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Abstract

It is common on railways for a single train delay to cause other trains to become

delayed, multiplying the negative consequences of the original problem. However,

making appropriate changes to the timetable in response to the initial delay can

help to reduce the amount of further delay caused. In this thesis, we tackle the Train

Timetable Rescheduling Problem (TTRP), the task of finding the best combination

of timetable changes to make in any given traffic scenario.

The TTRP can be formulated as an optimisation problem and solved computation-

ally to aid the process of railway traffic control. Although this approach has received

considerable research attention, the practical deployment of optimisation methods

for the TTRP has hitherto been limited. In this thesis, we identify and address three

outstanding research challenges that remain barriers to deployment.

First, we find that existing TTRP models for large station areas are either not

sufficiently realistic or cannot be solved quickly enough to be used in a real-time

environment. In response, a new TTRP model is introduced that models the sig-

nalling system in station areas in fine detail. Using a new set of real instances from

Doncaster station, we show that our tailored solution algorithm can obtain provably

optimal or near-optimal solutions in sufficiently short times.

Second, we argue that existing ways of modelling train speed in TTRP models are
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either unrealistic, overly complex, or lead to models that cannot be solved in real-

time. To address this, innovative extensions are made to our TTRP model that

allow speed to be modelled parsimoniously. Real instances for Derby station are

used to demonstrate that these modelling enhancements do not incur any extra

computational cost.

Finally, a lack of evidence is identified concerning the fairness of TTRP models with

respect to competing train operators. New evaluation techniques are developed to fill

this gap, and these techniques are applied to a case study of Doncaster station. We

find that unfairness is present when efficiency is maximised, and find that it mostly

results from competition between a small number of operators. Moreover, we find

that fairness can be improved up to a point by increasing the priority given to local

trains.

This work represents an important step forward in optimisation techniques for the

TTRP. Our results, obtained using real instances from both Doncaster and Derby

stations, add significantly to the body of evidence showing that optimisation is a

viable approach for the TTRP. In the long run this will make deployment of such

technology more likely.
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5.5 An example of Wr,t, W̄r,t, Ar,t and Ār,t. . . . . . . . . . . . . . . . . . 91

5.6 An example in which Assumption 1 does not hold. . . . . . . . . . . . 95

5.7 A sketch of γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.8 A berth diagram of Doncaster Station. . . . . . . . . . . . . . . . . . 115

5.9 A berth diagram of the area of track modelled. . . . . . . . . . . . . . 116

5.10 Histograms showing the test set distribution of the number of (a)

trains, (b) conflicts and (c) train pair conflicts. . . . . . . . . . . . . . 119

5.11 A cumulative histogram showing the proportion of instances solved

for each number of seconds. . . . . . . . . . . . . . . . . . . . . . . . 121

5.12 Performance profiles at assess column generation acceleration strategies.122

5.13 The relationship between conflicts and the number of branch-and-

bound nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.14 A bar plot of the number of reroutings in each solution. . . . . . . . . 124

5.15 A histogram of the percentage gap between the best integer feasible

solution found, and the best bound on the optimal solution. . . . . . 125

13



LIST OF FIGURES 14

6.1 A plot showing how the speed profile assumptions made in fixed-speed

models compare to actual speed profiles. . . . . . . . . . . . . . . . . 131

6.2 The route graph Gr for the area centred on Derby station that is used

in our computational experiments. . . . . . . . . . . . . . . . . . . . . 137

6.3 An example of a TST graph. . . . . . . . . . . . . . . . . . . . . . . . 138

6.4 Speed profile type graph for a fixed-speed model. . . . . . . . . . . . 139

6.5 Speed profile type graph for our approach. . . . . . . . . . . . . . . . 140

6.6 Histogram of historical traversal times for route 5332 5330. . . . . . . 142

6.7 The Markov chain (Xt)t∈N, with estimated transition probabilities

shown. Probabilities are rounded to two decimal places. . . . . . . . . 145

6.8 Boxplots showing the distribution of transition probabilities by type. 146

6.9 Histogram of classified historical traversal times for a particular route. 148

6.10 An example TST graph, with examples of arcs from different sets

A1–A6 labelled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.11 An example of Wr,t and Ar,t. . . . . . . . . . . . . . . . . . . . . . . . 154

6.12 A berth diagram of the modelled area. . . . . . . . . . . . . . . . . . 161

6.13 A histogram showing the distribution of the number of trains in the

instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.14 A comparison between (FS) and (VS) of number of conflicts. . . . . . 162

6.15 A comparison between (FS) and (VS) of traversal time lengths for

routes that have two traversal times in (VS). . . . . . . . . . . . . . . 165

6.16 Cumulative histograms showing (a) solution time (seconds), (b) num-

ber of branch-and-bound nodes and (c) number of variables generated,

over the set of instances. . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.17 Cumulative histogram of optimality gaps after 20 seconds for (FS) and

(VS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.1 A berth diagram of Doncaster Station. . . . . . . . . . . . . . . . . . 179



7.2 A berth diagram of the area of track modelled. . . . . . . . . . . . . . 179

7.3 Normed aggregated utility, number of instances with utility of 1, and

number of instances for each operator. . . . . . . . . . . . . . . . . . 186

7.4 Histogram of α-fairness scores of instances, with α = 1. . . . . . . . . 187
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Chapter 1

Introduction

Passenger railway services form an important part of the transport mix in many

countries around the world. This is due to the unique combination of benefits that

railway transport offers. Train services are attractive to passengers because they are

the fastest way to travel between many pairs of urban centres. Train services are

also able to maintain very high levels of both safety and passenger comfort. When

the volume of passenger demand for railway services is high, they can be delivered

at a competitive cost. For this reason, railways are ideal for both intercity travel and

commuting within large urban areas.

Passenger railway transport also offers significant benefits to wider society. The

environmental impact per passenger kilometre — with regard to the emission of

CO2, harmful air pollutants and noise — compares favourably with private car use.

High levels of railway usage can also contribute to a reduction in road congestion,

making cities more pleasant for road users and pedestrians alike. Because of the

high modal share railway enjoys with commuters and business travellers, railways

also have a significant strategic importance to the economies they serve.

16



CHAPTER 1. INTRODUCTION 17

However, the realisation of these potential benefits poses organisational challenges

for railways. Because railway infrastructure is expensive to build and maintain, it

must be highly utilised in order for services to be delivered at a competitive cost.

This is particularly true of railway track, which is often the most expensive part.

In order to achieve the necessary levels of infrastructure utilisation, railway systems

require high levels of coordination and planning.

Railway planning, which ranges from very long term planning to operational deci-

sion making, is subject to several acute challenges. Railways are complex physical

networks of technology that span large geographical areas. As a result, technical

and organisational failures are an ever-present reality. Furthermore, the parts and

processes that make up railway networks are highly interdependent, with decisions

about one part of the system often having ramifications in a another part. This

means that successful planning must encompass combinations of decisions and con-

sider their likely effects on the system as a whole. However, efforts at coordinated

planning lead to planning problems with many stakeholders, who must each coor-

dinate their access to railway infrastructure with a fixed and limited capacity. To

further complicate planning, railways are safety-critical systems which must be op-

erated in compliance with a myriad of safety protocols.

A specific challenge for railway planning is the delivery of punctual and reliable

passenger services. Whilst good quality long and medium term planning can help to

reduce the likelihood of train delays, the possibility of delays cannot be eliminated.

When delays do occur, the interdependency of train movements can cause them to

propagate to other trains, causing potentially large-scale traffic disruption. In this

thesis, we consider ways to counter this propagation with proactive and coordinated

real-time planning. Whilst this problem exemplifies the challenges inherent in railway

planning, it also has great potential to boost the unique combination of benefits

offered by railway travel.
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1.1 Context

Railway transport was pioneered in Great Britain, beginning with the opening of

the world’s first public inter-city railway, the Liverpool and Manchester Railway, in

1830. Over the last 190 years, this has grown into a large public passenger railway

system that serves almost all corners of the island. Today, the network consists

of approximately 20,000 miles of track, and serves 2566 stations [Department for

Transport, 2019].

The railway is owned by Network Rail, which is a public sector company. This

includes the track, signalling equipment, bridges, viaducts, tunnels, level crossings

and 18 of the largest stations. In addition to maintaining and improving this network,

Network Rail is responsible for operating it. This includes providing signalling and

control services, and coordinating the planning of the system as a whole.

Passenger and freight services are provided by Train Operating Companies (TOCs)

and Freight Operating Companies (FOCs) respectively. These are separate organisa-

tions from Network Rail, and operate services within a partially deregulated system.

TOCs include private companies, public sector companies, foreign state-owned com-

panies and consortia of the above. TOCs operate services under both franchise

agreements and open access agreements. This system is supported by a number of

other regulatory and coordinating organisations such as Department for Transport,

the Office of Rail and Road, the Rail Delivery Group and the Rail Safety and Stan-

dards Board. A more detailed explanation of the structure of the industry is provided

by Williams [2019a].

The number of passenger railway journeys taken in Great Britain increased by 97%

in the 20 year period 1999–2019 [Department for Transport, 2019]. In 2018–2019,

around 1.8 billion passenger journeys were made, the largest number in the history
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of the network. Despite the severe disruption to passenger numbers caused by the

COVID-19 pandemic beginning in March 2020, this trend is widely expected to

continue in the long term. In response to rising passenger numbers, the number of

scheduled passenger services has increased to satisfy demand. In the nine years to

2018–2019, the number of planned services increased by 24%. In many parts of the

network, this has occurred at a faster rate than increases in the capacity of the track.

As a result, the timetables operated in these areas are very dense, with the planned

time between trains little more than is necessary from a safety perspective. Indeed,

the British railway system is now one of the most heavily congested in Europe,

surpassed only by Switzerland and the Netherlands [Williams, 2019b, p. 22].

1.1.1 Delays

The increasing density of timetables in recent years has contributed to an increase

in delays. A train delay has occurred when a train arrives at a passenger stop later

than advertised by the timetable. Delays are a common feature of railway systems

around the world, including the British railway system where they are a widespread

and frequent occurrence. The development of novel methods for reducing delays is

the topic of this thesis.

One measure of the prevalence of delays used by Network Rail is the Public Perfor-

mance Measure (PPM). This measures the percentage of trains running their entire

planned journey including all scheduled stations and arriving at their terminating

station within 5 (local services) or 10 (long distance services) minutes. PPM was

87% in 2019, lower than the average value over the previous 10 years [Network Rail,

2020]. In April 2019, Network Rail began using a new measure called On-time at

All Recorded Stations. This measures the percentage of all train stops that occurred

on time, and within various bands of lateness. In 2018–2019, only 65.3% of recorded
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passenger train stops occurred on time [Network Rail, 2020].

Train delays have a variety of negative impacts. The most obvious is that they cause

passengers to arrive late at their destinations. In addition to the obvious social

costs, this has significant economic costs. For example, in Great Britain the time

that passengers lose each year as a result of arriving late at their destinations has been

estimated to be worth at least £1 billion [National Audit Office, 2008, p. 46].

Train delays also have negative impacts for the railway industry as a whole. For

example, there are costs directly associated with delays, such as compensation for

passengers and additional labour costs for managing delay. There is evidence that the

ways in which train companies deal with delays are the biggest drivers of passenger

dissatisfaction [Williams, 2019b, p. 13]. In the long term, poor punctuality will make

railway services less attractive to passengers, and dampen demand for them.

The causes of delays are extensively recorded and analysed by Network Rail. This is

important because understanding the causes is a prerequisite to reducing delays. It

is also important because TOCs and Network Rail are subject to Schedule 8, a legal

mechanism by which organisations responsible for causing delays must compensate

those affected.

Delays to train services can be classified as primary or reactionary. Primary delays

are delays that are caused directly by an incident such as an asset failure, adverse

weather, vandalism or trespass. Network Rail identify over 250 different causes of

primary delay. As a result, reducing primary delays requires different strategies for

different causes. This includes the design and maintenance of infrastructure, and the

coordination of staff and emergency services.

Reactionary (or secondary) delays are delays that arise as a consequence of prior

delays to different trains. Prior delays may prevent a train from using the required

infrastructure, staff or rolling stock to deliver the service in a punctual manner. A
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single initial primary delay can cause multiple reactionary delays, each of which can

themselves cause further reactionary delays. As a result, reactionary delay tends to

propagate through the railway network. In 2019, 64.35% of total train delay minutes

were due to reactionary delays. It is therefore a very significant part of the overall

punctuality problem.

1.1.2 Timetable Rescheduling

During delay incidents, railway services do not run as planned. The most immediate

consequence of this is that it causes conflicts in the timetable. A conflict is a scenario

in which two or more trains require the same piece of track at the same time, despite

the fact that it can only accommodate at most one of them at once.

When conflicts arise, they must be resolved. Without intervention, the train that

occupies the contested piece of track first will prevent the other trains in the con-

flict from occupying it at the required time. As a result, these trains may become

more delayed. This is one of the basic mechanisms through which reactionary delay

propagates.

However, the impact of conflicts on reactionary delay can be reduced by pre-emptively

changing the previously planned timetable. This process is called timetable reschedul-

ing. Timetable rescheduling happens in real-time, in response to an initial delay or

set of delays. The result of timetable rescheduling is a new timetable that is free of

conflicts. The geographical and temporal scope of the changes varies depending on

the specific context.

It is helpful to name some specific types of timetable changes that can be made.

Changing the times at which trains use parts of the track is called retiming. This

can result in reordering, which is changing the order in which two or more trains use
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a piece of track. Changing which parts of the track a train uses during its journey is

called rerouting. This can include small changes to the routes taken within a station

area, or changes to the stations visited. Within stations, rerouting also includes

replatforming, which is changing the platform at which a train calls.

Other types of rescheduling, such as crew and rolling stock rescheduling, may be

required in severe delay scenarios, also known as disruptions. However, in this thesis

we are primarily concerned with less severe delay scenarios called disturbances that

can be handled by timetable rescheduling.

1.1.3 The Train Timetable Rescheduling Problem

In some scenarios with traffic disturbances, there are a very large number of different

possible ways to reschedule the timetable. There may be many trains to consider,

each with many different possible routes and timings. Moreover, some rescheduled

timetables are preferred over others because they lead to less reactionary delay, or

a pattern of delays that is preferred over the alternatives. It is therefore natural to

ask: which rescheduled timetable is the best?

The problem of calculating the ‘best’ rescheduled timetable is known as the Train

Timetable Rescheduling Problem. This problem is the main subject of study in this

thesis, and will be referred to by the abbreviation TTRP.

The definition of the TTRP given in the previous paragraph is intentionally vague.

This is because there is no single agreed definition of the problem. Rather, certain

features of the problem are specific to the context in which it is designed to be em-

ployed. For example, the geographical and temporal scope of the timetable depend

on the location in which rescheduling is to be carried out. The constraints that the

timetable must satisfy depend on the local safety, signalling and operational require-
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ments. The types of rescheduling that are permitted depend on both policy and the

geographical scope of the timetable. Finally, the interpretation of the word ‘best’

depends on the priorities and preferences of the organisation taking the rescheduling

decisions. A precise description of the problem considered in this thesis will be given

in Chapter 5.

A key feature of the TTRP is the scarcity of time available to solve it. By definition,

timetable rescheduling must be performed in real-time as and when conflicts arise on

the railway. If decisions about how to reschedule the timetable are not taken quickly,

then preventable reactionary delays will occur and the state of the railway will have

changed, making any decisions obsolete.

The large number of possible solutions makes the TTRP challenging for humans to

solve in the time available. However, the TTRP can be addressed using optimisation

techniques. In particular, it can be formulated as an optimisation problem, enabling

the automated computation of rescheduled timetables. That is the focus of this

thesis.

1.2 Motivation

The motivation for this thesis arises from the observation that although timetable

rescheduling via optimisation has great potential to reduce delays, it has not yet been

widely deployed on railways. One important reason for this is that inadequacies in

existing optimisation modelling, solution and evaluation techniques act as barriers

to deployment.
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1.2.1 The Deployment Deficit

In Great Britain, timetable rescheduling is the responsibility of Network Rail as part

of their role in signalling and traffic control. Although there is still a patchwork of

different arrangements in existence throughout the country, most of the network is

operated from ten Rail Operating Centres (ROCs). These bring together all aspects

of railway operations within the regions they serve, including the management of

delay incidents.

Most timetable rescheduling is currently carried out manually. Small disturbances

are handled by signallers, whilst larger incidents are handled by traffic controllers. In

reality, there is a strong communication between these two functions, and with rep-

resentatives from Train Operating Companies (TOCs). Train diagrams, that depict

the progress of trains along a railway line over time, are routinely used as a visual

aid to rescheduling. Contingency plans are also used to respond to anticipated delay

events. Although more sophisticated decision support software has been deployed

in several areas, we do not know of any areas nationally where the TTRP is solved

using optimisation.

This picture is changing. Network Rail has launched the Digital Railway programme

with the aim of using digital technology to increase capacity on the network. One

of the key technologies in this transition will be the Traffic Management System

(TMS). The purpose of a TMS is to enable greater levels of automation in traffic

control, including timetable rescheduling. In 2019, Network Rail announced a new

TMS project for the East Coast Mainline — the research in this thesis has been

communicated to the managers of this project.

The introduction of TMS technology is also occurring in various railway systems

internationally. In fact, there are now several international examples of optimisation

models for the TTRP being deployed. Lamorgese et al. [2018] describe examples of
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deployment on railway lines in Italy, Latvia and Norway and an example of deploy-

ment in Roma Tiburtina station, in Rome. Deployment on the Stavanger-Moi line

in Norway (see [Lamorgese and Mannino, 2015]) is especially exciting, since exact

optimisation techniques were used, rather than heuristics.

1.2.2 Barriers to Deployment

There are many economic and organisational barriers to deployment for optimisation-

based timetable rescheduling. As noted in the previous section, automated timetable

rescheduling is largely dependent on the deployment of TMSs to provide the necessary

real-time data and human-computer interfaces. TMSs are, by nature, extremely

complex, expensive and safety-critical. This means that the acquisition of TMS

technology typically involves years of planning, procurement, design and operational

change on behalf of the infrastructure manager.

However, this is not the only barrier to deployment of optimisation-based timetable

rescheduling. The optimisation techniques available for modelling, solving and eval-

uating the TTRP are still inadequate in many ways. Although there are now a very

large number of publications proposing different models and solution methods for

solving different versions of the TTRP, there are some systematic weaknesses with

the current literature. Many of these weaknesses are reviewed and addressed by the

work in this thesis.

1.3 Research Aim

The overall aim of this thesis is:

To develop new optimisation modelling, solution and evaluation tech-
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niques for the TTRP that can help overcome the barriers to deployment

that exist for optimisation-based rescheduling.

The scope of the thesis is limited to the the application of the TTRP to areas

around large railway stations. Railway lines, high-speed lines and metro systems

are not considered, although the techniques developed might also be applicable to

these settings. This restriction is appropriate since large stations are the key traffic

bottlenecks in many parts of Great Britain.

1.4 Significance and Impact

This PhD has been carried out in collaboration with Network Rail. The collaboration

has been immensely important to the research in several respects. First, insights

gained from conversations with various people in the organisation have informed my

understanding of the barriers to implementation for TTRP technology. This has been

invaluable in framing the research questions and guiding the overall direction of the

thesis. Second, access to technical information has been very important, particularly

relating to railway signalling. Finally, access to data has made it possible to test the

methods developed using instances based on real data.

As well as greatly informing the research, the collaboration with Network Rail has

provided an opportunity for achieving impact. In particular, it has facilitated knowl-

edge transfer in both directions between the railway industry and optimisation re-

searchers. In addition to this thesis, the many conversations, meetings and presen-

tations that have occurred during its preparation have helped to disseminate knowl-

edge. This is true of both the existing state-of-the-art in TTRP research, and the

original contributions made in this thesis.

Part of the impact has also been to elucidate the benefits of optimisation-based
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timetable rescheduling, and the use of optimisation in other railway planning prob-

lems. Optimisation techniques for the TTRP are not generally familiar even to

specialist modellers in the railway industry, let alone managers. Experience sug-

gests that there is more familiarity with other decision support methodologies such

as simulation and artificial intelligence. This PhD has provided the opportunities

to remedy this situation by promoting optimisation as a technology within Network

Rail. This is especially important for planning problems with large, combinatorial

solution spaces, such as the TTRP.

One particular opportunity for impact that has arisen is the TMS project on the

northern English part of the East Coast Main Line. We have been able to disseminate

the research in this thesis to people involved. Since the project is in its early stages,

we have encouraged them to consider whether techniques developed in this thesis

could be incorporated into the TMS.

The thesis has a wider significance beyond its practical impact. This relates to the

original modelling and methodological contributions made in each chapter. These

span the areas of modelling, solution techniques and model evaluation.

1.5 Overview

The remainder of this thesis begins with Chapter 2, which introduces the optimisation

techniques that are used in subsequent chapters. A broad introduction to the use of

optimisation in railway planning is then given in Chapter 3. Chapter 4 provides a

more tightly focused review of the different types of optimisation models that have

been used for the TTRP.

Each of Chapters 5, 6 and 7 identifies a distinct barrier to deployment for optimisation-

based rescheduling in a separate literature review and proposes novel modelling,
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solution or evaluation techniques to overcome it:

• Chapter 5 addresses the lack of existing TTRP models that can be solved to

optimality for realistically sized TTRP instances in sufficiently short times. It

is entitled

A multicommodity flow model for rerouting and retiming trains in

real-time to reduce reactionary delay in complex station areas.

Its focus is developing a new model and solution method for the TTRP. In

many ways, this chapter forms the cornerstone of the thesis.

• Chapter 6 addresses the need to be able to accurately model the speed of trains

within TTRP models. It is entitled:

A data-driven, variable-speed model for the train timetable reschedul-

ing problem.

This is a significant extension of the model presented in Chapter 5 that improves

the way in which speed is modelled.

• Chapter 7 considers the lack of evidence on the likely impact of TTRP models

on fairness between railway operators. It is entitled:

An evaluation of the fairness of railway timetable rescheduling in the

presence of competition between train operators.

The chapter develops a framework for evaluating fairness between Train Oper-

ating Companies, and applies this to analyse the fairness of model presented

in Chapter 5 using a case study.

Collectively, Chapters 5 and 6 address the lack of experimental evidence using real

data on timetable rescheduling within large stations in the British railway network.

Results are presented from two new sets of instances that have been created for Don-
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caster Station and Derby station, respectively. The final part of the thesis, Chapter

8, draws overall conclusions and includes some suggestions for further research.

This thesis has an interdisciplinary flavour. Whilst the principal methodology used

is Optimisation, an area of Operational Research, the application area is in railway

technology which is traditionally in the domain of Civil Engineering. On top of this,

Chapter 6 incorporates methodology from Statistics, whilst Chapter 7 uses ideas

from Economics. This serendipitous blend is a testament to the range of challenges

presented by the TTRP.



Chapter 2

Optimisation Background

In this thesis, we model the TTRP as an optimisation problem. This involves de-

signing a set X and a function f : X → R such that the problem can be stated

mathematically as:

Find a solution x0 ∈ X such that f(x) ≥ f(x0) for all x ∈ X.

Such a formulation allows the problem to be tackled with computational techniques

from the mature field of Optimisation. The set X is referred to as the feasible set,

and the function f as the objective function. The feasible set should reflect the

constraints of the problem accurately, whilst the objective function should capture,

as far as possible, the motivations of the decision makers.

30
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2.1 Mixed Integer Programming

The TTRP can be modelled as a Mixed Integer Linear Program (MILP) (see Chen

et al. [2010]). This means that the problem takes the form minx∈X f(x) where

f(x) = cTx and X = {x ∈ Zl+ × Rn−l+ : Ax ≥ b}. (2.1)

Note that in (2.1), m,n ∈ Z+, c ∈ Qn and A ∈ Qm×n. In other words, a MILP is a

problem in n non-negative variables x1, . . . , xn (of which the first l must take integer

values) with linear constraints and a linear objective function. A set in the form X

is referred to as a mixed-integer set. The models proposed in this thesis are actually

Binary Integer Linear Programs (BILPs), which are special cases of MILPs in which

X takes the form

X = {x ∈ {0, 1}n : Ax ≥ b}. (2.2)

However, we discuss MILP solution techniques because they are also applicable to

our models. MILPs are a very well-studied problem class, for which an enormous

arsenal of computational techniques and software are available. It is also an extremely

flexible problem class that can be used to model a very wide range of problems.

A general approach for solving MILPs is LP-based branch-and-bound (LP B&B)

[Land and Doig, 1960]. This is an algorithm that solves a MILP by solving a sequence

of related Linear Programs (LPs) in order to obtain upper and lower bounds on the

optimal solution of the MILP. A Linear Program is a MILP that has only real-

valued variables, and no integer variables (i.e. l = 0). Whilst LP modelling is less

flexible than MILP modelling (LPs cannot model integer variables), fast algorithms

for solving LPs exist (see Section 2.2). LP B&B exploits the ease of solution of LPs

to solve MILPs.

LP B&B consists of two steps: branching and bounding. First, we describe bounding,
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the process of obtaining bounds on the optimal value of a MILP by solving an LP.

Suppose we have a MILP described by f and X with unknown optimal objective

value z∗ = minx∈X f(x). The LP relaxation of this MILP is the LP formed from

the MILP by setting l = 0. Denoting the feasible set of this LP relaxation by XLP ,

suppose that the LP relaxation is solved, yielding an optimal solution xLP with

optimal objective value zLP = f(xLP ). Given that X ⊆ XLP , we know that zLP is a

lower bound for z∗. If, by chance, xLP ∈ X then zLP is also an upper bound on z∗.

In this situation, we have that z∗ = zLP and that xLP is an optimal solution to the

original MILP.

In cases where xLP /∈ X, branching is performed. Branching creates two new MILPs

(1) minx∈X1 f(x) and (2) minx∈X2 f(x) that can be used to learn about bounds for

the original MILP. The new feasible sets X1 and X2 must be Mixed Integer Linear

sets (i.e. valid feasible sets for MILPs), and their union X1∪X2 must be equal to X.

Typically X1 ∩X2 = ∅, making X1 and X2 a partition of X, but this is not strictly

necessary. Furthermore, the LP relaxations of X1 and X2 must not contain xLP .

Without this last property, bounding (1) and (2) would produce identical bounds to

those obtained by bounding the original MILP. It is hoped that a well defined branch

will lead to (1) and (2) producing better (higher) lower bounds. This is because the

smallest lower bound out of those produced by (1) and (2) is also a lower bound for

the original MILP. In addition, if either (1) or (2) produces an upper bound via the

discovery of a feasible solution, then this is also feasible for the original MILP and

hence and upper bound for the original MILP.

LP-based branch and bound is a recursive combination of the branching and bound-

ing steps outlined above. The relationships between MILPs created by branching

can be encoded in a branch-and-bound tree. This is a connected acyclic graph with

a node for each MILP. The presence of an arc between two nodes indicates that one

MILP was obtained from another by branching. The tree is recursively grown by
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bounding new nodes, updating the bounds for all other previously bounded nodes,

and branching if appropriate. A node can be disregarded without being branched on

if

1. The feasible set is empty.

2. The upper and lower bounds for that node are equal.

3. The lower bound for the node is higher than the upper bound for the root node.

In the second case, the optimal solution to this node is already known, and in cases

1 and 3, the problem at this node cannot possibly yield an optimal solution to the

MILP. Disregarding these nodes is very important, since it reduces the space that

needs to be searched for an optimal solution. The algorithm terminates with an

optimal solution when the smallest upper bound and largest lower bound found so

far for the root node (the original MILP) are equal.

The description provided of LP-based branch-and-bound includes only the most basic

principles. High quality algorithms for branching and for choosing which node to

bound next are essential. Moreover, the good performance of branch-and-bound

on many problems is contingent on extra steps in the algorithm such as the use of

cutting planes, preprocessing and heuristics. Each of these are large topics that are

not summarised here.

2.2 Linear Programming

As highlighted in Section 2.1, solving a MILP by LP B&B requires the solution of a

sequence of Linear Programs (LPs). A comprehensive introduction to LPs is given
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by Vanderbei [2014]. Any LP can be written in the form

(P ) min{cTx : Ax = b, x ∈ Rn+}, (2.3)

where A ∈ Rn×m and bT ∈ Rm i.e. there are m constraints with m ≤ n. When solved

as part of LP B&B, LPs are often solved using the simplex algorithm. We describe

the simplex algorithm in some detail in order to motivate column generation, which

is described in Section 2.3. However, it should be noted that there are several other

algorithms for solving LPs.

The simplex algorithm divides the n variables into m basic variables xB ∈ Rm+ and

(n −m) non-basic variables xN ∈ Rn−m+ so that when permuted appropriately, the

variable vector can be written x = (xB, xN). Using this new notation, the problem

can be written as

(P ) min{f = cTNxN + cTBxB : ANxN + ABxB = b, xN ∈ Rm+ , xB ∈ Rn−m+ }. (2.4)

Assuming that AB is invertible, we can calculate that

xB = A−1
B b− A−1

B ANxN and f = cTBA
−1
B b+ (cTN − cTBA−1

B AN)xN . (2.5)

Letting xN = 0 yields a basic solution x = (A−1
B b, 0) with objective value f = cTBA

−1
B b.

The same procedure can be applied with any choice of basis to obtain a basic solution.

If the values of xB = A−1
B b in a basic solution satisfy xB ≥ 0, then x = (xB, 0)

is also a feasible solution to the LP, called a basic feasible solution (BFS). Some

choices of basis give rise to a BFS, whilst others produce a basic solution that is not

feasible.

The feasible set {x ∈ Rn+ : Ax = b} of an LP is a convex polytope. Provided

the optimal objective value is finite, it can be shown that one of the vertices of
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this polytope is an optimal solution to the LP. The simplex algorithm works by

iteratively moving from one vertex to an adjacent vertex with a better objective

value, terminating when no adjacent vertex offers a better value. Since the polytope

is convex, this final vertex corresponds to a globally optimal solution.

It can be shown that each vertex of the feasible polytope corresponds to a BFS.

As a result, moving from one vertex to another can be achieved by changing the

basis xB and calculating the corresponding BFS. To obtain an adjacent BFS, it is

necessary (but not always sufficient) to change the basis by entering a previously

non-basic variable into the basis, causing a previously basic variable to leave the

basis. Equation (2.5) shows that entering the i
th

non-basic variable will lead to an

improvement (decrease) in objective value only if the i
th

component of the vector

c̄N := cTN − cTBA−1
B AN is negative. This implies that the incumbent BFS is optimal

for the LP if and only if c̄N ≥ 0. If it is not optimal, then entering a variable (xN)i,

for which (c̄N)i < 0, into the basis will yield a better BFS. The vector c̄N is called

the reduced cost.

Every LP (P) in the form of (2.3) has a dual LP, which can be written

(D) max{bTy : ATy ≤ c, y ≥ 0}. (2.6)

If xB is an optimal basis for (P ), then π = cTBA
−1
B is an optimal solution to (D).

This is called the optimal dual solution for (P), and plays an important role. In

particular, note that the reduced cost can be rewritten c̄N := cTN − πAN . The dual

value vector π is crucial for checking the optimality condition c̄N ≥ 0 and deciding

which variable should enter the basis.
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2.3 Column Generation

Suppose that we have an LP written in the form

(MP ) min

{∑
j∈J

cjλj :
∑
j∈J

aijλj ≥ bi ∀i = 1, . . . ,m, λj ≥ 0 ∀j ∈ J
}
, (2.7)

where the number of variables |J | is very large in comparison to the number of

constraints m. We will refer to this problem the master problem (MP). Since any

basis for this LP is of size m, an optimal basic feasible solution contains at most

m non-zero variables. Therefore, most of the variables in any optimal solution are

non-basic and take the value zero.

Suppose that an optimal basis B for (MP) is known and that J ′ ⊂ J is a subset of

the variables containing all the variables in B. Then solving the restricted master

problem (RMP), given by

(RMP ) min

{∑
j∈J ′

cjλj :
∑
j∈J ′

aijλj ≥ bi ∀i = 1, . . . ,m, λj ≥ 0 ∀j ∈ J ′
}
, (2.8)

would yield a solution that can be extended to an optimal solution to (MP) by

letting all of the variables j ∈ J \ J ′ take the value zero. This is because the BFS

x = (A−1
B b, 0) corresponding to basis B doesn’t depend on the data for the non-basic

variables. In other words, the values of aij and cj for j ∈ J \ J ′ are not required.

To summarise, we have shown that if an optimal basis B to (MP) is known, then an

optimal solution to (MP) can be obtained by solving (RMP). This idea is appealing

because (RMP) can be solved more quickly than (MP) using the simplex algorithm

since it has fewer variables.

Of course, an optimal basis B for (MP) is not known in advance of solving (MP).

The idea of column generation is to build one iteratively. Given an initial set J ′ ⊂ J ,
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solving (RMP) yields optimal primal and dual solutions, λ∗ and π∗. Since π∗ doesn’t

depend on any of the data for non-basic variables (recall that π = cTBA
−1
B ), it is

unaffected by the omission of the variables J \ J ′ in (RMP). We can therefore use

the standard simplex optimality condition, c̄N = cTN − π∗AN ≥ 0, to test if λ∗ is

optimal for (MP). Any non-basic variables in J ′ have non-negative reduced cost by

the optimality of λ∗ for (RMP), so only variables currently outside the model need

to be checked. The reduced cost for a variable j ∈ J \ J ′ is

c̄j = cj − π∗Aj, (2.9)

where Aj = (a1j, . . . , amj)
T is a column vector containing data for variable j. Calcu-

lating c̄j for each j ∈ J \ J ′ could still be a very time consuming exercise, given that

|J | is very large. We therefore solve the following optimisation problem, known as

the subproblem:

(SP ) min
j∈J
{cj − πAj}. (2.10)

If the optimal value of SP is non-negative, then c̄N ≥ 0 and λ∗ is optimal for (MP).

Otherwise, the variable λj corresponding to the optimal j for (SP) has a negative

reduced cost and can profitably be added to (RMP) in order to enter the basis. In

other words, λj is added to J ′ and the whole process is repeated until an optimal

solution to (MP) is obtained.

When column generation is used simply as an algorithm for solving LPs with many

variables, in the manner described, its benefits over the simplex algorithm are entirely

computational. It facilitates the solution of (MP), an LP with |J | variables, by

solving a sequence of smaller optimisation problems. These smaller problems consist

of (RMP), which is an LP with |J ′| < |J | variables, and (SP), which is a search over

a set of size |J |. Column generation is most useful when J has a special structure

that makes (SP) efficiently solvable.
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2.4 Dantzig-Wolfe Reformulation

We showed in the previous section that column generation can be an effective way

to solve LPs with a very large number of variables. In this section, it is shown how

this can be very useful for solving certain types of large MILPs.

Consider a problem of the form

min
K∑
k=1

ckTxk

s.t.
k∑
k=1

Akxk ≥ b

Dkxk ≥ dk ∀k = 1, . . . , K

xk ∈ {0, 1}nk ∀k = 1, . . . , K.

(2.11)

In this problem, the variables are divided into K groups and each group k = 1, . . . , K

consists of nk variables that are subject to their own constraint Dkxk ≥ dk. This is

often referred to as block-diagonal structure, since if the constraints are amalgamated

into the single linear system



A1 . . . AK

D1

. . .

DK




x1

...

xK

 =



b

D1

...

DK


(2.12)

then the matrix on the left hand side is bordered block diagonal. We can think of

this problem as being a group of k smaller problems

min{cTk xk : Dkxk ≥ dk, xk ∈ {0, 1}nk} (2.13)

that are linked together only by the constraints
∑k

k=1A
kxk ≥ b, which are accord-
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ingly called linking constraints. This is a commonly observed problem structure

across a wide range of optimisation applications because it arises naturally from

problems that involve coordinating a group separate but linked entities or organisa-

tional units. In this thesis, those entities are trains.

Danzig-Wolfe reformulation is a very well established technique that was introduced

by Dantzig and Wolfe [1960]. The idea is to perform a variable transformation that

changes the problem into one that can be usefully tackled using column generation.

This variable transformation is applied separately within each of the K sets

Xk = {xk ∈ {0, 1}nk : Dkxk ≥ dk} (2.14)

that make up the feasible set of the problem. In the general case where xk ∈ Rnk+

(as opposed to {0, 1}nk as we have written above), Xk is a polyhedron and this

variable transformation is performed by applying the Minkowski-Weyl Theorem (see

Theorem 1 of [Vanderbeck and Wolsey, 2010, p. 3]). This Theorem states that any

polyhedron can be represented as a convex combination of its extreme points and a

linear combination of its extreme rays. However, for the purposes of this thesis we will

always have xk ∈ {0, 1}nk , and this makes the transformation significantly simpler.

Let P k be the finite index set of Xk so that Xk = {xk,p : p ∈ P k}, where each xk,p

is a (constant) member of the set Xk. Then we can use the variable transformation

defined by

xk =
∑
p∈Pk

λk,pxk,p,
∑
p∈Pk

λk,p = 1, λk,p ∈ {0, 1} ∀p ∈ P k. (2.15)

The new binary variables λk,p are indicators, in the sense that for each possible value

xk,p of xk, we have that xk = xk,p ⇐⇒ λk,p = 1. The resulting Danzig-Wolfe
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reformulation of Problem (2.11) is

min
K∑
k=1

∑
p∈Pk

ckTxk,pλk,p

s.t.
k∑
k=1

∑
p∈Pk

Akxk,pλk,p ≥ b

∑
p∈Pk

λk,p = 1 ∀k = 1, . . . , K

λk,p ∈ {0, 1} ∀k = 1, . . . , K ∀p ∈ P k.

(2.16)

Note that the constraints Dkxk ≥ dk have been dropped. This is because, by defini-

tion, the points xk,p all implicitly satisfy these constraints.

There are two potential advantages to performing this transformation. The first is

that because the constraints Dkxk ≥ dk have been dropped and only K constraints

added, the new formulation potentially has many fewer constraints.

The second potential advantage of using a Danzig-Wolfe reformulation is related to

the quality of LP relaxation bounds. Let

x = (x1, . . . , xK),

n =
K∑
k=1

nk,

QA = {x ∈ {0, 1}n :
k∑
k=1

Akxk ≥ b},

and Qk = {x ∈ {0, 1}n : Dkxk ≥ dk}.

(2.17)

Then the feasible set of the original problem can be written as QA∩⋂K
k=1 Q

k and the

feasible set of the reformulated problem is QA ∩⋂K
k=1 conv

(
Qk
)

where conv
(
Qk
)

is

the convex hull of Qk. Although these sets are equal, the LP relaxation of the latter is

a subset of the LP relaxation of the former. As a result, the reformulation sometimes
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yields stronger lower bounds, which can be very advantageous when solving the

problem with branch-and-bound. Unfortunately, this advantage fails to materialise

when the LP relaxation of Qk is equal to conv
(
Qk
)
.

2.5 Branch-and-price

The most obvious disadvantage of transforming problem (2.11) into (2.16) via Danzig-

Wolfe reformulation is that the latter has many more variables (
∑k

k=1 |P k| as opposed

to the original
∑k

k=1 nk). However, the vast majority of these variables can be ex-

pected to take value 0 in any optimal solution to the LP relaxation. This means that

the LP relaxation of (2.16) is ideal for the application of column generation.

A branch-and-price algorithm is an LP-based branch-and-bound algorithm in which

the LP at every node of the branch-and-bound tree is solved using column generation

[Barnhart et al., 2001]. In the case of problem (2.16), there are K separate column

generation subproblems, where subproblem k is given by

(SP k) min
p∈Pk
{(ckT − πAk)xk,p}. (2.18)

Provided there is an efficient way to search over P k, this approach can be very suc-

cessful. Typically, this means that (SP) should reduce to a well-studied combinatorial

problem such as a shortest path problem or a knapsack problem.

The most challenging aspect of designing a branch-and-price algorithm is branching.

Branching on a fractional variable λk,p of (RMP) by setting λk,p = 0 in one branch

and λk,p = 1 in the other is usually unsuccessful for two reasons. First, it often

fails to lead to improved lower or upper bounds in the child nodes. The (λk,p = 0)

branch has ruled out just a single solution xk,p ∈ Xk and so is likely to produce
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exactly the same lower bound. On the other hand, the (λk,p = 1) branch completely

decides the solution for entity k. Unless its objective value ckTxk,p happens to be

good, this branch is unlikely to be worth branching on. The second problem with

this branching strategy is that it is difficult to enforce the branch λk,p = 0. Unless

this constraint is added to the subproblem (SP k), the variable λk,p will simply be

generated and added to the problem again. However, adding constraint λk,p = 0

to (SP k) typically compromises the structure of the problem, and prevents it from

being solved efficiently.

Instead, it is better to design a branching rule that is compatible with the subprob-

lem. A compatible branching rule is one that can be enforced using constraints in

the subproblem that do not compromise the structure that allows it to be solved ef-

ficiently. These branching rules are often expressed in terms of the original variables

xki , since these are the variables used in the subproblem. We design a branching rule

of this type in Section 5.6.5 for solving the TTRP.

2.6 Multicommodity Flow and Time-space Graphs

In this thesis, a branch-and-price algorithm is used to solve a MILP that is a variant

of the multicommodity flow problem (MCFP). The MCFP is a canonical optimisation

problem defined on a directed graph G = (N,A) that involves finding a minimum cost

flow for each of several commodities k = 1, . . . , K, between source and sink nodes

(that may be different for each commodity). The MCFP has been used in many

different application areas as diverse as communication networks and distribution

systems [Ahuja et al., 1993, p. 654], as well as transport applications such as the one

considered in this thesis.

Letting xkij be the amount of flow of commodity k along each arc (i, j) ∈ A, the
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MCFP can be formulated as a Linear Program:

min
K∑
k=1

∑
(i,j)∈A

ckijx
k
ij

s.t.
k∑
k=1

xkij ≤ uij (i, j) ∈ A

∑
(i,j)∈A

xkij −
∑

(j,i)∈A

xkji = bki i ∈ N k ∈ {1, . . . , K}

0 ≤ xkij ≤ ukij (i, j) ∈ A k ∈ {1, . . . , K}.

(2.19)

In this formulation, ckij is the unit cost of flow of commodity k along arc (i, j) and ukij

is an upper bound on that flow. The total amount of flow of all commodities along

(i, j) is constrained to be less than uij. Finally, the values of bki represent the supply

of commodity k at node i. At the source nodes of commodity k this takes a positive

value, at sink nodes it takes a negative value, and at all other nodes it is equal to

zero meaning that flow is conserved.

The MCFP formulation presented has a special structure that can be exploited by

effective specialised algorithms (see [Ahuja et al., 1993, p. 649-694]). However, in the

problems solved in this thesis, the flows along each arc are required to take values

in {0, 1}, so that they represent paths from a source node to a sink node for each

commodity. This makes the problem significantly more difficult in both theory and

practice. We also introduce capacity constraints that are more complex than the

simple arc capacities in the standard MCFP.

Variants of the MCFP are particularly well suited to Dantzig-Wolfe reformulation and

branch-and-price solution algorithms. For each commodity, the constraints ensuring

a valid path from source to sink define a subproblem that is efficiently solvable using

shortest paths algorithms. Meanwhile, the arc capacities (and any side constraints)

act as linking constraints that are retained in the master problem. Barnhart et al.
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[2000] provides a good introduction to the use of branch-and-price to solve the integer

MCFP.

In this thesis, the MCFP is defined on a time-space graph (also variously called a

time-space network, or a time-expanded network). Time-space graphs are used for

modelling time dependent problems, in which decisions are to be made about the time

at which certain events occur. They are obtained by expanding graphs in which each

node represents one of these events. To obtain a time-space graph, the planning

horizon is first partitioned into discrete periods of time, called time intervals. Each

node in the original graph is then duplicated once for each time interval. Arcs in

a time-space graph describe possible transitions from one event in a particular time

interval to a different event in a different time interval. Arcs therefore implicitly

encode the number of time intervals required for each event.

Time-space graphs have a long history in optimisation, the early part of which is

recorded by Aronson [1989]. They are ubiquitous in transport applications of op-

timisation, since these problems are very often time-dependent. They have been

widely used in TTRP modelling, for example by Caprara et al. [2002], Bettinelli

et al. [2017], Zhou et al. [2017] and Binder et al. [2017].

2.7 Summary

Several solution methods were introduced in this chapter to provide the necessary

background for the remainder of the thesis. The material presented is particularly

relevant to Chapter 5, which introduces a multicommodity flow formulation for the

TTRP that is based on a time-space graph. Enhancements are made in Chapter 5 to

the basic column generation algorithm outlined here. In addition, a problem-specific

branching rule is proposed. These solution methods are then used throughout the
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thesis.



Chapter 3

Optimisation for Railway
Planning

The successful operation of a railway system, like any large system, requires extensive

planning. Planning is carried out by many different organisations with differing and

complimentary responsibilities, including infrastructure managers, train operators,

industry regulators and government. Everything that is required for a passenger

service to run successfully must be planned: the track, timetable, rolling stock, train

crews, stations, safety systems and much else besides. Optimisation can be used

most effectively as a decision aid during planning when there are too many different

options for a human to compare them all. This situation tends to arise in parts of the

planning process that involve scheduling the utilisation of resources over time.

Optimisation research for railway planning begins by identifying a planning problem.

Although there are almost as many problem definitions as there are researchers,

they can be grouped into general categories. For example, the TTRP refers to

the general problem of timetable rescheduling in response to delays, despite the

fact that the type of railway, severity of delays and possible rescheduling outcomes

46
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might vary considerably depending on the particular application. Many aspects

of railway planning problems have now been studied using optimisation, and have

abundant and growing bodies of academic literature dedicated to them. A significant

part of the challenge lies in modelling: identifying the constraints, stakeholders,

objectives, uncertainties and dependencies of each problem. However, developing

effective solution methods for the models proposed is an equally pressing concern.

Despite major advances in optimisation solution methods over the last few decades,

railway planning problems continue to provide a rich source of problems that cannot

easily be solved in the time that is available in practice to solve them. They tend to

be characterised by complexity and large scale.

The literature on optimisation for railway planning is too large to review here in

detail. However, some key concepts are introduced, and the TTRP is situated in

relation to similar planning problems. For a more in-depth account, the reader is

referred to two excellent books that bring together surveys from across the spectrum

of railway planning, [Borndörfer et al., 2018] and [Hansen and Pachl, 2014].

3.1 Planning Horizons

The planning horizon (alternatively time horizon) of a problem is the period of time

with which the planning is concerned. Railway planning problems can be classified

according to the length of the planning horizon, into the following groups:

• Strategic problems have the longest planning horizon, as they consider deci-

sions that will continue to have consequences many years into the future. An

example is the problem of designing the layout of the track network. Because

they are usually related to the provision of railway services a long way into the

future, uncertainty about future passenger demand can make strategic prob-
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lems difficult to tackle. They also tend to be characterised by having a large

number of stakeholders and objectives, because strategic decisions often involve

significant investment in infrastructure. Where governments are involved these

decisions can become political, which makes the application of optimisation

difficult.

• Tactical problems are those which must be addressed weeks or months in

advance of their planned effect. A good example is the Train Timetabling

Problem. Tactical problems are often logistical problems related to allocat-

ing resources to be used by train services. They are therefore influenced by

the amount of resource availability planned for at the strategic planning stage.

Tactical problems are a significant success area for optimisation. They are of-

ten well defined problems in which solutions obtained via optimisation can be

evaluated before implementation.

• Operational problems are those that are faced day-to-day in order to adjust or

supplement decisions taken at the tactical level. The TTRP is an operational

problem, as are the crew and rolling stock rescheduling problems. Operational

problems have short planning horizons because they depend on information

that arises in real-time and is therefore subject to change, such as the cur-

rent status of the railway system. The implementation of optimisation models

for operational decisions faces several unique hurdles. The short computation

times required to make quick decisions is a challenge for optimisation meth-

ods. We address this challenge for the TTRP in Chapter 5 by producing

an algorithm with sufficiently short computation times. The fast nature of

operational decisions also means that solutions cannot always be extensively

evaluated before implementation. It is therefore important that optimisation

models for operational problems reliably produce solutions that can be imple-

mented in practice. This motivates the very detailed modelling of both track
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capacity in Chapter 5, and train speed in Chapter 6. Further, models need to

be integrated into the real-time operations of the railway. They therefore need

to be extremely safe and reliable, and have well-functioning human-computer

interfaces.

Operational railway planning problems such as the TTRP usually adopt a very short

time horizon of one hour up to a few hours. This is partly because longer time

horizons increase the difficulty of solving the problem in the short time available.

However, it is also a response to the uncertainty in the future evolution of traffic

conditions. Corman and Meng [2015] outline different approaches to the question

of when a problem should be solved. In open loop control settings, problems are

solved only once using forecasts for the times of future events. On the other hand,

in closed loop control a problem is solved repeatedly, taking into account the latest

available data and forecasts about the traffic situation each time. The latter approach

allows for current plans to be as up-to-date and accurate as possible. However, this

must be weighed against the difficulties of implementing a solution that is frequently

changing.

3.2 Railway Infrastructure Representation

Planning problems that schedule the utilisation of railway infrastructure over time

require an appropriate representation of that infrastructure. It is almost universal

practice to use directed graphs for this purpose. Infrastructure is viewed as a set

of discrete track components which are the nodes of the graph, whilst directed arcs

indicate possible transitions between these components. Data is usually associated

with each node (or each arc, or both), although the nature of this data depends on

the application in question.
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Different infrastructure representations arise from different choices of what the track

components are. Microscopic representations contain the highest level of detail be-

cause they use the smallest track components. The track components can be block

sections or track circuits (see Section 5.2). Macroscopic representations, by con-

trast, use much larger track components that aggregate the information available

in microscopic models. Typically, the track components are stations and junctions.

Macroscopic representations are generally preferred for planning tasks with a wide

geographical scope, because they result in smaller graphs. However, the detail in-

cluded in microscopic representations can be crucial depending on the planning task.

A more comprehensive introduction to this topic is given by Radtke [2014].

3.3 Timetabling and Timetable Rescheduling

One of the most studied tactical railway planning problems is the Train Timetabling

Problem. The aim of this is to construct a timetable by deciding on the arrival and

departure times of trains at station calling points. The timetable must satisfy the

desired level of service frequency on modelled lines, whilst respecting the capacity

of the railway network. The Train Timetabling Problem has received considerable

attention in the literature, and several reviews are available [Caprara et al., 2010;

Cacchiani et al., 2015].

Once a timetable has been proposed, the Train Routing Problem is normally solved.

Whereas timetables are usually produced at macroscopic level, the train routing

problem involves finding paths through the track infrastructure for each train at the

microscopic level, so that its arrival and departure times match those in the timetable.

This is often only necessary within bottlenecks such as junctions or stations. In many

stations, allocating trains to platforms determines their route and so the problem
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reduces to the Train Platforming Problem, which is to assign each train a platform.

Some authors refer to the routing and platforming problems interchangeably. A

review of models for the train routing problem is given by Lusby et al. [2011].

The Train Timetabling Problem and the Train Routing Problem are similar to the

TTRP. Indeed, they are the tactical, ‘offline’ equivalent of the TTRP. As a result,

there are many similarities between the models that have been used for both prob-

lems. Furthermore, timetable scheduling and rescheduling can be seen as playing

complementary roles in the prevention of delays. The impact of unexpected delays

can be mitigated by designing robustness into the timetable at the tactical planning

stage (see [Lusby et al., 2018] for a review). When delays inevitably occur to which

the timetable is not sufficiently robust, timetable rescheduling can then be used to

recover.

However, there are several important differences between scheduling and rescheduling

that arise from practical considerations. One difference is that at the rescheduling

phase, the original schedule and the past and present location of the trains are al-

ready known, while they are not at the scheduling phase. Another difference is that

at the scheduling phase the objective is to design a timetable that is attractive to

passengers and operators, whereas at the rescheduling phase there is more emphasis

on reducing delays and recovering the originally planned timetable. A third differ-

ence is that periodic timetables (e.g. timetables that repeat every hour) are often

sought at the scheduling phase, but this is inappropriate for rescheduling. This means

that popular models for timetabling such as the Periodic Event Scheduling Problem

(PESP) [Serafini and Ukovich, 1989] cannot be used for timetable rescheduling. Fi-

nally, significantly more time is available to solve timetabling and routing problems

than rescheduling problems, because the former are tactical problems, rather than

operational.
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3.4 Timetable, Crew and Rolling Stock Reschedul-

ing

In the presence of small disturbances, timetable rescheduling is the main focus of

the response. However, large disruptions can also result in the crew and rolling

stock for a subsequent train service being unavailable or in the wrong location. The

response to these major disruptions therefore requires the rescheduling of all three

components: the timetable, crew schedules and rolling stock schedules.

These three rescheduling problems are heavily interdependent. The process is typ-

ically sequential: The timetable is rescheduled first by the infrastructure manager,

and the operators respond by rescheduling rolling stock, then crews. Whilst this

approach might help to keep the problems tractable, changes to the timetable might

have very undesirable implications for rolling stock or crew. This has led some re-

searchers to try to integrate these problems (see Cacchiani et al. [2014] for a review).

In general, such models are very large and complex, and unable to consider all aspects

of all problems in sufficient detail. Moreover in many railway systems, responsibility

for timetable rescheduling lies with the infrastructure manager, whilst responsibil-

ity for crew and rolling stock lies with operators. The problems therefore involve

separate decision makers and are not suitable for integration.

The Rolling Stock Rescheduling Problem is usually carried out after timetable reschedul-

ing. The aim is to ensure that trains of the correct capacity and type are available in

the right place at the right time to provide the services in the rescheduled timetable.

Because trains are usually composed of multiple train units, shunting operations

must be planned carefully. Significant recent contributions to this problem have

been made by Nielsen et al. [2012], Haahr et al. [2016] and Lusby et al. [2017].

The Crew Rescheduling Problem is usually carried out after the timetable and rolling

stock have been rescheduled. The new schedules may make the original crew schedule
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infeasible, so drivers and conductors must be re-assigned to different tasks in order

to complete their duties. For a duty to be feasible, the crew must be in the right

place for each task. It must also satisfy certain workload regulations, regarding the

frequency and duration of breaks, transfer times in between tasks and specific start

and end locations. It is also desirable to change the duties as little as possible. The

formulations used for crew rescheduling in railway systems are almost all based on

the extended set covering model. Examples include Huisman [2007], Potthoff et al.

[2010], Rezanova and Ryan [2010] and Veelenturf et al. [2016]

3.5 Delay Management

The delay management problem is closely related to the TTRP. It is concerned with

responding to delays specifically by making wait-depart decisions. These decisions

are made whenever one train is late arriving into a station and another train is ready

to depart from the same station. They concern whether the latter train should depart

on time, or alternatively wait until the late train has arrived in order to maintain

any passenger connections. This problem has been studied by Schöbel [2001, 2007]

and Dollevoet et al. [2012], among others.

Whilst both the delay management problem and the TTRP aim to tackle the ef-

fects of traffic perturbation by making real-time changes to the timetable, they are

quite different paradigms. Delay management is fundamentally a passenger-oriented

approach, since data about the complete journeys of passengers is required and the

timetable is optimised to best serve these. The operational feasibility of the chosen

set of wait-depart decisions is in general not modelled. The TTRP, on the other hand,

explicitly models the track capacity to make sure that the rescheduled timetable is

feasible in practice. TTRP objectives are usually dependent on train performance,
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and do not explicitly consider passengers. Some researchers have produced delay

management models that incorporate aspects of the TTRP by considering station ca-

pacities [Dollevoet et al., 2015], combining them in an iterative framework [Dollevoet

et al., 2014], and even integrating them completely [Corman et al., 2016].

3.6 Summary

A general introduction to the role of optimisation in railway planning was given

in this chapter. Our description of the challenges inherent in operational planning

is particularly pertinent to the remainder of the thesis, which addresses specific

challenges for the TTRP. In addition, our review of planning problems that are

closely related to the TTRP provides important context for Chapter 4, where we

will discuss formulations for the TTRP.



Chapter 4

TTRP Formulations

Although many optimisation models have been proposed for different variants of

the TTRP, most of the formulations used can be distilled into a few main types.

Models conforming to each type share similar definitions of decision variables, and

have in common ways of modelling track capacity constraints. These basic strategies

for formulating the problem, most of which are also relevant for the offline Train

Timetabling Problem, are described below. Different perspectives on TTRP formu-

lations are given by Lusby et al. [2011], Harrod [2012] and Toletti [2018].

4.1 A Generic TTRP Formulation

To model the TTRP, the infrastructure utilisation of a set of trains K = {1, . . . , K}

over a time horizon must be modelled. It is assumed that the track is represented by

a directed graph, as described in Section 3.2. In this graph, each node represents a

track component, and the presence of a directed arc signifies that a train can move

from one track component directly to another.
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The evolution of the modelled system, comprising of track and trains, can be thought

of as a series of discrete events that occur at particular points in time. Discrete events

usually concern a particular train and track component. For example, a very common

type of event is the arrival of a train at a track component. In macroscopic models

this might correspond to an arrival at a station, whilst in microscopic models this

might mean entering a new block section. Other events can also be defined, such as

the departure of a train from a track component.

To model the problem as a MILP, the events that occur to each train k ∈ K and the

times at which they do so must be represented by a finite number of real variables

xk ∈ Rnk . Although these may not be the only decision variables in a TTRP model,

they are the most important and ubiquitous, since their optimal values describe the

optimal rescheduled timetable.

There are two fundamental types of constraints that are necessary in order to con-

strain the rescheduled timetable to be achievable in practice:

• Individual train constraints pertain to only the variables xk of one train

k ∈ K. They ensure that the sequence of events that occurs to train k over the

time horizon is feasible in the absence of other trains. Typical individual train

constraints ensure that:

– Trains begin in the correct initial track component at the correct time,

reflecting current traffic conditions.

– Trains traverse feasible sequences of track components.

– Minimum and maximum traversal times and dwell times are respected,

taking into account the kinematic capabilities of trains and any speed

limits.

• Linking constraints involve decision variables relating to more than one train.
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They ensure that the events that occur to different trains do not interact with

each other in a way that is not operationally possible. The most ubiquitous

linking constraints are track capacity constraints, which ensure that there are no

train conflicts in the rescheduled timetable. The most common type are single

occupancy constraints, which ensure that each track component is utilised by

at most one train at any one time. Other linking constraints are sometimes

present, such as those regarding passenger connections, crews or rolling stock.

We can therefore propose a completely general train routing formulation:

max{c(x1, . . . ,xK)|xk ∈ Dk ∀k ∈ K and (x1, . . . ,xK) ∈ A} (4.1)

where n =
∑

k∈K nk, each Dk ∈ Rnk , A ∈ Rn and c : Rn → R. The individual train

constraints for train k are defined by Dk, whilst the linking constraints are defined

by A. The objective function c represents the quality of the rescheduled timetable

defined by (x1, . . . ,xK). If problem (4.1) can be formulated using linear constraints

and objective function, then this formulation is a MILP with the same bordered

block diagonal form as problem (2.11) in Section 2.4. This shows that Dantzig-Wolfe

reformulation corresponds to the idea of train decomposability, and can be a natural

approach to modelling the TTRP.

4.2 Disjunctive Formulations

Disjunctive formulations for the TTRP are characterised by the presence of variables

tkn ∈ R+ that each correspond to the time at which an event n pertaining to train k

occurs. For example, if the event that train k arrives at track component s is denoted

by n, then tkn is the time at which train k arrives at s.
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For each train k ∈ K, individual train constraints usually control the differences

between the times of pairs of events using precedence constraints of the form

tkn2
− tkn1

≥ pkn1,n2
, (4.2)

where pkn1,n2
∈ R is the minimum amount of time separating the occurrence of event

n1 and event n2 for train k. Constraints of this type can accomplish three things,

depending on the sign of pkn1,n2
and the events used:

1. If pkn1,n2
≥ 0, then (4.2) ensures that event n2 occurs a minimum of pkn1,n2

later than event n1. If events n1 and n2 represent arrivals at consecutive track

components and pkn1,n2
is the minimum time required to traverse n1, then this

constraint establishes the order of traversal of these track components, and

ensures that the minimum traversal time is respected.

2. If pkn1,n2
< 0, then (4.2) ensures that event n1 occurs a maximum of −pkn1,n2

later than event n2. This can be used to model maximum traversal times by

letting −pkn1,n2
be the maximum time. Constraints of this type are also often

used to enforce maximum waiting times in platforms or stations.

3. They can be used to provide absolute upper and lower bounds on the times of

events, by using a dummy event n0 with a fixed time tkn0
= 0 in place of n1 or

n2. This reduces (4.2) to either tkn2
≥ pkn0,n2

or tkn1
≤ −pkn1,n0

. These bounds

can be used to express constraints that arise from the timetable on arrivals and

departures from stations.

Linking constraints in disjunctive models control the differences between pairs of

events for different trains using constraints of the form

tk1n2
− tk2n1

≥ pk1,k2n1,n2
, (4.3)
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where pk1,k2n1,n2
is the minimum time that must elapse between event n1 for train k1 and

event n2 for train k2. Analogously to the individual constraints, these can be used to

enforce minimum and maximum differences between the times of events relating to

different trains. Both (4.2) and (4.3) are known as precedence constraints, but they

differ in whether the events relate to the same train, or to two different trains.

Single occupancy track capacity constraints are commonly used to limit the occu-

pancy of a particular track component to at most one train at any one time. Suppose

it is known that train k1 will traverse track component s before train k2, and suppose

that enter and leave are the events corresponding to entering and leaving s. Then

the track capacity can be expressed using the constraint tk2enter − tk1leave ≥ pk1,k2s . This

ensures that k1 leaves s before k2 enters it, therefore respecting the capacity of s.

The time pk1,k2s that must elapse between these two events is often known as a head-

way. However, since k1 and k2 could be ordered the other way round, the disjunctive

constraint

(tk2enter − tk1leave ≥ pk1,k2s ) ∨ (tk1enter − tk2leave ≥ pk2,k1s ) (4.4)

must be used. This states that either the left hand side expression must be true, or

the right hand side expression i.e. at least one of the trains must traverse s first. In

this case, the expressions cannot both be true because each train must enter s before

leaving it. In order to prevent s from being traversed by two trains at the same time,

a constraint of the form (4.4) must be used for every pair of trains k1 and k2 that

could potentially traverse s.

4.2.1 Alternative Graph Model

The Alternative Graph (AG) model is a popular disjunctive model for timetable

rescheduling. Examples of its use include D’Ariano et al. [2007a, 2008]; D’Ariano



CHAPTER 4. TTRP FORMULATIONS 60

and Pranzo [2009]; Corman et al. [2009a,b, 2011b,a, 2012a]; Kecman et al. [2013];

Samà et al. [2017]. The AG model is typically used as a microscopic model, where

track components correspond to block sections. The route of each train (the sequence

of block sections to be traversed) must be decided before solving the model. The set

of discrete events included in the model for each train then comprises the arrivals into

each of these block sections. That is, there is one variable tkn ∈ R+ corresponding to

the time at which train k arrives at each block section on its pre-determined route.

Because the sequence of track components is fixed for each train, the basic AG

model can perform only retiming and not rerouting, although it has been extended

to include rerouting by Corman et al. [2010a].

An alternative graph is a directed graph G = (N,F,A). The node set N is the set of

discrete events, consisting of one node for every traversal of a track component by a

train. In addition, N contains a dummy node fixed at time zero, and another dummy

node that must occur after all other events. Precedence constraints are represented

by the set of directed arcs F , called fixed arcs. For example, tkn2
− tkn1

≥ pkn1,n2
would

be represented by a directed arc from event n1 for train k to event n2 for train k

of length pkn1,n2
. Each disjunctive constraint that is used for the capacity of a track

component is represented by a pair of arcs in A, called alternative arcs. For example,

the disjunction (4.4) would be represented by two arcs, one from event leave for train

k1 to event enter for train k2 of length pk1,k2s , and the other from event leave for train

k2 to event enter for train k1 of length pk2,k1s .

A solution to the AG model consists of two parts. First, one alternative arc out of

each pair must be chosen to be kept and the other discarded. This corresponds to

choosing the order of each pair of potentially conflicting trains. Second, the time tkn

at each node must be chosen to satisfy the remaining precedence constraints. This

is done to minimise the time difference between the two dummy events, that occur

before and after all other events, respectively. In the parlance of machine scheduling
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literature, this is minimising the makespan. In fact, the AG model has strong sim-

ilarities to the well-known job-shop scheduling problem. Trains correspond to ‘jobs’

and track components to ‘machines’. Single occupancy track capacity constraints

correspond to the constraint that each machine can process at most one job at once.

Trains must move directly from one track component to the next: these are known

as blocking constraints in the machine scheduling literature.

4.2.2 Disjunctive MILP Formulations

When disjunctive formulations are solved using MILP techniques, disjunctive con-

straints of the form (4.4) must be linearised. This usually achieved by introducing

a binary variable xk1,k2
s that indicates whether k1 traverses s before k2 or vice versa.

Constraint (4.4) can then be replaced by:

tk2enter − tk1leave +Mxk1,k2
s ≥ pk1,k2s (4.5)

tk1enter − tk2leave +M(1− xk1,k2
s ) ≥ pk2,k1s . (4.6)

When xk1,k2
s = 0, constraint (4.5) corresponds to the left hand side expression of (4.4)

and when xk1,k2
s = 1, constraint (4.6) corresponds to the right hand side expression of

(4.4). Since xk1,k2
s must take value either 0 or 1, the disjunction of (4.4) is enforced.

The value of the constant M is chosen sufficiently large that (4.6) is redundant when

xk1,k2
s = 0 and (4.5) is redundant when xk1,k2

s = 1. Collectively, (4.5) and (4.6) are

called big-M constraints. Almost all disjunctive models use big-M constraints for

disjunctions. A notable exception is the model of Lamorgese and Mannino [2019].

They apply a combination of Benders’ reformulation and polyhedral results to replace

the big-M constraints by dynamically added knapsack cover inequalities and other

linear inequalities.
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Several disjunctive MILP models perform rerouting in addition to re-timing. One

approach, taken by Törnquist and Persson [2007] and Acuna-Agost et al. [2011a], is

to use additional binary variables xks that indicate whether train k uses track com-

ponent s. Additional network flow constraints are necessary to ensure that the track

components used by each train form a feasible sequence through the railway network.

Constraints (4.5) and (4.6) can no longer be used for track capacity constraints, since

it is not known that k1 and k2 will traverse s. Instead, the following constraints can

be used:

tk2enter − tk1leave +Mxk1,k2
s +M(1− xk1s ) +M(1− xk2s ) ≥ pk1,k2s (4.7)

tk1enter − tk2leave +M(1− xk1,k2
s ) +M(1− xk1s ) +M(1− xk2s ) ≥ pk2,k1s . (4.8)

These constraints use additional big-M terms to ensure that the disjunction is only

enforced if both trains traverse s. If either xk1s = 0 or xk2s = 0, then both of (4.7) and

(4.8) are both redundant. Meanwhile, if xk1s = 1 = xk2s , then (4.7) and (4.8) become

identical to (4.5) and (4.6).

A related approach, taken by Pellegrini et al. [2014], D’Ariano et al. [2014] and Min

et al. [2011], is to instead enumerate valid subsequences of track components that

make up routes r though a particular area, usually a station. Binary variables xkr are

then used to indicate whether route r is used by train k, and a constraint is required

to ensure that exactly one of these routes is selected. In this case, (4.5) and (4.6)

are replaced by constraints

tk2enter − tk1leave +Mxk1,k2
s +M(1− xk1r1 ) +M(1− xk2r2 ) ≥ pk1,k2s (4.9)

tk1enter − tk2leave +M(1− xk1,k2
s ) +M(1− xk1r1 ) +M(1− xk2r2 ) ≥ pk2,k1s (4.10)

for each pair of routes r1 and r2 for the two trains that both contain track component
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s. Note that (4.9) and (4.10) reduce to (4.5) and (4.6) if xk1r1 = 1 = xk2r2 . As a result,

the disjunction for track component s is enforced if and only if both trains use routes

that contain s.

4.2.3 Discussion

We have shown that disjunctive formulations are a convenient way of modelling

the TTRP. Individual train constraints including track component order, minimum

and maximum traversal times and absolute bounds on the times of events can be

modelled using precedence constraints. We also showed that disjunctions can be used

to model single occupancy track capacity constraints. The AG model and disjunctive

MILPs were introduced, including different ways of modelling rerouting with big-M

constraints.

Whilst disjunctive models excel at modelling the TTRP, solving them quickly is

often more problematic. The difficulty stems from the disjunctive constraints. When

disjunctions are modelled using big-M constraints in a MILP, the bounds that can

be obtained by solving LP relaxations are generally not very close to the optimal

objective value. Formulations with this property are known as weak formulations,

and can be time consuming to solve to optimality. This motivates our interest in the

time-indexed formulations, which are discussed next.

4.3 Time-indexed Formulations

Time-indexed formulations are characterised by partition of the time horizon into

a set of discrete time intervals T = {1, . . . , T}. The discrete events considered are

timed events, meaning that each one is associated with a time interval, as well as a



CHAPTER 4. TTRP FORMULATIONS 64

train and a track component. Popular examples of a timed event n for train k include

its arrival at a track component s in time interval t, or its utilisation of s during time

interval t. Since time is already part of the definitions of events, binary variables are

often used to indicate which events occur. The enumeration of the timed events n

that index the variables is only possible because the time horizon is represented as

a finite discrete set.

4.3.1 Arc Packing

Arc packing models are typically based around representing timed events as nodes in

a time-space graph (time-space graphs are explained in Section 2.6). The schedule

of each train is represented as a source-sink path in this graph, corresponding to a

sequence of timed events. Directed arcs a = (n1, n2) are used in the time-space graph

to indicate that timed event n2 may directly follow timed event n1. Suppose that

event n1 indicates arrival at track component s1 at time interval t1 and n2 similarly

with s2 and t2. Then the inclusion of arc a = (n1, n2) in the time-space graph

indicates that a train may consecutively traverse s1 followed by s2, and that t2 − t1
time intervals should elapse between arrivals. In other words, the track topology and

traversal times may be represented using the time space graph.

Models such as [Caprara et al., 2002] and [Bettinelli et al., 2017] use binary variables

xka to indicate whether or not arc a is in the source-sink path of train k. The

first formulation presented in Chapter 5 is also of this kind. The individual train

constraints, which are implicit in the requirement that each train is assigned a source-

sink path in the time-space graph, are enforced using network flow constraints.

Using the variables defined, single occupancy track capacity constraints can be ex-
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pressed using constraints of the form

∑
k∈K

∑
a∈A

xka ≤ 1, (4.11)

where A is some set of arcs implying occupancy of a particular track component. This

is where the name arc packing comes from: this is a set packing constraint involving

variables indexed by arcs. In the simplest models, the sets A consist of just one arc.

However, A can be defined in different ways to represent more complex track capacity

constraints. For example, Harrod [2011] includes arcs that represent transitions

between track components, rather than just occupation of track components. Our

model in Chapter 5 extends constraints (4.11) in a different way to take into account

the complexities of signalling in large station areas.

Some arc packing models, such as [Brännlund et al., 1998], do not explicitly use time-

space graphs. Rather, they contain variables xks,t to indicate whether train k uses

track component s at time interval t. Individual train constraints can be expressed

directly using these variables, and single occupancy track capacity constraints can

be expressed as ∑
k∈K

xks,t ≤ 1 ∀s, t. (4.12)

Although variables xks,t are not indexed by the arcs of a time-space graph, this for-

mulation is very similar to the standard arc packing formulation.

4.3.2 Path Packing

Path packing formulations use groups of timed events such as entire timed train

runs i.e. timed sequences of track components. In time-space graph models, these

correspond to source-sink paths in the graph, and the variables xkp indicate whether

train k uses path p. In some models for station areas, such as Caimi et al. [2012],
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the groups of timed events p represent train runs from the entrance of the station

to a platform. Individual train constraints are often implicit in these paths, in

the sense that the path p represented by xkp usually already represents a feasible

sequence of track components and respects minimum traversal times. Each train

is additionally constrained to be allocated exactly one path, using a constraint of

the form
∑

p∈Pk x
k
p = 1, where P k is a set of possible paths for train k. The set of

paths P k may be enumerated prior to solving the optimisation model, or dynamically

generated — this is discussed in Section 5.3.

Track capacity constraints in path packing models can be represented using set pack-

ing constraints. Suppose that path p1 for train k1 and path p2 for train k2 conflict (i.e.

both require the use of a track component during the same time interval). Zwaneveld

et al. [2001] prevent them from both being selected by adding the constraint

xk1p1 + xk2p2 ≤ 1. (4.13)

However, constraints of this type generally lead to weak MILP formulations. This

problem can be mitigated by using a conflict graph. This is an undirected graph in

which the nodes are paths, and an arc is present between two nodes if and only if

the paths represented by the nodes have a conflict. Instead of including a constraint

for each conflicting pair (corresponding to an arc in the conflict graph), constraints

of the form ∑
(k,p)∈C

xkp ≤ 1 ∀ maximal cliques C (4.14)

can be included. A maximal clique C in the conflict graph is a maximal subset of

the nodes such that every pair of nodes in the subset is adjacent. Constraints (4.14),

called clique inequalities, lead to stronger MILP formulations than if constraints of

the form (4.13) are used (see Padberg [1973]). Methods for identifying these cliques

that are specific to the TTRP have been developed by Caimi et al. [2011]. Cliques are
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added dynamically during the solution process to avoid the computational burden

of calculating them all in advance.

Track capacity constraints in path packing models can also be formulated by using

constraints that are each linked to a specific single occupancy track component and

time interval. For example, suppose that P k
s,t consists of all paths for train k that

imply utilisation of track component s in time interval t. Then the capacity of s in

time interval t can be limited by the constraint

∑
k∈K

∑
p∈Pks,t

xkp ≤ 1. (4.15)

We build on this approach in the second TTRP formulation presented in Chapter 5

to make it suitable for complex station areas.

4.3.3 Resource Trees

The models of Caimi et al. [2011] and Lusby et al. [2013] both use resource trees

in place of traditional time-space graphs. A resource tree for a particular train is a

dynamically generated tree in which each node is a timed event. The branches of

the tree represent the outcomes of combinations of discrete decisions for each train,

such as which track component to occupy next when there is a choice, and what

speed to travel at. Individual train constraints are represented in the construction

of the resource trees. Paths from source nodes to sink nodes in resource trees can

be represented using either arc variables xka or path variables xkp. Track capacity

constraints can therefore be modelled in the same way as arc packing and path

packing formulations.
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4.3.4 Path Configuration

Borndörfer and Schlechte [2007] have proposed the Path Configuration Problem for-

mulation. This is an extended formulation of the path packing problem that affects

the way that track capacity constraints are represented in the model. New binary

variables yq are introduced to indicate the selection of configurations q. A configu-

ration is a set of timed arcs, corresponding to a particular track component, that do

not conflict with one another. Configurations are represented as paths in a directed

graph, and at most one configuration can be chosen per track component. The track

capacity constraints are enforced via constraints of the form

∑
p:a∈p

xp ≤
∑
q:a∈q

yp

that state that a path p containing particular arc a can be chosen for a train only if

a configuration q containing that arc is also chosen.

4.3.5 Cumulative Flow

Meng and Zhou [2014] have proposed an extension of the arc packing problem that

uses cumulative flow variables. These are variables aki,t and dki,t that indicate whether

train k has arrived at (respectively departed from) track component i by time t.

These are coupled with variables xki,t that express whether train k is using i at time

t. This is achieved using constraints

xki,t = aki,t+g − dki,t−h, (4.16)

where g is the number of time intervals before arrival that a train starts occupying

the track component, and h is the amount of time after departure that it continues
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to do so. This variable coupling allows the track capacity constraints to be expressed

using constraints similar to (4.12).

4.4 Discussion

Our review of TTRP formulations has focussed on underlying mathematical struc-

tures, and in particular variable definitions and the representation of single occu-

pancy track capacity constraints. It is clear that a wide variety of different types of

formulations have been proposed.

In some cases, the choice of formulation enables specific types of modelling to be

carried out more easily. For example, connections are much easier to model using

disjunctive formulations than they are using time-indexed formulations. On the

other hand, modelling rerouting is very natural in time-indexed formulations, but

requires many additional variables and constraints in disjunctive models. Because

this thesis tackles the TTRP in complex station areas, rerouting is very important

and so time-indexed formulations are a natural choice.

In other cases, the choice of formulation is influenced by computational factors.

Disjunctive models usually use big-M constraints, which lead to weak LP relaxations

and cause poor branch-and-bound performance. Whilst time-indexed models avoid

big-M constraints, they can also be hard to solve because they require a large number

of binary variables. This is a particular concern for microscopic models, since they

often have many track components and use short time intervals, for example of length

15 seconds. In this thesis, we develop solution methods for a time-indexed model to

try to overcome this difficulty. We show that time-indexed models can be suitable

for solving a microscopic TTRP model.

There are many other ways in which TTRP models can be classified:
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• Whilst our model uses a microscopic track topology, there are many macro-

scopic existing models. Further distinctions within these groups are discussed

in Section 5.3.

• Whilst our model is designed for complex station areas, TTRP models can be

designed for single track lines, double track lines or large networks. There are

a growing number of works dedicated to high-speed lines.

• Not all models use single occupancy constraints to model track capacity. More

complex track capacity constraints are introduced in Section 5.4.6.

• TTRP models can be classified by the severity of traffic perturbations they are

designed to respond to. Whilst we focus on relatively small disturbances, other

authors, such as Zhan et al. [2015], focus on complete blockages of the track.

• TTRP models perform different combinations of rescheduling strategies. Whilst

our model performs retiming, rerouting, skipping stops and (optionally) can-

cellations, many macroscopic models focus on other strategies such as short

turning [Altazin et al., 2020].

• Train speed, including acceleration and deceleration can be modelled in differ-

ent ways. This is discussed in much more detail in Section 6.2.

• Additional features of some TTRP models that we have not mentioned include

consideration of rolling stock considerations, train and platform length and

passenger connections.

More comprehensive coverage of all of these issues is available in review papers by

Cacchiani et al. [2014], Corman and Meng [2015], and Fang et al. [2015].
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A multicommodity flow model for
rerouting and retiming trains in
real-time to reduce reactionary
delay in complex station areas

5.1 Introduction

Delays to passenger trains are a significant problem in Great Britain. In 2018–

2019, only 65.3% of recorded passenger train stops occurred on time [Network Rail,

2020], and the time that passengers lose each year as a result of arriving late at their

destinations has been estimated to be worth at least £1 billion [National Audit Office,

2008, p. 46]. In 2019, 64.35%1 of total train delay minutes were due to reactionary

delays, which are delays that are caused by the knock-on effect of prior delays. The

prevalence of reactionary delays is therefore a very significant part of the overall

problem.

1Statistic provided by Network Rail.
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In this paper, we present a model and algorithm that can be applied to reduce the

amount of reactionary delay after an initial delay incident. This is achieved by solving

the Train Timetable Rescheduling Problem (TTRP) [Cacchiani et al., 2014]. The

TTRP consists of calculating new schedules (called rescheduling) for trains in real-

time that are different from those originally planned. These new schedules should

maximise a measure of utility so as to represent the best possible response to the delay

incident. Rescheduling consists of both rerouting and retiming, finding new routes

and timings for a train, respectively. Rerouting implicitly includes replatforming,

finding new platforms at the same station for a train to stop at. The TTRP is

solved within a defined area of a railway network over a fixed time horizon. The new

schedules should be practically achievable under the constraints of the signalling

system.

Although the TTRP has already benefited from a significant amount of research

attention, which has been well documented by Corman and Meng [2015], Cacchiani

et al. [2014] and Fang et al. [2015], the successful deployment of real-time optimiza-

tion algorithms as a decision support tool for timetable rescheduling has so far been

limited (see Borndörfer et al. [2017] and Lamorgese et al. [2018]). One reason for

this is that researchers have been unable to solve realistic instances to optimality in

the strict solution time limits required in a real-time environment. Instead, some

have relied on heuristic methods that offer no guarantees on the quality of solutions

found. Others have proposed simplified models that either carry out rerouting and

retiming separately, approximate the signalling constraints or use simplistic objective

functions.

In this study, we propose a multicommodity flow model for the TTRP that performs

rerouting and retiming simultaneously. The model employs a novel representation of

the signalling constraints that is accurate and detailed, yet leads to a tractable for-

mulation of the problem. Our objective function uses the concept of utility to flexibly
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represent complex rescheduling preferences. We present a new set of instances based

on real data from an area of the British railway network centred around Doncaster

station. Finally, we show that these instances can be solved to either optimality or

provably near to optimality in sufficiently short times using a tailored branch-and-

price algorithm.

This research has been carried out in collaboration with Network Rail, the railway

infrastructure manager in Great Britain. In 2018–2019 on their network, 1.8 billion

passenger journeys were made, totalling 68 billion passenger kilometres. Network

Rail is seeking to use new technology to improve their ability to manage disrup-

tion on the railway, and therefore to improve the reliability of passenger services.

This represents a good opportunity for optimization-based rescheduling to have an

impact.

The paper is organised as follows. In Section 5.2, we define some prerequisite railway

signalling concepts and terminology before reviewing the current literature in Section

5.3. Section 5.4 introduces the model. In Section 5.5, we show how to formulate the

problem as an integer program, which can be solved using the branch-and-price

solution algorithm presented in Section 5.6. Section 5.7 describes the creation of the

test instances, Section 5.8 presents our computational results, and finally Section 5.9

offers our conclusions and suggested directions for future research.

5.2 Railway Signalling

In order to ensure safe operation of the railway, the movement of trains is regulated

by a signalling system. Signalling is a complex topic that is covered in detail by

Pachl [2014]. For conciseness, in this paper we will focus only on the details relevant

to our model for the TTRP. Although we describe the workings of the signalling
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system in Great Britain, it is similar elsewhere. The signalling system controls train

movements at stations, junctions and on the lengths of uninterrupted track that run

between them, called open lines. Signalling for stations and junctions is different to

the signalling on open lines.

The vast majority of open lines in Great Britain are signalled with single-direction

Automatic Block Signalling. In this system, the track is divided into block sections.

Each block section is protected by a signal that is visible to drivers in advance

of arrival at the block section. Signals display a green aspect to indicate that an

approaching train may pass the signal and enter the block section. In contrast, a

red aspect indicates that an approaching train must stop before entering the block

section. Signals protect block sections by ensuring that there is at most one train in

each block section at any one time and therefore that trains cannot collide. Though

we do not include them in our model, yellow and double-yellow aspects are often

used to indicate caution, warning trains to slow down when the next or next-but-one

signal, respectively, is red.

In contrast, stations and junctions are usually signalled with an interlocking sys-

tem. This is a more complicated signalling arrangement designed to cope with the

increased complexity of converging, diverging and crossing tracks within these areas.

The track within an interlocked area is divided into track circuits. In a station, some

of these track circuits contain platforms. Signals are placed both at the limits of an

interlocked area and at the end of platforms. The red and green aspects of these

signals have the same meanings as the red and green aspects of signals on the open

line. Trains travelling through interlocked areas begin and end this traversal at sig-

nals at the limit of the interlocked area. During this traversal, they may also visit

signals positioned at platforms.

In an interlocked area, the route from one signal to an adjacent signal consists of a
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sequence of track circuits. The signal at the start of a route will allow a train to

traverse the route only if it has first been locked. The interlocking system prevents a

route from being locked unless all track circuits that make up the route are free, i.e.

are not currently locked for another train. Therefore, when a route is locked for a

train, no other route with track circuits in common can be locked. Since they cannot

be locked, they cannot be traversed. In route-release interlocking systems, the track

circuits in a route are released simultaneously when the entire route is cleared. In

sectional-release interlocking systems, each track circuit is individually released when

it is cleared. We will show how to model both of these release systems.

In our model, the open line is treated as an interlocked area. This is because the

Automatic Block Signalling system used on the open line can be seen as a special

case of interlocking, where each block section consists of a single track circuit. This

observation is valid regardless of the interlocking release type.

In Great Britain, and in this paper, the word berth is used to refer to signals. We

use the word route to mean the track that must be traversed to get from one berth

to another. We use the terms berth and route regardless of whether the signals are

on the open line or in an interlocking area. We define the traversal time to be the

minimum amount of time required to traverse a route. We define the headway to be

any additional time required between a train vacating a route or track circuit, and

it being released and ready for use by another train. The sum of these two times is

called the blocking time.

5.3 Literature Review

Since the literature on railway optimisation is very broad, we will focus specifically

on the TTRP and its offline equivalent, the Train Routing Problem (TRP) where
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relevant.

Models for the TTRP divide railway track into discrete track components. This facil-

itates the representation of both the locations of trains over time, and the signalling

constraints. Track components of different types can be used, such as track circuits,

block sections, platforms or even whole stations or lines. The type of the track

components used affects the granularity of the model. Macroscopic models usually

represent stations using nodes and the tracks in between stations using edges. This

approach allows for large areas of a railway network to be modelled, but fails to cap-

ture signalling constraints accurately. As a result, macroscopic models are unsuitable

for rescheduling in complex station areas. Microscopic models usually model indi-

vidual track circuits or block sections. While models that use block sections are very

common in the rescheduling literature, they cannot model sectional-release interlock-

ing systems accurately. As a result, such models often underestimate the capacity

of large station areas [Corman et al., 2009b; Pellegrini et al., 2014]. The capacity

of station areas with sectional release interlocking systems can only be accurately

represented by models that use track circuits, such as those proposed by Corman

et al. [2009b], Pellegrini et al. [2014], Caimi et al. [2011] and Lusby et al. [2013]. The

main disadvantage of these models is that they are often intractable for large stations

due to the large number of decision variables required to model the considered track

circuits.

Models for the TTRP can also be classified according to the way in which time is

modelled. Disjunctive models use continuous variables to represent the times at

which trains begin using individual track components. Time-indexed models, on

the other hand, divide time into discrete time intervals and use binary variables to

indicate whether or not each train uses a given track component during a given time

interval. Disjunctive and time-indexed models represent the constraints imposed by

the signalling system differently. In both cases, signalling constraints are represented
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by capacity constraints on the track components. In disjunctive models, for a given

track component, one capacity constraint is defined for each pair of trains that use

the component. These constraints are in the form of a disjunction between the two

possible orders in which the pair of trains can use the track component. In contrast, a

capacity constraint on a track component in a time-indexed model can be represented

by an upper bound on the number of trains that use each track component in each

time interval. A time-indexed model has been developed for the TTRP in this paper.

The relative merits of disjunctive and time-indexed models are discussed below.

One of the most popular models for the TTRP is the Alternative Graph model of

D’Ariano et al. [2007a]. This is a disjunctive model that was originally developed

by Mascis and Pacciarelli [2002] for machine scheduling. It is suitable for railway

retiming because when the routes of the trains are fixed, the TTRP becomes a

variant of the job-shop scheduling problem. D’Ariano et al. [2007a] present an exact

branch-and-bound procedure for minimising the maximum reactionary delay, which

is incorporated in a full dispatching system described by D’Ariano et al. [2008]. This

branch-and bound-algorithm is further developed by Mannino and Mascis [2009],

who propose stronger lower bounds to speed up the enumeration process.

The Alternative Graph model has two important shortcomings. The first is that

it cannot model rerouting. The ability to perform rerouting is crucial to finding

good rescheduling solutions in stations with many routing alternatives. Though the

model has been extended by Corman et al. [2010a] to incorporate rerouting, the

authors were only able to find heuristic solutions to the resulting problems. The

second shortcoming of the Alternative Graph model is that the exact branch-and-

bound algorithm of D’Ariano et al. [2007a] can only be used when the objective

function is to minimise the maximum of some measure over all station stops. The

advantages of instead optimising the total of some measure over all station stops is

discussed in Section 5.4.8. Although Samà et al. [2015] have shown that the model
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can be extended to accommodate many different objective functions, the resulting

problems can only be solved with generic Mixed Integer Programming (MIP) solvers,

the drawbacks of which are discussed next.

In order to overcome the shortcomings of the Alternative Graph model, Törnquist

and Persson [2007], Pellegrini et al. [2015], Meng and Zhou [2014], Min et al. [2011]

and Acuna-Agost et al. [2011a] have proposed disjunctive MIP formulations for the

problem. All of these models allow trains to be rerouted, and they all include either

total delay or total weighted delay as part of the objective function. However, the

representation of disjunctive constraints in a MIP requires the use of big-M con-

straints. As a result, these models have weak Linear Programming (LP) relaxations.

This makes them difficult to solve to optimality using LP-based branch-and-bound

in the short run times required for real-time rescheduling. Although both Samà et al.

[2016] and Törnquist Krasemann [2012] have proposed heuristics for these models

with acceptable solution times, it is not possible to know the quality of any solutions

produced by these algorithms.

Time-indexed models are an alternative to disjunctive models which avoid the com-

putational difficulties associated with disjunctions. In time-indexed models, the time

horizon is divided into discrete time intervals. This allows time-space resources to

be defined, each of which is a pair consisting of one of track component and one

time interval. Typically, a binary variable is used to indicate whether a train con-

sumes a given time-space resource. Rescheduling can be seen as problem of assigning

time-space resources to trains. The track capacity constraints can be represented by

introducing one set packing constraint for each time-space resource. Constraints

are also required to ensure that the assignment of time-space resources for each

train represents a feasible itinerary. This can be achieved using a time-space graph,

where each node represents a time-space resource and each directed arc is a feasible

transition between them. An allocation of time-space resources to a train can be
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represented as a path in the time-space graph.

Time-indexed models have been predominantly used in offline railway optimisation

problems such as the Train Timetabling Problem (TTP) [Brännlund et al., 1998;

Caprara et al., 2002; Borndörfer and Schlechte, 2007; Cacchiani et al., 2008], train

routing [Zwaneveld et al., 2001; Lusby et al., 2011; Harrod, 2011; Caimi et al., 2011]

and train platforming [Caprara et al., 2011]. In contrast, time-indexed models have

not been widely used for the TTRP, due to a perception that they contain too many

variables for the solution of real instances in the stringent time limits imposed by real-

time environments. Recently, however, some authors have successfully used time-

indexed models for real-time applications. Lusby et al. [2013] use a branch-and-price

algorithm for the TTRP, whilst Meng and Zhou [2014] use a time-indexed formulation

for rescheduling on a railway network with multiple parallel tracks, and Bettinelli

et al. [2017] present an effective iterative heuristic for real-time rescheduling.

Since time-indexed models can produce very large formulations, most authors decom-

pose the problem so that each binary variable represents a full train path. Though

this has been achieved in some settings by the enumeration of train paths [Zwaneveld

et al., 2001; Caprara et al., 2011], it is most common to dynamically generate each

path variable. This has been achieved within both Lagrangian relaxation [Brännlund

et al., 1998] and column generation [Borndörfer and Schlechte, 2007; Cacchiani et al.,

2008; Lusby et al., 2013] frameworks. Both Caimi et al. [2011] and Lusby et al. [2013]

generate new path variables using tree structures that capture the sequence of de-

cisions taken for each train over time. Though this approach allows detailed train

speed profiles to be considered, it is not scalable, since the size of the trees grows

exponentially with the number of decisions in this sequence. Our model avoids this

problem, because new path variables are generated by solving shortest path prob-

lems on a time-space graph. Since the time-space graph is directed and acyclic,

the complexity of these problems is linear in the number of edges in the time-space
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graph.

In this paper, we make the following contributions:

1. We present a new model for the Train Timetable Rescheduling Problem that

is capable of performing rerouting and retiming simultaneously.

2. We demonstrate that it is possible to model a dense, sectional-release interlock-

ing area accurately by using routes as the track components. This is made pos-

sible by introducing a distinction between two types of capacity consumption:

occupying and banning. This distinction allows track circuits to be modelled

implicitly. Our model is an improvement on models that explicitly use track

circuits as the track components. Such models can be intractable due to the

large number of variables.

3. We present a new objective function, which was developed in collaboration with

Network Rail. This objective function uses the concept of utility to represent

Network Rail’s preferences more accurately than existing objective functions

in the literature.

4. We present a new set of instances based on real data for an area around Don-

caster station in the UK. We provide important details of how we generated

the instances, the provision of which is scant in much of the other published

literature.

5. We show that these instances can be solved either to optimality or provably

near to optimality in times suitably short for real-time operations. We present a

tailored branch-and-price algorithm for this purpose in which the subproblem

for each train is a shortest path problem, and therefore efficiently solvable.

We demonstrate the success of several acceleration strategies from the column

generation literature.
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6. We show that it is now realistic to solve time-indexed models for the TTRP to

optimality in real-time environments.

7. We demonstrate, both theoretically and empirically, the relationship between

the number of conflicts in an instance and its difficulty.

5.4 Modelling the Train Timetable Rescheduling

Problem

5.4.1 Description of the Problem

Following a disturbance to the timetable, the problem is to find a new route and

set of timings (i.e. a new schedule) for each controlled train such that there are no

conflicts between trains and Network Rail’s utility is maximised. Controlled trains

are those that are forecast to be inside a defined area of track during a time hori-

zon. The new route can involve stopping at different platforms from those originally

planned, taking different approaches to planned platform stops, or cancelling the

stop altogether. There are no conflicts between trains if and only if the new schedule

can be implemented in practice under the signalling system. Network Rail’s utility

is modelled as the total weighted utility over all train stops which are carried out,

where at each stop the utility is a function of lateness.

5.4.2 Modelling Approach

Our approach to modelling the problem is to build a directed, acyclic time-space

graph G = (N,A). Each arc a ∈ A has an arc weight cka for each train k ∈ K.

In addition, we specify two different sets of arcs, An ⊆ A and Ān ⊆ A, for each
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node n ∈ N . The graph G is configured such that every finite-weight source-sink

path describes a feasible timed train route through the modelled area. If a train k

is assigned such a path, its total weight is the negative of the utility of the train

carrying it out. The arc sets An and Ān are used in our novel representation of the

track capacity constraints, which is described in Section 5.4.6.

The TTRP is formulated as follows:

TTRP. Find a source-sink path in G for each train k ∈ K such that the total weight

of all the paths is minimised, subject to the constraints that for each node n ∈ N ,

and across all train paths (i) at most one arc in An is used and (ii) if an arc in An

is used then no arcs in Ān are used.

The rest of this section explains how the graph G, the arc weights cka and the arc

capacity sets An and Ān are built. In order to describe how G is built in Section

5.4.5, we first explain how time is modelled in Section 5.4.3 and how the track is

modelled in Section 5.4.4. The track capacity constraints are explained in Section

5.4.6. Sections 5.4.7 and 5.4.8 explain the objective function, and details about the

arc weights cka are given in Section 5.4.9.

5.4.3 The Time Horizon

Let the time horizon over which trains should be rescheduled be [0, T ]. The time

horizon should be long enough to allow a wide variety of rescheduling options to be

considered, but not so long that new primary delays during the time horizon are

likely to occur, making further rescheduling necessary. We use a time horizon of

length 60 minutes in our experiments.

The time horizon is divided into a discrete set of consecutive time intervals T =

{0, . . . , T} of equal length. The number of time intervals should be large enough
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to offer a reasonable approximation of continuous time, but not so large that the

problem becomes intractable. We use time intervals of length 15 seconds in our

experiments, resulting in 240 time intervals overall.

5.4.4 The Route Graph

Let Nb be the set of berths within the area of track being modelled, and let Ab ⊂

Nb × Nb be the set of permissible transitions between these berths (i.e. routes).

Together, these form the directed berth graph Gb = (Nb, Ab). The graph Gb is

typically connected, although this is not necessary. A small example for illustrative

purposes is provided in Figure 5.1(a).

From the berth graph, we can derive the route graph Gr = (Nr, Ar), where Nr = Ab

and Ar consists of directed arcs between routes that together form a path of length

2 in Gb. This is sometimes known as the line graph of Gb, and is shown in Figure

5.1(b). A route consists of the track between two berths, or signals. A traversal of

r = (b1, b2) is defined as starting when a train passes signal b1 and finishes when it

passes signal b2.

Each route r ∈ Nr has data associated with it. Let Lr be the minimum number of

time intervals required to traverse the route. Let hr be the number of time intervals

that should be left as headway between any two traversals, so that Lr + hr is the

blocking time for route r. Let TCr = {tcir}nr−1
i=0 be the set of track circuits for route

r, in order of traversal from tc0
r to tcnr−1

r Our methodology for collecting and in some

cases inferring this data is described in Section 5.7.

Finally, we expand Gr to take account of platforms. Let PL be the set of platforms.

Each platform pl ∈ PL occurs immediately before a berth bpl ∈ Nb. This means that

each platform pl lies at the end of any route that it occurs within. We truncate each
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of these routes, so that they finish immediately before the platform pl. We insert

two new artificial routes plstop and plpass, which both represent the track alongside

the platform. Traversal of plstop corresponds to stopping at platform pl to allow

passengers to alight and embark. Traversal of plpass corresponds to passing the

platform without stopping. This separation allows plstop and plpass to have different

traversal times. Separating platforms from the routes they lie on also allows us to

measure the exact times at which trains arrive at platforms, which is important for

the objective function.

In order to describe the procedure for separating these new platform routes, we first

define

σ−(bpl) = {(i, j) ∈ Ar : j = bpl} and σ+(bpl) = {(i, j) ∈ Ar : i = bpl}

to be the sets of routes ending and starting at berth bpl, respectively. The steps for

separating the new platform routes are as follows:

1. Remove all arcs in Ar that begin at a route in σ−(bpl) and end at a route in

σ+(bpl).

2. Insert the new nodes plstop and plpass into Nr.

3. Insert into Ar all arcs from the sets {(r, r′) : r ∈ σ−(bpl), r′ = plstop, plpass} and

{(r, r′) : r = plstop, plpass, r
′ ∈ σ+(bpl)} .

4. Set the data for plstop and plpass. The traversal and headway times Lplpass and

hplpass for plpass are set to zero. The traversal and headway times Lplstop and

hplstop for plstop are set to the minimum dwell time Dpl and minimum headway

Hpl for the platform pl, respectively. Dpl is the minimum number of time

intervals required to allow passengers to alight and embark at platform pl, and

Hpl is the minimum number of time intervals required once a train has left the
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platform pl before another train can arrive. Both plstop and plpass consist of the

same single track circuit.

Figure 5.1(c) shows the graph that results from following this procedure in our ex-

ample.

A B D E F

C

(a)

AB BD
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(b)
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BC
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plstop
DE

CE

EF

(c)

Figure 5.1: A small example to illustrate the construction of the route graph. (a)
shows the berth graph Gb; (b) shows the corresponding route graph Gr before ex-
panding the platforms. (c) shows the route graph expanded for a platform pl that
exists at the end of route BC.

5.4.5 The Time-space Graph

Let the node set N = (Nr × T )∪{source, sink} of G consist of all of the route, time

interval pairs (r, t), in addition to an artificial source and sink. For convenience, let

N0 = N \ {source, sink}.

The directed arc set A =
⋃6
i=1Ai of G consists of the following groups of arcs:

(i) A1 = {(source, (rk0 , ak0)) : k ∈ K} corresponding to entering from the source

node to the known location of the train either at the beginning of the time

horizon or when the train first enters the area during the time horizon.

(ii) A2 = {(source, sink)} consists of a single arc, corresponding to a train cancel-

lation. This can be omitted if desired.

(iii) A3 = {((r, t), (r, t+1)) : (r, t) ∈ N and (r, t+1) ∈ N} corresponding to waiting

in route r for one time interval.

(iv) A4 = {((r, t), (r′, t + Lr)) : (r, r′) ∈ Ar, (r, t) ∈ N and (r′, t + Lr) ∈ N} corre-

sponding to traversing r and arriving in r′ after the minimum traversal time
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Lr.

(v) A5 = {((r, T ), sink) : r ∈ Nr} corresponding to exiting to the sink node at the

end of the time horizon.

(vi) A6 = {((r, t), sink) : σ+(r) = ∅ and (r, t) ∈ N} corresponding to exiting to the

sink node from a node at the boundary of the area of track modelled.

An example of G is given in Figure 5.2. It uses the same track layout as the example

in Figure 5.1.

source

sink

0 1 2 3 4 5 6 7 8
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plpass
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Time Intervals
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s

Figure 5.2: Example time-space graph G corresponding to the route graph example
in Figure 5.1. Two source-sink paths are shown.

Note that a source-sink path in G specifies the routes that a train is momentarily

traversing during every time interval from the current time up until the end of the

time horizon. The routes to which a train is assigned also determine the platforms
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that the train uses. The definition of A4 ensures that minimum traversal and dwell

times are respected. The arcs in A3 make it possible for a train to wait for addi-

tional time at any point in its journey. Waiting should be implemented by making

alterations to the speed profile of the train. These alterations should be calculated

separately, and are not addressed in this paper.

The directed graph G is acyclic. It has |Nr||T |+ 2 nodes and typically at least twice

that many arcs depending on the track topology. In our experiments, G had 64,082

nodes and 156,594 arcs.

5.4.6 Track Capacity

For each train k ∈ K, a finite-weight source-sink path in G corresponds to an

individually feasible schedule over the time horizon. This means that such a path

would be feasible if there were no other trains using the track. However, a set

containing more than one train path is not jointly feasible unless it is possible for

all of the train paths to be carried out together under the constraints imposed by

the signalling system. The signalling system limits the capacity of the track in the

interests of safety, as described in Section 5.2.

Each node (r, t) ∈ N0 can be viewed as a time-space resource. We define two dif-

ferent ways in which a train can consume the capacity of a resource (r, t), called

occupying and banning, in Sections 5.4.6.1 and 5.4.6.2. These definitions allow the

track capacity constraints to be expressed using two constraints on the capacity

of each time-space resource. These constraints are described in Sections 5.4.6.1 and

5.4.6.2. This novel representation of the track capacity constraints accurately models

sectional-release interlocking, despite the fact that routes rather than track circuits

are used in the time-space graph. Two sets, Ar,t and Ār,t, are defined for each re-

source (r, t) in Sections 5.4.6.3 and 5.4.6.4. These are constructed such that a train
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path contains an arc in Ar,t if and only if it occupies (r, t), and such that a train

path contains an arc in Ār,t if and only if it bans (r, t).

5.4.6.1 Occupying

Before a train k can traverse a route r, all of the track circuits making up r must

first be locked. This can only be done if all of the track circuits are free, i.e. they

are not currently locked for another train. Once train k has traversed the route,

the track circuits are released according to the release-type (either route-release or

sectional-release). If any of the track circuits in route r that are locked for train k

to traverse are still locked during time interval t, then we say that (r, t) is occupied

by k. Occupation is one of the ways in which a train can consume the capacity of a

time-space resource.

If (r, t) is occupied by train k, then it is not possible for any other train to occupy

(r, t). This is because there are track circuits in r that have not yet been released

by k and therefore are not free during time interval t. This gives rise to the first

capacity constraint:

Capacity Constraint 1. No (r, t) ∈ N0 can be occupied more than once.

5.4.6.2 Banning

Track circuits can and do belong to more than one route. For example, Figure 5.3

shows two routes, r1 and r2, that share track circuits 2 and 3. Suppose that train

k locks the track circuits of route r1 in order to traverse r1. Since r2 contains track

circuits 2 and 3, which have now been locked for train k, r2 is now unavailable to be

locked by another train. This will remain true until k releases track circuits 2 and 3.

If r2 is unavailable for this reason during time interval t, we say that (r2, t) is banned
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by train k.

1 2

3

4

5

6

r1
r2

Figure 5.3: Routes r1 and r2 are shown by the dashed red and dotted blue lines,
respectively, so that TCr1 = {1, 2, 3, 4}, TCr2 = {5, 2, 3, 6}. The two routes share
the track circuits TCr1 ∩ TCr2 = {2, 3}.

More generally, a train bans a time-space resource (r′, t) if it makes route r′ unavail-

able during time interval t as a result of occupying (r, t), where r is a route with

track circuits in common with r′.

Notice that if (r′, t) is banned by train k, then (r′, t) cannot be occupied by k or any

other train. This is the second capacity constraint:

Capacity Constraint 2. No (r, t) ∈ N0 can be both banned and occupied.

There is no constraint on the number of times that a time-space resource can be

banned. To understand why, consider routes r1,r2 and r3 from the example in Figure

5.4. Since r1 and r3 share no track circuits, it is feasible for (r1, t) to be occupied

1 2 3 4

5 6 7 8

r1
r2
r3

Figure 5.4: Routes r1,r2 and r3 are shown by the dashed green, dot-dashed red and
dotted blue lines, respectively, so that TCr1 = {1, 2, 3, 4}, TCr2 = {5, 6, 3, 4} and
TCr3 = {5, 6, 7, 8}.

by one train, and for (r3, t) to be occupied by a different train. Since r2 shares

track circuits with both r1 and r3, this may involve both of these trains banning
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(r2, t). However, no track circuit is locked more than once and therefore there is no

infeasibility.

The difference between occupying and banning is subtle. Both occupying a resource

and banning a resource preclude the resource from being otherwise occupied. The

crucial difference is that whilst a resource cannot be occupied more than once, it

may be banned more than once.

5.4.6.3 Construction of Ar,t

To enforce the capacity constraints, it is necessary to be able to determine whether

a given source-sink path in G occupies a given time-space resource (r, t). This is

achieved by constructing a set Ar,t of arcs such that a path occupies (r, t) if and only

if it contains an arc in Ar,t.

If a train occupies (r, t), then by definition there are track circuits in route r that

are locked for the train during time interval t. In other words, the train is traversing

r during time interval t. This traversal lasts for Lr + hr time intervals, which is the

blocking time of route r. Therefore, the traversal began within the preceding Lr +hr

time intervals, and the corresponding path in G must include a node in

Wr,t = {(r, t′) : t′ ∈ {t− (Lr + hr) + 1, . . . , t}}.

Since it must have entered this node via an arc, the path must contain an arc in

Ar,t =
⋃

(r′,t′)∈Wr,t

σ−(r′, t′) \
⋃

(r′,t′)∈Wr,t

σ+(r′, t′).

The reverse is also true: if the path contains an arc in Ar,t, then it must contain a

node in Wr,t and therefore it must occupy the resource (r, t). Therefore, a train path
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contains an arc in Ar,t if and only if it occupies (r, t). An example of the set of nodes

Wr,t and the set of arcs Ar,t corresponding to a time-space resource (r, t) are shown

in Figure 5.5.

(r, t)

(r′, t)

Figure 5.5: The nodes in Wr,t and W̄r,t are shown as large red and medium blue,
respectively. The arcs in Ar,t and Ār,t are shown as thick solid red and thick dotted
blue, respectively. In the example, Lr + hr = 3, Sr = {r′} and t(r′, r) = 1.

5.4.6.4 Construction of Ār,t

We also show how to construct a set Ār,t of arcs such that a path bans (r, t) if and

only if it contains an arc in Ār,t. Let Sr = {r′ ∈ Nr \ r : TCr ∩ TCr′ 6= ∅} be the

set of all routes with track circuits in common with r. In a route-release interlocking

system, a train bans (r, t) if and only if it occupies (r′, t), where r′ ∈ Sr. This is

because the track circuits common to r and r′ are locked when r′ is locked, and not

released until route r′ is released. Hence, r is prevented from being locked for the

same time intervals as r′ is locked.

Using the same reasoning as in the last section, we can say that a train bans (r, t) if

and only if its path contains a node in

W̄r,t = {(r′, t′) : r′ ∈ Sr, t′ ∈ {t− t(r′, r) + 1, . . . , t}

where t(r′, r) = Lr′+hr′ . Therefore, a train bans (r, t) if and only if its path contains
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an arc in

Ār,t =
⋃

(r′,t′)∈W̄r,t

σ−(r′, t′) \
⋃

(r′,t′)∈W̄r,t

σ+(r′, t′).

The situation is different in a sectional-release system. Because track circuits are

released one by one as r′ is traversed, the track circuits TCr∩TCr′ common to r and

r′ ∈ Sr can be released before all of the track circuits in r′ are released. This means

that there may be time intervals t during which a train occupies (r′, t), but does not

ban (r, t).

To reflect this difference, we must amend the definition of t(r′, r). When route r′ ∈ Sr
is first locked, route r is prevented from being locked. Route r becomes available

again when all of the track circuits in TCr ∩TCr′ are released. The last track circuit

of these to be released as the train traverses r′ is tc
i(r′,r)−1
r′ where

i(r′, r) = min
{
i ∈ N : {tcjr′}

nr′−1
j=i ∩ TCr = ∅

}
.

We define θ(r′, r) ∈ [0, 1] to be the proportion of the route traversal time Lr′ after

which this occurs. The time to release can therefore be written

t(r′, r) = dθ(r′, r)Lr′ + hr′e.

Here, d·e indicates rounding up to the nearest integer number of time intervals.

Rounding up ensures that the discretisation of time does not lead to an underesti-

mation of the time for which track circuits are locked. Figure 5.5 shows an example

of both W̄r,t and Ār,t in a sectional-release system.



CHAPTER 5. A MULTICOMMODITY FLOW TTRP MODEL 93

5.4.6.5 Antichain Condition

The method of representing the track capacity constraints that is described in the

preceding sections relies on an important assumption. This assumption is described

below and sufficient conditions for its validity are given.

Suppose that there is a source-sink path in G that includes arcs from both Ar,t

and Ār,t, for some time-space resource (r, t). Any train assigned this path would, by

definition of Ar,t and Ār,t, both occupy and ban (r, t). This would violate Capacity

Constraint 2, which ensures that (r, t) cannot be both occupied and banned. Capacity

Constraint 2 applies regardless of whether the resource is occupied and banned by

the same train, or different trains. It is not possible within the real signalling system

for a train to violate the track capacity single-handedly. Therefore, for the model

to be correct, there should be no source-sink paths in G that include arcs from

both Ar,t and Ār,t. This is stated mathematically in Assumption 1, which relies on

Definition 1. Definition 1 is well known — for example, see [Hartzheim, 2005].

Definition 1. An antichain in a directed graph G = (N,A) is a set Z ⊆ A of arcs

such that each path in G contains at most one arc in Z.

Assumption 1. For each (r, t) ∈ N0, Ar,t ∩ Ār,t = ∅ and Ar,t ∪ Ār,t is an antichain

in G.

Proposition 1, which uses uses Definition 2, provides sufficient conditions for Assump-

tion 1 to hold. Checking these sufficient conditions is easier than directly checking

that Assumption 1 holds.

Definition 2. For two routes r1, r2 ∈ Nr, let

L(r1, r2) = min

 ∑
r′∈p\r2

Lr′ : p is an r1-r2 path in Gr


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be the minimum total traversal time from r1 up to but not including r2. For example,

if (r1, r2) ∈ Ar then L(r1, r2) = Lr1.

Proposition 1. Assumption 1 is true if for each r ∈ Nr, either (i) Sr ∪ {r} is an

antichain in Gr or (ii) L(r1, r2) ≥ Lr1 + hr1 for each pair r1, r2 ∈ Sr ∪ {r}.

Proof. Let (r, t) ∈ N0. Since r /∈ Sr by definition, Wr,t ∩ W̄r,t = ∅ and hence

Ar,t ∩ Ār,t = ∅.

Suppose for contradiction that at least one of (i) and (ii) holds, and that there

is a source-sink path p in G that contains two distinct arcs ((r0, t0), (r1, t1)) and

((r2, t2), (r3, t3)) in Ar,t ∪ Ār,t, where without loss of generality t1 ≤ t3. By the

definitions of Ar,t and Ār,t, the routes r1 and r3 are in Sr ∪ {r}. Since t1 ≤ t3, there

must be a subpath q of p from (r1, t1) to (r3, t3). If Sr∪{r} is an antichain in Gr, then

this is a contradiction. Therefore, (ii) must hold. Subpath q starts at time t1, ends at

time t3 and must span at least L(r1, r3) time intervals. By definition of Ar,t and Ār,t,

t1 ≥ t−Lr1−hr1 +1 and t3 ≤ t. Putting this together, t−Lr1−hr1 +1+L(r1, r3) ≤ t,

which rearranges to L(r1, r3) ≤ Lr1 + hr1 − 1. This violates (ii), which proves the

result by contradiction.

It is easier to check the conditions of Proposition 1 than Assumption 1 directly. This

is because they depend only on the route graph Gr, rather than the full time-space

graph G. In our instances, condition (i) is satisfied for all routes, and this will be

the case for most railways. Figure 5.6 shows an example of how Assumption 1 could

fail to hold if the conditions of Proposition 1 are not satisfied.

5.4.6.6 Innovations of Proposed Approach

In existing approaches, occupying is the only type of capacity that is considered.

Typically, the track is modelled as consisting of components that can be used by at
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(r1, t)

(r3, t)

Figure 5.6: An example in which Assumption 1 does not hold. The arcs in Ar,t∪ Ār,t
are shown as thick solid red lines, and r1, r3 ∈ Sr∪{r}. The very thick black line is a
path that contains two arcs in Ar,t∪Ār,t. Condition (i) does not hold, since there is an
r1-r3 path in Gr. Condition (ii) does not hold because L(r1, r2) = 2 ≯ 3 = Lr1 + hr1 .

most one train at any one time. When these components are as large as block sections

or routes, the track capacity is underestimated by the model. This is convincingly

explained and empirically demonstrated by both Pellegrini et al. [2014] and Corman

et al. [2009b].

In order to address this underestimation of track capacity, Pellegrini et al. [2014]

and Corman et al. [2009b] have explicitly modelled track circuits. These models

have decision variables that describe the arrival time of each train at each traversed

track circuit. This approach is an accurate way of modelling the track capacity of a

sectional-release interlocking area. However, there are two drawbacks to modelling

all of the track circuits explicitly in this way. The first is that the large number of

variables required to model interlocking areas with many track circuits can render

models of this type intractable. The second drawback is that the solutions are difficult

to implement in practice. This problem arises from the fact that track circuits are

not individually signalled, and so the arrival of trains into individual track circuits

cannot be controlled via signalling. If a solution specifies that a train must wait in

a track circuit that does not immediately precede a signal, then a signaller cannot

easily implement this.
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Our model is able to accurately represent the track capacity of a sectional-release

interlocking area without the drawbacks of explicitly modelling each track circuit.

This is enabled by the consideration of banning as a second type of capacity in

addition to occupying. Banning allows the release times of individual track circuits to

be implicitly taken into account in the sense that although they could be calculated

from a given solution, they are not associated with any decision variables. Using

routes as the track components ensures that the model is tractable. This is because

the size of the time-space graph depends on the number of routes in the area of track

modelled rather than the number of track circuits, which is typically much greater.

The use of routes rather than track circuits also ensures that solutions are clear and

simple from an implementation perspective. The values of the decision variables in

a solution indicate the time intervals in which trains should pass signals. This is

something that signallers have full control over.

5.4.7 The Schedule

When railway traffic is perturbed due to primary delays, the schedule that was

planned at the tactical phase may no longer be feasible. However, it is still the

schedule that would ideally be carried out if possible. As a result, it is very important

in determining the objective function.

Let K be the set of trains scheduled to pass though the controlled area during the

time horizon. The schedule for each train k ∈ K can be represented by a sequence

of triples (rkj , a
k
j , d

k
j )
Jk

j=0. In this notation, there are Jk scheduled events for train k

within the area modelled during the time horizon. For event j, train k is scheduled

to begin traversal of route rkj ∈ Nr at time interval akj ∈ T , and depart route rkj at

time interval dkj ∈ T . Any values of akj or dkj that lie outside the time horizon are

ignored. Scheduled events can be stopping events or passing events depending on
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whether or not the train is scheduled to stop to allow passengers to embark or alight.

Passing events have a scheduled arrival time but do not have a scheduled departure

time.

The initial route and time interval of train k are given by rk0 and ak0. If the train is

within the area at the beginning of the time horizon, then ak0 = 0, and rk0 is the route

it is traversing at this time. Otherwise, rk0 is the route on which train k first enters

the area during the time horizon, and ak0 is the time interval during which this occurs.

In the latter case, ak0 should be a forecast time. Using a forecast allows the model to

take into account any anticipated delay in the arrival of the train into the controlled

area. As a result, the model can suggest rescheduling solutions that pre-empt the

effect of this anticipated delay, making rescheduling more effective.

Platform alternatives for the purpose of replatforming are inserted into the schedule.

Suppose that (rkj , a
k
j , d

k
j ) is a stop in the schedule, and that r̃kj is an alternative plat-

form to rkj of sufficient length to accommodate train k. Then (r̃kj , a
k
j , d

k
j ) is inserted

into the schedule, in addition to (rkj , a
k
j , d

k
j ). The set of all platform alternatives

used for rkj must be an antichain in Gr. There is no constraint in the model on how

many scheduled events each train carries out, but if the platform alternatives form

an antichain in Gr then at most one of the platform alternative events can possibly

occur.

5.4.8 The Objective Function

Most rescheduling models in the literature optimise a measure of performance that is

inherent to the system. Though there are many examples (see [Samà et al., 2015]), the

most prevalent objective function is to minimise a measure of train delays such as the

maximum train delay. However, optimising a single inherent performance measure is

inadequate because it fails to recognise that there may be many reasons for preferring
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one rescheduling solution over another. This is especially true for models that allow

scheduled events to be skipped, such as the one in this paper. These models require

an objective function that can express the priority of minimising delay relative to

minimising skipped events. In recognition of the inadequacy of minimising a single

inherent performance measure, Corman et al. [2012a], Samà et al. [2015] and Binder

et al. [2017] propose multicriteria methods for the TTRP. Whilst these methods take

into account more than one performance measure, they are unsuitable for a real-

time environment. One reason for this is that they do not achieve sufficiently fast

computation times. In addition, it is not practical to require a railway signaller to

choose between a set of solutions in real-time.

To overcome the challenges outlined above, the concept of utility has been used. Our

objective is to maximise a utility function that models the rescheduling preferences

of Network Rail. Accordingly, the objective function is the result of collaboration

with Network Rail. The utility function is the total weighted utility over all trains

k and scheduled events j, given by

U =
∑
k∈K

αk

Jk∑
j=1

βjkU
j
k(pk).

In this formula, αk is a weight reflecting the priority of train k, βjk is a weight reflecting

the priority of event j for train k, and U j
k(pk) is the utility accrued by train k at stop

j when assigned source-sink path pk in G.

Our use of total weighted utility over all train events is influenced by Network Rail’s

performance measure, On-time at All Recorded Stations. This measure is a summary

of the lateness of each train event. It was adopted in 2019 in preference to the Public

Performance Measure, which only takes into account lateness at each train’s final

scheduled event. Considering delay only at the final event of each train is unsat-

isfactory because it results in objective functions that are indifferent to delays at
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intermediate stops, provided the time is subsequently recovered. It is also unsatis-

factory to maximise the minimum utility over all train events, because this would

correspond to indifference toward reductions in delay for all but the most delayed

train. By modelling the utility as the total weighted utility over all trains and sched-

uled events, the objective function is never indifferent to a passenger delay reduction,

and therefore reflects Network Rail’s strategic priority of “putting passengers first”

[Network Rail, 2019a, p. 7].

The utility U j
k(pk) accrued by train k at event j if it is assigned source-sink path pk

in G is defined as

U j
k(pk) =


0 if path pk does not visit rkj

γ(t− akj ) if path pk enters rkj at time interval t,

where γ : Z → R+, depending on the number l = t − akj of time intervals late the

train arrives, is given by

γ(l) =


φ−ω|l| if |l| ≤ Γ

0 if |l| > Γ.

Negative values of l correspond to a train arriving early. The function γ is sketched

in Figure 5.7, with the parameter values used in our experiments (φ = 1.0000001,

ω = 150, 000 and Γ = 240, corresponding to 1 hour).

The key features of this utility function are as follows:

• It depends on lateness, which is directly relevant to the passenger experience

and therefore forms the basis of performance analysis within Network Rail.

Using lateness is an improvement on the widely used measure of consecutive

delay, defined as the additional delay created by rescheduling actions. Unlike
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Figure 5.7: A sketch of γ.

lateness, consecutive delay is abstract to passengers.

• A preference is shown for events occurring as close to on-time as possible. This

is achieved by making γ strictly increasing on [−Γ, 0] and strictly decreasing on

[0,Γ]. This preference reflects the fact that late events are bad for passengers.

Whilst early events are not directly negative for passengers in the same way,

they can cause unanticipated congestion at stations.

• A preference is shown for scheduled events occurring over not occuring, pro-

vided that they occur within Γ time intervals of the scheduled time. This is

achieved by making γ > 0 on [−Γ,Γ] and U j
k(pk) = 0 if the event does not

occur. This reflects the fact that skipping scheduled stops is disruptive to

passengers.

• The function γ is strictly convex on the intervals [−Γ, 0] and [0,Γ]. This con-

vexity reflects the idea that passengers are more sensitive to an additional time

interval of lateness when a train is closer to on-time.

• Since the model is time-indexed, any set of values {γ(l) : l ∈ Z} could be used

without compromising the tractability of the model. The objective function is

therefore very flexible.
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The value of αk is set to 1 for express passenger (class 1) trains, and 0.4 for ordinary

passenger (class 2) trains. The train weights αk could also be used to take into

account other factors affecting train priority such as the train’s operator, the number

of passengers or the number of remaining stops for the train once it has left the

controlled area. However, these aspects are not considered in this paper.

The stop weights βkj are set as follows: A train’s final arrival or passing event in

the time horizon is given weight 0.7 to reflect the importance of trains leaving the

controlled area punctually. All other arrivals excluding those representing platform

alternatives receive an equal proportion of the remaining weight 0.3. Non-final pass-

ing events receive a weight of zero. When rkj is a platform alternative, βkj has the

same weight as the planned platform arrival but discounted by a factor of 0.9. This

reflects the disruption to passengers as a result of changing platforms. Other consid-

erations could also be taken into account, such as the service patterns and passenger

interchange importance of individual stations.

We will show in Section 5.4.9 how to set the arc weights in G to reflect the objec-

tive.

5.4.9 Arc Weights

The objective function is represented on the time-space graph G via the weights cka

for each train k ∈ K and each arc a ∈ A. These weights are set such that the total

weight of a source-sink path for train k is equal to the negative of its total utility.

Using the negative of the utility turns the problem into a minimisation problem.

Note that we use the symbol ∞ to mean a real number sufficiently large that no

good solution to the problem contains a path that uses an arc of this length — it is

effectively a constraint.
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The arcs in A1 have weights ck
(source,(rj0,a

j
0))

= ∞1{j 6=k} for each k ∈ K and j =

0, . . . , Jk, where 1 is the indicator function. This ensures that trains cannot begin in

the initial position of another train. The cancellation arc in A2, has ck(source,sink) = 0

for all trains k if cancellations are to be included in the model, and ck(source,sink) =∞

otherwise. All of the arcs a in A3, A5 and A6 have cka = 0 for all k, because the sink

is artificial and waiting does not contribute to the modelled utility function.

Arcs a in A4 have cka = 0 for all k except in two very important cases:

• Departures:

For k ∈ K, j = 0, . . . , Jk and t < dkj , if a = ((rkj , t), (r
′, t′)) ∈ A4 then cka =∞.

This prevents trains departing from a stop early if they visit that stop.

• Arrivals:

For k ∈ K and j = 0, . . . , Jk, if a = ((r′, t′), (rkj , t)) ∈ A4 then cka = −αkβjkγ(t−

akj ). Such an arc is included in a train path if and only if event j for train k

occurs at time t. The negative of the associated utility is accrued.

Assumption 2 must hold, so that it is never possible for a train path to collect more

than one positive reward for carrying out a scheduled event more than once.

Assumption 2. Γ < L(rkj , r
k
j ) for all k ∈ K, j = 0, . . . , Jk.

This is only a relevant consideration when short cycles containing platforms exist in

Gr. There are no cycles containing platform routes in our instances, so we are free

to pick any value of Γ.
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5.5 Integer Programming Formulation

5.5.1 Arc Formulation

The TTRP, defined in Section 5.4.2, can be formulated as an Integer Linear Program

similarly to the classical multicommodity flow problem. For each train k ∈ K and

arc a ∈ A, we introduce a binary variable xka which takes the value 1 if and only

if the path in G corresponding to train k includes the arc a. The formulation is as

follows:

min
∑
k∈K

∑
a∈A

ckax
k
a (5.1a)

s.t.
∑
k∈K

∑
a∈Ar,t

xka + δ
∑
a∈Ār,t

xka

 ≤ 1 ∀(r, t) ∈ N0 (5.1b)

∑
a∈σ+(n)

xka −
∑

a∈σ−(n)

xka = bkn ∀k ∈ K, n ∈ N (5.1c)

xka ∈ {0, 1} ∀k ∈ K, a ∈ A. (5.1d)

where bksource = 1, bksink = −1 for all k ∈ K, bkn = 0 for all n ∈ N0 and k ∈ K, and

δ > 0 is a small positive constant. The notation σ+(n) and σ−(n) denotes the set of

arcs starting and ending at node n, respectively.

The objective (5.1a) minimises the total weight of the paths. The constraints have a

block-diagonal structure: (5.1b) are linking constraints enforcing the track capacity,

whilst the flow constraints (5.1c) form one block per train. For each train k ∈ K,

the corresponding block of flow constraints ensures that the solution for train k

corresponds to a source-sink path in G.
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The track capacity constraints are expressed by (5.1b). If a train k occupies a

resource (r, t) ∈ N0, then xka = 1 for some a ∈ Ar,t and the constraint ensures that

(r, t) cannot otherwise be occupied or banned. If no train occupies (r, t) ∈ N0, then

up to b1
δ
c trains may ban it. We make δ sufficiently small that this limit is never

exceeded in practice. In our experiments, δ = 0.05 was sufficient.

This formulation has |K||A| binary variables and |N0|+ |K||N | constraints. A typical

instance in our computational experiments has around 3,500,000 binary variables and

around 1,500,000 constraints. We could not even obtain feasible solutions using the

generic Mixed Integer Programming solver Gurobi because the instances were too

large.

5.5.2 Danzig-Wolfe Decomposition into a Path Formulation

Decomposition is a popular approach for integer programs that are prohibitively

large to solve using general purpose solvers. Formulation (5.1a)–(5.1d) is particu-

larly amenable to Danzig-Wolfe decomposition because the constraint matrix has a

block-diagonal structure where each block is the constraint matrix of a shortest path

problem on a directed acyclic graph.

We perform Danzig-Wolfe decomposition using the discretisation approach presented

by Vanderbeck and Wolsey [2010]. For each train k ∈ K, define

Xk =

xk ∈ {0, 1}|A| :
∑

a∈σ+(n)

xka −
∑

a∈σ−(n)

xka = bkn ∀n ∈ N


to be the set of feasible paths, and P k to be its finite index set so that Xk = {xk,p :

p ∈ P k}. We can rewrite variables xk in terms of the constants xk,p and new binary



CHAPTER 5. A MULTICOMMODITY FLOW TTRP MODEL 105

variables λk,p:

xk =
∑
p∈Pk

λk,pxk,p,
∑
p∈Pk

λk,p = 1, λk,p ∈ {0, 1} ∀p ∈ P k.

This variable transformation makes the constraint x ∈ Xk implicit, so when we

substitute the new variables into formulation (5.1a)–(5.1d), constraint (5.1c) can be

dropped. This results in the path formulation:

min
∑
k∈K

∑
p∈Pk

(∑
a∈A

ckax
k,p
a

)
λk,p (5.2a)

s.t.
∑
k∈K

∑
p∈Pk

∑
a∈Ar,t

xk,pa + δ
∑
a∈Ār,t

xk,pa

λk,p ≤ 1 ∀(r, t) ∈ N0 (5.2b)

∑
p∈Pk

λk,p = 1 ∀k ∈ K (5.2c)

λk,p ∈ {0, 1} ∀k ∈ K, p ∈ P k. (5.2d)

Formulations (5.1a)–(5.1d) and (5.2a)–(5.2d) are equivalent. Applying the classical

results of Geoffrion [1974], the linear relaxations of these formulations provide the

same lower bound on their optimal values, which is the same bound provided by

Lagrangian relaxation of (5.1a)–(5.1d). This is because all of the extreme points of

the linear relaxation of each Xk are integral.

Formulation (5.2a)–(5.2d) has |K|+ |N0| constraints, which can be significantly fewer

than (5.1a)–(5.1d). Although formulation (5.2a)–(5.2d) typically has many more

variables, we know that each integer feasible solution will have exactly |K| non-zero

variables. As a result, (5.2a)–(5.2d) can be effectively solved using a branch-and-price

algorithm.
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5.6 Branch-and-Price Algorithm

Formulation (5.2a)–(5.2d) can be solved using a branch-and-price algorithm. This is

a branch-and-bound algorithm in which the LP relaxation at each node is solved by

column generation. In Sections 5.6.1 and 5.6.2 we describe how column generation

can be used to solve the LP relaxation of (5.2a)–(5.2d). Two acceleration strategies

are described in Sections 5.6.3 and 5.6.4. Finally, in Section 5.6.5, we describe our

branching scheme.

5.6.1 Column Generation

Here we outline the basic column generation algorithm (see Desrosiers and Lübbecke

[2005] for a more general explanation) for solving the LP relaxation of (5.2a)–(5.2d),

which is referred to as the Master Problem (MP).

In iteration n, we restrict P k to a much smaller subset P k
n , resulting in a smaller LP

called the Restricted Master Problem (RMP). Solving the RMP yields an optimal

primal solution λ∗ = (λ∗k,p)k∈K,p∈Pkn and optimal dual values ρ∗ = (ρ∗k)k∈K corre-

sponding to constraints (5.2c), and π∗ = (π∗r,t)(r,t)∈N0 corresponding to constraints

(5.2b).

These dual values can be used to find a column p ∈ P k \ P k
n of minimum reduced

cost for each k ∈ K. If none of these columns have negative reduced cost, then

λ∗ is optimal for the MP, which is now solved. Otherwise, at least one column with

negative reduced cost must be added to the RMP (i.e. P k
n ⊂ P k

n+1) and the algorithm

proceeds to iteration n+ 1.
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The reduced cost of a column corresponding to path p ∈ P k for train k is

c̄k,p =
∑
a∈A

ckax
k,p
a −

∑
(r,t)∈N0

∑
a∈Ar,t

xk,pa + δ
∑
a∈Ār,t

xk,pa

 π∗r,t − ρ∗k

=
∑
a∈A

ckax
k,p
a −

∑
(r,t)∈N0

∑
a∈A

(
1{a∈Ar,t} + δ1{a∈Ār,t}

)
xk,pa π∗r,t − ρ∗k

=
∑
a∈A

(cka − π∗a)xk,pa − ρ∗k

(5.3)

where

π∗a =
∑

(r,t)∈N0

(
1{a∈Ar,t} + δ1{a∈Ār,t}

)
π∗r,t (5.4)

is the dual value for arc a, and 1 is the indicator function.

The task of finding the minimum reduced cost column for train k, known as the kth

subproblem (SPk), therefore amounts to finding a shortest source-sink path in G

where each weight cka is replaced by cka − π∗a.

5.6.2 Subproblem Solution

Solving the subproblem for each train amounts to finding a source-sink path in G

with modified weights. Because G is directed and acyclic, we can use the classical

algorithm of Kahn [1962]. This is an exact labelling algorithm that first sorts the

nodes n ∈ N into a topological order Ntop = (n0, . . . , n|N |) so that (ni, nj) ∈ A ⇐⇒

i < j. The node labels are initialised to ∞ and the nodes are scanned once in

topological order starting at the node source. At each node ni ∈ N , the directed

arcs starting at ni are relaxed in turn. An arc (ni, nj) ∈ A is relaxed by checking

whether the sum of the label at ni and the weight of (ni, nj) is smaller than the label

at node nj. If so, the label of node nj is updated to this smaller value, and ni is

recorded as the predecessor of nj. When the node sink is reached in the scan of Ntop,
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the algorithm backtracks through the succession of recorded predecessors of the node

sink to yield the shortest source-sink path in G. This algorithm is of complexity

O(|A|).

Note that although the subproblem is solved multiple times in the column gener-

ation algorithm, the topological ordering Ntop needs to be calculated only once at

the beginning of the entire solve process. This ordering remains valid for every

subproblem.

5.6.3 Acceleration Strategy 1: Partial Pricing

To improve the convergence of the column generation algorithm, we use partial pric-

ing (see Desaulniers et al. [2002]). This popular technique involves solving only a

subset of the subproblems in each pricing round. If no negative reduced cost columns

are found from this subset then a full pricing round is used to determine whether

the MP is solved. This causes the dual values to converge more quickly and hence

reduces the total number of subproblems that must be solved, at the expense of po-

tentially solving more RMPs. Empirical evidence suggests that solving subproblems

in three equally sized groups achieves the best performance.

5.6.4 Acceleration Strategy 2: Reduced Cost Variable Fix-
ing

Reduced cost variable fixing (see Irnich et al. [2010]) has also been used to accelerate

the column generation algorithm. Reduced cost variable fixing is based on the ob-

servation that if the reduced cost c̄ka of an original variable xka exceeds the integrality

gap UB − LB, then arc a cannot appear in an optimal path pk for train k. LB and

UB can be any lower or upper bounds on the optimal objective value, respectively.
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At each execution of the reduced cost fixing procedure, UB is set to the objective of

the current incumbent primal feasible solution. At each execution, LB is set to the

sum of the RMP objective value and |K|min{rck : k ∈ K}, where rck is the reduced

cost for subproblem k (see [Desrosiers and Lübbecke, 2005, p. 11]).

Any arc a that cannot appear in an optimal path pk for train k can be eliminated

from subproblem k. In practice, this is achieved by setting its weight cka to∞, where

∞ is a number sufficiently large to prevent arc a ever forming part of an optimal

path pk for train k. Eliminating these arcs prevents the generation of columns that

cannot form part of an optimal integer solution. This causes the column generation

algorithm to discover good quality integer feasible solutions more quickly.

Directly translating the results from Irnich et al. [2010], the reduced cost c̄ka of variable

xka, where a = (i, j), is calculated from an optimal dual solution (π∗,ρ∗) as

c̄ka = cka − π∗a + li − lj

where li is the length of the shortest source-i path in G when the arc weights are

modified to (cka − π∗a). These shortest path distances are available from the graph

labels after solving the subproblem and can be extracted with little computational

effort. Reduced cost variable fixing in a given subproblem is therefore of complexity

O(|A|).

Our computational experiments show that reduced cost variable fixing is only ef-

fective when the integrality gap is small, for example under 5%. Therefore, the

procedure is not executed until the root node is solved, and after that it is executed

each time a new best primal solution is found.
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5.6.5 Branching

An optimal solution to the linear relaxation of (5.2a)–(5.2d) may contain fractional

variables and therefore not be integer feasible for (5.2a)–(5.2d). The column genera-

tion algorithm is therefore embedded inside a branch-and-bound algorithm, resulting

in a branch-and-price algorithm.

The following result characterises the possible fractionalities by showing that a frac-

tional variable always arises as a result of a track capacity conflict between two

different trains.

Definition 3. A solution λ to an RMP has a fraction-inducing conflict if there exists

an active constraint (r, t) ∈ N0 in the RMP containing both a fractional variable

λk0,p0 ∈ (0, 1) and a non-zero variable λk1,p1 ∈ (0, 1] with k0 6= k1. We denote the

fraction-inducing conflict (r, t, λk0,p0 , λk1,p1).

Proposition 2. If λ is a fractional, basic solution of the RMP that is optimal for

the MP, then λ has a fraction-inducing conflict.

Moreover, if a fractional variable has minimal objective coefficient among all basic

variables for its train, and these objective coefficients are not all equal, then it is part

of a fraction-inducing conflict.

Proof. Suppose λ is fractional. Then ∃k ∈ K and p ∈ P k such that λk,p ∈ (0, 1).

Letting {λk,p̂ : p̂ ∈ P̂ k} be the set of variables for train k taking fractional values, we

know by constraints (5.2c) that |P̂ k| ≥ 2.

For each p̂ ∈ P̂ k, let λp̂ be the solution obtained from λ by replacing

λk,p̂ ← λk,p̂ + ε and λk,q ← λk,q − ε

|P̂ k| − 1
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for all other q ∈ P̂ k \ {p̂}, where ε > 0 is a small constant.

By assumption, λ is a basic solution and hence an extreme point of the feasible set

of the RMP. However, it can also be written as a sum

λ =
1

|P̂ k|
∑
p̂∈P̂k

λp̂

of the distinct solutions λp̂. Therefore, ∃p0 ∈ P̂ k for which λp0 is infeasible.

By construction, λp0 satisfies (5.2c) and so λp0 must violate (5.2b). In other words,

there is a capacity constraint (r, t) ∈ N0 that is active for λ and violated by λp0 .

Constraint (r, t) would not be violated by λp0 if it contained only variables in P̂ k, so

it must contain another variable λk1,p1 ∈ (0, 1] with k1 6= k0, which takes the same

value in λ.

Note that if ck,p = min{ck,p̂ : p̂ ∈ P̂ k} and ∃q ∈ P̂ k such that ck,p < ck,q, then λp as

constructed above is infeasible by the optimality of λ, and so we can set p0 = p.

One consequence of this result is that instances with no conflicts, for example in-

stances in which there is no primary delay, produce integral LP relaxations. More

generally, we would expect the number of fractional variables to be correlated with

the number of conflicts in the instance.

To devise a branching rule, we must first understand the different types of fraction-

inducing conflicts that can arise:

Definition 4. Given a fraction-inducing conflict (r, t, λk0,p0 , λk1,p1) for λ, let yk0,p0r,t

and yk1,p1r,t be the coefficients of λk0,p0 and λk1,p1 in constraint (r, t). These are equal to

1 if the path corresponding to the variable occupies (r, t), or δ if it bans (r, t). Then

the fraction-inducing conflict is, respectively, of type ‘OO’, ‘OB’, ‘BO’ or ‘BB’ if the
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pair (yk0,p0r,t , yk1,p1r,t ) is equal to (1, 1), (1, δ), (δ, 1), (δ, δ).

Proposition 3. Under the conditions of Proposition 2, λ has a fraction-inducing

conflict of type ‘OO’ or ‘OB’.

Proof. By Proposition 2, λ has a fraction-inducing conflict (r, t, λk0,p0 , λk1,p1). It

must be of one of the four types, ‘OO’, ‘OB’, ‘BO’ or ‘BB’. If it is of type ‘OO’ or

‘OB’, then the result is immediately true.

Suppose that (r, t, λk0,p0 , λk1,p1) of type ‘BO’. Since δλk0,p0 > 0, we know from con-

straint (r, t) that λk1,p1 < 1. Consequently, (r, t, λk1,p1 , λk0,p0) is a fractional-inducing

conflict of type ‘OB’.

Finally, suppose that (r, t, λk0,p0 , λk1,p1) is of type ‘BB’. Since constraint (r, t) is active,

and δ was chosen sufficiently small that in practice fewer than d1
δ
e trains can ban

it, constraint (r, t) must contain a variable λk2,p2 > 0 with yk2,p2r,t = 1. Therefore,

(r, t, λk0,p0 , λk2,p2) is a fractional-inducing conflict of type ‘BO’. Using the argument

in the preceding paragraph, (r, t, λk2,p2 , λk0,p0) is of type ‘OB’.

Proposition 3 establishes that the following branching is always available:

Branching Rule 1.

(L) k0 cannot occupy (r, t) (R) k1 cannot occupy (r, t) if type ‘OO’

(L) k0 cannot occupy (r, t) (R) k1 cannot ban (r, t) if type ‘OB’

Branching Rule 1 breaks the conflict by preventing k0 and k1 from occupying or

banning (r, t) in the left and right hand branches, respectively, according to the type

of conflict. This leaves (r, t) free for the other train in each branch. It should be

noted that this branching rule is a novel adaptation of constraint branching, which
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was first suggested by Ryan and Foster [1981].

This branching is compatible with the subproblem, meaning that the additional con-

straint created by each branch can be enforced in the subproblem without compro-

mising the efficiency of its solution algorithm. To prevent a train k from occupying

a resource (r, t), we set the arc weights ck0a = ∞ for each a ∈ Ar,t, and to prevent

banning we similarly set ck0a =∞ for each a ∈ Ār,t. The subproblems remain shortest

path problems on a directed acyclic graph.

A practical algorithm for identifying a fraction-inducing conflict is given in Algorithm

1. We choose to sort the variables by ck,p in ascending order for two reasons. First,

variables with low objective value are more likely to have the lowest objective value

among all basic variables for their train and hence, by Proposition 2, yield a fraction-

inducing conflict. Secondly, variables with low objective value are likely to be more

important for establishing good primal and dual bounds, because they represent the

most desirable paths.

Algorithm 1 Conflict Branching

1: for (k0, p0) ∈ {(k, p) : λk,p ∈ (0, 1)} sorted by ck,p ascending do
2: for (r, t) ∈ N0 such that λk0,p0 in constraint (r, t) do
3: for λk1,p1 in constraint (r, t) do
4: if k1 6= k0 and λk1,p1 ∈ (0, 1] then
5: return (r, t, k0, k1)
6: end if
7: end for
8: end for
9: end for

5.7 Instance Data

We have developed a new set of 310 instances for the TTRP to test our approach.

These instances are based on real data from an area of railway around Doncaster
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station in the UK. It is of critical importance that instances used to test rescheduling

algorithms are realistic, because the difficulty can depend heavily on the instance.

For our model, Proposition 2 shows that there is a direct link between the amount of

track capacity conflict in a given instance and the strength of the formulation for this

instance. Important aspects of the instance generation are described below.

5.7.1 Track Data

We have chosen to use an area around Doncaster station for our instances. Doncaster

station lies on the East Coast Main Line, a busy railway corridor connecting London

with Leeds, York, Newcastle and Edinburgh. It is an important interchange for

inter-city services and terminus for local services, with 3, 857, 000 passenger entries

and exits in 2017–2018 and over 30 trains per hour at peak times. Doncaster is a

bottleneck which is responsible for reactionary delay to trains on the main line. This

makes it ideal for testing our method.

Doncaster station, shown in Figure 5.8, has 9 platforms and 85 track circuits. It

is bounded by 17 signals, and has 17 signals inside the station. In addition to the

mainline that runs through the station, 4 double track lines start at Doncaster, going

to Sheffield, Lincoln, Leeds and Hull, respectively. There are several heavily used

routes within the station which cross the main lines and create conflicts. A good

example is the route into platform 1, going from berth 0302 to berth 0278 (see Figure

5.8). The wider area covered is shown in Figure 5.9. It contains portions of each of

the lines mentioned, but lies within a single area of signalling control. It consists of

225 berths with 313 valid berth transitions.

In order to infer the track data, we used 18 months of historical data from a Train De-

scriber (TD), one of Network Rail’s real-time information systems. Train Describers

record, directly from the track circuits, the time at which every berth transition oc-
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Figure 5.8: A berth diagram of Doncaster Station. The route from berth 0302
to berth 0278 is highlighted. Retrieved from https://wiki.openraildata.com/

index.php?title=DR. Accessed 14/04/20.

curs within a particular area of signalling control. From this data, we were able to

deduce the set Nb of berths within the area, and set Ab of permitted berth transitions.

A significant amount of data cleaning was required to remove incorrectly recorded

berth transitions, and berth transitions that are allowed only in exceptional circum-

stances. From Nb and Ab, we were able to build route graph Gr as described in

Section 5.4.4.

Data about the track circuits TCr included in each route r ∈ Nr were not available

digitally, so we recorded them manually from Network Rail drawings. The minimum

dwell time Dpl was taken from timetable planning rules to be 120 seconds for all

platforms. The headway times hr and Hpl were estimated at 30 seconds for every

route and platform, respectively.

5.7.2 Traversal Time Estimation

For each route r ∈ Nr, we estimated the traversal time Lr ∈ Z+ from the historical

observations yr in the TD data. These values play a crucial role in the track capacity

constraints, and hence in determining how difficult the instances are to solve. By

https://wiki.openraildata.com/index.php?title=DR
https://wiki.openraildata.com/index.php?title=DR
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Figure 5.9: A berth diagram of the area of track modelled. Retrieved from https:

//wiki.openraildata.com/index.php?title=DR. Accessed 14/04/20.

https://wiki.openraildata.com/index.php?title=DR
https://wiki.openraildata.com/index.php?title=DR
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estimating them from the historical data, we were able to overcome any need for

data about distances, speed limits and rolling stock characteristics.

We first estimate the time lr ∈ R+ in seconds, and then calculate Lr by rounding lr

up to the nearest whole number of time intervals. Although this introduces approx-

imation error depending on the size of the time interval, rounding up ensures that

solutions to the model are not unachievable in practice.

For some routes, the observed times in yr can be seen to arise from two different

processes: the transition times of trains travelling close to the line speed, and the

transition times of trains that were not close to the line speed. This second process

consists of trains which were slowed or even stopped altogether by a signal, and trains

which stopped at platforms during their traversal of the route. Since we do not know

which observations are from which process, we fit a Gaussian mixture model with

two components to cluster the observations into these two processes. We fit the

Gaussian mixture model with the EM algorithm, and take lr to be the minimum of

the means of the components. See Bouveyron et al. [2019] for an introduction to

Gaussian mixture models and the EM algorithm.

Many routes, for example those on the open line, appear to have only one mixture

component. To decide whether to use one component or two, we fit both models

and choose the model that optimises the Bayesian Information Criterion [Bouveyron

et al., 2019, p .51]. When there is just one component, we take lr to be the mean of

this component.

5.7.3 Timetable Data

There are 310 instances in the test set. Each one covers a different hour long period

starting on the hour between 8am - 6pm during January 2017 (10 instances per
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day over 31 days). They were created using the actual timetables and actual traffic

perturbations during these times. We consider the use of real traffic perturbation

scenarios to be crucial in assessing the algorithm fairly, despite the fact that it is not

universal practice in the published literature.

The data was collected from TRUST (Train Running Under System TOPS), another

information system used by Network Rail. This system is used to compare the

timetable with actual performance and is widely used within the organisation for

performance analysis. Location data in the timetable, and therefore TRUST, is

recorded at the level of stations and junctions (called timing points), with platforms

and directions specified where appropriate. Directions are recorded as ‘up’ or ‘down’,

and correspond to the two directions in which the most important railway line passing

through a given station can be traversed.

By creating a mapping from each combination of timing point, direction and plat-

form to the corresponding berth, we were able to reconcile our track data with the

TRUST data. This mapping was created automatically by linking trains in the Train

Describer (see Section 5.7.1) and TRUST datasets. This allowed us to infer the data

(rkj , a
k
j , d

k
j )
Jk

j=1 for each train k, as described in Section 5.4.7.

Because the instances are drawn from real examples, the level of perturbation varies

considerably between them. However, the set of instances as a whole is an unbiased

sample of the daily and weekly fluctuations in traffic, and the variations in primary

delay over that month.

Figure 5.10 shows some relevant characteristics of the test set. Figure 5.10(a) shows

the distribution of the number of trains over the test set. The majority of instances

have between 20 and 32 trains, with the most common value being 29. The 4

instances with 3 trains or fewer are taken from data corresponding to public holidays.

Figure 5.10(b) shows the distribution of the number of conflicts in each instance
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over the testset. This is calculated as the number of capacity constraints which

are violated by the solution obtained by solving the problem without track capacity

constraints. Finally, Figure 5.10(c) concerns the number of train pair conflicts. This

is defined as the number of distinct pairs of trains between which there is at least one

conflict. The number of conflicts is higher than the number of train pair conflicts,

because one conflicting pair of trains usually causes several conflicts. It is common for

these conflicts to occur on a single route over several consecutive time intervals.

(a) (b) (c)

Figure 5.10: Histograms showing the test set distribution of the number of (a) trains,
(b) conflicts and (c) train pair conflicts.

5.8 Computational Results

A computational study has been carried out to evaluate the performance of our

branch-and-price algorithm on our new instances. In Section 5.8.1 we investigate the

run time required to solve the instances to optimality. The effects of the acceleration

strategies, the relationship between conflicts and algorithm performance, and the

number of reroutings in the solutions are also explored. In Section 5.8.2, we present

the results of imposing a 20 second time limit. These results evaluate the suitability

of the developed algorithm for a real-time environment.

For the purpose of the analysis, we have omitted the results of the 32 instances in

which there were no conflicts. By Proposition 2, the LP relaxation of an instance
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with no conflicts cannot have a fractional solution. As a result, all such instances

were solved to optimality in less than 3 seconds, without the need for branching.

Many of these instances do include small traffic perturbations, but they are not

severe enough to cause conflicts.

The algorithm is implemented using SCIP 6.0.2 [Gleixner et al., 2018] as a branch-

and-price framework with custom plugins written in the C language using Gurobi 9.0

[Gurobi Optimization LLC, 2020] as the linear programming solver. The experiments

were carried out on a computing node equipped with an 18 core Intel Xeon E5-2699

v3 CPU with 2.30GHz and 500GB of RAM, running Ubuntu 16.04.

The full tables of results are available online (see [Reynolds, 2020]).

5.8.1 Solving to Optimality

First, we solved each instance with a time limit of 600 seconds to evaluate the time

required to solve the instances to optimality. Figure 5.11 shows that across all 278

instances with at least one conflict, the median time to solve to optimality using no

acceleration strategies was 12.55 seconds. It also shows that 90% of instances were

solved within 45.45 seconds, and 4 instances were not solved to optimality in 600

seconds. Using acceleration strategies, we were able to reduce the median time to

10.84 seconds, the 90th percentile to 31.55 seconds and solve all but 2 instances. These

results demonstrate that whilst most instances can be solved in very reasonable times,

it is not realistic to solve every instance to optimality in a real-time setting.

Considering the instances that were solved using acceleration methods, we find that

the number of branch-and-bound nodes is highly correlated with the time to solve

to optimality, with a Pearson correlation coefficient of 0.87, significant with p-value

< 0.001. A mean of 88 variables per instance were generated throughout the column
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Figure 5.11: A cumulative histogram showing the proportion of instances solved for
each number of seconds. Note that a log scale is used on the x-axis.

generation algorithm, demonstrating fast convergence. Although all of the instances

had 64,082 constraints, solving LPs took only a small proportion of the total solve

time: on average 74% of the total solving time was spent pricing variables.

5.8.1.1 Acceleration Methods

The effects of both acceleration methods were examined separately. The performance

profile in Figure 5.12(a) shows that partial pricing was effective at reducing solution

times, particularly by producing modest improvements across many of the instances.

Partial pricing speeds up the convergence of column generation, so it has the poten-

tial to be effective on all instances. However, column generation convergence was

less important than the number of branch-and-bound nodes in determining overall

solution time, so its effect is limited.

Figure 5.12(b) shows that reduced cost variable fixing was also effective at reducing

solution times. The performance profile reveals that it produced gains in a smaller

number of instances. This might be due to the fact that it works by reducing the

number of branch-and-bound nodes required to reach optimality, and therefore there

was limited scope to be effective on instances with relatively few nodes. Figure
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5.12(c) shows that partial pricing and variable fixing were most effective when used

together. The remainder of the results analysis refers to results obtained by using

both of the acceleration strategies.

(a) (b)

(c)

Figure 5.12: Performance profiles comparing standard column generation without
any modifications with (a) partial pricing (b) reduced cost variable fixing and (c)
both.

5.8.1.2 The Effect of Conflicts

In Section 5.6.5, we conjectured that there is a positive relationship between the

number of branch-and-bound nodes and the level of conflict in an instance. The

relationship between the number of conflicts and the number of branch-and-bound

nodes is plotted in Figure 5.13(a). This plot is repeated with the number of train

pair conflicts in Figure 5.13(b).
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(a) (b)

Figure 5.13: Scatter plots showing the relationship between conflicts and the number
of branch-and-bound nodes. Note that 3 instances with more than 250 branch-and-
bound nodes have been omitted from both plots for ease of understanding.

The number of branch-and-bound nodes has a moderate positive relationship with

both the number of conflicts, and the number of train pair conflicts. Because the

quantities are discrete, we measure this relationship with the Spearman correlation

coefficient which looks at the correlation between the ranks of the values. The

Spearman correlation coefficients are 0.38 and 0.68 respectively, both with p-value

< 0.001. One possible explanation for the higher correlation with the number of

train pair conflicts is that branching often resolves multiple conflicts at the same

time. This is especially likely to happen when conflicts occur for the same route in

consecutive time intervals.

Despite this apparent relationship, a significant amount of the variation in the num-

ber of branch-and-bound nodes is unexplained by the number of conflicts. It is likely

that this is accounted for by the variation in difficulty of resolving each conflict.

Understanding the relationship between the difficulty of resolving conflicts and the

instance difficulty would be an interesting topic for further research.
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5.8.1.3 Rerouting

As part of the validation of the model, we investigated how many times a train

was rerouted in each instance. Figure 5.14 shows that at least one rerouting was

carried out in 48% of instances, with the most common number of reroutings being

1. Greater numbers of reroutings were less frequent, with a maximum of 5 carried

out in a single instance.

Figure 5.14: A bar plot of the number of reroutings in each solution.

The presence of rerouting decisions in the solutions justifies the inclusion of rerouting

in the model. A model without the possibility of rerouting would not be able to

produce these solutions, which are optimal under our objective function. In these

instances, the schedule event weights βkj for platform alternatives were discounted

by a factor of 0.9. The number of reroutings would be reduced if this parameter in

the objective function were smaller.

5.8.2 Solving with a Strict Time Limit

Each instance was solved with a time limit of 20 seconds, in order to assess the

performance of the algorithm when the available time is severely limited as it is in

the real-time setting. We found that 81.6% of instances were solved to optimality



CHAPTER 5. A MULTICOMMODITY FLOW TTRP MODEL 125

within this time limit. Of those that were not solved to optimality, the median gap

between the best integer solution and the best bound on the optimal integer solution

was 0.17% and the mean was 0.64%. A histogram of the obtained integrality gaps is

shown in Figure 5.15.

Figure 5.15: A histogram of the percentage gap between the best integer feasible
solution found, and the best bound on the optimal solution.

These results demonstrate that the developed algorithm could be effectively used in

a real-time setting. Even within the very stringent time limit of 20 seconds, most of

the instances can be solved to optimality. Solutions within a few percentage points

of optimality can be found for the remainder. The fact that solution quality can be

guaranteed even when the optimal solution is not found is a significant advantage

of this method over heuristic methods that cannot do the same. This is because

knowledge of the solution quality would be an important factor in any decision over

whether or not to accept a solution and implement it in practice.

5.9 Conclusion

In this paper, we present a new model for the Train Timetable Rescheduling Prob-

lem that is capable of performing rerouting and retiming simultaneously. The model
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employs the concepts of occupying and banning to model sectional-release interlock-

ing whilst using routes as the track components. This is a key contribution, since

it shows how track capacity can be modelled in an accurate yet tractable fashion.

We also present a new objective function that was developed in collaboration with

Network Rail. This objective function uses the concept of utility to tractably and

flexibly represent Network Rail’s complex rescheduling preferences.

Our experiments, which were conducted on a new set of test instances based on real

data, show that the majority of instances can be solved to optimality in 20 seconds.

The remainder can be solved to provably near to optimality in this time limit, with

very good guarantees on solution quality. We show that using partial pricing and

reduced cost variable fixing are effective in accelerating our tailored branch-and-price

algorithm. At a broader level, these results demonstrate that it is realistic to use

exact time-indexed methods in a real-time environment. Finally, our results confirm

the conjecture raised by our theoretical result, that instances with a greater level of

conflict between train movements are more difficult to solve.

Future research will focus on simultaneously calculating train speed profiles. The

assumption that all trains are capable of achieving the same traversal times may

not be realistic in railways with mixed traffic. Another potential direction for fur-

ther work is to refine the objective function. Economic methods could be used to

estimate the utility function of Network Rail, for example by testing their prefer-

ences between solutions produced with different parameter values. The empirical

relationship between these values and the resulting optimal rescheduling actions is

not well understood. Finally, a big challenge for the future is to extend this model to

whole regional networks of track, either by coordinating many smaller models or by

improving the solution techniques so that very large instances can be solved.



Chapter 6

A data-driven, variable-speed
model for the train timetable
rescheduling problem

6.1 Introduction

Reactionary delays are a significant problem in railway systems. These are delays

that are caused by the knock-on effect of prior delays. In 2019, reactionary delays

were responsible for 64.35% of total train delay minutes in Great Britain (statistic

provided by Network Rail). The problem is particularly acute in large, busy station

areas, where the limited capacity of the station creates a bottleneck.

Reactionary delays can be reduced by performing timetable rescheduling. Timetable

rescheduling involves changing the planned schedules of trains in real-time to respond

to unexpected delays. The aim of solving the Train Timetable Rescheduling Problem

(TTRP) [Cacchiani et al., 2014] is to find a way to reschedule the timetable that is

achievable in practice and optimises some objective. TTRP models must take into

127
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account the speed profile of each train, which describes how the velocity of the train

changes over time. If the speed profiles of trains are not modelled with sufficient

accuracy, then TTRP solutions may perform worse than expected in practice. This

has been by demonstrated by Hosteins et al. [2019] using a detailed railway simulator.

Lack of attention to speed profile modelling is therefore a significant risk to the

validity of TTRP models.

The focus of this paper is the development of techniques for improving the modelling

of speed profiles in TTRP models. In particular, the model proposed by Reynolds

et al. [2020] is extended to include approximate train speed trajectories. Using a new

set of realistic instances from Derby station in the UK, we show that this extended

model can be solved to optimality in times comparable to the original model of

Reynolds et al. [2020].

6.1.1 Problem Description

The Train Timetable Rescheduling Problem (TTRP) is solved following a distur-

bance to the timetable to calculate an optimal rescheduled timetable. This distur-

bance could consist of any set of delays that results in two trains requiring the same

infrastructure at the same time (a conflict), making the current timetable infeasible.

The rescheduled timetable — the solution to the problem — consists of a new route

and set of timings (i.e. a new schedule) for each controlled train. Controlled trains

are those that are forecast to be inside a defined area of track during a time horizon.

New routes can involve stopping at different platforms from those originally planned,

taking different approaches to planned platform stops, or cancelling stops altogether.

The rescheduled timetable must contain no conflicts and therefore be capable of being

carried out in practice, respecting the constrains of the signalling system. A solution

is considered optimal if it maximises a utility function representing the preferences
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of Network Rail, the infrastructure manager in Great Britain. This is modelled as

the total weighted utility over all train stops which are carried out, where at each

stop the utility disfavours lateness, platform change and cancellation.

6.1.2 Structure of the Paper

Key concepts and relevant literature are reviewed in Section 6.2. Section 6.3 pro-

vides an overview of our proposed model and approach to modelling speed profiles.

Methods for estimating traversal times are developed in Section 6.4. The model is

then described in full in Section 6.5. Section 6.6 presents a computational study.

Section 6.7 contains our conclusions and suggestions for future research.

6.2 Literature Review

Many different variants of the TTRP have been described in the literature, and many

different models have been proposed. Much of this research is detailed by the surveys

of Cacchiani et al. [2014], Fang et al. [2015] and Corman and Meng [2015]. The speed

profile of a train k is a continuous, non-linear function vk : [0, T ] → R+ mapping

each time t in the time horizon to the velocity vk(t) of the train at that instant.

However, it is computationally impractical to optimise such a function for each train

within a TTRP model. Our literature review will focus specifically on the ways in

which train speed profiles have been approximated in TTRP models.
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6.2.1 Fixed-speed and Variable-speed Models

Timetable rescheduling models can be classified as either fixed-speed or variable-speed

models, depending on how speed profiles are modelled. An early reference to this

terminology appears in [Cordeau et al., 1998, p. 393-396]. In fixed-speed models,

speed profiles are implicitly modelled via the specification of a fixed minimum time

that is required for each train to traverse each segment of railway track. These are

called minimum traversal times because whilst trains are permitted to stop in any

segment and hence spend longer than this minimum time, they cannot traverse the

segment in a shorter amount of time. In fixed-speed models, minimum traversal

times are pre-computed and apply regardless of the rescheduling actions that are

proposed by the model or the speed profiles required in practice to achieve them.

The fixed minimum traversal time of a segment may be the same for every train

that traverses it. Alternatively, minimum traversal times may be calculated based

on assumptions about the likely speed profile of a particular train carrying out its

originally planned schedule. There are many examples of fixed-speed TTRP models,

such as those presented by Corman et al. [2010b], Meng and Zhou [2014], Pellegrini

et al. [2014], Lamorgese et al. [2016] and Reynolds et al. [2020].

Fixed-speed models can sometimes produce solutions that are not achievable in prac-

tice. The reason for this is illustrated in Figure 6.1. Consider a train traversing three

segments of track r0, r1 and r2 in sequence. If the train maintains a constant velocity,

then the traversal times of the segments are tr0 , tr1 and tr2 , respectively. Now suppose

that the train comes to an unplanned stop in r2 as a result of a rescheduling decision.

A fixed-speed model will use the same fixed traversal times for each segment, with

an additional waiting time of D in r2. However, in reality the train’s speed profile

must change so that it decelerates in order to stop, and accelerates afterwards. This

changes the real traversal times to tvarr0
> tr0 , t

var
r1

> tr1 and tvarr2
> tr2 . As a result,
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Train instantaneously comes to a stop.

Figure 6.1: A plot showing how the speed profile assumptions made in fixed-speed
models compare to actual speed profiles. The plots depict a scenario in which a train
traverses r0, r1 and r2 in sequence. On the left, the train does not stop; on the right,
the train stops in r2.

the disparity between actual traversal times and the traversal times in a fixed-speed

model can be large. The negative effects of these disparities have been observed by

Hosteins et al. [2019]. They find that high-quality solutions produced by the fixed-

speed optimisation model of Pellegrini et al. [2014] do not always perform well when

tested using a microscopic railway simulation. They find that the extent of the issue

is dependent on the granularity of the model and the objective function used.

Variable-speed models attempt to overcome this problem by making traversal times

dependent on rescheduling actions. One way of achieving this is by iterating between

a fixed-speed rescheduling model and a speed profile optimisation model. Speed pro-

file optimisation models are detailed kinetic models that optimise the speed profile of

a single train carrying out a fixed schedule to minimise journey times or energy con-

sumption. The relevant literature is summarised by Yang et al. [2016], Scheepmaker

et al. [2017] and Yin et al. [2017]. The traversal times in the fixed-speed model

are updated in each iteration according to the speed profiles required to achieve

the rescheduling solution that it produced in the previous iteration. This iterative

approach has been explored by both D’Ariano et al. [2007b] and Mazzarello and Ot-

taviani [2007]. Whilst iterative approaches laudably avoid the need for fundamental
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changes to rescheduling models, they do not guarantee convergence to a solution that

is feasible for both models. Moreover, it can be time consuming to solve a fixed-speed

model multiple times, which makes the iterative approach especially unsuitable for

the real-time environment in which rescheduling takes place.

To overcome these problems with the iterative approach, speed profiles can be mod-

elled directly within the rescheduling model. Several authors have suggested simple

ways to account for the disparity that arises between fixed traversal times and ac-

tual traversal times following unplanned stops (as described in the example above).

Hosteins et al. [2019] suggest adding a fixed additional time to the traversal time of

any segment in which a train comes to a stop. Rodriguez [2007] suggests adding an

additional time to the traversal time of the subsequent segment that depends linearly

on the amount of time the train stops for. Whilst these methods have the merit of

being simple and leading to linear constraints, they are clearly very approximate. In

reality, the additional acceleration time is not a fixed constant, and it is not linear

in the amount of stopping time. Lusby et al. [2013] show that speed profiles can be

modelled within the subproblem of a model solved using column generation. This

allows speed profiles to be modelled in a more sophisticated way using kinematic

formulae. A similar column generation approach to that of Lusby et al. [2013] is

used in this paper. However, speed profiles are modelled differently to overcome

some specific problems that are discussed in Section 6.4.

A different approach is to select the speed profile of each train in advance and then

disallow rescheduling actions that would compromise their validity. This approach,

taken by both Corman et al. [2009a] and Caimi et al. [2012], is suitable if a green

wave policy is in operation. A green wave policy dictates that trains must only come

to a stop within stations, thereby reducing unnecessary braking and acceleration and

saving energy. However, it does not solve the problem of modelling speed profiles

within the general TTRP, where trains may come to a stop anywhere on the track
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network.

More recently, different ways of integrating the TTRP with speed profile optimisation

have been proposed by Xu et al. [2017], Zhou et al. [2017] and Luan et al. [2018a,b].

These models seek to determine the actual speed profile to be used by each train

simultaneously with carrying out timetable rescheduling. The principal benefit of

this integration is that by solving the two problems simultaneously, solutions with

better overall quality can be achieved. However, to integrate the problems, it is

necessary to assume that precise real-time information about both train speed profiles

and signalling states are centrally available, and that both can be centrally and

automatically controlled. In other words, these models are only useful for railways

in which the functions of traffic control and train operation are integrated (see [Yin

et al., 2017, p. 568] for a discussion of this integration). They are typically only

integrated on new and expensive high-speed lines. As a result, the integration of

the TTRP with speed profile optimisation is inappropriate for practical use on the

majority of railways.

6.2.2 Physics-based and Data-driven Models

Each of the models proposed by Lusby et al. [2013]; Xu et al. [2017]; Zhou et al. [2017];

Luan et al. [2018a,b] are physics-based. This means that traversal times of track seg-

ments are derived from kinetic speed profile modelling. Track segment distances

and train speed capabilities are combined with assumptions about the tractive force

applied by the driver to calculate traversal times. This kind of kinetic modelling has

traditionally been used to estimate running times for timetable construction and eval-

uation — an introduction to this topic is provided by Brünger and Dahlhaus [2014].

Luan et al. [2018a,b] incorporate much of this kinetic modelling into a mixed-integer

non-linear programming formulation, and propose and two heuristics for solving a
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linearised version of the formulation. Heuristics are used because realistic instances

cannot be solved to optimality in suitable computation times. Both Xu et al. [2017]

and Zhou et al. [2017] discretise velocity, thus avoiding direct representation of the

non-linear kinetics of train motion. Xu et al. [2017] extend the Alternative Graph

model (see D’Ariano et al. [2007a]) to incorporate speed-dependent traversal times.

Zhou et al. [2017] propose a time-space-speed network model for the offline train

timetabling problem on a high-speed line with power supply constraints.

The physics-based approach to traversal time modelling has practical disadvantages.

Detailed information about the physical properties of the track and trains is required,

despite the fact that it can be hard to obtain. For example, Luan et al. [2018b] use

physical parameters for the resistance between train and track that are individu-

alised for each train and block section. Finding this information isn’t simply a data

collection exercise: many parameters need to first be estimated and then calibrated

within the overall model. Although sophisticated methods such as those of Bešinović

et al. [2013] have been developed to estimate the parameters used in physical speed

profile calculations, each estimated parameter is still subject to uncertainty. The

effect of this uncertainty on rescheduling models is not well understood. Our model

bypasses the need for these physical parameters, and is therefore significantly less

onerous to test and deploy. It is also easier to adapt to changes in infrastructure

than physics-based models, since any changes will be reflected in the data and can

be used to update traversal times. These are significant advantages given that prac-

tical implementations of the TTRP are still rare (see Lamorgese et al. [2018] for a

description of the state of implementation).

There are also important modelling disadvantages to using the physics-based ap-

proach. In a physics-based model, the modeller must make assumptions about which

speed profiles should be feasible. For example, Lusby et al. [2013] and Zhou et al.

[2017] assume constant rates of acceleration over each section of track and each time
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interval, respectively. Lusby et al. [2013] allow trains to travel at any real-valued

speed below the speed limit, whilst Zhou et al. [2017] and Xu et al. [2017] allow

trains to travel only at one of a few pre-defined speeds in each block section. Zhou

et al. [2017] allow trains to transition between any two speed levels provided limits

on the acceleration and deceleration capabilities of the train are respected, whilst

Xu et al. [2017] allow trains to transition only between adjacent speed levels. All of

these approaches to constraining speed profiles run the simultaneous risks of both

eliminating perfectly reasonable speed profiles from the feasible space, and including

many speed profiles that are very unlikely to arise in practice.

In this paper, we avoid these problems by taking a data-driven approach. This ter-

minology refers to the fact that we infer traversal times from historical observations,

leading to an innovative synthesis of statistical techniques with optimisation. Our

data-driven approach provides a natural way to model traversal times that reflects

speed profiles that have actually arisen in the past on the parts of track that are

modelled. Rather than making assumptions about how to constrain speed profiles,

our approach allows the data to speak for itself. Results for our application show

that the use of more than one traversal time is justified by the data on only a subset

of the routes. This highlights an additional advantage of our data-driven approach.

It is able to target increased model complexity (a higher number of possible traversal

times) at parts of the track where it can be best justified by the data. The result is

a significantly more parsimonious model than any of the physics-based models that

have been mentioned.

6.2.3 Contributions

The contributions made by this paper can be summarised as follows:

1. We propose a new variable-speed model for the TTRP in complex station areas.
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The model utilises a time-space-type graph to approximate train speed profiles.

2. We show how the application of statistical methods to historical data can be

used to model traversal times in a variable-speed model. This data-driven

approach results in a parsimonious model that is less onerous to test and deploy

than existing physics-based models. Moreover, it avoids the need to make

restrictive assumptions about speed profiles.

3. We present a new set of instances based on real data from Derby station in the

UK.

4. We show that these instances can be solved to optimality or provably near to

optimality in times suitably short for real-time operations. In particular, the

solving times are comparable with the fixed-speed model proposed by Reynolds

et al. [2020].

6.3 Model Overview

This paper presents a model for the TTRP that is based on a time-space-type (TST)

graph. This is a directed graph G = (N0 ∪ {source, sink}, A) that models the state

of each train over the time horizon using a path from the source node to the sink

node. Each node in N0 represents a state in which a train could be, whilst each arc

represents a possible transition between these states.

Each node in N0 corresponds to a combination (r, t, v) of a route r, a time interval

t and a speed profile type v. These are defined as follows:

• A route is a short length of track that runs from one railway signal to another.

The controlled area of track is formed of a set of routes Nr, that can be modelled

as a route graph Gr = (Nr, Ar), where the arcs in Ar represent feasible route



CHAPTER 6. A DATA-DRIVEN, VARIABLE-SPEED TTRP MODEL 137

transitions. Figure 6.2 shows the route graph for an area centred on Derby

station.

• Time intervals are periods of time, each of length 10 seconds, that together

form a partition T of the time horizon. The time horizon begins at the time

the model is solved and lasts for one hour.

• Each traversal of a route r ∈ Nr by a train is modelled as having a speed

profile type. The minimum number of time intervals Lvr required to traverse r

is dependent on the speed profile type v that is used. Whilst there are three

general types Nv = {v0, v1, v2}, the possible speed profile types for any given

route r are N v
r ⊆ Nv. The definition of these speed profile types and the

calculation of the traversal times is the subject of Section 6.4.

Figure 6.2: The route graph Gr for the area centred on Derby station that is used
in our computational experiments.

6.3.1 Example TST Graph

A small explanatory example of a TST graph is depicted in Figure 6.3. In this

example, the route graph is given by

Nr = {AB,BC,CD,DE} and Ar = {(AB,BC), (BC,CD), (CD,DE)}
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and the time horizon T = {0, . . . , 7} consists of eight time intervals. There are three

speed profile types, v0, v1 and v2, although type v2 is not possible in routes CD or

DE (NCD
v = {v0, v1} = NDE

v ). Type v0 corresponds to stopping, since the arcs join

nodes corresponding to the same route at consecutive time intervals. The traversal

times of type v1 are L1
AB = 3, L1

BC = 2 and L1
CD = 2. The traversal times of type v2,

L2
AB = 1 and L2

BC = 1, are shorter. The graph G contains arcs allowing movement

between speed profile types, but movement between types v0 and v2 is not possible.

The thick blue line is an example source-sink train path in G. It corresponds to a

sequential traversal of all routes, with AB and CD traversed with speed profile type

v1, BC with type 2, and the train coming to a stop in DE.
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Figure 6.3: An example of a TST graph.

A solution to the problem (i.e. the new schedule) comprises one source-sink path in

G for each controlled train k ∈ K. This path completely describes the sequence of

routes to be traversed by k, the time intervals in which each route traversal begins

and the speed profile type of each traversal.
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6.3.2 Speed Profile Types

In fixed-speed models, the traversal time of a route r ∈ Nr is represented by a single

value Lr. Trains are usually permitted to come to a stop on any route. As a result,

Lr is merely the minimum traversal time because a train may spend longer than

Lr in route r by stopping in it. Whilst Lr may depend on the train, route or pre-

planned speed profile, it does not depend on the speed profile required to achieve the

rescheduled solution. We refer to stopping (denoted by v0) and ordinary traversal

(denoted by v) as speed profile types. Figure 6.4 visualises the fact that both stopping

and ordinary traversal are possible on any route, regardless of which type occurred

on the previous route.

v0 v

Figure 6.4: Speed profile type graph for a fixed-speed model.

Our approach is a natural extension of this idea to use two different traversal times

L1
r and L2

r (with L1
r > L2

r) corresponding to two speed profile types v1 and v2,

respectively. The traversal time that is required for a train to traverse r will be

either L1
r or L2

r, depending on the speed profile required to perform the rescheduled

solution. The resulting model is, therefore, a variable-speed model. In particular,

the speed profile type used by a train on a given route is constrained to be adjacent

in the type graph Gv (see Figure 6.5) to the type used on the preceding route.

Because (v0, v2), (v2, v0) /∈ Av, this constraint prevents trains from using the faster

speed profile type v2 and stopping v0 on consecutive routes. The rationale is that

fast speeds and stopping must be separated by periods of acceleration or deceleration

that involve slower speeds. Note that this assumption is somewhat similar to the
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constraint of Xu et al. [2017] stating that the speed levels on consecutive block

sections must be at most one level apart. However, we use speed profile types instead

of physically defined speed levels (e.g. 250–300 km/h).

v0 v1 v2

Figure 6.5: Speed profile type graph Gv = (Nv, Av) for our approach, where Nv =
{v0, v1, v2} and Av = (Nv ×Nv) \ {(v0, v2), (v2, v0)}.

6.4 Traversal Time Estimation

It is important to address the question of how to calculate the variable traversal times

L1
r and L2

r for each route r. This is because the extent to which these values are

representative of the actual traversal times of trains with different speed profiles is

a major determinant of whether the solutions produced by the model are achievable

in practice. The calculation of traversal times is therefore an inextricable part of the

modelling methodology.

In fixed-speed models, traversal times can be estimated using classical running time

estimation techniques — see [Brünger and Dahlhaus, 2014] for a review. Stochas-

tic running time estimation methods have also been proposed for use in timetable

simulation [Yuan and Medeossi, 2014]. However, the question of how to calculate

traversal times for variable-speed TTRP models hasn’t been adequately addressed.

This task poses several unique challenges that straddle the topics of running time

estimation and timetable rescheduling. In our case, two times L1
r and L2

r that repre-

sent trains with different speed profiles are required. These must be meaningful in
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the sense that it should be rare or impossible for a train to use types v0 and v2 in

consecutive routes, but possible for any other combination to occur. An additional

challenge is posed by the discrete nature of time in the model, meaning that times

must correspond to a whole number of time intervals. Finally, routes in station areas

are often much shorter than the distances over which running times are typically

calculated.

Our approach involves estimating traversal times based on historical data. The

data that is used was collected by a Train Describer over a seven month period. A

Train Describer is a real-time information system that records the sequence of routes

traversed by each train and the number of seconds spent in each one.

6.4.1 Method 1: Estimating a Single Time (Fixed-Speed)

First we summarise the method employed by Reynolds et al. [2020] for estimating a

single traversal time Lr for a given route r ∈ Nr in a fixed-speed model. The data

used is yr = (yr1, . . . y
r
nr), a vector containing the number of seconds spent in r by

nr different trains. Unimodal statistical distributions are generally not appropriate

for modelling yr. This is because the times arise from different processes according

to the speed profile used by a train in r. By modelling each speed profile type as

a different process, we can model yr as a mixture of unimodal distributions. The

speed profile type of each observation is unobserved, but this can be estimated by

fitting a mixture model. Specifically, we fit a Gaussian Mixture Model (GMM) to

each yr using the Expectation-Maximisation (EM) algorithm. This is a model-based

clustering technique that identifies groups of historical times (called clusters) that

approximately follow a Gaussian distribution. An introduction to GMMs and the

EM-algorithm is provided by Bouveyron et al. [2019].

To fit a GMM to yr, the number of clusters (each corresponding to a speed profile
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type) must be specified in advance. The appropriate number is different for each

route. For example, on the open line where trains rarely travel below the line speed

there is often only one process occurring and therefore a single cluster is appropriate.

Conversely, up to three different speed profile types are discernable on many routes

within stations. To decide the number of clusters, we fit three models with 1, 2 and 3

clusters respectively, and choose the model that optimises the Bayesian Information

Criterion [Bouveyron et al., 2019, p. 51].

In the fixed-speed model, a single time Lr must be chosen for each route from the

fitted mixture distribution. The cluster with the smallest mean is selected, since this

reflects the times of trains travelling close to the speed limit. From this component,

the mean is rounded up to the nearest number of whole time intervals to produce

Lr. Whilst rounding introduces approximation error, rounding up ensures that the

feasibility of a solution to the model is not compromised. An example of the result

of this clustering process is shown in Figure 6.6.

Figure 6.6: The histogram of historical traversal times for route 5332 5330. The
three clusters identified are shown in different colours. The rounded mean of each
cluster is shown as a vertical line. The left-most vertical line (40 seconds, or Lr=4)
is used as the final estimate.
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6.4.2 Method 2: Extension to Multiple Times (Variable-
Speed)

The method presented in Section 6.4.1 can be extended to produce two traversal

times, L1
r and L2

r, for routes with three clusters. The traversal times L1
r and L2

r

are calculated by taking the smallest and second smallest means of the clusters,

respectively, and rounding up to the nearest whole number of time intervals. This

allows more speed profile types to be represented in the model. Trains travelling

close to the speed limit have a time of L1
r, whilst trains that accelerate/decelerate

or coast below the speed limit have a time of L2
r. Observations in the third cluster

are discarded, since these correspond to stopping, and that is not modelled using a

traversal time.

Given the assumptions made about how clusters correspond to speed profile types, we

expect to observe that when trains traverse two routes consecutively, the respective

traversals are rarely of types v0 → v2 or v2 → v0. This is because these transitions

represent an abrupt change between stopping and a fast speed within the space of a

single route. To test whether this is the case, a model of transitions between different

clusters is created using historical data from the Train Describer. For each historical

train journey j, this transition data consists of both the sequence (rj1, . . . , r
j
nj

) ∈

(Nr)
nj of routes traversed, and the corresponding sequence (tj1, . . . , t

j
nj

) ∈ Rnj+ of

traversal times for each route in seconds. Since the clustering process classifies each

traversal time tji as belonging to a particular speed profile type, the journey can also

be represented as a sequence (ij1, . . . , i
j
nj

) ∈ {v0, v1, v2}nj of speed profile types.

In order to test the suitability of the clustering method, we model the speed profile

type sequences probabilistically using a discrete Markov chain (Xt)t∈N with state

space Nv = {v0, v1, v2}. This means that for each time step t ∈ N = {0, 1, 2, . . . }, Xt

is a discrete random variable taking values in Nv, such that
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• Markov Property

P (Xt+1 = it+1|Xt = it, . . . , X0 = i0) = P (Xt+1 = it+1|Xt = it) for any t ≥ 1

and i0, . . . , it+1 ∈ Nv.

In our application, the Markov property means that the conditional probability

of a train using a speed profile type, given the types used on all previous route

traversals, only depends on the type used on the most recently traversed route.

• Time homogeneous

P (Xt+1 = j|Xt = i) = P (Xt = j|Xt−1 = i) for any t ≥ 1 and i, j ∈ Nv.

This means that the probability of transitioning from state i to j is independent

of t, and we denote this transition probability by pij.

The transition probabilities of this Markov chain can be inferred from the data. If

nij is the number of times j immediately follows i in a speed profile type sequence

for a train journey in the data, then pij is estimated by

pij =
nij∑

m∈Nv nim
. (6.1)

The clustering and transition probabilities were calculated using data from Derby

station, and the estimated transition probabilities are shown in Figure 6.7. Whilst

pv0v2 = 0.01 is small as expected, pv2v0 = 0.21 is higher than expected. It would be

problematic to disallow transitions from v2 to v0 in our optimisation model when the

historical data shows that this occurs after as many as 21% of type v2 traversals.

The higher than expected value of pv2v0 could result from inadequacies in the clus-

tering methodology that lead to misclassification of traversal times. One particular

concern is that the Gaussian distribution may not be appropriate to model clusters.

Another possibility is that distinct and meaningful clusters do not exist for some

routes, or do not strongly correspond to speed profile types. A third possibility is
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Figure 6.7: The Markov chain (Xt)t∈N, with estimated transition probabilities shown.
Probabilities are rounded to two decimal places.

that pv2v0 is a poor estimate of the true transition probability. This could have arisen

because for some routes, the cluster representing type v2 has only a small number of

data points. Finally, it may be inappropriate to assume that the Markov property

holds. For example, the distribution of Xt given the values at each previous time

step might be dependent on the value of Xt−2 in a way that our probabilistic model

has failed to reflect.

The potential problems that have been identified may affect different route transitions

to different extents. It is possible to estimate transition probabilities pr,r
′

ij for each

route transition (r, r′) ∈ Nr separately. The probabilities pr,r
′

ij are calculated in the

same way as pij using formula (6.1) with one difference. The difference is that nij is

replaced by nrij, the number of observations of (r, t) → (r′, t′) in the transition data

such that t is classified as type i and t′ is classified as type j. The distributions of

pr,r
′

v0v2
and pr,r

′
v2v0

over all route transitions (r, r′) ∈ Nr are shown in Figure 6.8. There is

considerable variation across different route transitions, with pv2v0 being acceptably

low for some, and unacceptably high for others.

A severe limitation of this approach is that the transition data is used only for vali-

dation and not for the clustering, which is performed separately for each route. The

transition data potentially contains useful information that could be used when per-
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Figure 6.8: Boxplots showing the distribution of transition probabilities by type.

forming the clustering. For example, a transition from a cluster of type v2 to a cluster

of type v0 might indicate that the second observation is misclassified and should be

in cluster v1. Transition patterns also contain useful information for selecting the

number of clusters. This limitation is addressed in the next section, where the full

transition data is utilised.

6.4.3 Method 3: Transition-based Multiple Traversal Time
Estimation

This method for estimating differentiated traversal times is designed to address the

problems identified with Method 2. It uses the full transition data to estimate the

traversal times, and it does not rely on the Markov property or assume that the data

follows a Gaussian distribution.

There are four main steps involved in Method 3. The first step is to identify, for each

route r ∈ Nr, which observations from yr arise from a train coming to a complete stop

in r (type v0). This is performed using traversal time data alone, without transition

data. The distributions of times recorded for each route are very heterogeneous,

which makes using standard parametric distribution fitting challenging. We therefore

take an ad hoc approach. Any observation that is longer than 120 seconds, or in the

top 10% of observations is assumed to arise from a train coming to a stop. These

values (120 seconds and 10%) are selected using our familiarity with the specific area
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being modelled.

The second step is to classify the remainder of the traversals as either type v1 or

type v2. This is performed using the transition data alongside our classification of

type v0 transitions from the first step. Specifically, a route traversal is classified as

type v1 if it occurs immediately before or after another route traversal that has been

classified as type v0. Conversely, route traversals that are not adjacent to traversals

of type v0 are classified as type v2. This completes the classification of each route

traversal into a speed profile type.

The third step is to calculate the traversal times L1
r and L2

r using the classification

from step two. For i = 1, 2, the median lir (in seconds) of type vi observations is

divided by 10 (the length of a time interval) and rounded up to the nearest whole

number to obtain Lir. Medians are used because they are not unduly influenced by

more extreme observations in each group. The rounding process is necessary as a

result of the discretisation of time in the TST graph.

The fourth and final step is to decide, for each route, whether the data supports using

two different traversal times or whether a single traversal time is more appropriate.

Due to rounding, routes r for which l1r − l2r < 10 have L1
r = L2

r, so these should

have only one traversal time i.e. N v
r = {v0, v1}. For other routes, we check for

statistical evidence that the true values ľ1r and ľ2r of the medians of groups v1 and v2

are significantly different (l1r and l2r are estimates of ľ1r and ľ2r , respectively). Mood’s

test for a difference in medians [Mood, 1950] is used to assess this. A one-tailed test

is performed at significance level 95% to test the null hypothesis that ľ2r = ľ1r against

the alternative hypothesis that ľ2r > ľ1r . When the null hypothesis is rejected, both

of the traversal times, L1
r and L2

r, are used. For the remaining routes, only L1
r is

used because there is a lack of statistical evidence that using a second traversal time

is justified. An illustration of the method for a particular route that is given two



CHAPTER 6. A DATA-DRIVEN, VARIABLE-SPEED TTRP MODEL 148

traversal times is shown in Figure 6.9. The results of carrying out this method on

all routes for Derby station are described and discussed in Section 6.6.2.

Figure 6.9: A histogram of historical traversal times for a particular route. The
three estimated groups are shown in different colours, and estimates for L1

r and L2
r

are marked vertical lines.

6.5 Model Description and Solution Method

The results obtained from traversal time estimation are used to determine both the

TST graph, and sets of graph arcs that are used to model track capacity constraints.

These objects, in turn, are used to define a Mixed Integer Programming model for

the TTRP that is solved using a branch-and-price algorithm.

6.5.1 TST Graph

Recall from Section 6.3 that Gr = (Nr, Ar) is the route graph and that Gv = (Nv, Av)

is the speed profile type graph. The set of discrete time intervals is denoted by T ,

whilst K is the set of trains. For each route r, N v
r ⊆ Nv is the set of possible speed

profile types for route r.
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The TST graph is given by

G = (N0 ∪ {source, sink}, A),

where, in addition to the artificial source and sink, the nodes of G are given by

N0 = {(r, t, v) ∈ Nr × T ×Nv : v ∈ N v
r } .

The directed arc set A =
⋃6
i=1Ai of G consists of six different arc types. These six

types and their interpretations are given below. Figure 6.10 shows an example arc

of each different type in a small artificial example of G.

• A1 = {(source, (rk0 , ak0, vk0)) : k ∈ K}

Entering from the source node to the first known position rk0 of train k within

the time horizon and modelled area, at time interval ak0, and speed profile type

vk0 .

• A2 = {((r, t, v0), (r, t+ 1, v0)) : (r, t, v0) ∈ N0 and (r, t+ 1, v0) ∈ N0}
Waiting in route r for one time interval when speed profile type is 0 (i.e. train

is stopped).

• A3 = {((r, t, v0), (r, t, v1)) : (r, t, v0) ∈ N0 and (r, t, v1) ∈ N0}
Transitioning from speed profile type 0 (stopped) to type 1 so that the train can

begin traversing r again.

• A4 = {((r, t, v), (r′, t+ Lvr , v
′)) : (r, r′) ∈ Ar, (v, v′) ∈ Av,

(r, t, v), (r′, t+ Lvr , v
′) ∈ N0, v 6= v0}

Traversing r with seed profile type v, and arriving in a successive route r′ with

speed profile type v′ after a traversal time of Lvr .

• A5 = {((r, T, v), sink) : r ∈ Nr, v ∈ Nv}
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Exiting to the sink node at the end of the time horizon.

• A6 = {((r, t, v), sink) : σ+(r) = ∅ and (r, t, v) ∈ N, v 6= v0}
Exiting to the sink node from a node at the boundary of the area of track

modelled. The train cannot exit whilst stationary.
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Figure 6.10: An example TST graph, with examples of arcs from different sets A1–A6

labelled.

6.5.2 Track Capacity Constraints

A feasible solution to the TTRP is a set of source-sink paths in G, one for each

train, that collectively satisfy the constraints of the signalling system. The signalling

system is a safety system that limits track capacity and regulates train movements to

avoid physical collisions. The type of signalling system modelled is a sectional-release

interlocking system. This takes into account track subdivisions smaller than routes,

called track circuits. All of the track circuits in a route are locked before a train may

enter the route, and then released individually once the train has vacated each track
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circuit. Between locking and release, a track circuit cannot be locked by any other

train. Because track circuits can form part of more than one route, the capacities of

routes are not always independent.

The constraints induced by the signalling system can be modelled as capacities in

the time-space-speed graph. Each pair (r, t) ∈ Nr × T of one route and one time

interval is regarded as a time-space resource. The capacity of these resources can be

consumed by trains in two different ways: occupying and banning. Resource (r, t)

is occupied by a train if and only if it has traversed r and at least one of the track

circuits in r is still locked during time interval t. By contrast, a train bans a time-

space resource (r′, t) if it makes route r′ unavailable during time interval t as a result

of occupying (r, t), where r is a distinct route with track circuits in common with r′.

These terms are illustrated in more detail by Reynolds et al. [2020].

The capacity of each time-space resource (r, t) is subject to two constraints:

1. (r, t) cannot be occupied more than once; and

2. (r, t) cannot be both banned and occupied.

To enforce these constraints using the capacities of arcs in G, two sets of arcs, Ar,t

and Ār,t, are defined for each time-space resource (r, t). These are defined such that

a train path contains an arc in Ar,t if and only if it occupies (r, t), whilst a train path

contains an arc in Ār,t if and only if it bans (r, t). Reynolds et al. [2020] show how

these sets can be constructed on a time-space graph without speed profile types. We

extend this to show how they can be constructed on the TST graph G. Figure 6.11

visualises an example of a set Ar,t.

A train occupies (r, t) if and only if the source-sink path in G assigned to that train
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contains a node from the set

Wr,t =
{

(r, t′, v′) : v′ ∈ N r
v , t
′ ∈ {t− (Lv

′

r + hr) + 1, . . . , t}
}
,

where hr is headway time left for the release of route r to occur. To see this, suppose

that a train path contains such a node (r, t′, v′). Then the track circuits of r cannot

not all be released until the train has traversed r, and the headway time hr has

elapsed. This cannot occur before time interval t′ + Lv
′
r + hr ≥ t− (Lv

′
r + hr) + 1 +

(Lv
′
r + hr) = t + 1, meaning that at least some track circuits are still locked during

time interval t.

A train bans (r, t) if and only if the source-sink path in G assigned to that train

contains a node from the set

W̄r,t = {(r′, t′, v′) : r′ ∈ Sr, v′ ∈ N r
v , t
′ ∈ {t− t(r′, v′, r) + 1, . . . , t}} ,

where Sr is the set of routes distinct from r that share at least one track circuit

with r. The quantity t(r′, v′, r) is the minimum number of time intervals between

the track circuits of route r′ being locked, and all of the track circuits common to r

and r′ being released, when r′ is traversed using speed profile type v′. This is given

by

t(r′, r) = dθ(r′, r)Lv′r′ + hr′e,

where θ(r′, r) is the proportion of the traversal of r′ after which r is released. That

quantity is calculated from the track circuit data as described by Reynolds et al.

[2020].
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Using the definitions of Wr,t and W̄r,t, Ar,t and Ār,t can be defined as:

Ar,t =
⋃

n∈Wr,t

σ−(n) \
⋃

n∈Wr,t

σ+(n)

Ār,t =
⋃

n∈W̄r,t

σ−(n) \
⋃

n∈W̄r,t

σ+(n),

where σ−(n) and σ+(n) are used to denote the set of directed arcs ofG entering a node

n and leaving a node n, respectively. A path in G contains an arc in Ar,t (respectively

Ār,t) if and only if it contains a node in Wr,t (respectively W̄r,t). Therefore a path

in G contains an arc in Ar,t (respectively Ār,t) if and only if it occupies (respectively

bans) time-space resource (r, t).

The track capacity constraints described above can be formulated in the following

way. A set of source-sink paths in G is a feasible solution to the problem if and only

if among all of the paths:

1. At most one arc in Ar,t is used; and

2. If an arc in Ar,t is used then no arcs in Ār,t are used.

6.5.3 Antichain Condition

Analogously to the model presented by Reynolds et al. [2020], our formulation of

the track capacity constraints is correct if and only if it is not possible for a train

to violate these constraints single-handedly. We give conditions under which this is

true below.

Definition 5. An antichain in a directed graph G = (N,A) is a set Z ⊆ A of arcs

such that each path in G contains at most one arc in Z.



CHAPTER 6. A DATA-DRIVEN, VARIABLE-SPEED TTRP MODEL 154

← (r, t, 0)

← (r, t, 1)

← (r, t, 2)

Figure 6.11: An illustration of Wr,t and Ar,t for a specific time-space resource (r, t) ∈
Nr × T in an example graph G. The nodes in Wr,t and arcs in Ar,t are highlighted
in red. The relevant times are hr = 1, L0

r = 0, L1
r = 2 and L2

r = 1.

Definition 6. For two routes r1, r2 ∈ Nr, let

L(r1, r2) = min

 ∑
r′∈p\r2

min
v=1,2

Lvr′ : p is an r1-r2 path in Gr


be a lower bound on the minimum total traversal time from r1 up to but not including

r2. For example, if (r1, r2) ∈ Ar then L(r1, r2) = min{L1
r1
, L2

r1
}.

Assumption 3. For each (r, t) ∈ N0, Ar,t ∩ Ār,t = ∅ and Ar,t ∪ Ār,t is an antichain

in G.

Proposition 4. Assumption 3 is true if for each r ∈ Nr, either (i) Sr ∪ {r} is an

antichain in Gr or (ii) L(r1, r2) ≥ maxv L
v
r1

+ hr1 for each pair r1, r2 ∈ Sr ∪ {r}.

Proof. Let (r, t) ∈ N0. Since r /∈ Sr by definition, Wr,t ∩ W̄r,t = ∅ and hence

Ar,t ∩ Ār,t = ∅.
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Suppose for contradiction that at least one of (i) and (ii) holds, and that there is a

source-sink path p in G that contains two distinct arcs ((r0, t0, w0), (r1, t1, w1)) and

((r2, t2, w2), (r3, t3, w3)) in Ar,t ∪ Ār,t, where without loss of generality t1 ≤ t3. By

the definitions of Ar,t and Ār,t, the routes r1 and r3 are in Sr ∪ {r}. However, since

t1 ≤ t3, there must be a subpath q of p from (r1, t1, w1) to (r3, t3, w3), and hence a

path from r1 to r3 in Gr, contradicting (i). Furthermore,

t− (Lw1
r1

+ hr1) + 1 + L(r1, r3) ≤ t1 + L(r1, r3) (r1, t1, w1) ∈ Wr,t ∪ W̄r,t

≤ t3 q must span at least L(r1, r3) time intervals

≤ t. (r3, t3, w3) ∈ Wr,t ∪ W̄r,t

This rearranges to L(r1, r3) ≤ Lw1
r1

+hr1−1, which contradicts (ii). Therefore neither

(i) nor (ii) holds, and the result is proved by contradiction.

Note that the conditions of Proposition 4 can be checked much more easily than

checking Assumption 3 directly. Condition (i) is satisfied for all routes in our in-

stances for Derby station.

6.5.4 Objective Function and Arc Weights

The quality of a given solution to the TTRP is measured as the sum of the weights

of the paths in the solution. A smaller sum corresponds to a better solution, so the

problem is a minimisation problem. The weight of a given path for train k is the

sum of the weights cka of the arcs a that make up the path. These weights depend

on both the arc and the particular train, so each arc a in G has a set of weights

{cka : k ∈ K}.

The weights are selected such that the negative of the sum of the weights of the paths

in a solution corresponds to the utility associated with the solution by Network Rail.
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This utility is modelled as the total weighted utility over all trains k and scheduled

events j, given by

U =
∑
k∈K

αk

Jk∑
j=1

βjkU
j
k .

Train priorities and event priorities are controlled by parameters αk and βjk, respec-

tively. The set of events Jk for each train k includes all of its station stops and

its exit from the modelled area. Each event j specifies both a route rkj and a time

interval akj in which the train should arrive into the route. The quantity U j
k is the

utility accrued by train k at stop j. It is equal to zero if train k does not visit rj at

all, and γ(t− akj ) = φ−ω|t−a
k
j | if train k enters rj in time interval t (and hence t− akj

time intervals late).

To facilitate the representation of this objective function, the weights cka take the

following values:

• cka = 0 if a ∈ A2, A3, A5, A6 for all k ∈ K.

• cka = ∞1{j 6=k} for all k ∈ K and a = (source, (rj0, a
j
0, v

j
0)) ∈ A1. This ensures

that trains begin in their initial position, rather than the initial position of a

different train.

• Let j ∈ Jk be a scheduled event for train k ∈ K that requires train k to arrive

into route rkj at time interval akj . Let t ∈ T be a time interval. Then:

– If the event requires the train to stop at a platform, then all arcs a ∈ A4

that enter node (rkj , t, v0) have weight cka = −αkβjkγ(t− akj ).

– If the event doesn’t require the train to stop (e.g. passing a junction),

then the weight cka = −αkβjkγ(t− akj ) applies to arcs in a ∈ A4 that enter

any of the nodes (rkj , t, v) where v ∈ N rkj
v .

– If the event has a departure time that is later than t, then all arcs a ∈ A4
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starting at any of the nodes (rkj , t, v), where v ∈ N rkj
v , have cka =∞. This

prevents train k from leaving rkj for another route before the scheduled

departure time.

All other arcs a ∈ A4 have weight cka = 0 for each k.

Note that weights cka with value∞ ensure that an optimal solution will never contain

a path for train k that contains arc a. In computations, a sufficiently large floating

point value is used to represent ∞.

6.5.5 MIP Formulation and Solution

Although the model presented in this paper differs from that presented by Reynolds

et al. [2020], it can be formulated as a Mixed Integer Program analogously and

therefore solved using the same branch-and-price algorithm. This is because the

differences between the models are expressed in the definitions of both the graph G

on which the problem is defined, and the sets Ar,t and Ār,t.

The formulation is a path-based flow formulation with binary variables λk,p used to

indicate which source-sink path p ∈ P k in the TST graph is selected for each train

k. Thus, the formulation of the TTRP is given by

min
∑
k∈K

∑
p∈Pk

(∑
a∈A

ckax
k,p
a

)
λk,p (6.2a)

s.t.
∑
k∈K

∑
p∈Pk

∑
a∈Ar,t

xk,pa + δ
∑
a∈Ār,t

xk,pa

λk,p ≤ 1 ∀(r, t) ∈ Nr × T (6.2b)

∑
p∈Pk

λk,p = 1 ∀k ∈ K (6.2c)

λk,p ∈ {0, 1} ∀k ∈ K, p ∈ P k, (6.2d)
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where δ > 0 is a small positive constant, and each xk,pa is a constant that is equal to

1 if path p ∈ P k for train k contains arc a ∈ A, and equal to 0 otherwise.

The objective (6.2a) is to minimise the total weight of all of the selected train paths.

This corresponds to maximising Network Rail’s utility. Constraint (6.2b) ensures

that the track capacity constraints outlined in Section 6.5.2 are respected. For ex-

ample, if a time-space resource (r, t) is occupied twice, then the left hand side of

(6.2b) is 2, violating the constraint. Similarly, if (r, t) is both occupied and banned,

then the left hand side of (6.2b) is 1+δ, which also violates the constraint. However,

the constant δ is given a small value so that the resource can be banned multiple

times without violating the constraint. In our instances, a value of δ = 0.05 was

sufficient to ensure that there was no practical constraint on the number of times a

resource could be banned. Constraint (6.2c) ensures that exactly one path is selected

for each train. Finally, constraint (6.2d) states that the variables are all binary.

This problem can be solved using the branch-and-price algorithm described by Reynolds

et al. [2020]. Column Generation is used to solve the LP relaxation at each node of

the branch-and-bound tree. Variables generated in each column generation iteration

by the solution of one subproblem for each train. These subproblems are shortest-

path problems on G, which is a directed acyclic graph. Both partial pricing and

reduced cost variable fixing are used as column generation acceleration strategies. A

customised branching rule is used that branches on conflicts between pairs of trains

over resources (r, t) in the track capacity constraints.

6.6 Computational Study

A computational study has been carried out to compare two models:

(FS) The fixed-speed model proposed by Reynolds et al. [2020], with traversal
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times calculated using Method 1 (see Section 6.4.1).

(VS) The variable-speed model proposed in this paper, with traversal times

calculated using the transition-based Method 3 (see Section 6.4.3).

Section 6.6.1 describes the new set of instances for Derby station in the UK that

is used for our computational study. Section 6.6.2 compares the traversal times

produced by the different estimation methods. Finally, Section 6.6.3 compares the

performance of the branch-and-price solution algorithm for the two models. Full

tables of results are available online (see [Reynolds, 2020]).

Traversal time estimation methods were implemented in the Python 3.6 language,

using the package Scikit-learn 0.20.3 [Pedregosa et al., 2011] for fitting Gaussian

mixture models, and the package SciPy 1.2.1 [Virtanen, 2020] for performing Mood’s

test. The branch-and-price algorithm is implemented using SCIP 6.0.2 [Gleixner

et al., 2018] as a branch-and-price framework. Custom plugins for SCIP are written

in the C language, and Gurobi 9.0 [Gurobi Optimization LLC, 2020] is used as the

linear programming solver. The experiments were carried out on a computing node

equipped with an 18 core Intel Xeon E5-2699 v3 CPU with 2.30GHz and 500GB of

RAM, running Ubuntu 16.04.

6.6.1 Instance Data

A new set of 310 instances has been created for the computational study. These

instances are based on real data from an area of railway centred around Derby sta-

tion in the UK. Derby station lies on both the Midland Main Line and the Cross

Country Route, two heavily used, double-track, inter-city lines connecting London

with Leeds, and Bristol with York via Birmingham, respectively. The station also

hosts local services to Nottingham and Matlock. In 2018–2019, Derby station had
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3,902,000 passenger entries and exits and 619,000 passenger interchanges. Lying at

the confluence of several lines, Derby Station is widely regarded as a traffic bottle-

neck. This makes it suitable for testing our model.

The area modelled is shown in Figure 6.12. Derby station has 6 bidirectional plat-

forms and 204 track circuits. The area as a whole contains portions of three double

track lines, and consists of 142 routes in total, with 228 valid berth transitions. The

area includes five small stations in addition to Derby: Spondon, Peartree, Duffield,

Belper and Ambergate.

Each one of the 310 instances covers a different hour long period. Ten instances,

covering between 8am and 6pm, are used from each of the 31 days in January 2020.

They were created using real timetables, and real data about traffic perturbations.

The level of traffic perturbation varies considerably between the instances. However,

they provide a representative sample of traffic conditions at Derby over January

2020.

The number of trains in each instance is shown as a histogram in Figure 6.13. The

most common number of trains is 19, whilst the largest number is 23. The number

of conflicts in each instance for both (FS) and (VS) is shown in Figure 6.14. This

is defined as the number of track capacity constraints that are violated by the solu-

tion obtained from solving each model without any track capacity constraints. The

number of conflicts in a given instance can be different for models (FS) and (VS) be-

cause the differing traversal times result in trains reaching different parts of the track

at different times. Nevertheless, we see that there is a strong positive relationship

because although the models and traversal times differ, the TTRP instances used

are identical. Table 6.1 compares the number of train pair conflicts in the instances

when using (FS) and (VS). This is the number of unique train pairs involved in at

least one conflict together. Measuring train pair conflicts can be more informative
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Figure 6.12: A berth diagram of the modelled area (own image). Routes with mul-
tiple traversal times in (VS) are highlighted with thick red lines (see Section 6.6.2).
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than measuring conflicts. This is because whilst several conflicts can occur for the

same train pair in consecutive time intervals over the same route, each train pair

can only have at most one train pair conflict. Both the number of conflicts and

the number of train pair conflicts have been shown by Reynolds et al. [2020] to be

correlated with the number of branch-and-bound nodes required to solve instances

to optimality. Discrepancies between (FS) and (VS) can therefore cause differences

in the performance of the solution algorithm.
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Figure 6.13: A histogram showing the distribution of the number of trains in the
instances.
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Figure 6.14: A comparison between (FS) and (VS) of number of conflicts.
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(VS)
0 1 2 3 4 5 6 7 8

0 16 6 1 0 0 0 0 0 0
1 2 17 10 4 1 0 0 0 0
2 1 10 40 26 6 3 0 0 0

(FS) 3 1 5 22 33 18 9 0 1 0
4 0 0 8 10 14 9 1 1 0
5 0 1 0 1 4 6 7 2 0
6 0 0 0 0 2 2 4 0 1
7 0 0 0 0 1 0 1 2 1
8 0 0 0 0 0 0 0 0 0

Table 6.1: A comparison between (FS) and (VS) of train pair conflicts. Values are
frequencies of instances.

6.6.2 Traversal Time Estimation

To test (VS), historical Train Describer data was used to estimate traversal times

for routes in Derby station using method 3 (see Section 6.4.3). The results show

that 15 out of the 140 routes were given two different traversal times. For these

15 routes, sufficient evidence was found for a difference of at least one time interval

between the traversal times of speed profile types v1 and v2 — sufficient evidence was

not found for the remainder of the routes. This shows that our statistical method

requires a high standard of evidence for using two traversal times for a route. The

effect of this is that nodes of speed profile type v2 in the TST graph are included

sparingly, resulting in a parsimonious optimisation model. Including two traversal

times for a route introduces additional complexity and increases the size of the model,

so it is important to do this only where it can be shown statistically to be most

important.

The routes with two traversal times are highlighted in Figure 6.12. Some of these

routes are adjacent to routes that frequently have conflicts, such as the routes entering

platform 3 (the third platform from the top in Figure 6.12) at Derby station. This

is likely to arise from the fact that some trains stop in preceding routes as a result of
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conflicts, whilst others do not and this affects the speed at which they traverse the

route. Other routes with two traversal times are adjacent to stations at which only

some trains stop, such as Peartree, Duffield and Belper. Trains that stop at these

stations must decelerate or accelerate through adjacent routes, whilst trains that

don’t can continue at the line speed. These patterns conform to our expectations and

therefore give us confidence that the traversal time estimation method is performing

well.

The traversal times of routes that have three speed profile types in the (VS) model

(using Method 3) are shown in Figure 6.15 alongside the corresponding traversal

times for (FS) (which uses Method 1). It shows that traversal times in (FS) are

often similar to or the same as for traversal type v2 for (VS). This is because the

smallest cluster mean for each route is used as the traversal time in (FS), and the

observations in that cluster overlap strongly with observations that are categorised

as type v2 in (VS). Whilst the difference between traversal times for v1 and v2 in (VS)

is not large for most routes, even a single time interval (10 seconds) difference can

be enough to affect the optimal rescheduled timetable. The traversal times L1
r = 12

and L2
r = 6 for route r = DY551 DC5108 differ by a whole minute. This is a relatively

long route on the open line in which trains stopping at Duffield station and trains

not stopping there are likely to be travelling at very different speeds.

6.6.3 Algorithmic Performance

To understand how our branch-and-price algorithm performs when solving both mod-

els (FS) and (VS), each of the real instances from Derby station were solved with

a time limit of 600 seconds. Within this time limit, 282 of the 310 instances were

solved to optimality with (FS), and 287 were solved to optimality with (VS). This

is a good result because it means that all but the most difficult instances can be
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Figure 6.15: A comparison between (FS) and (VS) of traversal time lengths for routes
that have two traversal times in (VS).

solved. The solving times of the instances that could be solved to optimality are

shown in Figure 6.16(a) (note that the x-axis is logarithmic with base 2). This figure

demonstrates that the distribution of solving times over the instance set are very

similar for (FS) and (VS). However, the higher blue line towards the right hand side

of the plot indicates that (VS) performed slightly better than (FS) among models

that took over 100 seconds to solve.

The explanation for the slightly better performance of (VS) on difficult instances

can be seen by studying Figures 6.16(b) and 6.16(c). These show the number of

branch-and-bound nodes explored, and the number of variables (columns) gener-

ated, respectively, during the solving process. Figure 6.16(c) shows that the number

of columns generated was almost identical, indicating that convergence of the col-

umn generation algorithm for solving LP relaxations was not affected by differences

between (FS) and (VS). On the other hand, Figure 6.16(b) shows that slightly higher
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numbers of branch-and-bound nodes were generated with (VS), particularity on in-

stances with between 20 and 600 nodes. This is the likely to be the reason for the

slightly better solution times with (VS) on difficult instances. It is conjectured that

this small difference in the numbers of branch-and-bound nodes arises from differ-

ences in the quantity and quality of conflicts due to differing traversal times.

Both of the models were also evaluated using a time limit of 20 seconds. This reflects

the short amount of time that is typically available for solving TTRP instances in

practical, real-time environments. Of the 310 instances, 174 were solved to optimal-

ity by both models within this time limit. The optimality gaps for the remaining

136 instances are plotted in Figure 6.17. It shows that with both (FS) and (VS),

high-quality solutions that are provably within 10% of optimality were found for the

vast majority of instances. For each, only two instances had remaining optimality

gaps exceeding 20%. This reinforces the evidence found by Reynolds et al. [2020],

using instances for a different station, that the algorithm used is suitable for real-

time operations. Figure 6.17 also shows that whilst the distribution of remaining

optimality gaps is similar for (FS) and (VS), (VS) has a slightly larger concentra-

tion of instances with very small gaps. This corroborates our observation of better

performance for (VS) when the time limit was 600 seconds. However, the difference

is very marginal in both cases.

Based on the results presented, we conclude that the differences in algorithmic per-

formance between (FS) and (VS) are negligible. If anything, the performance of (VS)

slightly exceeds that of (FS) on difficult instances. This means that the benefits of

variable speed modelling in (VS) compared with fixed speed modelling in (FS) come

at no price for computational performance. That is a striking result, because one

might expect solving variable-speed models to be more time consuming than solving

fixed-speed models.
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Figure 6.16: Cumulative histograms showing (a) solution time (seconds), (b) number
of branch-and-bound nodes and (c) number of variables generated, over the set of
instances.
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Figure 6.17: Cumulative histogram of optimality gaps after 20 seconds for (FS) and
(VS).

6.7 Conclusion

In this paper, we present a new variable-speed model for the TTRP that uses a time-

space-type graph to approximate train speed profiles. To achieve this, the notion of

a discrete speed profile type is introduced, and techniques for estimating traversal

times based on historical Train Describer data are developed.

Our approach is tested using a new set of real instances for Derby station in the UK.

These tests show that our data-driven approach results in a parsimonious model that

is able to improve speed profile modelling relative to fixed-speed models in some parts

of the track network. In addition, these modelling enhancements come at no cost,

in the sense that they do not lead to longer solving times in comparison with the

fixed-speed model of Reynolds et al. [2020]. This is a major benefit of our approach

to modelling speed profiles.

Further work is needed to quantify the inaccuracies in speed profile modelling that

still remain. For example, a simulation study using a microscopic railway simulator

could be used to evaluate solutions produced by our model and compare them to

solutions produced by different variable speed models. Our data-driven modelling
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approach also creates exciting opportunities to improve the statistical methodology

for estimating traversal times based on speed profile types. One possibility is to use

a Hidden Markov Model (see [Zucchini et al., 2016] for an introduction), in which

speed profile types are the ‘hidden’ states, and traversal times are the observed data.

This might make it possible to fit mixture models for each route (as in Method 2)

whilst additionally using the full transition data.



Chapter 7

An evaluation of the fairness of
railway timetable rescheduling in
the presence of competition
between train operators

7.1 Introduction

Effective real-time management of railway traffic is crucial to delivering good railway

performance. In particular, making changes to the timetable in response to an initial

delay can help to reduce the amount of additional delay caused to other trains as

a result of the initial incident. This practice is known as timetable rescheduling.

The Train Timetable Rescheduling Problem (TTRP) [Cacchiani et al., 2014] can be

solved in order to determine the optimal way to reschedule the timetable. A large

number of different TTRP problem variants, models, objective functions and solution

methods have been studied.

However, the implications for TTRP models of economic competition between rail-

170
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way operators has not been considered. In recent decades, different forms of com-

petition have been introduced in several European railway systems, such as those

of Germany, Great Britain and Sweden [IBM, 2011]. Where trains are operated by

more than one different company over the same tracks, timetable rescheduling has

the potential to impact these operators unequally. In order to be perceived as fair, a

TTRP model must not systematically favour some operators over others. A percep-

tion of unfairness would be a serious barrier to the practical deployment of TTRP

models in competitive railway systems. Therefore, it is essential that the fairness

characteristics of such models are understood.

This study investigates the fairness of solutions obtained from solving the TTRP.

We use a case study of Doncaster railway station in Great Britain during January

2017, during which time trains from seven different private passenger operators reg-

ularly used the station. The TTRP model proposed by Reynolds et al. [2020] is

used to calculate the rescheduled timetables that are evaluated. First, appropriate

definitions of fairness and efficiency are proposed for the TTRP. Second, the fairness

of efficiency-maximising solutions is analysed. Third, the sources of unfairness in

efficiency-maximising solutions are elucidated via an investigation of the competi-

tive relationship between each pair of operators. Finally, the changes in efficiency

and fairness that arise from varying the priority given to class 1 (express passenger)

trains over class 2 (ordinary passenger) trains is examined. Class 1 trains are often

prioritised in current manual rescheduling practice because they typically carry more

passengers and travel longer distances.

This research has been carried out in partnership with Network Rail, a public sec-

tor company that owns and operates railway infrastructure in Great Britain. The

railway system in Great Britain is vertically separated, meaning that passenger and

freight services are operated by companies that are separated from Network Rail.

These companies are called Train Operating Companies (TOCs) and Freight Oper-
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ating Companies (FOCs), respectively — we will simply call them operators. Most

passenger operators run services under competitively tendered franchise agreements.

These franchises each confer the right to operate a set of services grouped by type or

region over a period of several years. Open-access operators, on the other hand, run

services in purchased timetable slots. The organisational structure of the system,

which is likely to change in the future, is described by Williams [2019a].

Fairness to operators is taken into consideration by Network Rail during the timetable

rescheduling process. Rescheduling is currently carried out in accordance with local

Route Regulating Policies. One of the stated objectives of these policies is to “min-

imise delay to all [operators] . . . in the best interests of all” — unfair treatment of

an operator would contradict this. Moreover, delay management teams in Network

Rail’s Rail Operating Centres (where timetable rescheduling decisions are made)

include representatives from operators working collaboratively to achieve this goal.

The introduction of TTRP models to these settings relies on gaining the acceptance

of key stakeholders such as operators, which is unlikely unless any proposed model

can be shown to be fair.

The railway system in Great Britain has a performance-based financial compensa-

tion mechanism called Schedule 8 (see [Network Rail, 2019b]). Under this system,

all delays are recorded and attributed to a particular cause. Every four weeks, this

information is used to calculate the value of monetary payments to be made from

Network Rail to operators and vice versa. This mechanism partially protects opera-

tors from losses resulting from events that are outside of their control. For example,

if an incident caused by one operator causes delay to the train of a second operator,

this second operator should receive financial compensation. However, the extent to

which cash payments can compensate for delays is limited. This is partly because

accurate valuation of the losses resulting from reputational damage to the operator

is challenging. It is also unsatisfactory for the passengers of operators, who may
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derive social benefits from train punctuality that cannot be financially valued. It is

still preferable, therefore, to carry out timetable rescheduling as fairly as possible,

and reduce reliance on financial compensation.

This paper is organised as follows. In Section 7.2, the relevant literature is reviewed.

The case-study is introduced in Section 7.3. Our definitions of fairness and efficiency

are described in Section 7.4. In Section 7.5, an analysis of the fairness of efficiency-

maximising TTRP solutions is given. This is supplemented in Section 7.6 by an

analysis of the interactions between pairs of operators. Finally, we consider the

fairness-efficiency trade-off in Section 7.7. Section 7.8 offers conclusions and suggests

some possible avenues of further research.

7.2 Literature Review

The literature addressing the TTRP is already very well documented by a number

of recent reviews [Cacchiani et al., 2014; Corman and Meng, 2015; Fang et al., 2015;

Lamorgese et al., 2018]. Our literature review will focus specifically on fairness,

and objective functions. An overview of relevant literature on the topic of fairness

is given in Section 7.2.1. This is followed up in Section 7.2.2 by a discussion of

how these concepts apply to objective functions that have been used in the TTRP

literature.

7.2.1 Fairness

The concept of fairness has been extensively studied by economists. It most often

arises in the context of allocating or sharing limited benefits or resources between

distinct entities. This is precisely the scenario faced during timetable rescheduling.
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We can think of the distinct entities as the different operators, and the resources to

be allocated as the available track capacity. Track capacity consists of segments of

track over time, and is limited by the available infrastructure.

Much of the classical literature considering fairness considers the social welfare prob-

lem — how a central planner should allocate goods in an economy. In the framework

developed by Bergson [1938] and Samuelson [1947], the preferences of each entity

i ∈ {1, . . . , n} can be represented by a cardinal utility ui ≥ 0 that depends on the

allocation that entity i receives. The set U ⊂ Rn+ of vectors of utilities (u1, . . . , un)

that arise from feasible allocations is called the utility possibility set. The problem

for the central planner can be formulated as choosing a point from this set. One

way of choosing a point is to find a point that maximises a social welfare function

f : U → R+ that encodes value judgements about the size and distribution of the

utilities of the entities.

Social welfare functions can be used to model different attitudes about inequality

and fairness. For example, the utilitarian function f(u) =
∑n

i=1 ui is completely

indifferent to inequality — it values improvements in the utility of each entity equally,

regardless of how high the utility already is. At the other end of the scale, the

minimax function f(u) = mini=1,...,n ui always seeks improvement in the utility of

the worst-off entity, and is indifferent to improvements in the utility of any other

entity. Atkinson [1970] proposed maximising the α-fairness welfare function

Wα(u) =


∑n

i=1
u1−αi

1−α α ≥ 0, α 6= 1∑n
i=1 log(ui) α = 1,

which uses the parameter α to interpolate between these two extreme attitudes to

inequality. When α = 0, the function becomes the utilitarian function and when

α → ∞, it converges to the minimax function. Another special case, when α = 1,
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corresponds to the rule proposed by Nash [1950]. For any value of α, the function

Wα has the property of constant elasticity: given a fixed proportional increase in

an entity’s utility, the proportional increase in the welfare of that entity does not

depend on the size of their utility. A detailed introduction to the theory of economic

inequality is provided by Foster and Sen [1997].

Another framework in which fairness has been studied is the bargaining problem. In

this problem, distinct entities must agree on how to share a jointly generated surplus.

Although this is not exactly the situation that arises in timetable rescheduling, it

is still an interesting way to understand fairness. For the two-player version, both

Nash [1950] and Kalai and Smorodinsky [1975] have proposed axioms that must be

satisfied by solutions to this problem before they can be considered fair. Each of these

two studies additionally proposes solutions that satisfy these axioms. However, there

is no general consensus on which set of axioms should be used. Moreover, axiomatic

approaches are not useful in this application because they cannot be used to evaluate

the fairness of a solution that does not satisfy the axioms.

In most applied decision making scenarios in which fairness is important, it is nev-

ertheless not the only consideration. The fairness of any solution must usually be

considered alongside its overall efficiency. The efficiency can be defined as the sum

of the utilities of the entities (the utilitarian function), or in a problem specific way if

this is more appropriate. Unsurprisingly, a trade-off has been observed between effi-

ciency and fairness in many problems. In other words, greater fairness can often only

be achieved by sacrificing some efficiency, whilst greater efficiency entails a reduction

in fairness. This trade-off has been characterised theoretically by Bertsimas et al.

[2011] and Bertsimas et al. [2012] using the concept of the price of fairness. This

is defined as the proportion of total system efficiency lost by maximising a fairness

objective compared with maximising efficiency. They argue that analysing the price

of fairness is a useful way to navigate the fairness-efficiency trade-off.
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7.2.2 Fairness and the TTRP

As far as the authors are aware, no previous studies have analysed the fairness of

a TTRP model with respect to different operators. One potential reason for this is

that only a few railway systems are sufficiently liberalised to have multiple operators

regularly running trains over the same track. Moreover, fairness and competition

in railway markets are often less important to policy makers than overall system

performance.

However, fairness has been studied for similar applications of optimisation to trans-

port planning problems, including railway planning problems. For example, Gestre-

lius et al. [2020] consider the evaluation of railway timetables from a competition

management perspective. They report that research literature and guidelines for

facilitating competition between operators in timetable design are scarce. In a more

quantitative study, Li et al. [2019] investigate the fairness-efficiency trade-off for a

train timetabling application, in which α-fairness between passengers was consid-

ered. Other examples of similar applications in which fairness has been considered

include railway crew scheduling [Jütte et al., 2017], railway crew rostering [Breugem

et al., 2019], air traffic flow management [Bertsimas and Gupta, 2016] and airport

slot allocation [Fairbrother et al., 2020].

Many different objective functions have been used for the TTRP. Almost all of these

can be written in the form max f(u1(x), . . . , un(x)), where x is the vector of variables

in the optimisation problem, each ui is a function measuring the quality of the solu-

tion for train i, and f is a real-valued function. Examples of quantities measured by

ui (or −ui in the case of minimisation) include consecutive delay (delay experienced

as a result of interaction with other trains during the rescheduled period) [Corman

et al., 2010a; Pellegrini et al., 2014], deviation from planned schedule [Meng and

Zhou, 2014; Lusby et al., 2013], a piecewise linear function of delay [Lamorgese and
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Mannino, 2015], and the cost of delays [Törnquist and Persson, 2007]. In many stud-

ies, ui aggregates several measures, either through development of a utility function

[Harrod, 2011; Binder et al., 2017; Reynolds et al., 2020] or otherwise [Bettinelli

et al., 2017; Caimi et al., 2012; Acuna-Agost et al., 2011b].

From a fairness perspective, the choice of function f is more important. This is

because it can be interpreted as a social welfare function where the entities are the

trains, and the welfare of each train is a proxy for the welfare of the passengers on

the train. In other words, f can encode a particular level of aversion to inequal-

ity between the performance of individual trains. The most popular choice in the

literature is to use a sum, which corresponds to the utilitarian function [Törnquist

and Persson, 2007; Meng and Zhou, 2014; Pellegrini et al., 2014; Lamorgese and

Mannino, 2015]. Weighted sums have also been used to establish train priorities

[Lusby et al., 2013; Pellegrini et al., 2014]. Since this can lead to large inequalities

in the delays experienced by different trains, some authors such as D’Ariano et al.

[2007a] and Corman et al. [2010b], have used a minimum function, corresponding to

minimax fairness. A computational comparison between minimising the total and

maximum consecutive delay, respectively, has been carried out by Pellegrini et al.

[2014]. Despite the variety of functions f used and their implications for fairness,

there has been very little discussion of fairness in the literature. As a result, the

effect of using objective functions with different levels of inequality aversion is not

well understood.

Several researchers have used multi-criteria methods to solve instances of the TTRP.

Whilst fairness has not been explicitly formulated, some of these studies use objec-

tives that could help to achieve fairness. For example, minimising the number of

cancelled trains or missed connections helps to achieve fairness because cancelled

trains or those sufficiently late to break connections are likely to be the worst af-

fected trains. A weighted-sum approach is used by Caimi et al. [2012] to optimise
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the number of scheduled trains, the weighted delay and the number of connections

maintained. Corman et al. [2012a] use a specialised metaheursitc to consider the

trade-off between total delay and the number of missed connections. Samà et al.

[2015] present a Data Envelopment Analysis methodology for evaluating solutions

under a large number of different punctuality measures, including objectives of min-

imax type. Corman et al. [2011a] propose a lexicographic objective, in which trains

are divided into different priority classes. Other studies adopting multi-criteria ap-

proaches include [Ginkel and Schöbel, 2007; Cavone et al., 2017; Binder et al., 2017;

Shakibayifar et al., 2018; Josyula, 2019; Altazin et al., 2020]. None of these studies

analyse the effect of using multi-criteria methods on fairness.

In this paper, we make the following contributions:

1. We propose measures for both the efficiency and fairness of solutions to a set

of TTRP instances.

2. We identify the relative weighting of class 1 and 2 trains in the objective func-

tion as a key driver of unfairness between operators.

3. We then investigate the trade-off between efficiency and fairness that is cre-

ated by changing this parameter using a case study based on real data from

Doncaster station in the UK.

7.3 The Case Study

An area of railway around Doncaster station has been used as a case study for eval-

uating fairness. Definitions of any railway signalling terminology used below can

be found in [Reynolds et al., 2020]. Doncaster station (see Figure 7.1) lies on the

East Coast Main Line, a busy railway corridor connecting London with Leeds, York,
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Newcastle and Edinburgh. The wider area covered (see Figure 7.2) also contains por-

tions of four double track lines that all begin at Doncaster and go towards Sheffield,

Lincoln, Leeds and Hull, respectively. The area lies within a single area of signalling

control, and contains 225 berths with 313 valid berth transitions. The station itself

has 9 platforms and 85 track circuits. Doncaster station is an important interchange

for a variety of inter-city and local services operated by seven different operators. It

is also a busy bottleneck, with over 30 trains per hour at peak times. This makes it

ideal for investigating the interactions between different operators.

Figure 7.1: A berth diagram of Doncaster Station. Retrieved from https://wiki.

openraildata.com/index.php?title=DR. Accessed 14/04/20.

Figure 7.2: A berth diagram of the area of track modelled. Retrieved from https:

//wiki.openraildata.com/index.php?title=DR. Accessed 14/04/20.

The data for the case study comes from January 2017. The seven different passen-

ger operators running services through the area during this month are displayed in

Table 7.1. Abbreviations will be used to refer to the operators throughout. Freight

operators have been excluded from the analysis because freight services are often

scheduled during less busy periods and are affected by rescheduling in different ways

https://wiki.openraildata.com/index.php?title=DR
https://wiki.openraildata.com/index.php?title=DR
https://wiki.openraildata.com/index.php?title=DR
https://wiki.openraildata.com/index.php?title=DR
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to passenger operators. Table 7.1 shows that NT and LNER operated the most

services during the period. Whilst most of the operators run inter-city (class 1) ser-

vices, NT and East Midlands Railway run mostly local (class 2) services. NT, in

particular, is responsible for the vast majority of class 2 trains. During this period,

Grand Central and Hull Trains were open-access operators, while the remainder were

operating franchises.

Operator Abbr. # Trains # Class 1 # Class 2
Northern Trains NT 4105 730 3375

London North Eastern Railway LNER 3492 3492 0
Transpennine Express TPE 825 825 0

Cross Country XC 737 737 0
Grand Central GC 496 496 0

Hull Trains HT 354 354 0
East Midlands Railway EMR 275 18 257

Table 7.1: The passenger operators in the case study, including the total number
and the number of class 1 and class 2 trains run through the modelled area during
January 2017.

The month of January 2017 is split into 310 non-overlapping hour-long instances

of the TTRP (between 8am and 6pm each day, for 31 days). These instances are

created from real historical data about the timetable, and the traffic perturbations

that actually occurred. The number of operators running trains in each instance

ranges from two to six, with the most common number being five. By using instances

that cover a whole month, we are able to understand fairness over the whole month,

rather than on an instance-by-instance basis.

7.4 Efficiency and Fairness

In order to evaluate the fairness of railway timetable rescheduling with respect to

efficiency, these two terms must first be defined. As far as the authors are aware, no

definition of fairness has been proposed specifically for the TTRP.
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7.4.1 Efficiency

Our measure of the overall system efficiency was developed with Network Rail (see

Reynolds et al. [2020]). It is designed to model the utility of Network Rail, which

can be seen as the central decision maker for rescheduling decisions. It is designed

to take into account the overall quality of service provided to passengers.

Given a feasible solution x to a given instance, the efficiency is defined as

U(x) =
∑
k∈K1

Uk(x) + w
∑
k∈K2

Uk(x), (7.1)

where K1 and K2 are sets containing the class 1 and class 2 trains, respectively,

Uk(x) is the utility accrued from train k, and w = 0.4 is a weight that controls the

priority given to class 1 trains in comparison to class 2 trains. The priority given to

class 1 trains by the value of w reflects the fact that class 1 trains typically carry

more passengers. Furthermore, class 1 trains usually complete longer journeys and

hence delays to class 1 trains can have a greater impact in terms of reactionary delay

outside the geographical scope of the TTRP instance.

The utility Uk(x) accrued from train k is calculated as a weighted average across

the set Jk of timetabled events for train k within the area and time horizon mod-

elled:

Uk(x) =
∑
j∈Jk

βjkU
j
k(x). (7.2)

Each event j ∈ Jk in the timetable for train k corresponds to a particular part

of the track, and a time that train k is due to enter it. These can include arrival

events at platforms and passing events at junctions or key points along a route. The

values of βjk ensure that more important events, such as an arrival into Doncaster

station or exiting the modelled area, are weighted more highly than events at minor

stations. When alternative platforms are available (such as at Doncaster station),
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these are separate events j ∈ Jk. For events j at platforms other than the originally

scheduled platform, βjk is 0.9 times the weight at the originally scheduled platform.

This discourages platform changes.

The utility U j
k(x) accrued by train k at event j is equal to zero if the event j is

not carried out. This could occur if the train passes through a timetabled platform

without stopping to let passengers alight or depart (a cancelled stop) or if the route

of a train is changed so that it does not visit the location specified by event j.

Otherwise, U j
k(x) is equal to

γ(l) =


φ−ω|l| if |l| ≤ Γ

0 if |l| > Γ,

(7.3)

where l is the number of 15 second time intervals late that the event occurs. This

lateness l is negative if the train is early, and this is penalised equally to positive

lateness to discourage station congestion. The parameter values used are φ = 1 +

(1× 10−7), ω = 1× 105 and Γ = 240.

The efficiency E(x) of a set of solutions x = (xi : i ∈ I) to the whole set of instances

I can be calculated by summing the individual efficiency of each solution. Denoting

the efficiency function U when applied to each instance i as Ui, this can be written

as

E(x) =
∑
i∈I

Ui(x
i). (7.4)

7.4.2 Fairness

For a given instance, let the set of operators be O, and let Ko ⊂ K be the set of

trains that are operated by operator o. The efficiency function U(x) can be rewritten
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as

U(x) =
∑
o∈O

Uo(x), (7.5)

where

Uo(x) =
∑

k∈K1∩Ko

Uk(x) + w
∑

k∈K2∩Ko

Uk(x) (7.6)

is the part of the efficiency arising from trains operated by o. Since Uo(x) includes

only trains from operator o, it can be used to measure the utility of operator o.

The utilities Uo(x) are difficult to compare because there might be different numbers

of trains with different weights in the instance. For each operator o ∈ O, let x∗o be an

optimal solution when the objective is to maximise Uo(x). Each solution x∗o represents

the best solution operator o can hope for, and Uo(x
∗
o) provides an upper bound for

Uo(x). This allows us to calculate a normalised utility for each operator

Ûo(x) =
Uo(x)

Uo(x∗o)
. (7.7)

These values can be compared between operators. A value of Ûo(x) = 1 indicates that

operator o realises their maximum possible utility in the rescheduled solution x —

all events for all trains are due to be carried out on time and as planned. Conversely,

Ûo(x) < 1 indicates that one or more events have been cancelled or rescheduled to

occur on a different platform, or late.

A social welfare function (such as α-fairness) could be applied to the set of utili-

ties {Ûo(x) : o ∈ O} to measure the fairness of the solution x for a single instance.

This would allow fairness to be formulated as an objective function so that fairness-

maximising solutions to individual instances could be computed to solve the TTRP.

It would also open the possibility of using multi-criteria methods to balance the ob-

jectives of maximising fairness and maximising efficiency within each instance.

However, when considering operator fairness for timetable rescheduling, it is prob-
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lematic to focus on single hour-long instances separately. This is because operators

experience fairness and unfairness over a much longer period of time. The operation

of a TTRP algorithm on a railway is likely to involve solving hundreds of different

instances, involving repeated allocations of track capacity between the same sets

of operators. Instead, it is much more appropriate to consider many consecutive

instances of the problem as a single, combined allocation problem. That is the ap-

proach taken in this paper.

Considering fairness over a whole instance set rather than on an individual instance

basis has important implications for fairness. It means that each individual instance

need not be fair, provided any operators that loose out can be compensated in other

instances. This is crucial when one considers that a typical TTRP instance considers

changes to the timetable over a time horizon of only one hour. Many instances involve

only a small number of decisions such as which train should go ahead of the other

out of a pair of conflicting trains. It may be impossible to resolve such problems in

a fair way, or doing so may require a large degradation in efficiency. Our approach

of considering fairness over the whole instance set overcomes this issue.

Although fairness is measured over a whole set of instances, each instance must still

be optimised individually, as and when delays arise on the railway. This makes it

impossible to optimise our measure of fairness. As a result, we do not suggest the

measure as a potential objective function, but rather as a tool for fairness evaluation.

Unfortunately, this also precludes calculation of the price of fairness [Bertsimas et al.,

2011].

Consider a set of solutions x = (xi : i ∈ I) to a set of instances i ∈ I. We index

the previous notation by i so that Oi, Ui,o, Ûi,o and xi,∗o correspond to the notation

O,Uo, Ûo and x∗o, respectively, when applied to each instance i. Note that the set of

operators Oi can be different across instances.
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The normalised aggregated utility for operator o over I can be calculated as

Ûo(x) =

∑
i∈I:o∈Oi

Uo,i(x
i)∑

i∈I:o∈Oi

Uo,i(x
i,∗
o )

. (7.8)

These values are then used in the α-fairness welfare function to produce our measure

of fairness:

Fα(x) =


∑
o∈O

Ûo(x)1−α

1− α α ≥ 0, α 6= 1

∑
o∈O

log Ûo(x) α = 1.

(7.9)

7.5 Evaluation of Fairness under Maximal Effi-

ciency

The approach taken by Reynolds et al. [2020] and in many other TTRP studies is

to maximise the efficiency of the system. It is therefore important to evaluate the

fairness of these solutions. For each of the 310 instances, an efficiency-maximising

solution was calculated using a solving time limit of 600 seconds. Only 12 instances

were not solved to optimality within this time limit. For these instances, the best

solution found during the time limit was selected, which was less than 1% away from

optimality in all cases.

Figure 7.3 shows three quantities for each operator: the normed aggregated utility

Ûo(x), the proportion of instances for which Ûo,i(x
i) = 1, and the number of instances

|{i ∈ I : o ∈ Oi}| in which the operator runs at least one train. This shows that NT

had the smallest normed aggregated utility, followed by LNER. Other operators had

higher figures, showing that there is inequality in the normed utility of operators. NT

and LNER also run trains in the greatest number of instances and run the most trains
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in total. It can be seen that the normed utility of NT is only equal to 1 (Ûo,i(x
i) = 1)

in 41.6% of instances, which is significantly lower than for other operators.
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Figure 7.3: Normed aggregated utility, number of instances with utility of 1, and
number of instances for each operator.

The overall figure for the α-Fairness over the full test set is −0.01689 (5 decimal

places) with α = 1. Figure 7.4 shows the α-Fairness of each instance separately.

From this it can be seen that the set of solutions as a whole is more fair than many

of the individual instances in the test set. It is also apparent that fairer instances

are more numerous than less fair instances.

The distribution of normed utility over the instances by operator is further visible in

Figure 7.5. For each operator, a boxplot is shown of Ûo,i(x
i) for all of the instances
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Figure 7.4: Histogram of α-fairness scores of instances, with α = 1.

i ∈ I such that Ûo,i(x
i) 6= 1. These are instances in which the normed operator

utility was less than the maximum possible amount available for that operator. It

shows that while NT was affected a greater number of instances, the values of Ûo,i(x
i)

in these instances were on average closer to 1 than for most other operators. This

might be because Ûo,i(x
i) is measured as a proportion of the total possible utility,

and therefore when an operator runs more trains in an instance, a delay to any one

of them causes less proportional impact.

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
Ui, o(xi)

NT

LNER

TPE

XC

GC

EMR

HT

162

106

60

38

27

16

1

Number of
relevant
instances

Figure 7.5: A boxplot showing the distribution of Ûi,o(xi) over the set of instances

i ∈ I, by operator. Instances i for which Ûi,o(xi) = 1 are excluded. The number of
instances that are included is shown on the right.
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To summarise, the results in this section indicate that unfairness is present in

efficiency-maximal timetable rescheduling solutions. NT achieves a smaller propor-

tion of its total possible utility than any other operator, although this is due to

small losses over many instances. The results also show that fairness varies between

instances.

7.6 Identifying Sources of Unfairness

Values of Ûo,i(x
i) that are less than 1 occur because TTRP solutions must allocate

scarce track capacity to some operators in preference to others. TTRP instances

contain trade-offs between the interests of different operators that must be resolved

according to the objective function used. We examine these trade-offs in order to

more fully understand the variation in normalised aggregated utility across different

operators that leads to unfairness.

For a given instance, let x∗\o be the optimal solution when it is solved with objective

function ∑
o′∈O\{o}

Uo′(x), (7.10)

for each operator o ∈ O. This objective function is obtained from the efficiency

function by removing the utility accrued from any trains operated by o. For each

remaining operator o′ ∈ O \ {o}, the proportional gain in their utility is

Ûo′\o(x) =
Uo′(x

∗
\o)− Uo′(x)

Uo′(x)
, (7.11)

where x is an efficiency-maximising solution. Note that o′ ∈ O is necessary for

this value to be defined, but that if o /∈ O, we simply have that Ûo′\o(x) = 1 (an

operator that does not run trains in the instance is removed, so the utility of o′ is
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not affected).

We can aggregate this over the whole instance set I. By letting Oi, Ui,o, x
i and xi,∗\o

denote O,Uo, x and x∗\o for instance i ∈ I (as in Section 7.4.2), the proportional gain

in aggregated utility can be written as

Ûo′\o(x) =

∑
i∈I:o′∈Oi

Ui,o′(x
i,∗
\o )−

∑
i∈I:o′∈Oi

Ui,o′(x
i)∑

i∈I:o′∈Oi

Ui,o′(x
i)

. (7.12)

These values make it possible to identify the pairwise trade-offs between operators.

A large value of Ûo′\o(x) means that operators o and o′ are in greater competition

for track capacity, whereas Ûo′\o(x) = 0 means that there is no competition.

The values of Ûo′\o(x) were calculated for each pair of operators using all 310 in-

stances. They are displayed in Figure 7.6 and represented visually in Figure 7.8

as a directed graph in which the width of each directed arc (o′, o) represents the

magnitude of Ûo′\o(x). Figure 7.7 shows the number of instances i ∈ I for which

Ûi,o′\o(x
i) > 0 for each pair o, o′ of operators.

Figure 7.6 shows that that LNER experienced a gain in utility of 0.2957% when

NT was removed from every instance, the largest proportional increase of any pair

of operators. Figure 7.7 shows that when LNER was removed from the instances,

NT improved its utility in 129 of the 310 instances, the largest number of instances

of any pair of operators. From Figure 7.8 it is apparent that LNER and NT both

have significant trade-offs with a wide variety of different operators. Some pairs of

operators that might have been expected to have significant trade-offs, because they

both run large numbers of trains, did not have large trade-offs. TPE and XC are

a good example of this, affecting the utility of each other only in 3 and 6 cases,

respectively. This probably reflects characteristics of the timetable, in which their
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trains are rarely scheduled to pass through Doncaster Station at similar times. EMR

experiences no utility trade-off, but this is not a significant finding since they operate

trains in only 9 of the 310 instances.

Figure 7.6: The values of Ûo′\o(x) multiplied by 100 (therefore given in 100ths of a
percent) and rounded to 2 decimal places. Rows correspond to o′; columns to o.

Figure 7.7: The number of instances out of 310 for which Ûo′\o(x
i) > 0. Rows

correspond to o′; columns to o.
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Figure 7.8: A graph of the operators in which the width of arc (o′, o) corresponds to
Ûo′\o(x).
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An interesting aspect of the results displayed in Figure 7.6 is that for some pairs of

operators the value of Ûo′\o(x) is negative, although none of these are large in absolute

value. Specifically, this is observed for (o′, o) =(TPE, NT), (NT, TPE), (XC, HT)

and (HT, TPE). Negative trade-offs over the whole instance set are observed because

in 62 of the instances, there is some pair of operators for which Ûi,o′\o(x
i) < 0. This

means that when operator o was removed from the instance, the utility of operator

o′ decreased.

This phenomenon is known as resource non-monotonicity, and observing it shows

that maximising the efficiency is a resource non-monotonic strategy. In this case, the

resource in question is track capacity and the entities in question are the operators

in the set O \ {o}. When operator o is removed from an instance, the collective

availability of track capacity to the entities is increased since o is no longer competing

for it. Formally, removing o from an instance weakly decreases the dual price of each

time-space resource (see Reynolds et al. [2020] for an explanation of these terms).

As a result, the entities are always collectively better off, i.e.

∑
o′∈O\{o}

Uo′(x
i,∗
\o ) ≥

∑
o′∈O\{o}

Uo′(x
i).

However, this collective improvement in utility is not shared equally under an al-

location strategy of efficiency maximisation. Rather, we observe that whilst some

operators benefit disproportionately, others experience a decrease in utility. This

occurs when the removal of trains run by o from an instance causes an improvement

for trains run by some operator ô that is only possible with a degradation for trains

run by o′.
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7.7 The Effect of Train Class Weight on Efficiency

and Fairness

The evidence from Section 7.5 and Section 7.6 shows that in our case study, NT

experiences the lowest normalised aggregated utility and that this arises as a result

of trade-offs with the utility of LNER in particular. It is notable that NT also run

the majority of class 2 trains in the instance set, and that these are down-weighted

in the efficiency measure. Specifically, the train class weight is w = 0.4, meaning

that the efficiency contribution of a class 2 train that runs exactly as planned is

worth 0.4 of what it would if it were class 1. This suggests that an improvement in

fairness might be achieved by using an objective function in which class 2 trains are

down-weighted less severely.

To test this, all 310 instances were solved using the objective function U with three

different values w = 0.4, 0.7 and 1.0. The scenario in which w = 0.4 is equivalent to

maximising the efficiency, whereas equal weight is given to class 1 and class 2 trains

in the w = 1 scenario. The final scenario, w = 0.7, was selected because it is halfway

between these two extremes. For each value of w, the aggregated efficiency E(x)

and the aggregated fairness Fα(x) were calculated and are plotted in Figure 7.9.

Figure 7.10 compliments the information in Figure 7.9 by showing the normalised

aggregated utilities of the operators in each of the three scenarios.

These results show that as w is increased from 0.4 to 0.7, there is a trade-off between

fairness and efficiency. The solutions obtained with w = 0.7 are more fair than

w = 0.4, but less efficient. It is not surprising that the efficiency decreases, since when

w = 0.4 the objective is to maximise efficiency. Figure 7.10 shows that the increase

in fairness comes principally from an increase in utility for NT that is associated with

a small cost for LNER and TPE. It is likely that this results in some of the conflicts

between NT and LNER and between between NT and GC from being decided in
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favour of NT as a result of the higher value of w.

A different pattern is observed as w is increased from 0.7 to 1.0. The efficiency

continues to deteriorate as w deviates more from 0.4, and therefore the objective

function deviates more from the efficiency measure. However, the rescheduling out-

comes are less fair for w = 1.0 than for w = 0.7. Figure 7.10 shows that the increase

in w once again causes a substantial improvement to the utility of NT. However,

this time a more significant decrease in the utilities of LNER and GC are observed.

Since for w = 0.7 LNER already has a lower normed aggregated utility than NT, this

results in a decrease in fairness. The point for w = 1.0 is dominated by the point for

w = 0.7, since it has both lower fairness and lower efficiency. This highlights that

the points depicted in Figure 7.9 are not (necessarily) Pareto optimal — bi-objective

optimisation techniques would be required to find Pareto optimal points. However,

as pointed out in Section 7.4.2, it isn’t possible to optimise fairness since this is

measured over the whole instance set.

Figure 7.10 shows that the largest changes in utility in response to changing w are

experienced by NT, LNER and GC. These findings are consistent with the evidence

from Section 7.6 that competition between NT and LNER is high. It is interesting to

note that XC does not experience a significant fall in normalised aggregated utility,

despite the fact that competition between NT and XC was also found to be high.

This could indicate the importance of factors other than train weight in deciding how

conflicts involving trains operated by NT and XC are resolved. Another possible

explanation is that conflicts involving these two operators primarily relate to the

small number of Class 1 trains operated by NT.
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7.8 Conclusions

In this paper, we evaluate the fairness of a TTRP algorithm in the presence of

competition between train operators. This is achieved by analysing results from

a case study of Doncaster station during the month of January 2017. Measures

for both efficiency and fairness are proposed and calculated both for each instance

individually and over the whole month. Efficiency-maximising solutions are studied

both to investigate fairness and to analyse pairwise trade-offs between operators.

Finally, the effect of changing the train class weighting in the objective function is

studied with respect to fairness and efficiency.

The results show that some unfairness is present in efficiency-maximising solutions.

That unfairness is principally to the detriment of NT, the operator running most of

the class 2 trains. Further, the largest trade-off in normalised aggregated utility is

between NT and LNER. Increasing the train class weighting from 0.4 to 0.7 increases

fairness by improving the utility of NT, but decreases efficiency by harming the utility

of operators running class 1 trains. However, increasing w from 0.7 to 1.0 decreases

both efficiency and fairness by harming the utility of LNER. This shows that the

value of w needs to be carefully considered in any future deployment of optimisation-

based timetable rescheduling.

Future research should focus on making direct comparisons between the fairness of

TTRP solutions and the fairness of historical manually decided rescheduling actions.

This would add to the evidence presented in this paper about the likely impact of

deploying optimisation-based timetable rescheduling. Another direction of further

study would be to identify how elements of the objective function other than w affect

fairness. For example, it would be interesting to understand whether optimising the

fairness of each individual instance leads to greater fairness over the whole instance

set, and what the effect on efficiency would be. Finally, it would be interesting to
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understand how operator fairness and passenger fairness interact, and how fairness

for the TTRP ought to relate to the fairness of the original timetable construction

process.



Chapter 8

Conclusions

The aim of this thesis was given in Chapter 1:

To develop new optimisation modelling, solution and evaluation tech-

niques for the TTRP that can help overcome the barriers to deployment

that exist for optimisation-based rescheduling.

The research presented in Chapters 5, 6 and 7 fulfils this aim. Each of these chap-

ters identifies and addresses a distinct barrier to deployment for optimisation-based

timetable rescheduling that arises from inadequacies in the existing TTRP litera-

ture.

8.1 Contributions

In Chapter 5, we identified that only a few existing models both perform rerouting

and represent route-release signalling systems adequately. Of those that do, none

are suitable for solving realistic instances from complex station areas to optimality
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in sufficiently short times. The ability to perform rerouting is crucial in complex

station areas because rerouting trains can help to avoid conflicts. Modelling route-

release signalling is essential for deriving solutions that can be realised in practice.

Moreover, the ability to produce provably optimal or near-optimal solutions in the

time available for timetable rescheduling is a key attraction of using optimisation

technology.

This problem was addressed by proposing a new multicommodity flow model for

the TTRP that both performs rerouting and models route-release signalling. The

latter is achieved using a novel method for representing track capacity constraints

that doesn’t require variables for every track circuit. A tailored branch-and-price

algorithm was also developed that allows realistic instances to be solved to near-

optimality in sufficiently short times. This was demonstrated in a computational

study involving a new set of instances for Doncaster station.

The research in Chapter 5 makes three additional contributions. First, a new ob-

jective function was developed alongside Network Rail to model their utility with

respect to timetable rescheduling. Second, a relationship was demonstrated between

the number of conflicts in an instance and the difficulty of solving it. Finally, it

has been demonstrated that time-indexed formulations can be viable for real-time

applications.

In Chapter 6, we identified that existing methods of modelling of speed profiles within

TTRP models are unsatisfactory. Whilst fixed-speed models fail to capture the effects

of train speed profiles, the variable-speed models that have been proposed all have

shortcomings. Adding a constant amount of time when a train stops is too simplistic

and iterative methods are too time consuming. Modelling speed profiles exactly using

detailed physics-based modelling can have prohibitive data requirements, and can

result in overly complex models that would be challenging to deploy in practice.
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This problem was addressed by developing a new way of approximately modelling

speed profiles using discrete speed profile types. The model from Chapter 5 was

extended to a variable-speed model based on a time-space-type graph. The exten-

sion makes the model capable of taking into account the effects of speed profiles on

traversal times. Our data-driven approach uses methods from statistics to ensure

that additional complexity is only introduced to the model where it can be best

justified, resulting in a parsimonious model that would be simple to deploy. It was

tested on a new set of instances from Derby station. The results show that the model

is able to capture the benefits of variable-speed modelling without any increase in

solution times compared with the fixed-speed model.

In Chapter 7, we identified an absence of evidence in the TTRP literature concerning

fairness between operators in competitive railway systems. This is likely to be an

important consideration for deployment of TTRP technology.

To address this problem, we carried out experiments using the model from Chapter

5 to evaluate the fairness of TTRP solutions for our case study in Doncaster. Defi-

nitions of efficiency and fairness for the TTRP were proposed for the first time. We

then presented evidence that efficiency-maximising solutions lead to unfair outcomes

and explored the reasons for this by looking at conflicts between operators. Finally,

we showed that the fairness of efficiency maximising solutions can be increased up to

a point by changing the relative weighting of class 2 trains. Our study should inspire

confidence that the fairness of TTRP solutions can be both rigorously evaluated and

managed.
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8.2 Further Research

The research in this thesis has uncovered more opportunities to improve upon and

add to the existing TTRP research literature.

8.2.1 Modelling Larger Areas

Perhaps the most important future modelling challenge for TTRP researchers is the

question of how to model large geographical areas of railway in microscopic detail

such that real instances are tractable. Reactionary delay can propagate across en-

tire countries in a relatively short space of time, and therefore handling ever larger

areas will allow rescheduling responses to be more effective. Models based on macro-

scopic network topologies can already handle large areas, but these generally ignore

signalling detail that can be very important to consider, especially in complex sta-

tion areas. Microscopic models can certainly be used to model larger areas, but

these will not become tractable without a very significant improvement in solution

methods.

A solution to this challenge is to maintain a number of microscopic models for smaller

areas, and to link these models together so that rescheduling decisions in each area

are coordinated. However, there is no consensus about how the models should be

linked. Corman et al. [2012b] have suggested an approach in which a bilevel cen-

tralised coordination problem is solved in order to impose constraints on trains at

the borders of local areas. These constraints must be satisfied by solutions produced

by local TTRP models. Lamorgese et al. [2016] have shown that in the case of a

line linking multiple stations, Benders’ decomposition can be an effective strategy.

Each subproblem is a station rescheduling problem and the master problem links

stations along a line. Toletti et al. [2020] have proposed a Lagrangian decomposition
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framework in which each subproblem is a local rescheduling problem. Constraints

requiring consistency at the borders of the local areas are associated with Lagranian

multipliers that are optimised in an iterative procedure. Although promising, each

of these approaches is currently relatively unexplored.

A different approach to the challenge of modelling large areas microscopically is to

limit models to consider only the spatial and temporal region most affected by a

disruption. Van Thielen et al. [2018], who call this spatio-temporal region a dynamic

impact zone, have shown that such a model can handle a large area when solved

heuristically. Rezanova and Ryan [2010] use a similar idea for train driver recovery,

limiting the problem to consider only a subset of related driver duties. An important

outstanding challenge in this area is to find a fast method for determining a dy-

namic impact zone that allows good quality rescheduling solutions to be obtained. If

this could be done whilst maintaining guarantees on the optimality of any solutions

produced, then that would be a major step forward.

8.2.2 Aggregation based Solution Methods

There are a variety of potential opportunities for developing new exact solution

methods for the model in Chapter 5 that are based around the idea of aggregation.

This is the idea that if multiple nodes of the time-space graph can be aggregated

into a single node without affecting the optimal solution to the problem, then it is

preferable to solve the smaller time-space graph. Since good aggregations are not

known in advance, they are altered dynamically during the solution process.

One such technique is Dynamic Constraint Aggregation [Elhallaoui et al., 2005].

This is a column generation acceleration strategy that dynamically aggregates and

disaggregates constraints (which correspond to nodes in the time-space graph). An-

other possible algorithmic framework is Dynamic Discretization Discovery [Boland
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and Savelsbergh, 2019]. This focuses on the granularity of the time discretization,

starting with large time intervals and dynamically subdividing them where necessary.

In a similar vein, Fischer and Helmberg [2014] propose a Dynamic Graph Generation

algorithm that constructs only parts of the time-space graph that are necessary for

solving subproblems. Whilst Fischer and Helmberg [2014] tackle a train timetabling

application, to the best of our knowledge none of these methods have yet been applied

to the TTRP.

8.2.3 Simulation and Benchmarking for Model Evaluation

A dearth of high quality evaluations of TTRP optimisation models is perhaps the

largest remaining barrier to their deployment. Progress in this area would help to

build the business case for deployment, and identify the risks involved.

Whilst almost every research paper on this topic reports solution times and evalua-

tion of solution algorithms, the quality of the solutions produced is generally poorly

investigated. It must be shown that the solutions produced by models can be im-

plemented in practice and lead to the expected outcomes. Real implementations are

rare (Lamorgese et al. [2018] describe some of the few that have taken place), and

are not usually designed as experiments. Simulation tools are therefore indispens-

able for TTRP model evaluation. Models should ideally be tested in dynamic, closed

loop control environments, in which they repeatedly feed solutions to a simulator.

Fortunately, microscopic railway simulations that model detailed speed profiles, all

signalling constraints and uncertainty are widely used in the railway industry, es-

pecially for timetable evaluation. These are reviewed by Medeossi and de Fabris

[2018].

A particular challenge is that most models have been tested on different sets of in-

stances, making it almost impossible to make conclusive comparisons. This is to some
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extent necessary, since different models are designed for different types of railways,

perform different rescheduling actions, and take into account different additional

constraints. However, most of the time it is due to difficulties in sharing data and

instances. A TTRP instance consists of infrastructure data (which is often hardest

to obtain and share), timetable data and data about traffic perturbations. Aside

from commercial confidentiality considerations, there is a lack of standardisation of

data formats both in the UK and internationally. A common set of diverse TTRP in-

stances in a standardised format would allow models to be benchmarked against each

other, both in terms of algorithmic performance and solution quality. This would

give railway companies confidence to take up the best performing models.
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D’Ariano, A., Samà, M., D’Ariano, P., and Pacciarelli, D. (2014). Evaluating the

applicability of advanced techniques for practical real-time train scheduling. Trans-

portation Research Procedia, 3:279–288.

Department for Transport (2019). Government Rail Factsheet

https://www.gov.uk/government/statistics/rail-factsheet-2019.

Desaulniers, G., Desrosiers, J., and Solomon, M. M. (2002). Accelerating strategies

in column generation methods for vehicle routing and crew scheduling problems.

In Essays and Surveys in Metaheuristics, pages 309–324. Springer US.
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