15,220 research outputs found

    Field Effect Transistor Nanosensor for Breast Cancer Diagnostics

    Full text link
    Silicon nanochannel field effect transistor (FET) biosensors are one of the most promising technologies in the development of highly sensitive and label-free analyte detection for cancer diagnostics. With their exceptional electrical properties and small dimensions, silicon nanochannels are ideally suited for extraordinarily high sensitivity. In fact, the high surface-to-volume ratios of these systems make single molecule detection possible. Further, FET biosensors offer the benefits of high speed, low cost, and high yield manufacturing, without sacrificing the sensitivity typical for traditional optical methods in diagnostics. Top down manufacturing methods leverage advantages in Complementary Metal Oxide Semiconductor (CMOS) technologies, making richly multiplexed sensor arrays a reality. Here, we discuss the fabrication and use of silicon nanochannel FET devices as biosensors for breast cancer diagnosis and monitoring

    Influence of microphone housing on the directional response of piezoelectric mems microphones inspired by Ormia ochracea

    Get PDF
    The influence of custom microphone housings on the acoustic directionality and frequency response of a multiband bio-inspired MEMS microphone is presented. The 3.2 mm by 1.7 mm piezoelectric MEMS microphone, fabricated by a cost-effective multi-user process, has four frequency bands of operation below 10 kHz, with a desired first-order directionality for all four bands. 7Ă—7Ă—2.5 mm3 3-D-printed bespoke housings with varying acoustic access to the backside of the microphone membrane are investigated through simulation and experiment with respect to their influence on the directionality and frequency response to sound stimulus. Results show a clear link between directionality and acoustic access to the back cavity of the microphone. Furthermore, there was a change in direction of the first-order directionality with reduced height in this back cavity acoustic access. The required configuration for creating an identical directionality for all four frequency bands is investigated along with the influence of reducing the symmetry of the acoustic back cavity access. This paper highlights the overall requirement of considering housing geometries and their influence on acoustic behavior for bio-inspired directional microphones

    Fluorescent nanoparticles for sensing

    Full text link
    Nanoparticle-based fluorescent sensors have emerged as a competitive alternative to small molecule sensors, due to their excellent fluorescence-based sensing capabilities. The tailorability of design, architecture, and photophysical properties has attracted the attention of many research groups, resulting in numerous reports related to novel nanosensors applied in sensing a vast variety of biological analytes. Although semiconducting quantum dots have been the best-known representative of fluorescent nanoparticles for a long time, the increasing popularity of new classes of organic nanoparticle-based sensors, such as carbon dots and polymeric nanoparticles, is due to their biocompatibility, ease of synthesis, and biofunctionalization capabilities. For instance, fluorescent gold and silver nanoclusters have emerged as a less cytotoxic replacement for semiconducting quantum dot sensors. This chapter provides an overview of recent developments in nanoparticle-based sensors for chemical and biological sensing and includes a discussion on unique properties of nanoparticles of different composition, along with their basic mechanism of fluorescence, route of synthesis, and their advantages and limitations

    Variable temperature-scanning hall probe microscopy with GaN/AlGaN two-dimensional electron gas (2DEG) micro hall sensors in 4.2-425K range using novel quartz tuning fork AFM feedback

    Get PDF
    In this report, we present the fabrication and variable temperature (VT) operation of Hall sensors, based on GaN/AlGaN heterostructure with a two-dimensional electron gas (2DEG) as an active layer, integrated with Quartz Tuning Fork (QTF) in atomic force-guided (AFM) scanning Hall probe microscopy (SHPM). Physical strength and wide band gap of GaN/AlGaN heterostructure makes it a better choice to be used for SHPM at elevated temperatures, compared to other compound semiconductors (AlGaAs/GaAs and InSb), which are unstable due to their narrower band gap and physical degradation at high temperatures. GaN/AlGaN micro Hall probes were produced using optical lithography and reactive ion etching. The active area, Hall coefficient, carrier concentration and series resistance of the Hall sensors were ~14m x 14m, 10m7/G at 4.2K, 6.3 x 10^12cm-2 and 12k7 at room temperature and 7m7/G, 8.9 x 10^12cm-2 and 24k7 at 400K, respectively. A novel method of AFM feedback using QTF has been adopted. This method provides an advantage over STM feedback, which limits the operation of SHPM the conductive samples and failure of feedback due to high leakage currents at high temperatures. Simultaneous scans of magnetic and topographic data at various pressures (from atmospheric pressure to high vacuum) from 4.2K to 425K will be presented for different samples to illustrate the capability of GaN/AlGaN Hall sensors in VT-SHP

    Optimization of a Thermal Flow Sensor for Acoustic Particle Velocity Measurements

    Get PDF
    In this paper, a thermal flow sensor consisting of two or three heated wires, the Microflown, is treated for application to acoustic measurements. It is sensitive to flow ("particle velocity"), contrary to conventional microphones that measure acoustic pressures. A numerical analysis, allowing for detailed parametric studies, is presented. The results are experimentally verified. Consequently, improved devices were fabricated, and also sensors with a new geometry consisting of three wires, instead of the usual two, of which the central wire is relatively most heated. These devices are the best performing Microflowns to date with a frequency range extending from 0 to over 5 kHz and a minimum detectable particle velocity level of about 70 nm/s at 2 to 5 kHz (i.e., 3 dB PVL or SPL, corresponding to a pressure of 3.1/spl middot/10/sup -5/ Pa at a free field specific acoustic impedance)

    Novel approaches to the construction of miniaturized analytical instrumentation

    Get PDF
    This paper focuses on the design, construction, preliminary testing, and potential applications of three forms of miniaturized analytical instrumentation. The first is an optical fiber instrument for monitoring pH and other cations in aqueous solutions. The instrument couples chemically selective indicators that were immobilized at porous polymeric films with a hardware package that provides the excitation light source, required optical components, and detection and data processing hardware. The second is a new form of a piezoelectric mass sensor. The sensor was fabricated by the deposition of a thin (5.5 micron) film of piezoelectric aluminum nitride (AIN). The completed deposition process yields a thin film resonator (TFR) that is shaped as a 400 micron square and supports a standing bulk acoustic wave in a longitudinal mode at frequencies of approx. 1 GHz. Various deposition and vapor sorption studies indicate that the mass sensitivity of the TFR's rival those of the most sensitive mass sensors currently available, though offering such performance in a markedly smaller device. The third couples a novel form of liquid chromatography with microlithographic miniaturization techniques. The status of the miniaturization effort, the goal of which is to achieve chip-scale separations, is briefly discussed
    • …
    corecore