
modi�ed with a new value of hop count according to the reputation the relay node has calculated
about the neighbor that has sent this packet. Then it forwards the modi�ed packet. Comparatively,
in the �rst idea, the step of modifying the hop count was done during the RREP process when the
packet is forwarded to the originator.

• The destination receives several RREP's to which it adds the reputation information at its disposal
and chooses the best route. It has to only sent one RREP-ACK to the originator.

The advantage of doing so is that we simultaneously send the values of reputation and an updated metric
in a single RREQ.

Wishing to stay closer to the idea of F. Oliviero, we opted for the �rst idea, knowing that the second
one would have been possible.

Figure 9.2: Route decision in 3 phases: (1) RREQ - (2) RREP - (3) RREP_REP_ACK

9.2.5 Theoritical limits

After analyzing the theoretical approach, we found several limits to the security model exposed.

Wireless channel

We �rst discovered a limit in the way nodes are supposed to interact. In order to allow the Watchdog
module to capture packets, the nodes (the current node, its neighbor and the over-neighbor) need to use
the same wireless band, and even the same channel. So, Watchdog can get proof from the neighbor the
job is performed correctly. However, sometimes it is needed to assign dedicated channels between the
couple of nodes. Thus, a node would have to use two channels to communicate with its neighbors.

If the fact that the whole or a part of the network is using the same channel is none of a problem
for a determined type of job, it could be for others. The nodes would have to use an extraenous system,
called iptables, to only allow tra�c between certain given nodes, so the way followed by the packets is
restricted to our designed topology under certain given constrictions. There are multiple ways to realize
that from using iptables, blocking the tra�c on an IP-based or a MAC-address-based method. But that
reduces the whole use of the technology we currently have at our disposal.

89

Border Router

In the case of a Border Router, whose location is at the border of the network, it is highly likely that the
router will use two network interfaces : one for the wireless communication and the other one being is a
wired interface. It would be better to provide a mechanism so the Watchdog instance of internal nodes
is not active on the tra�c passing by this Border Router. Either way, the Watchdog would listen and
would expect the packets to be forwarded whereas they never will since they will be sent on the wired
interface causing bad reputation forever for this node.

Route updated with RREP

According to the reputation principles, the metric in the routing table has to be updated once a RREP
message is received. If such a message is not generated, the malicious node B, whose task is to forward
the data, can block/interrupt all the tra�c passing through it without being worried about its new
bad reputation. Indeed, until there is no RREP message, the routes of other nodes do not change! A
mechanism forcing an update of this route (e.g., after a loss of x packets) should have been set up to
avoid this weakness.

Reverse route does not take the reputation into account

Let us consider a simple scenario where node 10.0.0.104 sends data to node 10.0.0.106 through node
10.0.0.105 ("called next hop"). Its hop count is 17.

Kernel IP rout ing tab l e (Seen by A = 10 . 0 . 0 . 1 0 4)
Des t ina t i on Gateway Genmask Flags Metric Ref Use I f a c e
1 0 . 0 . 0 . 1 0 6 1 0 . 0 . 0 . 1 0 5 255 . 255 . 255 . 0 U 17 0 0 ath0
1 0 . 0 . 0 . 1 0 5 0 . 0 . 0 . 0 255 . 255 . 255 . 0 U 1 0 0 ath0
0 . 0 . 0 . 0 1 92 . 1 6 8 . 1 . 1 0 . 0 . 0 . 0 UG 0 0 0 ath0

In the meantime, node 106 decides to send data to node 104. Because of the prior existence of the
route to 104 in its routing table, no route request process occurs. Node 106 will see node 104 with a
metric of 2, independently of the reputation of node 105 seen by node 106.

This is made possible by the fact that the hop count in the routing table is updated regarding the
reputation value only when there is the reception of a RREP.

Kernel IP rout ing tab l e (Seen by C = 10 . 0 . 0 . 1 0 6)
Des t ina t i on Gateway Genmask Flags Metric Ref Use I f a c e
1 0 . 0 . 0 . 1 0 4 1 0 . 0 . 0 . 1 0 5 255 . 255 . 255 . 0 U 2 0 0 ath0
1 0 . 0 . 0 . 1 0 5 0 . 0 . 0 . 0 255 . 255 . 255 . 0 U 1 0 0 ath0
0 . 0 . 0 . 0 1 92 . 1 6 8 . 1 . 1 0 . 0 . 0 . 0 UG 0 0 0 ath0

Only the reception of a RREP message will force to modify the number of hops passing through node
105 towards node 104.

Weaknesses in the mechanism

This section explains the weaknesses in the current reputation mechanism.

Data forgery : The information stored in the table of acknowledged packets (from or for Watchdog)
includes only a few header �elds of the IP packets. For performance reasons, storing all the data of a
packet is not feasible.

If an attacker alters the content of the data in the packets while the tra�c is still correctly forwarding
the packets to the destination, the security mechanism in place will not detect any malicious activity.

The solution we would suggest is the calculation and the storage of a checksum computed from the
data �elds of such packets. However it remains to determine whether such a calculation would not
adversely a�ect the overall performance of the device.

90

TTL forgery :
In the case of the TTL would be modi�ed, there is no posibility to prevent the damages that could cause
in the current implementation. So, the AODV message or the data packet would be simple dropped,
causing a bad reputation to the node dropping it.

9.3 Methodology

In this section, we explain the methodology followed step by step in order to achieve the second objective
(see Section 1.1.2)

• The �rst step is to refactor the existing comments in the original source code of AODV-UU to
adapt it to the syntax of Doxygen [Hee10]. This brings a better visibility on the structures and
methods used. It also allows faster access to information.

• Based on the theoretical aspects of the reputation mechanism, the second step consists in identifying
the di�erent moments of interaction between the mechanism and AODV in order to prepare the
next action.

• We analyzed the code of AODV-UU to spot the places identi�ed in the previous step. We then
update the source code to include the mechanism of reputation.

• The development time ends by a debugging phase to obtain a valid implementation.

• Regarding the routing protocol exploitation, we de�ne a scenario of networking experience which
will be used in the NS2 simulator and in the testbed. Then, thanks to our tools developed to
address the �rst goal of our thesis, we translate this scenario into �les understandable by both
platforms.

• We �nish by running experiments on both platforms to collect results for a subsequent comparative
study.

91

Chapter 10

Experimentation

10.1 AODV-UU vs AODV-FUUREX

We made a comparison between the AODV-UU and AODV-FUUREX implementations. We expected
that our changes cause a more greedy use in terms of resources because we have only added features to
the routing protocol. The results are displayed on the following graph (see Fig 10.1).

In order to perform that experiment, we created an XML description of the topology. This �le can
be found in its XML formal in the appendix, Section .4.

Figure 10.1: resource usage of AODV-UU and FUUREX

The experiment is launched with AODV-UU and with FUUREX afterwards. This was conducted
following the same scenario by running a sequence of three pings. Several other experiments based on
the same scenario con�rm theses results.
The applications currently use a part of available physical memory, which is expressed on the graph by
a percentage.

In the basic version of AODV-UU In AODV-FUUREX
the memory usage: 2% the memory usage: 4%

CPU usage: from 0 to 2% CPU usage: from 0 to 3%

The di�erence in processor usage is negligible, even if there is a slightly higher usage in AODV-
FUUREX.

92

On the other hand, the memory usage is twice as large as in FUUREX than in the basic version.
This is explained by the structures added in our implementation in order to store information regarding
the reputation and the Watchdog module.

10.2 Reputation results and consequences on the routing table

The following experimentation shows the evolution of the reputation of two nodes over time, which will
be close to the value "1" for a node if it properly forwards data packets passing through it. Otherwise
it will be less than "1" according to the importance of loss. We will interpret and justify those results
with respect to the scenario we have established. The topology deployed on WILE-E testbed is shown
in Fig 10.2. This topology includes the use of iptables to allow only the described links.

Figure 10.2: Experiment topology

Several bursts of data packets have been sent, preserving a break of a few seconds between each burst
in order to start a new RREQ/RREP/RREP-REP-ACK process to refresh the current reputation of the
neighbors.

In Fig 10.3, the vertical lines indicate a creation of an entry in the routing table to reach node 108.
The cross on these lines denotes the route which has been chosen by AODV-FUUREX. The removal of
routes is not shown on this diagram to preserve readability. The two other lines represent the reputation
respectively of node 104 and 107, at node 105.

Figure 10.3: Reputations seen by node 105

At 03:36:10 a route to node 104 and node 107 has been added to the kernel routing table.

93

At 03:36:24 the �rst set of data packets has been sent from node 105 to node 108 through node 107,
after the choice made by the reputation mechanism. Indeed, at the beginning, both reputations of
nodes 104 and 107 are equal to one. Therefore, the selected path is the shortest route.

At 03:36:51 a second set of data packets has been sent from node 105 to node 108 through node 104.
Indeed, node 107 has lost some packets during the last forwards, resulting in a bad reputation and
thus an increased hop count.

At 03:37:20 node 108 has sent data to node 105 through node 107, despite the bad reputation attributed
to it at node 105. This reaction is well-founded since in case of reverse route (as explained in Section
9.2.5), this is the originator (node 108) that selects the route. The reputation of node 107 seen by
node 108 was not bad enough to avoid taking this next hop.

At 03:37:50 a set of data packets has been sent from node 105 to node 108 through node 107. According
to the metric formula (see Section 8.6, page 85), the number of hops taken into in account during
the reputation process is the number of physical hops, plus a value derived from the reputation
value. After performing the calculations, the value determined for node 107 was the same as for
the node 104. In this case, the priority is given to the node that answered the most quickly.

At 03:38:09 a set of data packets has been sent from node 105 to node 108 through node 104. The
reputation of the latter is much better compared with the one of node 107.

At 03:38:58 a set of data packets has been sent from node 105 to node 108 through node 107 reaching
8 hops (3+5, where 3 is the physical number of hops and 5 is the number of hops to add from the
reputation process). The route through node 104 has not been selected because the reputation of
this node has sharply plunged around 03:38:40 by dropping data packets.

The evolution of the number of hops in the kernel routing table of node 105 during this experiment,
is shown in the �gure 10.4.

Figure 10.4: hops count to node 108 from node 105

94

Chapter 11

Limits and Perspectives

In this chapter, we will analyze the limits of the AODV-FUUREX implementation and provide hints to
resolve these limitations.

The reputation mechanism improves the reliability of a wireless network by identifying malicious
nodes. Our FUUREX implementation successfully performs this mechanism and works for the situations
that are not include in next section. Aware that these situations are not yet supported we want to provide
hints to overcome these obstacles.

We must also keep in mind that the reputation process solves only a part of the security problems
speci�c to wireless networks (e.g, nothing prevents an attacker to deploy a wave jammer, thus preventing
the transfer of information). Moreover, this approach requires all nodes in the infrastructure to commu-
nicate on the same channel, which can be an obstacle to its deployment. Finally, from the moment this
solution can act positively on the security without signi�cantly reducing the network performance, it is
appropriate and even advisable to deploy it as soon as possible.

11.1 Unresolved routing issues

Based on Post-Ph.D. F.Oliviero's research in order to provide the e�orts left to conclude, we nevertheless
discovered during the last operating progression phases that new scenarios have not been considered.

The resolving time and their complexity to settle them being signi�cant, we preferred to terminate
our current implementation and to produce a working prototype being aware, in the meantime, that
some issues need to be tackled. The routing table can not contain two entries to the same destination
simultaneously, otherwise it will provoke an error at runtime.

This section addresses these issues and suggests solutions.

11.1.1 RREP propagation

• Problem
In the situation depicted in the �gure 11.1, node a wants to communicate with node f. Upon
receiving the �rst RREQ, node e creates a reverse route to node a in its routing table . Shortly
after, when receiving the second RREQ (coming from an another path), the route previously
created, is not updated and the information of the second RREQ is lost at node e.

95

Figure 11.1: Scenario

On the return path, node e will receive from node f two RREP messages to forward to two di�erent
paths (i.e. to node c and d). Unfortunately it knows only one route to node a, which entails that
these two messages will be directed towards the same next hop. One of them will be deleted at
that selected next hop node.

The routing table can not contain two entries to the same destination simultaneously, otherwise it
will provoke an error at runtime.

• Solution
- Change the implementation to allow storage of multiple entries to the same destination in the
routing table and establish a way to remember if a RREP has already been transmitted by this
route.

or

- Build a temporary structure where it would store the routing information (a sort of copy of the
routing table) produced by these two RREQ messages. Anytime a use of one of these routes is
required, it replaces the current entry in the routing table to the destination by the entry present
in our temporary structure.

11.1.2 Single spot of juncture

• Problem
The problem is related to the reception of multiple RREQ messages at several nodes in a row where
one of them is the unique way to access the rest of the network. Let us consider Figure 11.1 again.

Node a needs a route to reach node j. It therefore starts to send a RREQ. The �rst message to
reach node e is coming from node d since it is the shortest path to it.

The packet is then inserted into the node e local bu�er. The bookkeeping information to keep
tracks of the RREQ messages are: Origin IP address, Source IP address & RREQ identi�er.

The second RREQ message, forwarded through by nodes b and c is received. The packet is also
stored, being di�erent from the previous one by the Source IP address �eld.

The packets continue their way up to node f. However, the stored information on this node cannot
help any more to determine which packet was coming from which path. As a result, the second
RREQ message received is erroneously dropped drop as considered as already received (due to the
information present in the local bu�er, already present in the basic AODV implementation).

The current situation has found its limit.

96

• Solution
The bu�er should contain the di�erent routes taken by the packets from the origin to the destination
in order to fully qualify them and therefore identify them at node f and the following ones. Node
j being the destination, the routing table can simply solve the problem. This solution implies the
storage of IP addresses in the packets and their packets becoming fatter as the path gets longer.

11.1.3 Preventing RREQ cycles

• Problem
The current implementation deals with the RREQ cycle problem. However, the way it currently
operates is not optimal.

When a node broadcasts a RREQ message to discover the route to communicate with the destina-
tion, all of its neighbors will receive this message. The receiving nodes which is not the destination
nor do not know the route to the destination will rebroadcast the packet. The sender will then
receive its own request and treat it as a normal request to forward.

This happens because a node treats a packet since it does not have its information in its bu�er
(Origin IP address, Source IP address & RREQ identi�er). Since the nodes do not bu�er the
RREQ messages they send, the message is sent three times on the link: Sender -> Next hop (Next
hop stores the information) ; Next hop -> Sender (Sender stores the information) ; Sender -> Next
hop (Next hop recognizes the packet and drops it).

• Solution
- The packet sending request messages could record them into a sending bu�er. By this way, when
a RREQ message is received, the node will have to check both its sending and receiving bu�ers. If
the information is in none of them, then it is a brand new message to handle.

or

- Insert the nodes IP addresses taken by the RREQ packets. So, when a node receives a RREQ
message, it will seek into the IP addresses list and check if its own IP is in. If so, a cycle would be
started and the node should not forward it. Otherwise, the packet is new and the RREQ message
is on the right way to reach the destination.

97

Chapter 12

Thesis conclusion

At the end of our three months stay in Naples, we discovered a new world made of new technologies and
new knowledge. Immersed into the research world, we discovered through the testbed and all the related
softwares what is really happening when we talk about software testing.

We also had the opportunity to jump in an unknown environment and to live this period in the Italian
culture which is quite di�erent from ours. It was very rewarding to get in touch with people of various
nationalities, including other Erasmus students coming from all over the world.

Throughout the development of this thesis, we became more and more familiar to the scienti�c
approach by searching relevant articles and reading them, and by the direct or indirect contacts we had
with other researchers. All these contributed to our attempt to apply scienti�c approach to our project.
These documents allowed us to learn new knowledge related to our thesis by providing us, for example,
how to model a network experiment in a right way. It also presented us with the rigor researchers need
in their jobs.

In this challenge, we put into practice the knowledge and skills acquired both in a personal way as
those acquired during our academic career. Our skills allowed us to adapt to new situations, analyze
problems and seek the best way to sort them out.

Although we had to deal with problems related to the use of OMF on the Naples testbed, we believe
that the majority of these problems is due to the version currently used. We insist on the fact that we
could easily communicate with developers. Aware of the weakness of their documentation, they are now
about to expand and to structure this part. For these reasons, we recommend that researchers should
deploy this framework in their network test environment.

We also had the chance to delimit the meaning of our thesis and to understand the role of our work.
Indeed, we were con�rmed why the interaction between the testbed and the simulator is so important.
So, we got aware that our subject was not solely a work, but that it was opening a door for further
research.

In this thesis, we have been confronted with various areas such as programming in languages like XML
and similars, C and Ruby. We have applied di�erent concepts of network, exploited routing protocol and
also modi�ed some source code. This project has been really rewarding and we have acquired a better
knowledge thanks to the notions we had to use.

One thing we have learnt for the rest of our lives is that we have to be careful when we have to
schedule a high-risk project. Developping something in a language which is not fully mastered at the
beginning of the project, is intricate : we had to learn and develop at the same time. Obviously, this
has led to unexpected surprises, which we managed to overcome, though.

We �nally �nish this thesis on a positive note keeping excellent memories of our experience both in
Belgium and in Naples and we would be pleased if it could prove useful to future researchers.

98

Chapter 13

Appendix

99

.1 The modi�cations made to the XSD �les from XDLWNS

This part describes the modi�cations we brought to the XDLWNS to match with our �rst thesis objective.
As already de�ned in Section 5.7, here is the symbols meaning.

Figure 1: Sequence of element(s) Figure 2: Choice among the children

Figure 3: Add comments/notes to each
element

Figure 4: Adding multiplicities on di�erent kinds
of element

Figure 5: Di�erent kind of optional ele-
ment (multiplicity = 0..1)

Figure 6: Di�erent kinds of element that cannot
be instantiated

We de�ned a personal syntax to improve the understanding of the next section:

update An element has been updated
add An element or an attribute has been added
delete An element or an attribute has been deleted

100

.1.1 network Description (Fig 5.11, Fig 5.12)

update Element Autonomous System has become mandatory because at
least one logic group of nodes is needed.

add attribute name added in the element 'Autonomous System' for a
mnemonic help.

update Element topologyModel has become mandatory because it is the
only common part describing a topology in OMF and in NS2.

delete Element analyticalModel cannot be instantiated any more because
it is only used in NS2.

update Element node is modi�ed. Nomadicity, posX, posY is needed in
NS2.

101

delete Some attributes of protocol element cannot be instantiated any
more because it is not used in OMF.

add Element cfgNetInterface is added as a child of the element node
because it is needed in OMF. The attribute channel will be asso-
ciated to an interface belonging to a speci�c node.

102

add Element routingDaemon (Fig 5.13) is added as a child of 'node'
because it is a new functionality common to both platforms.

delete Element link and multiAccess in the element 'topologyModel' (Fig
5.11) cannot be instantiated any more because it is not needed in
a wireless environment.

delete Element node in the element 'networkDescription' (Fig 5.11) can-
not be instantiated because it was redundant (node is already
declare elsewhere).

delete Element link and multiAccess in the element 'networkDescription'
(Fig 5.11) cannot be instantiated any more because they are not
needed in a wireless environment.

103

.1.2 Tra�c (Fig 5.15)

delete Attribute startTime and stopTime move into the element 'simu-
lationCommand'.

add Attribute netInterface in the elements 'src' and 'dst' in the pattern
because it is needed in OMF.

update Element exponential is modi�ed (Fig 5.16). We add parameters
which are needed to enable the tra�c model.

104

update Element expo_ON�OFF and its attributes (Fig 5.18). We delete
parameters which are not needed to enable the tra�c model.

update Element CBR and its attributes (Fig 5.17). We keep the rate and
packetSize attributes, because they both allow �nding the packets
per second (Bandwidth = Size / Time and Packet per second =
Rate / PacketSize).

delete Element pareto_on�o� (Fig 5.16) is become optional because it
is not available in OMF.

105

.1.3 SimulationCommand (Fig 5.19)

add Element authors is added as recommended in LETSQoS project
5.5.2.

add Attributes startLog and stopLog are added because we need these
parameters for our translation process.

delete Element nsCon�gurationCommand has become optional because
it is NS2 speci�c and not mandatory.

update Element simulationEvent was replaced by the element 'actions'
which is more adapted to our situation.

106

.1.4 Time representation in the XML scenario description

The time, in our XML, is expressed by giving only temporal points (at the 5th second, at 10th second).
Unfortunately, OMF expresses the succession between two actions by the time that the node handler
has to wait before the next action (wait 10s, wait 30s). We have decided to keep the �rst representation,
used by NS2, which has to be computed for OMF. This is not an easy way but it is the only one
we found. The problem is that each time we want to add a new type of action that can occur (like
start/stopApplications), the calculations become more complicated and prone to error by the developer
(see source code in annex).

The list below shows the dynamic events that we currently manage:

• The start time of the experiment

• The stop time of the experiment

• The start time of a tra�c

• The stop time of that tra�c

• The start time for the logging related to a source / sink tra�c

• The stop time for the logging associated to that same source / sink tra�c

.1.5 Problem of granularity and concepts

All the nodes of a testbed in their range in a wireless con�guration have the capacity to communicate,
like in a mesh network. In OMF, to simulate an obstacle preventing communication between two nodes,
we can specify a removeLink property whose e�ect is to add several �rewall drop rules on nodes, so the
nodes cannot communicate any more.

The only solution to reproduce this situation in NS2 is to place the wireless node out of the signal
range of the others. The act to calculate the position of the node to re�ect such a scenario is not obvious,
especially in a complex network topology. That is the reason for which we think that this task should be
performed by an appropriate graphical design solution, like in the Castadiva testbed (see Section 2.4.2).

In NS2, Autonomous System (AS) has no match in the OMF domain. Nevertheless, we maintain the
concept of AS in the XSD but this is more to keep a logic description of the network since it has no
e�ect on the generated �les.

In NS2, the IP-address of the network interfaces is an unknown notion.

.2 Packet processing in AODV-UU

This section describes some relevant parts of the inner workings of AODV-UU. In this way, it allows
the reader to more easily understand the principles applied in the implementation by providing a good
overview of its operation.

On the following UML activity diagrams, we made abstraction of the irrelevant details from our point
of view. Therefore, if the reader wishes to bene�t from implementation details, s/he can see the original
source code in which we have added many comments respecting the syntax de�ned by Doxygen [Hee10],
or s/he can directly consult the documentation generated by Doxygen. These two types of information
are appended to this document in computerized form.

107

Figure 7: General packet processing

As explained in the previous section, four types of message are de�ned in AODV-UU, i.e., RREQ,
RREP, RERR, RREP-ACK. Since we analyzed the source code through the reputation mechanism, we
focused only on the creation and processing of control messages that request a route (RREQ) and on the
reply (RREP) to them. Indeed the reputation mechanism does not use the other two types of message.

In the diagram 7, the boxed section on the left in the blue rectangle is not implemented in this way
in the source code but the logic remains the same. So, to improve understanding we have decided to
simplify this part which normally requires a study of the kernel module used by the Linux kernel. Once
an IP packet is received, in case of a data packet, AODV-UU only operates when the host has to forward
this message to one of its neighbors for a destination which is still unknown. The path to the destination
can already be known if AODV-UU has previously added this route in its routing table.

In the case of a control message, it is treated in accordance with its type (Fig 7).

108

109

Figure 8: RREQ processing

When a node receives a RREQ, it �rst checks if it has not already received it before. If this is the
�rst time, then it adds or updates its entry in the routing table about the originator of the RREQ packet
to anticipate the shipment of a likely future RREP message. Then, if the node itself is the destination
speci�ed, then it generates a RREP to the originating packet it just received. on the other hand, if not
the destination, two speci�c treatments may be required depending on the knowledge of a valid route to
the destination or not (Fig 8).

110

111

Figure 9: RREP processing

Upon receiving a RREP, a �rst check is performed to ensure that the node has a valid route to the
generator of the message. If not, or if the information is outdated, an update is performed. In case the
packet target is the current node, the information carried by the RREP are inserted in the routing table.
On the other hand, if the current node is not the target but simply an intermediary, it sends the message
to one of its neighbors after a possible update of its routing table (Fig 9).

.3 Main structures used by AODV-FUUREX

For a better understanding of the AODV-FUUREX source code, the main structures will be explained.
The various structures shown below were all built using the same basic architecture: a hash table (64
cells) references its elements identi�ed by a network address. An IP address is associated to a single cell
of this table and multiple IP addresses can be associated with a cell.

.3.1 Routing table

Present in the basic version of AODV, these structures contain all the information required to the routing
mechanism. AODV-UU maintains a routing table synchronized with the one from the Linux kernel.

Figure 10: Structures needed by the routing mechanism

.3.2 Reputation table

The required structures to store the reputation data for the proper execution of the reputation mechanism
:

112

Figure 11: Structures needed by the reputation mechanism

.3.3 Ack-packets table

These structures can store the packets awaiting acknowledgement by the Watchdog module. They contain
all the necessary information to identify a data packet passing through a node whose role is to convey
those packets.

Figure 12: Structures needed by the watchdog mechanism

113

.4 AODV-FUUREX Experiment

This experiment enables us to run the experiment to test our implementation on the OMF tesbed.
Because some problems could arise during the experiment (we do not control the packet loss on a node
that does not work properly), we had to control the actions to be performed in real time. This is the
reason why it is not scheduled in the OMF script.� �

1 <?xml version="1.0" encoding="UTF -8"?>

2 <?xml -stylesheet type="text/xsl" href="file:/XMLScenarioDescription/omf.

xsl"?>

3 <scenario xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance" xmlName="

5nodes3flowfull.xml" xsi:noNamespaceSchemaLocation="..\ Documents\

stage_naples\projet canonico\XMLScenarioDescription\XSD\

SimulationScenario.xsd">

4 <networkDescription >

5 <description >This is an experiment with AODV</description >

6 <as id="1" name="general AS">

7 <description/>

8 <topologyModel >

9 <description/>

10 <node id="105" x="8" y="105" posX="0" posY="0" nomadicity="0"

name="Gaia">

11 <label >n2</label>

12 <protocol >

13 <udp id="1"/>

14 <Null id="2"/>

15 </protocol >

16 <cfgNetInterface mode="ad-hoc" type="a" essid="link1" channel="

6" ipAddress="10.0.0.105" device="w0"/>

17 <routingDaemon >

18 <aodv>

19 <interface >w0</interface >

20 </aodv>

21 </routingDaemon >

22 </node>

23 <node id="104" x="8" y="104" posX="0" posY="0" nomadicity="0"

name="Zeus">

24 <label >n1</label>

25 <protocol >

26 <udp id="1"/>

27 <Null id="2"/>

28 </protocol >

29 <cfgNetInterface mode="ad-hoc" type="a" essid="link1" channel="

6" ipAddress="10.0.0.104" device="w0"/>

30 <routingDaemon >

31 <aodv>

32 <interface >w0</interface >

33 </aodv>

34 </routingDaemon >

35 </node>

36 <node id="106" x="8" y="106" posX="0" posY="0" nomadicity="0"

name="Pandore">

37 <label >n3</label>

38 <protocol >

39 <udp id="1"/>

40 <Null id="2"/>

41 </protocol >

42 <cfgNetInterface mode="ad-hoc" type="a" essid="link1" channel="

6" ipAddress="10.0.0.106" device="w0"/>

43 <routingDaemon >

44 <aodv>

114

45 <interface >w0</interface >

46 </aodv>

47 </routingDaemon >

48 </node>

49 <node id="107" x="8" y="107" posX="0" posY="0" nomadicity="0"

name="Aphrodite">

50 <label >n5</label>

51 <protocol >

52 <udp id="1"/>

53 <Null id="2"/>

54 </protocol >

55 <cfgNetInterface mode="ad-hoc" type="a" essid="link1" channel="

6" ipAddress="10.0.0.107" device="w0"/>

56 <routingDaemon >

57 <aodv>

58 <interface >w0</interface >

59 </aodv>

60 </routingDaemon >

61 </node>

62 <node id="108" x="8" y="108" posX="0" posY="0" nomadicity="0"

name="Poseidon">

63 <label >n6</label>

64 <protocol >

65 <udp id="2"/>

66 <Null id="1"/>

67 </protocol >

68 <cfgNetInterface mode="ad-hoc" type="a" essid="link1" channel="

6" ipAddress="10.0.0.108" device="w0"/>

69 <routingDaemon >

70 <aodv>

71 <interface >w0</interface >

72 </aodv>

73 </routingDaemon >

74 </node>

75 <link isFullDuplex="1">

76 <node1 nodeId="105"/>

77 <node2 nodeId="104"/>

78 </link>

79 <link isFullDuplex="1">

80 <node1 nodeId="104"/>

81 <node2 nodeId="106"/>

82 </link>

83 <link isFullDuplex="1">

84 <node1 nodeId="106"/>

85 <node2 nodeId="108"/>

86 </link>

87 <link isFullDuplex="1">

88 <node1 nodeId="105"/>

89 <node2 nodeId="107"/>

90 </link>

91 <link isFullDuplex="1">

92 <node1 nodeId="107"/>

93 <node2 nodeId="108"/>

94 </link>

95 </topologyModel >

96 </as>

97 </networkDescription >

98 <simulationCommand stopTime="240" startTime="0" startLog="0" stopLog="

238">

99 </simulationCommand >

100 <authors >Julien , Laurent </authors >

115

101 </scenario >� �
.5 validity of our XML tool

Experiment 1� �
1 <?xml version="1.0" encoding="UTF -8"?>

2 <?xml -stylesheet type="text/xsl" href="..\ XSL\OMF\omf.xsl"?>

3 <scenario xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

xsi:noNamespaceSchemaLocation="..\..\ XMLScenarioDescription\XSD\

SimulationScenario.xsd" xmlName="5nodes.xml">

4 <networkDescription >

5 <description >This is an experiment with OLSR</description >

6 <as id="1" name="general AS">

7 <description/>

8 <topologyModel >

9 <description/>

10 <node id="105" x="8" y="105" posX="0" posY="0" nomadicity="0"

name="zeus">

11 <label >n1</label>

12 <protocol >

13 <udp id="1"/>

14 </protocol >

15 <cfgNetInterface mode="ad-hoc" type="g" essid="link1" channel="

6" ipAddress="10.0.0.115" device="w1"/>

16 <routingDaemon >

17 <olsr/>

18 </routingDaemon >

19 </node>

20 <node id="102" x="8" y="102" posX="0" posY="0" nomadicity="0"

name="keops">

21 <label >n2</label>

22 <protocol >

23 <udp id="1"/>

24 <Null id="2"/>

25 </protocol >

26 <cfgNetInterface mode="ad-hoc" type="a" essid="link2" channel="

48" ipAddress="10.0.0.102" device="w0"/>

27 <cfgNetInterface mode="ad-hoc" type="g" essid="link1" channel="

6" ipAddress="10.0.0.112" device="w1"/>

28 <routingDaemon >

29 <olsr/>

30 </routingDaemon >

31 </node>

32 <node id="101" x="8" y="101" posX="0" posY="0" nomadicity="0"

name="arthemis">

33 <label >n3</label>

34 <protocol >

35 <udp id="1"/>

36 <Null id="2"/>

37 </protocol >

38 <cfgNetInterface mode="ad-hoc" type="a" essid="link2" channel="

48" ipAddress="10.0.0.101" device="w0"/>

39 <cfgNetInterface mode="ad-hoc" type="g" essid="link3" channel="

1" ipAddress="10.0.0.111" device="w1"/>

40 <routingDaemon >

41 <olsr/>

42 </routingDaemon >

43 </node>

116

44 <node id="100" x="8" y="100" posX="0" posY="0" nomadicity="0"

name="hypnos">

45 <label >n5</label>

46 <protocol >

47 <Null id="1"/>

48 </protocol >

49 <cfgNetInterface mode="ad-hoc" type="a" essid="link4" channel="

36" ipAddress="10.0.0.100" device="w0"/>

50 <cfgNetInterface mode="ad-hoc" type="g" essid="link3" channel="

1" ipAddress="10.0.0.110" device="w1"/>

51 <routingDaemon >

52 <olsr/>

53 </routingDaemon >

54 </node>

55 <node id="104" x="8" y="104" posX="0" posY="0" nomadicity="0"

name="dionysos">

56 <label >n6</label>

57 <protocol >

58 <Null id="1"/>

59 </protocol >

60 <cfgNetInterface mode="ad-hoc" type="a" essid="link4" channel="

36" ipAddress="10.0.0.104" device="w0"/>

61 <routingDaemon >

62 <olsr/>

63 </routingDaemon >

64 </node>

65 </topologyModel >

66 </as>

67 </networkDescription >

68 <traffic >

69 <description >Generated traffic from node 105 to node 104</description

>

70 <pattern id="1">

71 <src asId="1" nodeId="105" protocolId="1" netInterface="w1"/>

72 <dst asId="1" nodeId="104" protocolId="1" netInterface="w0"/>

73 <trafficModel >

74 <cbr interval="10000" intervalUnit="ms" senderPort="3000"

packetSize="1024" packetSizeUnit="byte" rate="1" rateUnit="

Mbps" randomNoise="false"/>

75 </trafficModel >

76 </pattern >

77 </traffic >

78 <simulationCommand stopTime="60" startTime="0" startLog="0" stopLog="58

">

79 <actions >

80 <startTraffic idTraffic="1" at="2"/>

81 <stopTraffic idTraffic="1" at="50"/>

82 </actions >

83 </simulationCommand >

84 <authors >Julien , Laurent </authors >

85 </scenario >� �
Experiment 2� �

1 <?xml version="1.0" encoding="UTF -8"?>

2 <?xml -stylesheet type="text/xsl" href="..\ XSL\OMF\omf.xsl"?>

3 <scenario xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

xsi:noNamespaceSchemaLocation="..\..\ XMLScenarioDescription\XSD\

SimulationScenario.xsd" xmlName="5nodes2crossFlows.xml">

4 <networkDescription >

5 <description >This is an experiment with OLSR</description >

117

6 <as id="1" name="general AS">

7 <description/>

8 <topologyModel >

9 <description/>

10 <node id="105" posX="0" posY="0" x="8" y="105" nomadicity="0"

name="zeus">

11 <label >n1</label>

12 <protocol >

13 <udp id="1"/>

14 </protocol >

15 <cfgNetInterface mode="ad-hoc" type="g" essid="link1" channel="

6" ipAddress="10.0.0.115" device="w1"/>

16 <routingDaemon >

17 <olsr/>

18 </routingDaemon >

19 </node>

20 <node id="102" posX="0" posY="0" x="8" y="102" nomadicity="0"

name="keops">

21 <label >n2</label>

22 <protocol >

23 <Null id="1"/>

24 </protocol >

25 <cfgNetInterface mode="ad-hoc" type="a" essid="link2" channel="

48" ipAddress="10.0.0.102" device="w0"/>

26 <cfgNetInterface mode="ad-hoc" type="g" essid="link1" channel="

6" ipAddress="10.0.0.112" device="w1"/>

27 <routingDaemon >

28 <olsr/>

29 </routingDaemon >

30 </node>

31 <node id="101" posX="0" posY="0" x="8" y="101" nomadicity="0"

name="arthemis">

32 <label >n3</label>

33 <protocol >

34 <Null id="1"/>

35 </protocol >

36 <cfgNetInterface mode="ad-hoc" type="a" essid="link2" channel="

48" ipAddress="10.0.0.101" device="w0"/>

37 <cfgNetInterface mode="ad-hoc" type="g" essid="link3" channel="

1" ipAddress="10.0.0.111" device="w1"/>

38 <routingDaemon >

39 <olsr/>

40 </routingDaemon >

41 </node>

42 <node id="100" posX="0" posY="0" x="8" y="100" nomadicity="0"

name="hypnos">

43 <label >n5</label>

44 <protocol >

45 <udp id="1"/>

46 </protocol >

47 <cfgNetInterface mode="ad-hoc" type="a" essid="link4" channel="

36" ipAddress="10.0.0.100" device="w0"/>

48 <cfgNetInterface mode="ad-hoc" type="g" essid="link3" channel="

1" ipAddress="10.0.0.110" device="w1"/>

49 <routingDaemon >

50 <olsr/>

51 </routingDaemon >

52 </node>

53 <node id="104" posX="0" posY="0" x="8" y="104" nomadicity="0"

name="dionysos">

54 <label >n6</label>

118

55 <protocol >

56 </protocol >

57 <cfgNetInterface mode="ad-hoc" type="a" essid="link4" channel="

36" ipAddress="10.0.0.104" device="w0"/>

58 <routingDaemon >

59 <olsr/>

60 </routingDaemon >

61 </node>

62 </topologyModel >

63 </as>

64 </networkDescription >

65 <traffic >

66 <description >Generated traffic from node 105 to node 104</description

>

67 <pattern id="1">

68 <src asId="1" nodeId="105" protocolId="1" netInterface="w1"/>

69 <dst asId="1" nodeId="101" protocolId="1" netInterface="w0"/>

70 <trafficModel >

71 <cbr interval="10000" intervalUnit="ms" senderPort="3000"

packetSize="1024" packetSizeUnit="byte" rate="1" rateUnit="

Mbps" randomNoise="false"/>

72 </trafficModel >

73 </pattern >

74 <pattern id="2">

75 <src asId="1" nodeId="100" protocolId="1" netInterface="w1"/>

76 <dst asId="1" nodeId="102" protocolId="1" netInterface="w0"/>

77 <trafficModel >

78 <cbr interval="10000" intervalUnit="ms" senderPort="3000"

packetSize="1024" packetSizeUnit="byte" rate="1" rateUnit="

Mbps" randomNoise="false"/>

79 </trafficModel >

80 </pattern >

81 </traffic >

82 <simulationCommand stopTime="60" startTime="0" startLog="0" stopLog="58

">

83 <actions >

84 <startTraffic idTraffic="1" at="2"/>

85 <startTraffic idTraffic="2" at="2"/>

86 <stopTraffic idTraffic="1" at="40"/>

87 <stopTraffic idTraffic="2" at="40"/>

88 </actions >

89 </simulationCommand >

90 <authors >Julien , Laurent </authors >

91 </scenario >� �
Experiment 3� �

1 <?xml version="1.0" encoding="UTF -8"?>

2 <?xml -stylesheet type="text/xsl" href="..\ XSL\OMF\omf.xsl"?>

3 <scenario xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance" xmlName="

5nodes2Proto.xml" xsi:noNamespaceSchemaLocation="..\ XSD\

SimulationScenario.xsd">

4 <networkDescription >

5 <description >This is an experiment with OLSR</description >

6 <as id="1" name="general AS">

7 <description/>

8 <topologyModel >

9 <description/>

10 <node id="105" posX="0" posY="0" x="8" y="105" nomadicity="0"

name="zeus">

11 <label >n1</label>

119

12 <protocol >

13 <udp id="1"/>

14 </protocol >

15 <cfgNetInterface mode="ad-hoc" type="g" essid="link1" channel="

6" ipAddress="10.0.0.115" device="w1"/>

16 <routingDaemon >

17 <olsr/>

18 </routingDaemon >

19 </node>

20 <node id="102" posX="0" posY="0" x="8" y="102" nomadicity="0"

name="keops">

21 <label >n2</label>

22 <protocol >

23 <Null id="1"/>

24 </protocol >

25 <cfgNetInterface mode="ad-hoc" type="a" essid="link2" channel="

48" ipAddress="10.0.0.102" device="w0"/>

26 <cfgNetInterface mode="ad-hoc" type="g" essid="link1" channel="

6" ipAddress="10.0.0.112" device="w1"/>

27 <routingDaemon >

28 <olsr/>

29 </routingDaemon >

30 </node>

31 <node id="101" posX="0" posY="0" x="8" y="101" nomadicity="0"

name="arthemis">

32 <label >n3</label>

33 <protocol >

34 </protocol >

35 <cfgNetInterface mode="ad-hoc" type="a" essid="link2" channel="

48" ipAddress="10.0.0.101" device="w0"/>

36 <cfgNetInterface mode="ad-hoc" type="g" essid="link3" channel="

1" ipAddress="10.0.0.111" device="w1"/>

37 <routingDaemon >

38 <olsr/>

39 </routingDaemon >

40 </node>

41 <node id="100" posX="0" posY="0" x="8" y="100" nomadicity="0"

name="hypnos">

42 <label >n5</label>

43 <protocol >

44 <udp id="1"/>

45 <Null id="2"/>

46 </protocol >

47 <cfgNetInterface mode="ad-hoc" type="a" essid="link4" channel="

36" ipAddress="10.0.0.100" device="w0"/>

48 <cfgNetInterface mode="ad-hoc" type="g" essid="link3" channel="

1" ipAddress="10.0.0.110" device="w1"/>

49 <routingDaemon >

50 <olsr/>

51 </routingDaemon >

52 </node>

53 <node id="104" posX="0" posY="0" x="8" y="104" nomadicity="0"

name="dionysos">

54 <label >n6</label>

55 <protocol >

56 </protocol >

57 <cfgNetInterface mode="ad-hoc" type="a" essid="link4" channel="

36" ipAddress="10.0.0.104" device="w0"/>

58 <routingDaemon >

59 <olsr/>

60 </routingDaemon >

120

61 </node>

62 </topologyModel >

63 </as>

64 </networkDescription >

65 <traffic >

66 <description >Generated traffic from node 105 to node 104</description

>

67 <pattern id="1">

68 <src asId="1" nodeId="105" protocolId="1" netInterface="w1"/>

69 <dst asId="1" nodeId="100" protocolId="1" netInterface="w1"/>

70 <trafficModel >

71 <cbr interval="10000" intervalUnit="ms" senderPort="3000"

packetSize="1024" packetSizeUnit="byte" rate="1" rateUnit="

Mbps" randomNoise="false"/>

72 </trafficModel >

73 </pattern >

74 <pattern id="2">

75 <src asId="1" nodeId="100" protocolId="1" netInterface="w1"/>

76 <dst asId="1" nodeId="102" protocolId="1" netInterface="w0"/>

77 <trafficModel >

78 <cbr interval="10000" intervalUnit="ms" senderPort="3002"

packetSize="1024" packetSizeUnit="byte" rate="1" rateUnit="

Mbps" randomNoise="false"/>

79 </trafficModel >

80 </pattern >

81 </traffic >

82 <simulationCommand stopTime="60" startTime="0" startLog="0" stopLog="58

">

83 <actions >

84 <startTraffic idTraffic="1" at="2"/>

85 <startTraffic idTraffic="2" at="2"/>

86 <stopTraffic idTraffic="1" at="40"/>

87 <stopTraffic idTraffic="2" at="40"/>

88 </actions >

89 </simulationCommand >

90 <authors >Julien , Laurent </authors >

91 </scenario >� �
Experiment 4� �

1 <?xml version="1.0" encoding="UTF -8"?>

2 <?xml -stylesheet type="text/xsl" href="..\ XSL\OMF\omf.xsl"?>

3 <scenario xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance" xmlName="

5nodes3flowfull.xml" xsi:noNamespaceSchemaLocation="..\ XSD\

SimulationScenario.xsd">

4 <networkDescription >

5 <description >This is an experiment with OLSR</description >

6 <as id="1" name="general AS">

7 <description/>

8 <topologyModel >

9 <description/>

10 <node id="105" posX="0" posY="0" x="8" y="105" nomadicity="0"

name="zeus">

11 <label >n1</label>

12 <protocol >

13 <udp id="1"/>

14 </protocol >

15 <cfgNetInterface mode="ad-hoc" type="g" essid="link1" channel="

6" ipAddress="10.0.0.115" device="w1"/>

16 <routingDaemon >

17 <olsr/>

121

18 </routingDaemon >

19 </node>

20 <node id="102" posX="0" posY="0" x="8" y="102" nomadicity="0"

name="keops">

21 <label >n2</label>

22 <protocol >

23 <udp id="1"/>

24 <Null id="2"/>

25 </protocol >

26 <cfgNetInterface mode="ad-hoc" type="a" essid="link2" channel="

48" ipAddress="10.0.0.102" device="w0"/>

27 <cfgNetInterface mode="ad-hoc" type="g" essid="link1" channel="

6" ipAddress="10.0.0.112" device="w1"/>

28 <routingDaemon >

29 <olsr/>

30 </routingDaemon >

31 </node>

32 <node id="101" posX="0" posY="0" x="8" y="101" nomadicity="0"

name="arthemis">

33 <label >n3</label>

34 <protocol >

35 <udp id="1"/>

36 </protocol >

37 <cfgNetInterface mode="ad-hoc" type="a" essid="link2" channel="

48" ipAddress="10.0.0.101" device="w0"/>

38 <cfgNetInterface mode="ad-hoc" type="g" essid="link3" channel="

1" ipAddress="10.0.0.111" device="w1"/>

39 <routingDaemon >

40 <olsr/>

41 </routingDaemon >

42 </node>

43 <node id="100" posX="0" posY="0" x="8" y="100" nomadicity="0"

name="hypnos">

44 <label >n5</label>

45 <protocol >

46 <Null id="1"/>

47 </protocol >

48 <cfgNetInterface mode="ad-hoc" type="a" essid="link4" channel="

36" ipAddress="10.0.0.100" device="w0"/>

49 <cfgNetInterface mode="ad-hoc" type="g" essid="link3" channel="

1" ipAddress="10.0.0.110" device="w1"/>

50 <routingDaemon >

51 <olsr/>

52 </routingDaemon >

53 </node>

54 <node id="104" posX="0" posY="0" x="8" y="104" nomadicity="0"

name="dionysos">

55 <label >n6</label>

56 <protocol >

57 <Null id="1"/>

58 </protocol >

59 <cfgNetInterface mode="ad-hoc" type="a" essid="link4" channel="

36" ipAddress="10.0.0.104" device="w0"/>

60 <routingDaemon >

61 <olsr/>

62 </routingDaemon >

63 </node>

64 </topologyModel >

65 </as>

66 </networkDescription >

67 <traffic >

122

68 <description >Generated traffic from node 105 to node 104</description

>

69 <pattern id="1">

70 <src asId="1" nodeId="105" protocolId="1" netInterface="w1"/>

71 <dst asId="1" nodeId="104" protocolId="1" netInterface="w0"/>

72 <trafficModel >

73 <cbr interval="10000" intervalUnit="ms" senderPort="3000"

packetSize="1024" packetSizeUnit="byte" rate="1" rateUnit="

Mbps" randomNoise="false"/>

74 </trafficModel >

75 </pattern >

76 <pattern id="2">

77 <src asId="1" nodeId="101" protocolId="1" netInterface="w0"/>

78 <dst asId="1" nodeId="102" protocolId="1" netInterface="w0"/>

79 <trafficModel >

80 <cbr interval="10000" intervalUnit="ms" senderPort="3000"

packetSize="1024" packetSizeUnit="byte" rate="1" rateUnit="

Mbps" randomNoise="false"/>

81 </trafficModel >

82 </pattern >

83 <pattern id="3">

84 <src asId="1" nodeId="102" protocolId="1" netInterface="w0"/>

85 <dst asId="1" nodeId="100" protocolId="1" netInterface="w1"/>

86 <trafficModel >

87 <cbr interval="10000" intervalUnit="ms" senderPort="3002"

packetSize="1024" packetSizeUnit="byte" rate="1" rateUnit="

Mbps" randomNoise="false"/>

88 </trafficModel >

89 </pattern >

90 </traffic >

91 <simulationCommand stopTime="60" startTime="0" startLog="0" stopLog="58

">

92 <actions >

93 <startTraffic idTraffic="1" at="2"/>

94 <startTraffic idTraffic="2" at="10"/>

95 <startTraffic idTraffic="3" at="10"/>

96 <stopTraffic idTraffic="1" at="40"/>

97 <stopTraffic idTraffic="2" at="40"/>

98 <stopTraffic idTraffic="3" at="40"/>

99 </actions >

100 </simulationCommand >

101 <authors >Julien , Laurent </authors >

102 </scenario >� �
Experiment 5� �

1 <?xml version="1.0" encoding="UTF -8"?>

2 <?xml -stylesheet type="text/xsl" href="..\ XSL\OMF\omf.xsl"?>

3 <scenario xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

xsi:noNamespaceSchemaLocation="..\..\ XMLScenarioDescription\XSD\

SimulationScenario.xsd" xmlName="5nodesforfun.xml">

4 <networkDescription >

5 <description >This is an experiment with OLSR</description >

6 <as id="1" name="general AS">

7 <description/>

8 <topologyModel >

9 <description/>

10 <node id="105" posX="0" posY="0" x="8" y="105" nomadicity="0"

name="zeus">

11 <label >n1</label>

12 <protocol >

123

13 <udp id="1"/>

14 </protocol >

15 <cfgNetInterface mode="ad-hoc" type="g" essid="link1" channel="

6" ipAddress="10.0.0.115" device="w1"/>

16 <routingDaemon >

17 <olsr/>

18 </routingDaemon >

19 </node>

20 <node id="102" posX="0" posY="0" x="8" y="102" nomadicity="0"

name="keops">

21 <label >n2</label>

22 <protocol >

23 <udp id="1"/>

24 </protocol >

25 <cfgNetInterface mode="ad-hoc" type="g" essid="link1" channel="

6" ipAddress="10.0.0.112" device="w1"/>

26 <routingDaemon >

27 <olsr/>

28 </routingDaemon >

29 </node>

30 <node id="101" posX="0" posY="0" x="8" y="101" nomadicity="0"

name="arthemis">

31 <label >n3</label>

32 <protocol >

33 <udp id="1"/>

34 </protocol >

35 <cfgNetInterface mode="ad-hoc" type="g" essid="link1" channel="

6" ipAddress="10.0.0.111" device="w1"/>

36 <routingDaemon >

37 <olsr/>

38 </routingDaemon >

39 </node>

40 <node id="100" posX="0" posY="0" x="8" y="100" nomadicity="0"

name="hypnos">

41 <label >n5</label>

42 <protocol >

43 <Null id="1"/>

44 <Null id="2"/>

45 <Null id="3"/>

46 <Null id="4"/>

47 </protocol >

48 <cfgNetInterface mode="ad-hoc" type="g" essid="link1" channel="

6" ipAddress="10.0.0.110" device="w1"/>

49 <routingDaemon >

50 <olsr/>

51 </routingDaemon >

52 </node>

53 <node id="104" posX="0" posY="0" x="8" y="104" nomadicity="0"

name="dionysos">

54 <label >n6</label>

55 <protocol >

56 <udp id="1"/>

57 </protocol >

58 <cfgNetInterface mode="ad-hoc" type="g" essid="link1" channel="

6" ipAddress="10.0.0.114" device="w1"/>

59 <routingDaemon >

60 <olsr/>

61 </routingDaemon >

62 </node>

63 </topologyModel >

64 </as>

124

65 </networkDescription >

66 <traffic >

67 <description >Generated traffic from node 105 to node 104</description

>

68 <pattern id="1">

69 <src asId="1" nodeId="104" protocolId="1" netInterface="w1"/>

70 <dst asId="1" nodeId="100" protocolId="1" netInterface="w1"/>

71 <trafficModel >

72 <cbr interval="10000" intervalUnit="ms" senderPort="3000"

destinationPort="4001" packetSize="1024" packetSizeUnit="byte"

rate="1" rateUnit="Mbps" randomNoise="false"/>

73 </trafficModel >

74 </pattern >

75 <pattern id="2">

76 <src asId="1" nodeId="102" protocolId="1" netInterface="w1"/>

77 <dst asId="1" nodeId="100" protocolId="1" netInterface="w1"/>

78 <trafficModel >

79 <cbr interval="10000" intervalUnit="ms" senderPort="3000"

destinationPort="4002" packetSize="1024" packetSizeUnit="byte"

rate="1" rateUnit="Mbps" randomNoise="false"/>

80 </trafficModel >

81 </pattern >

82 <pattern id="3">

83 <src asId="1" nodeId="105" protocolId="1" netInterface="w1"/>

84 <dst asId="1" nodeId="100" protocolId="1" netInterface="w1"/>

85 <trafficModel >

86 <cbr interval="10000" intervalUnit="ms" senderPort="3002"

destinationPort="4003" packetSize="1024" packetSizeUnit="byte"

rate="1" rateUnit="Mbps" randomNoise="false"/>

87 </trafficModel >

88 </pattern >

89 <pattern id="4">

90 <src asId="1" nodeId="101" protocolId="1" netInterface="w1"/>

91 <dst asId="1" nodeId="100" protocolId="1" netInterface="w1"/>

92 <trafficModel >

93 <cbr interval="10000" intervalUnit="ms" senderPort="3002"

destinationPort="4004" packetSize="1024" packetSizeUnit="byte"

rate="1" rateUnit="Mbps" randomNoise="false"/>

94 </trafficModel >

95 </pattern >

96 </traffic >

97 <simulationCommand stopTime="60" startTime="0" startLog="0" stopLog="58

">

98 <actions >

99 <startTraffic idTraffic="1" at="2"/>

100 <startTraffic idTraffic="2" at="2"/>

101 <startTraffic idTraffic="3" at="2"/>

102 <startTraffic idTraffic="4" at="2"/>

103 <stopTraffic idTraffic="1" at="40"/>

104 <stopTraffic idTraffic="2" at="40"/>

105 <stopTraffic idTraffic="4" at="40"/>

106 <stopTraffic idTraffic="4" at="40"/>

107 </actions >

108 </simulationCommand >

109 <authors >Julien , Laurent </authors >

110 </scenario >� �

125

University of Namur - BelgiumDept. of
omputer s
ien
e - Network and se
urity poleAn Experiment Translation Through Automati
 Generation{guillala,jvdsype}�student.fundp.a
.beExtension to the Master thesis

How to use the XML tool

Extension

August 17, 2010

Contents1 Network Des
ription 42 Tra�
 73 Simulation Command 94 Translation 105 Perspe
tive and future 11

2

Introdu
tionThis do
ument details how to �ll an XML network experiment des
ription and how to use the XMLtool, both of those goals were developped in the s
heme to automati
ally transform an XML networkexperiment des
ription into a spe
i�
-platform do
ument (NS2 and OMF so far).The �rst steps of this proje
t were inspired from the work done by Professor Roberto Canoni
o(Università degli Studi di Napoli - Fa
oltà di Ingegneria) explained in the arti
le "An XML Des
riptionLanguage for Web-based Network Simulation".The present do
ument is divided in �ve main se
tions. The �rst se
tion des
ribes the �rst part of thenetwork experiment des
ription
alled network des
ription. The se
ond and third se
tion, respe
tively
alled tra�
 and simulation
ommand follow the same division. For ea
h of these se
tions, a generaloverview will be followed by a futher explanation. The fourth se
tion des
ribes how to run the XML tool,i.e. what are the Java-based
ommands to laun
h the translation from the XML do
ument into a NS2or OMF �le by the way of the XSL. Finally, the do
ument ends up the explanation with a perspe
tiveabout the XML proje
t.

3

1 Network Des
riptionAn already �lled se
tion would look like this:

Figure 1: Network Des
ription se
tion exampleThis se
tion handles the autonomous system de�nition as well as the node de�nition. For ea
h node,its related network parameters will be de�ned.The main element, networkDes
ription is the one that will rule the node experiment des
ription.Algebrai
 des
ription : networkDes
ription[] +?Attributes: /This main network des
ription handler is
omposed of at least two elements named des
ription and as.This element
ompiles the di�erent de�nitions of AS.The des
ription explains brie�y how the network des
ription se
tion will be organised.Algebrai
 des
ription : des
ription[] +?Attributes: /The autonomous system se
tion de�nes how nodes will be organised in itself.Algebrai
 des
ription : as[id, name]
+Attributes: 4

• id identi�es in a unique way the tra�
 that is going to be de�ned.
• name enables to give a more human-readable name to the AS.This sub-main element, as, is also
omposed of at least two elements named des
ription and topology-Model. This element
ompiles the di�erent de�nitions of nodes.The des
ription explains brie�y what the topology model se
tion will de�ne.Algebrai
 des
ription : des
ription[] +?Attributes: /The node se
tion de�nes how the node will be
on�gured.Algebrai
 des
ription : topologyModel[] +?Attributes: /This sub-sub-main element, topology model is also
omposed of at least two elements named des
riptionand node.This element
ompiles the di�erent de�nitions of nodes.The des
ription explains brie�y what the topology model se
tion will de�ne.Algebrai
 des
ription : des
ription[] +?Attributes: /The node se
tion de�nes how the node will be
on�gured.Algebrai
 des
ription : node[id, posX, posY, x, y, nomadicity, name]

+Attributes:
• id identi�es on a unique way the tra�
 that going to be de�ned.
• posX is the x-
oordinate of the node lo
ation in the laboratory (hard-
oded).
• posY is the y-
oordinate of the node lo
ation in the laboratory (hard-
oded).
• x representes the x-
oordinate of the node in the virtual environment.
• y representes the y-
oordinate of the node in the virtual environment.
• nomadi
ity de�nes if the node will move around or not.The a

epted values so far are 0 [False℄ and 1 [True℄.
• name enables to give a more human-readable name to the node.The node has itself some sub elements used to de�ne the network parameters.The label gives a unique name to the node.Algebrai
 des
ription : label[] +?Attributes: /The proto
ol de�nes the one(s) that will be used by the given node.Algebrai
 des
ription : proto
ol[] +?Attributes: /The a

epted sub-elements so far are t
p [Sender℄, udp [Sender℄ and Null [Re
eiver℄.Sub-attributes : id identi�es the kind of �ow that will be sent/re
eived and the node role in that tra�
.The
fgNetInterfa
e de�nes how the network interfa
e will be
on�gured.Algebrai
 des
ription :
fgNetInterfa
e[mode, type, essid, channel, ipAddress, device]

+Attributes: 5

• mode determines the mode to set the below given network interfa
e.The a

epted values are ad-ho
, master and managed.
• type determines whi
h type of the 802.11 standard to sele
t.The a

epted values are a, b, g and n
• essid identi�es the name of the network where data will be ex
hanged.
•
hannel determines whi
h
hannel to listen to and send data on.The a

epted values are [1-15℄, [31-48℄, ...
• ipAddress determines the IP-address used used for the below network interfa
e.
• devi
e determines whi
h network interfa
e has to be used to vehi
ulate the tra�
.The a

epted values are w0, w1, ...The routing proto
ol de�nes the one(s) that will be used by the given node to
onvey the data.Algebrai
 des
ription : routingProto
ol[] +

?Attributes: /The a

epted sub-elements so far are olsr and aodv.

6

2 Tra�
An already �lled se
tion would look like this:
Figure 2: Tra�
 se
tion exampleThis se
tion handles the tra�
(s) de�nition with the des
ription of its elements.The main element, tra�
, is the one that will
ontain and de�ne the di�erent tra�
s between thenodes.Algebrai
 des
ription : tra�
[] +?Attributes: /This main tra�
 handler is
omposed of at least two elements named des
ription and pattern.This element
ompiles the di�erent tra�
s.The des
ription explains brie�y what the tra�
 se
tion will be doing.Algebrai
 des
ription : des
ription[] +?Attributes: /The pattern de�nes a �ow between two nodes a

ording to a given tra�
 model.Algebrai
 des
ription : pattern[id]+Attributes:

• id identi�es in a unique way the tra�
 that is going to be de�ned.This de�nes what nodes are taking part in the �ows, spe
ifying whi
h one will be the sender and whi
hother will be the re
ipient.Algebrai
 des
ription : sr
/dst[asId, nodeId, protocolId, netInterface] +?Attributes:
• asId referen
es the autonomous system the node is taking part in and where the �ow has to bestreamed to.
• nodeId referen
es the node where the �ow will
ome from/will be re
eived.
• proto
olId referen
es whi
h proto
ol among those de�ned for the node will be used for that tra�
de�nition.
• netInterfa
e determines whi
h network interfa
e has to be used to vehi
ulate the tra�
.The a

epted values are w0, w1, ...The tra�
 model de�nes what is the type of �ows that will be used between nodes.Algebrai
 des
ription : tra�
Model[] +?Attributes: / 7

The CBR tra�
 model is one type of model that
an be used to de�nes �ows between nodes.Algebrai
 des
ription :
br[interval, intervalUnit, senderPort, packetSize, packetSizeUnit, rate, rateUnit, randomNAttributes:
• interval determines the interval between the sending of two pa
ket respe
ting the
onstant bit ratemodel.
• intervalUnit is the unit of the intervale previously de�ned.The a

epted values are ns, ms, s, h.
• senderPort de�nes the port at whi
h the sender has to send the tra�
.In
ase of multi-�ows from and to a single node, it has to de�ne whi
h port will be used to sendtra�
s and where it will re
eive others.
• pa
ketSize de�nes the size of the pa
ket to be vehi
ulated.
• pa
ketSizeUnit de�nes the size unit of those pa
kets.The a

epted values are byte, kbyte, Mbyte.
• rate de�nes the rate of the
ontant bite rate.
• rateUnit de�nes the unit of this rate.The a

epted values are bps, kbps, Mbps.
• randomNoise de�nes if random has to be simulated on the links, to simulate real
onditions (NS2ex
lusive).

8

3 Simulation CommandAn already �lled se
tion would look like this:
Figure 3: Simulation Command se
tion exampleThis se
tion handles the experiment timing and organizes the events that will o

ur.The main element, simulation
ommand is the one that will rule the experiment time.Algebrai
 des
ription : simulation
ommand[startT ime, stopT ime, startLog, stopLog]

+

?Attributes:
• startTime determines the time at whi
h the experiment will start.
• stopTime is the time when the experiment will stop.
• startLog determines the time when the logpro
ess needs to be started.Be sure you start the log after the beginning of the experiment.
• stopLog is the time at whi
h the log pro
ess will be stopped.Be sure you stop the log before the end of the experiment.This main time handler is
omposed of a single element named a
tions. This element
ompiles the dif-ferent a
tions (in a single element) that need to be set up to run the experiment.Algebrai
 des
ription : a
tions[] +?Attributes: /The a
tions
ontain at least a pair of elements : a start and a stop tra�
.Algebrai
 des
ription : start/stopTra�
[idT raffic, at] +∗Attributes:
• idTra�
 referen
es a tra�
 whi
h is detailed before in the XML do
ument, 2.
• at determines the time when the tra�
 is started/stopped when the experiment will be laun
hed.

9

4 TranslationOn
e the XML do
ument is �lled based on your obje
tive, you then need to transform this �le intoa spe
i�
 platform-dedi
ated �le. To enable the transformation, �rst download XSLT Xalan pro
essor(xalan-j_2_7_1-bin-2jars.tar.gz) on the website from the Apa
he foundation http://xml.apa
he.org/xalan-j/downloads.html.This pro
essor, written in Java, has the big advantage to be multiplatforms and to be free.Moreover, it
an be run by
ommand lines, like a s
ript.Then unzip the �le in the dire
tory of your
hoi
e. You need to import some libraries in your
lasspath before running the XSLT pro
essor.
• Under Windows, you
an
reate an automati
 s
ript whi
h takes 3 arguments:1. xml �le to transform,2. txt �le for the output,3. xsl �le for the transformation rules.This would look like this:java −
 l a s s pa th D: \ xalan−j_2_7_1\xalan . j a r ;D: \ xalan−j_2_7_1\xer
es Impl . j a r ;D: \ xalan−j_2_7_1\xml−ap i s . j a r ;D: \ xalan−j_2_7_1\ s e r i a l i z e r . j a r ;D: \ xalan−j_2_7_1\ samples \ xalansamples . j a rorg . apa
he . xalan . x s l t . Pro
ess −IN %1 −OUT %2 −XSL %3Under Linux, you
an use this line (as a s
ript if desired):java −j a r xalan . j a r −IN myXML. xml −XSL myXSL. x s l −OUT myResult . xxx

10

5 Perspe
tive and futureThis work was the very �rst step in our thesis and our engagement in the development of a tool and later,the implementation of a reputation proto
ol for the WILE-E testbed. The last step in this orientationwould have been the implementation of an XML GUI, so the use of the tool would have been made easier.Besides, a rough outline has been designed but not
ompleted. The GUI is based on the CASTADIVAGUI, and rearranged to in
lude all the elements required to perform an experiment on the OMF platformand on the NS2 simulator (for now). The sour
es
an be found at "# # #".However, this graphi
 interfa
e would also make it possible to determine the logi
al position for theNS2 platform. Indeed, the
urrent node lo
ation is hard
oded, and need to be
hanged manually. Thereason for this is the limited
omplex fun
tions that
an be designed in the XSL language. The positionhas to be
al
ulated
ommensurate with the wave s
ope and the
ommuni
ations between nodes whi
hhas been set. This need of
orre
tion to amend the
urrent situation has been started.

11

Bibliography

[Alt10] Altova. Xmlspy. http://www.altova.com/download.html, Last update: [9 Apr. 2010].

[AvD10] J.Visser A. van Deursen, P. Klint. Domain-speci�c languages: An annotated bibliography.
http://homepages.cwi.nl/~arie/papers/dslbib/, Last update [28 Mar. 2010].

[AY06] T.R. Audel and A. Yasinsac. On the credibility of manet simulations. Computer, IEEE
Computer society, July 2006.

[CC07] R.A. Calvo and J.P. Campo. Adding multiple interface support in ns2. University of
Cantabria, January 2007.

[cMFO10] cOntrol and J. Tsai Management Framework (OMF). Case study 3. http://omf.mytestbed.
net/wiki/omf/CaseStudy3, Last update: [9 Apr. 2010].

[cO09a] cOntrol and Management Framework (OMF). Glossary. http://omf.mytestbed.net/wiki/
omf/Glossary, Last update [20 Dec. 2009].

[cO09b] cOntrol and Management Framework (OMF). Introduction. http://omf.mytestbed.net/

wiki/omf/Introduction, Last update [20 Dec. 2009].

[cO09c] cOntrol and Management Framework (OMF). Omf inventory schema. http://omf.

mytestbed.net/wiki/1/InstallationInventory_, Last update [20 Dec. 2009].

[cO09d] cOntrol and Management Framework (OMF). User documentation. http://omf.mytestbed.
net/wiki/omf/Documentation, Last update [20 Dec. 2009].

[cO10a] cOntrol and Management Framework (OMF). Basic hellow world. http://mytestbed.net/
wiki/omf/Basic_Tutorial_Hello_World, Last update: [11 Apr. 2010].

[cO10b] cOntrol and Management Framework (OMF). addlink feature. http://omf.mytestbed.net/
wiki/omf/DefTopology, Last update: [9 Apr. 2010].

[cO10c] cOntrol and Management Framework (OMF). Installation inventory. http://omf.

mytestbed.net/wiki/1/InstallationInventory, Last update: [9 Apr. 2010].

[Con10] Dan Connolly. Xml tutorial, w3c. http://www.w3schools.com/xml/default.asp, Last up-
date: [10 Apr. 2010].

[DHR] A.Leonhardi D. Herrscher and K. Rothermel. Modeling computer networks for emula-
tion. Institute of Parallel and Distributed High-Performance Systems (IPVR) - University
of Stuttgart.

[Ecl10] Eclipse. Graphical modeling framework (gmf). http://www.eclipse.org/modeling/gmf/,
Last update: [9 Apr. 2010].

[Emu09] EmuLab. Presentation. http://www.emulab.net, Last update [20 Dec. 2009].

[Gar10] By: Lars Marious Garshol. Extended backus-naur form (ebnf). http://www.garshol.priv.
no/download/text/bnf.html, Last update: [10 Apr. 2010].

137

http://www.altova.com/download.html
http://homepages.cwi.nl/~arie/papers/dslbib/
http://omf.mytestbed.net/wiki/omf/CaseStudy3
http://omf.mytestbed.net/wiki/omf/CaseStudy3
http://omf.mytestbed.net/wiki/omf/Glossary
http://omf.mytestbed.net/wiki/omf/Glossary
http://omf.mytestbed.net/wiki/omf/Introduction
http://omf.mytestbed.net/wiki/omf/Introduction
http://omf.mytestbed.net/wiki/1/InstallationInventory_
http://omf.mytestbed.net/wiki/1/InstallationInventory_
http://omf.mytestbed.net/wiki/omf/Documentation
http://omf.mytestbed.net/wiki/omf/Documentation
http://mytestbed.net/wiki/omf/Basic_Tutorial_Hello_World
http://mytestbed.net/wiki/omf/Basic_Tutorial_Hello_World
http://omf.mytestbed.net/wiki/omf/DefTopology
http://omf.mytestbed.net/wiki/omf/DefTopology
http://omf.mytestbed.net/wiki/1/InstallationInventory
http://omf.mytestbed.net/wiki/1/InstallationInventory
http://www.w3schools.com/xml/default.asp
http://www.eclipse.org/modeling/gmf/
http://www.emulab.net
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html

[Gro03] Network Working Group. Ad hoc on-demand distance vector (aodv) routing. http://www.

faqs.org/rfcs/rfc3561.html, 2003.

[Hee10] D.van Heesch. Doxygen hompage. http://www.stack.nl/~dimitri/doxygen/, Last update:
[24 Apr. 2010].

[HP04] Yih-Chun Hu and Adrian Perrig. A survey of secure wireless ad hoc routing. IEEE Security
and Privacy, June 2004.

[HWP09] Andrew Hallagan, Bryan Ward, and L. Felipe Perrone. An experiment automation framework
for ns-3. Department of Computer Science - Bucknell University, 2009.

[IFAab04] Xudong Wang b Ian F. Akyildiz a and Weilin Wang b. Wireless mesh networks: a survey.
Department of Electrical and Computer Engineering, November 2004.

[JHM09] Carloas T. Calafate Jorge Hortelano, Juan-Carlos Cano and Pietro Manzoni. testing applica-
tions in manet environments through emulation. Technical University of Valencia, Department
of Computing Engineering, 2009.

[JS] Jangeun Jun and Mihail L. Sichitiu. The nominal capacity of wireless mesh networks. De-
partment of Electrical and Computer Engineering.

[Kid02] C. Kiddle. The anml guide. Department of Computer Science) - University of Calgary, 12
2002.

[net10] net�lter.org. Iptables. http://www.netfilter.org/, Last update: [5 August 2010].

[Nor10a] E. Nordstrom. Aodv-uu homepage. http://core.it.uu.se/core/index.php/AODV-UU/,
Last update: [22 Apr. 2010].

[Nor10b] E. Nordstrom. Sourceforge aodv-uu download. http://sourceforge.net/projects/

aodvuu/, Last update: [22 Apr. 2010].

[OHH02] J. Schmitt O. Heckmann, K. Pandit and M. Ho�mann. Milestone 2 letsqos scenario generation.
LETSQoS, 2002.

[OL09] Orbit-Lab. Publications. http://www.orbit-lab.org/wiki/Orbit/Documentation/

Publications, Last update [20 Dec. 2009].

[Oli07] F. Oliviero. On the E�ective Exploitation of Distributed Information for Cooperative Network
Security and Routing Optimization. PhD thesis, Universita degli Studi di Napoli Federico II
- Facolta di Ingegneria, 2007.

[OLS10] Optimized link state routing protocol. http://www.olsr.org, Last update: [9 Apr. 2010].

[OR07] Francesco Oliviero and Simon Pietro Romano. A reputation-based metric for secure routing
in wireless mesh networks. University of Naples, 2007.

[oS10] Michael Kay of Saxonica. Saxon, the xslt and xquery processor. http://saxon.sourceforge.
net/, Last update: [9 Apr. 2010].

[Pla09] PlanetLab. Presentation. http://www.planet-lab.org, Last update [20 Dec. 2009].

[RCG03] D.Emma R. Canonico and G.Ventre. An xml description language for web-based network
simulation. 2003.

[Rub10] Ruby. Ruby o�cial website. http://www.ruby-lang.org/en, Last update [28 Mar. 2010].

[Uni] Cornell University. Cia. http://www.law.cornell.edu/uscode/44/3542.html.

[Wei10] M. Weiser. Feature diagrams. http://www.oonumerics.org/tmpw00/weiser/node8.html,
Last update: [21 May 2010].

[xal10] The apache xalan project. http://xml.apache.org/xalan-j/, Last update: [9 Apr. 2010].

138

http://www.faqs.org/rfcs/rfc3561.html
http://www.faqs.org/rfcs/rfc3561.html
http://www.stack.nl/~dimitri/doxygen/
http://www.netfilter.org/
http://core.it.uu.se/core/index.php/AODV-UU/
http://sourceforge.net/projects/aodvuu/
http://sourceforge.net/projects/aodvuu/
http://www.orbit-lab.org/wiki/Orbit/Documentation/Publications
http://www.orbit-lab.org/wiki/Orbit/Documentation/Publications
http://www.olsr.org
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://www.planet-lab.org
http://www.ruby-lang.org/en
http://www.law.cornell.edu/uscode/44/3542.html
http://www.oonumerics.org/tmpw00/weiser/node8.html
http://xml.apache.org/xalan-j/

[XML10] Xml-nodeset. http://www.xml.com/pub/a/2003/07/16/nodeset.html, Last update: [9
Apr. 2010].

139

http://www.xml.com/pub/a/2003/07/16/nodeset.html

	Introduction
	Objectives
	Automatic experiment generation
	Implementation of a reputation protocol
	Thesis contents

	I Automatic generation
	State of Art
	Presentation of simulators, emulators and testbeds
	Simulators
	Network Simulator
	The other simulators

	Testbeds
	PlanetLab
	WILE-E
	Emulab

	Testbeds management framework
	OMF
	Castadiva

	Pros and cons
	Languages used by testbeds and simulators
	OMF language
	Network Simulator 2 language

	Network Simulator
	Introduction
	The components of NS2
	Why NS2 ?
	Related contribution
	NS Future

	The OMF Platform
	Introduction
	Why OMF ?
	OMF components
	Node handler aka the 'Experiment Controller'
	Node agent aka 'Resource Controller'
	Grid service aka 'Aggregate Manager'

	Process an OMF experiment
	Description of an OMF experiment
	Why this version of OMF?
	Database settings
	Our contribution

	The automatic generation
	What is XML?
	XML for this project
	XSL
	Completeness of our work
	Related works
	XML Description Language for Web-based Network Simulation
	LETSQoS scenario generator
	Modeling Computer Networks for Emulation
	Another Modeling language
	Conclusion

	Analysis and comparison with other projects
	LETSQoS scenario generator
	Modeling Computer Networks for Emulation

	Our XSD solution
	Result of XSD modifications

	Performed experiments
	OMF difficulties
	Output process failed
	Infernal process loop
	Version obsolescence problems

	Remarks
	Node configuration
	Test of the addLink feature
	Node location in NS2

	XSLT processor
	XSL Transformation process
	Methodology
	Contribution

	Limits and Perspectives

	II Reputation Protocol
	State of the art
	Types of networks
	Mesh Network
	Wireless Mesh Network
	Routing protocol in WMN

	Network security requirements
	Contextualization
	Secure Routing Protocol for Wireless Mesh Networks

	AODV-REX: A secure routing protocol
	AODV
	Description
	Principle

	Reputation EXtension - Mechanisms used by AODV-REX
	Local reputation
	Global reputation and packet reputation
	Reputation model and Watchdog module
	Reputation calculation
	Consequence on metrics and path selection

	AODV-FUUREX
	AODV-UU
	AODV-FUUREX: a modification of AODV-UU
	Released versions of AODV-UU
	Problems encountered during development process
	The sniffer
	Path selection
	Theoritical limits

	Methodology

	Experimentation
	AODV-UU vs AODV-FUUREX
	Reputation results and consequences on the routing table

	Limits and Perspectives
	Unresolved routing issues
	RREP propagation
	Single spot of juncture
	Preventing RREQ cycles

	Thesis conclusion
	Appendix
	The modifications made to the XSD files from XDLWNS
	network Description (Fig 5.11, Fig 5.12)
	Traffic (Fig 5.15)
	SimulationCommand (Fig 5.19)
	Time representation in the XML scenario description
	Problem of granularity and concepts

	Packet processing in AODV-UU
	Main structures used by AODV-FUUREX
	Routing table
	Reputation table
	Ack-packets table

	AODV-FUUREX Experiment
	validity of our XML tool

