56 research outputs found

    A bilevel rescheduling framework for optimal inter-area train coordination

    Get PDF
    Railway dispatchers reschedule trains in real-time in order to limit the propagation of disturbances and to regulate traffic in their respective dispatching areas by minimizing the deviation from the off-line timetable. However, the decisions taken in one area may influence the quality and even the feasibility of train schedules in the other areas. Regional control centers coordinate the dispatchers\u27 work for multiple areas in order to regulate traffic at the global level and to avoid situations of global infeasibility. Differently from the dispatcher problem, the coordination activity of regional control centers is still underinvestigated, even if this activity is a key factor for effective traffic management. This paper studies the problem of coordinating several dispatchers with the objective of driving their behavior towards globally optimal solutions. With our model, a coordinator may impose constraints at the border of each dispatching area. Each dispatcher must then schedule trains in its area by producing a locally feasible solution compliant with the border constraints imposed by the coordinator. The problem faced by the coordinator is therefore a bilevel programming problem in which the variables controlled by the coordinator are the border constraints. We demonstrate that the coordinator problem can be solved to optimality with a branch and bound procedure. The coordination algorithm has been tested on a large real railway network in the Netherlands with busy traffic conditions. Our experimental results show that a proven optimal solution is frequently found for various network divisions within computation times compatible with real-time operations

    Smart manufacturing scheduling: A literature review

    Full text link
    [EN] Within the scheduling framework, the potential of digital twin (DT) technology, based on virtualisation and intelligent algorithms to simulate and optimise manufacturing, enables an interaction with processes and modifies their course of action in time synchrony in the event of disruptive events. This is a valuable capability for automating scheduling and confers it autonomy. Automatic and autonomous scheduling management can be encouraged by promoting the elimination of disruptions due to the appearance of defects, regardless of their origin. Hence the zero-defect manufacturing (ZDM) management model oriented towards zero-disturbance and zero-disruption objectives has barely been studied. Both strategies combine the optimisation of production processes by implementing DTs and promoting ZDM objectives to facilitate the modelling of automatic and autonomous scheduling systems. In this context, this particular vision of the scheduling process is called smart manufacturing scheduling (SMS). The aim of this paper is to review the existing scientific literature on the scheduling problem that considers the DT technology approach and the ZDM model to achieve self-management and reduce or eliminate the need for human intervention. Specifically, 68 research articles were identified and analysed. The main results of this paper are to: (i) find methodological trends to approach SMS models, where three trends were identified; i.e. using DT technology and the ZDM model, utilising other enabling digital technologies and incorporating inherent SMS capabilities into scheduling; (ii) present the main SMS alignment axes of each methodological trend; (iii) provide a map to classify the literature that comes the closest to the SMS concept; (iv) discuss the main findings and research gaps identified by this study. Finally, managerial implications and opportunities for further research are identified.This work was supported by the Spanish Ministry of Science, Innovation and Universities project entitled 'Optimisation of zero-defects production technologies enabling supply chains 4.0 (CADS4.0) ' (RTI2018-101344-B-I00) , the European Union H2020 research and innovation programme with grant agreement No. 825631 "Zero Defect Manufacturing Platform (ZDMP) " and the European Union H2020 research and innovation programme with agreement No. 958205 "In-dustrial Data Services for Quality Control in Smart Manufacturing (i4Q) ".Serrano-Ruiz, JC.; Mula, J.; Poler, R. (2021). Smart manufacturing scheduling: A literature review. Journal of Manufacturing Systems. 61:265-287. https://doi.org/10.1016/j.jmsy.2021.09.0112652876

    Towards the Internet of Smart Trains: A Review on Industrial IoT-Connected Railways

    Get PDF
    [Abstract] Nowadays, the railway industry is in a position where it is able to exploit the opportunities created by the IIoT (Industrial Internet of Things) and enabling communication technologies under the paradigm of Internet of Trains. This review details the evolution of communication technologies since the deployment of GSM-R, describing the main alternatives and how railway requirements, specifications and recommendations have evolved over time. The advantages of the latest generation of broadband communication systems (e.g., LTE, 5G, IEEE 802.11ad) and the emergence of Wireless Sensor Networks (WSNs) for the railway environment are also explained together with the strategic roadmap to ensure a smooth migration from GSM-R. Furthermore, this survey focuses on providing a holistic approach, identifying scenarios and architectures where railways could leverage better commercial IIoT capabilities. After reviewing the main industrial developments, short and medium-term IIoT-enabled services for smart railways are evaluated. Then, it is analyzed the latest research on predictive maintenance, smart infrastructure, advanced monitoring of assets, video surveillance systems, railway operations, Passenger and Freight Information Systems (PIS/FIS), train control systems, safety assurance, signaling systems, cyber security and energy efficiency. Overall, it can be stated that the aim of this article is to provide a detailed examination of the state-of-the-art of different technologies and services that will revolutionize the railway industry and will allow for confronting today challenges.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431C 2016-045Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED341D R2016/012Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431G/01Agencia Estatal de Investigación (España); TEC2013-47141-C4-1-RAgencia Estatal de Investigación (España); TEC2015-69648-REDCAgencia Estatal de Investigación (España); TEC2016-75067-C4-1-

    Analyst-driven development of an open-source simulation tool to address poor uptake of O.R. in healthcare

    Get PDF
    Computer simulation studies of health and care problems have been reported extensively in the academic literature, but the one-off research projects typically undertaken have failed to create an enduring legacy of widespread use by healthcare practitioners. Simulation and other modelling tools designed and developed to be used routinely have not fared much better either. Following a review of the literature and a survey of frontline analysts in the UK NHS, we found that one reason for this is because simulation tools have, to date, not been developed with the requirements of the end-user in the heart of the development process. Starting with a thorough needs assessment of NHS based healthcare analysts, this study outlines a set of practical design principles to guide development of simulation software tool for conducting patient flow simulation studies. The overall requirement is that patient flow be modelled over a number of inter-connected points of delivery while capturing the stochastic nature of patient arrivals and hospital length of stay, as well as the dynamic delays to patient discharge and transfer of care between different points of care delivery. In ensuring a cost-free solution that is both versatile and user-friendly, and coded in an increasingly popular language among the envisaged end users, the tool was implemented is the R programming language and software environment, with the user interface implemented in the interactive R-Shiny application. The talk will provide an overview of the project lifecycle including an illustrative example of an empirical simulation study concerning the centralisation of an acute stroke pathway

    Strategies for dynamic appointment making by container terminals

    Get PDF
    We consider a container terminal that has to make appointments with barges dynamically, in real-time, and partly automatic. The challenge for the terminal is to make appointments with only limited knowledge about future arriving barges, and in the view of uncertainty and disturbances, such as uncertain arrival and handling times, as well as cancellations and no-shows. We illustrate this problem using an innovative implementation project which is currently running in the Port of Rotterdam. This project aims to align barge rotations and terminal quay schedules by means of a multi-agent system. In this\ud paper, we take the perspective of a single terminal that will participate in this planning system, and focus on the decision making capabilities of its intelligent agent. We focus on the question how the terminal operator can optimize, on an operational level, the utilization of its quay resources, while making reliable appointments with barges, i.e., with a guaranteed departure time. We explore two approaches: (i) an analytical approach based on the value of having certain intervals within the schedule and (ii) an approach based on sources of exibility that are naturally available to the terminal. We use simulation to get insight in the benefits of these approaches. We conclude that a major increase in utilization degree could be achieved only by deploying the sources of exibility, without harming the waiting time of barges too much

    PLATFORM-DRIVEN CROWDSOURCED MANUFACTURING FOR MANUFACTURING AS A SERVICE

    Get PDF
    Platform-driven crowdsourced manufacturing is an emerging manufacturing paradigm to instantiate the adoption of the open business model in the context of achieving Manufacturing-as-a-Service (MaaS). It has attracted attention from both industries and academia as a powerful way of searching for manufacturing solutions extensively in a smart manufacturing era. In this regard, this work examines the origination and evolution of the open business model and highlights the trends towards platform-driven crowdsourced manufacturing as a solution for MaaS. Platform-driven crowdsourced manufacturing has a full function of value capturing, creation, and delivery approach, which is fulfilled by the cooperation among manufacturers, open innovators, and platforms. The platform-driven crowdsourced manufacturing workflow is proposed to organize these three decision agents by specifying the domains and interactions, following a functional, behavioral, and structural mapping model. A MaaS reference model is proposed to outline the critical functions and inter-relationships. A series of quantitative, qualitative, and computational solutions are developed for fulfilling the outlined functions. The case studies demonstrate the proposed methodologies and can pace the way towards a service-oriented product fulfillment process. This dissertation initially proposes a manufacturing theory and decision models by integrating manufacturer crowds through a cyber platform. This dissertation reveals the elementary conceptual framework based on stakeholder analysis, including dichotomy analysis of industrial applicability, decision agent identification, workflow, and holistic framework of platform-driven crowdsourced manufacturing. Three stakeholders require three essential service fields, and their cooperation requires an information service system as a kernel. These essential functions include contracting evaluation services for open innovators, manufacturers' task execution services, and platforms' management services. This research tackles these research challenges to provide a technology implementation roadmap and transition guidebook for industries towards crowdsourcing.Ph.D

    Optimizing last trains timetable in the urban rail network: social welfare and synchronization

    Get PDF
    Last train timetable design is to coordinate last train services from different lines in an urban rail network for maximizing the number of transfers. It is a challenging operational research problem to balance the competing demand of two decision agents: that of the government agencies to provide the best social services with minimal government subsidy, and that of the train operating companies to minimize operating costs. A bi-level programming model is formulated for the last train timetabling problem, in which the upper level is to maximize the social service efficiency, and the lower level is to minimize the revenue loss for the operating companies. To solve this problem, a genetic algorithm combined with an active-set approach is developed. We report the optimization results on real-world cases of the Beijing subway network. The results show that the optimized last train timetable can significantly improve the transfer coordination

    AIRO 2016. 46th Annual Conference of the Italian Operational Research Society. Emerging Advances in Logistics Systems Trieste, September 6-9, 2016 - Abstracts Book

    Get PDF
    The AIRO 2016 book of abstract collects the contributions from the conference participants. The AIRO 2016 Conference is a special occasion for the Italian Operations Research community, as AIRO annual conferences turn 46th edition in 2016. To reflect this special occasion, the Programme and Organizing Committee, chaired by Walter Ukovich, prepared a high quality Scientific Programme including the first initiative of AIRO Young, the new AIRO poster section that aims to promote the work of students, PhD students, and Postdocs with an interest in Operations Research. The Scientific Programme of the Conference offers a broad spectrum of contributions covering the variety of OR topics and research areas with an emphasis on “Emerging Advances in Logistics Systems”. The event aims at stimulating integration of existing methods and systems, fostering communication amongst different research groups, and laying the foundations for OR integrated research projects in the next decade. Distinct thematic sections follow the AIRO 2016 days starting by initial presentation of the objectives and features of the Conference. In addition three invited internationally known speakers will present Plenary Lectures, by Gianni Di Pillo, Frédéric Semet e Stefan Nickel, gathering AIRO 2016 participants together to offer key presentations on the latest advances and developments in OR’s research

    Modelling, solution and evaluation techniques for Train Timetable Rescheduling via optimisation

    Get PDF
    It is common on railways for a single train delay to cause other trains to become delayed, multiplying the negative consequences of the original problem. However, making appropriate changes to the timetable in response to the initial delay can help to reduce the amount of further delay caused. In this thesis, we tackle the Train Timetable Rescheduling Problem (TTRP), the task of finding the best combination of timetable changes to make in any given traffic scenario. The TTRP can be formulated as an optimisation problem and solved computationally to aid the process of railway traffic control. Although this approach has received considerable research attention, the practical deployment of optimisation methods for the TTRP has hitherto been limited. In this thesis, we identify and address three outstanding research challenges that remain barriers to deployment. First, we find that existing TTRP models for large station areas are either not sufficiently realistic or cannot be solved quickly enough to be used in a real-time environment. In response, a new TTRP model is introduced that models the signalling system in station areas in fine detail. Using a new set of real instances from Doncaster station, we show that our tailored solution algorithm can obtain provably optimal or near-optimal solutions in sufficiently short times. Second, we argue that existing ways of modelling train speed in TTRP models are either unrealistic, overly complex, or lead to models that cannot be solved in real-time. To address this, innovative extensions are made to our TTRP model that allow speed to be modelled parsimoniously. Real instances for Derby station are used to demonstrate that these modelling enhancements do not incur any extra computational cost. Finally, a lack of evidence is identified concerning the fairness of TTRP models with respect to competing train operators. New evaluation techniques are developed to fill this gap, and these techniques are applied to a case study of Doncaster station. We find that unfairness is present when efficiency is maximised, and find that it mostly results from competition between a small number of operators. Moreover, we find that fairness can be improved up to a point by increasing the priority given to local trains. This work represents an important step forward in optimisation techniques for the TTRP. Our results, obtained using real instances from both Doncaster and Derby stations, add significantly to the body of evidence showing that optimisation is a viable approach for the TTRP. In the long run this will make deployment of such technology more likely
    corecore