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Optimizing last trains timetable in the urban rail network: social welfare and 
synchronization 

Last train timetable design is to coordinate last train services from different 

lines in an urban rail network for maximizing the number of transfers. It is a 

challenging operational research problem to balance the competing demand of 

two decision agents: that of the government agencies to provide the best social 

services with minimal government subsidy, and that of the train operating 

companies to minimize operating costs. A bi-level programming model is 

formulated for the last-train timetabling problem, in which the upper level is to 

maximize the social service efficiency, and the lower level is to minimize the 

revenue loss for the operating companies. To solve this problem, a genetic 

algorithm combined with an active-set approach is developed. We report the 

optimization results on real-world cases of the Beijing subway network. The 

results show that the optimized last-train timetable can significantly improve 

the transfer coordination. 

Keywords: last train; timetable; urban rail network; bi-level programming, 

government subsidy 

1 Introduction 

In an urban rail network (URN), it is common for passengers to make one or more 

interchanges between different lines at transfer stations in order to complete their trips. 

During the day when there are continuous train services, passengers can usually reach 

their destinations successfully. For passengers travelling late at night, however, there 

is a real danger of missing the last train or missing the transfer to the last train, if the 

last train schedules and connections are not well designed. Last train timetable design 

in an URN, which is to coordinate last train schedules so as to maximize successful 

transfers for last trains, is a challenging operational research problem. The problem is 

becoming increasingly complex as URNs around the world are experiencing rapid 

expansions to ever greater scales. The problem becomes more prominent in the cases 

of opening a new line and with multiple companies operating in the same URN. 
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It is also a problem of competing interests between the system managers (usually 

the government) and the train operating companies, with the government providing 

subsidy to the operating companies to lay out the services. In many URNs, train lines 

are run by different operating companies who design their own service timetables. As 

the system-wide manager, the government has a role to ensure efficient and 

coordinated timetables across the whole network. The government wishes to offer the 

best social service (e.g. maximizing the number of successful transfers, minimizing 

transfer times and total travel times, etc.) for all passengers with minimal subsidy. To 

improve successful transfer probability, extending the operation time is one option but 

then the subsidy will also increase. On the other hand, the operating companies would 

want to complete their transport tasks with minimum cost, which also means they 

would plan the operation time as short as possible if without the government’s 
regulation and subsidy. Therefore, determining the out-of-service time of urban 

subway lines has always been a balancing act between the two sides. To design an 

optimal last train timetable that achieves good social benefit desired by the 

government and low economic losses to the urban subway companies, requires the 

cooperation and constraints from both sides.  

Mathematically, such cooperation and constraints for scheduling and optimizing 

last train timetable can be described as a bi-level decision problem (BLDP), in which 

the upper level is to maximize the social service efficiency (i.e. the difference between 

the benefit of successfully-transferred passengers and the subsidy), and the lower 

level is to minimize the difference between the operation cost and the subsidy. From 

the management viewpoint, this timetabling problem has an equilibrium status 

between the two decision agencies. Therefore, this problem can be transferred into a 

timetable design problem for the last train synchronization to satisfy the transfer 

requirements of passengers. In the previous studies, the last train timetable problem 

has been represented as to optimize the coordination quality between different lines. 

The equilibrium balancing the acts between the government and the operating 

companies on social welfare has been ignored but is addressed in this article. 

Therefore, the main contributions of this article are: (1) a bi-level programming model 

is formulated for the last-train timetabling problem considering the equilibrium status 

between the two decision agencies, in which the upper level is to maximize the social 

service efficiency (defined as the difference between the benefit of 

successfully-transferred passengers and the subsidy), and the lower level is to 

minimize the revenue loss for the operating companies (defined as the difference 
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between the operation cost and the subsidy); (2) a genetic algorithm combined with an 

active-set approach is developed to solve the model. We demonstrate the method in a 

case study of Beijing subway system and the results show that, with a synchronized 

last train timetable, the number of transfer directions and passengers can be 

significantly increased. 

The remainder of the article is organized as follows. In section 2, we review the 

literatures on the timetable optimization problem. In section 3, we formulate a bi-level 

programming model to determine the last train timetable. The genetic algorithm 

solution procedure combined with an active-set approach is presented in Section 4. In 

Section 5, some numerical examples are computed to test our model and algorithm. A 

case study based on the real-world data from the Beijing Rail Netwok is presented in 

section 6. Finally, conclusions are given in Section 7. 

2 Literature review 

Timetabling problems have traditionally been investigated using optimization 

methods to determine the departure and arrival times of trains at each station or block 

for a given set of lines and service frequencies in order to maximize the service 

quality of the subway network. The service quality is usually measured in terms of 

transfer waiting time and travelling time. Passenger transfer waiting time is defined as 

the minimum waiting time for passengers who transfer from a feeder train to the first 

coming connecting train, assuming that they can board the first train and that there is 

no capacity constraint. It has been found that passengers consider their waiting time to 

be twice of what it actually is (Mohring et al., 1987). There is a substantial body of 

literature on timetabling which minimize waiting time or transfer waiting time for 

passengers. Domschke (1989) proposed a model to minimize the waiting time (or cost) 

of passengers who changed lines at the transfer stations for a periodic timetable 

optimization problem. Cevallos and Zhao (2006) examined the network-wide bus 

transfers synchronization problem. They considered the objective of minimizing 

transfer waiting time in an existing timetable under constrains of strictly fixed 

headways between lines. Wong et al. (2008) developed a mixed integer programming 

optimization model which minimizes the total transfer waiting time of all passengers 

in a railway system. Shafahi and Khani (2010) formulated a mixed integer 

programming model to minimize the passenger transfer waiting time.  

In large cities, service frequencies tend to be high and missing one connection train 

simply adds a few more waiting minutes to the overall journey (Carrese et al., 2002; 
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Chakroborty, 2003). However, in low population density areas with less frequent 

services, missing a connection incurs much longer waiting time and a lack of 

timetable synchronization may even discourage people from using public 

transportation mode (Yan et al., 2002). Ceder (2001) and Daduna et al. (1995) 

developed a mathematical formulation designed to generate timetables with maximum 

synchronization between trips. Fleurent et al. (2004) proposed the idea of weighing 

transfers and described concepts that were implemented in the commercial software 

HASTUS to generate synchronized transit timetables. Wong and Leung (2004) 

presented a method to synchronize timetable between lines which minimizes transfer 

waiting time. Wu et al. (2015) proposed a timetable synchronization optimization 

model to optimize passengers' waiting time while limiting the waiting time equitably 

over all transfer station in an urban subway network. Guo et al. (2016) proposed a 

model of timetable coordination of first trains in urban railway networks based on the 

importance of lines and transfer stations. Guo et al. (2017) focused on the timetable 

optimization problem in the transitional period (from peak to off-peak hours or vice 

versa).  

There has also been wide interest in designing train timetables that minimizes a 

general cost, including for example operating cost, waiting time cost, delay cost, 

energy consumption and so on. Yan and Chen (2002), and Yan et al. (2006) minimized 

a combined operating cost and waiting cost for an intercity bus routing and scheduling 

problem. Vansteenwegen and Van Oudheusden (2006) proposed a linear programming 

model to minimize the generalized waiting cost using discrete event simulation. Gallo 

et al. (2011) considered a weighted sum of transit user costs, car user costs, operator 

costs and external costs as the objective function, where transit user costs depend on 

on-board time, waiting time and access/egress time. Goverde (1998), Chowdhury and 

Chien (2001), and Meng and Zhou (2011) considered the train delay as an important 

factor and formulated the timetable optimization model to minimize delay cost caused 

by the late departure of train at stations. Scheepmaker et al. (2017) gave an extensive 

literature review on energy-efficient train control and the related topic of 

energy-efficient train timetabling. Li and Lo (2014a, 2014b) proposed an integrated 

energy-efficient operation model to jointly optimize the timetable and speed profile 

with minimum net energy consumption. Yang et al. (2013, 2015, 2016, 2017 and 2018) 

proposed an optimization method for train scheduling with minimum energy 

consumption and travel time in metro rail systems. Yang et al. (2017, 2018) proposed 

a bi-objective nonlinear programming model with minimum energy consumption and 
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passenger waiting time for metro systems. Lai and Leung (2017) considered to 

maximize the route frequencies and mileage to provide good passenger service and 

simultaneously minimize crew overtime and meal-break delays. Jiang et al. (2017) 

studied the problem of scheduling passenger trains in a highly congested railway 

double-track line with the aim of increasing the number of scheduled trains. Robenek 

et al. (2016) studied the Passenger Centric Train Timetabling Problem as a Mixed 

Integer Linear Programming (MILP) problem with an objective of maximizing the 

train operating company’s profit while maintaining i level of passenger satisfaction.  

In practice, simply maximizing (or minimizing) one certain performance index is 

not sufficient. A good model should also produce robust timetables that are capable of 

absorbing, as much as possible, delays or disturbances in the network. Taking into 

account of stochastic passenger demand, Sun et al. (2011) studied the robust 

optimization for the transit timetable design problem using a stochastic demand robust 

model. Peterson (2012) proposed on-time performance as the key to evaluate a 

railway timetable's robustness to disturbances and evaluated the on-time performance 

for two single train services. Goverde (2007) described a stability theory to analyze a 

timetable’s sensitivity and robustness to delays using a max-plus algebra. Fischetti et 

al. (2009) computationally analyzed four different methods to improve the robustness 

of a given train timetabling problem for the periodic timetable. Goerigk et al. (2011, 

2014) proposed a conservative heuristic which identifies a large subset of these robust 

changing activities in polynomial time by dynamic programming and so allows 

managers to find strictly robust paths efficiently. Odijk and Romeijn (2006) proposed 

a heuristic sampling method to define a new probability distribution where the 

probability of each class depends on the robustness of the timetables.  

Most of the existing literatures on timetable synchronization have their main 

objectives as to minimizing transfer wait time or cost, assuming all transfers can be 

successfully made and passenger numbers in the system are conserved. Such methods 

are not applicable to the last train timetabling problem, where it is possible that some 

passengers may fail to transfer and have to seek alternative modes of transport to 

reach their destinations. Therefore, passenger number conservation is no longer valid 

in the last train timetabling problem. The problem here not only affects passengers 

waiting time but also determines whether passengers can successfully transfer to the 

connecting trains. The last train transfer problem has only recently begun to draw 

attention in the literatures. Zhou et al. (2013) established a last train coordination 

model considering multi-point transfers for rail lines with which took the minimum 
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cost of all the coordination relationship as the objective. Zhou et al. (2013) built a 

coordination optimization model of the last trains’ departure time to reduce 

passengers’ transfer waiting time for the last trains and inaccessible passenger volume 

of all origin-destinations. Kang and colleagues developed a last train scheduling 

model to maximize the transfer redundant headways in a subway network (Kang, et 

al., 2015a) and a rescheduling model for last trains with the consideration of train 

delays caused by incidents that occurred in train operations(Kang, et al., 2015b). Yang 

et al. (2017) formulated an optimization model for last-train timetabling based 

on mean-variance (MV) theory that explicitly considered two significant 

factors including the number of successful transfer passengers and the running 

time of last trains. Table 1 summarizes the different categories of existing literatures 

on timetable studies. 

 

Table 1 
Literatures for the timetable problem of URN. 

Schedule 
type 

Objective Selected references 

Non-last 
train 

Minimize the waiting 
time and transfer 
waiting time  

Domschke (1989); Cevallos and Zhao (2006); 
Wong et al. (2008); Shafahi and Khani (2010) 

Maximize 
synchronization 

Ceder (2001); Daduna and Voss (1995); Wong 
and Leung (2004); Fleurent et al. (2004); Wu et 
al. (2015); Guo et al. (2016, 2017) 

Minimize energy 
consumption 

Li and Lo (2014a, 2014b); Yang et al. (2013, 
2015, 2016, 2017, 2018); Yang et al. (2017, 
2018) ; Scheepmaker et al. (2017) 

Minimize the general 
cost 

Yan and Chen (2002); Yan et al. (2006); Gallo 
et al. (2011); Goverde (1998); Vansteenwegen 
and Van Oudheusden (2006); Chowdhury and 
Chien(2001); Meng and Zhou(2011); Lai and 
Leung (2017); Jiang et al. (2017); Robenek et 
al. (2016). 

Robust optimization 
Sun et al. (2011); Peterson (2012); Goverde 
(2007); Fischetti et al. (2009); Goerigk et 
al.(2011,2014); Odijk and Romeijn (2006) 

Last 
train 

Maximize transfer 
redundant headways 

Kang et al. (2015a) 

Minimize the running 
time and the dwell time; 

Kang et al. (2015b), Yang et al. (2017) 
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Maximize the average 
transfer redundant time 
and the network 
accessibility 

Minimize the 
coordination cost 

Zhou et al. (2013), Zhou et al. (2013) 

 

Thus far, in the previous studies, the last train timetable problem has been 

represented as to optimize the coordination quality between different lines. The 

equilibrium balancing the acts between the government and the operating companies 

on the social service efficiency, and between the subsidy and operating costs, has been 

ignored. This article addresses this specific equilibrium problem between the two 

decision agents, and develops a bi-level programming method to maximize the 

difference between the benefit of successful transfers and the subsidy, and to 

minimize the difference between operating costs and the subsidy. The model is useful 

to both agencies: it helps them to understand the complexity of the last trains 

timetabling, and to guide the government on how to increase the transfer coordination 

with a given subsidy and the operating companies on how to schedule last trains with 

a required coordination. The optimization method is applied to a real-world instance 

of the Beijing subway system. Computational results show that the transfer 

coordination is significantly improved and the number of missed transfers reduces. 

3 Model Formulation 

In this section, we firstly describe the URN with the graph theory. And then, the 

assumptions are given. Government subsidy, operating cost and the transfer 

passengers are formulated. Based on the abovementioned issues, the bi-level model of 

last train timetable optimization (LTTO) is finally proposed.  

We represent an URN with  | 1,2, ,L l l n  L  lines. For line l , we only consider 

the stations including the starting station, transfer stations and the ending station. Let 

 ( ) | 1,2, , lS l s s m  L  be the set of transfer stations, numbered sequentially from the 

first ( 1s ) to the last transfer station ( ls m ) along line l . Especially, we define 

0s  as the index of starting station and s e  as the ending station, with an 

assumption of the starting station and the ending station are non-transfer stations 

along the line. Figure 1 illustrates schematically a graph representation of an URN. 
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Here, a line is directional, as such the different directions in the same service line are 

considered as two separate lines and are denoted as an up direction (U) and a down 

direction (D), e.g., 1U and 1D as shown in Figure 1. A line can be further divided into 

blocks. Let  ( ) | 1,2, , lB l b b r  L  denotes the set of blocks along line l, numbered 

sequentially from the first block ( 1b ) just after the starting station on the line, to the 

last block ( lr ) between the last transfer station and the ending station on line l .  

 

Fig. 1. A simple URN. 

 

3.1 Notations 

Notations used throughout this article are listed as follows and all boldface letters 

denote the corresponding vectors. All variables are assumed to be integer numbers to 

satisfy the engineering requirements. 

 

(1) Parameters and sets 

l: The urban rail line index, 1,2, ,l n L  

n: The last the rail line 

L: Set of the rail lines. 

s: Station index, 1,2, ,s m L  

m: The last station 
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ml: The last stations of line l 

( )S l : Set of transfer stations along the line l,  ( ) | 1,2, , lS l s s m  L   

b : Block index, 1,2, ,b r L  

r : The last block 

lr : The last block of line l 

( )B l : The set of blocks along line l 

R
lbt : The running time over each of the block b  of line l  

sllp : The probability density of passenger arrival at station s  from line l  

wishing to transfer to line l   

H
lt  : The headway of line l   between the last train and the penultimate train 

sll



: the degree of priority given to transfers at station s from line l to l    

 : A parameter to balance the weights between social welfare and subsidy 

 : A social benefit parameter which converts the number of successfully 

transferred passengers to benefits 

M : A large positive value 


Tra
sllt : The passenger walking time between line l  to line l  at station s  

max
,0lt , min

,0lt : the upper and lower bound of departure time of last trains 

minT , maxT : The upper and lower bounds on the total trip time  

max
lst , min

lst : The upper and lower bound of dwell time at the transfer station of last 

trains 

 

(2) Decision variables 

,0
D
lt : The departure time of the last train at the starting station on line l 

Dw
lst : The train dwell time at each of the station s  of line l  

 

(3) Intermediate variables 

,
A
l et : The arrival time of the last train on line l  at the destination station e. 

lTOC : The total operating cost of line l  

CAPsl : Cumulative arrival passengers of the last train at station s of line l   
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sllx  : A binary variable that represents whether passengers can transfer from 

line l  to line l  at station s  successfully: 

1,  if passengers transfer from  to  at  successfully;

0,  otherwise.sll

l l s
x 


 


 

 

3.2 Model assumptions 

As a time sequence, a timetable defines, for each train, the departure time from the 

starting station, the arrival time at ending station, and the arrival and departure time at 

the intermediate stations (Caprara et al., 2002). For simplicity, some assumptions used 

in this article are listed. 

a) Only the starting stations, transfer stations and ending stations in the URN are 

considered in the model. It means that the ordinary stations on a certain line are 

integrated and ignored between two transfer stations.  

b) The subsidy is a continuous and differentiable function of time in the range of 

departure time at the original station of the first train and arrival time at the 

destination station of the last train. Therefore, the subsidy is related to the 

operating time including dwell time and running time. 

c) Passengers will always ride the first connecting train to reduce the waiting time. 

Furthermore, as we are concerned with the last train problem, we assume here 

that the demand for the last trains is well below capacity and all passengers can 

get on board. 

d) The transfer walking time is known and fixed for all passengers between two 

lines. In addition, the headways are given as a prior knowledge (e.g. from the 

existing timetables) and are assumed to be uniform in each line. 

3.3 Objective measures 

We consider government subsidy or the operating cost, and the social benefit as the 

objective measures in the bi-level programing model. 

 

˄1˅ Government subsidy and operating cost  

As the passenger demand is relatively low for late night trains, most of the companies 
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would prefer to stop their services earlier. However, as a social welfare, the 

government needs the companies to provide late train services and this is usually done 

through a subsidy policy. Nowadays, URNs in many cities depend on the government 

subsidy. In Beijing, for example, the government subsidy is based on the total number 

of passengers transported by the operating companies. However, this policy is not 

suitable for the last trains, or is not attractive enough to the operating companies to 

run last trains, because the demand is low. Here, we propose a new subsidy model 

based on the passengers’ arrival times at their destination stations, with the following 

proposition. 

 

Property 1. If the subsidy function is represented by ,( )A
l l ef t , where ,

A
l et  is the arrival 

time of the last train on line l  at the destination station e, then: 

a) ,( )A
l l ef t  is a non-negative monotone increasing function of dwell time and 

running time; 

b) ,( )A
l l ef t  can be described by the departure time of the last train ,0

D
lt at the starting 

station on line l, the train dwell time Dw
lst at each of the station s  of line l  and 

the running time R
lbt over each of the block b  of line l . 

Proof. (a) In practical operations, the government should give more subsidies for the 

company with a longer operational time. Therefore, the subsidy is always 

non-negative monotone increasing function and is related to the operating time (e.g., 

dwell time and running time) according to Assumption (a); (b) For the last train 

operation, the longer the line operates the more subsidies it gets. Since 
( )

Dw
ls

s S l

t

  is 

the total dwell time on line l . Then, , ,0
( ) ( )

 

 

 A D Dw R
l e l ls lb

s S l b B l

t t t t  is satisfied, and we 

get , ,0
( ) ( )

( ) ( )

 

  A D Dw R
l l e l l ls lb

s S l b B l

f t f t t t . This completes the proof for Property 1. 

 

( )lf is a user-defined non-decreasing function of the departure time from the start 

station, the dwell time at the transfer station and the running time in a block. Then, 



 14 

( )l
l

f   is the total subsidy for the last train. In fact, the total operation time is the 

sum of running time and dwell time. Assuming that the running time between two 

stations is a constant, the total operation time can then be represented by the total 

dwell time of last train at all stations. In addition, for the last trains, the operation cost 

is related to the departure time of line l. The later the departure time is, the higher the 

operation cost will be because of the longer usage of devices and staffs. Therefore, we 

assume that the total operating cost lTOC  of line l  can be represented simply by 

,0
( )

( )D Dw P
l l l ls l

s S l

TOC t t t


                                           (1) 

where l  is a parameter which transfers the time to the operating cost and P
lt  

represents the latest departure time of line l given by the government. 

˄2˅ Social benefit and transfer passengers 

Here, we define the social benefit as the number of passengers transferring to the last 

trains successfully. Let ( )sllp t  be the probability density function of passengers 

arrival at station s  of line l   transferring from line l . Therefore, the cumulative 

arrival passengers (CAP) of the last train at station s of line l’ transferring from line l  

can be calculated as follows. 

,

,

CAP ( )
D
l s

D H
l s l

t

sll sllt t
p t dt



 
 
                              (2) 

where ,
D
l st  is the departure time of the last train from s  on line l  , H

lt  is the 

headway of line l   between the last train and the penultimate train. 

3.4 Bi-level model of last train timetable optimization (LTTO) 

We formulate the last train timetable synchronization problem as a bi-level 

programming problem, in which the upper level is to maximize the social benefit with 

minimum total subsidy, and the lower level is to minimize cost loss for companies. 

The decision variable in the upper level is the departure time, ,0
D
lt for line l  at the 

starting station 0, whilst, for the lower level, the total dwell time 
( )

Dw
ls

s S l

t

 is the 
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decision variable which affects the finishing time of the last train at its destination 

station. 

˄1˅ Upper level model of LTTO problem 

The upper level objective in our model is to maximize the social benefit, with the 

following formulations:   

,

,
,0

( ) ( ) ( )

(U) Max ( ( ) ) ( )
D
l s

D H sll
l s l

t D Dw R
sll sll l l ls lbt t

s S l l L l L l s S l b B l

Z p t dt x f t t t  


 

 
    

           (3) 

-1 -1

, ,0
1 1

. .  
s s

A D Dw R
l s l lk lb

k b

s t t t t t

 

               (4) 

1

, ,0
1 1

s s
D D Dw R
l s l l k l b

k b

t t t t


   
 

                (5) 

, ,( 1)        D A Tra
sll l s l s sll sllM x t t t M x           (6) 

min max
,0 ,0 ,0 D

l l lt t t ,  l L              (7) 

 

In Eq. (3) 
,

,

( )


 


D
l s

D H
l s l

t

sllt t
p t dt captures the number of transfer passengers at station s  

between lines l  and 'l , where 
H

l
t   is the headway of line l . In practice, different 

transfer directions may have a different degree of priority or importance value to the 

government. Here, we denote parameter 
sll


  to represent the degree of priority given 

to transfers at station s  from line l  to l . sllx   is a binary variable that represents 

whether passengers can transfer from line l  to line l  at station s  successfully. If 

1 sllx , passengers transfer successfully. Otherwise, they fail to transfer. Parameter 

  is to balance the weights between social welfare and subsidy. Parameter  is a 

social benefit parameter which converts the number of successfully transferred 

passengers to benefits. 

Formulations (4)-(7) are train operational constraints. (4) tracks the arrival time of 

the last train in feeder line l  at station s . The total train running time from the 
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original station to station s  is
1

1

s
R
lb

b

t



 , where R

lbt  represent the running time over the 

block b  (between stations s-1 and s) of line l . 
1

1

s
Dw
lk

k

t



  calculates the total dwell 

time of the last train on line l  over all stations prior to station s . Constraint (5) 

indicates the departure time of the last train in connecting line l  at station s . In (6), 

the M  is a large positive value and 
Tra
sllt  is the passenger walking time between line 

l  to line l  at station s . It is clear that , ,0     D A Tra
l s l s sllt t t M  if sllx  equals to 1. 

Otherwise, we obtain , , 0     D A Tra
l s l s sllM t t t  which means passengers will fail to 

transfer. Finally, constraint (7) sets the upper bound max
,0lt  and the lower bound min

,0lt  

of departure time of last trains. 

˄2˅ Lower level model of LTTO problem 

From the companies’ viewpoints, if the profit of running a train service is negative, it 

is best to cancel the service. With government subsidy to offer a last train service, the 

companies would like to schedule the last train with minimal loss after subsidy. We 

formulate this as the lower level model, with the objective function as follows: 

,0
( ) ( )

(L)Min ( )D Dw R
l l l ls lb

l l s S l b B l

C TOC f t t t

 

              (8)
 

min ,0 max
( ) ( )

. .  D Dw R
l ls lb

s S l b B l

s t T t t t T

 

    ,  l L         (9) 

min max Dw
ls ls lst t t ,  l L , ( ) s S l           (10) 

 

Constraint (9) sets the upper and lower bounds on the total trip time (e.g. minT  and 

maxT ), which ensures the last train running within a trip horizon. The decision variable 

Dw
lst  of the lower level model is restricted with the constraint (10), where max

lst  is the 

upper bound and min
lst  is the lower bound of dwell time at the transfer station of last 
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trains; in between these two time boundaries will the passengers get on or off the 

train.  

 

Theorem 1. The lower level in LTTO has a global optimization solution because the 

feasible domain is non-empty of lower level model. 

Proof. For the decision variables in upper level  ,0,
D
lt l L  ˈ min max

,0 ,0 ,0 D
l l lt t t , given 

, , min
lst  and max

lst , the feasible domain of the lower level is non-empty 

according to the constraints (9) and (10). Then, the lower level has a minimum 

solution. The following equation: min max , , max min          Tra D A Tra Tra
sll l s l s sll sllT T t t t t T T t , 

,  ( )   l L s S l holds if ( ), ( ), min max max minmax {| |,| |}         Tra Tra
s S l s S l l l sll sllM T T t T T t . 

Since  is an arbitrary large number and satisfies 

, ,( 1)        D A Tra
sll l s l s sll sllM x t t t M x , the feasible domain of LTTO will be non-empty. 

Therefore, the model has a global optimization solution. This completes the proof for 

Theorem 1. 

3.5 Performance measures of the optimized timetable for last train 

In addition to the transfer waiting time of passengers, an important measure for the 

last train timetable is the “absolute miss”. Wong et al. (2008) introduced a metric of 

“just miss” to define the type of missed transfers caused by the unreasonable 

timetable in which the sum of the cross-platform time and the transfer waiting time 

exceeds the headway of the connecting train. In general, passengers do not like just 

missing the connecting train by a few seconds. However, for the last train, “just miss” 
the connecting train means “absolute miss” because it is the last chance to finish the 
trip. Therefore, an importance purpose of this article is to minimize the number of 

absolute misses. 

4 Solution Algorithm 

The bi-level programming is a NP-hard problem (Ben-Ayed ET AL., 1988), thus it is 

difficult to solve with many of the standard optimization algorithms which require 

calculation of the gradients of the objective functions. The non-convexity of the 

problem is another reason that results in the complexity of the solution algorithm: 
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even if the upper and lower level problems are both convex, it is possible that the 

whole bi-level problem will be a non-convex one. The nature of non-convexity 

indicates that, even if a solution for the bi-level problem can be found, it is usually a 

local optimum not the global optimum. 

Generally, two classes of solution algorithms are applied to solve a bi-level model. 

One is the standard optimization algorithm, such as the branch-and-bound method, 

Lagrange relaxation, dual ascent procedures and support function method (Dimitriou 

et al., 2007). However, the many assumptions made in these algorithms preclude their 

application in large and realistic networks. The second class of solution algorithms is 

the intelligent algorithms, e.g., genetic algorithm (GA) (Holland et al., 1975; Yang et 

al., 2013, 2016, 2017), particle swarm optimization algorithm and chaotic 

optimization algorithm. For more introduction of the algorithm, see Wu et al. (2009). 

These methods make fewer or no assumptions and do not use the gradient of the 

objective function. It also doesn’t need any special conditions of functions and is 

efficient for the large scale network. In this article, we adopt GA to solve the last train 

timetable problem. 

4.1 Genetic algorithm for last train timetabling 

The decision variables in the proposed upper-level model are the departure times of 

the last trains at their origin stations. Therefore, they are chosen as genes for any 

chromosome in the GA. A vector 1,0 2,0 ,0 ,0( ,  ,..., ,  ...,  )D D D D
l nt t t t  forms the genes of a 

chromosome in the algorithm, and population of N chromosomes are generated. In 

this article, the first chromosome is initialized randomly in the feasible domain 

specified in (7). The total number of chromosomes N n  consists of the population as 

illustrated in Figure 2. 

 

Fig. 2. Encoding and population diagram 
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The GA is performed based on three important operators: crossover, mutation and 

selection operators. The crossover operator is to generate new solutions with a given 

probability of  . We adopt a replacing method in the crossover operation in which a 

gene is replaced by the same gene in another chromosome (Kang et al., 2015), as 

shown in Figure 3. 

 

Fig.3. Crossover operation. 

 

The mutation operation helps to escape local optimums because the crossover 

operation used in two parent chromosomes will result in no conflicts to the bounds of 

the parent genes with a probability of   (see Figure 4). With the mutation operation, 

the genes of children chromosomes can escape from the limitations of parent 

chromosomes. The variables in a vector are not binary. Then, for the genes ,0
D
lt , 

random numbers are generated to replace them. 

 

Fig. 4. Mutation operation. 

 

The selection operator is to ensure the best individuals can survive in the next 

generation. And it is designed based on the fitness function, defined as ( )f n Z , 

where the Z is defined by formula (3). The more the fitness is, the more likely the best 

individual can survive. We adopt the Roulette method to determine whether the each 

individual can survive in the next generation or not. 

For convergence, three different criteria have been used in the literature (Shafahi et 

al., 2010). These are (1) the best solution does not change after a given number of 

iterations; (2) iterations reach the maximum number; and (3) the algorithm running 

exceeds the permitted time. In this article, we adopt the second criterion as the 
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convergence criterion. 

4.2 Active-set algorithm 

In our model, according to the solution of the upper level, the lower level model in 

this article is a minimization problem. Active-set algorithm is a two-phase iterative 

method that provides an estimate of the active set at the solution and reduces the 

complexity of the search. Recently, Zhang et al. (2009) and He et al. (2013) showed 

that the active-set algorithm was very efficient and consistently produced good results 

with different initial solutions demonstrating the potential of applying the active-set 

algorithm to large-scale networks. The active set algorithm has been developed in 

Matlab Optimization Tool Package. In this article, we implement this algorithm within 

the Matlab R2012. 

4.3 Solution algorithm of LTTO 

The framework developed to solve the LTTO problem using GA is described as 

follows: 

Step 0. Initialization. Set the initialized values of parameters  ,
sll



,  ,  , 

M , minT , maxT , min
lst , 

max
lst , min

,0lt , max
,0lt , the maximum generations G , population size 

N  and block running time Rlbt . Select the feasible departure time ,0
D
lt . Set the iteration 

counter 0g  . 

Step 1. Solving the lower level problem. For a fixed ,0( )D
lt g , solve the lower level 

problem with active-set algorithm offered by the Optimization Tool in Matlab, and 

obtain the optimized dwell time ( )Dw
lst g . 

Step 2. Solving the upper level problem. According to the solution ( )Dw
lst g  from 

the lower level, implement GA to get the optimized departure time ,0( )D
lt g  of the upper 

level.  

Step 2.1. Adopt the mutation operation of the optimized solution and create a 

new chromosome. 

Step 2.2. Check the feasibility of the new chromosome. If infeasible, delete and 

return to step 2.1.  
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Step 2.3. Repeat the above two steps until N  chromosomes are constructed. 

Step 2.4. Adopt the crossover operator to the N  chromosomes. 

Step 2.5. Calculate the objective values of total chromosomes and adopt the 

selection operator.  

Step 3. Verify termination criterion. If the iteration g  exceeds the maximum 

generation G , take 
,0( )D

lt g  and ( )Dw
lst g  as an optimal solution to the LTTO; 

otherwise, increment: 1 g g , and go to step 1. 

 

5 Numerical example 

In this section, we present the application of LTTO model and the solution algorithm 

to an example URN. Figure 5 illustrates the example network, which contains 6 

directional lines and 5 transfer stations. Table 2 presents the initial timetable in terms 

of the last train’s arrival and departure times at each of the transfer stations. The times 

have been converted into absolute values starting from zero. From which, the running 

time in each block between two stations can be calculated. For example, for Line 1, 

the last train departs from S2 at time 10.5 and arrives at S3 at time 30.5, then the 

result of running time between S2 and S3 is 20 minutes. In this experiment, we 

assume that the dwell time is given in the range of [0.5, 3] minute. For simplicity, 

passengers’ transfer walking time and train headways are set as 3 minutes and 5 

minutes, respectively. If not specifically defined, the subsidy function is set as 

exponential function ( ) exp( )lf t t  and ,0
( ) ( )

D Dw R
l ls lb

s S l b B l

t t t t
 

    , the social benefit 

parameter   is set as 1, and the parameter l  is also set as 1 for simplicity in rest 

of the paper. 
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Fig. 5. Illustration of the sample URN 

 

Table 2 
The initial arrival and departure time (min) of the last train at stations 

Line 1 2 3 

Direction Up Down Up Down Up Down 

S1 
Arr. -- -- 51.5 10 41 10 

Dep. -- -- 52 10.5 41.5 10.5 

S2 
Arr. 10 41 10 51.5 -- -- 

Dep. 10.5 41.5 10.5 52 -- -- 

S3 
Arr. 30.5 20.5 -- -- 20.5 30.5 

Dep. 31 21 -- -- 21 31 

S4 
Arr. 41 10 41 20.5 -- -- 

Dep. 41.5 10.5 41.5 21 -- -- 

S5 
Arr. -- -- 30.5 31 10 41 

Dep. -- -- 31 31.5 10.5 41.5 

 

5.1 Transfer feasibility analysis 

Here, we analyze the transfer feasibility with the initial last-train timetable. To 

illustrate the analysis, we take transfer station S3 as an example. At station 3S , there 

are four crossing lines and eight transfer directions, i.e., Line 1U Line 3U , 

Line 1U Line 3D , Line 1D Line 3U , and Line 1D Line 3D . To accomplish the 

transfer, the departure time of connecting line should be after the arrival plus transfer 

time of the feeding line at station 3S  as shown in Eq. (11). As can be seen, eight 
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directions have the same expressions with a feeding line l  and a connecting line l . 

Thus, we pick directions l l  as the general illustration and have Lemma 1. 
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Lemma 1. Half of the eight transfer directions cannot be coordinated by last trains. 

Only the passengers who ride feeder trains earlier than the connecting trains can 

transfer successfully.  

Proof. For all lines l L , l L , stations ( ) ( ')s S l S l   and = 
Tra Tra
sll sl lt t  in the 

network, passengers transfer from line l  to line l  and from line l  to line l . 

Firstly, we assume passengers of both directions can transfer successfully. Therefore, 

equation (12) should be satisfied. 

, , , ,

, , , ,

     

   

        
       

A Dw A Tra Dw A A Tra
l s l s l s sll l s l s l s sll

A Dw A Tra Dw A A Tra
l s ls l s sl l ls l s l s sl l

t t t t t t t t

t t t t t t t t
         (12) 

It should be noted that Dw
lst  is generally less than 

Tra
sllt  in the real operations (e.g., in 

the Beijing subway, [0.5,1]Dw
lst  min, [2,7] 

Tra
sllt  min). 

Case 1: , ,A A
l s l st t  

Result 1:  Dw Tra
l s sllt t , Dw Tra

ls sl lt t : passengers fail to transfer of both directions. 

Case 2: , ,A A
l s l st t   

Result 2:  Dw Tra
l s sllt t , Dw Tra

ls sl lt t : passengers fail to transfer of direction l l . 

Case 3: , ,A A
l s l st t  

Result 3:  Dw Tra
l s sllt t , Dw Tra

ls sl lt t : passengers fail to transfer of direction l l . 
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Therefore, according to Eq. (12), if two trains do not arrive at the same time, only one 

side of passengers can transfer successfully. This completes the proof for Lemma 1. 

 

5.2 Sensitive analysis of subsidy parameter   

Here experiments with different values of the subsidy parameter   are conducted. 

Firstly, we consider  =1. The results are shown in Table 3. As can be seen, 105 

passengers can finish their transfers successfully. Then, the effects of different   

values on the passengers’ transfers are studied. As the value of  , the government 

subsidy increases continuously, but the total number of successful transfers do not 

increase continuously. Up to the value  =10, the number of successful transfers 

remain the same as with no subsidy case. Only when 25  , is the maximum 

transfer number 110 obtained. Further increasing the value of   will not increase the 

number of successful transfers in this test network. This suggests that there is an 

optimal subsidy to transfer the largest number of passengers. The results also show 

that with the sufficiently high subsidy, the maximum number of successful transfers 

can be met. 

 

Table 3 
Analysis of subsidy parameter. 

   
Departure time of 

each line 
Dwell time at each station 

Transfer 
passengers 

Subsi
dy 

1 
8.09, 5.29, 1.81, 3.90, 
5.14, 2.57 

.5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, 

.5, .5, .5, .5, .5, .5, .5, .5, .5 
105 12.74 

5 
9.25, 7.13, 6.17, 6.65, 
8.19, 3.88 

.5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, 

.5, .5, .5, .5, .5, .5, .5, .5, .5 
105 14.87 

10 
9.87, 2.58, 4.42, 8.27, 
9.82, 1.36 

.5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, 

.5, .5, .5, .5, .5, .5, .5, .5, .5 
105 14.88 

25 
8.84, 1.18, 7.45, 7.11, 
9.70, 7.20 

3, 3, 3, 3, 3, 3, 2.9, 2.9, 2.9, 2.9, 
2.9, 2.9, 2.9, 2.9, 3, 3, 3, 3, 3, 3 

110 17.12 

45 
9.47, 7.51, 4.03, 9.30, 
6.02, 9.68 

3, 3, 3, 3, 3, 3, 2.7, 2.7, 2.7, 2.7, 
2.5, 2.5, 2.5, 2.5, 3, 3, 3, 3, 3, 3 

110 17.12 

55 
9.03, 5.10, 7.98, 6.73, 
6.16, 9.98 

3, 3, 3, 3, 3, 3, 2.6, 2.6, 2.6, 2.6, 
2.8, 2.8, 2.8, 2.8, 3, 3, 3, 3, 3, 3 

110 17.12 

65 
8.26, 9.42, 6.85, 9.76, 
4.70, 8.79 

3, 3, 3, 3, 3, 3, 2.8, 2.8, 2.8, 2.8, 
2.8, 2.8, 2.8, 2.8, 3, 3, 3, 3, 3, 3 

110 17.12 

… … … … … 
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5.3 Optimization results 

Following from the above, we get an optimal last train timetable as shown in Table 4, 

at 25  . This timetable is compared with the original Table 2 on two aspects: the 

number of transferred passengers and the transfer waiting time. On one hand, it is 

clear that the lager the number of successfully transferred passengers is, the better the 

service is. The binary variable sllx  in this aspect is an important indicator which 

shows the line-to-line accessibility. A passenger can reach his/her scheduled 

destination as long as he/she transfers smoothly at each node. On the other hand, 

passenger transfer waiting time indicates the efficiency of a timetable. Mohring et al. 

(1987) found that passengers perceived their waiting time to be almost twice as long 

as what it actually is. This illusion is intensified when passengers wait for the last 

trains. Thus, a well-designed timetable, with good coordination between feeder trains 

and connecting trains so that passengers can enjoy fast transfers, is much desired by 

passengers. 

 

Table 4 
The optimized last train timetable 

Line 1 2 3 

Direction Up Down Up Down Up Down 

S1 
Arr. -- -- 67.01 18.36 56.00 20.00 

Dep. -- -- 69.91 21.26 59.00 23.00 

S2 
Arr. 20.00 56.00 18.31 67.06 -- -- 

Dep. 23.00 59.00 21.21 69.96 -- -- 

S3 
Arr. 43.00 33.00 -- -- 43.00 43.00 

Dep. 46.00 36.00 -- -- 46.00 46.00 

S4 
Arr. 56.00 20.00 54.11 31.26 -- -- 

Dep. 59.00 23.00 57.01 34.16 -- -- 

S5 
Arr. -- -- 41.21 44.16 20.00 56.00 

Dep. -- -- 44.11 47.06 23.00 59.00 

 

Table 5 presents the comparison results. As can be seen, the original timetable has 5 

coordination directions and 65 passengers finishing transfer for last trains. The new 

timetable, however, has improved the number of coordination directions to 8, and 

with 110 successful passenger transfers. In order to show the advantages of our model, 
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the passengers transfer waiting time of the two timetables are computed. Generally, 

passengers will get on the coming connecting train if they arrive early enough. 

Otherwise, they may fail the transfer. Therefore, two cases are analyzed and shown in 

Figure 6: (1) the last feeder train arrives earlier than the last connecting train, and (2) 

the last feeder train arrives later than the last connecting train. To capture the exact 

value of the waiting time 
w
sllt , Eqs. (13) and (14) are defined as follows. 

 
Table 5 
Comparisons of coordination for the original and optimized timetables 

Station Direction Transfers 
Original timetable Optimized timetable 

sllx  
Waiting 
(min) 

sllx  
Waiting 
(min) 

S1 
L2 Down to L3 Up 5 1 3.5 1 2.64 

L2 Up to L3 Up 10 0 -- 0 -- 

S2 
L2 Up to L1 Down 15 1 3.5 1 2.69 

L2 Down to L1 
Down 

10 0 -- 0 -- 

S3 

L1 Up to L3 Up 20 0 -- 0 -- 

L1 Up to L3 Down 5 0 -- 1 0 

L3 Down to L1 Up 25 0 -- 1 1.0 

S4 
L2 Down to L1 Up 10 1 3 1 4.73 

L2 Up to L1 Up 15 0 -- 1 1.85 

S5 
L2 Up to L3 Down 15 1 3 1 4.77 

L2 Down to L3 
Down 

20 1 4.5 1 3.46 

Total  5/65 5/17.5 8/110 8/21.14 

 

 

Fig. 6. Passenger transfer waiting time. 
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Here, M  is an arbitrary large number and    
indicates the integer portion of the 

argument. Thus, h  captures the number of trains running on the connecting line l  

before the advent of the last train. 

For the original timetable, the total transfer waiting time for 5 coordination 

directions and 65 passengers is about 235 minutes. Therefore, the average transfer 

waiting time is about 3.61 minutes. However, in the new improved timetable, the 

average transfer waiting time for 8 coordination directions and 110 passengers is 

about 294.5 minutes. The average transfer waiting time is reduced to 2.67 min which 

has improved by 24.6%. The detailed comparisons can be found in Table 5 and Figure 

7 (for simplicity, just one in ten is shown in Figure 7). 

 

Fig. 7. Comparisons of timetable indicators. 

 

5.4 Analysis of initial solutions and convergence test 

The model is implemented in Matlab 2012, using a 22.5 MHz CPU and 2GB of 

RAM. To analyze the effects of initial solutions on the timetable, we give different 

initial solutions and the optimized results in Table 6. It is clear that, for all cases, the 
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number of transferred passengers is the same. Therefore, it proves that our algorithm 

is efficient. Besides, the convergence can be seen in Figure 8. 

 

Table 6 

Iterative results of different initial solutions 

Initial 
solutions 

CPU time for 
First best 

solution (sec) 
Optimal departure time 

Transferred 
passengers 

CPU 
time 
(sec) 

100000 25.63 
9.9931,9.9944,8.2713,8.7202,9.99

96,9.9981 
110 3060 

010000 22.53 
9.9989,9.9973,8.2338,9.5366,9.98

96,9.9999 
110 4062 

001000 23.00 
9.9967,9.9992,8.7528,9.8988,9.99

95,9.9980 
110 3026 

000100 22.39 
9.9893,9.9919,9.5958,8.6230,9.99

81,9.9978 
110 2700 

000010 23.13 
3.3728,9.9692,7.2960,7.7032,9.92

60,1.8331 
110 7369 

000001 25.24 
9.9962,9.9958,9.1048,9.5434,9.99

76,9.9979 
110 2870 
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Fig. 8. Illustration of the convergent. 
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5.5 Comparisons of subsidy functions 

In practical operations, the government adopts the subsidy policy to encourage the 

companies to extend the service time. We examine now some particular subsidy 

functions in this section, e.g., exponential function, linear function and quadratic 

function. Let us first assume that, during the last train operation, one additional 

minute’s operation often results in a rapidly increasing subsidy, leading to a 

significant exponential correlation between extended operation time and the subsidy. 

Besides, we can also analyze the effects of different subsidy functions on the optimal 

results. To represent the relationships between the subsidy and the operation time, we 

propose the following government subsidy function, 

2

exp( )

( )l

t

f t t

t






 



, ,0
( ) ( ) 

   D Dw R
l ls lb

s S l b B l

t t t t          (15) 

where   is the parameter related to the relationship between time and cost. As 

illustrated in Table 7, the exponential type has the most transferred passengers, the 

most connected directions, and the least financial subsidy. On the contrary, the linear 

type obtains the fewest transferred passengers, the fewest connected directions, and 

the most financial subsidy. At the same time, the logarithmic type becomes the most 

“expensive” one, which costs 12.479 unit of subsidy and returns 90 transferred 

passengers. As can be seen, the quadratic type costs 0.139 unit of subsidy to ensure 

one passenger and 2.08 unit of subsidy to connect one transfer direction. Compared 

with that, the exponential type is the “cheapest”, which only costs 0.038 unit of 

subsidy and 0.566 unit of subsidy, respectively. In the following Case Study section, 

we choose the exponential function for the detailed analysis. 

 

Table 7 

Effects of subsidy functions on optimal results 

Function 
types 

Passengers Directions Subsidy 
Subsidy/ 

passengers 
Subsidy/ 
directions 

Exponential 
function 

105 7 3.9638 0.038 0.566 

Linear 
function 

65 5 4.325 0.067 0.865 

Quadratic 
function 

90 6 12.479 0.139 2.08 

http://dict.cn/exponential%20function
http://dict.cn/exponential%20function
http://dict.cn/linear%20function
http://dict.cn/linear%20function


 30 

 

6 Case study 

The following case study considers the Beijing subway network including 7 

two-directional lines and 17 transfer stations, as shown in Figure 9. The headway of 

all lines is set to be 10 minutes. 

 

 

 

Fig. 9. Map of the Beijing subway 2012 (Kang et al., 2015). 

6.1 Transfer directions 

According to Lemma 1, only one direction can be coordinated in the Beijing subway. 

In such a case, it is especially important for passengers who transfer from the urban 

areas to the suburban habitations. A very important reason is that suburban transfer is 

more urgent than urban transfer in last trains, since passengers may have other 

alternatives in the urban area, e.g. bus, taxi, etc. But for suburban passengers, it will 

cost them more time and fare if they fail to transfer. Therefore, in the real operation of 

Beijing subway, key transfer directions are identified and shown by the arrows in 

Figure 9. 
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6.2 Optimization results 

We analyze the possible transfer directions for the last trains using the original 

timetable. As shown in Table 8, we can see that nearly half of main concerned 

directions fail to coordinate under the original timetable. An optimized, new, timetable 

is derived based on our proposed model and is presented in Table 8. It can be seen 

from Table 8 that with the current timetable, there are 22 coordinated directions, 

whilst the optimized timetable improves the coordination directions to 28. 

 

Table 8 

The optimal last trains timetable of Beijing subway 

Station 
Transfer 
Direction 

Pas
sen
ger
s 

Original timetable Optimized timetable 

,
A
l st  ,

D
l st  

sllx

 
,
A
l st  ,

D
l st  

sllx

 

FuXing
Men 

L2 U to L1 D 5 23:06 23:40 1 22:14:21 23:11:35 1 

L2 D to L1 D 10 23:19 23:40 1 22:54:39 23:11:35 1 

XiDan 

L4 D to L1 D 15 23:20 23:37 1 23:19:01 23:05:35 0 

L1 D to L4 U 10 23:37 23:25 0 23:02:35 22:59:27 0 

L1 D to L4 D 20 23:37 23:20 0 23:02:35 23:22:01 1 

DongDa
n 

L5 D to L1 U 5 23:23 23:35 1 23:14:45 22:51:19 0 

L1 U to L5 U 17 23:35 23:23 0 22:48:19 23:08:21 1 

L1 U to L5 D 10 23:35 23:23 0 22:48:19 23:17:45 1 

JianGuo
Men 

L2 U to L1 U 15 23:22 23:38 1 22:31:51 22:57:19 1 

L2 D to L1 U 15 23:02 23:38 1 22:32:39 22:57:19 1 

GuoMao 
L10 D to L1 U 20 23:03 23:42 1 23:25:11 23:04:19 0 

L1 U to L10 D 9 23:42 23:03 0 23:01:19 23:28:11 1 

XiZhiM
en 

L2 U to L4 U 11 22:59 23:35 1 22:06:51 23:12:27 1 

L2 D to L4 U 14 23:27 23:35 1 23:09:39 23:12:27 1 

L2 U to L13 D 9 22:59 23:45 1 22:06:51 22:37:15 1 

L2 D to L13 D 7 23:27 23:45 1 23:09:39 22:37:15 0 

L4 U to L13 D 12 23:35 23:45 1 23:09:27 22:37:15 0 

YongHe
Gong 

L2 U to L5 U 17 22:33 23:33 0 22:43:51 23:21:21 1 

L2 D to L5 U 8 22:51 23:33 1 22:12:39 23:21:21 1 

DongZhi
Men 

L2 U to L13 U 20 23:29 22:42 0 22:39:21 22:33:43 0 

L2 D to L13 U 15 22:55 22:42 0 22:19:39 22:33:43 1 

ChongW
enMen 

L2 U to L5 D 19 23:16 23:25 1 22:25:21 23:22:45 1 

L2 D to L5 D 17 23:08 23:25 1 22:37:39 23:22:45 1 

XuanWu L2 U to L4 D 18 23:10 23:22 1 22:18:51 23:27:01 1 
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Men L2 D to L4 D 8 23:14 23:22 1 22:47:39 23:27:01 1 

HaiDian 
HuangZ
huang 

L4 U to L10 U 12 23:47 23:53 1 23:24:27 23:36:58 1 

L10 U to L4 U 20 23:53 23:47 0 23:33:58 23:27:27 0 

BeiTuCh
eng 

L8 D to L10 U 17 22:37 23:40 0 22:47:09 23:17:58 1 

L8 D to L10 D 14 22:37 22:40 0 22:47:09 22:55:11 1 

HuiNan 
L10 U to L5U 12 23:36 23:39 1 23:07:58 23:30:21 1 

L5 U to L10 D 6 23:39 22:44 0 23:27:21 23:02:11 0 

LiShuiQ
iao 

L13 D to L5 U 14 23:14 23:53 1 23:15:15 23:47:21 1 

L13 U to L5 U 19 23:01 23:53 1 22:55:43 23:47:21 1 

L5 U to L13 U 14 23:53 23:01 0 23:44:21 22:56:15 0 

L5 U to L13 D 15 23:53 23:14 0 23:44:21 23:18:15 0 

HuoYing 
L13 U to L8 U 16 23:06 23:11 1 23:01:15 23:12:29 1 

L13 D to L8 U 9 23:09 23:11 0 23:07:15 23:12:29 1 

ZhiChun
Lu 

L10 U to L13 D 13 23:48 23:50 0 23:26:58 22:45:15 0 

L13 D to L10 U 18 23:50 23:48 0 22:42:15 23:29:58 1 

ShaoYao
Ju 

L10 U to L13 U 15 23:33 22:48 0 23:01:58 22:42:43 0 

L10 D to L13 U 8 22:47 22:48 0 23:05:11 22:42:43 0 

L13 U to L10 U 16 23:48 23:33 0 22:39:43 23:04:58 1 

 

6.3 Absolute miss 

To compare the frequencies of the “absolute miss” in our optimal timetable to that 

from the current timetable, we count the number of such occurrences at each 

interchange station. Table 9 presents the results from the two timetables. It is found 

that the number of absolute miss is reduced from 20 in the original timetable to 14 in 

our new timetable, 30% of improvement. The average waiting time for connections is 

improved by 169 seconds (per passenger), and the number of connected passengers is 

significantly increased from 201 to 384, about 91% improvement. 

 

Table 9 

Comparisons of original and optimized results 

 Original After optimization Improvement 

Absolute miss 20 14 6 

Coordination 22 28 6 

Transferred passengers 201 384 183 

Total waiting time (sec) 70800 70330 470 
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Average waiting time 
(sec) 

352 183 169 

 

6.4 Transfer direction analysis of weighted parameter l  

In practical operations, transfer direction is an important factor to consider for the last 

train scheduling. For example, the transfer directions to suburban lines are considered 

more important than those to the urban ones because passengers will spend much 

longer time and higher cost to arrive at their destinations if they miss the last train. 

This is a particular feature in Beijing city where a high percentage of commuters are 

distributed along the suburban lines. Therefore, we apply different weighted 

parameter 
sll



 to the different transfer directions on the timetable. As seen in Tables 

10 and 11, the optimized timetable can improve the number of connected passengers 

to 386. Meanwhile, important transfer directions get a nice coordination. The 

passenger waiting time for the successful connections is 42709 sec, decreasing 27621 

sec compared with no weighted model. Figure 10 shows the coordination for 

weighted transfer directions in which the red and the black arrows represent the 

missing direction and the coordination direction between two lines. As shown, each 

transfer direction is associated with the passenger waiting time. If the directions 

cannot be coordinated by last trains, red arrows without waiting times are depicted in 

Figure 10. This may indicate passengers transferring to avoid missing the last 

connecting trains. 

 

Table 10 

The optimized timetable for weighted directions 

Station 
Transfer 
Direction sll


  ,

A
l st  ,

D
l st  

Tra
sllt  

w
sllt  

sllx

 

sllp

 

FuXing
Men 

L2 U to L1 D 1.0 22:09:51 23:03:21 1’30’’ 2’00’’ 1 10 

L2 D to L1 D 1.0 23:01:36 23:03:21 1’30’’ 0’15’’ 1 25 

XiDan 

L4 D to L1 D 1.0 23:25:23 22:57:21 5’00’’   0 1 

L1 D to L4 U 1.5 22:54:21 23:07:39 5’00’’ 8’18’’ 1 2 

L1 D to L4 D 1.5 22:54:21 23:28:23 5’00’’ 9’01’’ 1 1 

DongDa
n 

L5 D to L1 U 1.0 23:08:06 22:57:13 3’00’’   0 5 

L1 U to L5 U 1.8 22:54:13 22:52:10 3’00’’   0 13 
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L1 U to L5 D 1.8 22:54:13 23:11:06 3’00’’ 3’52’’ 1 9 

JianGuo
Men 

L2 U to L1 U 1.0 22:27:21 23:03:13 1’30’’ 4’22’’ 1 12 

L2 D to L1 U 1.0 22:39:36 23:03:13 1’30’’ 2’07’’ 1 7 

GuoMao 
L10 D to L1 U 1.0 23:45:44 23:10:13 4’20’’   0 6 

L1 U to L10 D 1.5 23:07:13 23:48:44 4’20’’ 7’11’’ 1 2 

XiZhiM
en 

L2 U to L4 U 1.2 22:02:21 23:20:39 2’00’’ 6’18’’ 1 10 

L2 D to L4 U 1.2 23:16:36 23:20:39 2’00’’ 2’03’’ 1 18 

L2 U to L13 D 1.9 22:02:21 22:29:12 6’00’’ 0’50’’ 1 4 

L2 D to L13 D 1.9 23:16:36 22:29:12 6’00’’   0 12 

L4 U to L13 D 1.6 23:17:39 22:29:12 7’00’’   0 18 

YongHe
Gong 

L2 U to L5 U 1.3 22:39:21 23:05:10 3’00’’ 2’49’’ 1 17 

L2 D to L5 U 1.3 22:19:36 23:05:10 3’00’’ 2’34’’ 1 27 

DongZhi
Men 

L2 U to L13 U 1.7 22:26:36 22:49:20 4’00’’ 0’29’’ 1 14 

L2 D to L13 U 1.7 22:19:39 22:49:20 4’00’’ 8’44’’ 1 3 

ChongW
enMen 

L2 U to L5 D 1.6 22:20:51 23:16:06 3’00’’ 2’14’’ 1 7 

L2 D to L5 D 1.6 22:44:36 23:16:06 3’00’’ 8’29’’ 1 2 

XuanWu
Men 

L2 U to L4 D 1.2 22:14:21 23:33:23 4’00’’ 5’01’’ 1 3 

L2 D to L4 D 1.1 22:54:36 23:33:23 4’00’’ 4’47’’ 1 15 

HaiDian 
HuangZ
huang 

L4 U to L10 U 1.4 23:32:39 23:31:20 4’00’’   0 14 

L10 U to L4 U 1.4 23:28:20 23:35:39 4’00’’ 3’19’’ 1 30 

BeiTuCh
eng 

L8 D to L10 U 1.1 23:06:36 23:12:20 4’00’’ 1’44’’ 1 3 

L8 D to L10 D 1.1 23:06:36 23:15:44 4’00’’ 5’08’’ 1 2 

HuiNan 
L10 U to L5U 1.3 23:02:20 23:14:10 1’30’’ 0’20’’ 1 43 

L5 U to L10 D 1.3 23:11:10 23:22:44 1’30’’ 0’04’’ 1 1 

LiShuiQ
iao 

L13 D to L5 U 1.1 23:07:12 23:31:10 3’30’’ 0’29’’ 1 1 

L13 U to L5 U 1.3 23:11:20 23:31:10 3’30’’ 6’20’’ 1 5 

L5 U to L13 U 1.9 23:28:10 23:14:20 3’30’’   0 20 

L5 U to L13 D 1.9 23:28:10 23:10:12 3’30’’   0 3 

HuoYing 
L13 U to L8 U 1.5 23:19:20 22:55:36 3’30’’   0 9 

L13 D to L8 U 1.5 22:59:12 22:55:36 3’30’’   0 5 

ZhiChun
Lu 

L10 U to L13 D 1.0 23:21:20 22:37:12 4’20’’   0 21 

L13 D to L10 U 0.9 22:34:12 23:24:20 4’20’’ 4’13’’ 1 1 

ShaoYao
Ju 

L10 U to L13 U 1.2 22:56:20 22:58:20 3’50’’   0 25 

L10 D to L13 U 1.2 23:25:44 22:58:20 3’50’’   0 3 

L13 U to L10 U 0.8 22:55:20 22:59:20 3’50’’ 0’30’’ 1 2 

 Total 42709’’ 28 
38
6 

 

Table 11 



 35 

Optimizing results for the weighted model 

 No weighted Weighted Improvement 

Total waiting time (sec) 70330 42709 27621 

Transferred passengers 384 386 2 

Average waiting time 
(sec) 

183 110 73 

 

 

Fig. 10. Weighted transfer directions with transfer waiting time. In the figure, the red 

arrows represent the missing directions, while the black arrows show the coordination 

directions between two lines. 

7 Conclusion 

The problem of coordinating last train schedules is solved by a bi-level programming 

model, in which the upper level is to maximize the social service efficiency and the 

lower level is to minimize the difference between the operation cost and the subsidy. 

The government subsidy is modeled as a function of the arrival time of the last trains, 

and the effectiveness of the timetable is measured in terms of reductions in absolute 

misses and passenger wait time, and of improvements in connected passengers and 

transfer coordination. Furthermore, the model explicitly represents transfer directions, 

whereby a higher weight is put on transfer to suburban direction than to city center 

direction. This makes the model a weighted bi-level programming model. The upper 
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and lower models are solved by GA and active-set approaches. The article fills a gap 

in the existing literature on train timetable design specifically for the last train 

services, and addresses explicitly the equilibrium between the government subsidy 

and train operating costs. 

An application of the model to the Beijing subway indicates that the number of 

absolute misses is reduced from 20 with the current timetable to 14 with the optimal 

timetable, and the connected passengers are significantly increased from 201 to 384. 

In the weighted model, the important transfer directions produce a good coordination 

between transfer services, whereby the average passenger waiting time is reduced by 

70 sec compared with that from non-weighted model. 

Several extensions of the current work can be explored in future research. The 

subsidy function may be extended to include other factors, such as labor cost, energy 

consumption etc, which would require adding additional variables to the objective 

(and/or as constraints to) of the model, which will greatly increase the complexity of 

the problem. Another area is to model the imperfect running of the train services or 

the variability in train operations, adding for example random variables in the trains’ 
arrival time, the departure time, the dwell time and/or the running time. Besides, more 

extensive validations of parameters, like social benefit parameter and operating cost 

parameter, will be conducted in our further study. 
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