4,034 research outputs found

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    Geospatial Semantics

    Full text link
    Geospatial semantics is a broad field that involves a variety of research areas. The term semantics refers to the meaning of things, and is in contrast with the term syntactics. Accordingly, studies on geospatial semantics usually focus on understanding the meaning of geographic entities as well as their counterparts in the cognitive and digital world, such as cognitive geographic concepts and digital gazetteers. Geospatial semantics can also facilitate the design of geographic information systems (GIS) by enhancing the interoperability of distributed systems and developing more intelligent interfaces for user interactions. During the past years, a lot of research has been conducted, approaching geospatial semantics from different perspectives, using a variety of methods, and targeting different problems. Meanwhile, the arrival of big geo data, especially the large amount of unstructured text data on the Web, and the fast development of natural language processing methods enable new research directions in geospatial semantics. This chapter, therefore, provides a systematic review on the existing geospatial semantic research. Six major research areas are identified and discussed, including semantic interoperability, digital gazetteers, geographic information retrieval, geospatial Semantic Web, place semantics, and cognitive geographic concepts.Comment: Yingjie Hu (2017). Geospatial Semantics. In Bo Huang, Thomas J. Cova, and Ming-Hsiang Tsou et al. (Eds): Comprehensive Geographic Information Systems, Elsevier. Oxford, U

    Spatio-textual indexing for geographical search on the web

    Get PDF
    Many web documents refer to specific geographic localities and many people include geographic context in queries to web search engines. Standard web search engines treat the geographical terms in the same way as other terms. This can result in failure to find relevant documents that refer to the place of interest using alternative related names, such as those of included or nearby places. This can be overcome by associating text indexing with spatial indexing methods that exploit geo-tagging procedures to categorise documents with respect to geographic space. We describe three methods for spatio-textual indexing based on multiple spatially indexed text indexes, attaching spatial indexes to the document occurrences of a text index, and merging text index access results with results of access to a spatial index of documents. These schemes are compared experimentally with a conventional text index search engine, using a collection of geo-tagged web documents, and are shown to be able to compete in speed and storage performance with pure text indexing

    Enhanced Place Name Search Using Semantic Gazetteers

    Get PDF
    With the increased availability of geospatial data and efficient geo-referencing services, people are now more likely to engage in geospatial searches for information on the Web. Searching by address is supported by geocoding which converts an address to a geographic coordinate. Addresses are one form of geospatial referencing that are relatively well understood and easy for people to use, but place names are generally the most intuitive natural language expressions that people use for locations. This thesis presents an approach, for enhancing place name searches with a geo-ontology and a semantically enabled gazetteer. This approach investigates the extension of general spatial relationships to domain specific semantically rich concepts and spatial relationships. Hydrography is selected as the domain, and the thesis investigates the specification of semantic relationships between hydrographic features as functions of spatial relationships between their footprints. A Gazetteer Ontology (GazOntology) based on ISO Standards is developed to associate a feature with a Spatial Reference. The Spatial Reference can be a GeoIdentifier which is a text based representation of a feature usually a place name or zip code or the spatial reference can be a Geometry representation which is a spatial footprint of the feature. A Hydrological Features Ontology (HydroOntology) is developed to model canonical forms of hydrological features and their hydrological relationships. The classes modelled are endurant classes modelled in foundational ontologies such as DOLCE. Semantics of these relationships in a hydrological context are specified in a HydroOntology. The HydroOntology and GazOntology can be viewed as the semantic schema for the HydroGazetteer. The HydroGazetteer was developed as an RDF triplestore and populated with instances of named hydrographic features from the National Hydrography Dataset (NHD) for several watersheds in the state of Maine. In order to determine what instances of surface hydrology features participate in the specified semantic relationships, information was obtained through spatial analysis of the National Hydrography Dataset (NHD), the NHDPlus data set and the Geographic Names Information System (GNIS). The 9 intersection model between point, line, directed line, and region geometries which identifies sets of relationship between geometries independent of what these geometries represent in the world provided the basis for identifying semantic relationships between the canonical hydrographic feature types. The developed ontologies enable the HydroGazetteer to answer different categories of queries, namely place name queries involving the taxonomy of feature types, queries on relations between named places, and place name queries with reasoning. A simple user interface to select a hydrological relationship and a hydrological feature name was developed and the results are displayed on a USGS topographic base map. The approach demonstrates that spatial semantics can provide effective query disambiguation and more targeted spatial queries between named places based on relationships such as upstream, downstream, or flows through

    Cybergis-enabled remote sensing data analytics for deep learning of landscape patterns and dynamics

    Get PDF
    Mapping landscape patterns and dynamics is essential to various scientific domains and many practical applications. The availability of large-scale and high-resolution light detection and ranging (LiDAR) remote sensing data provides tremendous opportunities to unveil complex landscape patterns and better understand landscape dynamics from a 3D perspective. LiDAR data have been applied to diverse remote sensing applications where large-scale landscape mapping is among the most important topics. While researchers have used LiDAR for understanding landscape patterns and dynamics in many fields, to fully reap the benefits and potential of LiDAR is increasingly dependent on advanced cyberGIS and deep learning approaches. In this context, the central goal of this dissertation is to develop a suite of innovative cyberGIS-enabled deep-learning frameworks for combining LiDAR and optical remote sensing data to analyze landscape patterns and dynamics with four interrelated studies. The first study demonstrates a high-accuracy land-cover mapping method by integrating 3D information from LiDAR with multi-temporal remote sensing data using a 3D deep-learning model. The second study combines a point-based classification algorithm and an object-oriented change detection strategy for urban building change detection using deep learning. The third study develops a deep learning model for accurate hydrological streamline detection using LiDAR, which has paved a new way of harnessing LiDAR data to map landscape patterns and dynamics at unprecedented computational and spatiotemporal scales. The fourth study resolves computational challenges in handling remote sensing big data and deep learning of landscape feature extraction and classification through a cutting-edge cyberGIS approach

    Digitalization and Spatial Documentation of Post-Earthquake Temporary Housing in Central Italy: An Integrated Geomatic Approach Involving UAV and a GIS-Based System

    Get PDF
    Geoinformation and aerial data collection are essential during post-earthquake emergency response. This research focuses on the long-lasting spatial impacts of temporary solutions, which have persisted in regions of Central Italy affected by catastrophic seismic events over the past 25 years, significantly and permanently altering their landscapes. The paper analyses the role of geomatic and photogrammetric tools in documenting the emergency process and projects in post-disaster phases. An Atlas of Temporary Architectures is proposed, which defines a common semantic and geometric codification for mapping temporary housing from territorial to urban and building scales. The paper presents an implementation of attribute specification in existing official cartographic data, including geometric entities in a 3D GIS data model platform for documenting and digitalising these provisional contexts. To achieve this platform, UAV point clouds are integrated with non-metric data to ensure a complete description in a multiscalar approach. Accurate topographic modifications can be captured by extracting very high-resolution orthophotos and elevation models (DSM and DTM). The results have been validated in Visso (Macerata), a small historical mountain village in Central Italy which was heavily damaged by the seismic events of 2016/2017. The integrated approach overcomes the existing gaps and emphasizes the importance of managing heterogeneous geospatial emergency data for classification purposes. It also highlights the need to enhance an interoperable knowledge base method for post-disaster temporary responses. By combining geomatic tools with architectural studies, these visualization techniques can support national and local organizations responsible for post-earthquake management through a 3D modelling method to aid future transformations or interventions following other natural disasters

    GeoAI in Social Science

    Full text link
    GeoAI, or geospatial artificial intelligence, is an exciting new area that leverages artificial intelligence (AI), geospatial big data, and massive computing power to solve problems with high automation and intelligence. This paper reviews the progress of AI in social science research, highlighting important advancements in using GeoAI to fill critical data and knowledge gaps. It also discusses the importance of breaking down data silos, accelerating convergence among GeoAI research methods, as well as moving GeoAI beyond geospatial benefits.Comment: Artificial Intelligence; social science; deep learning; convergence; knowledge grap
    corecore