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Abstract

Route and service discovery in wireless multi-hop networks applies �ooding or gossip
routing to disseminate and gather information. Since packets may get lost, retransmissions
of lost packets are required. In many protocols the retransmission timeout is �xed in the
protocol speci�cation. In this technical report we demonstrate that optimization of the
timeout is required in order to ensure proper functioning of �ooding schemes. Based
on an experimental study, we apply percolation theory and derive analytical models for
computing the optimal restart timeout. To the best of our knowledge, this is the �rst
comprehensive study of gossip routing, percolation, and restart in this context.
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CHAPTER 1

Motivation

1.1 Introduction and Current State

Flooding is used by many network protocols to disseminate information, discover and
advertise services, or to discover routes. Wireless multi-hop networks are inherently un-
reliable and packets can be lost. Furthermore, with gossip-based protocols, nodes will
drop packets probabilistically [1]. Therefore, the process may fail to reach all nodes or
a speci�c destination. Consequently, protocols employ retransmissions to ensure success,
sending the same information again after a timeout: the process restarts1.

This approach is applied by many reactive routing protocols like AODV [2] or DSR [3].
Other protocols send information periodically, i.e., the timeout happens continuously. For
example, OLSR [4] �oods Topology Control messages every 5 s by default so that all
nodes have the required link state information. Although there is no success that can
be signaled, e.g. by a reply, the timing is nevertheless crucial for the performance. As
routing information is only stored for a certain holding time, packets should be received
with a minimum rate or otherwise routes might not be available at particular times for
some nodes.

In most protocols, the timeouts are static, pre-con�gured values that are de�ned in
the protocol speci�cation. These values are selected with a particular network size, di-
ameter, topology as well as tra�c and mobility patterns in mind, and do not adapt to
changing environments. Furthermore, since there is often limited information about how
the parameters were derived, manual adaptation is di�cult.

Protocols either specify the deadline to complete the task or the maximum number of
restarts. With an inappropriate timeout value protocol performance will be sub-optimal.
These issues are not of theoretical nature but can be experienced in the real world, as we
will show. For example, in an experimental study of DSR we observed many failed route
discoveries [5] and thus high delays in higher level protocols. In these experiments and
in this technical report we use the DES-Testbed, a multi-hop IEEE 802.11 indoor and
outdoor network deployed on di�erent �oors of multiple buildings throughout our campus.
The observed behavior was unexpected as the testbed topology is fairly densely meshed [6].
Furthermore, as we have shown in [7], the performance of �ooding is dependent on the
protocol parameters and also on uncontrollable environmental parameters as well as on
load-dependent e�ects. In fact, in wireless multi-hop networks restarts are common and
not rare events.

1Note that we use retransmission, restart, and retry synonymously.
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4 Chapter 1. Motivation

In this technical report we study the e�ect of the restart timeout on an abstract
�ooding protocol that provides the same parameters as common protocols and allows
us to focus on the �ooding process. Existing protocols can be mapped to this abstract
protocol, and optimizations obtained in its evaluation can be transferred back. We employ
an empirical study and draw upon percolation theory and restart theory to evaluate the
e�ect of the restart timeout and discuss analytical models for online optimization.

1.2 Structure

This publication is structured as follows. We provide the theoretical background to per-
colation and restart theory in Chapter 2. In Chapter 3, we study the e�ect of the restart
timeout in a gossip routing protocol on the reachability. We give an outlook on our future
work in online optimization in Chapter 4 and discuss open issues. Chapter 5 concludes
the technical report.



CHAPTER 2

Related Work and Background

Gossip routing uses the gossiping model of spreading information: Nodes forward an
incoming packet to their neighbors with a given forwarding probability p, or they drop
the packet with 1 − p [8]. If the forwarding probability is 1, gossip routing is equivalent
to �ooding.

2.1 Gossip Routing and Percolation

Gossip routing is often referred to as a percolation problem [9]. Percolation theory fo-
cuses on the research of spatial random processes motivated by phenomenona in the real
world. One example is percolation of water through porous material where cavities are
independently and identically distributed with probability p. The central problem is to
determine the critical probability pc when percolation occurs, i.e., a path from the top to
the bottom of the material exists with probability θ(p) = 1. The system is either in a
sub-critical or a super-critical state and experiences a phase transition at pc. The critical
value depends on the graph geometry as well as on the percolation model and has been
determined analytically only for very few settings, e.g., the bond percolation in the square
lattice [10]. Lattices are often studied where sites are either open with probability p or
closed with probability 1−p and adjacent open sites create open clusters. This represents
the so called site model that is depicted in the example in Figure 2.1a. In a second model,
called bond model, bonds between sites of a lattice are either randomly open or closed as
depicted in the example in Figure 2.1b. Both models can also be combined in the bond-
site model [11] with two independent probabilities pb and ps. The random percolation
process selects a subset of the bonds or sites from a graph.

Percolation theory may be applied to gossip routing by modeling nodes as sites and
wireless links as bonds. However, so far no speci�c mapping of the random processes
has been proposed. Nodes randomly drop or forward the packets, and open sites may
represent nodes that have received the packet from a particular source. Packet loss may
be modeled by the bond probability pb. When the probabilities are larger than their
critical values, percolation theory predicts that percolation occurs, i.e. high reachability
can be achieved. The critical value derived from percolation theory may then be applied to
reduce the number of forwarded packets, since for pc < p < 1.0, reachability is maximized
and the number of packets is reduced in comparison to �ooding.

5



6 Chapter 2. Related Work and Background

(a) Site model: Neighboring
sites are connected if they are oc-
cupied

(b) Bond model: Neighboring
sites are connected by bonds

Figure 2.1: Examples for the percolation process and two percolation models. The per-
colation process randomly selects (�occupies� or �creates�) sites or bonds.

2.2 Restart Theory

The restart method is a common approach to minimize the time until a particular task is
successfully completed [12]. Applications include downloads, distributed queries, and
TCP connections. Restart may reduce mean and variance of response times if the
response-time distribution has high variance, but restarts occurring too often may re-
sult in overload.

Although the goal is similar to the application scenarios described in the introduction,
there are some di�erences that require extension of the original approach. First, in the
scenarios considered here there is typically no acknowledgment of task completion. Con-
sequently, a response-time distribution cannot be obtained easily. Second, with restart
one usually assumes independent and identically distributed (iid) trials. With chang-
ing parameters, interference, and mobility, this assumption is often not justi�ed. Third,
restart is built on the assumption that each new trial aborts the previous one, discarding
all work previously performed. With routing protocols, however, a retransmission may
reach new nodes, while the ones reached before will keep their data. This means that
retransmissions are additive.



CHAPTER 3

Impact of the Restart Timeout

In the following we study the e�ect of the restart timeout on reachability under a �xed
deadline T . We de�ne reachability as the fraction of nodes reached for a given timeout τ,
i.e.

Rτ =
#reached

#nodes

Other metrics, such as the time until the maximum number of destinations is reached or
the required number of retries will be considered in future work.

The application behind our study is an abstract �ooding protocol in the DES-Testbed [6],
a wireless multi-hop network of 107 nodes spread over the campus of Freie Universität
Berlin. We consider an undirected case without any signaling of success or failure, where
packets are not addressed to a particular node and the process is continuous. By varying
the forwarding probability p, the payload size B, the restart interval τ, the number of
sources N, and the deadline T , we can use this scenario to model tra�c characteristics of
a wide range of routing protocols. All symbols that are used in this technical report are
summarized in Table 3.1.

3.1 Experimental Evaluation

We start with an experimental evaluation of reachability without restart and with di�erent
restart intervals. To this end, we ran a set of experiments in the DES-Testbed, measuring
reachability after a given deadline T .

First, we consider reachability without restart (R∞) with deadline T = 40 s. Results
for di�erent con�gurations are shown in Figure 3.1. Note that reachability is lower than
1.0 for all con�gurations. It further decreases with decreasing forwarding probability p
and increasing number of sources. While the former is directly related to the forwarding
probability, the latter can be explained by collisions or increased noise levels due to the
increased number of packets in the network [7].

In order to study the e�ect of the restart interval τ on reachability, we let each source
emit the same packet every τ seconds. For deadline T = 15 s we set N = 50 and increase
τ from 0.05 to 5 s. For improved legibility, we split the results into the two plots in
Figure 3.2. The left-hand plot shows reachability for τ ∈ [0.05, 0.2] with step-size 0.025 s,
while the right-hand plot gives measurements for τ ∈ [0.02, 5] with a coarser step-size of
0.2 s. Observe that reachability grows as τ increases until it reaches a plateau at around
τ = 0.2 s. For all forwarding probabilities, the reachability starts to decrease again at

7



8 Chapter 3. Impact of the Restart Timeout

Symbol Description

B Payload size
E[S] Expected network sojourn time of a packet
f Suppression factor
k Parameter of the binomial distribution
l Number of successes / arriving packets
m Load threshold
N Number of simultaneous sources
p Forwarding probability
pc Critical probability
qd Loss probability independent of τ
qe Probability exactly one packet arriving
qo Loss probability due to overload
qr Reachability without restart
qs Probability of at least one packet arriving
T Deadline
R Reachability
τ Restart interval

Table 3.1: List of the used mathematical symbols

some τ, with higher forwarding probabilities having a longer plateau. The increase and
decrease can be explained as follows: For small τ, each node emits a large number of
messages, thereby causing collisions and an increased noise level throughout the network.
Both factors result in a decreased probability of successful message transmission [7]. On
the other hand, large τ translate to a small number of retries before the deadline, resulting
in lower reachability. Both e�ects will be explored in more formal terms in the following
sections. Note that the forwarding probability has di�erent e�ects on the left-hand and
right-hand sides of the reachability curve. For small timeouts, lower forwarding probability
translates to a constant o�set, while with large timeouts smaller forwarding probabilities
give a lower drop-o� point and steeper decrease in reachability.

Summarizing the experimental results, we can state that there exists a range of restart
values τ that maximize reachability. Restarting too late does not improve reachability,
while restarting too early reduces it due to increased interference.

3.2 Percolation Theory

Considering reachability in the testbed as a percolation problem, Figure 3.1 illustrates
that the network does not percolate and that there is no phase transition This can be
explained by the �nite size and the unreliability of the network.

To exclude collisions and interferences as possible sources of this e�ect, we run graph-
based gossip routing simulations using the testbed's topology both with and without
lossy and directed links based on the data that was measured in a previous study [6].
Graph-based simulation means that interference on the medium are not modeled. The
probability to successfully transmit a packet over an edge, i.e., link between two nodes is
determined by the packet delivery ratio that was achieved for this pair of nodes in the
testbed. Packet collisions are not possible as each packet is evaluated independently. In
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Figure 3.1: Reachability without restart in the testbed with di�erent forwarding proba-
bility p and di�erent numbers of simultaneous sources N (payload size B = 0 bytes).
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Figure 3.2: Reachability in the testbed after deadline T = 15 s with restart interval τ
(N = 50, payload size B = 0). Each graph shows the reachability that was achieved with
a particular forwarding probability p.

the simulation each node emitted 100 packets that were forwarded by the gossip routing
protocol.

As shown in Figure 3.4, there is also no (rapid) phase transition but the more the
particular scenario abstracts from speci�c properties of the topology, i.e., unidirectionality
or packet losses, the more the results match the expectations based on the percolation
models. Nevertheless, the graph for the directed, lossy topology that describes the mean
reachability achieved from all nodes matches the results from the testbed that can be
achieved when 10 (or less) sources send simultaneously but the data does not match with
the results of larger numbers of sources. This corroborates the measured results and
illustrates that interference and collisions have to be included in the percolation model to
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Figure 3.3: Reachability in the testbed after k restarts (N = 50, τ = 5 s, and B =
0 bytes).

derive accurate predictions.

We propose a suppressed bond-site model [13] where the site probability ps suppresses,
i.e., decreases the bond probability pb. The forwarding probability p represents the site
percolation probability ps in this model. The probability pb for open bonds models
successful transmissions and decreases when the number of open sites, i.e. transmitting
nodes increases above a particular threshold m by a factor given by function f

f(ps) =

{
1, if vt(ps) < m

c(vt(ps)), else

c(vt(ps)) → [0, 1),

where vt(ps) is the mean number of transmitting nodes in the interference range when
forwarding probability p = ps is used and c(vt(ps)) represents the probability of a packet
loss due to collisions or increased noise level. Thus the lower reachability for small τ
(higher load) as shown in Figure 3.2 can be modeled by the proposed model. As we see
in Chapter 4, the number of transmitting nodes is actually a too abstract metric when
other parameters change. This model will be further studied in future work.

Yet there remains one particular di�erence between gossip routing and percolation
models. Although the system is in the sub-critical state, we nevertheless can achieve high
reachability when restarts are involved, as shown in Figure 3.3. Each succeeding packet
may be received by a di�erent set of nodes. This means that with each trial di�erent
(connected) subgraphs containing the source are selected, whose union eventually becomes
a subgraph that contains the same vertices as the original graph. This phenomenon is
not considered in percolation theory. Note that Figure 3.3 illustrates that the reachability
gain decreases with each restart. We expect to �nd a power-law relationship, but this is
left as future work.
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Figure 3.4: Graph-based simulation of gossip routing using the DES-Testbed's topology.

3.3 Restart Theory

We now derive an abstract analytical model for the e�ect of the restart timeout τ on
the reachability Rτ. The model is based on the behaviour of the system, as seen by an
arbitrary node sending packets.

First, note that each packet transmission has a certain success probability qr and thus
can be considered a Bernoulli trial. For a single trial, qr is equal to the reachability without
restart, R∞. Our measurements demonstrated that the probability of successful packet
transmission depends on the network load, which in turn depends on τ. Furthermore,
without retransmissions the probability of successful transmission is lower than 1. Let
qo(τ) be the probability of loss due to overload or interference when the restart interval
is equal to τ. Let qd be the probability of loss due to in�uences independent of τ. Then,
the success probability is

qr(τ) = (1− qo(τ))(1− qd).

Second, restart with restart interval τ and deadline T implies k = dT/τe Bernoulli
trials, each with success probability qr. Assuming constant qd in the interval up to T , the
probability of l successes (i.e. l messages arriving) follows a Binomial distribution with
parameters k and qr and probability mass function

f(l, k, qr(τ)) =

(
k

l

)
qr(τ)

l(1− qr(τ))
k−l,

and thus the probability of at least one message arriving is

qs(τ) = 1− f(0, k, qr(τ)) = 1− (1− qr(τ))
k

= 1− f(0, T/τ, qr(τ)) = 1− (1− qr(τ))
T/τ.

Note that qs(τ) expresses reachability with restart interval τ, i.e. Rτ = qs(τ). We might
also be interested in the probability of exactly one message arriving, which is

qe(τ) = f(1, T/τ, qr(τ)) = T/τqr(τ)(1− qr(τ))
T/τ−1.
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Using an upper-bound approximation, the same approach may be followed if we permit
slight variations in qd in the interval up to the deadline T . However, it requires heavier
notation and is omitted here.

In order to obtain the probability of no loss due to overload, 1−qo(τ), we approximate
the network as an M|G|∞ queue, i.e., we assume that the arrival process is Poisson,
network sojourn times can be described by a general distribution with expectation E[S],
and all arriving jobs (messages) are served (transmitted) in parallel (cf. [14]). We model
overload by a threshold m > 0 for the queue length. If there are at least m jobs in the
queue, jobs will still be served (i.e. the queue length is not bounded and the queue does
not change its behavior), but service is faulty, rendering the completed jobs useless. This
models the overload situation where messages are still being transmitted, but rendered
unusable by collisions and noise, as described above. Then probability pi(τ) of a queue
length i given a restart interval τ is [14]

pi(τ) =
e−ρ(τ)

i!
ρ(τ)i,

where ρ(τ) = λ(τ)E[S] is the load of the queue, and λ(τ) = N/τ is the rate of the arrival
process for N nodes performing restart. Consequently, the probability of no overload is

(1− qo(τ)) =

m−1∑
i=0

pi(τ).

Figure 3.5 shows reachability derived from the analytical model, using parameters close
to those observed in the testbed. The predicted behavior for qs (at least one packet arrives)
closely matches that observed in the measurements (Figure 3.2): For small timeout values
τ, reachability is low, as τ grows it reaches a plateau, before dropping again. Note,
however, that the decrease for low τ is much more drastic than in the measurements.
This is due to two pessimistic assumptions: First, in the model all simultaneous messages
contribute to overload. This is not the case in the real network, where messages only
cause overload if they are sent within the same interference range. Second, the model
assumes that for load larger than the threshold all messages are lost. In the real network
some messages might still be submitted successfully, and, furthermore, message loss due
to overload might itself alleviate the overload situation.

Figure 3.5 also shows the probability of exactly one packet arriving. Although qe
is typically not relevant in a real network, this curve provides an engineering rule for
selecting a timeout that maximizes reachability while avoiding network load in cases
where there is a wide plateau in the curve for qs (i.e. a large range of optimal τ): As τ
grows, qe(τ) reaches a �rst maximum, then drops, before reaching a second maximum and
dropping again. The valley between both maxima corresponds to the case where more
than one packet arrives. Since for timeout values to the left of this valley there are more
packets transmitted, but still only one arrives, the maximum to the left implies loss due
to overload. Consequently, the right-hand maximum (larger timeout values) should be
chosen. When optimizing qs, one should thus choose a timeout value from the right-hand
side of the interval maximizing reachability.
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Figure 3.5: Reachability according to the analytical model (N = 50, qd = 0.7, E[S] =
0.05 s,m = 5, T = 15 s).
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CHAPTER 4

Future Work

4.1 Algorithms for Timeout Optimization

In the previous sections we observed that reachability depends on the restart timeout
τ, and that there exists a range of values for τ for which reachability is maximal. As
illustrated in Figure 4.1 and Figure 4.2, in practice the optimal timeout depends on a
wide range of parameters, such as the deadline of the protocol, the forwarding probability,
the number of sources and the payload size. Note that the graph for p = 0.8 in Figure 3.3
actually is a vertical slice through Figure 4.2, while the graph for p = 0.8 in Figure 3.2
is a horizontal slice through Figure 4.2, i.e., for a speci�c deadline that is application
dependent.

Our current work focuses on developing distributed optimization algorithms that pro-
vide an optimal timeout τ at run-time, based on observations of the network. One such
algorithm follows from the analytical model presented in Section 3.3, which allows straight-
forward computation of the optimal timeout once the parameters are known. Then, the
main problem is the estimation of these parameters at run-time as distributed network
monitoring is a major challenge. Similarly, the application of the suppressed bond-site
percolation model also requires better estimation of network parameters.

The central problem is that the network state can only be estimated based on asyn-
chronous and unreliable communication between the nodes and that a node cannot easily
di�erentiate between a node that has left the network, e.g., it was switched of and be-
tween a node that cannot be reached anymore due to an overload situation. Presumably,
speci�c invariants have to be assumed, e.g., that the run-time algorithm will always keep
the network from overloading so that nodes that join of leave the network can either
reliably estimate the network state or advertise their intentional leaving. Nevertheless,
the estimation of the network state will have to rely on observations over a particular
observation period and advertisement of the gathered information which introduces ad-
ditional problems. For example, the period has to be brief enough that the network state
can be considered stable during the observation time yet a su�ciently large number of
received (and sent) packets are required for �ne-granular estimations. As the rate of ad-
vertisements, probe packets, normal data packets cannot be increased in�nitely due to
the possible overloading of the network, only limited and partial information might be
available.

15
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Figure 4.1: Pseudo-color plot of reachability in the testbed for deadlines T ≤ 40s on the
time axis and restart interval τ for di�erent payloads B and forwarding probabilities p.
High reachability is represented by red color and low by blue. (N = 90)

4.2 Model Extension

The restart theory based model discussed in Section 3.3 can be used to model the reach-
ability that is achieved with gossip routing but one particular di�erence remains. The
expected reachability is shown as a function of the network load in Figure 4.3. The solid
blue graph represents the expectation based on the model whereas the dashed red graph
shows the achieved reachability in a real-world network. The area between the two graphs
represents this modeling error.

For particular con�gurations of the gossip routing protocol, i.e., the forwarding prob-
ability, deadline, and payload size the network will be overloaded. In this state packet
collisions and interference become signi�cant so that the communication is disturbed and
the reachability decreases. In the restart theory based model that is based on theM|G|∞
queue, all jobs are faulty when the load exceeds the threshold m and the reachability im-
mediately drops to zero. Of course, the overload state does not induce a phase transition
in wireless multi-hop networks. As depicted in Figure 4.3, the decrease in reachability in-
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Figure 4.2: Pseudo-color plot of reachability in the testbed for deadlines T ≤ 40s and
restart intervals τ. Red implies high reachability. (N = 50, B = 0, p = 0.8)

Figure 4.3: Deviation of the models when the network becomes overloaded at thresholdm.
The solid blue graph represents the expectation based on the model whereas the dashed
red graph shows the achieved reachability of the gossip routing.

creases the more the network load increases beyond the threshold. This can be explained
by the topology of the network. Depending on the topology, packets may not reach spe-
ci�c areas that experience higher load than the others. For example, this may be an
e�ect of a higher average node degree in the area and therefore increased interference
and increased probability for packet collisions. Alternatively, if the load is uniform in the
network, packet transmission between the source at its neighbors may still be possible to
some extent but the forwarding to the 2-hop neighbors may fail as each hop increases the
chance that a packet gets lost. In this scenario the load acts as a negative ampli�cation
factor on the link PDR, similar to the suppression factor f as discussed for the suppressed
percolation model in Section 2.1.

Thus, the model has to be extended to provide a parameter to con�gure respectively
model the slope of the reachability in the overloaded network. The monitoring of the
network state and the derivation of the required parameter(-s) is a non-trivial task as
discussed in the previous section.
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CHAPTER 5

Conclusion

In this technical report we studied information distribution in wireless multi-hop networks
based on �ooding and gossip routings. As we have con�rmed in our empirical study,
retransmissions are required to maximize reachability. We have shown that reachability
with a deadline can be maximized by choice of an optimal restart timeout. The negative
e�ect of too high or low restart timeouts was measured in experiments. We proposed a
percolation model to include the e�ects of the shared medium and an analytical restart
model for predicting reachability for a given timeout. Finally, we sketched a method
for distributed on-line optimization of reachability by choice of the timeout and discussed
open problems. Gossip routing, percolation, and restart were studied in a novel way based
on experiments in a testbed, graph-based simulation, and an analytical approach.
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