114,675 research outputs found

    Link Prediction in Complex Networks: A Survey

    Full text link
    Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labelled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.Comment: 44 pages, 5 figure

    Graph analysis of functional brain networks: practical issues in translational neuroscience

    Full text link
    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires a know-how of all the methodological steps of the processing pipeline that manipulates the input brain signals and extract the functional network properties. On the other hand, a knowledge of the neural phenomenon under study is required to perform physiological-relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes

    Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery

    Get PDF
    Background: Automated phenotyping technologies are continually advancing the breeding process. However, collecting various secondary traits throughout the growing season and processing massive amounts of data still take great efforts and time. Selecting a minimum number of secondary traits that have the maximum predictive power has the potential to reduce phenotyping efforts. The objective of this study was to select principal features extracted from UAV imagery and critical growth stages that contributed the most in explaining winter wheat grain yield. Five dates of multispectral images and seven dates of RGB images were collected by a UAV system during the spring growing season in 2018. Two classes of features (variables), totaling to 172 variables, were extracted for each plot from the vegetation index and plant height maps, including pixel statistics and dynamic growth rates. A parametric algorithm, LASSO regression (the least angle and shrinkage selection operator), and a non-parametric algorithm, random forest, were applied for variable selection. The regression coefficients estimated by LASSO and the permutation importance scores provided by random forest were used to determine the ten most important variables influencing grain yield from each algorithm. Results: Both selection algorithms assigned the highest importance score to the variables related with plant height around the grain filling stage. Some vegetation indices related variables were also selected by the algorithms mainly at earlier to mid growth stages and during the senescence. Compared with the yield prediction using all 172 variables derived from measured phenotypes, using the selected variables performed comparable or even better. We also noticed that the prediction accuracy on the adapted NE lines (r = 0.58–0.81) was higher than the other lines (r = 0.21–0.59) included in this study with different genetic backgrounds. Conclusions: With the ultra-high resolution plot imagery obtained by the UAS-based phenotyping we are now able to derive more features, such as the variation of plant height or vegetation indices within a plot other than just an averaged number, that are potentially very useful for the breeding purpose. However, too many features or variables can be derived in this way. The promising results from this study suggests that the selected set from those variables can have comparable prediction accuracies on the grain yield prediction than the full set of them but possibly resulting in a better allocation of efforts and resources on phenotypic data collection and processing

    Are property prices non-linear? An investigation of the behaviour of US REITs and UK property company shares

    Get PDF
    Linear models of market performance may be misspecified if the market is subdivided into distinct regimes exhibiting different behaviour. Price movements in the US Real Estate Investment Trusts and UK Property Companies Markets are explored using a Threshold Autoregressive (TAR) model with regimes defined by the real rate of interest. In both US and UK markets, distinctive behaviour emerges, with the TAR model offering better predictive power than a more conventional linear autoregressive model. The research points to the possibility of developing trading rules to exploit the systematically different behaviour across regimes

    Initial evidence for the criterion-related and structural validity of the long versions of the direct and meta-perspectives of the Coach-Athlete Relationship Questionnaire

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Taylor & Francis.The aim of the present study was to develop and initially validate a longer version of the direct (Jowett & Ntoumanis, 2004) and meta-perspectives (Jowett, 2009a, 2009b) of the Coach-Athlete Relationship Questionnaire (CART-Q). In Study 1, instruments (e.g. questionnaires, scales, and inventories) that have been used to assess relationship quality in the broader psychological literature were examined and items potentially relevant to the coach-athlete relationship were identified. The content validity of the identified items was then assessed using expert panels. A final questionnaire was subsequently prepared and administered to 693 participants (310 coaches and 383 athletes). Confirmatory factor analysis was employed to assess the multidimensional nature of the questionnaire based on the 3Cs (i.e. closeness, commitment, and complementarity) model of the coach-athlete relationship. The findings indicated that the direct and meta-perspective items of the long versions of the CART-Q approached an adequate data fit. Moreover, evidence for the internal consistency and criterion validity of the new instruments was also obtained. In Study 2, the newly developed measure was administered to an independent sample of 251 individuals (145 athletes and 106 coaches). Further statistical support was gained for the factorial validity and reliability of the longer version of the CART-Q

    Place typologies and their policy applications: a report prepared for the Department of Communities and Local Government

    Get PDF
    • …
    corecore