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SUMMARY  

Platform-driven crowdsourced manufacturing is an emerging manufacturing 

paradigm to instantiate the adoption of the open business model in the context of achieving 

Manufacturing-as-a-Service (MaaS). It has attracted attention from both industries and 

academia as a powerful way of searching for manufacturing solutions extensively in a 

smart manufacturing era. In this regard, this work examines the origination and evolution 

of the open business model and highlights the trends towards platform-driven 

crowdsourced manufacturing as a solution for MaaS. Platform-driven crowdsourced 

manufacturing has a full function of value capturing, creation, and delivery approach, 

which is fulfilled by the cooperation among manufacturers, open innovators, and platforms. 

The platform-driven crowdsourced manufacturing workflow is proposed to organize these 

three decision agents by specifying the domains and interactions, following a functional, 

behavioral, and structural mapping model. A MaaS reference model is proposed to outline 

the critical functions and inter-relationships among them. A series of quantitative, 

qualitative, and computational solutions are developed for fulfilling the outlined functions. 

The case studies demonstrate that the proposed methodologies and can pace the way 

towards a service-oriented product fulfillment process. 

This dissertation originally proposes a manufacturing theory and decision models 

by integrating manufacturer crowds through a cyber platform. This dissertation reveals the 

elementary conceptual framework based on stakeholder analysis, including dichotomy 

analysis of industrial applicability, decision agent identification, workflow, and holistic 

framework of platform-driven crowdsourced manufacturing. Three stakeholders require 
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three essential service fields, and their cooperation requires an information service system 

as a kernel. These essential functions include contracting evaluation services for open 

innovators, task execution services for manufacturers, and management services for 

platforms. This research tackles these research challenges to provide a technology 

implementation roadmap and transition guidebook for industries towards crowdsourcing. 

Accordingly, mathematical and computational models are developed within the 

framework to support: 1) value capture function from a functional view for manufacturing 

resource selection and aggregation; 2) value creation function from a behavioral view for 

crowdsourcing task execution decision making; 3) value delivery function from a structural 

view for crowd dynamics modeling and operational protocol revision; 4) cyber kernel as a 

prerequisite for information services of platform-driven crowdsourced manufacturing. 

These coherent technical elements along the service reference model lay the theoretical 

foundation of this research, as described below. 

First, in order to search and select manufacturers through a crowdsourcing process, 

a crowdsourcing contracting mechanism incorporating explicit and inexplicit criteria 

evaluation methods is proposed. It perceives crowdsourcing product fulfillment efforts 

through a cyber platform as tournament-based crowdsourcing, formulated with various 

activities and symbolic systems. The challenge of a crowdsourcing contracting evaluation 

mechanism can be further decomposed as engineering functional and business operation 

reputational evaluation, with explicit and inexplicit criteria, respectively. This research 

proposes a quantitative methodology of manufacturers evaluation for engineering 

functional requirements based on information-content measurements and a decision-tree 

learning algorithm for business operational reputational evaluation of manufacturers 
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through monotonic classification. The results of various criteria are aggregated through 

multi-attribute utility theory. 

Second, based on the platform-driven crowdsourced manufacturing, a 

crowdsourcing task derivation method is proposed to optimally solve the tradeoff between 

product family planning and manufacturing load balancing. It formulates the 

reconfiguration of a series of innovative products as a product family planning problem 

from the front-end, and a manufacturing load planning problem from the back-end, which 

pursuits maximum sale profits and minimum unbalanced task segmentation, respectively. 

It can be mathematically modeled as a bilevel programming problem, solved by a proposed 

nested-bilevel genetic algorithm. 

Third, a networked material flow management service through cross-docking is 

proposed to serve manufacturers to peel off their peripheral activities and concentrate on 

their leading competing edges. As a platform-driven logistics solution, cross-docking 

divides service routes into pickup and delivery routes and enhances overall efficiency by 

exploring similarities among routes and minimizing inventory cost at the depot. A branch-

and-price algorithm is proposed to solve this large-scale combinatorial optimization 

problem efficiently. This logistic service decision-making can be modeled as a 

crowdsourcing vehicle routing problem with cross-docking. A pulse algorithm is applied 

to solve the pricing problem, and a branching heuristic is applied to solve the problem 

effectively and exactly. 

Fourth, to support the optimal decision-making of manufacturers on production 

planning, a real-time order acceptance and accommodation methodology is established. It 
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aims to serve manufacturers with optimal decision making for accepting crowdsourcing 

orders and mixing the incoming and existing orders incorporating the real-time status of 

the manufacturing facility. This problem can be modeled following a bilevel architecture 

with order acceptance and scheduling on the leader level as well as job release planning on 

the follower level. A construction methodology of digital twins of manufacturers’ shop 

floor is proposed, and the algorithmic solution of this bilevel problem incorporating real-

time status is established. 

Fifth, blockchain-based information service systems are proposed to serve all 

stakeholders for crowdsourcing contracting, real-time status monitoring, and product 

fulfillment data management. Adopting blockchain-based smart contracts is a key to 

managing distributive databases to ensure security. The proposed architecture also 

incorporates smart sensing technologies and enables real-time informed decision-making 

in platform-driven crowdsourced manufacturing. 

Sixth, an evolutionary competition-cooperation game model is developed to find a 

robust revision protocol to sustain a prosperous manufacturer population. It formulates the 

cohort decision-making process as an evolutionary model. Thus, enable behavioral 

modeling of adoption and reversion of crowdsourcing strategy in a multi-cluster 

manufacturer population, which serves operation excellence of platforms. 
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CHAPTER 1. INTRODUCTION 

Manufacturing companies are confronted with challenges for satisfying various 

individual customer needs while more efficiently managing product variety for product 

development than their competitors (Brettel et al., 2017, Jiao et al., 2003). The extent of 

market-of-one has been foreseen as a potential driving force for next transformation of the 

global economy, leading to the traditional mass production paradigm being shifted to mass 

customization and personalization (Pine, 1993, Tseng et al., 2010). This paradigm shift 

introduces a large variety to not only the product domain but also the production domain. 

Thus, this change implies a higher variance of demands and markets, as well as a complex 

technology portfolio and dynamic supply chain structure (ElMaraghy et al., 2013).  

Manufacturing companies utilize information sharing and coordination 

technologies to deal with the variety, where companies cooperate with a peer of suppliers 

through a series of fabrications to finish final products in the time deadlines (Sahin and 

Robinson Jr, 2005). Manufacturing companies usually own excess production capacities 

to avoid the violation of the deadline, while approaching manufacturing capabilities and 

resources from a scalable and changeable production network is a more efficient way to 

adjust capacities (Freitag et al., 2015). The cloud-based manufacturing resource sharing 

can explore the value of idle resources, as well as utilize the excess capabilities from the 

cooperation of the global supply chain (Wu and Yang, 2010). Following the vision of 

industry 4.0, the synergy of the highly customized products and intense competition 

challenges the manufacturers with a decreased product lifecycle, quick response to 

emerging technologies, and agile organization structure (Brettel et al., 2017). 
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1.1 Open Business Model  

The open business strategy has been recognized as an efficient way of constructing 

a quick response problem-solving system in terms of utilizing external assets and 

knowledge to develop its own capabilities (Chesbrough and Appleyard, 2007). An open 

business strategy can be defined as participating in an open initiative to capture value, 

which can be divided into the reliance of the external assets or knowledge and the access 

to project results by external partners (Appleyard and Chesbrough, 2017). It has been 

witnessed that a growing amount of companies have adopted open business strategies and 

geared towards the installation of open business models through their business activities, 

which have achieved an agile enterprise structure and more massive capability arsenal 

(Kortmann and Piller, 2016). The open business model allows the creation of whole new 

complementary links in a value chain, which explicitly arranges the stakeholders along 

with positions of value creation, deliveries, and capturing (ElMaraghy and ElMaraghy, 

2014). This openness provides the structure to integrate the various external partners to 

ease the installation of new technologies and scaling up of capabilities. 

In a manufacturing environment, the external suppliers act as a subcontractor who 

serves the value chain with its core competence, while the core company can outsource its 

peripheral economic activities and focus on its essential competitive edges (Trentin et al., 

2012). This outsourcing can decompose the volatile yet complex value chains to simpler 

jobs, which potentially enables the subcontractors to handle the variety by exploring the 

commonalities among the jobs to maximize the reutilization of their competitive edges 

(Jiao et al., 2007a). The concentration of the competitive edges will enhance the production 

volume in companies’ core manufacturing activities to achieve economies of scale in a 
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high product and production variety as well as a significant variance of demand 

environment (ElMaraghy et al., 2009). The mass cooperation of the manufacturers entails 

a highly interactive manufacturing network that relies on the cooperative collaboration 

mechanism along the value chain (Tapscott and Williams, 2008). 

1.2 Platform-Driven Crowdsourcing 

Crowdsourcing has been recognized as a connecting approach to installing the open 

business model by transcending organizational boundaries in order to leverage resources 

and capabilities across distributed stakeholders (Kohler, 2015). Different from the 

conventional strategy of outsourcing in supply chain management that emphasizes how to 

assign a task to a designated agent, crowdsourcing utilizes an open call to a crowd for 

maximally exploiting the external resources (Bücheler and Sieg, 2011). Crowdsourcing 

entails a new value-based model as a social-economic computational platform in which 

products and services are created and delivered in an open, collaborative, and distributed 

manner (Green et al., 2017). As a computational production platform, crowdsourcing is a 

large problem-solving model that utilizes Internet technologies to coordinate, negotiate, 

and manage the crowds for performing the specific organizational tasks (Saxton et al., 

2013). It implies a superior broker system to coordinate the information and material flow 

among the stakeholder crowds and therefore enable the companies to crowdsource their 

peripheral activities and concentrate on their core competitive edges (Redlich and Bruhns, 

2008).  

Among many perspectives of crowdsourcing, we approached from a platform-

driven method to peel out the coordinating and negotiating responsibilities from the 
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crowdsourcer and eases the way of applying the open business model as the foundation of 

product innovation and development. Following a “four pillars” taxonomy of the 

crowdsourcing, namely the crowd, crowdsourcer, crowdsourced task, and crowdsourcing 

platform, precisely, the crowdsourcing platform plays an intermediate role between the 

crowdsourcer and crowd (Hosseini et al., 2014). Thus, the crowdsourcing platform can 

help the crowdsourcer to explore external knowledge and resource by coordinating the 

activities of designers and manufacturers to achieve a collaborative product fulfillment 

network.  

A stream of state-of-the-art information and communications technologies (ICT) 

and industry trends enable the platform to transcend the partners’ borders extensively and 

build up information exchanging network as a driving power for the crowdsourcing product 

fulfillment process. This platform-driven and collaborative integration of various business 

and operation processes forge an extended enterprise, in which crowdsourcing and early 

involvement of partner crowds become new competitive edges for innovative products 

development (Füller, 2010). The integration of smart sensors and the networked 

manufacturing systems has established a cyber-physical manufacturing environment, 

where the synergy of Internet of Things (IoTs), big data analysis, machine intelligence and 

the conventional manufacturing technologies, like computer integrated manufacturing 

system (CIMS), supply chain management (SCM), production logistics has stimulated a 

gigantic manufacturing technology advancement for crowdsourcing product realization, 

which is collectively envisioned as Industry 4.0 (Schwab, 2017). Owing to the 

competitiveness in collaboration across multiple entities towards an enterprise with an open 

yet virtual architecture, decentralization has been recognized as one core characteristic of 
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Industry 4.0 (Schuh et al., 2014). Many advancing enterprise information technologies 

have been advocated, and continuously emerging, for the achievement of a digitalized 

enterprise. Specifically, the new advantages of discrete event simulation (DES), model-

based system engineering (MBSE), and CAX software provides the possibility of modeling 

the manufacturing activities from a distance (Jahangirian et al., 2010). The synergy of 

cyber-physical systems (CPS) and manufacturing execution system (MES), enterprise 

resource planning (ERP) in a manufacturing environment vertically integrates the real-time 

data from the equipment fleet and the cyber architecture based on a digitalized platform 

(Weyer et al., 2015).  

A successful application of the open business model requires collaboration among 

external partner crowds sharing resources and capabilities along with a coherent product 

fulfillment flow (Simard and West, 2006). The platform-driven method can be installed to 

penetrate the partners’ boundaries and utilize the data stream to enhance the product 

fulfillment activities to a collaborative-crowdsourcing one. Thanks to the platform peel the 

peripheral activities of the manufacturers and links to a large population of the partners, it 

drives the collaborative-crowdsourcing product fulfillment workflow by formulating the 

functions, interactions, and processes (Gong, 2018). 

1.3 Smart Manufacturing 

The recent technological trends reshape the product realization facility to a smarter 

and more autonomous system, which enables the manufacturing companies to optimize 

material flow for large manufacturing network accommodation, implement predictive 

decision-making scheme for dynamic reaction, agile reconfiguration for end-to-end 
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throughput improvement, as well as the optimal partner allocation for cost minimization 

(Crawford, 2018). These revolutions bring ubiquitous connectivity to the manufacturing 

environment, which allows the collection of significant volumes of dispersed information 

and leads to the support of distributed decision-making in the context of manufacturing 

(Monostori et al., 2016). The blockchain technology enables a distributed and decentralized 

knowledge management system to support the connecting among the manufacturer crowds 

in an open environment (Li et al., 2018a). Besides, to connect to the decentralized 

computing power, the synergy of cloud computing and edge computing explores the 

connections through a virtual platform (Li et al., 2018b). This synergy has transformed 

manufacturing into an agile and intelligent process, which paves the way for adopting open 

business models via autonomous reconfiguration of the distributed manufacturing 

resources (Rosen et al., 2015). 

Such technological progress consolidates the foundation of the future 

manufacturing paradigm shifts. Open manufacturing explores the technical prerequisite 

and information architecture for a manufacturing company to install open business models, 

which aims to achieve an open yet agile enterprise architecture and integrates external 

resources to its own fulfillment workflow based on a crowdsourcing information platform 

(Li et al., 2018b). The achievement of an open architecture envisions a transformation 

towards a large-scale cooperative product fulfillment model, which connects a large 

manufacturer peer crowds and reconfigure a collaborative network to satisfy volatile 

customer needs. The requirement of accommodating a dynamic and collaborative network 

implies the adoption of a service-oriented paradigm which installs X-as-a-service to the 

manufacturing regime as service manufacturing (Kusiak, 2019). Social manufacturing 
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studies the interactive relationship among the manufacturer crowds, which formulates the 

construction of a manufacturing network as an autonomous organizing process (Jiang et 

al., 2016a). The paradigm of cloud-based design and manufacturing offers the framework 

of connecting smart entities across a population of companies, thus, enable a demand-

capacity matching mechanism to serve the collaboration for product realization (Wu et al., 

2015).  

Specifically, the crowdsourced manufacturing has been proposed based on the 

application of cloud-based design and manufacturing. It has been further developed to 

organize a dynamic resource sharing mechanism across manufacturers in a crowd to 

achieve the production network construction from a large manufacturer population 

(Kaihara, 2001). The coordination mechanism, which is offered by the crowdsourcing 

platform, synchronizes manufacturing activities across the companies and lets the 

manufacturer own an excessive capacity from the cooperation of the partners in the 

production network (Freitag et al., 2015). The resource matching and pricing mechanisms 

enable a cloud-based capability and knowledge exchanging marketplace to accelerate the 

production network reconfiguration process (Kang et al., 2016). From the variety 

management perspective, crowdsourced manufacturing provides a rapidly responsive 

reconfiguration of the existed resources and knowledge to serve volatile customer needs.  

1.4 Research Objectives 

The primary objective is to investigate the platform-driven crowdsourced 

manufacturing to achieve Manufacturing as a Service (MaaS). The specific objectives and 
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motivations are organized in Figure 1-1. Accordingly, the primary objective can be 

decomposed into the sub-objectives that are to answer the following research issues: 

1) How to model and analyze crowdsourced manufacturing workflow across all 

decision agents systematically; 

2) What are the models and mechanisms for crowdsourcing tasks execution; 

3) How to serve the information flow across the decision making in crowdsourced 

manufacturing; 

4) What operational protocols can sustain a long-time prosperity of the manufacturer 

crowds. 

 

Figure 1-1 Research motivations and objectives 

Towards this end, the corresponding objectives are proposed as follows. 
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1.4.1 Model and analyse platform-driven crowdsourced manufacturing workflow for 

crowdsourcing supply network reconfiguration 

Objective 1 proposes a workflow to organize all decision agents in a crowdsourced 

manufacturing workflow. In line with the principles of axiomatic design (Suh, 1998), the 

product fulfillment process comprises a set of cascading mapping of “what-how” 

relationships across four consecutive domains, including the customer, functional, 

physical, and process domains. Systematic design decisions in each of the domains are 

characterized by the Customer Needs (CNs), Functional Requirements (FRs), Design 

Parameters (DPs), and Process Variables (PVs), respectively. Traditionally, the mapping 

decisions from one domain to another are processed centrally within one enterprise (Jiao 

et al., 2007a). With the adoption of the open business model, such decisions are becoming 

decentralized across many decision agents while transcending organizational boundaries 

in order to leverage resources and capabilities through crowdsourcing (Montes and 

Goertzel, 2019). The platform-driven crowdsourced manufacturing should ensure the 

responses from crowds can satisfaction of customers, which implies the requirement of 

robust and generic contracting evaluation mechanisms. 

It is hypothesized that a proper crowdsourced manufacturing workflow can present 

the full function of crowdsourcing in the context of manufacturing, which specifies the 

interaction sequence, functional domains, information flow, material flow, and contracting 

evaluation mechanism among the decision agents. 

1.4.2 Investigate the methods and mechanism to support crowdsourcing task execution 
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Objective 2 propose service-oriented systematic methods and mechanisms to ease 

the accommodation of crowdsourced manufacturing. The motivation of the manufacturer 

to participate in crowdsourced manufacturing is capturing the value of its abilities to 

manage manufacturing resources, planning the process, and executing the crowdsourcing 

tasks. It relies on the cooperation of the open innovators and platform to serve the 

manufacturer with a system of approaches to link the upstream and downstream partners, 

as well as to touch and connect the customers. This service system offers functions as 

planning an arsenal of manufacturing capabilities to fulfil a broader market, rapid 

configuration of the manufacturing network, and material flow management tools to 

accelerate the manufacturer’s accommodation of crowdsourced manufacturing. 

It is hypothesized that a service system can restructure the design of the innovative 

products to the executable crowdsourcing tasks, serve these tasks with logistic services, as 

well as the decision-support for accommodating these tasks in the model of crowdsourcing.  

The objective can be further decomposed into three sub-objectives, which aim to 

solve problems in the product, platform, and manufacturing domain, respectively. The first 

sub-objective is crowdsourcing task derivation and decomposition to serve the 

transformation of the product design to executable crowdsourcing tasks. The subsequent 

sub-objective is planning the material for the task flow to transport the material and work-

in-progress (WIP) in time based on the partner selection. The last sub-objective is 

developing a systematic method to help the manufacturers determine the acceptance of the 

tasks and mix the tasks to their shop floor, according to the real-time situation. 
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1.4.3 Crowdsourced manufacturing information service system analysis and architecture 

design 

The third objective is the development of a decentralized information management 

system to serve the decision agents. Because the manufacturers are searched by 

crowdsourcing to serve the value chain fulfillment, these agents can be widely dispersed. 

Data management in crowdsourced manufacturing is challenged to handle the process data, 

which is generated by the dispersed partners. Moreover, these process data stream should 

be visited by both open innovators and platforms for execution quality monitoring and 

large-scale cooperation of the manufacturers, respectively. The synergy of the cloud 

database and blockchain technology offers the distributed query and retrieve services for 

the manufacturing data source from the machine level data, manufacturing resources data, 

production data, as well as logistic data (Li et al., 2018a). The platform-based blockchain 

structure for IoT can also ease the adoption of crowdsourced manufacturing since it enables 

interactions among manufacturers via smart contracts in a dispersed and peer-to-peer 

network without intermediary trust (Bahga and Madisetti, 2016). 

It is hypothesized that an information service system can serve the decision agents 

in crowdsourced manufacturing with the required information and decision support, which 

can manage the distributed product fulfillment data, backtrack the fulfillment process, as 

well as provide optimal decision-support on the resource planning. 

1.4.4 Crowdsourced manufacturing operational protocols optimization and simulation 

The fourth objective is investigating managerial protocols to make optimal 

decisions on the operation of the two-folded demand-capacity marketplace to achieve long-
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time prosperity. Different from the traditional product manufacturing process, which plans 

the manufacturing processes inner an enterprise or outsources several peripheral activities 

to designated partners, the decision making in the crowdsourced manufacturing shows a 

collective and distributive characteristic. Thus, MaaS requires moving beyond exclusive 

use of hierarchical decision making, drawing on the power of crowdsourcing and markets 

wherever possible. Because the crowdsourced manufacturing entails competitive and 

collaborative workflows that relies on a group decision support system to facilitate the 

problem-solving process (Thuan et al., 2013a), a successful operational protocol indicates 

an understanding of the behaviour and evolution of not only manufacturer individual but 

also the crowd population. The existence of evaluation and awarding processes imply a 

natural competition inner a manufacturer cluster. Due to the product realization relies on 

the mass-collaboration across the manufacturer clusters, the inter-cluster cooperation is 

observed, which can enhance the capability of the manufacturer population to attract more 

open innovators. 

It is hypothesized that it can consider the evolutionary competition-cooperation 

relationship in the manufacturer population and provide a robust “if-then” scenario to 

predict the evolution of the population. 

1.5 Organization of This Dissertation 

In this regard, this dissertation proposes platform-driven crowdsourced 

manufacturing as a systematic solution towards the installation of MaaS. Figure 1-2 

presents the technical roadmap of this dissertation, including motivation & significance, 
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problem formulation, technical approach, methodology & solution, and validation & 

application. 

Chapter 1 discusses the motivation and significance of this research topic, along 

with a holistic view of research goals and scope. Chapter 2 provides a comprehensive 

review of various topics related to this research. 

Chapters 3, 4, and 5 are responses to research objective 1. Chapter 3 proposes the 

conceptual framework through stakeholder analysis. It explores applicable industries, 

essential stakeholders, and their driven forces towards platform-driven crowdsourced 

manufacturing. A running case study of tank trailer crowdsourcing is presented to examine 

the potential of platform-driven crowdsourced manufacturing. This chapter sketches 

essential concepts to formulate crowdsourced manufacturing in terms of workflow on the 

project level, holistic framework, as well as networked information and material flow 

across decision agents. 

Chapter 4 formulates the key research problems of this dissertation. It presents the 

fundamental issues underlying platform-driven crowdsourced manufacturing through a 

structural implication approach. These fundamental issues help provoke insights into how 

to solve them systematically. 

Chapter 5 proposes a crowdsourcing contracting evaluation mechanism to select 

manufacturers considering the satisfaction of the customer. The evaluation process can be 

decomposed into engineering functional performance and business operational ranking to 

reflect the efficiency of performance delivery to customer expectation range and business 

reputation through historical review, respectively. 
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Chapters 6, 7, and 8 are devoted to gear forward research towards research objective 

2. Chapter 6 reports the development of task derivation and decomposition of the 

executable crowdsourcing tasks based on the Stackelberg game-theoretical decision-

making scheme. This chapter formulates the profit maximization problem in the front-end 

customer domain as a product family planning problem, which can be solved as a 

combinatorial problem to seek an optimal solution of a combination of function modules. 

Since the product functional modules have intrinsic connections to manufacturing 

processes, the decomposition of innovative products into crowdsourcing tasks entails a 

manufacturer load planning problem, which can be formulated as a separation optimization 

problem. A bilevel joint optimization algorithm is proposed and validated in Chapter 6.  

Chapter 7 is devoted to logistic service modeling for manufacturers to handle a 

networked material flow across the agent crowd. A crowdsourcing environment introduces 

dynamic and networked material flow to logistic service in platform-driven crowdsourced 

manufacturing. Adopting an X-as-a-Service, MaaS requires the platform to provide logistic 

decision support services through vehicle route planning. A pick-up and delivery problem 

with crossdocking is formulated and solved through an effective branch-and-price 

algorithm. 

Chapter 8 focuses on the interactive bilevel optimization formulation for 

crowdsourcing task acceptance and accommodation by investigating the interplay between 

task allocation on a supply chain perspective and order rescheduling on a factory 

perspective. It builds a digital twin of the manufacturer’s shop floor based on a max-plus 

algebra model, which enables reflecting real-time data on a decision-making service. It 

formulates a real-time order acceptance and scheduling for data-enabled permutation flow 
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shops, which is solved by a bilevel interactive programming algorithm. Finally, a case 

study and comparisons with prevailing approaches are reported. 

Chapter 9 conducts an architecture design of a blockchain-based smart contracting 

and distributed data management system for information services to all stakeholders in 

platform-driven crowdsourced manufacturing. This chapter reflects research objective 3. It 

uses smart contracting technology to solidify a crowdsourcing supply cooperation network 

and use it as an encryption key to manage product fulfillment data. A blockchain-based 

database is established to manage wide dispersed product fulfillment data. The 

stakeholders in platform-driven crowdsourced manufacturing can stream product 

fulfillment data from Industrial IoTs and enterprise software. Finally, a case study is 

reported to reflect the potential of the proposed architecture. 

Chapter 10 introduces optimal operational protocol derivations and adjustment 

mechanisms for platform-driven crowdsourced manufacturing. This chapter adopts a 

population dynamics perspective to model the behavioral interactions among manufacturer 

clusters and formulates an optimal operational protocol derivation problem as an 

evolutionary competition-cooperation game. An optimal operational protocol can be 

explored by finding an equilibrium point and the corresponding stability analysis.  

The last chapter, Chapter 11 summarizes the achievements in addressing the 

research objectives and issues. A critical assessment is given to highlight the limitations 

and possible improvements of this research, along with recommendations for future work. 
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Figure 1-2 Organization of this dissertation 
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CHAPTER 2. LITERATURE REVIEW 

2.1 From Open Business Model to Open Manufacturing 

The business model is defined as a framework that consists of stakeholders 

gathering structures, as well as the methods of creating, delivering, and capturing the value 

(Zott et al., 2011). The purpose of a business model is to provide a set of heuristic logic to 

connect the technical ideas and realize the economic value (Chesbrough and Rosenbloom, 

2002). With the opening of the conventional enterprise borders, the company can explore 

a larger volume of ideas and knowledge, as well as utilize a broad spectrum of external 

assets, resources, and positions for a more efficient value capturing (Chesbrough, 2007). 

The open business model is coined by Chesbrough to describe the linking organizations 

outside the company border to yield new products or services by using the power of 

division of labor (Chesbrough, 2006). Following the generic product development process 

in engineering design (Eppinger and Ulrich, 2015), the open business model provides the 

transition of conventional product fulfillment to a series of open activities. The mapping 

relationship of the open innovation, open design, and open manufacturing with generic 

product development process is shown in Figure 2-1. 

 

Figure 2-1 Generic product development process 
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As an earlier base of the open business model, open innovation is applied to depict 

the distributive innovation process based on purposively managed knowledge flows across 

the boundaries of organizations (Bogers et al., 2017). Companies have widely recognized 

the open innovation as an accelerator for the internal leap from research to development 

and market expansion of external acquisition of their knowledge (Vanhaverbeke and 

Chesbrough, 2014). In contrast to the traditional vertical integration model, the open 

innovation horizontally structures a dynamically interactive network for various clusters of 

autonomous firms throughout the innovation process (Dhanaraj and Parkhe, 2006). 

Moreover, from a value chain perspective, an increasing amount of the industries organize 

the firms as a central platform structure, where the core firm seeks the inflow of the external 

knowledge for their targeted markets, while the surrounding firms outflow their knowledge 

to help the core company to save the cost from do-it-all-yourself (Gawer and Cusumano, 

2014). Through this innovation network, the participating firms of the open innovation can 

identify their market opportunities, link to the advanced research and technology, collect a 

variety of product concepts, as well as initiate the configuration of product family 

architecture (Grönlund et al., 2010). From a product development perspective, open 

innovation provides a systematical method to install the open business model to cover 

product planning, along with the concept development, and end at the transition stage of 

system-level design. 

Targeted at the later product innovation and development process, the open design 

depicts the installation of the open business model by design communities to open the 

border of the company, collaborate with the external designer crowds, and achieve a 

flexible design capability (Boisseau et al., 2018). The concept of the open design originates 
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from the free/libre open-source software (F/LOSS), which has created legends like Linux 

and Wikipedia (Weber, 2004). The open design enables a decentralized development 

process, a dynamic development structure, as well as the involvement of a crowd of 

developers (Wheeler, 2011). Since the physical products are increasingly data-driven and 

digitalized, the open business model propagates from digital information processing to the 

design of tangible products (Raasch et al., 2009). The concept of the open design has been 

defined as the designers allowing external partners to access, modify, and derive from the 

product design (Micklethwaite, 2012). Based on the designer crowds and advanced Internet 

access, open design structures a collaborative design team from external designer crowds 

and harmoniously integrates the design outcomes (Koch and Tumer, 2009). Open design 

is capable of parametric design of modularized design tasks based on a given product 

architecture (Vallance et al., 2001), as well as aggregate design results with a systematical 

computation mechanism to coordinate the numerical conflicts (Binnekamp et al., 2006). 

These developments of open design imply that it can be served as a transforming approach 

to gear the transition stage of system-level design to detail design and the start of product 

testing and refinement towards more open activities. 

The rise of smart manufacturing enables a highly democratized manufacturing 

network, which is characterized as decentralized, service-oriented, and easy to access (Bull 

and Groves, 2009). The democratization of the manufacturing will lead to the installation 

of the open business model, which is empowered by a dynamic network of agents who are 

acquiring technologies and resources in a self-directed and ad hoc way (Richardson, 2016) 

This post-Fordism sociotechnical trends can be summarized as open manufacturing to 

depict this manufacturing ecosystem. The open manufacturing integrates the 
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manufacturing resources and knowledge from the distributed manufacturer community by 

a decentralized network to support the manufacturing operation (Li et al., 2018b). The 

collaboration of the manufacturer crowds utilizes cloud computing technologies to access 

the manufacturing agents, as well as blockchain for production knowledge and information 

exchanging (Li et al., 2018a). An open-source exchanging marketplace will provide a 

variety of external manufacturing technologies and sharing excessive manufacturing 

resources and capabilities, which will ease the configuration of manufacturer crowds to a 

collaborative team for fulfilling various product orders (Banerjee et al., 2015).  

2.2 Collaborative-Crowdsourcing Product Fulfillment 

Among the approach of accessing external knowledge and resource to implement 

an open business model, crowdsourcing has been highlighted as an ICT-enabled and social 

media-based innovation tool (Kittur et al., 2008, Martini et al., 2014). This concept has 

been introduced to describe the utilization of open calls to form a peer-production for a 

task from a crowd of undefined people (Howe, 2006). Thanks to the wisdom of crowds, 

the collection of intelligence from a large group of heterogeneous participants are believed 

to show the superiority of a limited group of elites (Leimeister et al., 2009). Several factors 

have been highlighted as the impulses of the participants, includes self-market or 

promotion, tangible or intangible compensation, social fames, and reputation, to name but 

a few (Bayus, 2010).  

Since the crowdsourcing mechanism has been recognized as beneficial to problem-

solving for the technical tasks, a stream of research has geared forward the formulation of 

crowdsourcing. Surowiecki (2005) identifies four essential prerequisites to ensure the 
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successful crowdsourcing decision-making: 1) diversity, each participant can offer unique 

knowledge or capabilities; 2) independence, to avoid the influence from peers; 3) 

decentralization, the information is sharable for locally process by participants; 4) 

aggregation, the fulfilled crowdsourcing tasks can be collectively aggregated. Bonabeau 

(2009) divides the crowdsourcing decision-making processes into two stages, the 

generation of possible solutions and the evaluation of these solutions. The essential 

cornerstones of crowdsourcing have been summarized as: 1) the application of open calls 

to explore the crowd; 2) a task set that needs to be fulfilled; 3) compensation of the 

contribution (Allon and Babich, 2020). Considering the complexity of the crowdsourcing 

task set, the success of crowdsourcing emphasizes independence and decentralization in 

the solution generation process to ensure the cognitive diversity, as well as the semantic 

coherence of the most successful solution sets to ensure the aggregation (Rosen, 2011).  

The advancement of ICT brings ubiquitous connectivity to the decision-making 

entities worldwide through the mobile network and social media. Meanwhile, the synergy 

of industrial IoTs and CPS paves the way for an extensive collaboration among the 

practitioners from industry. Several industry pioneers have started the installation of 

crowdsourcing. These practices can be generally divided into two categories, existed giants 

operate a designated platform to reach the external resources via crowdsourcing to majorly 

serve their market, like MyStarbucks operated by Starbucks and Haier Open Partnership 

Ecosystem (HOPE) by Haier, as well as the third-party company operate a crowdsourcing 

platform to serve their customer’s market, like Amazon Mechanical Turk and ZBJ.com in 

China.  
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A stream of researchers summarizes the classification methodology to analyze the 

type of these crowdsourcing practices. Based on the types of requirements and collecting 

methods of contributions, two dimensions has been summarized as subjective or objective 

contents, as well as aggregated or filtered contributions (Prpić et al., 2015). The research 

of crowdsourcing has revealed a series of crowdsourcing model from the industry 

application based on the characteristics of the demands, which includes “winner-takes-all” 

or multiple responses, defined task or unresolved problem, individual efforts or 

collaborative manners, crowds qualification, activity-targeted or fundraising, requirements 

on response qualities, activeness of participation, to name but a few (Grewal-Carr and 

Bates, 2016). Since collaborative-crowdsourcing product fulfillment is a process to realize 

the innovative product planning, the crowdsourcing tasks can be identified as an explicitly 

defined design or manufacturing requirement. Thus, it requires qualified designers and 

manufacturers to fulfill the tasks through a series of design solution derivations and 

fabrications, respectively. The crowdsourcing models for the collaborative-crowdsourcing 

product fulfillment task are sketched in Figure 2-2. 

 

Figure 2-2 Crowdsourcing models for product fulfillment tasks  
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The crowdsourcing models for defined crowdsourcing tasks can be classified into 

three categories based on their openness, business motivations, and operation management 

issues: 1) Open collaboration, 2) Tournament based crowdsourcing, and 3) Virtual labor 

market (Allon and Babich, 2020). Open collaboration is a social media-based idea 

searching approach, where the organizations publish crowdsourcing tasks to a community 

of agents and aggregate the responses in the community to serve the decision making. In 

this approach, the crowdsourcing task can be identified as an unsolved problem, which has 

no sophisticated problem definition but expects innovative contributions after a mass 

collaboration of the community. This crowdsourcing type usually has no monetary 

incentives for the agent crowds, and the agents are not expecting to be qualified as an 

entering barrier in most cases. Tournament based crowdsourcing formulate a series of 

activities to let the seeker connect to the solvers and select the winner after idea 

competition. The existence of the tournament implies more objective incentives and a 

relatively open environment, as well as the stimulation of competition among solver 

crowds. In contrast, the virtual labor market entails a web-based platform that plays an 

intermediate role between the crowdsourcer and a crowd with required qualifications. The 

platform can match the capabilities in the crowd and the requirement of a crowdsourcing 

task. It has also been observed that the platform can play an evaluation role to test the 

program (i.e., Upwork) or service monitoring (i.e., Uber and DiDi).  

The crowdsourcing tasks in the virtual labor market can be further classified by the 

problem scale, the wellness of problem definition, and the specialty of required skills. The 

microtask model serves a well-defined problem structure, which is easy enough to be 

classified as an everyday task. This model can be identified as an extension of the 
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traditional subcontracting, which explores the natural resources external from the 

company. The emerging Instacart and Uber is a microtask crowdsourcing application in 

the service industry sector. The Mechanical Turk by Amazon can serve the user-involved 

product design by hiring a crowd of potential customers for the prototype survey. The 

mesotask is a well-defined task that expects the specialist to provide routine and 

straightforward solutions. It has an explicit expectation on solution quality, delivery 

quantity, and methods, as well as the violation terms. This model can be used for software 

development as well as mechanical fabrication, which has a clear process routine and a set 

of specified qualifications. The efforts for the mesotask are less complicated and innovative 

comparing with the macrotask model. The macrotask serves the complex crowdsourcing 

objective, which is often installed on the research and development of the product or 

strategic consultant. The efforts for macrotask are more knowledge-based and subjective, 

which can help the crowdsourcer to expand their knowledge and resource arsenal without 

owning a designated department or sign a long-term subcontract. For example, the HOPE 

platform enables Haier to develop broad connections to an ocean of research groups to 

develop new products.  

Although recognized as an emerging paradigm of product development by both 

industries and academia, there is a lack of systematical installation roadmap of 

crowdsourced product development (Shergadwala et al., 2020). Crowdsourcing can be 

utilized for product idea generation, concept design, detailed design, physical prototyping, 

and design evaluation, which are the essential product innovation and design stages in the 

new product development (Tran et al., 2012). The generic crowdsourcing process for new 

product development can be summarized as five consecutive stages, namely task definition, 



 25 

task broadcasting, response collection, response evaluation, and winner awards (Qin et al., 

2016). After the product planning and design stage, crowdsourcing has been explored to 

install on the production stage. The concept of crowdsourced manufacturing originates 

from the cloud-based manufacturing system, which reflects a manufacturing capability 

sharing and production organizing mechanism among the cloud-based and widely 

connected manufacturing network (Wu et al., 2015).  

2.3 Industry Initiatives Toward Crowdsourcing  

Crowdsourcing has been widely applied to a spectrum of industries worldwide. 

Recognizing the power of “wisdom of crowds,” rapid growth in the crowdsourcing sector 

is observed to enable a broad application to a spectrum of industries. Figure 2-3 shows the 

annual number of investments and the corresponding amount on crowdsourcing companies 

in China from 2006 to 2018. It shows that a large amount of investment has been devoted 

to incubating the funding of crowdsourcing companies, which implies a rapid growth in 

the past decades. 

 

Figure 2-3 Investment on crowdsourcing in China  
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Figure 2-4 summarizes the representative crowdsourcing platform companies in 

terms of their targeted markets, founded time, and the latest monthly page views of their 

domain page. A sizeable monthly page view number implies a prosperous crowd ecosystem 

and substantial fulfillment capability. The average monthly page view number of the 

selected representative companies is around 300 thousand.  

 

Figure 2-4 Representative Crowdsourcing Platform Companies 

The crowdsourcing platform companies like Amazon Mechanical Turk and 

Samasource paves the way of connecting a large amount of labor to the companies to fulfill 

micro-tasks at a relatively low cost. Thanks to the massive amount of the Internet users, 

Amazon Mechanical Turk can sustain a large yet diversified crowd to serve the human-

subject survey, data annotation, as well as the data cleaning and verification, to accelerate 

the development of artificial intelligence-related projects (Buhrmester et al., 2016). 

Samasource, a company established in 2008, utilizes the exponentially growing Internet 
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users globally by employing low-income workers in the developing countries to providing 

high-quality, large-scale training data for profit (Ojanperä et al., 2018).  

Compared to the micro-task, which only requires the crowds to have general 

capabilities, crowdsourcing can also link the expert crowds. The crowdsourcing platform 

companies in China have linked a large population of developers and serves the ICT giants 

like Alibaba and Huawei with heterogeneous capabilities and rapid response, which 

includes proginn.com, Code Mart, zb.oschina.net, mayigeek.com, to name but a few. Out 

of the IT-related industries, the leading home appliances and consumer electronics 

manufacturer Haier has installed the open business model and established HOPE to 

restructure the centralized enterprise to “a sea of entrepreneurs” and sustain a vast 

innovation ecosystem to serve the product research and development for their appliance 

sector (Chen, 2016). The HOPE platform provides crowdsourcing services for both internal 

development teams and external partners, which achieve a series of successful products by 

gathering the “wisdom of crowds” (Lewin et al., 2017). The local motors, which is founded 

in 2009 as a US vehicle manufacturing company, explores the design ideas via 

crowdsourcing and manufacturing the products by the cooperation of the manufacturer 

network (Norton and Dann, 2011). Crowdsourcing can also serve the mechanical 

fabrication, by linking the demands and fabrication capabilities, like machining, metal 

sheet forming, heat treating, along with others. Vtoall.com is a Chinese fabrication 

crowdsourcing platform that serves a two-sided marketplace for demands-capability 

matching.  

Since the graphical design relies less on the physical assets like manufacturing 

facilities and equipment than IT and manufacturing industries, crowdsourcing can establish 
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the approaches to the designer crowds. Designhill serves the design service with a broad 

spectrum of logos, websites, apparel, and other projects by linking a large crowd of 

designers. Threadless is a more expertized company that operates an online artist 

community and e-commerce to fulfill volatile t-shirt and other apparel customer needs. The 

stock photography company iStock provides photos and video transaction services in a 

crowdsourcing way, which serves a large crowd of creators. The societal issue is a less 

objective and complex problem that influences a large number of individuals in a society. 

Crowdsourcing company OpenIDEO is a social impact platform that builds connections to 

a crowd of companies to solve the tough social problem (Fuge et al., 2014). 

Thanks to the development of crowdsourcing and related Internet technologies, 

some crowdsourcing companies broaden their targeted market sectors and restructure their 

platform to a general purposed platform. InnoCentive is funded by Eli Lilly and Company 

to accelerate the research internal of the companies. However, after a series of partnerships 

and acquiring, the InnoCentive is a general purposed open innovation and crowdsourcing 

company to allow the organization to publish the problem as well as the problem solvers 

to earn monetary rewards and reputations. ZBJ.com is a Chinese crowdsourcing company 

that started from targeting industrial design to coverage of legal services, marketing 

services, ICT development, software engineering, engineering design, and graphical design 

by utilizing problem solver crowds. Upwork is a virtual labor marketplace that enables 

demand-expertise matching and remote collaboration to serve a broad spectrum of 

industries. EPWK.com is a creative crowdsourcing service company in China, which 

serves small and medium companies with project planning and marketing services, 

knowledge, and software development transactions and services.  
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These successive industry initiatives verify the feasibility of crowdsourcing and 

value of “wisdom-of-crowds,” thus, pave the way of installing crowdsourcing to the 

manufacturing environment by forging a collaborative and coordinated manufacturing 

network. 

2.4 Emerging Consensus on MaaS 

As an emerging technology vision, smart manufacturing reshapes the landscape of 

manufacturing industries with sensors, computing platforms, communication technologies, 

as well as data-intensive modeling and predictive engineering (Kusiak, 2018). Driven by 

the advancement of the knowledge exchange marketplace, sharing economies on the 

manufacturing shop floor, as well as increasingly democratizing and opening trends, smart 

manufacturing is characterized as decentralized, service-oriented, and platform-based 

(Kusiak, 2019). Originates from network manufacturing that uses centralized 

crowdsourcing, the open manufacturing adopts decentralization ideology. It utilizes 

blockchain and edge computing to construct a cross-enterprise knowledge and service 

sharing framework (Agostinho et al., 2016, Li et al., 2018b). The open manufacturing can 

be viewed as an incubator for small and medium manufacturers since it regulates the 

knowledge and service sharing standards and protocols. It can support manufacturers to 

develop scalable and flexible business scale at a lower cost and eventually improves the 

overall quality, efficiency, and effectiveness of manufacturing services. From a supply 

chain aspect, the open manufacturing decouples design, logistics, and service layers from 

physical assets (Kusiak, 2020). Targeted at achieving this capability, the open 

manufacturing enterprises will be amenable to the X-as-a-service mode, where X 

represents, e.g., manufacturing, supply chain, and logistics. This manufacturing paradigm 
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is also called service manufacturing. Recognizing the great benefit of resource and service 

sharing, several technical challenges have been highlighted as the bottlenecks towards an 

extensively opened manufacturing environment, includes crowdsourcing contract design, 

diversified supply chain reconfiguration, distribution coordination mechanisms, to name 

but a few. 

The implications of social media and the Internet change the consumption-

manufacturing relationship in industries from four aspects: production socialization, role 

shift of consumers, the driving force of production innovation, and virus-like information 

propagation in social media (Hamalainen and Karjalainen, 2017, Jiang et al., 2016b). These 

aspects drive the current manufacturing paradigm to a more decentralized, open, adaptive, 

and socialized one, which is coined as social manufacturing. Focus on this new 

manufacturing paradigm, a large volume of research has geared forward the content of 

social manufacturing, which includes, the blockchain-based tracking system for the self-

organizing process (Leng et al., 2019), RFID-based execution systems for inter-enterprise 

monitoring and dispatching (Ding et al., 2016), the socialized production network 

generation framework (Jiang and Ding, 2018), and outsourcer-supplier coordination 

mechanisms (Guo and Jiang, 2019, Leng et al., 2017), to name but a few. These research 

streams hold the opinion that small and medium service-oriented enterprises can be 

aggregated into different kinds of horizontal manufacturing communities to enlarge their 

bargain power and common profits through initial clustering and self-organization. As a 

systematical software solution, social manufacturing provides a series of demands-

capability matching functions, includes requirement and capacities releasing, intelligent 

matchmaking, production monitoring, and participator collaboration management (Ding et 
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al., 2016). However, current related research has a limited exploration of the coordination 

for manufacturing networks, collaborative-negotiation contracting among stakeholders, 

and an evaluation for solution validation and quality control. 

Cloud manufacturing follows the successful application of cloud computing, in 

which diversified resources and abilities are intelligently sensed and connected into the 

broader Internet, and automatically managed and controlled using IoT technologies (Wu et 

al., 2013, Tao et al., 2014). In this manufacturing environment, users search and invoke the 

qualified manufacturing cloud services from a related cloud based on their requirements 

and organize them to be a virtual manufacturing environment or solution to complete their 

manufacturing tasks (Tao et al., 2011). Based on this concept, Wu et al. (2012) propose a 

cloud-based design and manufacturing model which identifies cloud consumer, cloud 

provider, cloud broker, and cloud carriers as its stakeholders and a distributed infrastructure 

with an interfacing system. Thanks to the dynamic characteristic of cloud manufacturing, 

the manufacturing equipment across multiple dispersed manufacturing sites can be rapidly 

reconfigured and repurposed (Schaefer et al., 2012). Thus, the significance of automation 

and digitization of manufacturing operations is highlighted in cloud manufacturing, which 

implies a widely connected manufacturer community (Wu et al., 2013). The researchers in 

cloud manufacturing pay more attention to the cloud-based technologies, includes a 

consumer-provider interactive framework, cloud-based equipment automation, and web-

based service-oriented system for resource monitoring and controlling, but minimal 

research has focused on the construction of manufacturing network to serve the targeted 

market and cooperation architecture for different business entities along the product 

fulfillment workflow. 
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The cloud-based framework enables the manufacturing companies widely 

connected while transcending the conventional enterprise borders. This manufacturing 

network paves the way for installing negotiation-based cooperation between the factories 

to share their excessive capabilities and outsource their peripheral manufacturing 

capabilities. The reconfigurable supply chain system can support the quickly responsive 

construction of a product fulfillment chain for both the production network and the 

knowledge marketplace (Chida et al., 2019). This dynamic production network enables the 

realization of a highly personalized product family (Tan et al., 2017), and achieves efficient 

manufacturing resource sharing among federated production networks (Kadar et al., 2018). 

2.5 Chapter Summary 

The topics reviewed in this chapter offer guidance to examines stakeholder analysis 

and conceptual framework of platform-driven crowdsourced manufacturing in the Chapter 

3. Considering the complexity of the platform-driven crowdsourced manufacturing, 

Chapter 4 examines fundamental issues and reference model as a research agenda. 

Considering the limitations of various topics reviewed here, I propose methodologies that 

can overcome their respective limitations in Chapters 5, 6, 7, 8, 9, 10 to address a 

cornerstone of crowdsourced manufacturing. 

  



 33 

CHAPTER 3. STAKEHOLDER ANALYSIS AND CONCEPTUAL 

FRAMEWORK OF PLATFORM-DRIVEN CROWDSOURCED 

MANUFACTURING  

Crowdsourced manufacturing forms a dynamic supply chain with a trichotomy of 

its stakeholder roles, namely client, requester, and provider (Chida et al., 2019). This 

concept describes a broadcasting and searching process based on the crowdsourcing model. 

Considering the adoption of open business model, it entails a “maker-platform operator” 

business model as an upgrade of the current peer-to-peer manufacturing network based on 

the maker to platform model (Kortmann and Piller, 2016). The client serves as an open 

innovator in the open business model as well as a crowdsourcer in the crowdsourcing 

model, who installs the open business model, designs a new product, and seeks a structured 

supply chain to fulfill the corresponding product. The requester serves as the operator of 

the crowdsourcing platform, who broadcasts the crowdsourcing tasks, collects the 

responses, as well as evaluates the response, and awards the winner with contracts. The 

provider serves as a participant of the manufacturer crowd who shares their expertized 

manufacturing capabilities to capture value.  

In line with the principles of axiomatic design (Suh, 1998), the product fulfillment 

process comprises a set of cascading mapping of “what-how” relationships across four 

consecutive domains, including the customer, functional, physical, and process domains. 

Systematic design decisions in each of the domains are characterized by the CNs, FRs, 

DPs, and PVs, respectively. Traditionally, the mapping decisions from one domain to 

another are processed centrally within one enterprise (Jiao et al., 2007a). With the adoption 
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of the open business model, such decisions are becoming decentralized across many 

decision agents while transcending organizational boundaries in order to leverage 

resources and capabilities through crowdsourcing (Montes and Goertzel, 2019). 

The differences among driven forces in various industries implies different ways of 

adapting to open business models, as well as adaptabilities to the crowdsourcing model. 

Section 3.1 will focus on the applicable analysis of the innovative products and variant 

product industries. The differences among decision agents imply different expected 

benefits from the participation of crowdsourced manufacturing, which significantly 

diversify the decision-making processes among the agents in crowdsourced manufacturing. 

To explore the driving force of decision agents in crowdsourced manufacturing in the 

applicable industries, section 3.2 after the next examines their current challenges, potential 

contributions to the entire community, and specific needs from the crowdsourced 

manufacturing paradigm. In section 3.3, a running illustrative case of tank trailer is kicked-

off to demonstrate the installation map of crowdsourced manufacturing on the existed 

production network. 

Moreover, this paper develops the conceptual framework of crowdsourced 

manufacturing in detail. Section 3.4 proposes the crowdsourced manufacturing workflow 

along a value chain. It explains the fundamental mechanism underlying the workflow, 

which includes the decision agents, domain, processes, as well as crowdsourcing 

contracting mechanism. Section 3.5 presents a holistic framework of crowdsourced 

manufacturing workflow in the case that multiple value chains link customer clusters and 

manufacturing agent crowds through the same platform companies. It also examines the 

networked flow in crowdsourced manufacturing, which includes information flow and 
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manufacturing flow among the customers, open innovators, platforms, and manufacturing 

agent crowds. 

3.1 Dichotomy of Industrial Applicability  

As an emerging manufacturing paradigm, various industries show different 

accordance with the distinctive context of company and compatibilities to crowdsourced 

manufacturing. Generally, there is a common dichotomy to analyze the pulse of innovative 

product development, namely, market-pull versus technology-push (Brem and Voigt, 

2009). Market-pull industries innovate the value chain from the inadequate satisfaction 

from current customer needs, as well as a variant product by rearranging existed value 

chain. In contrast, technology-push industries to invent new technologies when the target 

market is ambiguous then finds paths to target markets to commercialize the new technical 

know-how (Lubik et al., 2013).  

Because the new technical invention is reckoned to be the prerequisite and core 

competitive edges in the companies by technology push industries, the benefits of large 

manufacturer crowds and a consequent quickly responsive manufacturing network show 

less attractiveness to these companies. The effect of intellectual property as a barrier to 

market entry will filter a large proportion of manufacturers to participate in crowdsourced 

manufacturing. Meanwhile, the risk of mismanagement of intellectual property may harm 

these companies. For example, Gore-Tex is a famous technology push innovative products, 

which is an expanded Teflon sheet made by W. L. Gore and Associates. The 

commercialization of Gore-Tex starts with the successful development of a porous form of 

polytetrafluoroethylene with a microstructure characterized by nodes interconnected by 
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fibrils (Gore, 1976). Utilizing this innovative material and related process, W.L. Gore 

developed a series of products, including apparel fabrics, medical devices, insulation layers 

for advanced electric cables, to name but a few. Several apparel companies use Gore-Tex 

material and core processes to accelerate the commercialization by collecting customer 

needs and provide access to the market. In this case, due to W.L. Gore has ownership of 

the intellectual property of Gore-Tex and lacks access to the market. It acts as a material 

supplier and process solution provider. Thus, the company entails a manufacturer in 

crowdsourced manufacturing and serves the other innovators like apparel companies, 

surgical apparatus start-ups, or electric device manufacturers. These industries have a 

different innovation impulse and involve Gore-Tex as an incremental improvement. 

Different from technology push, market pull industries based on the existed 

connections to the customers. The companies sense the volatile customer needs from their 

customer in targeted markets, translate these customer needs to specific requirements for 

new function realizations, then finding an appropriate technology to achieve maximum 

satisfaction. Market-pull industries create value by bringing reconfigured available 

technologies and capabilities to customers to achieve “Make-to-Order” (MTO). In this 

regard, it provides a reconfiguration roadmap for a crowdsourcing platform to arrange 

manufacturers into a network. Since the product development decisions in market pull 

industries are customer-driven, these companies provide the directions and evaluation 

criteria for the contributions of manufacturer crowds.  

3.2 Decision Agents in Crowdsourced Manufacturing  

3.2.1 Open Innovators 
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The open innovators are transformed from the conventional Original Equipment 

Manufacturer (OEM), who collects customer needs and serve the customer after-sales, 

develop the product concept, as well as the design of the products. The open innovators 

have a large peer population with highly specialized targeted markets and corresponding 

highly customized orders in an industry sector. Thanks to the mass customization 

paradigm, the combination of platform-based design and modular design can serve a highly 

responsive product configuration using existed technologies and sub-systems (Simpson et 

al., 2006). 

One of the motivations of participating in the crowdsourcing manufacturing 

paradigm is to seek a larger population of heterogeneous manufacturers to realize product 

innovation. Although the existence of a crowdsourcing platform creates the approach to 

manufacturer crowds, the set-up time and risk of initiating crowdsourced manufacturing 

with the platform are still barriers to open innovators. That set-up time can be decomposed 

to the negotiation between open innovators and platform, the crowdsourcing contracting 

between platform and manufacturers, as well as the lead time to fulfilling the 

crowdsourcing tasks. The risks for open innovators lie on the leaking of intellectual 

property of innovative products, the involvement of under-qualified manufacturers, and the 

failure of crowdsourcing task aggregation. These requirements imply a systematical 

product variety coordination system to serve the crowdsourcing product information 

management, and an information system to monitor the manufacturing process. 

Moreover, the transformation of product innovation to fulfilled products requires 

the collaboration of platforms and manufacturers per se. The platform decomposes the 

product design to subtasks and packages to crowdsourcing tasks for broadcasting. This 
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restructuring process relies on the semantic coherence from product design to 

crowdsourcing tasks, and a guideline for open innovators can accelerate this transition 

process. Moreover, since the essentiality of the review and evaluation in the product 

development process, the task fulfillment evaluation criteria set struggles for the evaluator. 

The targets are not always explicit, while the criteria are dependent (Jiao and Tseng, 1998). 

A system of methods to ease the monitor of the manufacturing activities and evaluation of 

contribution from the manufacturer crowds is essential. 

3.2.2 Platforms 

A platform can be considered as a multi-sided market, which serves distinct crowds 

of third-party users and provides each other with network benefits (Eisenmann et al., 2011). 

It is operated as a marketplace to enable the match of demands and supplies. From a 

manufacturing network perspective, a crowdsourcing platform is a two-sided market, 

where the open innovators publish their innovations as a set of manufacturing demands and 

manufacturers publish their manufacturing capabilities as supplies. Following a platform 

model, the crowdsourcing platform company integrates external open innovators and 

manufacturers, thereby create and capture value from that manufacturing network. 

This integrating process entails a reconfiguration of the manufacturing capabilities 

to serve the innovations. The crowdsourcing platform performs as an intermediator among 

the manufacturing activities. It reallocates the existed skills in the manufacturer crowds to 

accommodate the emerging innovating value chains based on a system of reconfiguration 

mechanism. It can help the open innovator peel the process-related and organization-

related configuration activities and utilize the service from the platform and manufacturing 
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capabilities from manufacturer crowds instead. On the other side of the platform, 

manufacturer crowds can get rid of finding target markets as well as coordinating with 

upstream and downstream manufacturer partners.  

In the crowdsourcing model, the expansion of manufacturers and open innovator 

population is the platform’s continual pursuit. A larger open innovator population leads to 

an increasing number of paths to the market and a wider variety of customer needs. At the 

same time, more manufacturers linked to the platform implies a bigger arsenal of capability 

and knowledge to fulfill the customers. Since the expansion of the open innovator scale 

leads to a rising number of value chains, the platform is challenged by installing a system 

of configuration strategies to allocate crowdsourcing tasks as a result of the intermediator 

the platform played. A population of manufacturers and dynamic manufacturing networks 

significantly raises the complexity of the coordination decision-making process in the 

platform. The manufacturing activity synchronization and conflict solving policies for 

partner crowds are required by the platform under the paradigm of crowdsourced 

manufacturing. 

3.2.3 Manufacturers 

The manufacturers are advanced from the supplier tiers in the current supply chain 

configuration, who operate the factories and provide materials, sub-assembly, and products 

according to the orders from open innovators. The manufacturer crowd can be divided into 

several sub-clusters according to the position along the value chain, for instance, raw 

material providers, secondary suppliers, direct suppliers, assemblers, and so on. The 

primary pursuit of the manufacturers is the approaches to the broader market via the 
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collaboration between open innovator crowds and crowdsourcing platform. With a broader 

explored market, a larger volume of the value chains can be brought to the crowdsourcing 

manufacturing network. These value chains constructed a cross-link relationship, while a 

manufacturer can achieve maximum reusability based on the commonality of the process. 

Thus, with the expansion of the customer clusters, manufacturers can focus on their core 

competitive edges and achieve economies of scale. 

Under a paradigm shift to the open business model, these manufacturing enterprises 

participate in the crowdsourced manufacturing model in two different scenarios. The first 

scenario entails a group of manufacturers take crowdsourced manufacturing as their 

primary economic activities and plan their schedule in the center of crowdsourced tasks. 

They rely on the assignment of crowdsourcing tasks from the platform and the access to 

target markets from the open innovators. An inferior task allocation solution will lead to 

inefficiency supply chain configuration in platform level and order congestion or avoidable 

production line idle at the manufacturer level. A successful task allocation system should 

base on the modeling of the manufacturer’s plant and the logistic system, as well as a global 

production planning for platform and manufacturers. Because of the participation to 

crowdsourced manufacturing implies an increasing number of value chains going through 

the manufacturer, the material flow coordination among the upstream and downstream 

partners is increasingly complex. As the approach of realizing material flow, the logistics 

issue is a rising challenge for manufacturers. The coordination along the material flow is 

established on the exchange the information on manufacturing activities, logistics, and 

inventory among the manufacturing networks. Thus, a fusion of the current ERP/MES 
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system which accommodates the open structure is needed in the crowdsourced 

manufacturing paradigm.  

In the second scenario, the manufacturers have their value chain to serve their major 

manufacturing activities while sharing their excess manufacturing capabilities along with 

the manufacturing network. Manufacturers in this scenario operate production line with a 

mix of existed tasks from their own value chain and crowdsourcing tasks from the platform. 

In addition to the common challenges which are mentioned in the first scenario, 

manufacturers in the second scenario struggle with the balance of the existed tasks and the 

crowdsourcing tasks. The introduction of crowdsourcing tasks is from a high-frequency 

negotiation contracting process among the manufacturing network, which entails a 

resource matching process of innovation demands and sharable capabilities. This two-sided 

matching process requires the manufacturers to discover their shareable capabilities in 

terms of compatible products, time windows, and quantity. The way of sharable capability 

calculation is manipulating the order sequencing, batching, and balancing on the shop floor. 

A system of methods to help manufacturers maximize their shareable capabilities can be 

recognized as a significant barrier to participating in the paradigm of crowdsourced 

manufacturing. 

3.3 Case Study of Tank Trailer Crowdsourcing 

The running example in this paper is the transformation of the tank trailer industry 

to the paradigm of crowdsourced manufacturing. The tank trailer industry is driven by 

customers and rearranges manufacturing capabilities and technologies to achieve 

maximum satisfaction. Most tank trailer companies connect to the market by themselves 
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and plan the products considering the customer needs they collected. A large volume of 

essential parts and system is relying on the corporation with external partners, including 

axles, braking system, pump assembly, accessories, to name but a few. From the after-sale 

service, the tank trailer companies can sense some customer needs, for instance, the need 

for minimizing maintenance efforts, meters of trailer mileage, tire pressure adjustment, etc. 

A broad search for solution suppliers can achieve the innovation of the tank trailer by 

defining a series of requirements to collect the solution. For example, the automatic tire 

inflation system can be a solution for tire pressure adjustment, and the corresponding 

manufacturer can serve the realization of this new tank trailer. The synergy of the existed 

capabilities and technologies builds up the backbone of the reconfiguration of 

manufacturers. 

The volatile customer needs and a large population of suppliers bring a large 

amount of product variety to the tank trailer industry, as shown in Figure 3-1. The different 

fluids in various market sectors will lead to an extensive product variety, some of the fluids 

are flammable or explosive, some fluids may cause the fouling issues, some chemicals are 

erosional, some fluids require edible safe through the transportation, to name but a few. 

The specific customer has their personalized requirements on the accessories, includes but 

not limited to ladders, pump systems, toolboxes. Due to the laws and regulations are 

distinctive in different markets, the products vary in length and tonnage, cross-section 

shape, as well as the end shape. Currently, configure-to-order is a prevailing strategy to 

handle this variety. The practitioners integrate the modules and organize the manufacturing 

according to the customer orders. 



 43 

This paper specifically focuses on the tank trailer industry in Mainland China, 

which shows a firm reliance on the manufacturing network. Nearly a hundred tank trailer 

companies have located in Quanpuzhen, Shandong Province in the past three decades and 

the total output of this industry cluster takes about two-thirds of the national market share 

(Gringer, 2018). The satellite map of this industrial cluster is shown in Figure 3-2, in which 

the red label represents a related manufacturer.  

 

Figure 3-1 Variety of tank trailers 

 

Figure 3-2 Map of Tank Trailer Industrial Cluster (Created from: Google Earth, 

2018) 
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The cooperation of these manufacturer crowds relies on the long-term outsourcing 

and personal relationship of the owners. This paper will show a transformation roadmap of 

the installation of the crowdsourced manufacturing paradigm to the conventional 

manufacturing industries. By applying state-of-the-art technologies, the construction of the 

cooperative manufacturing relationship can be fully digitalized. At the same time, the 

coordination among the manufacturers can be achieved by the pervasive connections and 

transferable engineering software. 

3.4 Crowdsourced Manufacturing Workflow 

The paradigm shift to crowdsourced manufacturing implies offering the integration 

path of external partners into all activities in the value creation and capture along the value 

chain. Thus, the product manufacturing is fulfilled based on the collaboration of multi-

parties in three physical domains: open innovation domain, crowdsourced manufacturing 

platform domain, and open manufacturing domain.  

The open innovation domain is the front-end domain, which brings connections to 

the customers, as the transportation companies. The open innovator 𝑂 has been identified 

as the primary decision agent in the open innovation domain, who takes in charge of 

collecting the CNs, sketching product design, as well as sales and aftersales service of the 

final product. Following the tank trailer example, 𝑂  is a tank trailer manufacturing 

company which adopts the open business model and installs the crowdsourcing model as a 

crowdsourcer. The 𝑂 collects the CNs and saves them into customer orders 𝐶0 as the start 

of the product fulfillment process. After the completion of product design, 𝑂 initiates the 

crowdsourced manufacturing process with the platform by delivering the product design 
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files. The finish of product manufacturing will lead to the handover of final products to 𝑂, 

which enables the final sales of products to the customers. 

The manufacturing agents 𝑀  are the decision agents in the back-end of 

crowdsourced manufacturing, which is collected in the manufacturing agent domain. The 

𝑀  own the knowledge of generating manufacturing plans considering their processes 

constraints and resource utilization limitation, as well as the fulfillment capabilities of the 

actual manufacturing tasks. In the tank trailer example, 𝑀 represents suppliers in the trailer 

industry cluster, which are divided into various clusters based on their specialty. According 

to the inherent properties of the value chains and industry, the cluster can be indexed with 

𝛼, 𝛼 ∈ [1, Α], where Α is the total number of the clusters. For instance, the manufacturers 

in tank trailer industries can be divided into frame suppliers, axle companies, steel sheet 

factories, welding workshops, to mention just a few. These bidding agents can be denoted 

as 𝜇, which is a collective set of the bidding manufacturer in every agent cluster 𝛼. The 

individual manufacturer can be denoted as 𝜇𝑛𝛼
𝛼 , 𝜇̅𝛼 =  {𝜇𝑛𝛼

𝛼 }|𝑁𝛼 , where 𝑛𝛼 is the index of 

bidding manufacturer in cluster 𝛼, 𝑛𝛼 ∈ ℕ
+, and 𝑁𝛼 is the total number of manufacturers 

in the cluster 𝛼. The unification of the bidding manufacturers in all clusters is the bidding 

agent cluster, 𝜇̅ =  {𝜇̅𝛼}|Α . Meanwhile, due to the heterogeneity of the operating 

environment, some 𝑀 may determine not to participate in crowdsourced manufacturing., 

which are collected in the non-bidding agent cluster 𝜑̅. The individual manufacturer is 

denoted as 𝜑𝑛, ∀𝜑𝑛 ∈ 𝜑̅, where 𝑛 is the index of agents in the non-bidding cluster and 𝑁 

is the total size of 𝜑𝑛. 



 46 

The crowdsourced manufacturing platform domain is the intermediate domain, 

which builds up the bridges between the front-end open innovation domain and the open 

manufacturing domain. The platform brokers 𝑃 are the primary agents in the crowdsourced 

manufacturing platform domain, who take in charge of tasks processing and deliveries to 

𝑂 , contracting and coordination with 𝑀 , as well as the submission of crowdsourcing 

contracting results. There are two virtual fields in the crowdsourced manufacturing 

platform domain as input and output, namely crowdsourcing information management and 

crowdsourcing contracting broker. The field of crowdsourcing information management is 

the interface to the open innovation domain, which has two databases to save DPs as design 

specs 𝐷0  and PVs as process specs 𝑃0 . The other virtual field is the crowdsourcing 

contracting broker, which sends open calls to open manufacturing domain to invite 𝑀, 

collect responses from manufacturer crowds, and award the preferred 𝑀  with supply 

contracts. The open call broadcasting and response collection is realized by two brokers. 

Invitation broker 𝑃̅𝐼  realizes the invitation function of the crowdsourcing contracting 

mechanism. 𝑃𝛼
𝐼  follows the index of manufacturing cluster 𝛼 , ∀𝑃𝛼

𝐼 ∈ 𝑃̅𝐼 . Similarly, the 

collecting and evaluation function is fulfilled by manufacturing evaluation brokers 𝑃̅𝐸 , 

where the individual evaluation broker is 𝑃𝛼
𝐸 , ∀𝑃𝛼

𝐸 ∈ 𝑃̅𝐸 . The index 𝛼  follows the 

manufacturing cluster 𝛼 , which indicate the accountability of the 𝑃𝛼
𝐼  and 𝑃𝛼

𝐸 . Project 

configuration manager 𝑃𝐶  achieves the coordination of the front-end and back-end 

interfaces, who receives product design specs 𝐷0 and restructures the product design to 

crowdsourcing tasks, as well as summarize the manufacturing contracts and save the 

process specs to 𝑃0. The union of 𝑃𝐶 , 𝑃̅𝐼, and 𝑃̅𝐸  is the platform brokers 𝑃̅, 𝑃̅ = 𝑃𝐶 ∪ 𝑃̅𝐼 ∪
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𝑃̅𝐸. The workflow of crowdsourced manufacturing, along with the example of tank trailer 

industries, is shown in Figure 3-3. 

The workflow of crowdsourced manufacturing is started with the project initiation 

process by 𝑂 after they finish the product design. The deliverables of the initiation process 

are the saved product design files. The second process is the accessing of the product 

structure from 𝐷0 by project configuration manager 𝑃𝐶 . The product structure is denoted 

as Δ = 𝛿1 × …𝛿𝑘 × …𝛿𝐾  , where 𝛿𝑘, 𝑘 ∈ [1, 𝐾], depicts a specific manufacturing subtask 

like a trailer frame or pump system. The 𝑘 is the subtask index, and 𝐾 is the total number 

of the subtasks. Following a platform-based product development approach, 𝛿𝑘 can also be 

perceived as a product module. The structured Δ depicts the internal relationships of the 

product, e.g., the assembly structure. After Δ  is retrieved, 𝑃𝐶  restructures it to 

manufacturing request for quotation (RFQ) Δ𝛼 ∈ Δ, where 𝛼 ∈ [1, Α], includes a set of the 

manufacturing subtask 𝛿𝑞. The number of requests for quotation Δ𝛼 follows the number of 

manufacturing agent clusters, thus Δ𝛼  shares the cluster index 𝛼  with 𝜇𝑛𝛼
𝛼 . The 

broadcasting of Δ𝛼  is done by 𝑃𝛼
𝐼  as an invitation. 𝑀  receives the Δ𝛼 , analyzes the 

requirements, and makes the participating decisions. The participating agents 𝜇𝑛𝛼
𝛼  respond 

with manufacturing bids. The manufacturing bids from each cluster 𝛼  is collected in 

𝐵𝛼, 𝛼 ∈ ℕ . All the 𝐵𝛼  are collected by 𝑃̅𝐸  in the manufacturing bids set 𝐵 =

{𝐵1, … , 𝐵𝛼 , … , 𝐵Α}. The 𝑃̅𝐸  also evaluate these bids, thus select the preferred bids 𝐵𝛼
∗ and 

the corresponding winner 𝜇𝛼∗. The winner agents are rewarded by manufacturing supply 

contracts 𝑆 = 𝜇1
∗
× …𝜇𝛼∗ ×…𝜇𝛢

∗
, where the winner 𝜇𝛼∗ in each cluster 𝛼 is organized 

by a cartesian product to entail a manufacturing network. The manufacturing supply 
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contracts 𝑆 will also be sent to 𝑃𝐸  and the corresponding manufacturing bids 𝐵𝛼
∗ are saved 

to 𝑃0  as process spec sets 𝐵∗ =  {𝐵𝛼
∗}|Α . After the execution of crowdsourced 

manufacturing, the final products can be manufactured by 𝑀 and delivered to customers. 

As the final stage of crowdsourced manufacturing, the product-related information will be 

sent to 𝑂. The information of products serves the sale of the products and also provide 

aftersales services.  

Different from the “cascading” model in axiomatic design, the product fulfillment 

process in the crowdsourced manufacturing paradigm is shown as “zigzagging.” The 

reason for this change is the involvement of external partners. Thus, innovative product 

fulfillment is achieved by the collaboration of all the decision agents in the fulfillment 

process. However, this kind of collaboration is forged in the form of contracting, and the 

coordination of product material flow (Jiao et al., 2006). Thus, the workflow in 

crowdsourced manufacturing can be characterized as a collaborative-negotiation based 

supply contracting process. 
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Figure 3-3 Crowdsourced manufacturing workflow 
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3.5 Holistic Frameworks of Crowdsourced Manufacturing  

As an intermediate marketplace for open innovators and manufacturers, the 

platform serves a population of distinctive open innovators to connect a broader market, 

meanwhile invites extensive manufacturers to expand the capability arsenal and gain the 

network benefits. This impulse of expansion leads to a large number of value chains going 

through the platform company, which can be treated as a series of projects. The platform 

company uses crowdsourced information management fields to serve open innovators in 

the front-end, which provides databases to manage design and process specs. The project 

configuration manager 𝑃𝐶  serves as a coordinator to manage the project workflow. The 

manufacturers are accommodated by the platform by the crowdsourcing contracting 

mechanism fields, where they broadcast the crowdsourcing tasks and collect the responses. 

A synergy of these three constructs a module to serve a value chain. The increasing number 

of value chains requires the platform to scaling up an appropriate amount of serving 

modules to serve the manufacturing of the products. The conceptual framework to 

demonstrate the platform-driven crowdsourced manufacturing workflow, which 

accommodates multiple projects, is shown in Figure 3-4.  

A larger population of open innovators 𝑂 bring a variety of customers, for example, 

tank trailers, container trailers, refrigerated trailers, along with others. These open 

innovators initiate various value chains as product design projects, which is indexed by 

𝜆, 𝜆 ∈ [1, Λ], where Λ is the total number of initiated projects. The platform develops the 

corresponding interfaces to serve these open innovators and corresponding manufacturing 

agents clusters. The corresponding open innovator and platform brokers of project 𝜆 can 

be represented as 𝑂𝜆  and 𝑃̅𝜆 , respectively. Each 𝑃̅𝜆  has a broadcasting output and bid 
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collecting interfaces to connect the manufacturers 𝑀 in manufacturer agent population, 

which is indexed by 𝜋, 𝜋 ∈ [1, Π]. The total number of the manufacturer agent population 

is denoted as Π. The scaling up of the platform company leads a stacking of the serving 

modules which transforms the two-dimensional perspective of crowdsourced 

manufacturing workflow to a three-dimensional holistic framework.  

The horizontal dimension is the direction of the workflow. The front-end is the open 

innovators, while the back-end is the manufacturing agent crowds. This dimension realizes 

the crowdsourced manufacturing workflow with all the processes shown in Figure 3-3. The 

vertical dimension is the functions of the platform. The upper interfaces serve the workflow 

from front-end to back-end, and the lower interfaces serve the opposite direction. At the 

front-end, the upper interfaces are the data management module to receive the project 

initiation from 𝑂𝜆 and save the product design specs into 𝐷𝜆
0. The upper interfaces at the 

back-end let the 𝑃̅𝜆
𝐼 to send the request for quotation to connect the 𝑀. The lower interfaces 

towards back-end handle the bids proposing from the 𝑀 to enable the evaluation by 𝑃̅𝜆
𝐸. 

The lower interfaces towards the front-end manage the process specs in 𝑃𝜆
0 and interact 

with 𝑂𝜆 to inform the product delivery. The third dimension represents the depth, which 

entails a variety of value chains in this holistic view. The corresponding open innovator 𝑂𝜆 

and a serving module 𝑃̅𝜆 in crowdsourced manufacturing platform 𝑃 are arranged along 

each value chain, where 𝑃̿ = {𝑃̅𝜆}|Λ. 

Based on the holistic conceptual framework of crowdsourced manufacturing, 

Figure 3-5 illustrates the information flow and the networked material flow in the paradigm 

of crowdsourced manufacturing. The open innovator establishes the information 
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connections to the customers to serve the collection of the CNs for product innovation, as 

well as sales and aftersales service for the final product. Meanwhile, the platform leads the 

manufacturing agent crowds to realize product manufacturing. After the final assembly, 

the products can be sent from the last manufacturing agents in the network to the customers. 

Therefore, two flows build up the linkage to the customer, the information flow from and 

to open innovators 𝐼𝜆 as the stimulus of the crowdsourced manufacturing paradigm, as well 

as the material flow from manufacturing agent crowds as the physical delivery of the 

products. In this case, the platform company acts as a bridge to link the information flow 

and material flow. The information flows between 𝑂𝜆 and 𝑃̅𝜆 initiate the crowdsourcing 

projects and set the product configuration to serve the crowdsourcing product fulfillment. 

Moreover, it also establishes the monitoring approach for the 𝐼𝜆 to supervise the 

manufacturing process.  

At the back end of the platform company, the contracting information flow enables 

invitation of the 𝑀𝜋 and allocate the tasks to forge of the manufacturing network. In the 

following manufacturing execution stage, the information flow also serves as the handler 

to coordinate the material flow inner the manufacturer agent crowds. Because the 

manufacturers utilize their specialties to maximize the economies of scale, one 𝑀𝜋  can 

participate in multiple value chains. For instance, because of the commonalities between 

the value chains, a trailer axle company can participate in three value chains to connect the 

tank trailer, container trailer, and refrigerate trailer market, respectively. Moreover, various 

value chains imply different process precedence, and a manufacturer can serve distinct 

positions. 
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Figure 3-4 A holistic conceptual framework of the crowdsourced manufacturing workflow 
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Figure 3-5 Information and material flow in crowdsourced manufacturing 



 

55 

3.6 Chapter Summary 

This chapter proceeds dichotomy analysis of industrial applicability and 

stakeholder analysis of the platform-driven crowdsourced manufacturing, which identifies 

targeted industries and three critical stakeholders. Based on a running illustrative examples 

of tank trailer industries, the workflow of platform-driven crowdsourced manufacturing is 

proposed. The holistic framework is sketched to demonstrate the scaling up of the platform 

company, as well as information and material flow in platform-driven crowdsourced 

manufacturing. Such a profound understanding of these analysis and models provides a 

clear direction for a research agenda in the next chapter. 
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CHAPTER 4. FUNDAMENTAL ISSUES AND A REFERENCE 

MODEL TOWARDS MANUFACTURING AS A SERVICE 

Recognize the paradigm shift towards crowdsourced manufacturing and the 

corresponding driving forces, this chapter implements a structural implication on platform-

driven crowdsourced manufacturing and outlines fundamental issues from multiple views 

to summarize a MaaS reference model. From the stakeholder analysis in Chapter 3, these 

views are from open innovators, manufacturers, and platforms. The views from open 

innovators and platforms sketches functional requirements of a contracting evaluation 

services to ensure customer satisfactions and management optimal decision-making 

service to ensure prosperous manufacturer population, respectively. The view from 

manufacturers outlines the functional requirements of a series of task execution services 

along with the workflow in Chapter 3, which include task derivation and decomposition in 

product domain, logistic route planning in platform domain, as well as task acceptance and 

accommodation to link the external and internal material flow in manufacturing domain. 

In the end, section 4.6 proposes a MaaS reference model as a research agenda for critical 

technical elements to gear forward the development of platform-driven crowdsourced 

manufacturing for MaaS. 

4.1 Structural implications of crowdsourced manufacturing 

From the analysis of information and material flow in crowdsourced 

manufacturing, the operation of companies in one decision agent cluster is influenced by 

the collaboration with companies in the rest two decision agent clusters. For instance, the 
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operation of the platform companies relies on the characteristics of the participated open 

innovators, as well as the capabilities and the variety of manufacturer crowds it linked. The 

performance of these external partners restricts the economic behaviors of the companies 

itself, like the platform can only link to the targeted market with the collaboration with the 

related open innovators and manufacturers. Meanwhile, the capabilities of external partners 

can technically support the expansion of the companies. The rest two crowds of partner 

structure a two-dimensional decision-making plane, which presents a decision space to 

choose a value chain and a position along with it. The company can explore the portfolio 

of collaboration potentials in that decision space, where the abundant and diversity of the 

partner crowds will determine the limits of participating in crowdsourced manufacturing. 

From a service-oriented perspective, the rest two crowds collaboratively construct a service 

system to serve the company as a user. This two-dimensional decision-making scheme 

generally exists in all three decision agent clusters, namely open innovators, platforms, and 

manufacturers.  

From the trichotomy analysis of decision agents in crowdsourcing, each three 

decision agent clusters have their own standpoints as well as the motivations. Thus, the 

views of each decision agent cluster originate from different contexts of companies and 

seek various operational objectives. The distinctiveness of decision agents implies 

perpendicular relationships among the resulted views. In this regard, a cubic structure is 

proposed to represent this system of perpendicular view and corresponding decision-

making planes, as shown in Figure 4-1.  
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Figure 4-1 Structural implications of platform-driven crowdsourced manufacturing 

There are three dimensions to represent the views of open innovators, platforms, 

and manufacturers. From each view, the rest two structure a discretized decision-making 

plane and acts as a portfolio of product fulfillment functions of a service system. The 

synergy of three views of the decision agent cluster leads the two-dimensional discretized 

decision-making planes to a three-dimensional block array to represents the selection and 

collaborative relationships among the decision agents. The block represents an engagement 

of three specific decision agent to construct a collaborative manufacturing relationship for 

innovative product fulfillment. The mapping of each pair of decision agent clusters implies 
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a collaboration relationship to form a functional area for accommodating the external 

partners. This collaboration can achieve the acceleration of the execution of the value chain 

for targeted users. These three manufacturing functional areas entail the X-as-a-service 

paradigm, where each functional area aims to lead the crowdsourced manufacturing to be 

user-friendly to be quickly responsive and accommodate a variety of partners. In this 

regard, three service systems has been highlighted to serve views from decision agents in 

crowdsourced manufacturing.  

4.2 Contracting Services for Open Innovators 

From the position of the value chain, the open innovator holds a functional view 

that describes the functional requirements of a crowdsourcing value chain and the 

corresponding manufacturing network. This view is the result of the capability of 

connecting to the customers, selling products, as well as aftersales services. The impulse 

of participating in crowdsourced manufacturing is seeking the cooperation of platforms 

and manufacturers to fulfill the innovative products. Specifically, in an X-as-a-service 

paradigm, the demands of the open innovators require a service system that can provide 

service-oriented solutions of product manufacturing resources, capabilities, as well as the 

supply chain reconfiguration mechanisms with a maximized solution delivery efficiency 

and minimized deviation from customer expectations. Platform-driven crowdsourced 

manufacturing formulates a digitalized platform-manufacturer plane as a decision space of 

various capabilities and integrating methods.  

As shown in Figure 4-2, platform-driven crowdsourced manufacturing leads the 

open innovator 𝑂 to a broker-based dispersed manufacturing system, where selects the 
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platforms 𝑃 and manufacturers 𝑀 as partners to realize their innovative product plans. The 

selection of the manufacturer is based on a robust evaluation mechanism to reflect their 

performance on customer requirements for maximum utility delivery. On the other hand, 

the platforms are selected according to their aggregation method of evaluation results for a 

better reflection on open innovator’s preference. From the product fulfillment perspective, 

the MaaS acts like an e-commerce platform that offers access to the market of 

manufacturing capabilities customize the most appropriate product fulfillment services 

through crowdsourcing contracting methods. It should integrate evaluation mechanisms 

and aggregation methods into a crowdsourcing contracting services to configure a supply 

network considering engineering functional and business operational performance. 

 

Figure 4-2 Functional view from open innovator   
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4.3 Task Execution Services for Manufacturers 

The manufacturer holds a behavioral view which reveals the applications of a set 

of manufacturing technologies by managing manufacturing resources, process planning, 

and crowdsourced manufacturing tasks execution. Following MaaS strategy, task 

execution services aim to help manufacturers peeling peripheral activities by offering 

substitutive services. As shown in Figure 4-3, it forges the manufacturing network for 

manufacturer by providing logistic services, which mobilizes manufacturing resources and 

WIP according to the precedence relationship. 

 

Figure 4-3 Behavioral view from manufacturer 

A manufacturer describes the subdivision of the product realization process along 

the value chain. A crowd of them outline the technological possibilities for the value chain, 
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as well as define the limits from the physical world. The impulse of concentrating on core 

competitive edges to achieve the economics of scales implies the manufacturers to require 

complementary cooperation among the manufacturer crowds. The manufacturer’s purpose 

of participating the crowdsourced manufacturing is capturing the value it created, which in 

terms of finding a system of approaches to link the upstream and downstream partners, as 

well as to touch and connect the customers. Crowdsourced manufacturing formulates a 

platform-open-innovator plane as a decision space of various value chains and coordination 

mechanisms. The collaboration of open innovators and platform entails a task execution 

service system, which offers decision making support functions as optimal task derivation 

and decomposition mechanisms, material flow management tools, as well as task 

acceptance and accommodation interactive models. The synergy of these functions can 

accelerate the manufacturer’s accommodation of crowdsourced manufacturing. The task 

execution service acts like an MES/ERP system on a large scale. The research tasks in the 

crowdsourcing task handling area can be shown in Figure 4-4. 

 

Figure 4-4 Task executions in crowdsourced manufacturing  
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4.3.1 Crowdsourcing Task Derivation 

Crowdsourcing task derivation is embedded in the start phase of an innovative 

product fulfillment task. It should balance the requirement from customer side, which seeks 

a maximized market share, and constraints from manufacturer sides, which seeks a 

minimum manufacturing cost. It entails an optimal planning of the product family and 

manufacturer portfolio. These problems are linked by the product and process structure. 

The selection of the product modules will generate a BOM, which serves as an input of the 

manufacturer allocation problem. On the manufacturer side, an optimal decomposition of 

a product into crowdsourcing task. This process is essentially a combinatorial optimization 

problem which cluster several processes into a crowdsourcing task. The decomposition 

result will constrain the minimum manufacturing cost in the product family planning side. 

This interactive decision-making problem should be solved for crowdsourced 

manufacturing. 

4.3.2 Networked Material Flow Planning  

The material flow management domain in crowdsourced manufacturing aims to 

send as well as pick up the required material, WIP, subassemblies, or final products on 

time. Due to the large variety of value chains and the corresponding process variety, a 

manufacturer can be downstream partners for a set of upstream partners, since it is a vertex 

in a networked material flow network. Thus, the process variety will propagate from 

process domains to the logistics domain, therefore challenges the companies with keeping 

a reasonable cost as well as aligning customers, products, processes, and logistics for 

delivering an increasing product variety. From a platform-based perspective, a resource 
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platform can collect the information from the manufacturer crowds, formulate the origins 

and destinations of the service demands, find the common routes in the corresponding 

transportation service tasks, and synchronize the manufacturing activities to achieve just-

in-time. Thus, this logistic service function can be modeled as multiple vehicle route 

planning with time window (m-VRPTW) to handle a highly networked material flow and 

seeks a maximized route re-using for a crowdsourcing environment. 

4.3.3 Crowdsourcing Task Acceptance and Optimal Accommodation 

Since the crowdsourcing decision-making is summarized as a two-step process, 

solution generation by the manufacturer crowds and evaluation by the platform, the 

manufacturing task acceptance and accommodation is targeted to serve this interactively 

optimal decision making between these two decision agents. The searching for the sharable 

capabilities entails an order re-arranging process to allocate the existing orders on the shop 

floor to determine the acceptance of the orders. After the awarding process with 

manufacturing supply contracts to select the preferred manufacturers, the resources re-

planning serves the management the mix of orders on the shop floor. The results of resource 

re-planning decision making are delivered through a re-sequencing process of the newly 

assigned crowdsourcing task orders and existed task orders. It can be summarized as an 

accelerator for manufacturers to better explore their manufacturing potentials and utilize 

them to fulfill open innovator’s demands through crowdsourcing. 

4.4 Management Service for Platform 

As an intermediate role played in the crowdsourcing value chains, the platform 

company holds a structural view that reconfigures the manufacturers to a supply network 
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for product fulfillment. The platform operates a two-sided marketplace as its primary 

economic activities, which can link demands from open innovators and capabilities from 

manufacturers. Crowdsourced manufacturing presents an open-innovator-manufacturer 

plane to serve the platform, which provides various product fulfillment demands and a 

large volume of different capabilities. The intermediate role between open innovators and 

manufacturers of a platform implies a requirement of monitoring and management tool. Its 

function can be further decomposed to model the dynamics of manufacturer population 

and derive a set of revision protocols for optimal revenue sharing among manufacturers.  

Figure 4-5 shows the structural view from platform. The manufacturer crowd is 

naturally divided into various manufacturing clusters according to their competitive edges. 

Thus, the manufacturers who are affiliated to one cluster are confronted with a massive 

impact of competition. Because of the existence of the awarding process by the 

manufacturing evaluation broker in the platform, only the best-performed manufacturer in 

each cluster can be selected and awarded with one contract. A robust management strategy 

should be derived for balancing and stimulating manufacturing capacity. Besides, the 

realization of the value chains requires a broad spectrum of competitive edges and a large 

volume of capacity, which is essentially a multi-party process. From this perspective, the 

relationships among the manufacturers are not only competition but also cooperation. A 

game theoretic model for describing this complex relationship is essential for platform. 

Maintaining an active and prosperous manufacturer crowd lead to a management service 

system as a solution for the platform company.  
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Figure 4-5 Structural view from platform 

4.5 Information Service System as the Kernel 

The collaboration among open innovators, manufacturer, and platform company is 

enabled by an information service system which can serve the interactions among these 

decision agents. It serves a prerequisite role in crowdsourced manufacturing, which 

solidifies the value chains in the form of contract and provides information exchanging 

functions for stakeholders. Different from the conventional outsourcing, crowdsourced 

manufacturing involves a larger number of external partners, which has high variety and 

geographically disputed. A contracting function to serve a such complex population along 

crowdsourced manufacturing. The information management is another essential function 

in this service system. It should allow the stakeholders access to and stream the product 
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fulfillment data without security concern. The synergy of these functions implies a 

blockchain-based contracting and distributed information management service system 

which accommodate streaming data from Industrial IoTs.  

4.6 A Crowdsourced Manufacturing MaaS Reference Model  

Utilizing the functional, behavioral, and structural (noted as FBS) views, the 

crowdsourced manufacturing integrates several business functions following a coherent 

structure. This integration work is realized by the mappings from views from the three-

dimensional structure of crowdsourced manufacturing, as shown in Figure 4-1. The 

mapping from one view to another implies a service system to serve the rest view. Thus, 

the combination of mapping relationships among open innovator’s functional view, 

manufacturer’s behavioral view, and platform’s structural views sketches a cyclic MaaS 

reference model as a research agenda for crowdsourced manufacturing, as shown in Figure 

4-6. 

 

Figure 4-6 A MaaS reference model of platform-driven crowdsourced 

manufacturing  
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The view mapping between the behavioral view from manufacturers to a structural 

view from platform reflects digitalized contracting evaluation function module of MaaS 

system, where ensures the quality of product fulfillment service that open innovator 

received. Chapter 5 proposes a contracting mechanism incorporating with explicit and 

inexplicit criteria evaluation for quality assurance of the response selection and customer 

satisfaction. 

The mapping from a functional view and a structural view reflects reconfiguration 

and operation of a manufacturing network, which enables the manufacturer to utilize core 

competing capabilities and link other manufacturers to outsource the peripheral activities. 

This material network requires crowdsourcing tasks execution function modules of MaaS 

system. Recognizing manufacturers as the targeted user, Chapter 6, Chapter 7, and Chapter 

8 propose the task execution service by sketching a manufacturer-friendly service 

architecture which includes task derivation and decomposition methods, inter-

manufacturer material flow planning, as well as task acceptance and shop floor scheduling 

interactive framework, respectively. 

The mapping between the functional view from open innovators and behavioral one 

from manufacturers entails a large volume of digitalized product fulfillment demands, 

manufacturers, and the corresponding clusters. This mapping implies a management 

service functional module of MaaS for the platform to monitor and derive an optimal 

managerial protocol. Chapter 10 proposes a population-dynamics-based model for multi-

cluster manufacturer crowds, as well as a protocol deriving methods based on evolutionary 

game. Chapter 9 proposes the information service system by implementing blockchain-

based smart contracts and a distributed database. It provides the technical cornerstones for 
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platform, manufacturer, and open innovator to solidify their collaboration relationship and 

information exchanging platform without security concerns. 

4.7 Chapter Summary 

This chapter examines the fundamental issues and proposes a MaaS reference 

model for platform-driven crowdsourced manufacturing. Based on the structural 

implications of platform-driven crowdsourced manufacturing, these fundamental issues 

include contracting evaluation services for open innovators, task executions services for 

manufacturers, management services for platform, and information service systems as 

prerequisites. A MaaS reference model is proposed as a research agenda of the following 

studies, which also elaborates the interrelationships underlying the following chapters.  
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CHAPTER 5. CROWDSOURCING CONTRACTING 

INCORPORATING EXPLICIT AND INEXPLICIT CRITERIA 

EVALUATION  

MaaS through platform-driven crowdsourced manufacturing offers new 

opportunities for reaching external partner’s knowledge and resources while allowing 

companies to focus on their core competencies. This chapter envisions a collaborative 

organization scenario of a crowdsourcing supply network, in which tournament-based 

crowdsourcing entails contracting decisions among design and manufacturing agents as a 

best-matching problem (BMP). The most important activity of the crowdsourced 

manufacturing process is the selection of the self-interested agents and organizations to 

dynamically form and configure a crowdsourcing network with sharable manufacturing 

capabilities. A robust agent selection mechanism relies on an effective mix of explicit and 

inexplicit criteria evaluation, which reflect engineering functional requirements and 

business operational expectations. This chapter develops a quantitative evaluation of 

manufacturers for engineering functional requirements based on information-content 

measurements. The preference on business operational reputation of manufacturer is 

achieved by decision-tree learning for monotonic classification. The evaluation results of 

different criteria are aggregated through multi-attribute utility theory. The proposed 

method determines which agent best satisfies the pre-defined engineering functional and 

business operational requirements from customers, which enables a better matching of 

fulfilling agents with customers from a manufacturer crowd. A case study of tank trailer 
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mass customization through crowdsourcing is reported to illustrate the potential of MaaS 

through crowdsourced manufacturing. 

5.1 Contracting Mechanism for Crowdsourced Manufacturing 

Successful instantiation of MaaS requires collaboration among external partners, 

for which product fulfillment flow management is of primary importance. The open 

innovators and open manufacturers from various clusters are all engaged through an inter-

organizational network and their crowdsourcing relationships are contractually tied to 

collaboration for fulfilling different knowledge and capabilities along with a coherent 

product fulfillment flow (Simard and West, 2006). Such a crowdsourcing contracting 

mechanism is akin to traditional supply contracting that formally formulates the 

transactions between the stakeholders to pursue the coordination of diverse decision 

makers and organize them into supply chain networks (Giannoccaro and Pontrandolfo, 

2004). Together with the advancement of a collaborative product fulfillment process, the 

negotiation system is proposed to coordinate distributed enterprises (Mansouri et al., 2012). 

A negotiation contracting system entails a bilateral negotiation scheme coincides with a 

supply contract with an emphasis on the design of the efficient negotiation mechanisms, 

protocols, and strategies (Shin and Jung, 2004). In practice, every organization and entities 

in the supply chain networks are operating in heterogeneous environments with different 

objectives and constraints (Swaminathan et al., 1998). Since it is observed that a successful 

crowdsourcing decision-making process requires diversity and independence of the 

individuals in the crowds (Surowiecki, 2005), the crowdsourcing contracting is more 

challenging than conventional supply contracting.  
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The collaborative-negotiation process is generally divided into three consecutive 

phases, namely inviting, bidding, and awarding. Following the crowdsourced 

manufacturing workflow described in Figure 3-3, these three phases coincide with the 

interactions between platform agents 𝑃 and manufacturing agents 𝑀. The inviting process 

acts as an RFQ, where the platform agents act as crowdsourcer to send an open call for 

solutions or capabilities of an independent crowdsourcing subtask. Subsequently, the 

crowds will solve the subtasks and response with a bid. The collection of bids from crowds 

can be described as a tournament for a reward, under a scheme of highest-bids-wins, 

considering the performance or efforts to the original subtask. The evaluation broker 

awards the best manufacturing agent based on the evaluation result. A sophisticated 

collaborative-negotiation contracting scheme should serve not only the interactions among 

crowdsourcing entities but also the motivation of the crowds and the quality of the final 

products. Such requirement implies an effective contracting evaluation mechanism to 

explore the maximum satisfaction from the perspective of customers. 

The customer satisfaction of a crowdsourcing task is determined by the evaluation 

mechanism from platform companies, which is challenged by three aspects: 

1) The crowdsourcing contracting evaluation is characterized as a large-scale multi-

criteria decision-making problem. Different from the traditional outsourcing which invites 

designated partners to participate in the product fulfillment process, crowdsourcing relies 

on the wisdom of crowds, which implies the crowd can generate a large volume of solutions 

(Lakhani and Panetta, 2007). Constructing a supply network in a crowdsourcing 

environment implies a cooperation with new partners, which requires evaluation 

mechanisms to incorporate classification results of their business operational level. This 
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process should review their historical performance and exploit their reputation among 

customers. It addresses the necessity of an evaluation mechanism incorporating explicit 

and inexplicit criteria. 

2) A stream of uncertainty is inevitable along the crowdsourcing product fulfillment 

workflow. From a design perspective, this uncertainty can be traced from the 

subjectiveness lying in the evaluation process and the variation of system performance 

(Jiao and Tseng, 1998, Siskos et al., 1984). In practice, the experts conduct evaluation 

based on their heuristic “rule of thumb”, which has been historically done on an ad hoc 

basis (Thurston and Crawford, 1994). Establishing a model of the preference of the bids 

and the decision-making in the evaluation process to serve the contracting mechanism is 

critical to the realization of collaborative-crowdsourcing product fulfillment. From the 

manufacturing perspective, the performance of the production system shows strong 

dynamic and stochastic characteristic in the real manufacturing environment. Such 

characteristics are shown in the fluctuation of the throughput time, tolerance, and rejection 

rate. In addition, the evaluation of the contracting is in the early stage, which implies the 

design and manufacturing solutions are subjected to slight changes in later process. A 

method to mimic the uncertainty of the performance is critical in the development of 

evaluation mechanism. 

3) Since the crowdsourcing is aiming to fulfill the diverse requests, the evaluation is 

a two-fold process. It is observed that the crowds in the crowdsourcing activities show a 

return of the vast amount of noise (Andrew, 2007). An evaluation mechanism should 

ensure the performance of the delivered solution can target the subtasks’ requirements. 

From the product fulfillment perspective, the evaluation should pursue a maximized degree 
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of satisfaction (DoS) of customers, as well as a minimized deviation of the system 

performance to the requirements. Meanwhile, the trade-offs of the crowdsourcing tasks are 

reflected by various of conflicting criteria in evaluation. After single-criterion evaluation, 

the result should be ready to be aggregated for comparison. To sum up, the evaluation is a 

complex problem, a generic and formulated evaluation scheme is essential to handle the 

scale of evaluation. 

5.2 Crowdsourcing Evaluation for MaaS 

From the systematical perspective, the crowdsourcing system is an artificial and 

collaborative system, which has three interactive components: crowdsourcer, platform, and 

participants (Zhao and Zhu, 2014). For the purpose of product innovation, Lüttgens et al. 

(2014) categorize the interactions inner the crowdsourcing into six stages which are 

allocated in two sides of the platform. Following this conceptual framework, the flow of 

achieving an innovative product development is separated into two sides of the platform. 

The activities between crowdsourcer and the platform include initiating the project, 

contract negotiation with the platform, and reintegration of the subtasks to a collaborative 

product fulfillment network. These activities are essentially intermediary finding and 

authorization processes. In contrast, the activities fall between platform and participants 

can be perceived as a “tournament-based crowdsourcing” (Afuah and Tucci, 2012). There 

are three stages are summarized in the tournament, namely request for proposal 

formulating, open calls for solutions, and bids evaluation. The platform is authorized by 

the crowdsourcer to hold a tournament to broadcast the subtasks and rewards the 

corresponding participants which submit the best performance bids. After the best bids are 

evaluated, the preferred participants are selected from the crowds. The crowdsourcer and 



 75 

the selected participants will formulate their collaboration interrelationship in a fold of 

contracts and turn the crowdsourcing process to an integrated problem-solving process 

(Lüttgens et al., 2014). This conceptual framework gears forward the crowdsourcing from 

the perspective of a crowdsourcer in the context of an innovation project. Gong et al. (2019) 

gear forward this framework with a formulated product fulfillment process in an 

engineering context. 

The spirit of the diverse participant population and decentralized problem-solving 

implies a collaborative crowdsourcing system can be viewed as a multi-agent system 

(MAS). MAS technology is a paradigm for the researching of the organizational 

architecture, decision-making process and coordination mechanism for distributed, 

knowledge-based, and autonomous problem-solving modules (Brenner et al., 2012, Gupta 

et al., 2001). MAS collects a set of agents as an agent population; each agent has their 

perspective and incentives to maximize its utility in a dynamic circumstance (Wooldridge, 

2009). The agents work independently or cooperatively to solve the problem, and their 

local goals and objectives can be integrated by the negotiation of the supply contracts to 

achieve the system’s overall goals (Kaihara, 2003). The MAS can be applied to analyze 

the supply chain coordination issue considering information, material, and financial flow, 

respectively (Dudek and Stadtler, 2005, Gaonkar and Viswanadham, 2001, Govindan and 

Popiuc, 2014). Jiao et al. (2006) propose a MAS to explore the collaborative negotiation 

product fulfillment contracting mechanism in a global network. Besides, MAS enables the 

modeling of coordination and behavior mechanism in a dynamic environment (Xiao et al., 

2007).  
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The evaluation methods for crowdsourcing tasks have been studied heavily. The 

fuzzy analysis can represent and manipulate the imprecise evaluation criteria through the 

product fulfillment process (Ragin et al., 2006). To ensure the fulfillment of crowdsourcing 

tasks, the fuzzy ranking method can evaluate high variety product fulfillment plans by 

maximizing the overlap between the expectation of request for proposal and performance 

of the responses (Jiao and Tseng, 1998). The multi-utility theory provides the aggregation 

of results of intercorrelated multi-criteria evaluation problems under uncertainty to handle 

the subjectivity of the customer preference lying under the evaluation criteria (Claudio et 

al., 2014, Keeney et al., 1993).  

The high variety product fulfillment seeks an efficient information delivering to the 

customers and avoid the deviation and redundant efforts of the system performance (Du et 

al., 2006). The evaluation methods based on the information theory have been developed 

to accommodate large variety in a crowdsourcing era (Zhao et al., 2016). By measuring the 

effective information delivery from the crowds, the candidates can be selected by fuzzy 

information axioms (Akay et al., 2011). 

5.3 Engineering Functional Evaluation with Explicit Criteria 

Contracting evaluation measures the performance of proposed solutions according 

to their capabilities of fulfilling various requirements. This section treats the crowdsourcing 

contracting evaluation as a multi-criteria decision-making process, which combines 

inexplicit business operation and explicit engineering requirements into the solution 

selection. In this regard, DoS function is introduced to quantify the evaluation result to a 

value between 0 and 1. And a multiplicative multi-attribute utility theory is applied to 
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aggregate the DoS vector. The evaluation of design and manufacturing bids has different 

characteristics, but information content theory can evaluate their effective deliveries to the 

requirements. 

5.3.1 Information Content Measure and DoS Formulation 

Manufacturer 𝜇𝑛𝛼
𝛼  will configure a production system and propose it as a 

manufacturing bid 𝐵𝛼,𝑛𝛼, where 𝑛𝛼 is the index of manufacturer in each cluster 𝛼. This bid 

acts as a manufacturing plan for fulfilling RFQ Δ𝛼 along its process routes. 𝐵𝛼,𝑛𝛼 can be 

evaluated based on the performance of the configured production system. Discrete-event 

simulation (DES) has been widely used to imitate the operations of a real-world agent-

based production system by modeling the changes of state variables at a discrete set of 

points in time (Borshchev and Filippov, 2004). The stochastic model of the manufacturing 

system can be established based on the output analysis of the DES (Alexopoulos et al., 

1998).  

In this case, the preference of a RFQ for a design bid can be modeled by a 

preference function, which is represented in a form of utility function of the system 

performance. The utility function models the range of performance as perception from 

function domain. The preference function for a performance of system is represented as 

𝑢(𝑃𝑟). The probability of a manufacturing bid can fulfill the corresponding RFQ depends 

on the performance range it achieved, which can be represented in the form of probability 

distribution function (PDF) 𝑝(𝑃𝑟) . The calculation of precepted utility of a bid’s 

performance can be quantified based on the product of preference 𝑢(𝑃𝑟) and PDF 𝑝(𝑃𝑟) 

of performance variable 𝑃𝑟  in the fulfillment range. Moreover, the aggregation of 
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evaluation results can follow the similar multi-attribute utility scheme. In this regard, this 

section will explore the evaluation mechanism for manufacturing bids in a generic form. 

To evaluate a bid’s performance on fulfilling a certain requirement, the method of 

information content measurement is used. In the original formulation of the information 

content, the preference of the design range is assumed as uniform. However, because of 

the preference of the requirements, a triangular preference function shows the superiority 

in modeling the expected design and manufacturing performance range (Jiao and Tseng, 

2004). The preference function of the fulfillment range can be generalized as  𝑢(𝑃𝑟). The 

lower and upper limits of these requirement ranges are defined as: [𝐹𝑟𝐿, 𝐹𝑟𝑈]. The PDF of 

a bid’s system performance can be generally represented by 𝑝(𝑃𝑟). The lower and upper 

limits of these performance range can be generally defined as: ∀𝑃𝑟 ∈ [𝑃𝑟𝐿, 𝑃𝑟𝑈]. The 

information content 𝐈 is a measurement of 𝑃(𝑃𝑟), which is defined as equation (5.1).  

𝐈 = log2 𝑃(𝑃𝑟) (5.1) 

As illustrated in Figure 5-1, the probabilities of successfully fulfill the expected 

performance 𝑃(𝑃𝑟) can be calculated by the integration of the precepted probability of 

success, which is the integral of the product of preference 𝑢(𝑃𝑟) and performance 𝑝(𝑃𝑟). 

It models the perceived system performance over the fulfillment range from the customer, 

which is shown in equation (5.2).  

𝑃(𝑃𝑟) = E[ 𝑢(𝑃𝑟)] = ∫  𝑢(𝑃𝑟) ⋅  𝑝(𝑃𝑟)
𝐹𝑟𝑈

𝐹𝑟𝐿
𝑑𝑃𝑟 (5.2) 

And the DoS of a bid towards a certain requirement is formulated in equation (5.3). 
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𝐷𝑜𝑆 =
1

1 − 𝐈
=

1

1 − log2 ∫  𝑢(𝑃𝑟) ⋅  𝑝(𝑃𝑟)
𝐹𝑟𝑈

𝐹𝑟𝐿
𝑑𝑃𝑟

 (5.3) 

 

Figure 5-1 Preference function and performance distribution 

5.3.2 Multi-criteria Contracting Evaluation Representation 

This research views bid evaluation as a series of multi-criteria decision-making 

problems in the context of collaborative-crowdsourcing product fulfillment, thus ensuring 

the fulfillment of the requirements regarding DPs and with a coordinated quantity and lead 

time. The manufacturing bids are collected in the finite set 𝐵𝛼. Each bid set 𝐵𝛼 will be 

evaluated by the evaluation criteria set 𝐜Ϝ𝛼 = {𝑐1
Ϝ𝛼 , … , 𝑐𝑟𝛼

Ϝ𝛼 , … , 𝑐𝑅𝛼
Ϝ𝛼}, where 𝑟𝛼 and 𝑅𝛼  are 

the index and total number of criteria in 𝐜Ϝ𝛼. The performance of a design bid 𝐵𝛼,𝑚𝛼
is 

measured by the criteria 𝑐𝑟𝛼
Ϝ𝛼 and noted as the 𝐷𝑜𝑆(𝑐𝑟𝛼

Ϝ𝛼 , 𝐵𝛼,𝑚𝛼
)where 𝐵𝛼,𝑚𝛼

∈ 𝐁𝛼 , 𝑐𝑟𝛼
Ϝ𝛼 ∈

𝐜Ϝ𝛼. In a multi-criteria evaluation condition, the evaluation result of a bid 𝐵𝛼,𝑚𝛼
 can be 

represented by a 𝑅𝛼-dimensional vector: 
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𝐷𝑜𝑆(𝐵𝛼,𝑚𝛼
) = [𝐷𝑜𝑆(𝑐1

Ϝ𝛼 , 𝐵𝛼,𝑚𝛼
),… , 𝐷𝑜𝑆(𝑐𝑟𝛼

Ϝ𝛼 , 𝐵𝛼,𝑚𝛼
),… , 𝐷𝑜𝑆(𝑐𝑅𝛼

Ϝ𝛼 , 𝐵𝛼,𝑚𝛼
)]. (5.4) 

To model the relative importance among the vector, a weighting factor is introduced 

and noted as 𝑤 , for a 𝑅𝛼 -dimensional vector. The evaluation representation of 

manufacturing bids is formulated similarly. The evaluation result of a bid can be 

aggregated to total DoS, which is denoted as 𝑇𝐷𝑜𝑆(𝐵𝛼,𝑚𝛼
) and defined as: 

𝑇𝐷𝑜𝑆(𝐵𝛼,𝑚𝛼
) = ∑ 𝑤𝑟𝛼 ⋅

𝑅𝛼

𝑟𝛼=1

𝐷𝑜𝑆
𝑐𝑟𝛼
Ϝ𝛼(𝐵𝛼,𝑚𝛼

). (5.5) 

However, in practice, the DoS for different requirements are heterogeneous and 

correlated per se. Moreover, the multi-attribute utility theory is proposed to handle the 

underlying correlation (Ji et al., 2013): 

𝑈𝐷𝑜𝑆(𝐵𝛼,𝑚𝛼
) =

1

𝐾
[[∏ (𝐾 ⋅ 𝑤𝑟𝛼 ⋅ 𝐷𝑜𝑆𝑐𝑟𝛼

Ϝ𝛼(𝐵𝛼,𝑚𝛼
) + 1)

𝑅𝛼

𝑟𝛼=1

] − 1 ] , (5.6) 

where the 𝑈𝐷𝑜𝑆(𝐵𝛼,𝑚𝛼
) is normalized 𝐷𝑜𝑆(𝐵𝛼,𝑚𝛼

) with Fα
D. 𝐾 is a normalizing constant 

which scales 𝑈𝐷𝑜𝑆 from 0 to 1. 𝐾 can be derived from the equation (5.7). 

1 + 𝐾 =∏(1 + 𝐾 ⋅ 𝑤𝑟𝛼)

𝑅𝛼

𝑟=1

 (5.7) 

Moreover, in the multiplicative form in equation (5.5), 𝑤𝑟𝛼 is different from the 

additive form. It is not viewed as a weight, but rather an attribute-scaling parameter for 

accurate trade-off making (Claudio et al., 2014). The sum of the weights should not require 
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to be exactly 1 in additive form equation (5.4) (Lewis et al., 2006). If the 𝐾 is 0, it indicates 

there is no preference of the attributes, and the equation (5.5) is equivalent to the equation 

(5.4) (Krishnamurty, 2006). After the evaluation, the results can be collected in a finite set 

with 𝑀𝛼 elements, and the most preferable bid can be selected by finding the minimum or 

the maximum value in the set: 

max/min ({𝑈𝐷𝑜𝑆(𝐵𝛼)}𝑀𝛼) → 𝐵𝛼
∗ ∈ 𝐁𝛼. (5.8) 

5.4 Decision Tree-based Evaluation for Inexplicit Criteria with Monotone Ordinal 

Measures  

5.4.1 Intangible Criteria Evaluation 

Based on the characteristics of the criteria, evaluation problems can be divided into 

both tangible criteria evaluation and intangible criteria evaluation. The former indicates 

approaches to quantify the object performance according to the given criteria, like most of 

the evaluation for engineering performance. However, not all performance can be 

quantified with numeric values based on the criteria requirements. In this scenario, 

imprecise linguistic words can be used to fuzzily evaluate the performance, like in some 

criteria for business performance. 

Because the objective of evaluation is to compare the performance of different 

objects from a certain perspective, to replace absolute numeric measurement with ordinal 

measurement for describing the DoS is an approach to intangible criteria evaluation. By 

doing so, objects can be ranked and ordered based on their performance. This will not 

violate the inexplicitness or fuzziness regarding the intangibility of a criterion. Therefore, 
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as long as the contracting brokers keep the evaluation mechanism consistent, the ranking 

or ordering of the object performance will be based on the same logic, making the objects 

at different time points comparable. Furthermore, such evaluation is supposed to be 

monotone, which means when one object dominates another, the evaluation of the 

dominator will not be worse than the dominated one. 

In this regard, the evaluation of intangible criteria can be modeled as a monotonic 

classification problem. To address this problem, the rank entropy-based decision tree is 

used to learn the evaluation mechanism under intangible criteria, in which rank entropy is 

used to branch the decision tree based on the data monotonicity. 

5.4.2 Definition of Monotonic Classification 

Monotonic classification refers to ordinal classification problems with the 

monotonic constraint. Let 𝐴 be an instance space where 𝑝 is the number of attributes, 

which can be noted as 𝐴 = 𝐴1 × 𝐴2 ×…× 𝐴𝑝. Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a set of objects 

in the instance space 𝐴, with 𝐷 being the ordinal decisions or labels of these objects. The 

value of the attribute or the decision related to 𝑥𝑖 can be expressed as 𝑣(𝑥𝑖 , 𝑎) or 𝑣(𝑥𝑖 , 𝐷), 

where 𝑎 ∈ 𝐴. In the ordinal relation, ≤ is used to describe no worse than between two 

objects. For example, 𝑥𝑖  is no worse than 𝑥𝑗  in terms of 𝐷 can be noted as 𝑣(𝑥𝑗 , 𝐷) ≤

𝑣(𝑥𝑖 , 𝐷) or 𝑥𝑗 ≤𝐷 𝑥𝑖. Usually, 𝑥𝑖 dominates 𝑥𝑗 refers to that every attribute value of 𝑥𝑖 is 

no worse than 𝑥𝑗. Based on this concept, a predicting function 𝑓 that relates 𝐴 to 𝐷 can be 

expressed as below: 

𝑓: 𝑈 → 𝐷 (5.9) 
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The monotonic constraint is then defined as below, which should always be 

satisfied in monotonic classification: 

𝑥𝑖 ≤ 𝑥𝑗 ⇒ 𝑓(𝑥𝑖) ≤ 𝑓(𝑥𝑗), ∀𝑥𝑖, 𝑥𝑗 ∈ 𝑈 (5.10) 

In other words, if 𝑥𝑗 is dominated by 𝑥𝑖, the decision of 𝑥𝑗 will not be worse than 

that of 𝑥𝑖, not vice versa. 

5.4.3 Rank Entropy-based Decision Tree 

Rule extraction from monotonic data attracts some attention from the domains of 

machine learning and decision analysis. Decision tree induction is an efficient, effective, 

and understandable technique for rule learning and classification modeling (Quinlan, 

2014), where a function is required for evaluating and selecting features to partition 

samples into finer subsets in each node. The rank entropy measure originates from 

Shannon's information entropy, which is robust in evaluating features of the monotone 

dataset (Hu et al., 2011). Also, this measure reflects the ordinal structures in monotonic 

classification. Therefore, a decision tree algorithm based on the rank entropy measure is 

used in this study. 

Some preliminary definitions are given for introducing the rank entropy-based 

decision tree. 

[𝑥𝑖]𝐵
≤ = {𝑥𝑗 ∈ 𝑈|𝑥𝑖 ≤𝐵 𝑥𝑗}, where 𝐵 ⊆ 𝐴 (5.11) 

[𝑥𝑖]𝐷
≤ = {𝑥𝑗 ∈ 𝑈|𝑥𝑖 ≤𝐷 𝑥𝑗} (5.12) 
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Equation (5.11) and (5.12) describe objects no worse than 𝑥𝑖 in terms of attributes 

or decision. Similar to the concept of the information entropy, the ascending rank entropy 

of an object set 𝑈 is defined as below: 

𝑅𝐻𝐵
≤(𝑈) = −

1

𝑛
∑log

|[𝑥𝑖]𝐵
≤|

𝑛

𝑛

𝑖=1

 (5.13) 

The ascending rank joint entropy of an object set 𝑈 is defined as 

𝑅𝐻𝐵∪𝐷
≤ (𝑈) = −

1

𝑛
∑log

|[𝑥𝑖]𝐵
≤ ∩ [𝑥𝑖]𝐷

≤ |

𝑛

𝑛

𝑖=1

. (5.14) 

The ascending rank mutual information (RMI) of an object set 𝑈 is defined as 

𝑅𝑀𝐼≤(𝐵, 𝐷) == −
1

𝑛
∑log

|[𝑥𝑖]𝐵
≤| ∗ |[𝑥𝑖]𝐷

≤ |

𝑛 ∗ |[𝑥𝑖]𝐵
≤ ∩ [𝑥𝑖]𝐷

≤ |

𝑛

𝑖=1

. (5.15) 

The rank entropy-based decision tree uses the RMI value for the branch operation. 

Essentially, RMI describes the degree of monotonicity between the attribute set 𝐵 and the 

decision set 𝐷. The workflow of the rank entropy-based ordinal decision tree is shown in 

Table 5-1. 

5.4.4 Monotone Decision Tree Pruning 

Like other supervised machine learning techniques, decision tree learning also 

faces the overfitting problem during its training process. Given a certain dataset, without 

predefined limitations on the tree structure, the decision tree will grow larger until till it 

fits all the data in the dataset. This can guarantee the prediction performance with enough 



 85 

specialization on the existing dataset by increasing the model complexity, but the trained 

decision tree may perform badly with poor generalization on unseen data. On the other 

hand, a small tree model may not express important data characteristics due to the scale of 

its complexity. Therefore, a balance can be made between model generalization and 

specialization to address the overfitting problem, and pruning is the technique for 

overfitting in decision trees. 

Table 5-1 Algorithm workflow of rank entropy-based ordinal decision tree 

Step 1: Generate the root node with input sample data. 

Step 2: If this node satisfies the stopping criterion: 

                make this node as a leaf. 

            else 

                branch this node. 

Step 3: for each attribute 𝑎𝑖 ∈ 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

                 for each value 𝑐𝑗 ∈ 𝑎𝑖 

                      divide samples into two subsites with 𝑐𝑗. 

                      If 𝑣(𝑎𝑖 , 𝑥) ≤ 𝑐𝑗 

                             𝑣(𝑎𝑖 , 𝑥) = 1 

                      else 

                             𝑣(𝑎𝑖 , 𝑥) = 2 

                      calculate 𝑅𝑀𝐼𝑐𝑗 = 𝑅𝑀𝐼(𝑎𝑖 , 𝐷). 

                end 𝑗 
            end 𝑖 

Step 4: select 𝑎𝑖 and 𝑐𝑗 such that 𝑅𝑀𝐼 = argmax
𝑖

max
𝑗
𝑅𝑀𝐼(𝑎𝑖 , 𝑐𝑗, 𝐷). 

Step 5: If max𝑅𝑀𝐼 ≥ 𝜀 

                branch this node using the attribute 𝑎𝑖 and the value 𝑐𝑗. 

            else 

                stop branching this node. 

There are two pruning approaches based on when pruning happens: pre-pruning 

and post-pruning. Pre-pruning is to set stopping criteria during the training process. For 

instance, the maximum tree depth or minimum information gain can be specified to stop 

the tree from growing deeper or splitting before the decision tree fits the whole dataset. 
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Pre-pruning is a fast and efficient method to avoid overfitting. Post-pruning approach refers 

to pruning the tree after the training process is complete. The idea is to substitute some 

subtree with a leaf node to reduce the model complexity based on some measures. A 

common method is the cost-complexity pruning (Breiman et al., 2017), which proposes a 

cost-complexity function to optimize on subtrees: 

𝑅𝜗(Τ) = 𝑅(Τ) + 𝜗 ⋅ |Τ̃| (5.16) 

where Τ is a decision tree, 𝑅(Τ) is the prediction error of the tree, |Τ̃| is the number of leaf 

nodes, and 𝜗  is a regularization parameter. The use of this evaluation function is to 

calculate its value for every node in the tree, considering that node is being pruned. And 

the node with minimum function value should be the node to prune. By adding a penalty 

cost on model complexity, this evaluation approach can find a smaller decision tree with 

better generalization ability. 

Different from non-monotone decision trees, monotonic constraints must be 

satisfied in the tree leaf nodes, while direct post-pruning on a monotone decision tree may 

make the tree nonmonotone. Therefore, pruning monotone decision trees needs to 

guarantee the monotonicity while reducing its complexity. To address this issue, several 

fixing methods are proposed to make a nonmonotone decision tree monotone through 

minimal adjustments. In this way, the balance between model complexity and prediction 

performance on unseen data can be made by continuously pruning and fixing the tree. 

In this work, the best fix method is used for monotone tree pruning (Feelders and 

Pardoel, 2003). This pruning method prunes the parent node of a nonmonotone leaf that 

brings the largest decrease in the number of nonmonotone leaf pairs. To avoid prune parent 
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nodes generated in an early stage, the pruning process is conducted bottom-up and firstly 

deals with nodes with minimum number of descendants. If multiple nodes have the same 

number of nonmonotone pairs, the node with the least number of observations is selected 

to be pruned. This process is conducted until the tree is monotone again. 

In conclusion, pruning avoids overfitting from the training dataset by reducing the 

model complexity, so that it predicts better on unseen dataset. Pruning will be beneficial 

when the objects in the instance space are difficult to be enumerated. 

5.5 Aggregate Business Ranking Result with Functional Preference 

A comprehensive agent comparison needs the aggregation of both business ranking 

and engineering functional preference. In this thesis, the multi-attribute utility theory is 

used for aggregation, considering equation (5.6) provides an architecture to accommodate 

ranking result and the ordinal results from decision tree classification can be defined as a 

number from 0 to 1. In this sense, the business ranking result can be viewed as another 

evaluation attribute. The aggregation can be formulated as below: 

𝑈𝐷𝑜𝑆(𝜇𝛼) =
1

𝐾
[(𝐾 ⋅ 𝑤𝑒𝑛𝑔 ⋅ 𝑈𝐷𝑜𝑆 + 1) ⋅ (𝐾 ⋅ 𝑤𝑏𝑢𝑠 ⋅ 𝐷𝑜𝑆𝑏𝑢𝑠 + 1) − 1 ], (5.17) 

where 𝐷𝑜𝑆𝑏𝑢𝑠 is a predefined value based on the business ordinal ranking, and 𝐾 is derived 

from: 

1 + 𝐾 = (1 + 𝐾 ⋅ 𝑤𝑒𝑛𝑔) ⋅  (1 + 𝐾 ⋅ 𝑤𝑏𝑢𝑠)                                  (5.18) 

5.6 Case Study on Crowdsourcing Contracting Evaluation 
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Tank trailer manufacturing is a typical manufacturing process that involves a 

variety kinds of assembly processes and parts. To meet the purpose of carrying different 

kinds of chemical substances, varieties of tank trailers are designed which also form a huge 

tank trailer family. A case study of tank trailer through platform-driven crowdsourced 

manufacturing is used to illustrate the proposed theory. Through the platform-driven 

crowdsourced manufacturing flow, the illustration of the contracting mechanism and the 

implementation of bid evaluation and agent selection have been explored. 

Figure 5-2 shows the structure of the primary objects of a tank trailer family which 

combines the product variants and process variants. The name of each assembly operation 

and manufacturing operation in the Generic Product and Process Structure (GPPS) are 

shown in Figure 5-2. In a generalized tank trailer manufacturing process, there are at least 

two manufacturing operations and eight assembly operations. Each raw material, 

purchased part, manufacturing operation and assembly operation contains amounts of 

alternatives. Therefore, to design a proper tank trailer that meets individual customer needs, 

a massive number of alternative parts and operations need to be evaluated in multiple 

design criteria before making decisions. This evaluation process can be extremely complex 

due to massive number of alternatives. DoS is employed to evaluate design alternatives in 

the illustrative case. 

Based on the GPPS of the tank trailer family, an ontology model could be built as 

shown in Figure 5-2. In the ontology model, purchased parts, raw material and assembly 

are class type data. Different from the GPPS, process operation is not shown in Figure 5-2. 

Arrows in the figure show the subordinate relationship between classes. For instance, 

Insulation, ‘Out Layer’ and ‘Vessel Assembly’ are subclasses of ‘Tank Sub-assembly 2’. 
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Figure 5-2 Generic product and process structure of a tank trailer family 

5.6.1 Engineering Performance Evaluation with Multi-attribute Utility Theory 

As the product fulfillment process and the crowdsourcing supply contracting 

mechanism depicted previously, 𝑂 takes in charge of the generation of 𝐶0. This 𝐶0 is a 

series of the customer orders, specified the expectations for a trailer to fulfill the tank usage 

process. These orders are sent to virtual field of crowdsourcing information management 

and saved as design specs 𝐷0 . These design specs have internal hierarchical and 

precedence relationship, and the products are structured to Δ = 𝛿1 × …𝛿𝑞 ×…𝛿𝑄. Before 

sending these products to the crowdsourcing invitation broker 𝑃̅𝐼, project configuration 
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manager 𝑃𝐶  restructures Δ to RFQ Δ𝛼, according to the number of manufacturing agent 

clusters. In our case, invitation broker 𝑃2
𝐼 sends the RFQ Δ2to the crowd as an open call 

and specify the evaluation criteria to guide the evaluation process. After receiving RFQ, 4 

agents in 𝜇2  decide to bid, which are noted as {𝜇1
2, 𝜇2

2, 𝜇3
2, 𝜇4

2} . Accordingly, 4 

manufacturing bids are collected by the 𝑃2
𝐸  in a finite set 𝐵2 , where 𝐵2 =

{𝐵2,1, 𝐵2,2, 𝐵2,3, 𝐵2,4}. In this case, the bids are described in the Table 5-2. 

𝑃2
𝐸  evaluates these bids based on their functional performance. Based on the 

mechanism established in Section 5.3, the evaluation methods can be decomposed into the 

following steps. Firstly, 𝑃2
𝐸 specifies the corresponding range parameters of 𝑃𝐹𝑟 and 𝑃𝑃𝑟 

for every criterion and bid, thus the preference function of expected performance and the 

PDF of achieved performance is established. Firstly, 𝑃2
𝐸  specifies the corresponding range 

parameters of 𝑃𝐹𝑟  and 𝑃𝑃𝑟  for every criterion and bid, thus the preference function of 

expected performance and the PDF of achieved performance is established. Secondly, 

using equation (5.1) and equation (5.2), the information contents 𝐼 can be derived. Thirdly, 

calculating the DoS using equation (5.3) and aggregate these DoS. At last, the preferred 

bid can be selected by the rule which is depicted in the equation (5.6). The evaluation 

process for the illustrative example is demonstrated in the Table 5-2. The engineering 

evaluation results can then be aggregated with agent business performance for final agent 

selection. 
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Table 5-2 Evaluation process for manufacturing bids 

Evaluation Criteria of 𝑀2 Frame Welding for a Chemical Tank Trailer 

Evaluation Criteria 

Strength Dimension 

Estimated Cost 

(USD) Tensile Strength (MPa) Flexural Strength (MPa) 

Tolerance of Upper 

Surface 

(mm) 

Verticality of Main 

Frame 

(MPa) 

Fulfillment Range 

𝑢(𝑃𝑟) 𝑢(𝑃𝑟) 𝑢(𝑃𝑟) 𝑢(𝑃𝑟) 𝑢(𝑃𝑟) 

𝐹𝑟𝐿  𝐹𝑟𝑃 𝐹𝑟𝑈 𝐹𝑟𝐿  𝐹𝑟𝑃 𝐹𝑟𝑈 𝐹𝑟𝐿  𝐹𝑟𝑃 𝐹𝑟𝑈 𝐹𝑟𝐿 𝐹𝑟𝑃 𝐹𝑟𝑈 𝐹𝑟𝐿  𝐹𝑟𝑃 𝐹𝑟𝑈 

250 500 500 550 800 800 −14 0 14 −2 0 2 1000 1000 2000 

Attribute 

Scaling 

Constant 

𝑤𝑎 0.2 0.1 0.25 0.1 0.3 

Performance Range 𝑃𝑟𝐿 𝑝(𝑃𝑟) 𝑃𝑟𝑈 𝑃𝑟𝐿 𝑝(𝑃𝑟) 𝑃𝑟𝑈 𝑃𝑟𝐿 𝑝(𝑃𝑟) 𝑃𝑟𝑈 𝑃𝑟𝐿 𝑝(𝑃𝑟) 𝑃𝑟𝑈 𝑃𝑟𝐿 𝑝(𝑃𝑟) 𝑃𝑟𝑈 

B
id

s 
P

er
fo

rm
an

ce
 SHS 𝐵2,1 240 𝑁(280, 202) 280 550 𝑁(630, 402) 710 −14 𝑁(0, 102) 14 −2 𝑁(0,1.52) 2 1500 𝑁(1900, 2002) 2300 

GMAW 𝐵2,2 220 𝑁(250, 152) 280 520 𝑁(600, 402) 680 −14 𝑁(0, 72) 14 −2 𝑁(1, 12) 2 1100 𝑁(1200, 502) 1300 

GTAW 𝐵2,3 220 𝑁(250, 152) 280 520 𝑁(600, 402) 680 −14 𝑁(0, 62) 14 −2 𝑁(0, 0.82) 2 1400 𝑁(1500, 502) 1600 

Stir 
Welding 

𝐵2,4 320 𝑁(350, 152) 380 600 𝑁(700, 502) 800 −14 𝑁(0, 42) 14 −2 𝑁(0, 0.52) 2 1300 𝑁(1400, 502) 1500 

E
v
al

u
at

io
n
 

R
es

u
lt

s 

SHS 𝐵2,1 0.2481 0.3791 0.4874 0.4753 0.2603 

GMAW 𝐵2,2 0.1566 0.3063 0.5834 0.5834 0.7564 

GTAW 𝐵2,3 0.1566 0.3063 0.6260 0.6447 0.5 

Stir 

Welding 
𝐵2,4 0.4307 0.5565 0.7282 0.7570 0.5757 

Normalized DoS 

𝑈𝐷𝑜𝑆(𝐵2,1) 0.3411 

𝑈𝐷𝑜𝑆(𝐵2,2) 0.5048 

𝑈𝐷𝑜𝑆(𝐵2,3) 0.4425 

𝑈𝐷𝑜𝑆(𝐵2,4) 0.5901 
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5.6.2 Business Performance Evaluation through Decision Tree Learning 

In this chapter, business performance evaluation is done based on the learning of 

history design agent performance with the rank entropy-based decision tree. Due to the 

lack of ordinal monotonic classification benchmark data sets for machine learning, to show 

the effectiveness of the decision tree-based business performance evaluation, both an 

artificial data set of agent business performance and a real-world regression data set are 

used, where the latter is further transformed into a monotone one. 

The history evaluation is collected as a rated class which results from ordinal 

measures in four perspectives: support responsiveness during the design, delivery 

punctuality, design concept reliability, and customer service after delivery. Because of the 

implicitness of these criteria, evaluation of each single criterion is done by assigning an 

integer value from 0 to 3, where a higher value represents higher satisfaction. The rate of 

the overall business performance is based on evaluation of the four criteria, which has four 

levels: "Wonderful", "Good", "Ordinary", and "Bad". The evaluation process should 

strictly satisfy the monotonic constraint, meaning one object will not be rated as a lower 

class than the other object who has equal or worse evaluation results on four criteria. The 

evaluation process from four attributes to the final rate is to be learned by the rank entropy-

based decision tree. 

Considering the attribute space only contains 44  unique instances, pruning 

operations can do more harm than good, because the model will not be overfitted if the 

attribute universal space is not far larger than the space provided by the training dataset. 

Therefore, in this illustrative case, the decision tree is not pruned after training. 



 93 

Based on the above formulation, the training dataset is displayed in Table 5-3. The 

dataset is created with 60 samples by an algorithm that generates unstructured monotone 

ordinal data (Potharst et al., 2009). 

Table 5-3 The monotone dataset for business performance evaluation 

Wonderful 
0332, 1213, 2133, 2222, 2233, 2330, 2333, 3203, 
3213, 3231, 3232, 3311, 3313, 3321, 3322, 3323 

Good 
0213, 0230, 0320, 1132, 1303, 1311, 2122, 2131, 

2203,2221, 2311, 3122, 3200, 3212, 3221 

Ordinary 
0111,0202,0212,1102,1121,1131,1211,2013, 
2023,2103,2111,2120,2130,3033,3121 

Bad 
0013,0020,0022,0120,0200,0201,1003, 
1011,1210,2011,2020,3001,3012,3100 

After the training of the rank entropy-based decision tree, the result is shown in 

Figure 5-3. To make the figure readable, the evaluation values of four criteria are noted as 

𝑥1, 𝑥2, 𝑥3, 𝑥4, and the overall service evaluation is noted as 𝑦, where {3,2,1,0} represents 

{𝑤𝑜𝑛𝑑𝑒𝑟𝑓𝑢𝑙, 𝑔𝑜𝑜𝑑, 𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦, 𝑏𝑎𝑑}, respectively. The final decision tree has 31 leaves, 

corresponding to 31 rules for customer service classification. 

 

Figure 5-3 Decision tree for customer service evaluation  
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The existing business performance of the four bidding agents 𝜇1
2, 𝜇2

2, 𝜇3
2, 𝜇4

2  are 

displayed as Table 5-4. The results of agent business performance evaluation are then 

aggregated with engineering functional evaluation for the final agent selection. 

Table 5-4 The existing business performance of four agents 

Manufacturing 

agent 
Responsiveness Punctuality Reliability 

Customer 

Service 
Rate 

𝜇1
2 0 2 0 3 Good 

𝜇2
2 1 3 3 2 Wonderful 

𝜇3
2 2 1 3 2 Good 

𝜇4
2 2 0 3 1 Bad 

The validation of the algorithm on the real-world data set is constructed from a 

computer hardware data set (Frank, 1987). This data set contains 209 records, and each 

record contains 6 integer attributes and 2 integer responses. In this study, the 6 attributes 

and the estimated relative performance are used to construct the monotone data set. 

Firstly, to make the data set monotone, MYCT (machine cycle time) is transformed 

as equation (5.19), since this attribute originally has a negative correlation with the 

response. Secondly, the response is discretized into 6 classes through k-means clustering 

as the evaluation result. After process, there are 190 unique records, and the discretized 

ranking results are shown in Table 5-5. 

To train the monotone decision tree, the data set is split into a training data set 

consisting of 141 records and a validation data set with 49 records. The trained decision 

tree is illustrated in Figure 5-4. And the accuracy on the validation data set is 93.88%. 
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Table 5-5 The discretized ranking results 

Ranking 1 2 3 4 5 6 

Range of Estimated 

Relative Performance 
[15, 50] [52, 107] [113,199] [220,290] [341,603] [749,1238] 

Number of Records 107 38 24 9 8 4 

 

Figure 5-4 Trained decision tree for validation 
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∗
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Y=3

Node 20

X1<=2000

Node 21

X4<=48

Yes No Yes No

Node 22

Y=1

Node 23

Y=2
Node 24

X1<=2000

Node 25

X6<=8

Node 26

Y=3

Node 27

X2<=8000

Yes No Yes No Yes No

Node 28

Y=4

Node 29

Y=5

Node 30

Y=2

Node 31

Y=3

Node 32

X2<=2000

Node 33

Y=3

Node 34

Y=3

Node 35

Y=4

Node 36

Y=2

Node 37

Y=3

Yes No

Yes NoYes No

Yes No

Yes No
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evaluation and contracting results will be sent to the crowdsourcing information 

management field and saved as process specs 𝑃0. 

Table 5-6 The final evaluation result 

Final aggregation 

result 
𝜇1
2 𝜇2

2 𝜇3
2 𝜇4

2 

𝑈𝐷𝑜𝑆(𝜇𝛼) 0.4124 0.6038 0.4875 0.4082 

5.6.4 Managerial Implications 

The presenting case study of tank trailer manufacturing service process shows an 

example of the implementation of proposed crowdsourcing workflow. It has examined the 

feasibility of the platform-driven crowdsourced manufacturing for MaaS. Following the 

method of tournament-based crowdsourcing, this case study shows the process of reaching 

external manufacturer crowds via a platform and instantiates the tournament to search the 

best-performed manufacturing solution. In addition, the proposed evaluation mechanism 

provides an approach to constructing the collaborative-crowdsourcing team. The 

contracting evaluation mechanism has taken into account the uncertainty of the 

manufacturing process, the aggregation of the various criteria from engineering functional 

requirements and business operational requirements. 

From the managerial perspective, the trailer company can focus on its core 

competitiveness by applying crowdsourced manufacturing with platform. Meanwhile, the 

main frame company can manufacture the part of trailer assemblies without direct contact 

with customers. The platform-driven crowdsourced manufacturing offers a bridge to link 

the manufacturing solution provider crowds for sharing their core competitiveness and 
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capabilities complimentarily. Therefore, they have higher possibility to achieve economies 

of scale and ease the application of the emerging technologies. 

5.7 Chapter Summary 

Crowdsourcing contracting entails a BMP problem, for which a best-matching 

protocol plays a critical role in evaluating and selecting appropriate design or 

manufacturing agents for crowdsourcing. The information content measure performs as a 

neutral indicator for unifying diverse domain-specific metrics of manufacturing 

capabilities within a coherent evaluation framework. Decision tree learning facilitates 

selection decision making by incorporating past performance data of crowdsourcing 

agents. This data-driven method suggests good opportunities to extend crowdsourcing 

contracting to considering a large smart service network over time across a planning 

horizon. 

The evaluation mechanism is the backbone of the contracting mechanism since it 

serves the selection of the best solution. It will not only determine the customer’s 

satisfaction of final products, but also the coordination of the crowds’ cohort decision 

making. An information contents measurement-based engineering functional evaluation 

mechanism is proposed. Such evaluation implies the satisfaction is determined by the 

overlap of the expectation and performance. This two-folded evaluation scheme handles 

the uncertainty originating from the design and manufacturing domains. The multi-

attribute utility theory supports the aggregation of the evaluation. The various criteria can 

be applied to the evaluation of a solution. This scheme serves the simplification of the 

evaluation process and allows the scaling of the tournament. 
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Decision tree-based evaluation mechanism is proposed to explore the inexplicit 

evaluation of the candidate manufacturer, which highlights the potential of incorporating 

the service level based on the history records. Monotonic classification rules are proposed 

for regulating the dominance relationship among the manufacturer in crowds. A synergy 

of rank entropy-based decision tree learning, and monotone decision tree pruning can 

extract the business operational ranking of the manufacturers with a minimum overfitting 

from training dataset. The aggregation method of engineering and business evaluation 

results are proposed for final selection. 

As a technical solution that serves open innovator a contracting evaluation 

mechanism, this chapter combines quantitative analysis of a solution’s performance on 

functional engineering requirements and the qualitative analysis of the business operation 

requirements. By aggregating evaluation results through multi-attribute theory, the open 

innovator can ensure that the selected solution is not only a functional satisfied approach, 

but also is fulfilled through a reputational solution provider.  
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CHAPTER 6. CROWDSOURCING TASK DERIVATION AND 

DECOMPOSITION THROUGH GAME THEORETICAL 

DECISION-MAKING: A BILEVEL JOINT OPTIMIZATION 

MODEL FOR EQUILIBRIUM SOLUTIONS 

The conversions of manufacturing functional areas towards services imply a 

transformation of product fulfillment process to a distributed one via a service-oriented 

cyber platform. As multiple value chains are executed, the volatility and complexities of 

the customer needs are increasing, resulting in a high production variety and risk in the 

open manufacturing domain (Gupta et al., 2000). Product differentiation in crowdsourced 

manufacturing can be achieved by integrating external partners from a platform-driven 

perspective. The crowdsourcing supply contracting implies a collaborative product 

fulfillment by a co-creation process of decision agents along the value chain based on the 

crowdsourcing task allocation and derivation (Shen et al., 2019). Successful product 

fulfillment operations planning must be coordinated with the product family planning 

(PFP) at the frontend of open innovation domain. These changes challenge the traditional 

PFP decision-making considering its manufacturer loading balancing (MLB) problem.  

This chapter proposes a leader-follower interactive decision-making mechanism for 

crowdsourced manufacturing of PFP and MLB based on Stackelberg game. A bilevel 

optimization model with linear physical programming is developed and solved, comprising 

an upper-level PFP optimization problem and a lower-level MLB optimization problem. 

The upper-level PFP determines the optimal configuration of product variants with the 

objective of maximizing the market share and the total profit in the product family. The 
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lower-level MLB seeks for the optimal partition of manufacturing processes among 

manufacturer clusters in order to minimizing the operation cost of product variants and 

balancing the loads among manufacturers. A case study of is reported to demonstrate the 

feasibility and potential of the proposed bilevel interactive optimization approach. 

6.1 Crowdsourced Manufacturing Task Derivation and Decomposition 

Owing to the ability to fulfill diversified customer needs with high resources 

utilization efficiency, the platform-driven strategy explores the common modules among 

the products and processes to enable mass customization (Park and Simpson, 2008). The 

instantiation of the platform-driven strategy is product family design and development, 

which involves multiple domains such as marketing, engineering, and supply chains, and 

there are specific decision-making problems in each domain (Pirmoradi et al., 2014). PFP 

is at the stage of product definition in the front-end open innovation domain, which 

determines product variants with their configuration in the product family according to the 

customer needs (Jiao and Zhang, 2005). Since it will be the input of the crowdsourcing task 

decomposition to generate tasks in crowdsourced manufacturing platform domain, the 

front-end PFP decision-making result will bring an inevitable impact.  

Successful crowdsourced manufacturing implementation must include a 

coordinated decision-making process between PFP and MLB. Some key technical 

challenges should be addressed to achieve a systematic planning: 

1) Interactive product fulfillment. Future manufacturing is equipped with ubiquitous 

connectivity in the manufacturing environment, allowing collection of significant volumes 

of dispersed information to support distributed decision making to fulfill manufacturing 
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tasks (Monostori et al., 2016). New open structure of cyber platform will create 

opportunities for transforming and expanding the manufacturing sector by developing 

intelligent cognitive assistants to perform as decision support systems to facilitate the 

crowdsourcing product fulfillment (Li et al., 2018b). Thus, multiple agents will be involved 

in PFP for crowdsourced manufacturing. It is necessary to develop decision-making 

approaches for this kind of multi-agent online interactive product fulfillment scheme.  

2) Conflicting objectives. In a distributed yet collaborative product fulfillment 

process, PFP and MLB have different decision objectives (Du et al., 2019b, Medeiros et 

al., 2020). For example, the decision objectives of PFP are usually maximizing the 

customer perceived utility, maximizing the market share, minimizing the product 

development time, and so on (Kwong et al., 2010). The decision objectives of MLB for 

crowdsourcing task decomposition are usually minimizing the total manufacturing costs, 

minimizing the load indices, maximizing the relevance of manufacturing tasks, to name by 

a few (Kusiak, 2019). These decision objectives are interrelated, mutually restrictive and 

even conflicting with each other. Therefore, it is necessary to establish an effective 

decision-making mechanism to analyze and coordinate the interests of PFP and MLB 

decision-makings. 

3) Goal preferences. As previously described, PFP and MLB for crowdsourcing task 

decomposition are essentially multi-objective optimization problems respectively. In the 

traditional weight-based techniques for this kind of multi-objective optimization problem, 

the process of determining appropriate weights or priorities is uncertain and time-

consuming, and thus the practicality of these approaches is damaged (Hernandez et al., 

2002). In addition, the decision-makers can not represent their preferences on each goal 
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using more physically meaningful preference ranges in these approaches (Ilgin et al., 

2017). Thus, it needs to adopt a more flexible approach with physically meaningful 

formulation of targets for eliminating PFP and MLB decision-makers from subjective 

weight setting process. 

In this regard, this chapter formulates MLB for crowdsourcing task decomposition 

as a distributed networked MLB problem. A leader-follower interactive decision-making 

mechanism for distributed collaborative design of PFP and MLB in crowdsourced 

manufacturing is proposed. A bilevel optimization model with linear physical 

programming is developed and solved, in which PFP plays as a leader and MLB acts as a 

follower. 

6.2 Bilevel Programming for Product Design and Development 

Conjoint analysis, as a mainstream customer choice simulation technology, has 

been widely used for predicting customer preferences, and a large number of optimization 

models and intelligent algorithms have been developed for characterizing and solving the 

PFP problem (Pirmoradi et al., 2014). In the process of PFP, it is necessary to consider the 

influence from the manufacturing system factors synchronously (Michalek et al., 2011, 

Xiao et al., 2018). However, although the above streams of research consider the impact of 

manufacturing factors on PFP, the corresponding design decision-makings of 

manufacturing systems are not involved.  

Xu and Liang (2006) proposed an integrated approach to plan product module 

selection and assembly line design with the objective of minimizing the total cost including 

quality loss, the assembly line reconfiguration and material cost, and the assembly 
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operation related cost. Xu and Liang (2006) also established a multi-objective model to 

deal with this problem and solved it by adopting the modified Chebyshev goal 

programming. Objectives of their model are to minimize the total costs, minimize the 

product performance index, and minimize the assembly line smoothness index. Bryan et 

al. (2007) considered the concurrent design of product portfolio planning and mixed 

product assembly line balancing to develop a multi-objective model for minimizing the 

oversupply optional modules and maximizing the assembly line efficiency. However, the 

market demands of product variants are determined before optimization in all the above 

three models, and thus the effect of consumer preferences and purchase behaviors in 

marketing are not considered. Bryan et al. (2013) formulated a mixed integer non-linear 

programming model for the product family design with reconfigurable assembly systems 

considerations. Bryan et al. (2007b) further proposed co-evolution of product families and 

assembly systems over generations, and introduced a two-phase method based on the 

model developed by Bryan et al. (2013) for evaluating the co-evolution effectiveness. 

Deterministic choice rule was employed to simulate the consumer purchase behavior in the 

above two models. Since this rule is based on the assumption that each consumer will select 

the product that provides his or her maximum utility surplus, it will overestimate the market 

share for the most attractive product and underestimate it for other products (Cao et al., 

2012). Hanafy and ElMaraghy (2017) formulated a mixed integer programming model for 

integrating assembly line planning with modular product platform configuration. Abbas 

and ElMaraghy (2018) introduced an integrated methodology for synthesizing assembly 

systems for customized products by co-platforming of products and assembly systems. 

However, all the above research are under the traditional integrated product fulfillment, in 
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which a manufacturer implements a series of activities to develop the product and meet the 

customer needs. In addition, the constraint satisfaction approach can be used to coordinate 

the decisions across the product, process, and the supply chain to derive an effective 

manufacturer load planning result (Jiao et al., 2009). The cloud-based cyber platform 

synergizes the product and process information and enables the interactive optimization of 

product design and process setup (Fatahi Valilai and Houshmand, 2014). 

Collaborative design decision-making for different decision-making problems 

across different domains in product engineering has attracted more and more attentions in 

recent years (Du et al., 2019a). These engineering decision-making issues using 

Stackelberg game include joint design of technical system modularity and material reuse 

modularity (Ji et al., 2013), joint optimization of product family modularity and material 

reuse modularity (Ma et al., 2016), joint optimization of product family module 

configuration and scaling design (Yu et al., 2016), coordinated configuration of product 

families and supply chains (Yang et al., 2015, Wang et al., 2016, Pakseresht et al., 2020), 

joint design of product portfolio planning and viral marketing (Zhou et al., 2015), 

coordinated configuration of service and product modules in the product-service systems 

(Li et al., 2015), coordinated optimization of product line planning and product platform 

configuration (Miao et al., 2017), collaborative design of modular product platforming and 

supply chain postponement (Xiong et al., 2018), and etc. All these joint decision-makings 

are dealt with by bilevel optimization based on the Stackelberg game theory from the 

perspective of distributed collaborative design. In addition, Liu (2016) developed game 

theoretic optimization models and algorithms for high variety assembly system design. Du 
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et al. (2019b) reviewed this kind of leader-follower joint optimization problems and models 

for product design and development.  

6.3 Coordinated Bilevel Optimal Decision-Making in Crowdsourced 

Manufacturing  

A motivating example of tank trailer product family is considered to illustrate the 

problem setting. Considering dynamic market demands and short product lifecycles, tank 

trailer company plans to provide products and services for customers by adopting 

crowdsourced manufacturing. Tank trailer company has been connected to a crowdsourced 

manufacturing platform, which provides a cyber platform to small and medium-sized 

automotive and manufacturing factories in customized trailer industry. Following a 

crowdsourced manufacturing workflow, a wide spectrum of manufacturing services is 

connected and aggregated through cyber platform. Thanks to the adoption of platform-

strategy in crowdsourced manufacturing, volatile product fulfillment demands can be 

accessed and the similarity among them can be explored. The platform can assign similar 

tasks to a manufacturer, which can allow the manufacturer achieving a maximized 

reusability of the related resources. Thus, with the expansion of the customer clusters, the 

manufacturers can focus on their core competitive edges and achieve economies of scale. 

Assume a tank trailer company plans to develop a family of custom trailer to meet customer 

needs in different market segments. Tank trailers can be considered as modular products, 

and each module required in the product family can be designed and manufactured by 

manufacturer crowds through the service-oriented manufacturing platform. 

6.3.1 Crowdsourcing Task Derivation 
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The decision-making of PFP and MLB crowdsourcing task decomposition for tank 

trailer company is shown in Figure 6-1.  

 

Figure 6-1 Operation planning in crowdsourced manufacturing  
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The first layer is the developed WS product family modular architecture, which 

contains six common modules, i.e., axle assembly (M1), tire (M2), steel sheet (M4), hose 

tube (M5), anti-flow sets (M6), landing gear and pin assembly (M8), and four selective 

modules, i.e., main frame (M3), insulation layer (M7), warning placard (M9), valve 

assembly (M10). The number of module instances for selective modules M3, M7, M9, and 

M10 are 3, 2, 2, and 3, respectively. For example, there are three module instances for 

M10, i.e., safety valve, emergency & flush valve, and API valve. A total number of 𝐽 

different product variants are configured in the process of PFP based on the trailer product 

family architecture, as shown in the second layer. For each product variant in the product 

family, one precedence diagram of the manufacturing rout is determined, as shown in the 

third layer. The node represents a manufacturing task that joints one model to the 

previously completed sub-manufacturing, the number outside the node is the 

manufacturing time for the corresponding task, and the arc indicates the precedence order. 

The fourth layer obtains the product family precedence diagram and the manufacturing task 

assignment. The last layer shows manufacturer clusters linked to the crowdsourced 

manufacturing platform, and each manufacturer cluster includes a few related 

manufacturing agents. 

6.3.2 Coordinated Bilevel Optimal Decision-Making 

A bilevel taxonomy of the problem of coordinated decision-making of PFP and 

MLB for crowdsourced manufacturing is shown in Figure 6-2. It can be described as 

follows: the company has established a modular product family architecture comprising 

several common modules and selective modules as a product development platform. Based 
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on that platform, it plans to design a family of new product variants by combining different 

module instances of selective modules to satisfy diversified needs of customers.  

 

Figure 6-2 Coordinated bilevel optimal decision-making in crowdsourced 

manufacturing 

The manufacturing services of these products are provided by the external 

suppliers, manufacturing agent crowds, through certain cyber service-oriented 

manufacturing platform. Given manufacturing capability requirement for all modules, the 

precedence diagrams for product variants in the product family can be derived to represent 

the order of task completion. The goal of the coordinated decision-making problem is to 

simultaneously determine the optimal configuration of each product variant in the product 

family, obtain the product family precedence diagram, as well as partition the 



 109 

manufacturing tasks among manufacturers according to competitive products, customer 

needs, crowdsourcing operation costs and manufacturing times with the objective of 

maximizing the market share and the total profit of the planned product family. 

6.3.3 Solution algorithms 

Since crowdsourced manufacturing fulfills products through collaboration of 

crowds, the traditional product fulfillment process is distributed based on collaborative 

negotiation (Gong et al., 2021). Following this scenario, the task derivation can be 

summarized as a two-folded decision-making process. Firstly, the platform predicts 

manufacturing capabilities, which formulates the portfolio planning problem as a 

combinatorial optimization problem based on the contract pricing, sharable time window, 

as well as the logistic cost of the manufacturers. This plan outlines the scale and 

combination of the manufacturers to accumulate sufficient production capability for 

various supply chains. On the other hand, it also serves the platform with a way of 

specifying a set of crowdsourcing tasks to minimize the resources idling and inventory. 

This two-folded service process requires the decision-making solution provides a 

systematic approach to solve the trade-off between the supply configuration to achieve 

global satisfaction and the specification of crowdsourcing tasks for local efficiency. 

Because a crowd of companies is required in crowdsourced manufacturing, the optimal 

configuration problem shows an interactive decision among the decision agents (Wu et al., 

2021). As the crowdsourcing workflow described in chapter 3, the task allocation through 

a negotiation process can be decomposed into the requesting for quotation, propose of bids, 

as well as the awarding with supply contracts. This process entails an iteratively multi-

level decision-making process, where the manufacturers respond with their manufacturing 
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plan according to the limits of their shop floor and the platform responds with 

crowdsourcing task allocation to seek an optimal production portfolio plan.  

Figure 6-3 illustrates the leader-follower interactive decision-making mechanism 

for joint design of PFP and MLB for crowdsourced manufacturing. The PFP design 

decision-maker plays a leader’s role and handles the upper-level decision-making problem, 

which can be formulated as PFP optimization. The goal of the upper-level problem is to 

optimize the selection and configuration of product variants for maximizing the market 

share and total profit of the product family, in which considerations about market segments, 

customer preferences, and crowdsourcing operation costs should be incorporated. The 

MLB design decision-maker acts as a follower and deals with the lower-level decision-

making problem, which can be formulated as MLB design optimization. After obtaining 

the PFP decisions derived from the upper-level optimization, the lower-level MLB aims to 

partition the manufacturing tasks among manufacturers for minimizing the crowdsourcing 

operation costs and the load index. During the formulation of the lower-level problem, the 

main influencing factors are operation costs of manufacturer crowds and manufacturing 

times of module instances. The total crowdsourcing operation cost obtained in the lower-

level optimization will be fed back to the upper-level, and then the leader will adjust the 

PFP decisions for maximizing his own interest according to these cost figures. This 

distributed bilevel collaborative optimization of PFP and MLB proceeds in an interactive 

manner until the leader-follower equilibrium solution is achieved based on Stackelberg 

game. In addition, instead of assigning subjective weights, the preferences on each goal 

using physically meaningful preference ranges through linear physical programming (LPP) 

should be considered for both the PFP and MLB design decision-makers. 
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Figure 6-3 Leader-follower interactive decision-making mechanism 

6.4 Joint Optimization of PFP and MLB  

In this section, the distributed collaborative decision-making of PFP and MLB for 

crowdsourced manufacturing is formulated into a bilevel optimization model with LPP. 

Assumptions and nomenclature of this joint decision-making problem are given in Section 

6.4.1. The upper-level PFP decision-making is modeled in Section 6.4.2, and the lower-

level MLB design decision-making is modeled in Section 6.4.3. Section 6.4.4 lists other 

necessary constraints. Finally, the bilevel optimization model with LPP is presented in 

Section 6.4.5. 

6.4.1 Model Assumption and Nomenclature 

The basic assumptions in this research include: 

1) One common module can be viewed as a selective module that has only one module 

instance, and a null module instance represents the absence of the corresponding module 

from one product variant. 
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2) All the module instances are technological feasible, and there is no compatible 

restriction on the combinations of these module instances. 

3) The manufacturing of all the product variants in the product family are provided 

through the service-oriented manufacturing platform linked with various service pools, and 

each service pool consists of a few related candidate manufacturers. 

4) Only the operation costs for manufacturers are considered in variable costs in this 

research, and the unit operation costs for different manufacturers are the same.  

6.4.2 Upper-Level PFP Model 

The upper-level PFP design decision-making aims to select the optimal product 

portfolio and determine the optimal configuration of each product variant with the 

objective of maximizing the market share and the total profit in the product family.  

Suppose that the product market has been divided into 𝐼 market segments through 

conducting a market survey and adopting a proper clustering technology, and consumers 

in each market segment have the same purchase preference. Consumers make purchase 

decisions based on the perceived utility surplus obtained from the corresponding product. 

Following the commonly used linear-additive part-worth utility model in conjoint analysis, 

the utility 𝑈𝑖𝑗 that one consumer in the 𝑖-th market segment can obtain by choosing the 𝑗-

th product variant can be formulated as: 

𝑈𝑖𝑗 =∑∑(𝑢𝑖𝑘𝑙 − 𝑟𝑘𝑙)𝑥𝑗𝑘𝑙

𝐿𝑘

𝑙=1

𝐾

𝑘=1

,      𝑖 = 1, 2,… , 𝐼,   𝑗 = 1, 2,… , 𝐽 (6.1) 

where 𝑢𝑖𝑘𝑙 is the part-worth utility of the 𝑙-th module instance of the 𝑘-th module for the 

𝑖-th market segment, 𝑟𝑘𝑙 is the cost for buying one unit of the 𝑙-th module instance of the 
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𝑘-th module, and 𝑥𝑗𝑘𝑙 is the decision variable which indicates whether (1) or not (0) the 𝑙-

th module instance of the 𝑘-th module is assigned to the 𝑗-th product variant. 

According to the multinomial logit (MNL) choice model for product family 

positioning in marketing, the probability 𝑃𝑖𝑗 that one consumer in the 𝑖-th market segment 

purchases the 𝑗-th product variant in the product family can be formulated as: 

𝑃𝑖𝑗 =
𝑒𝑥𝑝 (𝜃𝑈𝑖𝑗)

∑ 𝑦𝑗𝑒𝑥𝑝 (𝜃𝑈𝑖𝑗)
𝐽
𝑗=1 + ∑ 𝑒𝑥𝑝 (𝜃𝑈𝑖𝑗

𝐶 )𝑁𝐶
𝑗=1

, 𝑖 = 1, 2,… , 𝐼,   𝑗 = 1, 2,… , 𝐽 (6.2) 

where 𝜃 is a positive scaling parameter of the MNL model. If 𝜃 goes to infinity, the MNL 

behaves like a deterministic model; and if 𝜃  approaches zero, it becomes a uniform 

distribution (Steiner and Hruschka, 2002). 

The total market revenue 𝑅 of the product family can be computed by multiplying 

the revenue of each product variant by the demand for this product variant firstly, and then 

summing all the product variant revenue, which can be formulated as: 

𝑅 =∑∑∑∑𝑄𝑖𝑃𝑖𝑗𝑟𝑘𝑙𝑥𝑗𝑘𝑙𝑦𝑗

𝐿𝑘

𝑙=1

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

, (6.3) 

where 𝑦𝑗 is the decision variable which indicates whether (1) or not (0) the 𝑗-th product 

variant is selected in the planned product family. 

One objective of the upper-level PFP optimization problem is to maximize the total 

profit 𝑇 of the product family, which is the difference between the total market revenue 𝑅 

and the total crowdsourcing operation cost 𝑂𝐶 of the product family, i.e., 
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𝑇𝑃 = 𝑅 − 𝑂𝐶 =∑∑∑∑𝑄𝑖𝑃𝑖𝑗𝑟𝑘𝑙𝑥𝑗𝑘𝑙𝑦𝑗

𝐿𝑘

𝑙=1

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

− 𝑂𝐶. (6.4) 

The other objective is to maximize the market share 𝑀𝑆 of the product family, 

which can be formulated as 

𝑀𝑆 =
1

∑ 𝑄𝑖
𝐼
𝑖=1

∑∑𝑄𝑖𝑃𝑖𝑗𝑦𝑗

𝐽

𝑗=1

𝐼

𝑖=1

. (6.5) 

6.4.3 Lower-Level MLB Model 

When the upper-level PFP decisions are determined, the lower-level MLB 

optimization decision-making seeks for the optimal partition solution of the manufacturing 

tasks among manufacturers in order to minimizing the crowdsourcing operation cost of 

product variants and balancing the loads among manufacturers. 

Following the approach based on fixed costs and variable costs, the overall 

crowdsourcing operation costs 𝑂𝐶 of the product family can be formulated as: 

𝑂𝐶 = ∑(𝐶𝑓𝑖𝑥 + 𝐶𝑣𝑎𝑟𝑇𝑂)𝑤𝜋

Π

𝜋=1

(6.6) 

where 𝐶𝑓𝑖𝑥  is the fixed cost for each MaaS service provider, and 𝐶𝑣𝑎𝑟  is the 

variable operation cost for each manufacturer per unit time.  

The load of the whole manufacturing process should be balanced, that is to say, the 

total manufacturing time allocated to each manufacturer should be as equal as possible. 

The load index among manufacturers 𝐿𝐼  can be defined by the standard deviation of 

manufacturing loads, i.e.,  
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𝐿𝐼 = [
1

Π − 1
∑(∑𝑡𝑘

𝑃𝐹𝑧𝑘𝜋

𝐾

𝑘=1

−
𝑇𝑂

∑ ∑ 𝑄𝑖𝑃𝑖𝑗
𝐽
𝑗=1

𝐼
𝑖=1

𝑤𝜋)

2Π

𝜋=1

]

1
2

(6.7) 

where 𝑇𝑂  is the planned life of the MaaS operations, 𝑡𝑘
𝑃𝐹  is the product family 

manufacturing time for the 𝑘-th module, which can be computed as the weighted sum of 

the manufacturing task times for each product variant in the product family, i.e., 

𝑡𝑘
𝑃𝐹 =∑∑𝑡𝑘𝑙𝑥𝑗𝑘𝑙

∑ 𝑄𝑖𝑃𝑖𝑗
𝐼
𝑖=1

∑ ∑ 𝑄𝑖𝑃𝑖𝑗
𝐽
𝑗=1

𝐼
𝑖=1

𝐿𝑘

𝑙=1

𝐽

𝑗=1

,      𝑘 = 1, 2,… , 𝐾 (6.8) 

6.4.4 Constraint Modelling 

To establish the bilevel optimization model, some additional constraints about 

relationships among decision variables are required to be analyzed and formulated as 

below.  

1) For each module of one product variant, exactly one and only one module instance 

can be selected. The exclusiveness conditions can be described as 

∑𝑥𝑗𝑘𝑙

𝐿𝑘

𝑙=1

= 1,      𝑗 = 1, 2, … , 𝐽,   𝑘 = 1, 2,… , 𝐾 (6.9) 

2) Since tasks are indivisibility work elements, each task is assigned to exactly one 

manufacturer. The occurrence constraints can be described as 

∑𝑧𝑘𝜋

Π

𝜋=1

= 1,      𝑘 = 1, 2,… , 𝐾 (6.10) 
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3) For each manufacturer, the total manufacturing time for tasks assigned to this 

manufacturer does not exceed the time available at this manufacturer. The time constraints 

can be described as 

∑𝑡𝑘
𝑃𝐹𝑧𝑘𝜋

𝐾

𝑘=1

≤
𝑇𝑂

∑ ∑ 𝑄𝑖𝑃𝑖𝑗
𝐽
𝑗=1

𝐼
𝑖=1

𝑤𝜋 ,      𝜋 = 1, 2,… , Π (6.11) 

Thus, by equation (6.8), the time constraints can be rewritten as 

∑∑∑∑𝑡𝑘𝑙𝑥𝑗𝑘𝑙𝑄𝑖𝑃𝑖𝑗𝑧𝑘𝜋

𝐿𝑘

𝑙=1

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

≤ 𝑇𝑂 ⋅ 𝑤𝜋,     𝜋 = 1, 2, … , Π (6.12) 

4) Owing to technological and organizational conditions, the tasks must be assigned 

to manufacturers according to the precedence graph, i.e., the resulting sequence of 

manufacturing tasks cannot violate the precedence constraints among these tasks. The 

precedence constraints can be described as: 

𝑥𝑘𝜋 ≤∑𝑥ℎ𝑛

𝜋

𝑛=1

,      𝑘 = 1, 2,… , 𝐾, 𝜋 = 1, 2, … , Π, ℎ ∈ 𝑃𝑟𝑒(𝑘), (6.13) 

where 𝑃𝑟𝑒(𝑘)  is the set of all direct and indirect predecessors of the 𝑘 -th 

manufacturing task.  

6.4.5 Bilevel Optimization Model 

Based on the objective functions and constraints, the bilevel joint optimization 

model of PFP and MLB can be formulated as below. 

Min 𝑍1 =∑∑(𝑤𝑖𝑘
−𝑑𝑖𝑘

− +𝑤𝑖𝑘
+𝑑𝑖𝑘

+ )

4

𝑘=1

2

𝑖=1

 (6.14.0) 
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𝑠. 𝑡.  

𝑇𝑃 −min(𝑇𝑃 − 𝑇𝑃 ⋅ 𝑇𝑎𝑟𝑔𝑒𝑡𝑚+1, 0)

𝑇𝑃 ⋅ 𝑇𝑎𝑟𝑔𝑒𝑡𝑚
+ 𝑑1𝑚

− − 𝑑1𝑚
+ = 1      𝑚 = 1,2, … ,4 (6.14.1) 

𝑀𝑆 −min(𝑀𝑆 −𝑀𝑆 ⋅ 𝑇𝑎𝑟𝑔𝑒𝑡𝑚+1, 0)

𝑀𝑆 ⋅ 𝑇𝑎𝑟𝑔𝑒𝑡𝑚
+ 𝑑2𝑚

− − 𝑑2𝑚
+ = 1     𝑚 = 1,2,… ,4 (6.14.2) 

∑𝑥𝑗𝑘𝑙

𝐿𝑘

𝑙=1

= 1,      𝑗 = 1, 2, … , 𝐽,   𝑘 = 1, 2,… , 𝐾 (6.14.3) 

𝑈𝑖𝑗 =∑∑(𝑢𝑖𝑘𝑙 − 𝑟𝑘𝑙)𝑥𝑗𝑘𝑙

𝐿𝑘

𝑙=1

𝐾

𝑘=1

,      𝑖 = 1, 2,… , 𝐼,   𝑗 = 1, 2,… , 𝐽 (6.14.4) 

𝑃𝑖𝑗 =
𝑒𝑥𝑝 (𝜃𝑈𝑖𝑗)

∑ 𝑦𝑗𝑒𝑥𝑝 (𝜃𝑈𝑖𝑗)
𝐽
𝑗=1 + ∑ 𝑒𝑥𝑝 (𝜃𝑈𝑖𝑗

𝐶)𝑁𝐶
𝑗=1

,      𝑖 = 1, 2,… , 𝐼,   𝑗 = 1, 2, … , 𝐽 (6.14.5) 

𝑇𝑃 ≥ 𝑇𝑃 ⋅ 𝑇𝑎𝑟𝑔𝑒𝑡5 (6.14.6) 

𝑀𝑆 ≥ 𝑀𝑆 ⋅ Target5 (6.14.7) 

𝑥𝑗𝑘𝑙 , 𝑦𝑗 ∈ {0,1} (6.14.8) 

Min   𝑍2 =∑∑(𝑤𝑖𝑘
−𝑑𝑖𝑘

− +𝑤𝑖𝑘
+𝑑𝑖𝑘

+ )

4

𝑘=1

4

𝑖=3

 (6.14.9) 

𝑠. 𝑡.  

𝑂𝐶 −max(𝑂𝐶 − 𝑂𝐶 ⋅ Target𝑚+1, 0)

𝑂𝐶 ⋅ Target𝑚
+ 𝑑3𝑚

− − 𝑑3𝑚
+ = 1    𝑚 = 1,2,… ,4 (6.14.10) 

𝐿𝐼 − max(𝐿𝐼 − 𝐿𝐼 ⋅ Target𝑚+1, 0)

𝐿𝐼 ⋅ Target𝑚
+ 𝑑4𝑚

− − 𝑑4𝑚
+ = 1    𝑚 = 1,2, … ,4 (6.14.11) 

∑𝑧𝑘𝜋

Π

𝜋=1

= 1,      𝑘 = 1, 2,… , 𝐾 (6.14.12) 
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∑∑∑∑𝑡𝑘𝑙𝑥𝑗𝑘𝑙𝑄𝑖𝑃𝑖𝑗𝑧𝑘𝜋

𝐿𝑘

𝑙=1

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

≤ 𝑇𝑤𝜋,     𝜋 = 1, 2, … , Π (6.14.13) 

𝑥𝑘𝜋 ≤ ∑𝑥ℎ𝑛

𝜋

𝑛=1

,      𝑘 = 1, 2,… , 𝐾, 𝜋 = 1, 2, … , Π, ℎ ∈ 𝑃𝑟𝑒(𝑘) (6.14.14) 

𝑂𝐶 ≤ 𝑂𝐶 ⋅ Target5 (6.14.15) 

𝐿𝐼 ≤ 𝐿𝐼 ⋅ Target5 (6.14.16) 

𝑧𝑘𝜋 ∈ {0,1}, 𝑤𝜋 ∈ ℕ  (6.14.17) 

LPP is adopted in the upper-level and lower-level optimization, respectively, and it 

allows the PFP and MLB decision-makers represent their preferences on each goal using 

physically meaningful preference ranges. LPP is proposed by Messac et al. (1996) as a 

novel approach to multiple objective optimizations. Application of LPP involves the 

following four steps:  

1) Identify each decision criteria as Class 1S (Smaller is Better), Class 2S (Larger is 

Better), Class 3S (Value is Better), or Class 4S (Range is Better). 

2) Define the desirability ranges for each decision criteria: ideal, desirable, tolerable, 

undesirable, highly undesirable, and unacceptable. 

3) Calculate the values of the weights using the algorithm developed by Messac et al. 

(1996) or Hernandez et al. (2002). 

4) Formulate a common deviation function to evaluate the alternatives.  
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LPP has been applied in industrial engineering and product engineering (Maria et 

al., 2003, McAllister et al., 2005, Lai et al., 2006, Kongar and Gupta, 2009, Ilgin et al., 

2017, Liu et al., 2018). For example, Ilgin et al. (2017) develop an LPP-based disassembly 

line balancing method to balance a mixed-model disassembly line. A comprehensive 

review of different variants and applications of physical programming can be found in Ilgin 

and Gupta (2012).  

The upper-level objective function 𝑍1 in equation (6.14.0) is a common deviation 

function, which is formulated as a weighted sum of the deviation variables 𝑑𝑖𝑘
− , 𝑑𝑖𝑘

+  (𝑖 =

1,2; 𝑘 = 1,2,… ,4). These deviation variables can be obtained by Constraints (6.14.1) and 

(6.14.2) where 𝑇𝑃 ⋅ Target𝑘 and 𝑀𝑆 ⋅ Target𝑘 are the physically meaningful target values 

at the desirability level 𝑘 for the goal 𝑇𝑃 and 𝑀𝑆 respectively (𝑘 = 1,2,… ,5). These target 

values are specified by the PFP design decision-maker to quantify the preferences 

associated with the 𝑇𝑃 and 𝑀𝑆 criterions. Different from assigning subjective weights, the 

weights 𝑤𝑖𝑘
−  and 𝑤𝑖𝑘

+  (𝑖 = 1,2; 𝑘 = 1,2,… ,4) can be determined by the algorithm proposed 

in Hernandez et al. (2002). Similarly, the common deviation function 𝑍2  in equation 

(6.14.9) is the lower-level objective function, which is a weighted sum of the deviation 

variables 𝑑𝑖𝑘
− , 𝑑𝑖𝑘

+  ( 𝑖 = 3,4 ; 𝑘 = 1,2,… ,4 ) derived from Constraints (6.14.10) and 

(6.14.11). Constraints (6.14.6), (6.14.7), (6.14.15) and (6.14.6) indicate that the fifth level 

values 𝑇𝑃 ⋅ Target5, 𝑀𝑆 ⋅ Target5, 𝑂𝐶 ⋅ Target5, and 𝐿𝐼 ⋅ Target5 are unacceptable. The 

values of decision variables 𝑥𝑗𝑘𝑙 , 𝑦𝑗, 𝑧𝑘𝜋, 𝑤𝜋  are restricted in Constraints (6.14.8) and 

(6.14.17).  

6.5 Nested Bilevel Genetic Algorithms for PFP-MLB Joint Optimization  
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In this section, a nested bilevel genetic algorithm (NBGA) is developed to find the 

optimal or near optimal solution of the bilevel optimization model with linear physical 

programming. The NBGA is a nested sequential approach, in which the PFP and MLB 

decision-makings are solved by the traditional single-level genetic algorithm (GA) 

respectively and the lower-level GA is performed for each upper-level feasible solution.  

6.5.1 Overview of Nested Bilevel Genetic Algorithms 

The flow chart of the NBGA algorithm is shown in Figure 6-4. A step-by-step 

procedure for the NBGA algorithm can be described as follows: 

 

Figure 6-4 Flow chart of NBGA  
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Step 1: Initialization. An upper-level initial population of size 𝑁  is randomly 

generated and constraint handling is carried out to ensure that each generated chromosome 

satisfy required constraints. Then, for each upper-level chromosome, the corresponding 

lower-level MLB optimization procedure is executed to obtain the lower-level optimal or 

near optimal chromosome.  

Step 2: Upper-level selection operation. Combine the upper- and lower- 

chromosomes, and then evaluate each upper-level chromosome by assigning a fitness value 

based on the common deviation function 𝑍1  in equation (6.14.0). Choose parent 

chromosomes for upper-level crossover and mutation operations from the current 

population by adopting the rank selection method according to fitness values. 

Step 3: Upper-level crossover and mutation operations. Offspring chromosomes are 

created by performing multi-point random crossover and mutation operators, in which 

single-point random crossover and mutation operators are adopted for each product variant 

chromosome section. 

Step 4: Lower-level optimization. For each upper-level offspring chromosome, the 

corresponding upper-level decision results are transmitted to the lower-level MLB 

decision-making problem. After initializing the lower-level population, the fitness value of 

each chromosome is computed based on the common deviation function 𝑍2 , and a 

penalizing strategy is adopted for handling those invalid chromosomes that violate the 

lower-level constraints. Then, the selection, crossover, and mutation operations are carried 

out successively. 
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Step 5: Evaluation of offspring chromosomes. Fitness values of upper-level 

offspring chromosomes are evaluated through combining each upper-level offspring 

chromosome with its corresponding lower-level chromosome and then computing the 

upper-level common deviation value.  

Step 6: Examination of termination conditions. A maximal number of generations 

is specified as the criterion for the termination check in both the upper- and lower- genetic 

algorithm. Proceed to the next generation (Step 2) if the termination check is false.  

6.5.2 Encoding and Operators in Upper-Level 

To apply GA to the upper-level PFP design decision-making, the integer encoding 

strategy is adopted for the chromosome structure, as illustrated in Figure 6-5 (a). A 

chromosome is composed of 𝐽  product variant sections, and there are 𝐾  module sub-

sections for each product variant section. The value 𝑙 in the 𝑘-th module sub-section in the 

𝑗-th product variant section represents that the 𝑙-th module instance of the 𝑘-th selective 

module is selected for the 𝑗-th product variant. Thus, the PFP design decision-making is 

described by a chromosome with length of 𝐾𝐽. Each chromosome in the upper-level initial 

population is generated randomly by the approach proposed by Jiao et al. (2007b) to ensure 

the satisfaction of Constraint (6.14.3). The upper-level fitness function is the common 

deviation function 𝑍1 in equation (6.14.0).  

A single-point crossover operator is adopted for each product variant substring, and 

thus the crossover for the upper-level chromosome is carried out with a multi-point 

crossover operator, as shown in Figure 6-6 (a). Similarly, a single-point mutation operator 

is employed for each product variant substring, in which one mutation point is picked 
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randomly and then the corresponding module instance is altered at random. Figure 6-6 (b) 

illustrates the detailed process of multi-point random mutation operators. 

 

Figure 6-5 Genetic encoding for upper-level PFP and lower-level MLB 

 

Figure 6-6 Upper-level crossover and mutation operators 

6.5.3 Encoding and Operators in Lower-Level 

Figure 6-5(b) illustrates the chromosome encoding for the lower-level MLB design 

decision-making, and there are 𝐾 assembly task sub-sections for the task sequence section. 

Each manufacturing task sub-section, i.e., the gene, indicates the manufacturing sequence, 

and the value in the manufacturing task sub-section, i.e., the allele, represents the 

corresponding task. In this research, for each lower-level chromosome in the initial 

population, the manufacturing task substring is generated by the top sort algorithm 

developed by Hou et al. (2014) to satisfy the precedence constraints, i.e., Constraint 
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(6.14.14). To ensure the satisfaction of Constraint (6.14.12) and (6.14.13), the algorithm 

proposed by Leu et al. (1994) is employed for chromosome decoding, i.e., dividing 

manufacturing tasks into manufacturers. The lower-level fitness function is the common 

deviation function 𝑍2 described in equation (6.14.9).  

A single-point crossover operator is implemented for the task sequence substring, 

in which two parent chromosome exchange genetic information after selecting the 

crossover point randomly. To avoid generating infeasibility offspring chromosomes after 

crossover, an improved exchange process is adopted for the task sequence substring, as 

illustrated in Figure 6-7 (a).  

 

Figure 6-7 Lower-level crossover and mutation operators 

It can be observed that the exchanged sequence of the task sequence substring in 

parent chromosome 1 is 5, 3, 6, and 7, and the ordering of this exchanged sequence in 

parent chromosome 2 is 3, 6, 5, and 7. Then, generate a new offspring chromosome 1 by 

replacing the exchanged sequence in parent chromosome 1 with 3, 6, 5, and 7. Finally, the 

other offspring chromosome 2 can be obtained by using the similar approach, as shown in 
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Figure 6-7 (a). Figure 6-7 (b) illustrates the lower-level mutation operator. For the task 

sequence substring, two mutation points are picked randomly, between which the 

manufacturing tasks are reordered according to the product family precedence graph by the 

scheme of producing the initial population. Thus, the obtained offspring chromosomes are 

still feasible after crossover and mutation operations.  

6.6 Case Study on Crowdsourcing Task Derivation 

6.6.1 Case Description 

To illustrate the proposed model and algorithm, the joint PFP and MLB design 

problem for tank semi-trailer is presented. Suppose that tank trailer company plans to 

design a family of two trailers, and there are two existing competitive products in the 

market. The precedence diagram for trailer is shown in Figure 6-8. Suppose that the 

customized kitchen market has been divided into three segments through market research. 

The size of each market segment is given in the second row in Table 6-1. Table 6-1 also 

lists the utility surplus of two existing products for each market segment in the last two 

rows. The part-worth utilities of module instances for each market segment can be 

estimated by conjoint analysis or simulation calculation. In this case, the simulated utility 

data is adopted, and it is generated from a uniform distribution randomly. The estimated 

manufacturing times are listed in the fifth row in Table 6-2. The estimated purchase costs 

of module instances are shown in the last row in Table 6-2. The LPP target values for the 

upper-level PFP goals (𝑇𝑃 and 𝑀𝑆) and the lower-level MLB goals (𝑂𝐶 and 𝐿𝐼) are shown 

in Table 6-3. Applying the algorithm described in Messac et al. (1996), the resulting 

weights for both the upper- and lower-level common deviation functions are shown in 
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Table 6-4. The scaling parameter 𝜃 in the MNL choice model is set to 0.75. The fixed cost 

for each manufacturer 𝐶𝑓𝑖𝑥 is set to 500, and the operation cost 𝐶𝑣𝑎𝑟 for each MaaS service 

provider per unit time is set to 0.5. The total planned life 𝑇 of crowdsourcing operation 

cost is assumed to be 3000000.  

6.6.2 Implementation and Comparison 

To solve the bilevel optimization model for joint decision-making of PFP and MLB, 

the proposed NBGA is conducted. In the upper-level GA, the maximum number of 

iterations is 500, the crossover probability is 0.8, and the mutation probability is 0.2. In the 

lower-level GA, the maximum number of iterations is 100, the crossover probability is 0.8, 

and the mutation probability is 0.2. Based on the above assumptions, the NBGA is run 

using MATLAB 2017b under the circumstance of Windows 10, Intel i7-7500U 2.90GH 

and Ram 8G. The running time is 3628.125s.  

Figure 6-9 provides the NBGA evolution processes for the upper-level PFP and the 

lower-level MLB optimizations. It shows the upper-level common deviation function value 

𝑍1 and the lower-level common deviation function value 𝑍2 for the best individual over 

generations, which reflects the dynamic interactive decision-making process between the 

upper- and lower- levels. After 250 iterations, the optimal PFP result and the corresponding 

MLB result are arrived, which are listed in the third column in Table 6-5. 

As shown in Table 6-5, the optimal upper-level chromosome coding scheme is [1 

1 2 1 1 1 2 1 2 3 1 1 1 1 1 1 2 1 2 3], the upper-level common deviation function value is 

0.5721, the total profit is 1.5600 × 107 , and the market share is 92.05% . The 

corresponding lower-level coding scheme is [1 4 5 6 2 3 7 8 9 10], the lower-level common 
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deviation function value is 0.3820, the operation cost is 1.9507 × 107, the load index is 

1.1217. According to the lower-level MLB decision-making result, all the manufacturing 

tasks are assigned to nine manufacturers, in which task 1 and task 4 are assigned to the 

same manufacturer. The numbers of MaaS service providers are 2, 2, 2, 2, 1, 2, 3, 1 and 2, 

respectively.  

 

Figure 6-8 Precedence diagram for tank trailer 

To verify the validity of the proposed method, two experiments are designed to 

compare the results of the bilevel approach (TBA) with those of the sequential approach 

(TSA), i.e., solving the PFP decision-making and the MLB decision-making sequentially 

in two steps, and the cooperative approach (TCA), i.e., the PFP decision-maker and the 

MLB decision-maker engage in bargaining and desire a cooperative and binding trade for 

maximizing their collective interest. For TSA, in the first step, the total operation cost can 

be estimated based on the historical data, and the PFP problem is solved using the upper-

level GA. After obtaining the PFP results in the first step, the MLB problem is solved using 

the lower-level GA in the second step. In this experiment, the estimated operation cost in 

the first step is set 2.5 × 107. The optimal PFP and MLB results are listed in the fourth 

column in Table 6-5. 
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Table 6-1 Sizes of market segments and utility surplus of existing products 

 Segment 1 Segment 2 Segment 3 

Estimated number of consumers 250,000 350,000 150,000 

Utility surplus of existing product 1 8.7 9.4 8.3 

Utility surplus of existing product 2 10.5 8.5 9.6 

 

Table 6-2 Part-worth utilities, manufacturing times and purchase costs for module instances 

 
M1 M2 

M3 
M4 M5 M6 

M7 
M8 

M9 M10 

M31 M32 M33 M71 M72 M91 M92 M101 M102 M103 

Part-worth 

utilities 

Segment 1 8.9 9.2 0 6.8 8.3 4.5 6.5 6.5 0 5.9 5.8 0 5.8 0 4.1 6.8 

Segment 2 8.5 9.7 0 6.6 8.9 4.7 6.9 7.2 0 4.8 5.6 0 3.8 0 4.5 6.6 

Segment 3 8.2 9.9 0 6.3 8.5 4.9 6.2 7.9 0 5.2 5.3 0 6.8 0 4.8 6.2 

Manufacturing 

times 
 0 6 0 5 8 7 5 5 0 8 10 0 4 0 6 9 

Module 

revenues 
 7.8 8.5 0 5.3 7.6 3.5 5.7 5.2 0 3.9 4.8 0 2.8 0 3.6 4.8 
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Table 6-3 Sizes of market segments and utility surplus of existing products 

 Upper-level PFP decision-maker 

Level 𝑘 Total profit 𝑇𝑃 ⋅ Target (107) Market share 𝑀𝑆Target (%) 

1 2 90 

2 1.5 80 

3 1 70 

4 0.7 60 

5 0.5 50 

 Lower-level MLB decision-maker 

Level 𝑘 Operation cost 𝑂𝐶 ⋅ Target (107) Load index 𝐿𝐼 ⋅ Target (%) 

1 1.5 0.5 

2 2 1 

3 2.3 1.5 

4 2.5 2 

5 3 3 

Table 6-4 Weights for the goals in the common deviation functions 

 Upper-level PFP decision-maker 

Level 𝑘 Total profit 𝑇𝑃 (𝑤1𝑘
+ /𝑤1𝑘

− ) Market share 𝑀𝑆 (𝑤2𝑘
+ /𝑤2𝑘

− ) 

1 0/2.6 0/3 

2 0/0.26 0/0.3 

3 0/7.15 0/3.63 

4 0/21.522 0/7.623 

5 0/2.6 0/3 

 Lower-level MLB decision-maker 

Level 𝑘 Operation cost 𝑂𝐶 (𝑤3𝑘
+ /𝑤3𝑘

− ) Load index 𝐿𝐼 (𝑤4𝑘
+ /𝑤4𝑘

− ) 

1 1.5 0.5 

2 2 1 

3 2.3 1.5 

4 2.5 2 

5 3 3 
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Table 6-5 Results under the bilevel, sequential, and cooperative approach 

  
The bilevel approach 

The sequential 

approach 

The cooperative 

approach 

Upper-level 

PFP result 

configuration 

Product variant 1 [1 1 2 1 1 1 2 1 2 3] [1 1 3 1 1 1 2 1 2 3] [1 1 2 1 1 1 2 1 1 3] 

Product variant 2 [1 1 1 1 1 1 2 1 2 3] [1 1 2 1 1 1 2 1 2 3] [1 1 2 1 1 1 1 1 2 1] 

Upper-level 

objective 

values 

Total profit  1.5600×107 1.2615×107 1.3234×107 

Market share 0.9205 0.9405 0.7530 

𝑍1  0.5721 0.6913 1.0316 

Lower-level 

MLB 

decisions 

Task partition 

solution 
1 4  5 6 2 3 7 8 9 

10 

1 4  2 5 6 3 7 8 9 

10 

1 2 3 4 5 6 7 8 9 

10 

Manufacturer 

number per task 
2 2 2 2 1 2 3 1 2 2 2 2 2 2 2 3 1 2 2 2 1 1 1 2 1 1 

Lower-level 

objective 

values 

Operation cost  1.9507×107 2.2508×107 1.3505×107 

Load index 1.1217 1.8413 0.5000 

𝑍2  0.3820 0.6732 7.4919×10-6  

 

Figure 6-9 The evolution process of NBGA  
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Figure 6-10 compares the experimental results of the bilevel approach and the 

sequential approach. It indicates that the total profit increases by 23.66% from 1.2615 ×

107  (TSA) in the sequential approach to 1.5600 × 107  (TBA) by adopting the bilevel 

approach, while the market share decreases by 2.13% from 0.9405 (TSA) to 0.9205 (TBA). 

Both the operation cost and the load index obtained in the sequential approach are much 

higher than those using the bilevel approach. For the upper-level common deviation 

function value 𝑍1 and the lower-level common deviation function value 𝑍2, the results 

obtained by the bilevel approach are 17.24% and 43.26% less than those of the sequential 

approach, respectively. The reason is that the independent PFP optimization in the 

sequential approach considers operation costs based on the estimation of existing historical 

data, and it cannot make full use of the low-cost advantage brought by the interactive design 

between PFP and MLB. 

For TCA, the cooperative decision-making of PFP and MLB can be formulated as 

a bargaining model which is one single-level optimization formally (Dhingra and Rao, 

1995). In this case, the bargaining objective function between PFP and MLB in TCA can 

be defined as equation (6.15). 

Max Z = (1 −
𝑍1 − 𝑍1

∗

𝑍1
− − 𝑍1

∗)(1 −
𝑍2 − 𝑍2

∗

𝑍2
− − 𝑍2

∗) (6.15) 

where 𝑍1
∗ and 𝑍1

− are the upper-level best and worst common deviation function values 

respectively, and 𝑍2
∗ and 𝑍2

− are the lower-level best and worst common deviation function 

values, respectively. The traditional GA is employed to solve the proposed single-level 

optimization model in TCA. Figure 6-11 illustrates the evolution process of the traditional 
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GA for the cooperative approach. The optimal PFP and MLB results are listed in the last 

column in Table 6-5.  

The target values of 𝑇𝑃, 𝑀𝑆, 𝑂𝐶, and 𝐿𝐼 under TBA, TSA, and TCA are compared 

graphically in Figure 6-12. The values of 𝑇𝑃 and 𝑂𝐶 in TBA are in the desirable region, 

and those in TSA lies those in TSA lie in the tolerable region. The value of 𝐿𝐼 in TBA is 

in the tolerable region, but that in TSA is in the undesirable region. Compared with TBA, 

the values of 𝑇𝑃 and 𝑀𝑆 in TCA are only in the tolerable region, although the values of 

𝑀𝑆 and 𝐿𝐼 in TCA are in the ideal region. It can be seen that the solution obtained by 

adopting the bilevel approach yields a better balance between the four objectives than other 

approaches. 

6.6.3 Sensitivity Analysis 

To explore the influence of competitive intensity on the objective values of upper-

level PFP and lower-level MLB, the following sensitivity analysis experiment is designed 

and performed. The competitive intensity can be represented using the utility 𝑈𝑖𝑗
𝐶  of 

competitive products in the market. Let 𝑈𝑖𝑗
𝐶̅̅ ̅̅ = 𝑑 ⋅ 𝑈𝑖𝑗

𝐶 , where 𝑑  is fixed as a series of 

constants from 0.95 to 1.3 in steps of 0.05. The obtained results are shown in Figure 6-13. 

With the increase of the parameter 𝑑 , the upper-level objective values 𝑇𝑃  and 𝑀𝑆 

decrease, and thus the upper-level common deviation function value 𝑍1  increases 

gradually. This decrease or increase makes the corresponding lower-level objective values 

𝑂𝐶  and 𝐿𝐼 , as well as the lower-level common deviation function value 𝑍2  fluctuate 

accordingly.  
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Figure 6-10 Comparison of experimental results 

 

Figure 6-11 The evolution process for the cooperative approach 
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Figure 6-12 Comparison of target values under different approaches 
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Figure 6-13 The influence of the competitive intensity 

6.7 Chapter Summary 

Coordinated optimization of PFP and MLB in platform-driven crowdsourced 

manufacturing adopts an interactive decision-making between various agents. A practical 

and effective bilevel approach for dynamic interactive design optimization of PFP and 

MLB is proposed based on Stackelberg game. Consistent with the leader-follower 

interactive mechanism, a bilevel optimization model with linear physical programming is 

developed, in which the upper- and lower-level objective functions are the common 

deviation functions adapted from the corresponding linear physical programs. NBGA with 

upper-level GA for PFP and lower-level GA for MLB is designed for solving the developed 

model. The proposed bilevel approach is demonstrated via a joint PFP and MLB design 

problem for tank trailer product family. Through comparison with other approaches, this 

bilevel approach is shown to yield satisfactory levels of achievement for PFP and MLB 

objectives. This approach provides an effective decision-making framework for the multi-
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agent online interactive product fulfillment faced by enterprises adopting the crowdsourced 

manufacturing model through service-oriented crowdsourcing platforms. 

The managerial insight of this approach is as follows: (1) the PFP optimization 

decision-maker should take into account the reactions of competitors, since competitive 

intensity has a significant influence on the objective values; (2) with the progress of 

technologies and the change of customer preferences, it is important for the PFP design 

decision-maker to upgrade products and consider the co-evolution of product families and 

manufacturer crowds. 

As a task execution decision support tool for manufacturer in platform-driven 

crowdsourced manufacturing, this chapter provides an original approach to decompose the 

product family into a set of executable tasks. It utilizes a bilevel architecture to imitate an 

interactive decision-making process between cyber platform and manufacturers. The 

platform can seek a maximum revenue of overall innovation project, while the 

manufacturer can consider their local constraints and operational revenues. The proposed 

work shows a crowdsourcing task derivation can be achieved through a bilevel game-

theoretic programming. A crowdsourcing manufacturing process can provide the decision-

support service for manufacturers and offers a more profitable task derivation result than 

conventional approach. 
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CHAPTER 7. NETWORKED MATERIAL FLOW PLANNING 

FOR CROSS-DOCKING LOGISTIC SERVICES: A BRANCH-

AND-PRICE METHOD 

Crowdsourced manufacturing through a platform-driven manner has been observed 

as an emerging trend towards Industry 4.0 by paving the way of delivering MaaS. It utilizes 

a cyber platform and crowdsourcing to reach external partners’ manufacturing knowledge 

and resources while allowing companies to focus on their core competencies. It addresses 

an underlying logic that maximizes the reuse of resources by searching similarities among 

prolific product, process, and manufacturing resources varieties. It also challenges 

traditional logistic service for manufacturing industries by expanding a simple material 

flow to a complex, networked, fluctuating one. Cross-docking has been widely recognized 

as a logistic solution to complex material flow by splitting service routes to pickups and 

deliveries for maximizing vehicle reuse. It adopts a platform-driven strategy by exchanging 

loads at the cross-docking. This study formulates the logistic service problem in platform-

driven crowdsourced manufacturing as a Crowdsourcing Vehicle Routing Problem with 

Cross-Docking (C-VRPCD), which integrates logistic solution provider crowds into the 

manufacturing service process. This study considers the logistic provider as a capacitated 

homogeneous vehicle started at various pickup points and times in a logistic service. The 

vehicles are scheduled in a route to visit service requesters synchronously and arrive at the 

cross-dock center simultaneously for load exchanging. All service requests must be 

fulfilled in predetermined time duration. Thus, this study formulates a mixed-integer linear 

programming (MILP) model for C-VRPCD to minimize the total cost of crowdsourcing 
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fleet, which considers logistic solution provider hiring cost and vehicle operating cost. A 

branch-and-price (B&P) algorithm is proposed to solve this problem by using column 

generation techniques. This B&P algorithm first proves its effectiveness by solving 

benchmarking instances and compared with results from the default MILP solver in 

CPLEX. Computational analysis shows the proposed algorithm excels default MILP solver 

and can provide exact solutions. 

In this regard, the rest of this study proceeds as follows. Section 1 discussed how 

cross-docking solves challenges raised by platform-driven crowdsourced manufacturing 

challenges and algorithm solutions of it. Section 2 presents the problem context and 

mathematical formulation of C-VRPCD. Section 3 establishes a branch-and-price 

algorithm for C-VRPCD. The computational results and comparison with benchmarks are 

presented in Section 4. A case study proceeds in Section 5 to verify the applicability of the 

proposed algorithm in the crowdsourcing environment. Section 6 closes this study. 

7.1 Logistic Service in Platform-Driven Crowdsourced Manufacturing 

Manufacturing industries are challenged by absorbing more disruptive changes that 

are impacted by sustainability issues, volatile customer preferences, and macro-

environmental fluctuations and effectively delivering manufacturing services by adopting 

MaaS paradigm (Kusiak, 2019). Platform-driven crowdsourced manufacturing has been 

proposed to deliver service-oriented manufacturing through an external searching based on 

crowdsourcing and integrating resources into a manufacturing value chain by a cyber 

platform (Gong et al., 2021). It provides systematic solutions for manufacturers to peel 

their peripheral manufacturing activities and thus achieving economies of scale by offering 
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substitutive services. From a perspective from managing material flow across manufacturer 

network, an optimal decision support on logistic services is critical, which can manage a 

networked material flow to serve materials and WIP transportation synchronously.  

Since a cyber platform in crowdsourced manufacturing operates a two-sided peer-

to-peer marketplace to match the open innovators and manufacturers. Thus, multiple value 

chains will be initiated by the open innovators and executed simultaneously. Since the 

fulfillment of each value chain requires collaboration among a group of manufacturers, 

several outstanding manufacturers may be awarded by multiple value chains. Thus, these 

manufacturers can be viewed as common vertexes in the networked material flow. The 

logistic service system should offer the logistic services to send the corresponding 

materials and WIP just-in-time. Because the highly innovative products can be 

characterized as large variety yet small volume, the logistic service is required to handle 

the product and production variety. In this regard, a service-oriented scheduling mechanism 

considering the product and production variety, as well as the manufacturing activities 

synchronization, can be recognized as the essential function in a logistic service system. 

7.1.1 Cross-Docking for Networked Material Flow Management 

The material flow management function in logistic services in platform-driven 

crowdsourced manufacturing aims to send as well as pick up the required material, WIP, 

subassemblies, or final products on time. Due to the large variety of value chains and the 

corresponding process variety, a manufacturer can be downstream partners for a set of 

upstream partners, since it is a vertex in a networked material flow network. Thus, the 

material and WIP delivery services for this manufacturer has multiple destinations. 
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Similarly, after the accomplishment of the manufacturing tasks, the picking up services 

will send the material and WIP to multiple downstream manufacturers. Thus, the process 

variety will propagate from process domain to the logistics one, therefore challenges the 

companies with keeping a reasonable cost as well as aligning customers, products, 

processes, and logistics domain for delivering an increasing product variety (Jiao et al., 

2007b). From a platform-based perspective, a cyber platform can collect the information 

from the manufacturing crowds, formulate the origins and destinations of the service 

demands, find the common routes in the corresponding transportation service tasks and 

synchronize the manufacturing activities to achieve just-in-time (Qu et al., 2016).  

The participation in platform-driven crowdsourced manufacturing implies that 

manufacturers open to external partners and allow the integration with partner crowds. 

Moreover, because recent advancement of information service system enables digitization 

of the manufacturing activities and the streaming of process data, the logistic service 

system can retrieve real-time data on the shop floor and making optimal decisions. The 

new synergy of the IoT and cloud computing architecture enables the visualization of the 

logistic on the shop floor and applying big data analysis of the material flow inner the 

manufacturers, thus, paves the way towards a holistic optimal logistic plan balancing the 

inner- and inter-manufacturers material flows (Zhong et al., 2015). The holistic logistic 

plan can synchronize transportation tasks and manufacturing activities. Therefore, the time 

gaps between the manufacturing task accomplishment and picking up as well as the 

materials or WIP deliveries and the start of order execution can be minimized. The smaller 

the time gaps are, the potential inventory level on the shop floor can achieve.  

7.1.2 Crowdsourcing Vehicle Routing Problem with Cross-Docking 
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There is a stream of operation solutions for a logistic network with a high material 

variety with tight time constraints. The service-oriented logistic system installs an agile 

control mechanism, which entails a user-friendly, flexible, scalable, and widely connected 

engineering system architecture to link internal and external transportation (Evers et al., 

2000). Traditional logistic solutions like direct shipping and milk-run send shipment from 

origin to destination directly and to multiple destinations in a tour, respectively, has been 

observed a limited capability of serving small shipment size and geographically dispersed 

customers (Buijs et al., 2014). To response these shortcomings, warehousing and cross-

docking are developed by using a centralized depot.  

Cross-dock can allow the inbound trucks to unload the freight and transported 

directly to the outbound trucks with no or simple storage infrastructure (Wen et al., 2009). 

Compared to the warehousing that holds an inventory of products to act as a shortage 

buffer, cross-docking groups similar shipping requirements and fulfilled by immediately 

recombination to a delivery tour in centralized freight terminal, which as known as cross-

dock (Bozer and Carlo, 2008). The cross-docking addresses a platform-driven approach by 

operating in a similarity exploration and consolidating freight with the same downstream 

manufacturers utilizing fewer handling efforts to serve product varieties  (Ladier and 

Alpan, 2016). It has been widely accepted as a solution to serve the complex logistic 

network with a short delivery lead time and the reduction of the storage space (Van Belle 

et al., 2012). It also requires a tightly synchronization of pickup and delivery routes to 

achieve a just-in-time paradigm by having no or less storage buffer (Vogt, 2010). 

Therefore, a successful cross-docking operation creates demands for holistic approach for 
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modeling, quick response to uncertainty, and precise decision-making for resource 

planning.  

Vehicle routing planning with time window (VRPTW) modeling and solutions for 

pickup and delivery truck fleet management builds up the foundation of cross-docking 

operation excellence (Shakeri et al., 2012). A large variety of algorithms have been 

developed to solve the cross-docking planning problem based on VRPTW formulation with 

time constraints and other management concerns (Buijs et al., 2014). The heuristic 

algorithm solution for vehicle routing problem with cross-docking (VRPCD) includes tabu 

search (Lee et al., 2006), multi-objective population-based heuristics (Arabani et al., 2011), 

large neighborhood metaheuristics (Grangier et al., 2017), to name but a few. Analytical 

solutions for VRPCD can be derived from MILP formulation by Lee et al. (2006), and it 

can be accelerated by adopting branch-and-price approach, which utilizes column 

generation techniques to model the transportation planning problem into a pair of master 

problem and subproblem and update the possible column pool (Santos et al., 2011).  

Other fleet management issues rise along with the instantiation of cross-docking 

have also been explored, which includes include arrival uncertainty (Konur and Golias, 

2013), pickup and deliveries with cross-docking (Santos et al., 2013), split deliveries 

(Moghadam et al., 2014), resource constraints (Grangier et al., 2021), and queue model-

based multi-door facilities (Goodarzi et al., 2021). Platform-driven crowdsourced 

manufacturing searches a large amount of logistic service provider for materials and WIP 

deliveries, which rise a challenge for opening conventional vehicle routes and allowing the 

participation of logistic service provider crowds. Open vehicle routing problem has been 

proposed to accommodate third party logistic provider (Schopka and Kopfer, 2016). 
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Vincent et al. (2016) open traditional VRPCD and solve it by simulated annealing. 

According to our knowledge, an analytical solution for C-VRPCD is not existed. 

7.1.3 Chapter Organization 

In this regard, the rest of this study proceeds as follows. Section 2 presents problem 

context and mathematical formulation of C-VRPCD. Section 3 establishes a branch-and-

price algorithm for C-VRPCD. The computational results and comparison with benchmark 

are presented in Section 4. A case study is proceeded in Section 5 to verify the applicability 

of the proposed algorithm in crowdsourcing environment. 

7.2 Problem Definition and Mathematical Model 

7.2.1 Problem Context for C-VRPCD 

This study focuses on the logistic service system for platform-driven crowdsourced 

manufacturing, which is driven by the advantages of cross-docking following a platform-

driven strategy and a crowdsourcing fulfillment strategy to utilize external logistic 

provider. The challenges of optimal scheduling in a crowdsourcing environment, which 

instantiates platform-driven strategy through cross-docking is solved by the model of C-

VRPCD. Figure 1 conceptually illustrates C-VRPCD by incorporating three logistic 

providers to fulfill logistic service for crowdsourced manufacturing. A crowdsourcing 

logistic service process starts from a combination of different pickup routes, which has 

various locations and service time window. Logistic provider hired from a logistic crowd 

are viewed as homogeneous and are indexed as 𝑘, 𝑘 ∈ [1, 𝐾], 𝛾 ∈ ℤ+. The vehicles are 

scheduled to visit every manufacturer in a crowdsourcing network synchronously to 
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exchange the WIP and materials they picked and are loaded for delivery routes. The WIP 

and material for manufacturers in pickup and delivery routes can be different to achieve a 

fulfillment of various innovative product projects. From a perspective of service quality 

control, all manufacturers should be visited exactly once per pickup and delivery routes.  

 

Figure 7-1 Crowdsourcing vehicle routing problem with cross-docking 

The overall operational objective for this problem is seeking a minimized 

transportation cost following scheduled routes and an optimal number of hired logistic 

providers. It is a modification of the VRPCD which requires all vehicle starts from cross-

docking depot. The C-VRPCD integrates logistic provider crowd via crowdsourcing, 

which implies that services of vehicles are started and ended by various time and locations. 

From a management perspective, this optimal decision-making process can be further 

decomposed as a series of VRP problems and an optimal combinatorial problem of 

combining possible routes to a fleet plan. An architecture of master problem and 

subproblems entails a negotiation process of a pricing and bidding process to plan logistic 
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providers. As an analytical method of solving large scale MILP, B&P algorithm updates 

potential solution space through a column generation technique (Barnhart et al., 1998). 

B&P algorithm can solve m-VRPTW for cross-docking problem by model the route 

selection problem as a master one and individual routing problem as a subproblem (Santos 

et al., 2011).  

7.2.2 Mathematical Formulation of C-VRPCD 

C-VRPCD assumes logistic providers are heterogenous vehicles which park in a 

dummy cross-dock, which can access to all possible manufacturers with no distance, 

collect all vehicle without number limit, and be viewed as a logistic crowd. All of hired 

vehicles arrive at cross-dock simultaneously to enable a division of routes to pickup and 

delivery process. The nomenclature and MILP model for C-VRPCD is provided as 

following. 

This model uses a graph-based presentation of potential routes. Consider a directed 

graph 𝒢 = (𝒱,𝒜), where 𝒱 collects all possible locations as vertices and 𝒜 collects all 

possible trips as arcs. The vertices set 𝒱 van be further decomposed as 𝒱 = {0} ∪ {|0|} ∪

𝑀𝑈 ∪𝑀𝐷 , where {0}  represents cross-dock depot, {|0|}  represents dummy cross-dock, 

𝑀𝑈 collects all upstream manufacturers who provide WIP and material, and 𝑀𝐷 collects 

all downstream manufacturers who receive WIP and material. The total number of 

upstream manufacturers 𝑀𝑈 is 𝑛𝑈 and total number of downstream manufacturers 𝑀𝐷 is 

𝑛𝐷. The arcs can be further decomposed into 𝒜 = 𝒜𝑈 ∪𝒜𝐷, while 𝒜𝑈 ∩𝒜𝐷 = ∅, where 

𝒜𝑈 = {(𝑖𝑈, 𝑗𝑈): 𝑖𝑈, 𝑗𝑈 ∈ {|0|, 0,1, … , 𝑛𝑈}} denotes all possible arcs connecting upstream 

manufacturers, cross-dock depot, and dummy cross-dock. Similarly, 𝒜𝐷 =
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{(𝑖𝐷, 𝑗𝐷): 𝑖𝐷, 𝑗𝐷 ∈ {|0|, 0, 1, … , 𝑛𝐷}}  denotes all possible arcs connecting downstream 

manufacturers, cross-dock depot, and dummy cross-dock. Transportation cost 𝑐𝑖𝑗 are 

attached to these arcs, {𝑐𝑖𝑗 ≥ 0: (𝑖, 𝑗) ∈ 𝒜}. Logistic service requests are modeled as triples 

𝒮 = {𝑠𝑖𝑈 ≔ (𝑖𝑈 , 𝑖𝐷, 𝑞𝑖𝑈): 𝑖
𝑈 ∈ {1,… , 𝑛𝑈}}, where each triple regulating the start and end 

positions and undividable load 𝑞𝑖𝑈 ≥ 0. These loads are shipped from requester upstream 

manufacturer 𝑖𝑈 to receiver downstream 𝑖𝐷. A fleet size of 𝐾 homogeneous vehicles are 

responsible for fulfillment all service request. In our model, every vehicle is required to 

stop at cross-dock depot {0}  before delivering to downstream manufacturer 𝑀𝐷  for 

possible loads exchange. If the loads 𝑞𝑖𝑈  from pickup routes 𝑅𝑃 and delivery routes 𝑅𝐷 

use different vehicle 𝑘, an exchanging cost 𝑐
𝑖𝑈
𝑘  is generated.  

Several decision variables and binary parameters are used for problem modeling. 

Decision variable 𝛽𝑟
𝑘  assumes 1 to indicate a pickup tour 𝑟  utilize vehicle 𝑘 , 0 for 

otherwise, and a transportation cost 𝑐𝑟  are attached to it. Correspondingly, a decision 

variable 𝛾𝑟′
𝑘  assumes 1 for a delivery route use vehicle 𝑘, 0 otherwise, and cost is 𝑐𝑟′ . 

Exchanging decision variable 𝜏
𝑖𝑈
𝑘  is introduced to indicate the load 𝑖𝑈  in vehicle 𝑘  is 

exchanged in cross-dock depot or not, and a cost 𝑐
𝑖𝑈
𝑘  is attached. Two binary parameters 

𝑎𝑟
𝑖𝑈  and 𝑏𝑟′

𝑖𝐷 describes the pickup route 𝑟 and delivery route 𝑟′ in the form of whether it 

visit upstream manufacturer 𝑖𝑈 and downstream manufacturer 𝑖𝐷 or not, respectively. 

The MILP mathematical formulation of C-VRPCD is equation (7.1.0) – (7.1.7). 

Min ∑ 𝑐𝑟
𝑟∈𝑅𝑃

∑𝛽𝑟
𝑘

𝑘∈𝐾

+ ∑ 𝑐𝑟′

𝑟′∈𝑅𝐷

∑𝛾𝑟′
𝑘

𝑘∈𝐾

+∑ ∑ 𝑐
𝑖𝑈
𝑘 𝜏

𝑖𝑈
𝑘

𝑖𝑈∈𝑆𝑘∈𝐾

(7.1.0) 
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𝑠. 𝑡.  

∑ 𝛽𝑟
𝑘

𝑟∈𝑅𝑃

= 1  ∀𝑘 ∈ 𝐾 (7.1.1) 

∑ 𝛾𝑟′
𝑘

𝑟′∈𝑅𝐷

= 1  ∀𝑘 ∈ 𝐾  (7.1.2) 

∑ 𝑎𝑟
𝑖𝑈

𝑟∈𝑅𝑃

∑𝛽𝑟
𝑘

𝑘∈𝐾

= 1  ∀𝑖𝑈 ∈ 𝑀𝑈  (7.1.3) 

∑ 𝑏𝑟′
𝑖𝐷

𝑟′∈𝑅𝐷

∑𝛾𝑟′
𝑘

𝑘∈𝐾

= 1  ∀𝑖𝐷 ∈ 𝑀𝐷   (7.1.4) 

∑ 𝛽𝑟
𝑘𝑎𝑟

𝑖𝑈

𝑟∈𝑅𝑃

− ∑ 𝛾𝑟′
𝑘 𝑏𝑟′

𝑖𝐷

𝑟′∈𝑅𝐷

+ 𝜏
𝑖𝑈
𝑘 ≥ 0, ∀𝑖𝑈 ∈ 𝑆, ∀𝑘 ∈ 𝐾  (7.1.5) 

− ∑ 𝛽𝑟
𝑘𝑎𝑟

𝑖𝑈

𝑟∈𝑅𝑃

+ ∑ 𝛾𝑟′
𝑘 𝑏𝑟′

𝑖𝐷

𝑟′∈𝑅𝐷

+ 𝜏
𝑖𝑈
𝑘 ≥ 0, ∀𝑖𝑈 ∈ 𝑆, ∀𝑘 ∈ 𝐾  (7.1.6) 

𝛽𝑟
𝑘 , 𝛾𝑟′

𝑘 , 𝜏
𝑖𝑈
𝑘 , 𝑎𝑟

𝑖𝑈 , 𝑏𝑟′
𝑖𝐷 ∈ {0,1}  (7.1.7) 

Equation (7.1.0) formulates the objective function of C-VRPCD, which minimizes 

total cost incurred in pickup, delivery, and exchanging operations through crowdsourcing 

logistic service process. Equation (7.1.1) and (7.1.2) are convexity constraints to enforce 

all vehicle are used in pickup and delivery routes. Equation (7.1.3) and (7.1.4) ensure that 

every request is covered without overlap by pickup and delivery routes. Equation (7.1.5) 

and (7.1.6) guarantee 𝜏
𝑖𝑈
𝑘  is 1 if a service load 𝑖𝑈 use different vehicle. Equation (7.1.7) 

require all decision variables and binary parameters are either 0 or 1. 

Following a branch-and-price modeling approach, the master problem modeled in 

equation (7.1.0) – (7.1.7) are changed to Restricted Master Problem (RMP) by replacing 

pickup 𝑅𝑃  and delivery routes 𝑅𝐷  by a restricted routes pool. B&P utilize linear 

programming relaxation of RMP by relaxing the integrality constraints. A series of dual 



 148 

variables {𝜐𝑘: 𝑘 ∈ 𝐾} , {𝜑𝑘: 𝑘 ∈ 𝐾} , {𝜈𝑖𝑈: 𝑖
𝑈 ∈ 𝑀𝑈} , {𝜇𝑖𝐷: 𝑖

𝐷 ∈ 𝑀𝐷} , {𝜋
𝑖𝑈
𝑘 : 𝑖𝑈 ∈ 𝑀𝑈} , 

{𝜒
𝑖𝑈
𝑘 : 𝑖𝑈 ∈ 𝑀𝑈}  are assigned to constraints (7.1.1) – (7.1.6). The routes for RMP are 

updated by seeking routes in two minimization pricing problems modeled in (7.2) and 

(7.3).  

arg min
𝑟∈𝑅𝑃

 𝑐𝑟 − ∑ 𝑎𝑟
𝑖𝑈𝜈𝑖𝑈

𝑖𝑈∈𝑀𝑈

− ∑ 𝑎𝑟
𝑖𝑈𝜋

𝑖𝑈
𝑘

𝑖𝑈∈𝑀𝑈

+ ∑ 𝑎𝑟
𝑖𝑈𝜒

𝑖𝑈
𝑘

𝑖𝑈∈𝑀𝑈

− 𝜐𝑘 , ∀𝑘 ∈ 𝐾  (7.2) 

arg min
𝑟′∈𝑅𝐷

 𝑐𝑟
′ − ∑ 𝑏𝑟′

𝑖𝐷𝜇𝑖𝐷

𝑖𝐷∈𝑀𝐷

+ ∑ 𝑏𝑟′
𝑖𝐷𝜋

𝑖𝑈
𝑘

𝑖𝑈∈𝑀𝑈

− ∑ 𝑏𝑟′
𝑖𝐷𝜒

𝑖𝑈
𝑘

𝑖𝑈∈𝑀𝑈

− 𝜑𝑘, ∀𝑘 ∈ 𝐾  (7.3) 

7.3 Branch-and-Price algorithm for C-VRPCD 

B&P method utilizes column generation technique in an iterative way and combines 

with branch-and-bond techniques to solve the linear relaxation of large-scale optimization 

models that involve a large volume of variables and associated columns (Choi and Tcha, 

2007). It adopts divide-and-conquer philosophy, which solve the problem that the large-

scale optimization has to consider massive volume of columns. B&P utilize the observation 

that the optimal solution of a combinatorial problem only includes a small subset of 

columns. Thus, an iteratively updating scheme can significantly limit the scale of master 

problem, and a pricing problem can be solved to seek a fast cost reduction.  

7.3.1 Algorithm Architecture of B&P for C-VRPCD 

The flowchart of B&P algorithm for C-VRPCD is shown in Figure 7-2. It starts 

with a subset of pickup route set 𝑅𝑃 and delivery route set 𝑅𝐷 as initial column set, which 

is generated through a heuristic to ensure the feasibility of initial solution. A full B&P 

algorithm has two cycle, column generation and branching operation. In each iteration of 



 149 

column generation, it solves linear programming relaxation of RMP considering a subset 

of the columns and yields dual variables, which includes 𝜐𝑘, 𝜑𝑘, 𝜈𝑖𝑈, 𝜇𝑖𝐷, 𝜋𝑖
𝑘, 𝜒𝑖

𝑘. These 

dual variables are used to find negative reduced cost by solving pricing problems modeled 

in (7.1). If both pricing problems explored negative reduced cost columns, they can be 

added to the RMP. A new set of dual value can be explored by re-solve the RMP with 

linear programming relaxation. Otherwise, the current RMP solution founds its optimal 

and terminates column generation cycle.  

 

Figure 7-2 Flowchart of branch-and-price algorithm for C-VRPCD  



 150 

The second cycle is branching operations to add bounding constraints following a 

branching-based tree search. It branches variables from master problem and finds feasible 

integer solution of current RMP. After all variables find integer solution after column 

generation process, the solution of RMP with current columns can be viewed as an optimal 

solution of the master problem. A predefined limit can be added to restrain the iteration of 

branching operations. 

7.3.2 Pulse Algorithm for Pricing Problem 

The objective of the pricing problem is to generate high-quality columns attached 

to variables that have the potential to improve the solution performance based on the 

current variables until no such variables can be found. This is done by exploring the 

variables with minimum negative reduced costs using the dual solution of the current linear 

programming relaxation of restricted master problem. Pricing problems are modelled in 

equation (7.2) and (7.3), which can be formulated as an elementary shortest path problem 

with resource constraints (ESPPRC). It checks the feasibilities of visiting nodes in a certain 

precedence and calculates objective value based on resource extension functions along a 

route.  

Among the exact solutions for ESPPRC, labeling algorithms is the most widely 

used solution for pricing problems in B&P problems, which iteratively calculates the label 

(a tuple to represent a route) following dynamic programming approach and utilizes 

dominance rule to reduce searching space (Costa et al., 2019). Recently, pulse algorithm 

has been proposed for VRPTW as a pricing problem to serve column generation method 

(Lozano et al., 2016). Pulse algorithm firstly finds lower bounds on the cost given an 
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amount of resource consumed, and recursively explores paths connecting vertices based on 

inexplicit enumeration in a graph through pulse propagation, which addresses a depth-first 

search of a directed graph. Pulse algorithm incorporates three pruning strategies: 1) 

feasibility pruning, which prunes infeasible paths by using structural constraints; 2) bound 

pruning, which utilize primal and lower bounds to discard suboptimal solutions; 3) rollback 

pruning, which compares pulses differing by the latest vertex visited to discard suboptimal 

partial paths.  

A general pulse algorithm is shown in Table 7-1. Lines 1-4 in Table 7-1 initialize 

value for the partial path 𝒫, the cumulative reduced cost 𝑟(𝒫), cumulative path load 𝑞(𝒫), 

cumulative path time consumption 𝑡(𝒫). Line 5 calls bounds function to find lower bound 

for every node of the question, which is shown in Table 7-2. Line 6 triggers recursive pulse 

which propagates from the start nodes 𝓋𝑠 (dummy cross-dock {|0|} in pickup routes and 

cross-dock depot {0} in delivery routes). This function will explore all of the information 

of feasible path from 𝓋𝑠 to end node 𝓋𝑒 (cross-dock depot {0} in pickup routes and dummy 

cross-dock {|0|} in delivery routes). 

The pulse algorithm starts with three prune functions, namely Feasible, Bounds, 

RollBack, which is called in line 7, 8, and 9, respectively. These prune functions can ensure 

that the pulse algorithm can find an optimal elementary path in a limited space efficiently. 

If the path is not pruned, the current path is added to partial paths of current node 𝓋𝑖 in line 

10. Line 11 updates the vehicle loads. Line 12 to line 16 forms a for-loop to propagate the 

pulse by invoking the pulse procedure to every possible node 𝓋𝑗 ∈ 𝒜𝑖
+, where 𝒜𝑖

+ is the 

set of accessible nodes set of current one 𝓋𝑖. 
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Table 7-1 Pseudocode of general pulse algorithm for ESPPRC  

Algorithm 7-1: general pulse algorithm for ESPPRC 

Input: 𝒢 directed graph; 𝓋𝑠 start node; 𝓋𝑒 end node; 𝔡 bound step size; [𝑡, 𝑡] time bound for 

planning; 𝑟(𝒫) path reduced cost; 𝑞(𝒫) path load; 𝑡(𝒫) path time; 𝓋𝑖 current node; 𝒜𝑖
+ set of 

accessible nodes set of current one 𝓋𝑖. 

Output: 𝒫∗ optimal path 

1: 𝒫 ← {0}; 

2: 𝑟(𝒫) ← 0; 

3: 𝑞(𝒫) ← 0; 

4: 𝑡(𝒫) ← 0; 

5: bound(𝒢, 𝔡, [𝑡, 𝑡]); 

6: pulse(𝓋𝑠, 𝑟(𝒫), 𝑞(𝒫), 𝑡(𝒫),𝒫); 

7:  if Feasible(𝓋𝑖, 𝑞(𝒫), 𝑡(𝒫)) = true 

8:   if Bounds(𝓋𝑖, 𝑡(𝒫), 𝑟(𝒫)) = false 

9:    if RollBack(𝓋𝑖 , 𝑡(𝒫), 𝑟(𝒫),𝒫) = false 

10:     𝒫 ← 𝒫⋃{𝓋𝑖}; 

11:     𝑞(𝒫) ← 𝑞(𝒫) + 𝑞𝑖; 

12:     for 𝓋𝑗 ∈ 𝒜𝑖
+ do 

13:      𝑟(𝒫′) ←  𝑟(𝒫) + 𝑟𝑖𝑗; 

14:      𝑡(𝒫′) ← max{𝑎𝑗, 𝑡(𝒫) + 𝑡𝑖𝑗}; 

15:      pulse(𝓋𝑠, 𝑟(𝒫), 𝑞(𝒫), 𝑡(𝒫),𝒫); 

16:     end for 

17:    end if 

18:   end if 

19:  end if 

20: end pulse 

21: return 𝒫∗ 

Once the pulse algorithm reached the end node 𝓋𝑒, the best-performed path 𝒫∗ will 

be updated. The algorithm will be terminated until the last recursive propagate reach the 

end node 𝓋𝑒. 

The feasibility pruning is proceeded through function Feasible . The paths that 

violate structural constraints can be identified and discarded. The constraints covered by 

this study includes time window, vehicle load capacity, and cycle constraints.  
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The bound pruning limited the search space by providing the lower bounds 

𝑟(𝓋𝑖 , 𝑡(𝒫)) for every node, which is shown in Table 7-2. The bound contains minimum 

reduced cost of a path 𝒫 that reaches 𝓋𝑖.The time bound of planning horizon [𝑡, 𝑡], bound 

step size 𝔡, and directed graph are essential input for this function. The time windows for 

paths are gradually reduced by the give step size 𝔡. The output of this function is denoted 

as lower bound matrix 𝐁 = [𝑟(𝓋𝑖 , 𝜏)], which stores all lower bonds for every node and 

time step. Lines 4 to 9 solves ESPPRC for every node in that consumption using pulse 

procedure. Lines 10 – 14 stores optimal reduced cost value found for every node at given 

time 𝑟(𝓋𝑖 , 𝜏). If the optimal path is an empty set, the reduced cost will be set to infinity. 

Table 7-2 Pseudocode of bounds function for pulse algorithm for ESPPRC 

Algorithm 7-2: Bounds function for pulse algorithm for ESPPRC 

Input: 𝒢 directed graph; 𝔡 bound step size; [𝑡, 𝑡] time bound for planning. 

Output: 𝐁 = [𝑟(𝓋𝑖 , 𝜏)], lower bound matrix. 

1: 𝜏 ← 𝑡; 

2: while 𝜏 > 𝑡 do; 

3:  𝜏 ← 𝜏 − 𝔡; 

4:  for 𝓋𝑖 ∈ 𝒜 do 

5:   𝒫 ← { }; 

6:   𝑟(𝒫) ← 0; 

7:   𝑞(𝒫) ← 0; 

8:   𝑡(𝒫) ←  𝜏; 

9:   pulse(𝓋𝑠, 𝑟(𝒫), 𝑞(𝒫), 𝑡(𝒫),𝒫); 

10:   if 𝒫∗ = { } then; 

11:    𝑟(𝓋𝑖 , 𝜏) ← ∞; 

12:   else 

13:    𝑟(𝓋𝑖 , 𝜏) ←  𝑟(𝒫∗); 

14:   end if 

15:  end for 

16: return 𝐁 



 154 

Rollback pruning aims to avoid exploration of unpromising regions by making 

better decisions in the early searching stage by backtrack to a better initial choice in a 

depth-first graph search. Once a path 𝒫𝑠𝑗  reaches node 𝓋𝑗 , a reevaluation of potential 

bypath is possible or not, and correspondingly, the reduced cost of these bypaths will be 

benefited from or not are proceeded. If the paths are subset of the other one and all of the 

values are higher than the other one, it can be evaluated as a dominated path candidate 

(Feillet et al., 2004). Compared to conventional labelling algorithm, this pulse algorithm 

excels in getting rid-off the storage of saving labels. 

7.3.3 Branching Heuristics 

B&P synergizes branch-and-bound and column generation by iteratively searching 

of branching tree, as shown in Figure 7-2. The variable chosen to be branched in this study 

is 𝜏
𝑖𝑈
𝑘 , which links the balance of pickup and delivery routes by Equation (7.1.5) and 

(7.1.6). The branching of 𝜏
𝑖𝑈
𝑘  can formulate a pair of 𝑘 and 𝑖𝑈 can be used for uploading a 

father node of the branching tree. A branching uncertainty index 𝜅
𝑖𝑈
𝑘  is introduced for 

determining the branching priority, which can be defined in Equation (7.4). 

𝜅
𝑖𝑈
𝑘 ≔ ∑ min{𝑎𝑟

𝑖𝑈𝛽𝑟
𝑘 , 1 − 𝑎𝑟

𝑖𝑈𝛽𝑟
𝑘}

𝑟∈𝑅𝑃

+ ∑ min {𝑏𝑟′
𝑖𝐷𝛾𝑟′

𝑘 , 1 − 𝑏𝑟′
𝑖𝐷𝛾𝑟′

𝑘 }

𝑟′∈𝑅𝐷

, ∀𝑘 ∈ 𝐾  (7.4) 

It measures the uncertainty that a vehicle 𝑘 serve a request 𝑖𝑈 or not. If a vehicle 𝑘 

is assigned or unassigned to a request certainly, 𝜅
𝑖𝑈
𝑘  will approach to zero. Otherwise, 𝜅

𝑖𝑈
𝑘  

will increase to show a high uncertainty of assigned or unassigned to a request. Thus, 
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branching the maximum 𝜅
𝑖𝑈
𝑘  in all 𝐾 can be perceived as a high searching efficiency to 

deviate uncertainty.  

If the branch variable 𝜏
𝑖𝑈
𝑘  are branched to zero, a service load 𝑖𝑈 will not load to or 

unload from the vehicle 𝑘  at cross-dock. 𝜏
𝑖𝑈
𝑘 = 0  implies two situations, which are 

∑ 𝑎𝑟
𝑖𝑈𝛽𝑟

𝑘
𝑟∈𝑅𝑃 = 0 and ∑ 𝑏𝑟′

𝑖𝐷𝛾𝑟′
𝑘

𝑟′∈𝑅𝐷 = 0, which indicates vehicle 𝑘 never touch service 

load 𝑖𝑈 , and ∑ 𝑎𝑟
𝑖𝑈𝛽𝑟

𝑘
𝑟∈𝑅𝑃 = 1  and ∑ 𝑏𝑟′

𝑖𝐷𝛾𝑟′
𝑘

𝑟′∈𝑅𝐷 = 1 . Otherwise, 𝜏
𝑖𝑈
𝑘 = 1  implies that 

∑ 𝑎𝑟
𝑖𝑈𝛽𝑟

𝑘
𝑟∈𝑅𝑃  and ∑ 𝑏𝑟′

𝑖𝐷𝛾𝑟′
𝑘

𝑟′∈𝑅𝐷  have different value, which is shown in Table 7-3. 

Table 7-3 Four nodes of branching of a parent node 

 

Vehicle 𝑘 serves service load 𝑖𝑈 or not in 

pickup routes 

∑ 𝑎𝑟
𝑖𝑈𝛽𝑟

𝑘
𝑟∈𝑅𝑃 = 0  ∑ 𝑎𝑟

𝑖𝑈𝛽𝑟
𝑘

𝑟∈𝑅𝑃 = 1  

Vehicle 𝑘 serves 

service load 𝑖𝑈 or 

not in delivery 

routes 

∑ 𝑏𝑟′
𝑖𝐷𝛾𝑟′

𝑘
𝑟′∈𝑅𝐷 = 0  𝜏

𝑖𝑈
𝑘 = 0 𝜏

𝑖𝑈
𝑘 = 1 

∑ 𝑏𝑟′
𝑖𝐷𝛾𝑟′

𝑘
𝑟′∈𝑅𝐷 = 1  𝜏

𝑖𝑈
𝑘 = 1 𝜏

𝑖𝑈
𝑘 = 0 

This branching rule makes C-VRPCD a quadtree, and a best-first strategy with 

maximum 𝜅
𝑖𝑈
𝑘  can search the branch tree in a depth-first manner. 

7.4 Computational Results of C-VRPCD 

This experiment is from a case of tank trailer crowdsourced manufacturing. Table 

7-4 shows the details of tasks within the planning horizon. The tasks are modified from a 

real-world logistic routes planning problem. Six types of data are given: task ID, pickup 

time, delivery time, the manufacturer of arrival, and the manufacturer of departure. The 

travel time among each manufacturer and cross-dock depot is given in Table 7-5. These 
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data are inputs of the networked material flow algorithm. The planning result is shown in 

Table 7-6, including the task ID, and logistic service provider’s ID.  

Table 7-4 Crowdsourcing logistic service tasks 

Task ID Pickup Time Delivery Time Arrival Departure 

1169624838194331684 2019-01-16 05:25:00 2019-01-16 09:45:00 ‘5’ ‘ ’ 

1169624838190137854 2019-01-16 06:30:00 2019-01-16 18:50:00 ‘N1’ ‘9 ’ 

1169624838190137684 2019-01-16 05:40:00 2019-01-16 18:04:00 ‘ ’ ‘95’ 

1169624838164971555 2019-01-16 07:45:00 2019-01-16 16:05:00 ‘ ’ ‘ ’ 

1169624838194331933 2019-01-16 12:45:00 2019-01-16 18:05:00 ‘95’ ‘95’ 

1169624838164971640 2019-01-16 06:50:00 2019-01-16 19:10:00 ‘ ’ ‘9 ’ 

1169624838164971620 2019-01-16 11:00:00 2019-01-16 14:20:00 ‘N1’ ‘N1’ 

1169624838164971621 2019-01-16 07:05:00 2019-01-16 15:25:00 ‘9 ’ ‘ ’ 

1169624838190137954 2019-01-16 12:05:00 2019-01-16 17:25:00 ‘95’ ‘N1’ 

1169624838190137681 2019-01-16 05:10:00 2019-01-16 15:30:00 ‘ ’ ‘5’ 

1169624838190137969 2019-01-16 06:15:00 2019-01-16 19:39:00 ‘5’ ‘ ’ 

1169624838164971543 2019-01-16 09:25:00 2019-01-16 15:45:00 ‘ ’ ‘9 ’ 

1169624838164971545 2019-01-16 12:25:00 2019-01-16 16:41:00 ‘5’ ‘5’ 

1169624838185943261 2019-01-16 08:30:00 2019-01-16 16:46:00 ‘N1’ ‘ ’ 

1169624838164971572 2019-01-16 12:35:00 2019-01-16 13:55:00 ‘ ’ ‘9 ’ 

1169624838164971573 2019-01-16 08:40:00 2019-01-16 16:00:00 ‘95’ ‘5’ 

1169624838164971523 2019-01-16 09:45:00 2019-01-16 17:09:00 ‘ ’ ‘N1’ 

1169624838164971524 2019-01-16 05:50:00 2019-01-16 19:14:00 ‘N1’ ‘ ’ 

1169624838164971614 2019-01-16 09:50:00 2019-01-16 13:06:00 ‘5’ ‘95’ 

1169624838164971533 2019-01-16 05:10:00 2019-01-16 17:34:00 ‘ ’ ‘9 ’ 

1169624838164971575 2019-01-16 06:10:00 2019-01-16 18:30:00 ‘9 ’ ‘ ’ 

1169624838185943255 2019-01-16 05:10:00 2019-01-16 13:26:00 ‘9 ’ ‘5’ 

1169624838164971534 2019-01-16 10:15:00 2019-01-16 17:39:00 ‘95’ ‘ ’ 

1169624838164971584 2019-01-16 12:15:00 2019-01-16 18:31:00 ‘95’ ‘N1’ 

1169624838164971585 2019-01-16 08:20:00 2019-01-16 13:36:00 ‘5’ ‘9 ’ 

1169624838190137859 2019-01-16 05:20:00 2019-01-16 17:36:00 ‘ ’ ‘95’ 

1169624838185943247 2019-01-16 08:30:00 2019-01-16 15:54:00 ‘N1’ ‘95’ 

1169624838164971638 2019-01-16 07:35:00 2019-01-16 13:51:00 ‘ ’ ‘N1’ 

1169624838185943248 2019-01-16 12:35:00 2019-01-16 16:59:00 ‘ ’ ‘95’ 

1169624838164971566 2019-01-16 11:45:00 2019-01-16 16:05:00 ‘ ’ ‘N1’ 

1169624838185943263 2019-01-16 06:45:00 2019-01-16 16:01:00 ‘ ’ ‘ ’ 

1169624838194332048 2019-01-16 11:45:00 2019-01-16 14:09:00 ‘5’ ‘ ’ 

1169624838164971567 2019-01-16 10:50:00 2019-01-16 19:10:00 ‘5’ ‘ ’ 
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Table 7-5 Travel time among manufacturers and cross-dock 

 ‘ ’ ‘ ’ ‘5’ ‘9 ’ ‘95’ ‘N1’ ‘{0}’ 
‘ ’  15 4 8 46 39 42 

‘ ’ 15  23 18 38 30 35 

‘5’ 4 23  37 18 19 36 

‘9 ’ 8 18 37  20 16 25 

‘95’ 46 38 18 20  25 18 

‘N1’ 39 30 19 16 25  14 

‘{0}’ 42 35 36 25 18 14  

Table 7-6 Planning result of B&P for C-VRPCD 

Task ID Provider ID Task ID Provider ID 

1169624838194331684 1000423 1169624838164971573 1000422 

1169624838190137854 1000458 1169624838164971523 1000458 

1169624838190137684 1000425 1169624838164971524 1000428 

1169624838164971555 1000504 1169624838164971614 1000506 

1169624838194331933 1000422 1169624838164971533 1000502 

1169624838164971640 1000506 1169624838164971575 1000422 

1169624838164971620 1000505 1169624838185943255 1000428 

1169624838164971621 1000455 1169624838164971534 1000458 

1169624838190137954 1000428 1169624838164971584 1000506 

1169624838190137681 1000456 1169624838164971585 1000422 

1169624838190137969 1000457 1169624838190137859 1000458 

1169624838164971543 1000450 1169624838185943247 1000502 

1169624838164971545 1000458 1169624838164971638 1000428 

1169624838185943261 1000451 1169624838185943248 1000506 

1169624838164971572 1000452 1169624838164971566 1000423 

1169624838185943263 1000423 1169624838164971567 1000422 

7.5 Chapter Summary 

Logistic services for manufacturer entail a networked material flow planning, 

which plans a set of optimal vehicle service routes to link manufacturers as a material 

network. This chapter propose a cross-docking service method to use a platform-based 

strategy by splitting service routes into pickup and delivery ones and exploring maximum 

similarities among them. The vehicle can be used maximally by synchronizing pickup and 

delivery activities to achieve no or few inventory in cross-dock depot. This service method 
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shows the potential of handling a large number of manufacturers and volatile service 

requirements in platform-driven crowdsourced manufacturing. 

This chapter formulates an optimal decision-making of logistics services for 

platform-driven crowdsourced manufacturing through cross-docking as C-VRPCD. A 

B&P algorithm for C-VRPCD is proposed in this chapter. It utilizes a divide-and-conquer 

philosophy to decompose C-VRPCD into master problem and subproblem, which are 

connected by dual value and pricing problems to update column pool for size-controlled 

RMP. Pulse algorithm has been applied as the fundamentals of solving subproblem, which 

utilizes a recursively depth-first search of the directed graph. The proposed branching rules 

search integral solutions in a quadtree manner. 

This chapter provides logistic service solutions for manufacturers, which optimally 

plans logistic routes for crowdsourcing network. It enables manufacturers peeling off their 

logistic department and focusing on manufacturing activities. Also, a B&P algorithm 

solution is also proposed to solve the emerging crossdocking solution.  
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CHAPTER 8. TASK DISPATCHING AND SCHEDULING 

THROUGH REAL-TIME CROWDSOURCING TASK 

ACCEPTANCE AND ACCOMMODATION: AN INTERACTIVE 

BILEVEL OPTIMIZATION MODEL 

With the fourth-generation industrial revolution, manufacturing industries are 

focusing on dynamic, fully autonomous, and more customer-oriented production systems. 

This customer-oriented change converts classically static customer demand into that which 

is dynamic and real-time, as no prior information regarding customer demand is known in 

advance. This paper focuses on real-time order acceptance and scheduling (r-OAS) for a 

data-enabled permutation flow shop. To compensate for the shortage in prevailing 

approaches that make bottleneck-based decisions or assume that the intermediate buffers 

among workstations are infinite, an r-OAS scheme is generated based on a data-driven 

representation, which can concisely predict the dynamic production status of flow shops 

and the corresponding makespan of a job with finite intermediate buffer constraints. Using 

this representation, real-time job release planning (r-JRP) can be coupled with r-OAS to 

minimize various operational costs of flow shops (i.e., the costs of the work-in-process, 

earliness, and tardiness). In terms of the inherent interactive mechanism between r-OAS 

and r-JRP, in which r-OAS generates a decision space for r-JRP and r-JRP then feeds the 

lowest operational costs back for use in r-OAS decision-making, a bilevel interactive 

optimization (BIO) is formulated to simultaneously address the two subproblems based on 

the Stackelberg game. The r-OAS acts as the leader, while r-JRP acts as the follower. The 

BIO is a type of nonlinear integer programming, and a bilevel tabu-enumeration heuristic 
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algorithm is developed to solve it. The efficiency of the BIO is verified through a practical 

case study.  

8.1 Crowdsourcing Task Acceptance and Scheduling 

Order acceptance and scheduling (OAS) is an important decision in make-to-order 

production environments, as it may not be beneficial for firms to accept and produce all 

potential orders due to limited production capacity and tight delivery due dates. Over the 

past few decades, OAS has attracted considerable attention from researchers and 

practitioners (Slotnick, 2011), in which order acceptance is considered when determining 

which orders to accept, while order scheduling is addressed when identifying a production 

sequence for the accepted orders (Lin and Ying, 2015). This stream of research focuses on 

OAS problems with different objectives in various production environments: for example, 

deterministic and stochastic single- or multiple-machine problems with the objectives of 

revenue maximization, lead-time and due-date setting, and cost minimization (Slotnick, 

2011). In many manufacturing industries, the OAS for permutation flow shops presents a 

challenging problem for sequence-determined setup times and dynamic job transitions 

among workstations, which in turn problematize attempts to calculate a given job’s 

makespan. Xiao et al. (2012) and Lin and Ying (2015) study the static OAS problem for 

permutation flow shops by considering the known arrival time, due date, and composition 

of each order.  

The recent advancement of ICT brings the real-time data stream to the shop-floor 

manufacturing scheduling, which enables manufacturers to focus on constructing dynamic, 

fully autonomous, and more customer-oriented production systems. Therefore, OAS is 
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becoming dynamic and customer oriented, whereby customers can place orders with 

desired order compositions and due dates in the system in real time. This means that 

decision makers must accept or reject orders in real time after considering the current 

production capacity of flow shops and customer-specified due dates. The newly accepted 

orders must be scheduled alongside existing orders, which are either already accepted and 

in-process by machine(s) or waiting in a processing queue. We define this problem as r-

OAS, a term that is used to reference an optimization model that can utilize real-time data 

to update the pre-determined OAS decision without disrupting production system 

operations. Rahman et al. (2015) and Rahman et al. (2019) studied the r-OAS problem for 

permutation flow shops by developing heuristic and meta-heuristic algorithms; however, 

this research stream oversimplified this problem and may cause challenges when 

implemented in the real world: 

1) Real-time production status identification is the foundation for r-OAS decision-

making. In r-OAS problems, the OAS decision is dynamically updated based on the current 

production status. This status is difficult to identify, as it is affected by various resource- 

and job-related disruptions. Previous studies assume that production systems are 

deterministic, such that their real-time status can be derived simply by analyzing 

production planning and scheduling schemes (Wang et al., 2013, Lin and Ying, 2015). 

2) Reliable prediction for job makespan is the core of generating an optimum r-OAS 

scheme (De Jong et al., 2019). Currently, most permutation flow shop scheduling assumes 

that the capacity of the intermediate buffers is sufficient, such that the starvation/blockage 

of workstations will not occur. This assumption allows dynamic job transitions among 

workstations to be modeled by linear functions, and thus the makespan of a job can be 
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easily estimated. While these linear functions are beneficial for developing linear 

programming models and solving methods related to r-OAS problems, they are unrealistic, 

as the intermediate buffers must be finite for real-time WIP inventory control. 

3) The objective of existing studies examining r-OAS focuses on maximizing the 

number of accepted orders while minimizing the order completion times (Rahman et al., 

2015). This objective simplifies the coordination among multiple operation costs in flow 

shops (i.e., WIP inventory cost, final product inventory cost caused by earliness, and 

tardiness penalty cost), as many production systems today are required to operate within 

just-in-time paradigms. 

Until now, these simplifications have been considered reasonable, as the precise 

status of production systems is difficult to perceive in real time. The job transition 

behaviors among workstations, which are constrained by finite intermediate buffers and 

affected by various disruptions, are difficult to derive; thus, the makespan of a job cannot 

be concisely predicted. Due to this shortage, it is impossible to construct an approach for 

r-JRP, which is vital in coordinating the various operation costs after receiving an r-OAS 

decision (Chen et al., 2020). Owing to new information technologies (e.g., RFID and sensor 

networks) in smart manufacturing, many transparent and real-time data that reveal the 

production system status are being collected and analyzed. Using these data, the effects of 

disruptions can be evaluated and the multi-stage time-varying transition behaviors of flow 

shops can then be derived (Chen et al., 2020). This derivation enables the efficient 

identification of the real-time status of production systems. The makespan of a job and the 

multiple operation costs of a flow shop can be predicted based on this identification, and 

the r-JRP decision can then be made along with r-OAS. 
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This study’s primary purpose focuses on developing a joint optimization for r-OAS 

and r-JRP (referenced as r-OASR herein) problems in permutation flow shops with data-

driven production status and job makespan prediction. Recently, with the increased interest 

in the ability to make real-time decisions, several questions and concerns regarding the 

effects of using real-time data on production planning and scheduling have been discussed 

and reported (Hozak and Hill, 2009, Ghaleb et al., 2020). These discussions show that 

continuous replanning and rescheduling may increase the required setups, transportations, 

and nervousness of production systems. In our r-OASR problem, the continuous updating 

of OAS can simultaneously increase the net revenue and reputation of manufacturers, 

whereas it may also sometimes cause system nervousness (Rahman et al., 2015). 

 ortunately, today’s smart manufacturing devotes to formulating a universal adaptive 

capacity and thus system nervousness caused by r-OASR can be reduced in a certain extent 

(Shiue et al., 2018). Moreover, the sequence-dependent setup time for different orders is 

considered in our r-OASR problem such that the increased nervousness can be efficiently 

dealt with. When designing the searching algorithm, a special solution initiation approach 

is constructed, such that the OAS scheme inherited from the previous stage can be 

maintained to the extent possible. Based on these issues, the contributions of this research 

can be concluded as the following. (1) A data-driven representation approach is proposed 

to reveal the time-varying transition behaviors of flow shops with finite intermediate buffer 

constraints and sequence-dependent setup times. In turn, the real-time production status of 

flow shops can be derived and the makespan of a job can be precisely predicted. (2) An r-

JRP is constructed based on the data-driven representation to minimize the various 

operation costs in flow shops. (3) A BIO is formulated after addressing the inherent 
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interaction and hierarchical characteristics between r-OAS and r-JRP. (4) A bilevel 

heuristic algorithm comprising a tabu search and an implicit enumeration with a special 

solution initiation method is designed to manage this joint optimization. The results of the 

case study demonstrate that the proposed BIO performs better than bottleneck-based 

approaches and step-by-step optimization methodologies, in terms of maximizing the net 

revenue of flow shops. 

8.2 Real-time Order Acceptance and Scheduling for Data-enabled Permutation 

Flow Shops  

The research stream from static OAS problem towards a synthesis of real-time 

information and data-driven method is reviewed in this section. Most methods reviewed 

focus solely on the r-OAS problem with a tardiness-related objective, while multiple 

operation costs, which can be coordinated by r-JRP, are less involved. Some researchers 

have undertaken an examination of r-JRP problems at the scheduling stage to 

simultaneously minimize tardiness, earliness, and flowtime, but no research has extended 

the r-JRP into the area of r-OAS or that of scheduling methods with finite intermediate 

buffer constraints. Driven by the application of information and communication 

technologies, scholars are now exploring data-driven OAS problems after analyzing the 

real-time data from shop floors. They use these data to successfully estimate uncertain 

operational parameters in planning and scheduling models but ignore the potential value of 

these data in predicting the production status and job makespan of flow shops, which are 

both essential for r-OASR decision-making. Additionally, the data-rich environment 

enables smart production planning and control. This smart capacity can reduce the 
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nervousness caused by real-time rescheduling and thus promote the development of r-

OASR. 

8.2.1 Static OAS problems  

Static OAS problems in single- or multiple-machine production environments are 

generally formulated at the beginning of production, when a shop floor receives a pool of 

orders and must determine which ones to accept based on its available capacity and order 

due dates (Slotnick, 2011). The OAS that uses a single machine is a generalization of an 

OAS problem with a specialized scarce resource, which constitutes the bottleneck of a 

production system (Nobibon and Leus, 2011). Many modeling approaches focusing on the 

characteristics of this OAS have been developed. For example, Nobibon and Leus (2011) 

propose two linear formulations for static OAS problems and design two exact branch-and-

bound procedures to resolve instances including a maximum of 50 jobs. Silva et al. (2018) 

examine a new arc-time-indexed mathematical formulation after considering the sequence-

determined setup time and develop two exact algorithms based on Lagrangian relaxation 

and column generation. When the size of the problem is particularly large, various efficient 

approximation heuristics, whose type can be classified as either construction or 

improvement, are produced to find a near-optimal solution within a reasonable 

computation time (Chaurasia and Singh, 2017, Lin and Ying, 2015). Construction 

heuristics are frequently used to generate a fairly good solution for improvement heuristics 

or other metaheuristics, while improvement heuristics begin with an initial solution and are 

then repeated to improve the solution within a reasonable period. With the exception of 

these approximation heuristics, several metaheuristics, including simulated annealing, 

genetic algorithm, artificial bee colony algorithm, and tuba search, have been proposed to 
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resolve this OAS problem with different versions (Slotnick, 2011); the last two algorithms 

demonstrate the best performance in solving this problem.  

The OAS problems involving parallel machines or in flow shops are typical 

extensions of OAS with a single machine. Wang et al. (2015) examine an OAS problem 

with two identical parallel machines by designing exact and heuristic techniques. The 

proposed exact technique can solve small OAS problems with a maximum of 20 jobs. Wu 

et al. (2018) extend the model of Wang et al. (2015) to include multiple identical parallel 

machines and consider the sequence-dependent setup times among the accepted orders. A 

flow-like metaheuristic is developed for this OAS, the efficiency of which has been 

compared to classical particle swarm optimization. Flow shop scheduling has been 

extensively studied due to its diverse industrial and economic applications (Komaki et al., 

2019). In examining whether the job sequence is the same for all machines, scheduling can 

be decomposed into permutation and non-permutation problems (Rossit et al., 2018). Xiao 

et al. (2012) and (Xiao et al., 2015) extend permutation and non-permutation flow shop 

scheduling into OAS, respectively, after addressing order tardiness. To formulate an exact 

algorithm for the problem, Wang et al. (2013) develop a mixed-integer linear programming 

model and construct a branch-and-bound algorithm to solve problem instances with a 

maximum of 20 jobs. If the problem size is large, a parallel neighborhood search (Lei and 

Guo, 2015) and multi-initiator-simulated annealing (Lin and Ying, 2015) are proposed. 

Although many new mathematical formulations and solution techniques have recently been 

developed for OAS using different production environments, this area of research is still 

in its nascent stage and requires further development because of its widespread applications 

in today’s make-to-order practice. 
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8.2.2 Real-time OAS problems  

Today, with the development of information and communication technologies, the 

orders in flow shops are becoming increasingly dynamic and customer-oriented, whereby 

customers can place orders with their desired compositions and due dates in real-time 

(Rahman et al., 2019). Several studies consider future order arrivals in order acceptance 

decision-making and define the related OAS as a dynamic problem (Xu et al., 2015). For 

example, Ebben et al. (2005) propose several workload-based order acceptance strategies 

with stochastic order arrivals; Arredondo and Martinez (2010) develop a novel approach 

for the online adaptation of a dynamic order acceptance policy, in which the average-

reward reinforcement learning is used. A few studies investigate dynamic OAS problems 

with either a sequence-dependent setup time or cost. van Foreest et al. (2010) assume that 

the arriving orders follow an independent stationary Poisson process and use simulation to 

compare the performance of several heuristic scheduling and acceptance policies. Xu et al. 

(2015) formulate a stochastic dynamic programming model by considering the stochastic 

arrival orders and sequence-dependent setup time.  

In terms of the real-time characteristic of r-OAS problems, Rahman et al. (2015) 

and Rahman et al. (2019) establish programming models for this problem in permutation 

flow shops and propose rule-based heuristic and particle swarm optimization algorithms, 

respectively. Eriksen and Nielsen (2016) propose another approach for the r-OAS problem 

by aggregating incoming customer order requests into a stable inflow. These proposed 

approaches focus on minimizing the job makespan and the weight tardiness penalty cost, 

while the inventory costs accrued during accepted order fulfillment are ignored (Yenisey 

and Yagmahan, 2014, Li et al., 2016). Moreover, these approaches to solving r-OAS 
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problems in flow shops all assume that the intermediate buffers are infinite, and no 

blockage/starvation exists (Rossit et al., 2018). Because the throughput of a flow shop is 

determined by job release plans, WIP inventory, job processing time, and finite 

intermediate buffer constraints (Li et al., 2016), this assumption causes inaccuracies in the 

real-time estimation for job makespan in flow shops and may also prompt additional 

tardiness penalty costs when producing these accepted orders. 

Obviously, changing too often the OAS affects other scheduled tasks like 

assignment of machine tools and delivery of raw material. These variations may increase 

nervousness of a shop floor, which should be taken into consideration from a practical point 

of view. As presented in previous literature, nervousness causes an increase of global cost, 

a reduction in productivity, and an increase in the bullwhip effect (Hayes and Clark, 1985, 

Herrera et al., 2016). In this situation, a company determines a trade-off considering 

production costs, quality of service, and schedule instability (Blackburn et al., 1986). For 

example, Framinan et al. (2019) address how rescheduling should be performed after 

analyzing the instantaneous and accurate information on shop-floor status. Azouz et al. 

(2018) discuss nervousness in the context of adaptive pull control systems. A new approach 

which relies both on an adaptive freezing interval and a multi-objective simulation 

optimization technique is proposed such that nervousness can be reduced. Fahmy et al. 

(2007) emphasize that the job insertion obtains revised schedules featuring significantly 

lower system nervousness and slightly higher mean flow time than total rescheduling. The 

increasing use of sensors, FRID, and networked machines exploit the interconnectivity 

among machines to fulfill the goal of producing intelligent, resilient, and self-adaptable. 

This intelligence makes real-time scheduling timelier and more crucial as nervousness can 
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be efficiently reduced by the quick and smart response to abnormal events (Shiue et al., 

2018, Zhang et al., 2018).  

8.2.3 Data-driven OAS problems  

Smart manufacturing anticipates a situation in which the shop floor status is 

instantly available after analyzing the real-time data (Chen, 2016). Many scholars focus on 

the potential use of such real-time data in developing data-driven approaches for order 

scheduling problems. In terms of the large amount of data during production, a few papers 

study data classification problem in scheduling. Framinan et al. (2019) present a 

classification distinguishing between a class of model-based data and another of instance-

based data; Pinedo (2012) classifies scheduling data as static and dynamic. Based on these 

data classifications, (Rossit et al., 2018) propose a data-driven architecture for order 

scheduling to enable decisions to be made ahead of time. Zhong et al. (2015) use shop floor 

data to estimate the arrival of customer orders and standard operation times. Based on this 

estimation, real-time advanced production planning and scheduling can ultimately be 

achieved. The data-driven job shop scheduling and its new perspectives under Industry 4.0 

are reviewed by Zhang et al. (2018).  

In OAS decision-making, a reliable estimation of job makespan is critical. De Jong 

et al. (2017) develop a multilayer perceptron type neural network machine learning 

algorithm for quick and accurate job makespan prediction. They apply makespan 

prediction to a wide variety of shop scheduling problems. Because the current estimation 

approaches are limited to merely generalizing shop layout configurations and non-visual 

data input, a convolutional neural network algorithm for makespan regression is proposed 
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by De Jong et al. (2019). To address the problem with order acceptance, Duan et al. (2015) 

develop a completion status prediction approach for new orders and then construct an 

automated learning-based order admission framework. In addition, considering the 

disruptions that may significantly affect the performance of production systems, Zou et al. 

(2017) develop an event-driven method for dynamic production system diagnosis and 

prognosis. Chen et al. (2020) formulate an event-driven estimation method for the job 

makespan under make-to-order production environments after addressing the system input 

and finite intermediate buffer constraints. This work is vital to developing an optimization 

model for our r-OASR problem. 

8.3 r-OASR Problem Formulation and Preliminaries 

This section defines the r-OASR problem and demonstrates the four hierarchical 

aspects driving decision-making for r-OASR: order acceptance, order scheduling, 

production status prediction, and job release. In terms of this interactive framework, three 

key technical challenges in modeling and solving the r-OASR problem are addressed.  

8.3.1 Replanning policy for r-OASR 

In traditional manufacturing supply chains, real-time orders are directly created by 

downstream customers (e.g., downstream manufacturers). In this situation, the quantity of 

real-time orders at any one moment in time is low. To decrease the nervousness of the 

production system, we collect real-time orders placed during the past time horizon 𝑡0 and 

then update the OAS scheme accordingly. This rolling horizon-driven r-OASR is presented 

in Figure 8-1 (a). The length of each period is equal to 𝑡0. Figure 8-1 (a) contains the new 

arrival orders collected during period 𝑄 − 1, the unprocessed orders at the end of period 
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𝑄 − 1, and the real-time status of production systems that are inherited by period 𝑄 for r-

OASR decision-making. However, in platform-driven manufacturing networks, the open 

platform collects real-time orders from many customers and recommends a list of orders 

for a production system. This recommendation is regarded as an event that drives the 

replanning of r-OASR. Because the quantity of recommended orders is sufficiently large 

in this case, the production system must immediately update its OAS scheme after 

receiving these new orders. Figure 8-1 (b) illustrates a platform that recommends a list of 

real-time orders to a production system at time 𝑡𝑂−1, 𝑡𝑂, and 𝑡𝑂+1, respectively. These 

events all immediately trigger r-OASR decision-making.  

 

Figure 8-1 Replanning policies of r-OASR problem 
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Figure 8-2 Interactive framework of r-OASR problems 
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Figure 8-3 r-OASR instantiation with four new orders and one existing order 
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8.3.2 r-OASR Problem Definition 

In terms of the rolling horizon-driven and event-driven mechanisms, the r-OASR 

problem can be described as follows: A flow line with ℳ machines (ℳ ≥ 2) and finite 

intermediate buffers receives a set of new generated orders Ω1 (|Ω1| ∈ 𝑁
+) from customers 

during the past time horizon 𝑡0 (or from an open platform at time 𝑡𝑂). The manager must 

decide which orders to accept or reject based on the real-time production status of this flow 

line. If some or all the new orders are accepted, they must be scheduled with the existing 

orders Ω2 (|Ω2| ∈ 𝑁
+) that are waiting for processing. Each incoming order 𝑗 (𝑗 ∈ Ω1) is 

identified with a job quantity 𝑞𝑗, earliest release date 𝑎𝑗, latest release date 𝑏𝑗, processing 

time 𝑝𝑖𝑗  for each job (𝑖  is the machine index 𝑖 = 1,2,… ,ℳ), due date 𝑑𝑗 , revenue 𝑒𝑗 , 

tardiness penalty coefficient 𝑤1,𝑗, unit inventory cost 𝑤2,𝑗 for a final product, and unit cost 

𝑤3,𝑗  for WIP inventory. A sequence-dependent setup time 𝑡𝑖(𝑘, 𝑘
′)  occurs if job 𝑘 

immediately precedes job 𝑘′ in a production sequence. 𝑡𝑖(𝑘, 𝑘
′) = 0 if no setup time exists 

in the machine 𝑖. Each machine can only process one job at a time, and any job can only 

be processed on a downstream machine after completing its processing on the current 

machine. If we denote the order tardiness penalty cost by 𝜋1,𝑗 , the final product inventory 

cost by 𝜋2,𝑗, and the WIP inventory cost by 𝜋3,𝑗, the net revenue of an order can then be 

represented by 𝜋𝑗 ≔ 𝑒𝑗 − 𝜋1,𝑗 − 𝜋2,𝑗 − 𝜋3,𝑗 . If order 𝑗 ∈ Ω1  is accepted, 𝜋𝑗 > 0. The r-

OAS targets the generation of the best OAS plan to maximize the total net revenue. After 

receiving a production sequence from the r-OAS, the r-JRP begins to calculate the lowest 

cost 𝜋1,𝑗 , 𝜋2,𝑗 , and 𝜋3,𝑗  by addressing the real-time production status and constraints 
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pertaining to job release. The lowest cost is sent back to the r-OAS for consideration in the 

decision-making process. 

The serial line is a typical flow line production in industries such as automotive, 

electronics, appliance, and aerospace systems. The merge line comprises several parallel 

serial lines, in which each sub-serial line is responsible for processing/assembling a part or 

a component. This paper focuses on serial and merge lines to examine r-OASR problems. 

The r-OASR decision-making for other flow lines can be extended from our research 

results. 

8.3.3 Hierarchical decision-making of r-OASR 

Generally, real-time order acceptance must be accompanied by a scheduling 

problem, in which the order acceptance determines which order to accept and the 

scheduling generates a corresponding production sequence with the newly accepted and 

current existing orders to minimize the operation cost of flow lines. As stated in the 

introduction, the lowest operation cost of a determined scheduling plan is coordinated by 

r-JRP. Owing to its multi-stage dynamic transitions, finite intermediate buffers, and 

bottleneck shifting caused by multiple-product switching, the operation parameters, that is, 

the job completion time, WIP, and final product inventory of a job release plan, are difficult 

to measure (Li et al., 2016). To address this problem, a data-driven representation approach 

should be developed to reveal the status of flow lines and then predict the operational 

parameters of a job release plan. A programming model can then be formulated for r-JRP 

based on this prediction. Figure 8-2 represents the interactive framework of real-time order 

acceptance, scheduling, production status prediction, and job release. The production status 
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prediction necessitates a sensor network to collect the real-time data of flow shops (e.g., 

job processing time and machine breakdown events) and a representative approach after 

analyzing these real-time data. After making the hierarchical decisions entailed in r-OASR, 

the accepted orders, scheduling plan, and job release plan are stored in a database and then 

released into the physical flow line and representation module in sequence. The flow line 

produces jobs according to the plan, and the representation module synchronously updates 

the production status based on real-time data from the shop floors.  

The r-OASR instantiation with four new orders and one existing order is established 

in Figure 8-3. Here, one may observe that if the order acceptance stage (Stage 1) accepts 

orders 2 and 4, the order scheduling stage (Stage 2) will generate a production sequence 

that simultaneously considers existing order 1 and newly accepted orders 2 and 4. Based 

on this sequence, the function between the job makespan (𝑦(𝑘0 + 𝑘), 1 ≤ 𝑘 ≤ 15) and the 

release time of its parts (𝑢𝜏(𝑘0 + 𝑘), . . . , 𝑢𝑃+1(𝑘0 + 𝑘)), 𝑃 + 1 is the quantity of parts in 

a job; the explanation in Section 8.4 can be derived from the data-driven representation 

(Stage 3). Parameter 𝑘0 is the job number that is processed by machines when the OAS 

scheme must be updated. In this regard, the lowest operation cost of orders 1, 2, and 4 can 

be generated by r-JRP optimization and are sent back to Stage 1 to regenerate the order 

acceptance decisions. This cycle continues until the best solution with a maximum net 

revenue is found. 

8.3.4 Critical Challenges 

Focusing on the four decision-making stages of r-OASR, r-OAS decision can be 

indicated by several 0–1 variables and are easily formulated as a 0–1 programming model. 
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The technical challenges are then focused on determining how to develop a data-driven 

representation for physical flow line production, when to release the jobs such that 

operation costs can be minimized, and how to construct a programming model to 

demonstrate the multi-stage decisions of r-OASR. 

1) Data-driven representation for flow line production: Flow line production is a 

typical discrete event dynamic system, in which planned deterministic events (e.g., 

changeover events and job movement between adjacent machines) and uncertain 

resource/job-related events are contained (Ouelhadj and Petrovic, 2009, Chen et al., 2020). 

The modeling and analysis of the time-varying transitions of these discrete events using 

state-space models are of primary importance to revealing the real-time production status 

of flow lines and predicting the corresponding job makespan with finite intermediate buffer 

constraints (Ivanov et al., 2012). The prevailing model-based representation (e.g., 

continuous flow models and Markov models) treats disruptions as noise or possible states 

and assume that the modes of operation can never be switched (i.e., only one type of 

product is processed) (Zou et al., 2017, Farahani et al., 2017, Wang and Ju, 2020). These 

methods inefficiently respond to real-time events, especially in reaction to the frequent 

switching of products in make-to-order environments. DES is another method that can 

efficiently represent mixed-model production with real-time data (Jung et al., 2020). 

However, the development of a simulation model generally depends on the operational 

logic of a complex system and a professional simulation platform. It should be difficult and 

time-consuming to encapsulate a simulation model into r-OAS for decision-making. Thus, 

it is necessary to explicitly propose a representation formalism that is capable of supporting 

the event-driven propagation of time-varying state-space models among various dynamic 
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behaviors. This formalism should be a mathematical model and can be easily encapsulated 

into upper-level programming models. 

2) The best job release plan for coordinating multiple operation costs: The 

operational costs of an r-OAS scheme can be coordinated by a job release plan developed 

from the data-driven representation (De Schutter and Van Den Boom, 2001, Chen et al., 

2020). Conventional wisdom concentrates on maximizing the number of accepted orders 

after addressing order due date constraints, while ignoring inherent multiple operation costs 

during order fulfillment (Slotnick, 2011). Thanks to the real-time data collected from shop 

floors, the multiple operation costs can be concisely predicted and thus an r-JRP can be 

developed. Unlike previous research, which assumes that intermediate buffers are infinite, 

and thus the job competition time between two adjacent machines can be represented as a 

linear function (Silva et al., 2018), the r-JRP problem must manage the finite buffer 

constraints in flow lines, which converts the dynamic job transitions among machines into 

nonlinear types (Chen et al., 2020). These characteristics cause previous programming 

models and heuristic/meta-heuristic algorithms to be inefficient in solving our r-OASR 

problem. 

3) Interactive optimization for order acceptance, scheduling, and job release: r-

OASR can be decomposed into an r-OAS problem and an r-JRP problem, where r-OAS 

formulates the best OAS scheme and r-JRP results in the corresponding minimal operation 

costs. The r-OAS and r-JRP are closely interdependent because r-OAS generates a solution 

space for r-JRP, which generates feedback for an objective function of cost for the r-OAS. 

Thus far, the r-OAS and r-JRP have been addressed separately in the literature, although 

they are closely interrelated (Slotnick, 2011). In terms of solving a joint optimization, the 
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prevailing approaches tend to treat these subproblems as an aggregate and assume that self-

interested decision makers can always be coordinated (Du et al., 2019b). However, in r-

OASR, r-OAS and r-JRP belong to different decision levels and hold conflicting goals 

regarding maximizing/minimizing their own benefit. In this sense, such joint optimization 

exemplifies a leader–follower decision-making process, whereby r-OAS occurs first and r-

JRP subsequently responds to r-OAS decisions.  

8.4 Data-driven Representation with Max-Plus Algebra Framework  

The representation approach is vital in predicting the job makespan after receiving 

r-OAS decisions. This section elaborates the modeling procedures for flow lines by 

addressing the finite intermediate buffer constraints and analyzing real-time data from shop 

floors. Max-plus algebra can effectively represent flow shops owing to its ability to derive 

time-varying state-space models of discrete event dynamic systems. This approach is based 

on a dioid ℝ𝑚𝑎𝑥  represented by the structure (ℝ ∪ {−∞},⊕,⊗) . ⊕  and ⊗  signify 

maximization and addition, respectively: 𝑎 ⊕ 𝑏 = max(𝑎, 𝑏) and 𝑎 ⊗ 𝑏 = 𝑎𝑏 = 𝑎 + 𝑏. 𝜀 

denotes the zero element (𝜀 = −∞), and 𝑒 denotes the unit element (𝑒 = 0). The matrix 

ℰ𝑚×𝑛  is a 𝑚 × 𝑛  max-plus algebraic zero matrix[ℰ𝑚×𝑛]𝑖𝑗 = 𝜀  for all 𝑖, 𝑗. The 𝐸𝑛  is a 

𝑛 × 𝑛  max-plus algebraic identity matrix: [𝐸𝑛]𝑖𝑖 = 𝑒  for all 𝑖  and [𝐸𝑛]𝑖𝑗 = 𝜀  for all 

𝑖,  𝑗 (𝑖 ≠ 𝑗). If 𝐴, 𝐵 ∈ ℝ𝑚𝑎𝑥
𝑚×𝑛  and 𝐶 ∈ ℝ𝑚𝑎𝑥

𝑛×𝑝
, then for all 𝑖,  𝑗: (𝐴 ⊕ 𝐵)𝑖𝑗 = 𝑎𝑖𝑗⊕𝑏𝑖𝑗  =

max( 𝑎𝑖𝑗 , 𝑏𝑖𝑗) , and (𝐴 ⊗ 𝐶)𝑖𝑗 =⊕𝑘=1
𝑛 𝑎𝑖𝑘⊗ 𝑐𝑘𝑗 . Moreover, the max-plus algebraic 

matrix power of 𝐴 ∈ ℝ𝑚𝑎𝑥
𝑚×𝑛 is defined as follows: 𝐴0 = 𝐸𝑛  and 𝐴𝑘 = 𝐴⊗ 𝐴𝑘−1 for 𝑘 =

1,2,… 
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The transition network is a timed event graph (TEG) of a production line (Baccelli 

and Schmidt, 1996). Before developing the max-plus based representation for a flow line, 

the transition network should first be determined to describe the job dynamic transition 

behaviors. Compared with some advanced DES that perform evaluation functions after 

receiving r-OASR decisions, our representation formulates the transition network as a 

state-space model and can therefore be easily incorporated into optimization models.  

8.4.1 Time-Varying State-Space Model of Serial Production Lines  

The serial production line is a time-varying system for multiple-product processing. 

The TEG can effectively describe this mixed-model production for its ability to iconify and 

model time-varying transitions. Figure 8-4 shows the time event graph of a serial line. The 

{𝑃0, . . . , 𝑃ℳ−1, 𝑃1
′ , . . . , 𝑃ℳ−1

′ , 𝑃1
′′, . . . , 𝑃ℳ

′′ }  in Figure 8-4 provides the set of places, and 

{𝑢, 𝑥1, . . . , 𝑥𝑀} is the set of transitions. Transition 𝑥𝑖 represents machine 𝑖 (𝑖 = 1,… ,ℳ), 

place 𝑃𝑖  represents buffer 𝐵𝑖  (1 ≤ 𝑖 ≤ ℳ − 1), place 𝑃𝑖
′  controls the real-time WIP in 

buffer 𝐵𝑖 , and place 𝑃𝑖
′′ (1 ≤ 𝑖 ≤ ℳ) controls the restart of the corresponding machine. 

The 𝑢(𝑘) is the instant at which the k-th job is fed into the system. The tokens in place 𝑃𝑖 

signify the real-time WIP, and the tokens in place 𝑃𝑖
′ signify the residual capacity of buffer 

𝐵𝑖 . Let 𝑁𝑚𝑎𝑥 = max{𝑁1, 𝑁2, … , 𝑁𝑀−1}, where 𝑁𝑖  is the capacity of buffer 𝐵𝑖  and 𝑥𝑖(𝑘) 

(1 ≤ 𝑖 ≤ 𝑀 and 1 ≤ 𝑘) is the time instant at which the machine 𝑚𝑖 begins working on the 

𝑘-th job. The buffer 𝐵0 is infinite. The time-varying transition rules of the serial production 

line can then be represented by equation (8.1):  

𝑥𝑖(𝑘) = 

𝑥𝑖(𝑘 − 1)⊗ 𝜎𝑖(𝑘 − 1)⊕ 𝑥𝑖+1(𝑘 − 𝑁𝑖+1) ⊗ 𝜎𝑖+1(𝑘 − 𝑁𝑖+1) ⊕ 𝑥𝑖−1(𝑘) ⊗ 𝜎𝑖−1(𝑘) 
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2 ≤ 𝑖 ≤ 𝑀 − 1, (8.1.1) 

𝑥1(𝑘) = 𝑢(𝑘) ⊕ 𝑥1(𝑘 − 1) ⊗ 𝜎1(𝑘 − 1)⊕ 𝑥2(𝑘 − 𝑁2) ⊗ 𝜎2(𝑘 − 𝑁2), (8.1.2) 

𝑥𝑀(𝑘) = 𝑥𝑀(𝑘 − 1) ⊗ 𝜎𝑀(𝑘 − 1) ⊕ 𝑥𝑀−1(𝑘) ⊗ 𝜎𝑀−1(𝑘), 𝑘 ≥ 𝑁𝑚𝑎𝑥 (8.1.3) 

where 𝜎𝑖(𝑘) is the job processing time of machine 𝑖 for the 𝑘-th job and consists of both 

pure processing and setup times. 𝜎𝑖(𝑘) is determined by a given production sequence (see 

Figure 8-4). According to this time-varying equation, if the first-input-first-output principle 

is obtained, the discrete-event state-space model of this system can be derived as follows 

(Chen et al., 2020): 

𝑿(𝑘) = 𝑨(𝑘 − 1) ⊗ 𝑿(𝑘 − 1) ⊕ 𝑩(𝑘)⊗ 𝑢(𝑘), (8.2.1) 

𝑦(𝑘) = 𝑪(𝑘)⊗ 𝑿(𝑘), 𝑁𝑚𝑎𝑥 − 1 ≤ 𝑘, (8.2.2) 

where 𝑿(𝑘 − 1) = [𝑿𝑇(𝑘 − 1), 𝑿𝑇(𝑘 − 2), . . ., 𝑿𝑇(𝑘 − 𝑁𝑚𝑎𝑥)]
𝑇 . The matrices, 𝑨(𝑘) , 

𝑩(𝑘) and 𝑪(𝑘) are represented by equation (8.3). 𝑨(𝑘) is a 𝑀𝑁𝑚𝑎𝑥 ×𝑀𝑁𝑚𝑎𝑥 matrix, 𝐸 

is a 𝑀 ×𝑀 (max, +)-identity matrix, 𝑩(𝑘) is a 𝑀𝑁𝑚𝑎𝑥 matrix, and 𝑪(𝑘) is a 1 ×𝑀𝑁𝑚𝑎𝑥 

matrix. Set 𝑨0
∗(𝑘) =⊕𝑠′≥0 𝑨0

𝑠′(𝑘) (𝑨0
∗(𝑘) is converged because 𝑨0(𝑘) is a strictly lower 

triangular), the matrix 𝑨1(𝑘), …, 𝑨𝑁𝑚𝑎𝑥(𝑘), and 𝑩0(𝑘) in equation (8.3) can be generated 

by 𝑨𝑠′′(𝑘) = 𝑨0
∗(𝑘) ⊗ 𝑨𝑠′′(𝑘), (0 < 𝑠

′′ ≤ 𝑁𝑚𝑎𝑥  and 𝑩0(𝑘) = 𝑨0
∗(𝑘) ⊗ 𝑩(𝑘) . The 

element [𝐴𝑠′′(𝑘)]𝑖′𝑖 is the firing time 𝜎𝑖(𝑘 − 𝑠
′′) of the machine 𝑖 if the buffer capacity 

𝑁𝑖 = 𝑠
′′and there is a transition path from machine 𝑖  to 𝑖′ , as shown in Figure 8-4; 

otherwise, [𝑨𝑠′′(𝑘)]𝑖′𝑖 is equal to 𝜀. The element [𝑩(𝑘)]𝑖1 is equal to 0 if there is a system 

input to machine 𝑖 and [𝐶(𝑘)]1𝑖 is equal to the firing time 𝜎𝑖(𝑘) of machine 𝑖 if there is a 

system output to this machine; otherwise, the two elements are equal to 𝜀. 
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Figure 8-4 Time event graph of serial production lines 

𝑨̅(𝑘 − 1) =

[
 
 
 
 𝐴1(𝑘) 𝐴1(𝑘) ⋯ ⋯ 𝐴𝑁𝑚𝑎𝑥(𝑘)

𝑬 ℰ ⋯ ℰ ℰ
ℰ 𝑬 ⋱ ℰ ℰ
⋮ ⋮ ⋯ ℰ ℰ
ℰ ℰ ℰ 𝑬 ℰ ]

 
 
 
 

, (8.3.1) 

𝑩(𝑘) = [𝑩0
𝑇
(𝑘), 𝜀, . . ., 𝜀]𝑇, (8.3.2) 

𝑪(𝑘) = [𝑪(𝑘), 𝜀, … , 𝜀], (8.3.3) 

8.4.2 Time-Varying State-Space Model of Merge Production Lines  

A merge production line can be decomposed into 𝑃 sub-serial lines and a main-

serial line. We denote the machine quantity of the 𝜏-th sub-line by 𝑀𝜏 (𝜏 = 1,… , 𝑃) and 

the machine quantity of the main-line by 𝑀𝑃+1.The machines are numbered in each sub-

line by ∑ 𝑀𝜏′
𝜏−1
𝜏′=1 + ℎ1, ℎ1 = 1,… ,𝑀𝜏 , and the machine in the main-line by ∑ 𝑀𝜏

𝑃
𝜏=1 +

ℎ2ℎ2 = 1,… ,𝑀𝑃+1  ( ∑ 𝑀𝜏′
0
𝜏′=1 = 0 ). We number the buffers in each sub-line by 

∑ 𝑀𝜏′
𝜏−1
𝜏′=1 + ℎ1, ℎ1 = 1,… ,𝑀𝜏 , and the buffer in the main line by ∑ 𝑀𝜏

𝑃
𝜏=1 + ℎ2, ℎ2 =

1, … ,𝑀𝑃+1 − 1. This paper focuses on the assembly merge, which merges stations from 

all upstream branches simultaneously and assembles them into a single job (Liu and Li, 

2010). Figure 8-5 shows the TEG of a merge production line. Except for the merge machine 

and their predecessor machines, the time-varying transition rule of each machine in Figure 

…

… … … … …
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8-5 can be described by equation (8.1). The merge machine in the main line is set as 𝑚𝜏. 

For each machine ∑ 𝑀𝜏′
𝜏
𝜏′=1 , the 𝑘-th time-varying transition is determined by the 𝑘-th 

transition of the machine ∑ 𝑀𝜏′
𝜏
𝜏′=1 − 1, the (𝑘 − 1)-th transition of machine ∑ 𝑀𝜏′

𝜏
𝜏′=1 , 

and the (𝑘 − 𝑁∑ 𝑀𝜏′
𝜏
𝜏′=1

)-th transition of the merge machine 𝑚𝜏 , as shown in equation 

(8.4.1). For each merge machine 𝑚𝜏, the 𝑘-th time-varying transition is determined by the 

𝑘-th transition of its upstream machine 𝑚𝜏 − 1 and ∑ 𝑀𝜏′
𝜏
𝜏′=1 , the (𝑘 − 1)-th transition of 

machine 𝑚𝜏 , and (𝑘 − 𝑁𝑚𝜏+1)-th transition of machine 𝑚𝜏 + 1, as shown in equation 

(8.4.2).  

𝑥∑ 𝑀
𝜏′

𝜏
𝜏′=1

(𝑘) = 𝜎∑ 𝑀
𝜏′

𝜏
𝜏′=1

−1(𝑘)𝑥∑ 𝑀
𝜏′

𝜏
𝜏′=1

−1(𝑘) ⊕ 𝜎∑ 𝑀
𝜏′

𝜏
𝜏′=1

(𝑘 − 1)𝑥∑ 𝑀
𝜏′

𝜏
𝜏′=1

(𝑘 − 1) 

⊕𝜎𝑚𝜏
(𝑘 − 𝑁∑ 𝑀

𝜏′
𝜏
𝜏′=1

) 𝑥𝑚𝜏
(𝑘 − 𝑁∑ 𝑀

𝜏′
𝜏
𝜏′=1

) (8.4.1) 

𝑥𝑚𝜏
(𝑘) = 𝜎𝑚𝜏

(𝑘 − 1)𝑥𝑚𝜏
(𝑘 − 1) ⊕ 𝜎𝑚𝜏−1

(𝑘)𝑥𝑚𝜏−1
(𝑘) ⊕ 𝜎∑ 𝑀

𝜏′
𝜏
𝜏′=1

(𝑘)𝑥∑ 𝑀
𝜏′

𝜏
𝜏′=1

(𝑘) 

⊕ 𝜎𝑚𝜏+1
(𝑘 − 𝑁𝑚𝜏+1

)𝑥𝑚𝜏+1
(𝑘 − 𝑁𝑚𝜏+1

) (8.4.2) 

 

Figure 8-5 Time event graph of merge production lines  
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If the merge action is not considered, the merge production line can be divided into 

𝑃 + 1 parallel serial lines. According to transition equation (8.4), the standard state-space 

equation for the 𝑃 + 1 parallel lines can be represented as: 

[
 
 
 
 
𝑿̅1(𝑘)

𝑿̅2(𝑘)
⋮

𝑿̅𝑃(𝑘)

𝑿̅𝑃+1(𝑘)]
 
 
 
 

=

[
 
 
 
 
𝑨̅1(𝑘 − 1) 𝜀 𝜀 𝜀 𝜀

𝜀 𝑨̅2(𝑘 − 1) 𝜀 𝜀 𝜀
𝜀 𝜀 ⋱ 𝜀 𝜀
𝜀 𝜀 𝜀 𝑨̅𝑃(𝑘 − 1) 𝜀

𝜀 𝜀 𝜀 𝜀 𝑨̅𝑃+1(𝑘 − 1)]
 
 
 
 

[
 
 
 
 
𝑿̅1(𝑘 − 1)

𝑿̅2(𝑘 − 1)
⋮

𝑿̅𝑃(𝑘 − 1)

𝑿̅𝑃+1(𝑘 − 1)]
 
 
 
 

 

⊕

[
 
 
 
 
𝑩̅1(𝑘) 𝜀 𝜀 𝜀 𝜀

𝜀 𝑩̅2(𝑘) 𝜀 𝜀 𝜀
𝜀 𝜀 ⋱ 𝜀 𝜀
𝜀 𝜀 𝜀 𝑩̅𝑃(𝑘) 𝜀

𝜀 𝜀 𝜀 𝜀 𝑩̅𝑃+1(𝑘)]
 
 
 
 

[
 
 
 
 
𝑢1(𝑘)

𝑢2(𝑘)
⋮

𝑢𝑃(𝑘)

𝑢𝑃+1(𝑘)]
 
 
 
 

, (8.5) 

where 𝑿̅𝜏(𝑘) = [𝑿𝜏
𝑇(𝑘 − 1), 𝑿𝜏

𝑇(𝑘 − 2), … , 𝑿𝜏
𝑇(𝑘 − 𝑁𝜏

𝑚𝑎𝑥)]𝑇  ( 𝜏 = 1, … , 𝑃 + 1 ), 

𝑿𝜏(𝑘 − 𝜏
′) = [𝑥∑ 𝑀

𝜏′
𝜏−1
𝜏′=1

+1
(𝑘 − 𝜏′), 𝑥∑ 𝑀

𝜏′
𝜏−1
𝜏′=1

+2
(𝑘 − 𝜏′), … , 𝑥∑ 𝑀

𝜏′
𝜏
𝜏′=1

(𝑘 − 𝜏′)]
𝑇

 ( 𝜏′ ∈

1, … ,𝑁𝜏
𝑚𝑎𝑥 ), where 𝑁𝜏

𝑚𝑎𝑥  is the maximum buffer capacity of each parallel line and 

𝑁𝑃+1
𝑚𝑎𝑥 = max {𝑁∑ 𝑀𝜏

𝑃
𝜏=1 +1, … , 𝑁∑ 𝑀𝜏

𝑃
𝜏=1 +𝑀𝑃+1

, … , 𝑁∑ 𝑀𝜏
𝑃
𝜏=1

}. 𝐴̅𝜏(𝑘) ∈ ℝ
(𝑀𝜏𝑁𝜏

𝑚𝑎𝑥)×(𝑀𝜏𝑁𝜏
𝑚𝑎𝑥), 

𝐵̅𝜏(𝑘) = ℝ
(𝑀𝜏𝑁𝜏

𝑚𝑎𝑥)×1. A state-space equation can be simplified from equation (8.6) as 

follows: 

𝑿̅(𝑘) = 𝑨̅(𝑘 − 1)𝑿̅(𝑘 − 1) ⊕ 𝑩̅(𝑘)𝑼(𝑘) (8.6.1) 

𝑦(𝑘) = 𝑪(𝑘)⊗ 𝑿(𝑘), 𝑁𝑚𝑎𝑥 − 1 ≤ 𝑘 (8.6.2) 

where 𝑿̅(𝑘) = [𝑿1
𝑇(𝑘), 𝑿2

𝑇(𝑘),… , 𝑿𝑃+1
𝑇 (𝑘)]𝑇  and 𝑼(𝑘) = [𝑢1(𝑘), … , 𝑢𝑃+1(𝑘)]

𝑇 . The 

(∑ 𝑀𝜏𝑁𝜏
𝑚𝑎𝑥𝑃

𝜏=1 +𝑀𝑃+1)-th element of matrix 𝑪(𝑘) is equal to 𝜎∑ 𝑀𝜏
𝑃+1
𝜏=1

(𝑘) and the other 

elements are 𝜀. In terms of the merge actions, several extra elements should be added to 
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the state-transition matrix 𝑨̅(𝑘) . Considering the state transition of the machine 

∑ 𝑀𝜏′
𝜏
𝜏′=1 , 𝜏 ∈ {1,… , 𝑃} the elements of matrix 𝑨̅(𝑘) can be transferred to the following:  

[𝑨̅(𝑘)]
(𝑀𝜏+∑ 𝑀

𝜏′
𝑁
𝜏′
𝑚𝑎𝑥𝜏−1

𝜏′=1
)(∑ 𝑀

𝜏′
𝑁
𝜏′
𝑚𝑎𝑥𝜏−1

𝜏′=1
+𝑀𝑃+1(𝑁∑ 𝑀

𝜏′
𝜏
𝜏′=1

−1)+𝑚𝜏−∑ 𝑀
𝜏′

𝑃
𝜏′=1

)

= 𝜎𝑚𝜏
(𝑘 − 𝑁∑ 𝑀

𝜏′
𝜏
𝜏′=1

).                                                                                                (8.7)
 

Each sub-line 𝜏 affects the transition of machines from 𝑚𝜏 to ∑ 𝑀𝜏
𝑃
𝜏=1 . This merge 

action changes the elements of the matrix 𝑨̅(𝑘) and 𝑩̅(𝑘), and can be represented as 

equation (8.8): 

[𝑨̅(𝑘)]
(∑ 𝑀𝜏
𝑃
𝜏=1 𝑁𝜏

𝑚𝑎𝑥+𝑚𝜏−∑ 𝑀
𝜏′

𝑃
𝜏′=1

:∑ 𝑀𝜏
𝑃
𝜏=1 𝑁𝜏

𝑚𝑎𝑥+𝑀𝑃+1)(∑ 𝑀
𝜏′
𝑁
𝜏′
𝑚𝑎𝑥𝜏−1

𝜏′=1
+1:∑ 𝑀

𝜏′
𝑁
𝜏′
𝑚𝑎𝑥𝜏

𝜏′=1
)
 

=

[
 
 
 
 
 
 

𝜎∑ 𝑀
𝜏′

𝜏
𝜏′=1

(𝑘 + 1)

𝜎∑ 𝑀
𝜏′

𝜏
𝜏′=1

(𝑘 + 1)𝜎𝑚𝜏
(𝑘 + 1)

𝜎∑ 𝑀
𝜏′

𝜏
𝜏′=1

(𝑘 + 1)𝜎𝑚𝜏(𝑚𝜏+1)
(𝑘 + 1)

⋮
𝜎∑ 𝑀

𝜏′
𝜏
𝜏′=1

(𝑘 + 1)𝜎𝑚𝜏∑ 𝑀𝜏
𝑃+1
𝜏=1

(𝑘 + 1)]
 
 
 
 
 
 

⊗ [𝐴̅𝜏(𝑘)](𝑀𝜏)(:)                                            (8.8.1) 

          [𝑩̅(𝑘)]
(∑ 𝑀𝜏
𝑃
𝜏=1 𝑁𝜏

𝑚𝑎𝑥+𝑚𝜏−∑ 𝑀
𝜏′

𝑃
𝜏′=1

: ∑ 𝑀𝜏
𝑃
𝜏=1 𝑁𝜏

𝑚𝑎𝑥+𝑀𝑃+1) 𝜏
 

   =

[
 
 
 
 
 

𝜎𝑀𝑗,𝑗(𝑘 + 1)

𝜎∑ 𝑀
𝜏′

𝜏
𝜏′=1

(𝑘 + 1)𝜎𝑚𝜏
(𝑘 + 1)

𝜎∑ 𝑀
𝜏′

𝜏
𝜏′=1

(𝑘 + 1)𝜎𝑚𝜏(𝑚𝜏+1)
(𝑘 + 1)

⋮
𝜎∑ 𝑀

𝜏′
𝜏
𝜏′=1

(𝑘 + 1)𝜎𝑚𝜏(∑ 𝑀𝜏
𝑃+1
𝜏=1 )

(𝑘 + 1)]
 
 
 
 
 

⊗ [𝐵̅𝜏(𝑘)](𝑀𝜏)(:), 1 ≤ 𝜏 ≤ 𝑃  (8.8.2) 

where [𝑨]𝑖(:) is the 𝑖-th row elements of matrix 𝑨 and 𝜎𝑣𝑣′(𝑠 + 1) = 𝜎𝑣(𝑠 + 1)…𝜎𝑣′(𝑠 +

1), 𝑣 < 𝑣′. After updating these elements, the state-space equation (8.6) can be used to 

derive the real-time status for the merge production lines. 

8.4.3 Event-Driven Switch of State-Transition Matrixes 
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The production status of the flow lines is switched with the disruptions of the shop 

floors, such as order cancelation, machine breakdown, process quality problems, and 

material shortage events, among others. These events were collected via RFID techniques 

and sensor networks. The state-space equation can represent the events by updating the 

matrices 𝑨̅(𝑘) , 𝑩̅(𝑘) , and 𝑪(𝑘) . After modeling the perturbation caused by different 

disruptions, the accurate status of flow lines can be derived, and an r-OASR scheme with 

high enforceability can then be determined. We define the 𝑛-th disturbing event as 𝑒𝑛 =

(𝑖, 𝑘𝑛, 𝑑𝑛), indicating that the event can last 𝑑𝑛 time when the machine 𝑖 produces the 𝑘𝑛-

th job. The processing time of the machine 𝑖 to the 𝑘𝑛-th job should be transferred to 

𝜎𝑖
′(𝑘𝑛) = 𝜎𝑖(𝑘𝑛) + 𝑑𝑛 . In this regard, the state-transition matrix, 𝑨(𝑘𝑛) , 𝑩(𝑘𝑛)  and 

𝑪(𝑘𝑛)  can be updated with new 𝜎𝑖
′(𝑘𝑛) . If a disruption that changes the production 

sequence occurs, the parameter 𝜎𝑖(𝑘) can be updated with the new production sequence 

and the matrix 𝑨̅(𝑘), 𝑩̅(𝑘), and 𝑪(𝑘) can then be switched.  

8.5 Bilevel Interactive Optimization 

The single max-plus-based representation shows ineffective in obtaining an 

optimum r-OASR decision as various constraints and objectives about order acceptance 

and job releasing should be simultaneously addressed. In this regard, a mathematic 

programming model must be developed with this representation (van den Boom et al., 

2020). This section derives a nonlinear integer programming for the BIO of r-OASR based 

on the data-driven representation in Section 8.4. In Section 8.5.1, a 0–1 integer 

programming model is developed for the leader r-OAS after addressing several net revenue 

and logical constraints. Section 8.5.2 formulates a nonlinear integer programming model 
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for the follower r-JRP by considering the dynamic transition constraints generated from 

the data-driven representation and the existing job release constraints. Bilevel 

programming is introduced in Section 8.5.3 to address the interactive optimization of r-

OASR. 

8.5.1 0-1 Integer Programming for r-OAS Problem  

The order acceptance decision is of critical importance for the revenue creation of 

manufacturers. For each order 𝑗, 𝑗 ∈ Ω1, a binary decision variable 𝑟𝑗 is used to indicate 

whether the order is accepted or rejected: 𝑟𝑗 = 1 if order 𝑗 is accepted; otherwise, 𝑟𝑗 = 0. 

If we denote the completion time of the 𝑘′-th job in order 𝑗 by 𝐶𝑗,𝑘′,𝑘′ = 1, … , 𝑞𝑗. The 

order completion time 𝐶𝑗  is then equal to 𝐶𝑗,𝑞𝑗 . For each order, if  𝐶𝑗 > 𝑑𝑗 , a tardiness 

penalty cost 𝜋1,𝑗  exists, which is represented by 𝜋1,𝑗 ≔ 𝑤1,𝑗(𝐶𝑗 − 𝑑𝑗) . Because the 

finished jobs must wait at the stock until all jobs of an order are completed, an inventory 

cost 𝜋2,𝑗 should be included in this situation. The cost 𝜋2,𝑗 can be represented as 𝜋2,𝑗: =

∑ 𝑤2,𝑗(𝐶𝑗 − 𝐶𝑗,𝑘′)
𝑞𝑗

𝑘′=1
. Apart from 𝜋1,𝑗 and 𝜋2,𝑗, an extra operation cost 𝜋3,𝑗 of a flow line 

(i.e., the WIP inventory cost in our r-OAS problem) also exists during the order fulfillment 

procedures. This cost 𝜋3,𝑗  can be represented as 𝜋3,𝑗: = ∑ ∑ 𝑤3,𝑗(𝐶𝑗,𝑘′ − 𝑢𝑗,𝑘′,𝜏)
𝑞𝑗

𝑘′=1
𝑃+1
𝜏=1 , 

where 𝑢𝑗,𝑘′,𝜏 is the best release time of the 𝜏-th part of the 𝑘′-th job in order 𝑗. If 𝐶𝑗 ≤ 𝑑𝑗, 

no tardiness penalty cost exists. The finished jobs of order 𝑗 must wait at stock until the 

delivery time 𝑑𝑗 is achieved. In this regard, the inventory cost 𝜋2,𝑗 can be represented as 

𝜋2,𝑗: = ∑ 𝑤2,𝑗(𝑑𝑗 − 𝐶𝑗,𝑘′)
𝑞𝑗

𝑘′=1
Based on the above analysis, the total cost 𝜋𝑗 to fulfill order 

𝑗 can be determined by equation (8.9) as follows: 
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𝜋𝑗 = 𝜋1,𝑗 + 𝜋2,𝑗 + 𝜋3,𝑗 

= 𝑤1,𝑗max {0, 𝐶𝑗,𝑞𝑗 − 𝑑𝑗} 

+ ∑ 𝑤2,𝑗(max{𝐶𝑗 , 𝑑𝑗} − 𝐶𝑗,𝑘′)

𝑞𝑗

𝑘′=1

+∑ ∑ 𝑤3,𝑗(𝐶𝑗,𝑘′ − 𝑢𝑗,𝑘′,𝜏)

𝑞𝑗

𝑘′=1

𝑃+1

𝜏=1

, 𝑗 ∈ Ω1 (8.9) 

If a new order 𝑗 is accepted, 𝑒𝑗 − 𝜋𝑗 ≥ 0. Thus, the objective of the r-OAS problem, 

which aims to maximize the total net revenue, can be formulated by equation (8.10) as 

follows: 

𝐹 = ∑𝑟𝑗(𝑒𝑗 − 𝜋1,𝑗 − 𝜋2,𝑗 − 𝜋3,𝑗)

|Ω1|

𝑗=1

+∑(𝑒𝑗 − 𝜋1,𝑗 − 𝜋2,𝑗 − 𝜋3,𝑗)

|Ω2|

𝑗=1

, (8.10) 

where ∑ (𝑒𝑗 − 𝜋𝑗)
|Ω2|
𝑗=1  is the total net revenue of existing orders. The existing orders cannot 

be rejected and 𝑒𝑗 − 𝜋𝑗 ≥ 0  𝑗 ∈ Ω2 . To formulate the r-OAS problem, the following 

assumptions are made: 

1) The orders arrive in real-time, and the manufacturer has no prior information 

regarding these orders; 

2) Each order contains only one kind of job; 

3) The shop floor has the right to accept or reject any incoming orders; 

4) An order in process cannot be interrupted; 

5) Once an order is accepted, it cannot be rejected later (This assumption states that 

our order acceptance scheme cannot be affected by resource-related disruptions, e.g., 
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machine breakdown or process quality problems.) (Rahman et al., 2015); 

6) The setup time for an order on machines cannot be negligible; 

7) Each order should be delivered just-in-time. 

The order scheduling problem aims to determine the best production sequence for 

job release. This scheduling problem can be formulated as a dispatch problem, in which a 

binary decision variable 𝑧𝑗,𝑙  is defined as indicating whether order 𝑗 , 𝑗 ∈ Ω1 ∪ Ω2 , is 

assigned to position 𝑙, 𝑙 ∈ {1,2,… , |Ω|}, Ω = Ω1 ∪ Ω2, or not: 𝑧𝑗,𝑙 = 1 if order 𝑗 is assigned 

to position 𝑙; otherwise, 𝑧𝑗,𝑙 = 0. Two types of constraints exist in the scheduling problem: 

each position should be assigned a maximum of one order and the accepted order 𝑗, 𝑗 ∈

Ω1 ∪ Ω2, must be assigned to a position; see equation (8.11) as follows: 

∑𝑧𝑗,𝑙 ≤ 1

|Ω|

𝑗=1

, 𝑗 ∈ Ω1 ∪ Ω2 and 𝑙 ∈ {1,… , |Ω|}, (8.11.1) 

∑𝑧𝑗,𝑙 = 𝑟𝑗

|Ω|

𝑙=1

, 𝑗 ∈ Ω1, (8.11.2) 

∑𝑧𝑗,𝑙 = 1

|Ω|

𝑙=1

, 𝑗 ∈ Ω2, (8.11.3) 

where constraints (8.11.3) ensure that the existing orders cannot be rejected. If the 

variable 𝑧𝑗,𝑙  is determined, the real-time production sequence Φ  ( |Φ| = ∑ 𝑟𝑗𝑞𝑗
|Ω1|
𝑗=1 +

∑ 𝑞𝑗
|Ω2|
𝑗=1 ) is generated, as the following example.  
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Assume that five real-time orders (i.e., Ω1 = {4,5,6,7,8}) arrive at the current 

production period and each order has five jobs. There are three (i.e., 𝑖 = 1,2,3) existing 

orders with five jobs each. If Orders 1, 2, 3, 4, 5, 7, and 8 are accepted and they are 

dispatched to Positions 2, 1, 4, 3, 6, 8, and 7, respectively (i.e., 𝑧1,2 = 1, 𝑧2,1 = 1, 𝑧3,4 =

1, 𝑧4,3 = 1, 𝑧5,6 = 1, 𝑧7,8 = 1, and 𝑧8,7 = 1), the new production sequence should be 

1 2 3 4 5 ⏞      
Order 2

 1 2 3 4 5⏞    
Order 1

 1 2 3 4 5⏞    
Order  

 1,2,3,4,5⏞    
Order  

 [  ]⏞
Order 6

1,2,3,4,5⏞    
Order 5

 1,2,3,4,5⏞    
Order 8

 1,2,3,4,5⏞    
Order 7

. This means 

that Job 1 in Order 2 is produced first, and then followed by Jobs 2, 3, and so on. Order 6 

is rejected and Position 5 in this sequence is therefore empty. 

8.5.2 A Nonlinear Integer Programming for r-JRP Problem 

The r-JRP searches for the best job release plan to coordinate the three kinds of 

operation costs after predicting the system dynamic status (Chen et al., 2020). Assume the 

real-time production status of a flow line be 𝑿̅(𝑘0), where 𝑘0 means the 𝑘0-th job that is 

processed by machines when new orders arrive. This r-JRP can then be defined as follows: 

we find the best release plan {𝑢𝜏(𝑘 + 𝑘0)} for jobs, where 𝑢𝜏(𝑘 + 𝑘0) is an integer and 

1 ≤ 𝑘 ≤ |Φ|, based on the real-time status of flow lines at step 𝑘0 to minimize the WIP 

inventory cost ∑ 𝜋3,𝑗
|Ω|
𝑗=1 , the final product inventory cost ∑ 𝜋2,𝑗

|Ω|
𝑗=1 , and the tardiness 

penalty cost ∑ 𝜋1,𝑗
|Ω|
𝑗=1 , thus subjecting them to job release time and state-space equation 

constraints. Parameter 𝑘 denotes the 𝑘-th job in the newly generated production sequence, 

which it receives from the leader r-OAS problem. According to equation (8.10) and state-

space equations (8.2) and (8.6), these costs can be calculated using equation (8.12). WIP 

minimization can be achieved by minimizing the gap between the system output and its 
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corresponding release time, as shown in equation (8.12.1). The modeling framework of 

this r-JRP can be represented by an IDEF0 model: the input of this r-JRP is the order due 

date 𝑑𝑗, 𝑗 = 1, … , |Ω|, order acceptance decision 𝑟𝑗, 𝑗 ∈ Ω1, and a job release sequence Φ, 

|Φ| = ∑ 𝑟𝑗𝑞𝑗
|Ω1|
𝑗=1 + ∑ 𝑞𝑗

|Ω2|
𝑗=1 ; the output is the best job release plan 𝑢𝜏(𝑘 + 𝑘0)1 ≤ 𝑘 ≤

|Φ|; the control includes the goals of cost minimization (i.e., ∑ 𝜋1,𝑗
|Ω|
𝑗=1  (Π1), ∑ 𝜋2,𝑗

|Ω|
𝑗=1  

(Π2), and ∑ 𝜋3,𝑗
|Ω|
𝑗=1  (Π3)), the constraints pertaining to the job release time 𝑢𝜏(𝑘 + 𝑘0), and 

the constraints regarding state-space equation (8.2) and (8.6); the mechanism comprises 

the real-time processing status 𝑿̅(𝑘0) and 𝑦(𝑘0), the predictive processing time 𝜎𝑖(𝑘 +

𝑘0), and an optimization approach. 

Π3 =∑ ∑ ∑𝑧𝑗,𝑙

|Ω|

𝑗=1

𝑤3,𝑗∑

[
 
 
 
 
 
 
𝑦 (𝑘0 +∑∑𝑧𝑗,𝑙′𝑞𝑗

|Ω|

𝑗=1

𝑙−1

𝑙′=1

+ 𝑘)

−𝑢𝜏 (𝑘0 +∑∑𝑧𝑗,𝑙′𝑞𝑗

|Ω|

𝑗=1

𝑙−1

𝑙′=1

+ 𝑘)

]
 
 
 
 
 
 

𝑃+1

𝜏=1

∑ 𝑧𝑗,𝑙𝑞𝑗
|Ω|
𝑗=1

𝑘=1

|Ω|

𝑙=1

 (8.12.1) 

Π2 = ∑ ∑

[
 
 
 
 
 
 
∑𝑤2,𝑗𝑧𝑗,𝑙

|Ω|

𝑗=1

max{𝑦 (𝑘0 +∑∑𝑧𝑗,𝑙′𝑞𝑗

|Ω|

𝑗=1

𝑙

𝑙′=1

) , 𝑑𝑗}

−𝑦(𝑘0 +∑∑𝑧𝑗,𝑙′𝑞𝑗

|Ω|

𝑗=1

𝑙−1

𝑙′=1

+ 𝑘)

]
 
 
 
 
 
 

∑ 𝑧𝑗,𝑙𝑞𝑖
|Ω|
𝑗=1

𝑘=1

|Ω1|+|Ω2|

𝑙=1

(8.12.2) 

Π1 =∑max{∑𝑤1,𝑗𝑧𝑗,𝑙 [𝑦(𝑘0 +∑∑𝑧𝑗,𝑙′𝑞𝑗

|Ω|

𝑗=1

𝑙

𝑙′=1

) − 𝑑𝑗]

|Ω|

𝑗=1

,0}

|Ω|

𝑙=1

 (8.12.3) 

The parameters 𝜎𝑖(𝑘 + 𝑘0), 𝑎𝜏(𝑘), and 𝑏𝜏(𝑘) are determined by variables 𝑟𝑗  and 

𝑧𝑗,𝑙. We denote the nearest predecessor of position 𝐿, 𝐿 ∈ {2,… , |Ω1| + |Ω2|}, that has been 
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assigned an order of 𝐿 − 1. The 𝜎𝑖(𝑘 + 𝑘0), 𝑎𝜏(𝑘), and 𝑏𝜏(𝑘) can then be represented by 

equation (8.13). If position 𝐿 has no predecessor position (i.e., ∑ ∑ 𝑧𝑗,𝑙𝑞𝑗
𝐿−1
𝑙=1

|Ω1|+|Ω2|
𝑗=1 = 0), 

𝜎𝑖(𝑘 + 𝑘0) = ∑ 𝑦𝑗,𝐿𝑝𝑖𝑗
|Ω1|+|Ω2|
𝑗=1  if 𝑘 = 1. 

𝜎𝑖(𝑘 + 𝑘0) =

{
  
 

  
 
𝑝𝑖𝑗 + 𝑡𝑖(𝑘 + 𝑘0, 𝑘 + 𝑘0 − 1), 𝑖𝑓∑𝑧𝑗,𝐿

|Ω|

𝑗=1

= 1 𝑎𝑛𝑑 𝑘 =∑∑𝑧𝑗,𝑙𝑞𝑗

𝐿−1

𝑙=1

|Ω|

𝑗=1

+ 1

𝑝𝑖𝑗, 𝑖𝑓∑𝑧𝑗,𝐿

|Ω|

𝑗=1

= 1 𝑎𝑛𝑑∑∑𝑧𝑗,𝑙𝑞𝑗

𝐿−1

𝑙=1

|Ω|

𝑗=1

+ 1 < 𝑘 ≤∑∑𝑧𝑗,𝑙𝑞𝑗

𝐿

𝑙=1

|Ω|

𝑗=1

          

 (8.13.1) 

𝑎𝜏(𝑘) = 𝑎𝑗,∑𝑧𝑗,𝑙

|Ω|

𝑗=1

= 1 𝑎𝑛𝑑∑ ∑ 𝑧𝑗,𝑙′𝑞𝑗

𝑙−1

𝑙′=1

|Ω|

𝑗=1

+ 1 ≤ 𝑘 ≤∑ ∑ 𝑧𝑗,𝑙′𝑞𝑗

𝑙

𝑙′=1

|Ω|

𝑗=1

, 1≤𝑙≤|Ω| (8.13.2) 

𝑏𝜏(𝑘) = 𝑏𝑗 ,∑𝑧𝑗,𝑙

|Ω|

𝑗=1

= 1 𝑎𝑛𝑑∑ ∑ 𝑧𝑗,𝑙′𝑞𝑗

𝑙−1

𝑙′=1

|Ω|

𝑗=1

+ 1 ≤ 𝑘 ≤∑ ∑ 𝑧𝑗,𝑙′𝑞𝑗

𝑙

𝑙′=1

|Ω|

𝑗=1

, 1≤𝑙≤|Ω| (8.13.3) 

8.5.3 0-1 Integer Programming for r-OAS Problem  

Based on equations (8.1) – (8.13), the optimization for the r-OASR problem can be 

described as a BIO model. Consistent with a Stackelberg game, the leader r-OAS problem 

performs as an upper-level optimization, while the follower r-JRP acts as a lower-level 

optimization. Therefore, the general form of the joint order acceptance, scheduling, and 

job-release decisions can be represented in the following BIO model. 

max𝐹 (𝑟𝑗, 𝑧𝑗,𝑙 , 𝑢𝜏(𝑘 + 𝑘0)) =∑𝑟𝑗𝑒𝑗

|Ω1|

𝑗=1

+∑𝑒𝑗

|Ω2|

𝑗=1

−∑𝜋1,𝑗

|Ω|

𝑗=1

−∑𝜋2,𝑗

|Ω|

𝑗=1

−∑𝜋3,𝑗

|Ω|

𝑗=1

 (8.14.0) 

𝑠. 𝑡.  
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∑𝑧𝑗,𝑙

|Ω|

𝑗=1

≤ 1, 𝑙 = 1,… , |Ω| (8.14.1) 

∑𝑧𝑗,𝑙

|Ω|

𝑙=1

= 𝑟𝑗, 𝑗 ∈ Ω1 (8.14.2) 

∑𝑧𝑗,𝑙

|Ω|

𝑙=1

= 1, 𝑗 ∈ Ω2 (8.14.3) 

𝑟𝑗(𝑒𝑗 − 𝜋1,𝑗 − 𝜋2,𝑗 − 𝜋3,𝑗) > 0, 𝑗 ∈ Ω1 (8.14.4) 

𝑒𝑗 − 𝜋1,𝑗 − 𝜋2,𝑗 − 𝜋3,𝑗 > 0, 𝑗 ∈ Ω2 (8.14.5) 

𝑟𝑗 ∈ {0, 1}, 𝑗 ∈ Ω1 (8.14.6) 

𝑧𝑗,𝑙 ∈ {0, 1}, 𝑗 ∈ Ω1 ∪ Ω2, 𝑙 = 1,… , |Ω| (8.14.7) 

min𝑓(𝑢𝜏(𝑘 + 𝑘0)) =∑𝜋1,𝑗

|Ω|

𝑗=1

+∑𝜋2,𝑗

|Ω|

𝑗=1

+∑𝜋3,𝑗

|Ω|

𝑗=1

 (8.14.8) 

𝑠. 𝑡. 

𝜎𝑖(𝑘 + 𝑘0) = Θ1(𝑧𝑗,𝑙), 𝑗, 𝑙=1,…,|Ω| (8.14.9) 

𝑎𝜏(𝑘) = Θ2(𝑧𝑗,𝑙), 𝑗, 𝑙=1,…,|Ω|  (8.14.10) 

𝑏𝜏(𝑘) = Θ3(𝑧𝑗,𝑙), 𝑗, 𝑙=1,…,|Ω| (8.14.11) 

𝑿(𝑘 + 𝑘0) = 𝑨(𝑘 + 𝑘0 − 1)⊗ 𝑿(𝑘 + 𝑘0 − 1)⊕𝑩(𝑘 + 𝑘0) 
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⊗𝑼(𝑘 + 𝑘0), 1 ≤ 𝑘 ≤ |Φ| (8.14.12) 

𝑦(𝑘 + 𝑘0) = 𝑪(𝑘 + 𝑘0) ⊗ 𝑿(𝑘 + 𝑘0), 1 ≤ 𝑘 ≤ |Φ| (8.14.13) 

𝑏𝜏(𝑘) ≥ 𝑢𝜏(𝑘 + 𝑘0) ≥ 𝑎𝜏(𝑘), 0 < 𝑘 ≤ |Φ|, 1 ≤ 𝜏 ≤ 𝑃 + 1 (8.14.14) 

𝑢𝜏(𝑘 + 𝑘0) ∈ ℤ
+, 0 < 𝑘 ≤ |Φ|, |Φ| = ∑𝑟𝑗𝑞𝑗

|Ω1|

𝑗=1

+∑𝑞𝑗

|Ω2|

𝑗=1

, 1 ≤ 𝜏 ≤ 𝑃 + 1 (8.14.15) 

Functions Θ1 , Θ2 , and Θ3  are formulated according to equation (8.13). Some 

constraints exist in both the upper- and lower-level optimizations. equation (8.14.0) 

indicates the objective of the r-OAS problem by summarizing the net revenue of all orders. 

Constraints (8.14.1) require that each production position is assigned a maximum of one 

order. Constraints (8.14.2) ensure that the newly accepted orders must be assigned to a 

position. The existing order cannot be rejected by Constraints (8.14.3). The net revenue of 

each order is promised by Constraints (8.14.4) and (8.14.5). Constraints (8.14.6) and 

(8.14.7) enforce the binary integrality of the respective decision variables. The objective 

for lower-level optimization is revealed by equation (8.14.8). Constraints (8.14.9) – 

(8.14.10) describe the relationship between 𝜎𝑖(𝑘 + 𝑘0), 𝑎𝜏(𝑘), 𝑏𝜏(𝑘) and variable 𝑧𝑗,𝑙 , 

respectively. The state-space equation constraints are represented by equations (8.14.11) 

and (8.14.12). The job release time is restricted by constraints (8.14.13). Constraints 

(8.14.14) enforce the non-negativity and integrity of the decision variables at the lower 

level.  

8.6 Solution Approach 
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The solving processes for the BIO model are complex because the optimization 

models for r-OAS and r-JRP are NP-hard. Traditional solution approaches in bilevel 

programming can be classified into direct and indirect categories. The indirect methods 

convert a bilevel model into a single-level model like the Karush-Kuhn-Tucker condition 

and penalty function (Ji et al., 2013). The extreme-point search and some intelligence 

algorithms are direct approaches for bilevel programming problems (Xiong et al., 2018). 

Considering the NP-hard characteristic of BIO, various heuristic algorithms have been 

developed, including genetic algorithms, particle swarm optimization, and tabu search 

(Xiong et al., 2018). This paper establishes a direct solution approach comprising a tabu 

search and an implicit enumeration algorithm. This algorithm’s role is to generate a feasible 

solution for the BIO model and derive several managerial conclusions accordingly. The 

pseudocode of the bilevel tabu-enumeration algorithm is presented in Table 8-1. To 

decrease the nervousness of the production systems, a new insertion procedure is designed 

to generate the initial solution (See Section 8.6.1), just as (Fahmy et al., 2007) shows. This 

procedure inserts real-time orders into the initial scheduling plan, such that the maximum 

net revenue can be achieved. With this insertion, we do not change the scheduling plan that 

is inherited from the previous stage until it can generate more benefit. Moreover, to avoid 

the exponential increase in search time, only the 𝜂 most promising neighborhood solutions 

after a tabu search are transferred to the enumeration algorithm to search for the best job 

release plan (Gromicho et al., 2012). Note that the parameter 𝜂  setting simultaneously 

affects the problem solutions and computation time. For example, setting 𝜂 = 1 results in 

the nearest neighbor heuristic and 𝐻 = ∞ results in a whole neighborhood search. 



 196 

Table 8-1 The pseudo-code of the tabu-enumeration algorithm 

Algorithm 8-1: General interactive procedures of the tabu-enumeration algorithm 

Input: A serial of real-time orders 𝛺1, a serial of orders that are waiting at job pools 𝛺2, the real-

time production status 𝑋(𝑘0)  of flow line, a tabu tenure K, an enumeration searching step 𝛿 , 

parameter 𝜂, and the 𝐼𝑚𝑎𝑥. 

Output: The best order acceptance decision 𝑟𝑗 , 𝑗 ∈ 𝛺1, scheduling decision 𝑧𝑗,𝑙 , 𝑗 ∈ 𝛺1 ∪ 𝛺2, 𝑙 =

1, … , |𝛺1| + |𝛺2|, and job release plan 𝑢𝜏(𝑘 + 𝑘0), 1 ≤ 𝑘 ≤ |𝛷|, 1 ≤ 𝜏 ≤ 𝑃 + 1. 

1:   begin 

2:       𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡  ← 0; 

3:       Initial solution generation;                         

4:       repeat 

5:            𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 1; 

6:            foreach a pair of elements in a solution do 
7:                Swap the two elements; 
8:              Reject the orders with a net revenue equal to or smaller than zero and generate the most 

feasible solution; 
9:              Insert the rejected orders and generate the corresponding feasible solutions;  

10:          Calculate the fitness of each feasible solution with the assumption that 𝑢𝜏(𝑘 + 𝑘0) =
𝑢𝜏
𝑙𝑜𝑤𝑒𝑟(𝑘 + 𝑘0), 1 ≤                      𝑘 ≤ |𝛷|; 

11:           end 

12:           Sort the feasible solutions in descending order based on their fitness; 

13:           Select the first 𝜂 feasible solutions and set the fitness of other solutions to zero; 

14:            foreach selected feasible solution do 
15:                Call the enumeration search algorithm for best release plan generation,   

                     i.e., 𝑢𝜏(𝑘 + 𝑘0), 1 ≤ 𝑘 ≤ |𝛷|; 
16:                Calculate the operation cost and feed the results back into the r-OAS problem; 

17:                Revise the fitness of each selected feasible solution; 
18:            end 

19:            Let current solution be the feasible solution with the greatest fitness; 

20:            if the fitness of current solution is smaller than the previous then 
21:                 Replace the old solution with the new solution and the new fitness; 
22:            else 

23:                 Keep the old solution and its fitness; 
24:            endif 

25:            Update tabu list 

26:            if 𝑟𝑎𝑛𝑑 < 𝑒(−𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡/50) do 

27:                 Local search based on the drop-insert operator; 
28:                 Call the enumeration search algorithm for best release plan generation; 

29:                 Calculate the operation cost and feed the results back into the r-OAS problem; 
30:                 Revise the fitness of the current solution; 
31:            end 

32:            if the fitness of the current solution is smaller than the previous then 
33:                 Replace the old solution with the new solution and new fitness; 

34:            else 
35:                 Keep the old solution and its fitness; 
36:            endif 

37:            Until 𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝐼max || stop criteria 

38:         Return 𝑟𝑗
∗, 𝑧𝑗,𝑙

∗ , and 𝑢𝜏
∗(𝑘 + 𝑘0) 

39:   end 
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8.6.1 Tabu Search to Solve r-OAS Problem 

Tabu search is a well-known heuristic for handling combinatorial optimization 

problems and is particularly successful in its ability to resolve job scheduling problems 

(Cesaret et al., 2012). Motivated by the successful applications of tabu search, this section 

extends this algorithm to make OAS decisions. The implementation procedures of the tabu 

search are described as follows. 

1) Solution representation: A solution for the r-OAS problem can be represented by 

a vector with size |Ω|, in which the value of the 𝑙-th element indicates the assigned position 

of order 𝑗  in a production sequence. If an order is not accepted, the value of the 

corresponding element is zero. For example, a solution with 15 orders (|Ω1| = 12 and 

|Ω2| = 3) can be represented by {1,3,5,6,2,0,0,4,0,0,7,0,0,8,0}. This representation means 

that Orders 6, 7, 9, 10, 12, 13, and 15 are rejected, while Orders 1, 2, 3, 4, 5, 8, 11, and 14 

are processed in the first, third, fifth, sixth, second, fourth, seventh, and eighth positions. 

Because orders 1, 2, and 3 are existing orders, their position value in a solution must be 

greater than zero. 

2) Solution initiation: An initial feasible solution 𝑆0 for r-OAS can be generated by a 

greedy rule. This rule first calculates the revenue-load ratio for each order by considering 

the order revenue and its processing time. This ratio is represented as 𝑅𝐿𝑅𝑗 =

𝑒𝑗 (𝑞𝑗 max
𝑖=1,..,𝑀

𝑝𝑖𝑗 + ∑ 𝑝𝑗
𝑀
𝑖=1 )⁄ , 𝑗 ∈ Ω1 ∪ Ω2 , which signifies the unit revenue created per 

production time. The orders are sorted by this ratio, and the order with the highest value is 

first inserted into the initial production sequence. During this insertion, the selected order 

is inserted into its possible position in sequence, and the corresponding net revenue is 
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calculated. For example, the production sequence from solution 

{1,3,5,6,2,0,0,4,0,0,7,0,0,8,0} is {1,5,2,8,3,4,11,14} (the element in the set is the order 

number) and the possible insert position precedes Orders 1, 5, 2, and so on. Finally, the 

order is inserted into the position that can generate the highest net revenue. At this stage, 

the costs 𝜋1,𝑗, 𝜋2,𝑗, and 𝜋3,𝑗 of Order 𝑗 are determined according to equation (8.12) and 

based on the assumption that 𝑢𝜏(𝑘0 + 𝑘) = 𝑢𝜏
𝑙𝑜𝑤𝑒𝑟(𝑘 + 𝑘0), 𝑘 = 1,… , |Φ|, 𝜏 = 1,… , 𝑃 +

1. If this order insertion causes the revenue of some orders in the new production sequence 

to be equal to or less than zero, these orders are rejected, and the net revenue of the 

remaining orders is recalculated. This insertion procedure continues until all newly arrived 

orders are traversed. 

3) Neighborhood search with swap operators: Swap and insertion are common 

operators in tabu search for similar scheduling problems (Bilge et al., 2007). In swap 

operators, the neighborhood of the current solution 𝑆  is searched by swapping two 

elements of 𝑆. This pairwise exchange can change both the set of accepted Orders and the 

corresponding production sequence. For example, two neighborhood solutions 

{1,3,5,7,2,0,0,4,0,0,6,0,0,8,0}  and {1,3,5,6,0,0,2,4,0,0,7,0,0,8,0}  can be generated by 

applying swap operators to the solution {1,3,5,6,2,0,0,4,0,0,7,0,0,8,0}. The first is obtained 

by swapping the fourth and eleventh elements, while Order 4 is rejected, and Order 7 is 

accepted in the second after swapping the fourth and seventh elements. The two elements 

with a value of zero do not need to be swapped, as they cannot generate a new solution. 

Because the existing orders cannot be rejected in this decision period, their position 

element can be swapped with the position that has been assigned a nonzero element in the 

current solution. For example, in the solution {1,3,5,6,2,0,0,4,0,0,7,0,0,8,0}, Element 1 can 
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be swapped with Elements 2, 3, 4, 5, 8, 11, and 14. Note that after a swap, the net revenue 

of each order changes. If any orders belonging to Ω1 receive a zero or smaller net revenue, 

this neighborhood swap is forbidden. If any of the newly accepted orders receive a zero or 

smaller net revenue, they are rejected. Because the number of accepted orders may 

therefore decrease, an insertion operator is designed to follow swap operators; the local 

search procedure is shown in the following sequence.  

4) Tabu list and tabu tenure: The tabu list of tabu search retains the most recent swap 

operators to avoid cycling when searching for a new solution. The tabu list in our tabu 

search algorithm is formed with the K most recently performed swap operators, where K 

is the tabu tenure. In our tabu list, the retained swap pairs prevent the same elements from 

being swapped again. For example, if the best neighborhood solution of 

{1,3,5,6,2,0,0,4,0,0,7,0,0,8,0}  is {1,3,5,6,0,2,0,4,0,0,7,0,0,8,0} , swapping the elements 

corresponding to order pairs (5,6) and (6,5) is tabu during the tabu tenure. 

5) Local search with a drop-insert procedure: If the iterations proceed with 

neighborhood search alone, our tabu search algorithm will likely converge to a poor local 

optimum. To remedy this, a local search for the current best solution is conducted by 

applying iterative drop-insert operators. To insert an order with larger net revenue, an order 

with the lowest net revenue in the current solution is dropped. To select the orders that will 

be inserted, a roulette wheel selection from genetic algorithms is then used to generate an 

insertion probability for the rejected orders. The probability of selecting each rejected order 

is proportional to its 𝑅𝐿𝑅𝑗, such that the orders with higher 𝑅𝐿𝑅𝑗 are more likely to be 

selected. This mechanism can introduce some randomness into our tabu search and create 

diversified solutions during iterations. This selection is implemented 𝜑 times, where 𝜑 is 
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the size of the rejected orders and all the selected but different orders are transferred for 

insertion. The insertion procedure is shown in part (2). To ensure the convergence of our 

algorithm, the order drop-insert operator is implemented in a manner similar to that of 

simulated annealing. That is, the drop-insert operator is implemented if a random number 

between (0, 1) is smaller than 𝑒(
−𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡

50
)
 (𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is the current number of iterations). 

Otherwise, no order is dropped from the current solution.  

6) Fitness evaluation and termination criteria: After the swap operators, the new 

solutions are transferred to the r-JRP problem for cost calculation (i.e., 𝜋1,𝑗, 𝜋2,𝑗, and 𝜋3,𝑗). 

The fitness of each solution can then be determined by equation (8.14.0). If the current tabu 

solution with the highest fitness is better than the fitness of the best-known solution, the 

current tabu solution is accepted as the best solution. The tabu search is terminated if the 

number of generations exceeds the upper limit of the iterations. 

8.6.2 Implicit Enumeration Algorithm to Solve r-JRP Problem 

Implicit enumeration and gradient-based techniques are two typical approaches for 

production system optimization with analytical methods (Matta et al., 2012). Implicit 

enumeration is widely applied if the solution space is restricted or if the evaluation 

procedure for production system performance is carried out rapidly. In terms of the limited 

searching space, which is restricted by order net revenue and the rapid run speed with the 

proposed state-space equation, an implicit enumeration algorithm is proposed for r-JRP 

optimization. Referring to the enumeration procedures of Hashemian et al. (2014), our 

implicit enumeration can be implemented through the following two steps: enumeration 

space generation and enumeration strategy with varying search steps. 
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The size of the enumeration space can obviously affect the searching efficiency in 

the enumeration space generation. In our programming model for r-JRP, the lower bound 

of each variable 𝑢𝜏(𝑘 + 𝑘0), 1 ≤ 𝑘 ≤ |Φ|, is determined by the processing time of the first 

machine in a flow line, such as Machine 1 in serial lines and the Machine ∑ 𝑀𝜏′
𝜏−1
𝜏′=1 + 1, 

(𝜏 = 1,… , 𝑃) in merge lines, refer to equation (8.15): 

𝑢𝜏
𝑙𝑜𝑤𝑒𝑟(𝑘 + 𝑘0) = max{𝑎𝜏(𝑘), ∑ 𝜎𝑖(𝑘

′′ + 𝑘0)

𝑘

𝑘′′=1

, 𝜏 = 1,… , 𝑃, 𝑖 = ∑ 𝑀𝜏′ + 1

𝜏−1

𝜏′=1

 } (8.15) 

where 𝑢𝜏
𝑙𝑜𝑤𝑒𝑟(𝑘0) = 𝑢𝜏(𝑘0) and ∑ 𝑀𝜏′

0
𝜏′=1 = 0. This lower bound is reasonable because a 

smaller value for 𝑢𝜏(𝑘 + 𝑘0) cannot contribute to improving the system throughput. The 

upper bound of the variable 𝑢𝜏(𝑘 + 𝑘0) is derived from the order due date and tardiness 

penalty cost. For each order, the relationship between the latest delivery time 𝑑𝑗
𝑙𝑎𝑡𝑒𝑠𝑡 and 

due data 𝑑𝑗 can be represented as follows: 

𝑤1,𝑗(𝑑𝑗
𝑙𝑎𝑡𝑒𝑠𝑡 − 𝑑𝑗) + 𝑤2,𝑗

𝑞𝑗(𝑞𝑗 − 1)

2
max
𝑖=1,…,𝑀

{𝑝𝑖𝑗} = 𝑒𝑗, 𝑗 ∈ Ω. (8.16) 

According to equation (8.16), the 𝑑𝑗
𝑙𝑎𝑡𝑒𝑠𝑡 can be derived as follows: 

𝑑𝑗
𝑙𝑎𝑡𝑒𝑠𝑡 =

(𝑒𝑗 − 𝑤2,𝑗
𝑞𝑗(𝑞𝑗 − 1)

2
max
𝑖=1,…,𝑀

{𝑝𝑖𝑗})

𝑤1,𝑗
+ 𝑑𝑗, 𝑗 ∈ Ω. (8.17)

 

Referring to equation (8.13), the upper bound of variable 𝑢𝜏(𝑘 + 𝑘0) , 𝜏 =

1, … , 𝑃 + 1, can be determined by the following: 
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𝑢𝜏
𝑢𝑝𝑝𝑒𝑟(𝑘 + 𝑘0 − 𝑘

′′) = max{𝑏𝜏(𝑘),∑𝑧𝑗,𝑙

Ω

𝑗=1

(𝑑𝑗
𝑙𝑎𝑡𝑒𝑠𝑡 − 𝑘′′ 𝑚𝑎𝑥

𝑖=1,…,𝑀
{𝑝𝑖𝑗} −∑𝑝𝑖𝑗

𝑀̅

𝑖=1

)} ,

𝑖𝑓 ∑ 𝑧𝑗,𝑙

Ω

𝑗=1

= 1,𝑘 =∑∑ 𝑧𝑗,𝑙′𝑞𝑗

𝑙

𝑙′=1

Ω

𝑗=1

, 𝑀̅ = {1, … , 𝑀𝜏, 𝑚𝜏, … , 𝑀𝑃+1}, , 𝑙 = 1, … , |Ω| .

(8.18) 

Furthermore, in enumeration strategy with varying search steps, the cost 𝜋1,𝑗, 𝜋2,𝑗, 

and 𝜋3,𝑗 are monotonous to variable 𝑢𝜏(𝑘 + 𝑘0). In this case, the best job release plan can 

be achieved by increasing each variable from the smallest to the greatest. To improve the 

search efficiency, a varying searching step is designed after analyzing the decision space 

of variables (see Table 8-1). The six steps of the enumeration are presented as follows. 

Step 1: We set 𝑢𝜏(𝑘 + 𝑘0) = 𝑢𝜏
𝑙𝑜𝑤𝑒𝑟(𝑘 + 𝑘0), 𝜏 = 1, … , 𝑃 + 1, 1 ≤ 𝑘 ≤ |Φ|, and 

a search step 𝛿 = 𝛿0  that increases the value of 𝑢𝜏(𝑘 + 𝑘0)  by 𝛿  at every step. We 

determine the initial operation cost 𝑓0  based on equations (8.9) and (9.14.8). We then 

initiate the enumeration procedures with 𝑘 ← 1 and 𝜏 ← 1. 

Step 2: We set 𝑢𝜏(𝑘 + 𝑘0) = 𝑢𝜏(𝑘 + 𝑘0) + 𝛿, and 𝑢𝜏(𝑘
′′ + 𝑘0) = 𝑢𝜏(𝑘

′′ + 𝑘0) +

𝛿 , |Φ| ≥ 𝑘′′ > 𝑘 . The system throughput 𝑦(𝑘′′ + 𝑘0) , 1 ≤ 𝑘′′ ≤ |Φ|  is then calculated 

based on state-space equation (8.6) and equation (8.14.8) is used to formulate the operation 

cost 𝑓. 

Step 3: If 𝑓 ≥ 𝑓0, set 𝑢𝜏(𝑘
′′ + 𝑘0) = 𝑢𝜏(𝑘

′′ + 𝑘0), 1 ≤ 𝑘
′′ ≤ |Φ|, 𝑓0 = 𝑓, and we 

return to Step 2. If 𝑓 < 𝑓0, we set 𝑢𝜏(𝑘
′′ + 𝑘0) = 𝑢𝜏(𝑘

′′ + 𝑘0) − 𝛿, 𝑘 ≤ 𝑘′′ ≤ |Φ|, and we 

move on to Step 4. 

Step 4: We set the search step to 𝛿 = ⌈𝛿/2⌉. If 𝛿 is smaller than the unit production 

time, we move to Step 5; otherwise, we return to Step 2. 
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Step 5: We set 𝑘 ← 𝑘 + 1  and 𝛿 = 𝛿0 . If 𝑘 > |Φ| , we move on to Step 6; 

Otherwise, we return to Step 2. 

Step 6: We set 𝜏 ← 𝜏 + 1. If 𝜏 > 𝑃 + 1, we stop the enumeration and feed the 

function 𝑓0 back to the leader r-OAS problem; otherwise, we return to Step 2. 

8.6.3 Tabu-Enumeration Interactive Solution Procedure Problem 

The nested genetic algorithm is a popular technique for solving the BIO model 

(Xiong et al., 2018). Because probabilistic techniques are adopted to search for a feasible 

solution for both leader and follower problems, its convergence is difficult to predict with 

certainty, especially when the space in which the search is conducted is large. Compared 

with existing heuristic algorithms, our bilevel tabu-enumeration search empowers a mutual 

look-out global search strategy by developing a probabilistic search technique for the 

leader and an exact search technique for the follower. This method can accelerate the speed 

at which algorithms converge, thus tremendously reducing the computational load, and in 

turn enhancing computational efficiency. Based on the encoding analysis of tabu search 

for r-OAS and the implicit enumeration for r-JRP, the bilevel tabu-enumeration is 

elaborately designed and includes several decision stages, as follows. 

Step 1: Initialization. A feasible solution for OAS is randomly generated. 

Step 2: Fitness estimation. The swap operator is called to determine all 

neighborhood solutions. We set 𝑢𝜏(𝑘 + 𝑘0) = 𝑢𝜏
𝑙𝑜𝑤𝑒𝑟(𝑘 + 𝑘0), 1 ≤ 𝑘 ≤ |Φ|, and estimate 

the fitness of each solution. These solutions are then sorted in descending order based on 

their estimated fitness and the first 𝜂 feasible solutions for r-JRP optimization are selected. 

We set the fitness of these unselected solutions to zero. 
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Step 3: Implicit enumeration. For each selected solution, we use the implicit 

enumeration to determine the minimum operation cost 𝑓 according to equation (8.14.8). 

We feed cost 𝑓 back into the tabu search and update the fitness 𝐹 of each selected solution 

according to equation (8.14.0).  

Step 4: Best solution update. We choose the solution with the highest fitness as the 

current solution. If the current solution is better than the best solution already identified, 

we update the best solution and its fitness, and add the corresponding swap operator into 

the tabu list; otherwise, we take no action. 

Step 5: Loach search with a drop-insert operator. We drop an order with minimal 

net revenue from the current solution and select the unaccepted orders for insertion into the 

current solution. We update the current and best solutions, as in Step 4.  

Step 6: We terminate tabu search if the number of generations exceeds the upper 

limit of the tabu search. We then compare and record the best results and move on to Step 

7; otherwise, we return to Step 2. 

Step 7: Stop. 

8.7 Case Study of Crowdsourcing Task Acceptance and Accommodation 

To demonstrate the performance of the proposed BIO model for the r-OASR 

problem and test the proposed bilevel tabu-enumeration algorithm, a specific case study 

from a car seat assembly plant is reported in this section. The bilevel algorithm is performed 

ten times on a Windows 10 PC with an Intel ® Core ™ i5-8250U 3.4GHz 16GB of RAM. 

The one yielding the highest fitness is recorded as the best objective value for the BIO 

model. 
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8.7.1 Tabu-Enumeration Interactive Solution Procedure Problem 

The car seat assembly line contains twelve workstations and eleven buffers, in 

which the jobs between adjacent workstations are transported by conveyor belts, the data 

of this case is modified from real-world shop-floor. The TEG of this assembly line is shown 

in Figure 8-6. Two parallel sub-lines are merged at Station 5: one for cushion assembly 

and the other for back cushion assembly. The flexibility of each station is high, and at least 

nine kinds of products can be assembled by this line. Table 8-2 lists the processing time of 

the stations for each product, and Table 8-3 shows the buffer capability. This assembly line 

is chosen to verify our BIO approach for a variety of production environments and smart 

production operations.  

1) Decision-making for r-OASR within high variety production environments: The 

car seat assembly plant is a first-tier supplier to automakers. Today, with mass 

customization, many automakers are coupled with platform-based strategies to achieve 

mixed-model production. Because multiple automakers can be serviced by a car seat 

assembly plant at the same time, this mixed-model production creates a high level of 

product variety for each seat assembly line. For example, the special assembly line selected 

in this section must produce nine kinds of car seats and is currently being expanded to 

produce twelve products in the future. Moreover, due to various resource-related 

disruptions related to stamping, welding, spraying, and assembly shops and job-related 

disruptions from customers, the pre-determined car assembly plan is often changed. This 

frequent variation creates many real-time orders for car seat assembly plants, as they must 

respond to the production plan of automakers in a timely manner. This special assembly 

line is designed to accommodate real-time orders in highly varied production 
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environments. This line adopts the rolling-horizon-driven replanning policy for r-OASR 

decision-making to enable the fulfillment of real-time replenishments from automakers. 

By cooperating with this special line, the nervousness of the whole assembly plant can be 

decreased, as the schedules of other assembly lines will not be disrupted by new incoming 

orders. Additionally, as it is motivated by the open manufacturing paradigm, this plant is 

devoted to designing an open platform to collect personalized orders from customers. 

Customers can place their orders on the platform in real time, similar to the COSMOPlat 

of Haier. This development trend also positions r-OASR decision-making as important. 

2) Smart production operations with real-time data: To predict the real-time status 

of assembly lines and derive smart actions in response to disruptions, various information-

gathering techniques have been applied to monitor and collect production data from shop 

floors. For example, an RFID system is constructed to collect the real-time data of WIP 

and job completion at each station. A sensor-based network is developed to perceive the 

real-time data of machines and stations (e.g., machine breakdown events), and an image 

recognition system is designed to identify the productivity data pertaining to workers (e.g., 

the absence data of workers). A control system is in place that can formulate smart 

decisions after fuzzing and analyzing real-time data. In view of the smart manufacturing 

environment, the real-time production status of this assembly line can be easily derived. 

Moreover, the control system is an open platform. It can provide powerful computing 

capacities for users and a flexible environment for the development of new functions. Thus, 

many specified functions for production that are operated with complex optimization 

models can be incorporated into this control system, such as r-OASR decision-making, 

which is the focus of this paper. 
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Table 8-2 Processing time of each station (unit: sec) 

Product 

type 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 𝑚10 𝑚11 𝑚12 

Type A 82 84 84 92 89 74 85 78 70 89 92 90 

Type B 78 86 82 97 93 78 90 80 68 90 89 95 

Type C 88 78 83 80 88 70 92 74 78 95 74 89 

Type D 74 88 78 84 80 76 95 80 71 89 80 91 

Type E 77 89 82 89 91 83 97 77 82 93 78 84 

Type F 85 91 88 70 93 71 90 69 88 93 83 87 

Type G 75 81 68 96 98 75 99 85 69 79 94 78 

Type H 70 87 95 87 84 89 91 67 93 99 89 80 

Type I 72 75 90 73 88 69 78 80 92 95 76 84 

Table 8-3 Buffer capacity of the assembly line (unit: sec) 

Buffer No. 𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6 𝐵7 𝐵8 𝐵9 𝐵10 𝐵11 

Buffer 

capacity 
5 8 6 9 10 12 8 9 6 10 11 

 

Figure 8-6 Time event graph of the assembly line 

Based on these characteristics, the car seat assembly line is extended to make r-

OASR decisions. To identify the parameters of our BIO approach, a series of incoming 
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orders during a time horizon 𝑡0 = 60min is stochastically selected from the information 

system. The existing orders are listed in Appendix II. No release date constraint exists in 

this case study. The tabu tenure is K=5, and the iteration number is 𝐼𝑚𝑎𝑥 = 200. When 

new orders arrive, 17 jobs are released to the assembly line and no disruption occurs. Thus, 

the real-time status 𝑿(17) of this assembly line can be derived. 

8.7.2 Performance Experiments by Benchmarking Using Prevailing r-OASR Approaches  

To draw a comparison with the performance of the proposed BIO, two prevailing 

approaches are presented in this section: (i) the r-OAS model with bottleneck machines (r-

OAS-B) (Nobibon and Leus, 2011, Lin and Ying, 2015), and (ii) the r-OAS model for 

permutation flow lines (r-OAS-F) (Rahman et al., 2015, Rahman et al., 2019). To verify 

the performance of the r-JRP, we extend these approaches by considering cooperation with 

r-JRP as a factor. The approaches are as follows: a single r-OAS-B (r-OAS-B I), r-OAS-B 

with r-JRP (r-JRP-B II), a single r-OAS-F (r-OAS-F I), and r-OAS-F with r-JRP (r-OAS-

F II). In r-OAS-B II and r-OAS-F II, the r-OAS and r-JRP problems are operated separately. 

The r-OAS-B and r-OAS-F are solved by our tabu-enumeration algorithm. For the 

comparison, the results of our BIO model are also decomposed into two categories: one 

does not cooperate with r-JRP (BIO I) while the other does (BIO II). 

8.7.3 Results and Analysis 

Table 8-4 presents the best decision for OAS with |Ω1| = 34 and |Ω2| = 10. The 

r-OAS-B, r-OAS-F, and BIO all accept eighteen new orders. In comparing the results with 

Appendix II, one can observe that the nervousness of this production system is low, as the 

scheduling plan for existing orders remains unchanged. In this situation, the total net 
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revenues of r-OAS-B I, r-OAS-B II, r-OAS-F I, r-OAS-F II, BIO I, and BIO II are 338,840, 

340,560, 340,470, 345,730, 340,540, and 348,900, respectively. Compared to other 

approaches, BIO II demonstrates better performance, regardless of cost Π1, Π2, or Π3. This 

performance is achieved by identifying a better production sequence, as the accepted orders 

are the same; see the results of r-TAS-B, r-TAS-F, and the BIO. For the flow lines, the 

state-space equation is important in reducing the tardiness penalty cost because it can 

accurately predict production capacity (see the results of r-OAS-B and r-OAS-F). In view 

of the cost Π1, Π2, or Π3, the proposed r-JRP can significantly reduce Π2 and Π3, whereas 

Π1 can be increased slightly.  

In conclusion, when compared to the bottleneck-based and flow-shop approaches, 

our BIO model can increase the profit of this assembly line by 2.79% and 2.48%, 

respectively. This improvement is significant, as the average net revenue of this assembly 

plant has been only approximately 10% over the last ten years. Except for profit 

improvement, the BIO model can provide accurate information for production process 

control and can in turn improve the capacity of production systems to make precise 

decisions. To further test the performance of our BIO, several experiments regarding the 

quantity of real-time orders are designed. We observe the quantity of real-time orders every 

60 min over the preceding five days and find that 80% of the samples are located between 

6 and 34 orders. Figure 8-7 shows the total net revenue of the proposed six approaches for 

r-OASR by changing |Ω1| from 6 to 34. Figure 8-7 shows that the total net revenue of the 

BIO approach decreases with the quantity of incoming orders. This result is consistent with 

reality and shows that the BIO and its tabu-enumeration algorithm can respond to different 

production parameters. Upon observing the net revenue of r-OAS-B II, r-OAS-F II, and 
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BIO II, it can be observed that BIO II consistently demonstrates better performance and 

yields a more significant benefit for manufacturers. In comparing the results of r-OAS-F 

and BIO with r-OAS-B, one may observe that considering the job dynamic transition 

behaviors of flow lines enables production capacity to be predicted more concisely, which 

can then generate a better OAS scheme. Finally, in examining the results with and without 

r-JRP, it can be concluded that the r-JRP can decrease operation cost significantly, although 

it can also occasionally prompt a slight increase in the tardiness cost.  

 

Figure 8-7 The performance of the BIO with different quantities of incoming orders 

Table 8-5 and Table 8-6 list the operation costs of the proposed six approaches in 

these sensitive experiments. Compared to the r-OAS-B, the research results reveal that the 

BIO and r-OAS-F can sometimes improve the quantity of accepted orders due to a more 

accurate estimation of the job makespan, such as when |Ω1| = 30 and |Ω1| = 26. In other 

situations, the quantity of orders accepted by the six approaches is the same, but the types 
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of accepted orders and the corresponding schedules are different. Our BIO consistently 

identifies a better OAS decision, even though the operation costs of production systems are 

sometimes higher than those of other approaches. For example, the order tardiness penalty 

cost of BIO II in the case |Ω1| = 26 is 18,140. When compared to the r-OAS-B II and r-

OAS-F II, this cost increases by 34.91% and 47.77%, respectively. However, in this 

situation, BIO II can increase the net revenue of production systems by 2.09% and 2.03%, 

respectively. This increase in profit is significant for an assembly plant.  

8.7.4 Sensitivity Analysis and Discussions 

Sensitivity experiments conducted on parameters 𝑤1,𝑗 , 𝑑𝑗 , 𝑤2,𝑗 , and 𝑤3,𝑗  are 

designed in this section, and several managerial implications can be concluded based on 

the results. Figure 8-8 shows the total net revenue F and the accepted order quantity for 

different 𝑤1,𝑗 and 𝑑𝑗. The sensitivity experiments decrease 𝑤1,𝑗 by 2 or increase 𝑑𝑗 by 300 

at every step, while keeping other parameters at their initial value. As shown in Figure 8-8, 

the accepted order quantity and total net revenue can be increased by increasing 𝑑𝑗 and 

decreasing 𝑤1,𝑗, respectively. The results are consistent with reality and demonstrate the 

efficiency of our algorithm. Moreover, focusing on the effect of parameter 𝑤1,𝑗, the total 

net revenue and accepted order quantity can be increased slightly when Δ𝑤1,𝑗 ≤ 4, while 

the two figures can be increased linearly when Δ𝑤1,𝑗 > 4. Compared to 𝑤1,𝑗, the effect of 

𝑑𝑗 is smaller. The total net revenue F and accepted order quantity obviously increase with 

𝑑𝑗 when Δ𝑑𝑗 ≤ 900, while the increasing trends of the two figures slacken when Δ𝑑𝑗 >

900.  



 212 

Figure 8-9 reveals the total net revenue F and the accepted order quantity with 

different 𝑤2,𝑗 and 𝑤3,𝑗. The sensitivity experiments increase 𝑤2,𝑗 by 0.2 or increase 𝑤3,𝑗 

by 0.1 at every step, while keeping other parameters at their initial value. As shown in 

Figure 8-9, the total net revenue F decreases when 𝑤2,𝑗 and 𝑤3,𝑗 increase Specifically, the 

increase in 𝑤2,𝑗 and 𝑤3,𝑗 will not reduce (see the rectangle without filling) or even increase 

(see the rectangle with filling) the accepted order quantity initially. This phenomenon is 

reasonable, as the BIO model must balance the revenue and cost when searching for a 

solution. Moreover, comparing the effects of 𝑤2,𝑗 with those of 𝑤3,𝑗, it is known that the 

total net revenue F is more sensitive to 𝑤3,𝑗. This means that manufacturers should pay 

more attention to WIP inventory costs when they desire to improve the net revenue of their 

production systems. 

Observed from above research results, several substantive insights about r-OASR 

development can be obtained. Firstly, the data-rich environment in today’s smart 

manufacturing enables us to make precise r-OASR decisions. As presented in previous 

literature, the existed bottleneck-based approach and flow-line-based approach with 

infinite buffers support making r-OASR decisions by estimating system performance (i.e., 

system throughput, WIP inventory, and final product inventory). This estimation increases 

the total operational cost of a production system and thus reduces the net revenue, see the 

results in Table 8-4. In contrast, our data-driven representation for r-OASR can recognize 

real-time production status and precisely predict system performance by modelling finite 

buffer constraints and analyzing real-time data collected from shop floors. This precise 

recognition and prediction can help to make a better r-OASR decision and ultimately 

increase the net revenue.  
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Figure 8-8 The net revenue and accepted order quantity with different tardiness 

penalty coefficient and due date 

 

Figure 8-9  The net revenue and accepted order quantity with different unit 

inventory cost for a final product and inventory WIP cost 

Secondly, the data fusion of a shop floor gives birth to more joint optimization 

problems, in which each subproblem traditionally belongs to different decision-making 

levels. Conventional wisdom has to separately treat these subproblems because of the 

impassability of data. The upper-level problem cannot seek cooperation from lower-level 

and in this regard the lower-level problem also cannot obtain the best input. The data fusion 

makes joint optimization possible as decisions among different levels can interact with 
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each other freely and quickly, see the example in Figure 8-2 and Figure 8-3. This 

interaction can create a global optimum solution for a production system. With this 

solution, the system can be operated more concisely and with lower costs, see the results 

of r-OASR in Figure 8-7, Table 8-5, and Table 8-6.  

Thirdly, today’s smart manufacturing necessitates our r-OASR. The r-OASR can 

achieve the quick response to abnormal events by minimizing multiple operational costs. 

This response is significant in constructing smart production and networked 

manufacturing, see the results in Figure 8-8 and Figure 8-9. Certainly, the nervousness 

problem of r-OASR is a hot topic in many studies. In smart manufacturing, however, this 

nervousness can be reduced as the task rescheduling at different decision-making levels 

can be achieved quickly and automatically along with a r-OASR decision.  

Table 8-4 Best decisions for OAS with different approaches 

Approach 
Accepted orders 

(𝑟𝑗) 

Production sequence 

(𝑧𝑗,𝑙) 
Revenue 

Cost Net 

revenue  Π1 Π2 Π3 

r-OAS-B I 
17,20,23,25,27,28,

29,30,31,34,35,36,

38,40,41,42,43,44 

2,4,1,5,3,8,6,10,7,9,44,17,4

0,25,20,23,36,31,38,41,29,

27,35,28,43,42,30,34 

373,100 17,622 6,487 10,154 338,840 

r-OAS-B II 
17,20,23,25,27,28,

29,30,31,34,35,36,

38,40,41,42,43,44 

2,4,1,5,3,8,6,10,7,9,44,17,4

0,25,20,23,36,31,38,41,29,

27,35,28,43,42,30,34 

373,100 18,082 4,778 5,247 340,560 

r-OAS-F I 
17,20,23,25,27,28,

29,30,31,34,35,36,

38,40,41,42,43,44 

2,4,1,5,3,6,8,10,9,7,44,17,4

0,20,25,23,36,41,31,35,38,

27,43,28,42,29,34,30 

373,100 15,598 6,871 10,166 340,470 

r-OAS-F II 
17,20,23,25,27,28,

29,30,31,34,35,36,

38,40,41,42,43,44 

2,4,1,5,3,6,8,10,9,7,44,17,4

0,20,25,23,36,41,31,35,38,

27,43,28,42,29,34,30 

373,100 15,866 6,156 5,359 345,730 

BIO I 
17,20,23,25,27,28,

29,30,31,34,35,36,

38,40,41,42,43,44 

2,4,1,5,3,6,8,10,9,7,44,17,4

0,20,25,23,36,31,38,41,27,

35,28,43,29,30,34,42 

373,100 15,598 6,794 10,164 340,540 

BIO II 
17,20,23,25,27,28,

29,30,31,34,35,36,

38,40,41,42,43,44 

2,4,1,5,3,6,8,10,9,7,44,17,4

0,20,25,23,36,31,38,41,27,

35,28,43,29,30,34,42 

373,100 16,013 3,755 4,456 348,900 
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Table 8-5 The operation costs without r-JRP 

|Ω1| 
r-OAS-B I  r-OAS-F I  r-OAS I 

∑ 𝑟𝑗
|Ω1|
𝑗=1   Π1 Π2  Π3 ∑ 𝑟𝑗

|Ω1|
𝑗=1   Π1 Π2 Π3 ∑ 𝑟𝑗

|Ω1|
𝑗=1   Π1 Π2 Π3 

34 18 17,622 6,487 10,154 18 15,598 6,871 10,166 18 15,598 6,794 10,164 

30 14 12,632 7,027 4,712 15 19,930 6,749 8,974 15 18,930 7,235 7,838 

26 13 13,098 7,898 8,371 13 11,856 7,387 8,618 14 17,798 7,883 8,891 

22 10 17,184 5,983 8,090 10 15,386 5,951 8,073 10 15,386 5,156 8,028 

18 7 17,922 4,801 7,213 7 15,386 4,707 7,248 7 14,386 4,287 6,731 

14 5 16,418 2,093 5,744 5 14,562 2,124 5,763 5 13,562 2,124 4,763 

10 4 15,432 3,008 5,652 4 14,988 2,108 5,452 4 14,462 2,002 4,052 

6 2 14,032 2,320 4,420 2 13,832 3,100 5,020 2 14,002 2,113 4,028 

Table 8-6 The operation cost with r-JRP 

|Ω1| 
r OAS B II  r OAS   II  r OAS II 

∑ 𝑟𝑗
|Ω1|
𝑗=1   Π1 Π2 Π3 ∑ 𝑟𝑗

|Ω1|
𝑗=1   Π1 Π2 Π3 ∑ 𝑟𝑗

|Ω1|
𝑗=1   Π1 Π2 Π3 

   18 18,082  ,778 5,2 7 18 15,866 6,156 5, 59 18 16,01   ,755  , 56 

 0 1  12,6 2 7,027  ,712 15 20,090 5,720  ,822 15 20,526 2,992  ,725 

26 1  1 ,  6 6,  1  ,612 1  12,276 5,275  ,592 14 18,1 0 2,79   ,729 

22 10 17,668  , 8   ,    10 15,610 5,8 6  ,501 10 15,619 2,588  , 20 

18 7 18,2 8  ,7 7  ,095 7 15,702  ,659  ,229 7 15,7 0 2, 26  ,150 

1  5 16,7 8 2,08   ,    5 1 ,880 2,080  ,595 5 1 ,880 2,080  ,595 

10   1 ,082 2, 08  ,966   1 ,002 1,98   ,108   10,6   1,88   ,52  

6 2 12,122 2,086  ,62  2 9,008 1,5 8  ,208 2 6,562 1,68   ,00  
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8.8 Chapter Summary 

This BIO’s efficiency is verified via its practical application to a car seat assembly 

line. Given the results of various experiments, several important managerial insights for 

the r-OASR problem can be formulated. (1) An inherent bilevel interactive decision 

framework exists in r-OASR. The proposed hierarchical joint optimization based on the 

leader-follower game can generate a more efficient solution for the r-OASR problem. (2) 

The r-OASR problem manages the limited buffer and blocking constraints by analyzing 

real-time and transparent data from the shop floor. Various operational costs in terms of 

inventory and tardiness are considered in this problem. The research results compensate 

for the insufficiency of Rahman et al. (2015) and can increase the enforceability of an OAS 

scheme. (3) The parameter design of an order can obviously affects order acceptance, 

scheduling, and job-releasing decisions, including exogenous parameters 𝑤1,𝑗 and 𝑑𝑗 and 

endogenous parameters 𝑤2,𝑗  and 𝑤3,𝑗 . The design of these parameters should be 

coordinated by outsourcers and manufacturers to maximize the benefit of the entire 

manufacturing network. (4) Smart manufacturing necessitates r-OASR for its quick 

response to abnormal events. The nervousness caused by using r-OARS can be reduced by 

the adaptive capacity of smart manufacturing.  

This chapter provides decision-making support for manufacturers to synchronize 

internal and external material flow, which is achieved by synergizing real-time status of 

shop-floor, job acceptance planning and sequencing problem together. This original work 

not only eases the acceptance of crowdsourced manufacturing paradigm, but also provides 

a new job scheduling architecture in new era.  
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CHAPTER 9. BLOCKCHAIN-BASED SMART CONTRACTING 

AND DISTRIBUTED DATA MANAGEMENT FOR 

INFORMATION SERVICE SYSTEMS IN CROWDSOURCED 

MANUFACTURING  

Following an X-as-a-Service paradigm, MaaS provides information services for 

platform and manufacturer crowds along a crowdsourced manufacturing process. These 

services are required to allocate manufacturing resources, track crowdsourcing process, 

manage product fulfillment data, and serve crowdsourcing contracting. Because 

manufacturers involved in a value chain are searched through a crowdsourcing process, 

these manufacturers are widely dispersed, who challenges data management to handle 

complex process data stream. Moreover, these process data streams are required to 

accessible by platform and corresponding open innovators for monitoring of execution 

quality and large-scale cooperation of the manufacturers. 

Blockchain technology has been widely applied for highly distributed security 

database of certain and unerasable records, public ledges, or digitalized events among the 

participating entities, which is based on smart contracting technology to solidify 

cooperation relationship among stakeholders (Crosby et al., 2016). It utilizes hash function 

to encrypt the information to a block and therefore publish the block to every entity in the 

network. It offers a secure key to protect process data while ensuring the accessibility to 

every decision agent inner the value chain. Blockchain has been developed to serve a 

population of companies to connect their engineering software and share the data along 

with the network (Xu et al., 2016). Based on the model of manufacturing activities, the 
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decision agents can monitor and verify the execution of the untrusted process under a 

collaborative scenario (Weber et al., 2016). With the synergy of the cloud database 

technology, it can offer the query and retrieve services for the manufacturing data source 

from the machine level data, manufacturing resources data, production data, as well as 

logistic data (Li et al., 2018a). Instantiating blockchain along product fulfillment process 

acts as a driving force of manufacturing towards a smart and service-oriented one (Chen et 

al., 2021). 

In this regard, this chapter proceeds as follows. Section 9.1reviews essential 

technical cornerstones of a blockchain-based information service system for platform-

driven crowdsourced manufacturing. Section 9.2execute an architectural design of the 

information service system with a three-layer structure for crowdsourcing environment. 

Section 9.3implements smart contracts technology to build up the foundation of 

cooperation relationships among decision agents. Section 9.4develops distributed data 

streaming architecture to organize crowdsourcing product fulfillment data based on IoT 

hardware. Section 9.5reports a case study on tank trailer industry to verify the function of 

proposed information service system and examines the potential of operation excellence in 

crowdsourcing environment. Section 9.6reflects the proposed methods and information 

service system by summarizing their contributions and further development threads. 

9.1 Blockchain-Based Information Service System  

The recent advancement of smart sensing and industrial IoT provides a large variety 

of data sources to backtrack the life cycle of the product and paves the way for the quality 

check from a distance (Tian, 2016). The low latency network and ubiquitous connectivity 
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enable the streaming of the real-time status of the material flow in the factory to the cloud 

database for logistic coordination, which increase utilization rates of equipment and 

decrease delivery peaks (Qu et al., 2016). The platform-based blockchain structure for IoT 

can also ease the adoption of crowdsourced manufacturing since it enables interactives 

among manufacturers via smart contracts in a dispersed and peer-to-peer network without 

intermediary trust (Bahga and Madisetti, 2016). With the combination of industrial IoT and 

blockchain, the MaaS can gather the actual process of manufacturers in the real-time and 

evaluate their contributions to the entire value chain. 

The different decision agent group has a distinctive role along the value chain in 

platform-driven crowdsourced manufacturing. Following a function-behavior-structure 

analysis in Section 4.1, open innovators, manufacturers, and platform can be categorized 

as playing a functional, behavior, and structural role, respectively. Open innovators bring 

design of innovative products and connections to the market to capture product value. 

Manufacturers act a behavior role who share their manufacturing capabilities for realization 

of MaaS. Platform plays a structural role who organizes manufacturing network to serve 

innovative projects. The cooperation of platform and manufacturers implies a reliance on 

value gathering tole of open innovators. On the other hand, though value gathering 

capabilities of the innovation products depend on the product design and connections to 

the market, the quality of the manufacturing and coordination of the manufacturing 

network will influence the satisfaction of the customer. Therefore, three decision agent 

clusters are closely linked with each other, and they all succeed and fail together. A product 

fulfillment block can secure the product fulfillment data and crowdsourcing contracts, 
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which enables the transaction by an exchanging system to serve manufacturing industries 

in an opened environment (Li et al., 2018b).  

MaaS should offer the service of exchanging the product fulfillment block, as well 

fulfillment data and crowdsourcing contracts. As a point-to-point system, blockchain 

network lacks a centralized server system to reduce information management and trust 

establishment cost, thus, employing a consensus mechanism to verify transactions by nodes 

in the network, which includes Proof of Work (PoW), Proof of Stake (PoS), and Proof of 

Authority (PoA) (Du et al., 2017). Traceability is the second essential property carried by 

blockchain technology, which tracks each cryptocurrency transaction among users, the 

information storing, and message sending in a blockchain network. Every block and 

corresponding verified transactions in a blockchain network are associated with unique 

hash values to locate a block or a transaction, as well as serve as a cryptography method 

for accessing any block with the hash address (Zheng et al., 2018b). Unchangeability is 

another important property of the blockchain technology. Once a block is mined, 

transactions stored in the block can be only read but not edit or delete (Nakamoto, 2008). 

This ensures that the information in the blockchain cannot be altered without agreement 

from the majority of nodes in the blockchain network. Alternatively, changes or update to 

the old information can be sent through new transaction to the blockchain and stored in a 

different block. Transparency ensures each node or user of the blockchain network can 

only access the same blockchain network. The synergy of traceability, unchangeability, 

and transparency ensures that any changes to the blockchain is detectable and traceable to 

all supply chain participants (Kouhizadeh and Sarkis, 2018). Similarly, for a manufacturing 
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service provided by multiple manufacturers, a blockchain-based information system can 

provide secure and trust to them.  

9.2 Architecture Design of Information Service System  

To provide information exchanging services for process along with the platform-

driven crowdsourced manufacturing, a conceptual system architecture based on industry 

IoT and blockchain technology is developed. As shown in Figure 9-1, a three-layer 

architecture establishes the interactions among decision agents, as well as the decision 

support and product fulfillment data served by the proposed information service system, 

which are resource layer, cyber layer, and contracting layer. 

The contracting layer is the core of the information service system for platform-

driven crowdsourced manufacturing. It provides the way of consolidating cooperation 

relationships among decision agents, like project manager and manufacturing service 

provider, by implementing blockchain technology to construct contract database and 

fulfillment data base. Contract database collects crowdsourcing contracts from cyber layer 

to record the task assignment result and the essential profile of corresponding 

manufacturing service provider. Project manager and service provider can request the 

access to the contract database and then read the contract for collaboration. A blockchain-

based fulfillment database collects product fulfillment data from planning and streaming 

database in lower cyber layer, respectively. It provides trace of a fulfillment process, which 

includes decision making results and activity logs. The manager and service providers can 

stream their activities and supervise fulfillment process. Thus, an information exchange 

can be achieved. 
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Cyber layer provides an intermediate between the contract layer, which reflects the 

collaboration relationships among decision agents, and resource layer, which execute the 

manufacturing service on physical level. It provides a guideline for crowdsourcing task 

execution and testing, which is achieved by managing product specs and support the 

derivation of crowdsourcing contracts. A digital twin of physical crowdsourcing network 

is established in cyber level in the form of a cyber production system model (Chapter 8 

proposes a real-time cyber model in detail). It paves way of receiving real-time status of 

crowdsourcing task execution from smart sensing IoTs in resource level. After the 

streaming data are collected in streaming database, the decision-making results can be 

derived and saved into planning database.  

Resource layer provides the hardware framework for the platform-driven 

crowdsourced manufacturing community. The manufacturing resources can be 

reconfigured according to the crowdsourcing task derivation, as the decomposition result 

of product precedence diagram. After the task execution initiated, resource layer applies 

smart sensing IoTs to monitor material flow inter- and inner-manufacturers, which can be 

visualized as logistic routes and process routes, respectively. The fulfillment data stream 

can serve the project manager and service provider a way of sense the real-time status of 

crowdsourcing task execution.  

Based on this architecture, the research tasks in information service system for 

crowdsourced manufacturing can be decomposed into two fields. The first category is using 

smart contracting technologies to organize crowdsourcing network. The second category 

is collecting and managing product fulfillment data in a distributive manner. 
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Figure 9-1 System architecture of information service system for platform-driven 

crowdsourced manufacturing  
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9.2.1 Contracting Layer 

The contracting layer is the top layer of the entire system, which provides services 

of managing the user information, product fulfillment data, and logistic data based on a 

blockchain network. Each block in the network contains the unstructured data from cyber 

layer to the blockchain and the block information which records the transaction process. In 

the blockchain network, there are three types of blocks which are the user block, product 

fulfillment block, and logistic block. All three types of blocks contain the sender’s account 

address, the address of the receiver (blockchain), and the transaction hash. Unstructured 

data in the user block stores the user information of the supply chain participants and the 

block type. In unstructured data, the user ID is a string data that stores participant’s name, 

and the user type of a supply chain participants is also stored in the user block. Each user 

block represents one participant in the supply chain. There are three types of participants 

which are project manager, logistic provider, and manufacturing provider. The first few 

blocks in the blockchain network are always user blocks in the designed system since user 

information collection is prior to the supply chain fulfillment data collection. Product 

fulfillment block stores the extracted manufacturing data from the manufacturing provider, 

which reflects the manufacturing process across a certain time interval. Similar to the user 

block, it contains the block information and unstructured data. To record the product 

fulfillment progress, unstructured data have the part name information, start time, end time, 

and the number of parts finished. Logistic block stores the data provided by the logistic 

provider. Unstructured data in the logistic block contains the information of departure 

location, destination location, current location, and expected arrival time.  
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To upload the data to the blockchain network, stream product fulfillment data from 

the logistic and manufacturing provider are uploaded to the distributed streaming database 

for information extraction. There are two reasons for not uploading raw stream data to the 

blockchain network directly: (1) To reduce the data size, (2) To reduce the difficulties of 

reading product fulfillment progress. The coordinate manager supervises the whole 

uploading process. 

 

Figure 9-2 Contracting layer of blockchain-based information service system 

The mechanism of the blockchain allows the stored information unerasable and 

traceable. However, unstructured data stored on the chain is difficult to access and manage. 

In the designed system, raw data is structuralized and stored. The database creation process 

is periodical since users keep updating product fulfillment progress in the blockchain 

network. As shown in the figure, the database stored the participants’ information, adjacent 

manufacturing providers and logistic providers, manufacturing tasks fulfillment progress, 
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and logistic tasks fulfillment progress. The project manager has full read access to the 

database. Data access of the manufacturing provider and logistic provider are limited where 

they can only access the product fulfillment progress uploaded by the upstream and 

downstream participants. 

9.2.2 Cyber Layer 

Cyber layer is the middle layer of the whole system. Product specifications are 

generated from the product, product family data, and product variant data. The product 

family specifies the alternative feature choices for similar products, and the product variant 

data shows a different combination of the product. The product specification clarifies the 

requirements for each part, required manufacturing process, and required assembly process 

for each product variant. To construct the supply chain of a certain product variant, its 

product specification is decomposed into tasks and sent to the project manager. Logistic 

providers and manufacturing providers are attracted to participate in the crowdsourcing 

task by broadcasting the specifications. A crowdsourcing contract is established based on 

the product specification and the negotiation-based contracting mechanism (described in 

Chapter 5 in detail) among the project manager, logistic provider, and manufacturing 

provider. Negotiation-based contracting involves the share of profit, expected product 

delivery date, quantity of orders, and product quality. A planning database is created based 

on the results uploaded by the logistic and manufacturing provider, respectively. The 

planning database creation is supervised by the project manager for conformity reason. The 

planning database act as a handbook for task execution, which includes manufacturing task 

specifications, logistic task specifications, precedence relationship, and execution 
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guidelines. During task execution, the streaming database stores the fulfillment data stream 

from smart sensing IoTs in resource layer. 

 

Figure 9-3 Cyber layer of blockchain-based information service system 

9.2.3 Resource Layer 

Resource layer is the bottom layer of the whole system. In this layer, crowdsourcing 

tasks are generated and distributed to each participant based on their available resources, 

and the stream data of each physical entity of the product fulfillment resource are collected 

and uploaded. The product fulfillment resource of the project manager, logistic provider, 

and manufacturing provider are reconfigured first. Logistic resources are resources used to 

receive, deliver a certain amount of material and products to participants in the supply 

chain. Management resources are used to coordinate and supervise the whole product 

fulfillment process. Manufacturing resources are the available product manufacturing 

machines. The product precedence diagram, developed from the contract, contains the 

manufacturing task 𝑀𝑡𝑘 as shown in the figure. The manufacturing tasks are decomposed 
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and regrouped based on the manufacturing specs and requirements. By mapping the tasks 

decomposed from the product precedence diagram with the product fulfillment resources, 

the product fulfillment process is established as shown in the figure. In the product 

fulfillment process, each manufacturing task is distributed to a manufacturing provider. 

Furthermore, logistic tasks are generated based on the precedence and physical locations 

of the manufacturing providers. Logistic tasks are distributed to logistic providers for 

establishing product fulfillment process. 

 

Figure 9-4 Resource layer of blockchain-based information service system 

The product fulfillment process is decomposed into logistic routes and planning 

outflow while executing tasks. Product and materials are transported through logistic routes 

are from physical locations to physical locations by entities of logistic resources. In the 

planning outflow, part manufacturing and assembly are from machine to machine among 

different manufacturing providers. On the same time, stream product fulfillment data are 

collected while executing the logistic routs and planning outflow through smart sensing 
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IoT network. Local project manager, logistic provider and manufacturing provider can 

monitor the working condition through smart sensing IoT network. Meanwhile, stream data 

are also uploaded to other space for supervising and managing for the distant participants.  

9.3 Blockchain-Based Smart Contracting 

The architecture of the contracting management is shown in Figure 9-5. Three vital 

parts in the system are blockchain network, a distributed database based on Interplanetary 

File System (IPFS) technology, and function portal. IPFS-based Distributed storage system 

is the intermediate between function portal and blockchain network. On the one hand, IPFS 

stores large-sized raw data upload by using function portal. On the other hand, it stores the 

categorized extracted data imported from the blockchain network which enables function 

portal to provide better access and management service to stakeholders. 

9.3.1 IPFS-based Distributed Storage System 

IPFS is the protocol for a distributed data storage system. Without a centralized 

client server, IPFS relies on lots of connected nodes in the P2P network. When a node 

uploading a file to IPFS, a cryptographical hash address is generated as content identifier 

(CID). The CID is a unique “fingerprint” to the uploaded file that can permanently record 

the existence of a file. CID is required for accessing file uploaded by other nodes. When a 

file is updated in IPFS, a new CID is generated. Therefore, any changes in the uploaded 

file are detectable in IPFS. It can be concluded that IPFS is a high-performance and secure 

distributed storage system which enables users to store large-sized data and concurrent data 

access (Zheng et al., 2018a). 
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Figure 9-5 Architecture of the Contracting Management 

IPFS stores raw data and extracted data of the crowdsourcing manufacturing task 

in the proposed architecture. The raw data includes product fulfillment streaming data, 

logistic streaming data, and contract data. In the product fulfillment process, the real-time 

task execution status is reflected and stored in the streaming product fulfillment data and 

logistic data collected through IoT based network. Each service provider acts as a node in 

the IPFS by uploading their local streaming data. Contract data contains manufacturing 

task specifications, logistic task specifications, precedence relationship and execution 

guideline, which is created and managed by the coordinate manger. Data extraction 

algorithm mines critical information in the raw data to reflect task execution status, which 

can be sent to the blockchain network through transactions. Block data retrieve algorithm 

can structuralize the extracted data in the blockchain and save it in IPFS. Therefore, the 

function portal can ease difficulties of operating and managing product fulfillment 

information in blockchain. 

9.3.2 Function Portal 
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Task execution status and information, tracking, and tracing services are supported 

by the function portal. In data and information upload field, logistic providers and 

manufacturing providers update the user information, upload the streaming logistic data, 

update the contract information, and update the steaming product fulfillment data under the 

supervision of the coordinate manger. 

9.3.2.1 Data and Information Upload Field 

There are three service functions in data and information upload field. The first 

service function is “User Information Update”, which contains names of providers, contact 

information, and location. It is stored in the contract data in the IPFS which is managed by 

the coordinate manager. Therefore, the coordinate manager has the full access to the 

contract database. Logistic and manufacturing providers have the read access to the 

contract data. All participants can track the changes to the contract data through CID. 

“Steaming Logistic Data Upload” is the second service function, which enables 

logistic provider to upload the streaming logistic through the function portal. The function 

portal establishes the connection between the local database and IPFS and send the CID to 

the contract database. File stored in the IPFS is automatically updated periodically based 

on the streaming data in the local database. The time interval between updating the IPFS 

file is determined by the negotiation between logistic providers and coordinate manger. 

The change to the local file is trackable through the corresponding change to the CID.  

“Contract Information Update” is the third service function for coordinate manager. 

It allows coordinate manger to update the contract information based on the feedback and 
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negotiation from service providers. The change to the information in contract database is 

trackable through IPFS. 

“Streaming Product  ulfillment Data Upload” is the fourth service function for 

establishing the connection between manufacturer’s local database that stores the raw 

streaming product fulfillment data to IPFS. The CID of the file stored in the IPFS is updated 

due to the change of data stored in the local database for tracking purpose. Manufacturing 

providers and the coordinate manger can reach the agreement about the time interval 

between updating. 

9.3.2.2 Data and Information Access Field 

The Data & Information Access layer provides service for accessing the task execution 

status of logistic providers and manufacturing providers. In a supply chain network, the 

downstream participant can prepare for providing the service better with knowing the task 

execution status from its upstream participant. Based on different types of tasks, different 

access permission is given to manufacturing provider and logistic provider. The access 

permission scope defines whose and how much information can be viewed by a participant. 

Manufacturing providers, logistic providers and the coordinate manager can determine the 

permission scope for each role to optimize the task execution process. Data & Information 

Access layer can retrieve the data for a participant based on its permission scope. Five 

services are provided in this layer. 

“Contract Data Access” allows participant to read the accessible information stored 

in the contract data includes contract information, task execution guidelines, and product 
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specifications. The CID makes it possible for participant to view all history versions and 

the latest data. 

“Raw Logistic Data Access” provides access for participants to view the accessible 

raw logistic data through the function portal. Since the data is stored in the IPFS, this 

service returns all CID of the data to the user. Therefore, the participant can track both the 

latest and history task execution status of other participants. 

“Extracted Logistic Data Access” provides access for extracted logistic data. As 

mentioned in the previous section, extracted logistic data is imported from blockchain and 

stored in the blockchain imported database. This service retrieves the accessible logistic 

service execution status to the participant through sending the related blockchain 

transaction hashes. With using the retrieved transaction hashes, message that carries 

extracted logistic data is accessible to the participant. 

“Raw Product Fulfillment Data Access” plays a similar role as “Raw Logistic Data 

Access”. This service allows the participant to view all versions of the accessible raw 

product fulfillment data through CIDs. 

“Extracted Product Fulfillment Data Access” is a dual of “Raw Product Fulfillment 

Data Access”, which allows the participant to access the latest extracted product fulfillment 

data through transactions hashes. 

9.3.3 Blockchain Network 

Transactions that contain simplified user information and extracted task execution 

status are sent to blockchain network.  
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“User Information” is the first type of extracted data in blockchain. The complex 

information of manufacturing providers and logistic providers is simplified to user type 

and user ID. The user type identifies if the participant is a logistic provider or 

manufacturing provider. User ID is the name of service provider. A label is also added to 

the sending transaction for identifying the transaction is a User Data transaction. User Data 

extraction process is executed when the participant uses the User Service Update service 

in the function portal. The complex user information is firstly uploaded to IPFS and then 

extracted to the blockchain network. While sending the transaction, a blockchain network 

account is created for the user. Sender’s address is recorded while sending the transaction 

and will be mapped with the User ID.  

“Product Fulfillment Data” is the second type of data stored in the blockchain 

network. The raw streaming product fulfillment data is transacted to the blockchain 

network after users updating the raw product fulfillment data in IPFS. The raw product 

fulfillment data is extracted to message that can reflect the task execution status. For 

example, it contains the time that the file is updated in the IPFS, the time of starting to 

collect local product fulfillment data, the time of ending collecting local product fulfillment 

data, the physical location of the task execution, the name of the executing task and the 

number of finished tasks. In the extracted data, status tracked by small time interval is 

enlarged. Furthermore, multiple manufacturing processes are simplified to one process 

with yes and no state. Despite the task execution status, the label is added to the extracted 

data for identifying if it is a product fulfillment data. The extracted data is transacted to the 

blockchain network by using the same account while sending the extracted user 

information. 
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“Logistic Data” is the third type of extracted data. The raw logistic data stored in 

the IPFS is extracted with the similar mechanism to the product fulfillment data extraction. 

Data extraction algorithm simplified the status changes in raw data. Extraction enlarges 

time interval of the status tracking and simplified the complex transportation process. 

Blockchain network receives the logistic data transaction after the user updates the raw 

logistic data in IPFS. 

9.4 IoT-Based Distributed Data Streaming Management 

IoT technology provides an access to each resource and entities in platform-driven 

crowdsourced manufacturing and serves as a prerequisite for real-time task execution 

through a ubiquitous network. Sensing real-time task execution status not only significantly 

gears forward the traditional manufacturing landscape to a smarter and more efficient era, 

but also envisions a decentralized crowdsourcing manufacturing network through a cyber-

physical production system (Lee et al., 2019). Figure 9-6 shows an IoT-based cyber-

physical system architecture for platform-driven crowdsourced manufacturing. The 

integration of physical infrastructure on the lower level and crowdsourcing cyber network 

on the higher level provides real-time tracing capability by implementing smart sensors. 

The RFID tags and barcodes can be used for tracing product fulfillment and logistic service 

resource through a MaaS service process. Synthesizing product fulfillment data streamed 

by IoT can reflect the status of inner- and inter-manufacturer WIP and material flow. 

The raw tracing data is firstly uploaded to the local database, which can be viewed 

and utilized by local manufacturers for real-time production monitoring and control. 

Copies of these raw data are transferred as a shared and extracted copy to blockchain-based 
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network. Once entering the blockchain-based network, any updates to the tracing data can 

be tracked and viewed by corresponding stakeholders, which includes coordinate manager 

and other service provider. 

 

Figure 9-6 IoT-based cyber-physical system for platform-driven crowdsourced 

manufacturing 

Figure 9-7 demonstrates a process of operating the information service system. The 

raw product fulfillment data is first collected from the local network and updated after each 

locally determined time interval. The streaming data file in the local storage is copied and 

transferred to IPFS with a different time interval. As discussed in the Section 9.3, this time 

interval is determined by both coordinate manger and local service provider based on the 

requirements and situations of the specific task. The connection between local storage and 

IPFS is established by manufacturing providers and logistic providers through a connection 

setup interface. The connection establishment activity in the interface is monitored by the 

coordinate manager. The connection setup interface also provides basic service for users 
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to check and manage the connection status of local database. For example, the user can 

check the hash address list of one updating raw data file and the last time when it is updated. 

In the proposed system, the coordinate manager, manufacturing provider, and logistic 

provider utilizes connection setup interface for sharing contract, raw product fulfillment 

data, and raw logistic data, respectively. 

 

Figure 9-7 Operation flow of the integrated information service system 

Information is extracted from the raw data once after update. The extracted data 

summarizes the task execution status based on the raw data. Among three types of raw data 

to be extracted, raw product fulfillment data contains the most information, which traces 
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unsynchronous processes in data files. For example, the process can be defined by several 

elements: the time when process happen or ends, entity ID of the entity that interacts with 

the process, and the resource grabbed for executing the process. For each entity entering 

the defined product fulfillment system, it can only leave the system after finishing the last 

designed step. Therefore, if an algorithm can count the number of entities that have been 

through the last process for leaving the system, the number of finished tasks can be 

determined. With the start and end time in the raw data, the name of manufacturer who 

updated the raw data, the task name, and determined number of finished tasks can be 

extracted. Table 9-1 shows pseudo-code of product fulfillment data extraction algorithms. 

Table 9-1 Example pseudo-code of product fulfillment data extraction 

Input: 1. Name of the task.  

            2. Table that record when does a process happen in the system. The process is defined 

as: an entity occupies a resource for executing a certain action and one entity requires several 

processes for leaving the system. 

Output: Extracted data that summarize the overall action exaction results. 

1:   begin 

2:       Acquire the time when the first process happens in the table as 𝑡𝑠𝑡𝑎𝑟𝑡;   

3:       Acquire the time when the last process ends in the table as 𝑡𝑒𝑛𝑑;   

4:       Identify the last process associate with entities for leaving the system 𝑝𝑙;   

5:       𝐿 ← { }; 

6:       Foreach row in table: 

7:           Obtain the EntityID in each row and save as I; 

8:             If I not in L: 

9:                 Append I in the list L; 

10:             end 

11:      end 

12:      𝑁 ← 𝐥𝐞𝐧𝐠𝐭𝐡 𝑜𝑓 𝐿; 

13:      return 𝑡𝑠𝑡𝑎𝑟𝑡;  

14:      return 𝑡𝑒𝑛𝑑; 

15:      return name of task; 

16:      return N; 

17:  end 
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The extracted data is sent to the blockchain network. The extraction data provides 

better feedback to the distant viewer than raw data. The reduced size of data makes the 

proposed information service system can adapt most blockchain technologies. For better 

data management services, data in blockchain network is structuralized and stored in the 

IPFS. The algorithm of structuralizing the blockchain data is shown in Table 9-2. A struct 

is firstly defined which contains fields of user ID, account address, user type, list of sent 

extracted product fulfillment data, list of sent extracted logistic data, list of user ID of 

adjacent upstream or downstream service providers. Once connected to the blockchain 

network, the algorithm goes through each transaction of each block. For transactions 

contain the user information, an instance of the user struct will be created and named by 

sender’s user ID. Sender’s address and adjacent service providers are also updated at this 

time. For transactions contain the product fulfillment data, the algorithm adds that 

transaction hash to struct instance named by sender’s user ID. Similarly, for transactions 

contain the logistic data, the algorithm adds that transaction hash to struct instance named 

by sender’s user ID. After looping all blocks, a list is created to save all defined struct 

instances and exported to IPFS.  

While accessing extracted data through status tracking interface, structuralized data 

acts as a catalog which returns the cyber location of accessible information to the user. 

After sending request of access through status tracking interface, the struct instance named 

by user ID is obtained and reviewed by the access management algorithm. Then, the 

algorithm searches for the struct instances named by user ID that appears in the upstream 

service provider from the list. Once the struct instance of these service provider are 
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obtained, all transaction hashes sent by these service providers will be returned to user. 

User can view the extracted data in the blockchain by using transaction hashes. 

Table 9-2 Pseudo-code of structuralizing blockchain information 

1:  struct User{   

2:       string userID; 

3:       string address; 

4:       string usertype; 

5:       list PFDtx;   

6:       list LDtx; 

7:       list upstream; 

8:       list downstream; 

9:       function addPFD(PFD) { 

10:         self.PFDtx.append(PFD); 

11:     } 

12:     function addLD(LD) {          

13:         self.PFDtx.append(LD); 

14:     } 

15:     function addupstream(US) {           

16:         self.upstream.append(US); 

17:     } 

18:     function adddownstream(DS) {           

19:         self.downstream.append(DS); 

20:     } 

21: }    

22: Connect to Blockchain network 

23:  

24: for i in range(1 to number of block ) {  

25:    list tx_list ←  list of transactions in block i; 

26:    for c_tx in tx_list { 

27:        string extracted_data ← string stored in c_tx 

28:        if extracted_data contains user information{  

29:            string c_uid ← userID stored in extracted_data; 

30:            User globals()c_uid;      //create a User struct instance named with string in c_uid 

31:            globals()c_uid.address ← sender’s account address; 

32:            globals()c_uid.usertype ← usertype information in extracted_data; 

33:            adddownstream(string that contains downstream userID); 

34:            adduptream(string that contains upstream userID); 

35:        } 

36:        elseif extracted_data contains product fulfillment data{ 

37:            addPFD(c_tx.address);   //append the current transaction hash to PFDtx field 

38:        } 

39:        elseif extracted_data contains user logistic data{ 

40:            addLD(c_tx.address);   //append the current transaction hash to LDtx field 

41:        } 

42:    end 
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9.5 Case Study of a Tank-Trailer  

A case study of tank-trailer crowdsourced manufacturing verifies the performance 

and feasibility of the proposed blockchain-based information service system. The product 

is fulfilled through a collaboration of five crowdsourced manufacturers and two logistic 

providers. This case study demonstrates the functions of smart contracts, distributed 

information management, and product fulfillment data streaming based on IoT technology. 

There are four parts in this case study: the description of the crowdsourcing case, smart 

contracts generation, information management for task execution, and product fulfillment 

streaming data services. 

The information system developed for the case study utilizes several environments 

at different stages of the development process. To illustrate the development process, 

environments and tools are categorized by the purpose of usage which is shown in Table 

9-3. The case study is based on Ethereum blockchain network due to its advanced 

developer support Ethereum blockchain stores programs create digital twin of the 

traditional contract as “Smart Contracts” through executing functions. With using smart 

contract, secured management to the transactions is achieved. Therefore, building a 

blockchain test network based on Ethereum is the first usage purpose which employ Truffle 

and Ganache-cli. Truffle is a development framework for the Ethereum network which 

provide services like smart contract management and test network management. By 

utilizing truffle, a personal Ethereum test network can be established, and user have the 

options to adjust network properties like block size, block mining logic, and the cost of 

sending transactions. Ganache-cli is auxiliary tool for the Truffle in the case study, it can 
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access the Ethereum test network built by Truffle and show the blockchain information in 

a GUI. It acts as a demonstration tool for the test Ethereum network.  

Table 9-3 Development environments and tools 

Usage Purpose   Tools and Environment 

Building blockchain test 

network 

 Ubuntu Linux 21.10, 24 

processors, 32 GB RAM 

 Ganache-cli 

 Truffle 

Simulating PF data 
 

Simio  

Developing web-based raw PF 

data upload interface 

 IPFS 

 JavaScript, CSS 

 React.js 

 Web3.js 

 Meta Mask 

 Solidity 

Developing blockchain 

information importer 

 Web3.py 

 IPFS 

This case study utilizes DES software to generate simulated product fulfillment data 

to verify real-time streaming function. Simulations are commonly used to verify design 

performance during the late development stages. To apply DES, Simio is a software 

broadly applied. Simio offers model-to-model transition, and the simulations can be used 

to derive and export various outputs. It can export trace of the simulation model as the 

product fulfillment data. 

Developing a web-based raw product fulfillment data upload interface is essential in 

this case study. The interface will transfer the user uploaded file to the IPFS through web 

browser. Meanwhile, it can process the raw product fulfillment data for extraction and send 

the extracted task execution status to the blockchain network. IPFS is the foundation tool 



 243 

here for providing the distributed file storage service. The distributed file storage provides 

the remote access service to users. React is a JavaScript library for developing web-based 

use interface which is the main development tool for the web UI design. Web3 is a 

JavaScript library that used to let user interact with a Ethereum node using HTTP, IPC and 

WebSocket. MetaMask is crypto currency wallet that can manage Ethereum account 

though web browser. Smart contract is written in Solidity for executing blockchain 

command. In summary, when using the web-based interface, Web3 library establishes the 

connection between IPFS to the test blockchain network, MetaMask provides account 

management services to user for confirming or rejecting a blockchain transaction, and 

smart contract executes blockchain commands to interact with the blockchain network. 

A blockchain information importer algorithm is also a critical element in this case 

study. As mentioned in the previous section, it can categorize and structuralize the 

transaction information, the structuralized data is sent to IPFS. Web3 python library assists 

this development process which allows user to retrieve information from the blockchain 

test network.  

9.5.1 Description of crowdsourcing case 

This chapter studies product is demonstrated in Figure 5-2, which shows the genetic 

product process structure of the tank-trailer product variant. After crowdsourcing task 

decomposition and derivation, five tasks are generated. Five product fulfillment providers 

and two logistic providers are selected to participate crowdsourcing task execution. A 

crowdsourcing supply network can be constructed. 
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Figure 9-8 demonstrates the scenario of the tank-trailer crowdsourcing supply 

network where five manufacturers act as the product fulfillment providers. Logistic 

providers transport the finished sub-assembly between product fulfillment providers.  

 

Figure 9-8 Crowdsourcing supply network for tank trailer 

9.5.2 Smart contracts generation case 

Smart contract “Storage” is deployed to the blockchain network after initializing 

the test network through truffle as shown in Figure 9-9. The block size in the test network 

is defined by the “gas limit” which is 6721975. To simulate the proof of authority 

consensus mechanism in the test network, a new block is mined at a time interval. The 

block 0 is mined after the deployment of smart contract “Storage”. An Ethereum address 

“0x 7955da8a5 C2 5 7c86f 790 7c852D57B5 886” is assigned to the deployed 

contract as shown in Figure 9-9. All kinds of information uploading to the blockchain 

network are in the form of sending transactions to this address. Smart contract “Storage” 
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acts as a portal between users to blockchain network which verifies identities of users and 

receives the information.  

 

Figure 9-9 Smart contracts and its storage block 

“Storage” contains three functions in the case study which are user information 

upload, product fulfillment data upload, and logistic data upload. “Storage” play as a 

significant role for only allowing certain types of users to upload certain types of data. 

These three functions are matched with services introduced in Section 9.3.2. However, 

function in the smart contract only contain partial described service which require 

assistance of other components for providing a complete service.  

After the initialization, coordinator manager firstly registers information of both 

product fulfillment providers and logistic providers to the blockchain network through 

using user information upload service. In the case study, the coordinate manger must enter 

three types of information for each user which are Ethereum account address, user id, and 

user type. Since number of coordinate managers are small the case study, their Ethereum 

account addresses are stored in the smart contract for verification. If the transaction 

sender’s address is not matched with stored addresses, the non-coordinate manger user 

can’t access the user information upload function. Smart contract is not able to finish the 
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service alone, the web-based interface and MetaMask acts as the frontend for direct 

interaction with the coordinate manager. In the case study, coordinate manger uploads 

information of five product fulfillment providers and two logistic providers. Figure 9-10 

shows an example of uploading information of “Manufacturer 1” to the blockchain network. 

As shown in the figure, coordinate manager enters account address, user id “M1” and user 

type “1” in the input box, after clicking the button “Write Information to ETH Blockchain”, 

a transaction is made from coordinate manager’s account address to the address of 

“Storage”. MetaMask detect the action and notify the user to confirm the transaction. Once 

coordinate manager confirm the transaction, the smart contract works at the backend which 

verifies sender’s address. Information is stored in the blockchain through smart contract 

through the first transaction. The input in the transaction contains a string “User, M1, 1”, 

where “User” is a label that means this transaction contains user information. “M1” is the 

user ID and “1” is the user type that means “M1” is a product fulfillment provider. Another 

transaction is sent after the first one where account address of manufacturer 1 and its user 

ID “M1” are mapped. In the mapping process, address is the key and “M1” is the value. 

This mapping is sent to the blockchain through the second transaction. The mapping 

process is significantly important for other two functions. 

 

Figure 9-10 Example of uploading information to the blockchain network  
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Product fulfillment data upload function includes two parts, the first part is to verify 

sender’s information. When the product fulfillment provider uploads its raw streaming data 

in the product fulfillment web-based interface, product fulfillment data upload function 

employs product fulfillment provider’s account address as key to retrieve the user ID 

mapped with the address. If the user ID contains letter “M”, the function allow user to send 

product fulfillment transaction to the blockchain. This verification is a simplified case 

which similar algorithm could be applied to use other elements for identity verification. A 

detailed use case for product fulfillment providers will be illustrated in Section 9.5.4. 

Logistic fulfillment data upload function works with a similar algorithm. Instead of letter 

“M”, “L” is used for checking the types of users since user IDs of two logistic providers 

are “L1” and “L2” in the case study. 

9.5.3 Information management for task execution 

The information management involves both raw streaming data stored in the IPFS 

and extracted data stored in the blockchain. In the case study, information of crowdsourced 

task, task specifications, and supply chain precedence file are uploaded to IFPS through 

the coordinate manger. The hash address called CID is the pointer to uploaded file which 

is shared with all participants in the case study. To access the file, participants can add the 

hash address after “https://ipfs.io/ipfs/” and browse the HTTP address in the web browser. 

Files stored in IPFS is immutable, participants can always access the shared file through 

hash address. Coordinate manger can upload an updated file to IPFS if necessary. However, 

coordinate manger always needs to share the hash address to other participants. 

https://ipfs.io/ipfs/
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For product fulfillment providers and logistic providers, uploading raw data to IPFS 

is integrated with the web-based interface. After uploading the file to IPFS, information is 

extracted from the file and sent to the blockchain network with generated CID. Therefore, 

the raw data CID and corresponding extracted task execution information are stored 

together in the blockchain. To increase the versatility, blockchain stored information is 

categorized as a json file. The json file is stored in IPFS which can be accessed through 

web-based interface. Figure 9-11 show the json file of imported categorized blockchain 

information of manufacturer 4. When manufacturer 4 use the web-based interface to access 

the task execution status of its upstream with using userID “M ” and account address, 

algorithm integrated in web searches struct contains “M ” in the userID field if it passes 

identity verification. As discussed in the previous section, coordinate manger, product 

fulfillment provider and logistic providers determine the access scope for users. 

As shown in Figure 9-11, upstream field of manufacturer   contains “M1”, “L1”, 

“M ”, “L2” which represents accessible upstream data. Therefore, struct that contains 

these userIDs is searched and the material stored in their LDTX and PFDTX field is 

retrieved back to manufacturer 4. 

 

Figure 9-11 Example of upstream field for manufacturer 4  
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9.5.4 Product fulfillment streaming data execution services 

In this section, detailed process of raw product fulfillment data upload and 

extraction process is illustrated. Raw product fulfillment data is generated through Simio 

model. Figure 9-12 shows the model layout of five manufacturers in Simio where an entity 

goes through several servers for simulating the machining process.  

In each Simio model, an entity is assumed to be finished once it entered the sink 

object at the end of assembly line. Model trace data in CSV format generated by Simio 

simulation is employed as raw product fulfillment data. As a DES software, model trace 

data of the simulation run records every event happening during the simulation 

chronologically. Figure 9-13 shows an example of model trace data. Events in the 

simulation is defined by five domain which are time, entity ID, object name, process ID, 

step name and action. Simulation is paused for several times for each model, and a model 

trace data is generated at the pause to simulate the raw data acquisition at each time interval. 

 

Figure 9-12 Simio simulation model of manufacturer  



 250 

 

Figure 9-13 Example model trace data from Simio 

Manufacturer 1 to 5 upload their trace model data through the web-based interface. 

As shown in the Figure 9-14, manufacturer 1 uploads the model trace data through the 

interface, the file is firstly saved to IPFS, and a hash address is generated and returned on 

the web page. By clicking on “Write information to ETH blockchain”, an integrated 

algorithm processes the raw CSV file for information extraction. The algorithm employs 

the basic mechanisms introduced in table 9-1 which counts number of objects that enters 

the sink in simulation.  

After the information extraction, the web-interface attempts to send transactions to 

the blockchain from the current Ethereum account logged in the MetaMask, which notifies 

user about transaction confirmation. Once the transaction is confirmed, the product 

fulfillment data upload function in the deployed smart contract “Storage” receives the 

transaction. “Storage” employs the sender’s account address as the key to retrieve the 

mapped user ID for verification. “Storage” sends the extracted product fulfillment 

information and the raw data file hash of manufacturer 2 is sent to the blockchain network 

after passing the identity verification. The actual sent string is “PFD, Part_name: part1, 
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Number_finished: 8, Time_used(days): 0.71382, Qma8eBBR3eKZ1uqGn7Xx83cJak 

MCuK1qn jRMowRq7zil”. “P D” indicates that the transaction contains product 

fulfillment data. The hash address of the file is attached to the end.  

 

Figure 9-14 Product fulfillment streaming data uploading  
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In the case study, five manufacturers and two logistic providers utilizes the web-

based interface for uploading with the similar process. Transactions sent in the same time 

interval are includes in the same block. Figure 9-15 demonstrates the block mined in the 

test network where each block contains several types of transaction from different uses. As 

mentioned in the Section 9.5.3, the block information is converted to json file and stored 

in the IPFS for access. 

 

Figure 9-15 Block mining for transactions from different users 

9.6 Chapter Summary 

Information service is the kernel of platform-driven crowdsourced manufacturing 

and the cornerstone of delivering MaaS. This chapter proposes the methodologies and 

proceeds architecture design of a blockchain-based information service system for 

platform-driven crowdsourced manufacturing. The proposed architecture includes three 

layers, namely the contracting layer, cyber layer, and resource layer. 

The contracting layer enables the deployment of blockchain-based smart 

contracting, which provides a data management function portal to assign manage access to 

stakeholders, data extraction algorithm, as well as a data retrieving and updating access for 
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stakeholders. The cyber layer plays the role of an intermediate, which establishes cyber 

architecture to connect the contracting layer and cyber layer. It not only digitalizes the 

resource that necessary for the contracting layer but also receives and stores uploaded raw 

streaming data from the resource layer. The resource layer is the infrastructural layer for 

resource management. It configures and categorizes the available resource of task 

participants which provides prerequisites for tasks derivation and allocation. Raw task 

execution data is managed since it is another type of resource for decision-making. 

The architecture of a blockchain-based smart contracting and distributed data 

information service system is designed in this chapter. It delivers functions for platform-

driven crowdsourced manufacturing to deliver MaaS through the three-layer architecture. 

It can provide information service for geographically distributed stakeholders in a secure 

way through blockchain technology. A case study evaluates the feasibility and verify the 

effectiveness of proposed architecture.   
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CHAPTER 10. REVENUE SHARING IN CROWDSOURCED 

MANUFACTURING THROUGH POPULATION DYNAMICS 

MODELING AND ANALYSIS: AN EVOLUTIONARY GAME 

MODEL 

Performed as a platform-driven technology for achieving MaaS, crowdsourced 

manufacturing involves dynamics of group interactions on structured populations. To reach 

the full potential of crowdsourcing, it is necessary to study the effectiveness of 

crowdsourcing in relation to the level of collectivism in facing the problem. There exists 

an intricate relationship between the number of participants and the difficulty of the 

problem, indicating the optimal size of the crowdsourced group (Guazzini et al., 2015). 

This implies the need for a modeling framework in the context of utilization of potential 

capabilities in crowds with measurement-based analysis of a crowdsourcing platform and 

the capacity balance among manufacturer crowds (Hoßfeld et al., 2011).  

In addition, group interactions are a particularly important and widespread class, 

representative of the dynamic analysis of decision space in large crowds is formulated as  

the public goods game (Chen et al., 2015). Population dynamics is inherent in 

crowdsourcing, for which the study of evolutionary dynamics of group interactions on top 

of structured populations is necessary, including pattern formation, equilibrium selection, 

and self-organization in evolutionary games (Perc et al., 2013). 

Moreover, the manufacturer crowds form a complex cooperation network of 

manufacturing service, whereby the inherent openness inevitably leads to dynamics in the 
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governance of the networks towards the effectiveness of open design and manufacturing 

(Tiwana et al., 2010). The intra-relationship among the crowd population is multifold 

throughout collaboration among various manufacturing clusters, which are divided by the 

capabilities they have. Besides, the manufacturing service capacity of a crowdsourcing 

network relies on the willingness of the manufacturing crowds to bid for an open call while 

competing with their peers. However, such willingness is dependent on the operational 

success of the crowdsourcing platform and the individual partner’s incentive. Thus, from 

a long time-span perspective, the proportions of making bidding decision in the population 

of manufacturer crowds conform to a robust co-evolutionary relationship. If the bidding 

decisions can bring an excessive profit in a cluster, the proportion of bidding manufacturer 

in it will increase. Otherwise, a decrease will be observed. It is thus imperative to develop 

population dynamics models to depict the adoption and reversion of the crowdsourced 

manufacturing among the crowd population. The analysis of population dynamics provides 

a critical guideline for individuals’ decision making in an open enterprise environment. 

In this regard, this chapter examines the population dynamics underlying multiple 

manufacturer clusters in crowdsourced manufacturing. Section 10.1 formulate the 

dynamics among manufacturers as an evolutionary competition-cooperation (ECC) game 

model. Section 10.2 reviews the research threads and proposes research architecture 

towards multi-verses evolutionary game for crowd behavior analysis. Section 10.3 

develops two-player ECC model for platform-driven crowdsourced manufacturing, which 

provides formulation assumptions, payoff matrix, and replicator equations. Section 10.4 

develops multiplayer ECC game model to accommodate multiple manufacturer clusters. 

Section 10.5 studies stability analysis methods and operational implications. Section 10.6 
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examines characteristics and potentials of ECC game model for platform-driven 

crowdsourced manufacturing by demonstrating case study of tank trailer industry. Section 

10.7 summarizes this chapter by examining contributions, limitations, and future threads 

towards population dynamics analysis of manufacturer crowd in platform-driven 

crowdsourced manufacturing. 

10.1 Evolutionary Competition-Cooperation Game Model 

The decision support for crowdsourcing platform is aimed for operational 

excellence for operating the two-folded demand-capacity marketplace. Different from the 

traditional product manufacturing process which plans the manufacturing processes inner 

an enterprise or outsources several peripheral activities to designated partners, the decision 

making in the platform-driven crowdsourced manufacturing shows a collective and 

distributive characteristic. MaaS requires moving beyond exclusive use of hierarchical 

decision making, drawing on the power of crowdsourcing and markets wherever possible. 

Because the crowdsourced manufacturing entails competitive and collaborative workflows 

that rely on a group decision support system to facilitate the problem-solving process 

(Thuan et al., 2013b), a successful crowdsourcing platform operation management 

indicates an understanding of the behavior and evolution of not only manufacturer 

individual but also the crowd population. 

The manufacturer crowd is naturally divided into various manufacturing clusters 

according to their competitive edges. Thus, the manufacturers who are affiliated to one 

cluster are confronted with a massive impact of competition. Because of the existence of 

the awarding process by the manufacturing evaluation broker in the platform, only the best-
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performed manufacturer in each cluster can be selected and awarded with the contracts 𝑆. 

Besides, the realization of the value chains is essentially a multi-party process, which 

requires various competitive edges and a large volume of capacity. From this perspective, 

the relationships among the manufacturers are not only competition but also cooperation.  

On the one hand, there is an inter-cluster cooperation relationship shown among the 

manufacturer crowd, due to the significance of capacity matching. High participation of all 

clusters will indicate various capabilities and a high manufacturing service capacity. In 

contrast, low capacity in one cluster will transform this cluster to a bottleneck along the 

value chain. For example, if the diversity and capacity of the steel sheet factories are limited 

in the platform’s connections, the realization of the tank trailer for the food industry may 

be hindered, which requires special requirements like edible grade or anti-corrosion 

material. This phenomenon requires the inter-cluster cooperation to increase the 

capabilities that the platform connected and the attraction to the open innovators to initiate 

the value chain. 

On the other hand, the inner-cluster cooperation relationship among the 

manufacturers can be observed from the willingness of participation in one cluster is 

triggered by the participation status of the upstream and downstream clusters. The higher 

number of participated manufacturers in the upstream and downstream clusters imply an 

abundant number of potential value chains, and therefore, a high likelihood of awarding 

manufacturer in the cluster in the middle. This inner-cluster cooperation indicates the 

manufacturers need to cooperate with their peers to participate in the bidding to attract 

more manufacturers in other clusters for future success.  
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Besides, there is a robust co-evolutionary relationship in the entire manufacturer 

population. The decision-making process of participating in a value chain or not is based 

on the revenue of their peers at the current time point. If the average revenue of 

participating is higher than non-participating, the manufacturers are more likely to 

participate the crowdsourced manufacturing. Similarly, if the average revenue of 

participating is lower than non-participating, the manufacturers are more hesitant to 

participate. This fitness-decreasing behavior can be categorized as an evolutionary puzzle 

and has been considered as a game-theoretic decision-making scheme (Roca et al., 2009). 

To find the equilibrium of the evolutionary dynamic supply contracting mechanism, the 

evolutionary game model is widely applied (Reeves et al., 2005). Since the incentive can 

be utilized as the factor of sustaining a crowdsourcing ecology, the game model can be 

used for the incentive design in the crowdsourcing product fulfillment (Tian et al., 2014). 

10.2 From Two-Player Game to Multiple Manufacturer Crowds  

It has been long time for utilizing game theory to describe interactions among 

players, but the idea from biology gears forward the development of it towards 

evolutionary game theory (Smith, 1982). It has been widely applied to model and promote 

collaboration of a population of rational individuals to achieve a minimization of deviation 

from the social optimum (Taylor and Nowak, 2007). The basic form of evolutionary game 

starts explores prey-predator relationship, which is formulated as a two-player population 

dynamics problem, and a more general form accommodates simultaneous decision-making 

from multiple players with multiplayer matrix game (Broom et al., 1997). These streams 

of research build the fundamental of exploring non-linear and chaos system (Nowak and 

May, 1992). The application of evolutionary games covers dynamic modeling of 
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population genetics in ecology (Hashimoto and Aihara, 2009), management policy 

derivation for social science (Rosas, 2010), mass collaboration for problem solving (Souza 

et al., 2009), customer-manufacturer relationship analyzation for social welfare (Ji et al., 

2015), and capacity balance dynamics analysis for product fulfillment crowds (Gong, 

2018).  

The platform-driven crowdsourced manufacturing is aimed to fulfill various 

customer needs by collaborating with manufacturers from various clusters. This elaborates 

a collaboration scenario of various industries for fulfilling complex products along the 

corresponding value chain. A multi-player model is essential to model the dynamics among 

various industries, which is modeled as manufacturing agent cluster {𝜇1, 𝜇2, … , 𝜇𝛼, … , 𝜇Α} 

in Section 3.4. In this regard, this chapter explores relationships among manufacturer 

clusters under multiplayer evolutionary game and utilizes its dynamics behavior as 

essential operational excellence approach to promote collaboration among crowds. 

10.3 Two-Player ECC Game Model for Capacity Balance 

Corresponding to the research agenda proposed in Section 10.2, a two-player ECC 

game model builds the fundamentals of the population dynamics analysis. The ECC game 

model is established to imitate the relationship between two cluster of manufacturers, 𝜇1 

and 𝜇2. This model has considered the cooperation, which is the result of capacity matching 

and participation abundant, the competition of the agents’ peers in their domain, and the 

co-evolutionary based on the payoff of the states. Based on the evolutionary game theory, 

several assumptions have been set to formulate the model: 

Assumption 1: The potential population of the 𝜇1 and 𝜇2 is large enough; 
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Assumption 2: The variation of the total amounts of the 𝜇1 and 𝜇2 is minimal; 

Assumption 3: The contracts can be formed with every agent in the population; 

Assumption 4: The agents can only select bidding or non-bidding as their strategies; 

Assumption 5: The potential service capacity of each manufacturer cluster is 

matched. 

The first assumption ensures an infinite model is adequate for this case, in which a 

differential equation-based dynamics analysis can be applied to the population. The second 

assumption implies that the population sizes of manufacturer clusters are stable enough to 

ignore the fluctuation. The third assumption indicates that manufacturers are homogeneous 

in every cluster. The fourth assumption regulates the dimension of state space. The fifth 

assumption implies that the exhaustive search of the manufacturers will establish a 

balanced manufacturing service capacity. 

10.3.1 Model Development Incorporating Revenue Sharing 

Based on these assumptions, the model is established as follows. The 𝑋1(𝑡) and 

𝑋2(𝑡) are the fraction of the agents who chose bidding strategy in 𝜇1 and 𝜇2, respectively. 

Which 0 < 𝑋1(𝑡) < 1 and 0 < 𝑋2(𝑡) < 1. Based on the capacity matching thinking, the 

capacity unbalance index (CUI) 𝑐𝑢 is introduced to measure the unbalance between the 

capacities of different domains, which can be interpreted as the proportion of the 𝑋1(𝑡) and 

𝑋2(𝑡), as defined in equation (10.1). CUI can be interpreted as the ratio of the 𝑋1(𝑡) over 

𝑋2(𝑡), it measures the unbalance of the capacity of different clusters.  
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𝑐𝑢  =
𝑋1(𝑡)

𝑋2(𝑡)
(10.1) 

The cost structure of the agents is modeled in three parts. The first part is the 

fundamental income of the agents, which can be categorized as manufacturing fundamental 

income 𝜋1 and 𝜋2, for cluster 1 and 2, respectively. This pair of variables depict the basic 

operation status of the agents.  

The second part is the bidding cost, which can be categorized manufacturing 

bidding cost 𝑏1 and 𝑏2 , for cluster 1 and 2, respectively. This pair of the variables are 

modeled based on the cost of generating bids. However, this cost is not only related to the 

fixed cost of making bids, but also the cost resulted from the unbalanced capacity. For 

instance, in the case the 𝑋1(𝑡) is high and 𝑋2(𝑡) is low, the bidding cost for 𝜇1 is relatively 

high, because the probability of awarding in this case is minimal. Meanwhile, the bidding 

cost of the 𝜇2 is relatively low, because in such case, the probability of awarding is high. 

In the worst case, the 𝑐𝑢  is approximate to positive infinity, the bidding cost of the 𝜇1 will 

approximate to positive infinity, and the bidding cost of the 𝜇2 will approximate to 𝑏2. 

Thus, the corrected bidding cost 𝑏1
∗ and 𝑏2

∗ are introduced in equation (10.2). 

{
𝑏1
∗ = 𝑏1 ⋅ (1 + 𝑐

𝑢 )

𝑏2
∗ = 𝑏2 ⋅ (1 +

1

𝑐𝑢 
)
 . (10.2) 

The third part of the cost structure is the income from the MaaS. The extra income 

𝛱 is the highest extra income the crowdsourcing platform can reach, and the corrected extra 

income Δπ is the extra income considering the participation will, which is represented in 

equation (10.3). 
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𝛥𝜋 = 𝛱 ⋅ 𝑋1(𝑡) ⋅ 𝑋2(𝑡) (10.3) 

Moreover, the distribution coefficient 𝑔  is introduced to measure the income 

distribution between the 𝜇1 and 𝜇2 , where 𝑔 ⋅ Δ𝜋 will be sent to the 𝜇1, and (1 − 𝑔) ⋅ Δ𝜋 

will be sent to 𝜇2.  

10.3.2 Replicator Equations 

The agents 𝜇1 and 𝜇2 make the decision to choose bidding or non-bidding states 

based on their own situation. The state space of the 𝜇1  includes {𝐶1, 𝐷1} , where 𝐶1 

represents manufacturers in cluster 𝜇1  cooperatively choose bidding states, while 𝐷1 

represents manufacturers in cluster 𝜇1 defectively choose non-bidding states. Similarly, the 

state space of 𝜇2 includes {𝐶2, 𝐷2}, which are manufacturers in cluster 𝜇2 choose bidding 

and non-bidding states, respectively. Thus, applying the method from Friedman (1991), the 

state space of the manufacturer coevolution can be represented as 𝕊 = {{𝐶1, 𝐷1}, {𝐶2, 𝐷2}}. 

The 𝕊 can be quantitatively expressed by (𝑋1(𝑡), 𝑋2(𝑡)) in the square of [0,1] × [0,1]. 

Following a notation that is suggestive of cooperative dilemmas (Nowak, 2012), the payoff 

of the agents in different states can be established in the Table 10-1. In this context, R 

denotes the reward of a pair of cooperators, T denotes the temptation to defect, S denotes 

the “sucker” payoff for a cooperator being exploited by a defector, and P denotes the 

punishment for a defecting pair.  
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Table 10-1 The game payoff matrix of the two-player ECC game model 

Manufacturer 

in cluster  

𝜇1 

Manufacturer in cluster 𝜇2 

𝑋2(𝑡) Choose Bidding 

𝐶2 

1 − 𝑋2(𝑡) Choose Non-bidding 

𝐷2 

𝑋1(𝑡)  
Choose bidding 

𝐶1 

𝜋1
𝑅 = 𝜋1 − 𝑏1

∗ + Δ𝜋 ⋅ 𝑔 

𝜋2
𝑅 = 𝜋2 − 𝑏2

∗ + Δ𝜋 ⋅ (1 − 𝑔) 

𝜋1
𝑆 = 𝜋1 − 𝑏1

∗ + Δ𝜋 ⋅ 𝑔 

𝜋2
𝑆 = 𝜋2 

1 − 𝑋1(𝑡) 
Choose Non-

bidding 

𝐷1 

𝜋1
𝑇 = 𝜋1 

𝜋2
𝑇 = 𝜋2 − 𝑏2

∗ + Δ𝜋 ⋅ (1 − 𝑔) 

𝜋1
𝑃 = 𝜋1 

𝜋2
𝑃 = 𝜋2 

Table 10-1 can determine the fitness of choosing a state by measuring the 

corresponding income, which is determined by the cooperation proportion of manufacturer 

in the counterpart cluster. Thus, the fitness functions of 𝜇1 and 𝜇2 can be defined as 𝑓1
𝑖 and 

𝑓2
𝑗

, respectively, where 𝑖 ∈ {𝐶1, 𝐷1} , 𝑗 ∈ {𝐶2, 𝐷2} . The 𝑓1
𝑖  and 𝑓2

𝑗
 can be defined in 

equation (10.4) and (10.5). 

{ 
𝑓1
𝐶1 = 𝑋2(𝑡)  ⋅ 𝜋1

𝑅 + (1 − 𝑋2(𝑡) ) ⋅ 𝜋1
𝑆

𝑓1
𝐷1 = 𝑋2(𝑡)  ⋅ 𝜋1

𝑇 + (1 − 𝑋2(𝑡) ) ⋅ 𝜋1
𝑃
 (10.4) 

{ 
𝑓2
𝐶2 = 𝑋1(𝑡) ⋅ 𝜋2

𝑅 + (1 − 𝑋1(𝑡)) ⋅ 𝜋2
𝑇

𝑓2
𝐷2 = 𝑋1(𝑡) ⋅ 𝜋2

𝑆 + (1 − 𝑋1(𝑡)) ⋅ 𝜋2
𝑃
 (10.5) 

Subsequently, the average fitness function of 𝜇1  and 𝜇2  is noted as 𝑓1̅  and 𝑓2̅ , 

respectively, and is depicted in equation (10.6) and (10.7). 

𝑓1̅ = 𝑋1(𝑡) ⋅ 𝑓1
𝐶1 + (1 − 𝑋1(𝑡)) ⋅ 𝑓1

𝐷1 (10.6) 

𝑓2̅ = 𝑋2(𝑡)  ⋅ 𝑓2
𝐶2 + (1 − 𝑋2(𝑡) ) ⋅ 𝑓2

𝐷2  (10.7) 
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The replicator dynamics describes the frequencies of states in a population, and the 

increasing rate of applying a strategy is proportional to its relative fitness (Hofbauer and 

Sigmund, 1998). The replicator equations can be derived from the differences between the 

fitness of a state to the average fitness, which is shown in equation (10.8) and (10.9). 

𝑋1(𝑡)̇ =
𝑑𝑋1(𝑡)

𝑑𝑡
= 𝑋1(𝑡) ⋅ (𝑓1

𝐶1 − 𝑓1̅) = 𝑋1(𝑡) ⋅ (1 − 𝑋1(𝑡)) ⋅ ( 𝑓1
𝐶1 − 𝑓1

𝐷1) (10.8) 

𝑋2(𝑡) ̇ =
𝑑𝑋2(𝑡) 

𝑑𝑡
= 𝑋2(𝑡) ⋅ (𝑓2

𝐶2 − 𝑓2̅) = 𝑌(𝑡) ⋅ (1 − 𝑋2(𝑡)) ⋅ ( 𝑓2
𝐶2 − 𝑓2

𝐷2)  (10.9) 

Substitute the fitness functions of 𝜇1  and 𝜇2  in equation (10.4) and (10.5), the 

replicator equations (10.8) and (10.9) can be simplified to equation (10.10). 

{

𝑑𝑋1(𝑡)

𝑑𝑡
= 𝑋1(𝑡) ⋅ (1 − 𝑋1(𝑡)) ⋅ [𝜋1

𝑅 − 𝜋1
𝑇]

𝑑𝑋2(𝑡)

𝑑𝑡
= 𝑋2(𝑡) ⋅ (1 − 𝑋2(𝑡)) ⋅ [𝜋2

𝑅 − 𝜋2
𝑇]

 (10.10) 

Let the equation (10.10) equal to zero, five equilibrium points can be found: 

𝑒1 (0
+, 0+), 𝑒2(0

+, 1), 𝑒3(1,0
+), 𝑒4(1,1) and the fifth equilibrium point is 𝑒5(𝑋1

∗, 𝑋2
∗). 

 ollowing “R-T-S-P” payoff framework, 𝑒1 (0
+, 0+)  can be perceived as punishment 

point, 𝑒2(0
+, 1) is a temptation point, 𝑒3(1,0

+) is a “sucker” point, and 𝑒4(1,1) is a reward 

point. Considering Where 𝑋1
∗ and 𝑋2

∗ is represented in equation (10.11). 

{
 
 

 
 

 

𝑋1
∗ =

√𝑏2(𝑏1(1 − 𝑔) + 𝑏2 ⋅ 𝑔)

√𝑏1(𝑔 − 1)2𝛱

𝑋2
∗ =

√𝑏2(𝑏1(1 − 𝑔) + 𝑏2 ⋅ 𝑔) ⋅ √𝑏1(1 − 𝑔)2𝛱

𝑏2 ⋅ 𝛱 ⋅ 𝑔(1 − 𝑔)

(10.11) 
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The 𝑒5 is also an equilibrium point when (𝑋1
∗, 𝑋2

∗) ∈ [0,1] × [0,1], the constraints 

can be expressed as equation (10.12). 

{
 
 

 
 0 < 𝑏1 <

𝑔 ⋅ 𝛱

2

𝑏1
2

𝑏1 − 𝑔 ⋅ 𝛱
⋅
𝑔 − 1

𝑔
< 𝑏2 <

√𝑏1(𝑔 − 1)2(𝑏1 + 4𝑔 ⋅ 𝛱) − 𝑏1(1 − 𝑔)

2𝑔

.  (10.12) 

10.4 Multi-Player ECC Game Model for Infinite Manufacturer Crowds 

Following the research agenda proposed in Section 10.2, a multi-player ECC game 

model expands the two-player game model in Section 10.3 into a multi-player one to 

accommodate various manufacturer clusters. The multi-player ECC game model is 

established to imitate the relationship among manufacturer cluster {𝜇1, 𝜇2, … , 𝜇𝛼, … , 𝜇Α}, 

which considers capacity matching and revenue sharing among clusters. Based on the 2-

strategy, n-player games formulated by Broom et al. (1997), assumptions in Section 10.3 

have to be modified as follows: 

Assumption 1: The potential population of 𝜇1, … , 𝜇𝛼, … , 𝜇Α is large enough; 

Assumption 2: The variation of the total amounts of 𝜇1, … , 𝜇𝛼, … , 𝜇Α is minimal; 

Assumption 3: The contracts can be formed with every agent in the population; 

Assumption 4: The agents can only select bidding or non-bidding as their strategies; 

Assumption 5: The strategy change is only based on expected payoff; 

Assumption 6: The potential service capacities of each manufacturer clusters are 

matched. 
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Based on these assumptions, the model is established in a general form as follows. 

The fraction of the agents chose bidding strategy in manufacturer cluster 𝜇1, … , 𝜇𝛼, … , 𝜇Α 

are represented as 𝑋1(𝑡), … , 𝑋𝛼(𝑡), … , 𝑋Α(𝑡), respectively. All 𝑋𝛼(𝑡) are from 0 to 1. From 

a capacity-matching perspective, the CUI 𝑐𝑢, which indicates the unbalance of capability. 

Different from two-player 𝑐𝑢, which is described in equation (10.1), a general form of 𝑐𝑢 

is essential for multi-player one. The CUI represented in equation (10.13) stands from the 

manufacturer cluster that explored over the product of rest clusters. It can be interpreted as 

the measurement of the participation will of one cluster over the participation will of the 

rest clusters to explore the unbalance of the capacities among different clusters. 

𝑐𝛼
𝑢 =

𝑋𝛼(𝑡)

∏ 𝑋𝛽(𝑡)1≤𝛽≤Α,𝛽≠𝛼
  (10.13) 

The cost structure for a manufacturer can be also modelled in three parts. The first 

part is the fundamental income of manufacturer cluster 𝜇𝛼, which can be represented as 

𝜋𝛼. The second part is the bidding cost, which can be noted as 𝑏𝛼  for manufacturer in 

cluster 𝛼 to represent their cost of generating bids. Considering the capability unbalance 

will change the bidding cost, the corrected bidding cost 𝑏𝛼
∗  are introduced in equation 

(10.14). 

𝑏𝛼
∗ = 𝑏𝛼 ⋅ (1 + 𝑐𝛼

𝑢) (10.14) 

The third part of cost structure is the extra income from the MaaS, which can be 

formulated as the product of highest extra income and the bidding fraction of all 

manufacturer clusters, as shown in equation (10.15). 
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𝛥𝜋 = 𝛱 ⋅∏𝑋𝛼(𝑡)

Α

1

 (10.15) 

In addition, the distribution coefficient 𝑔 is also modified to be a general form 𝑔𝛼, 

which reflects the distribution among all manufacturer clusters. The sum of 𝑔𝛼 from all 

clusters are set to 1, which is shown in equation (10.16). 

∑𝑔𝛼

Α

1

= 1 (10.16) 

Similar to the 2-player games in Section 10.3.2, manufacturers in every cluster have 

two strategies, which construct a state space for 𝜇𝛼  as {𝐶𝛼, 𝐷𝛼} . 𝐶𝛼  represents 

manufacturers in cluster 𝛼 choose bidding as a cooperative strategy, while 𝐷𝛼 represents 

non-bidding as a defective strategy. Therefore, the coevolutionary manufacturer state space 

of a 2-strategy multi-player ECC game can be represented as 𝕊 =

{{𝐶1, 𝐷1}, … , {𝐶𝛼, 𝐷𝛼}, … , {𝐶Α, 𝐷Α}} . It expands the two-dimensional square of [0,1] ×

[0,1] in two-player to a Α-dimensional space to allow a quantitative expression. The payoff 

of strategies in all manufacturer clusters is shown in Table 10-2. It can be used to determine 

the fitness of choosing a strategy by measuring the income, which is influenced by the 

participation of the rest of manufacturer clusters.  

Thus, the fitness functions of 𝜇𝛼  can be represented as 𝑓𝛼
𝑖 , where 𝑖 ∈ {𝐶𝛼, 𝐷𝛼}, 

which can be defined in equation (10.17). 

{ 
𝑓𝛼
𝐶𝛼 = 𝜋𝛼

𝐶

𝑓𝛼
𝐷𝛼 = 𝜋𝛼

𝐷
 (10.17) 
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Subsequently, the average fitness function of 𝜇𝛼  is noted as 𝑓𝛼̅  and derived in 

equation (10.18). 

𝑓𝛼̅ = 𝑋𝛼(𝑡)  ⋅ 𝑓𝛼
𝐶𝛼 + (1 − 𝑋𝛼(𝑡)) ⋅ 𝑓𝛼

𝐷𝛼  (10.18) 

Table 10-2 The game payoff matrix of the multi-player ECC game 

Manufacturer 

in cluster 

Strategies of a manufacturer 

𝐶 𝐷 

1 𝜋1
𝐶 = 𝜋1 − 𝑏1

∗ + Δ𝜋 ⋅ 𝑔1 𝜋1
𝐷 = 𝜋1 

2 𝜋2
𝐶 = 𝜋2 − 𝑏2

∗ + Δ𝜋 ⋅ 𝑔2 𝜋2
𝐷 = 𝜋2 

… … … 

𝛼 𝜋𝛼
𝐶 = 𝜋𝛼 − 𝑏𝛼

∗ + Δ𝜋 ⋅ 𝑔𝛼 𝜋𝛼
𝐷 = 𝜋𝛼 

… … … 

Α 𝜋Α
𝐶 = 𝜋Α − 𝑏Α

∗ + Δ𝜋 ⋅ 𝑔Α 𝜋Α
𝐷 = 𝜋Α 

The replicator equations describe the possibility bidding manufacturer meets other 

essential bidding collaborators from rest clusters, and shows the increasing rates of 

adopting a strategy in their cluster (Gokhale and Traulsen, 2010), whose general form  can 

be derived as equation (10.19). 

𝑋𝛼(𝑡)̇ =
𝑑𝑋𝛼(𝑡)

𝑑𝑡
= 𝑋𝛼(𝑡) ⋅ (𝑓𝛼

𝐶𝛼 − 𝑓𝛼̅) 

= 𝑋𝛼(𝑡) ⋅ (1 − 𝑋𝛼(𝑡)) ⋅ (𝑓𝛼
𝐶𝛼 − 𝑓𝛼

𝐷𝛼) (10.19) 

Substitute equation (10.17), the replicator equations can be simplified to equation 

(10.20). 
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{
  
 

  
 

 

𝑑𝑋1(𝑡)

𝑑𝑡
= 𝑋1(𝑡) ⋅ (1 − 𝑋1(𝑡)) ⋅ (𝜋1

𝐶 − 𝜋1
𝐷)

…
𝑑𝑋𝛼(𝑡)

𝑑𝑡
= 𝑋𝛼(𝑡) ⋅ (1 − 𝑋𝛼(𝑡)) ⋅ (𝜋𝛼

𝐶 − 𝜋𝛼
𝐷)

…
𝑑𝑋Α(𝑡)

𝑑𝑡
= 𝑋Α(𝑡) ⋅ (1 − 𝑋Α(𝑡)) ⋅ (𝜋Α

𝐶 − 𝜋Α
𝐷)

  (10.20) 

10.5 Stability Evaluation 

The concept of evolutionary stable strategies (ESS) is introduced to observe the 

dynamic behavior of the population (Hines, 1987). In the evolutionary game theory, the 

ESS is a refinement of Nash Equilibrium (NE), and all games played have an ESS as an 

optimal solution (Thomas, 2012). The ESS can be interpreted as a stable condition after a 

long-time of evolution, and such stability can resist the mutation of small invasion of the 

population (Friedman, 1991). At an ESS condition, the composition of the states keeps 

stable and can prevent the turbulence of alternative strategies. 

10.5.1 Two-Strategies, Two-Player Games  

The population games describe the interactional behaviors among a considerable 

number of anonymous agents; such behaviors are based on the simple rules called revision 

protocol (Thomas, 2012). Over a long time-span, the aggregate behavior can be well 

modeled by the differential equations. Because the proposed evolutionary game is a 2×2 

planar system, the stability of the equilibrium points in replicator equations can be analyzed 

by applying the trace-determinant plane analysis on the Jacobian matrix of the replicator 

equations. The Jacobian matrix 𝒥  of the replicator equations (10.10) is established in 

equation (10.13). The elements of Jacobian matrix 𝒥 are calculated in equation (10.22) – 

(10.26). 
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𝒥 =

[
 
 
 
 𝜕𝑋1

(𝑡)̇

𝜕𝑋1(𝑡)

𝜕𝑋1(𝑡)̇

𝜕𝑋2(𝑡)

𝜕𝑋2(𝑡)̇

𝜕𝑋1(𝑡)

𝜕𝑋2(𝑡)̇

𝜕𝑋2(𝑡)]
 
 
 
 

  (10.22) 

𝜕𝑋1(𝑡)̇

𝜕𝑋1(𝑡)
=

𝑏1 (3𝑋1
2 (𝑡) − 2𝑋1(𝑡) ⋅ 𝑋2(𝑡) − 𝑋1(𝑡) − 𝑋2(𝑡))

𝑋2(𝑡)
−

𝑔(3𝑋1(𝑡) − 2) ⋅ 𝑋1(𝑡) ⋅ 𝑋2(𝑡) ⋅ 𝛱

 (10.23) 

𝜕𝑋1(𝑡)̇

𝜕𝑋2(𝑡)
= 𝑋1(𝑡) ⋅ (1 − 𝑋1(𝑡)) ⋅ (

𝑏1 ⋅ 𝑋1(𝑡)

𝑋2
2(𝑡)

+ 𝑔 ⋅ 𝑋1(𝑡) ⋅ 𝛱)  (10.24) 

𝜕𝑋2(𝑡)̇

𝜕𝑋1(𝑡)
= 𝑋2(𝑡) ⋅ (1 − 𝑋2(𝑡)) ⋅ (

𝑏2 ⋅ 𝑋2(𝑡)

𝑋1
2 (𝑡)

+ (1 − 𝑔) ⋅ 𝑋2(𝑡) ⋅ 𝛱)  (10.25) 

𝜕𝑋2(𝑡)̇

𝜕𝑋2(𝑡)
=

𝑏2(3𝑋2
2(𝑡) + 2𝑋1(𝑡) ⋅ 𝑋2(𝑡) − 𝑋1(𝑡) − 2𝑋2(𝑡))

𝑋1(𝑡)
−

(1 − 𝑔) ⋅ (3𝑋2(𝑡) − 2) ⋅ 𝑋1(𝑡) ⋅ 𝑋2(𝑡) ⋅ 𝛱

(10.26) 

The trace and the determinant of 𝒥  is noted as 𝜏𝒥 and Δ𝒥 . The stability of 

equilibrium points can be evaluated by the following criteria (Hirsch et al., 2012): 

1) The equilibrium point is ESS when Δ𝒥 > 0 and 𝜏𝒥 < 0; 

2) The equilibrium is unstable when Δ𝒥 > 0 and 𝜏𝒥 > 0; 

3) The equilibrium is saddle when Δ𝒥 < 0. 

Based on these criteria, the stability analysis of the 𝑒1 (0
+, 0+) , 𝑒2(0

+, 1) , 

𝑒3(1,0
+), 𝑒4(1,1) is shown in Table 10-3. From Table 10-3, the 𝑒1 is an ESS, which can 

be interpreted as no manufacturer decide to bid in this population. Although a small fraction 

of the agents decides to bid, the population will maintain the stable situation at (0+, 0+) in 
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a long time-span. The equilibrium points 𝑒2  and 𝑒3  are the case that almost all 

manufacturers in 𝜇1 or 𝜇2 decide for bidding, while all the agents in the counterpart cluster 

choose non-bidding. The stability analysis shows these two are saddle points, which can 

be interpreted as trajectory has both inner and outer directions, these situations are not 

evolutionary stable.  

Table 10-3 The stability analysis of the first four equilibrium points 

Equilibrium 

Points 
𝒥 𝜏𝒥 = tr(𝒥) Δ𝒥 = det(𝒥) Stability 

𝑒1(0
+, 0+) [

−3𝑏1 𝑏1
𝑏2 −3𝑏2

] −3(𝑏1 + 𝑏2) 8𝑏1 ⋅ 𝑏2 ESS 

𝑒2(0
+, 1) [

−𝑏1 0
0 ∞

] ∞ −∞ Saddle Points 

𝑒3(1, 0
+) [

∞ 0
0 −𝑏2

] ∞ −∞ Saddle Points 

𝑒4(1,1) [
2𝑏1 − 𝑔 ⋅ Π 0

0 2𝑏2 − (1 − 𝑔) ⋅ Π
] 

2(𝑏1 + 𝑏2)
− Π 

(2𝑏1 − 𝑔 ⋅ Π) ⋅ 
(2𝑏2 − (1 − 𝑔) ⋅ Π) 

Undetermined 

The fourth equilibrium point can be interpreted as the situation that all the 𝜇1 and 

𝜇2 apply bidding. Based on the stability analysis criteria, the constraints conditions for each 

stability situation are summarized in the Table 10-4. 

From Table 10-4, it can be observed that the 𝑒4 ’s stability depends on the 

relationship between the bidding cost, 𝑏1 and 𝑏2, and the extra income distribution, which 

is determined by 𝑔 and Π. When the bidding cost is smaller than the half of the received 

extra income, the 𝑒4 is an ESS. In that case, most of the agents in population will bid, and 

thus, the prosperous of the open enterprise can be realized. However, in the case that the 

extra income distribution is unbalanced, the 𝑒4 is a saddle point. It will show different 

trajectory directions on this point. In the last case, if the bidding cost is too high or the extra 

income is not enough, 𝑒4 will be unstable. And based on the equation (10.12), the fifth 
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equilibrium point will not exist. This case should be avoided, because in such case, the 

only ESS is 𝑒1, and the operation of MaaS is hard to sustain. 

Table 10-4 The stability constraints conditions of the fourth equilibrium point 

Constraints Conditions 
Sign Stability 

Situation 𝜏𝒥 = tr(𝒥) Δ𝒥 = det(𝒥) 

{

0 < 𝑏1 <
𝑔

2
Π

0 < 𝑏2 <
(1 − 𝑔)

2
Π

 − + ESS 

{
0 < 𝑏1 <

𝑔

2
Π

𝑏2 >
(1−𝑔)

2
Π

 or {
𝑏1 >

𝑔

2
Π

0 < 𝑏2 <
(1−𝑔)

2
Π

 ± − Saddle Points 

{

𝑏1 >
𝑔

2
Π

𝑏2 >
(1 − 𝑔)

2
Π

 + + Unstable 

In the case of the fifth equilibrium point, where (𝑋1(𝑡), 𝑋2(𝑡)) = (𝑋1
∗, 𝑋2

∗), the 

Jacobian matrix and its elements are shown in equation (10.13) – (10.17). To simplify 

elements in equation (10.22) – (10.26), three variables 𝜌1 , 𝜌2 , and 𝜌3  is introduced in 

equation (10.27).  

  { 

𝜌1 = √𝑏1(1 − 𝑔)2𝛱

𝜌2 = √𝑏2 ⋅ 𝑔(1 − 𝑔)𝛱

𝜌3 = √𝑏2(𝑏1(1 − 𝑔) + 𝑏2 ⋅ 𝑔)

 (10.27) 

Thus, the (𝑋∗, 𝑌∗) can be simplified to equation (10.28). 

{

𝑋∗ =
𝜌3
𝜌1

𝑌∗ =
𝜌3 ⋅ 𝜌1
𝜌2
2

  (10.28) 
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Substitute equation (10.28) to equation (10.22) – (10.26), the Jacobian matrix can 

be simplified to equation (10.29), its trace and determinant are calculated in equation 

(10.30) and (10.31), respectively. 

𝒥|(𝑋∗,𝑌∗)

=

[
 
 
 
 

𝜌1 ⋅ (1 − 𝜌3)

(1 − 𝑔)2 ⋅ 𝛱

𝑔 ⋅ 𝛱(𝜌2 + 𝑏2
2 ⋅ 𝑔) ⋅ (𝜌1 − 𝜌3)

𝜌1
3

𝑏1[2𝑏1(1 − 𝑔) + 𝑏2 ⋅ 𝑔] ⋅ [𝑏2𝑔(1 − 𝑔)𝛱 − 𝜌1 ⋅ 𝜌3]

𝑏2
2 ⋅ 𝑔3 ⋅ 𝛱

𝑏2 −
𝑏1(1 − 𝑔)𝜌3

𝑔𝜌1 ]
 
 
 
 

 

 (10.29) 

𝜏𝒥|(𝑋∗,𝑌∗) = 𝑏1 + 𝑏2 −
𝑏1 ⋅ 𝜌3
𝑔 ⋅ 𝜌1

 (10.30) 

Δ𝒥|(𝑋∗,𝑌∗) =
2𝑏2 ⋅ 𝛥𝒥𝜌3

4(𝜌1 − 𝜌3)(−𝜌2
2 + 𝜌1 ⋅ 𝜌3)

𝑏2 ⋅ 𝑔2 ⋅ 𝜌1
3  (10.31) 

Based on equation (10.29) – (10.31), and the existence conditions for the fifth 

equilibrium point 𝑒5 , the stability of 𝑒5  is processed. The 𝑒5  cannot be an ESS or an 

unstable point when (𝑋∗, 𝑌∗) ∈ [0,1] × [0,1]. The 𝑒5  is a saddle point when satisfying 

equation (10. 32). 

{
 
 

 
 0 < 𝑏1 <

𝑔 ⋅ 𝛱

2

𝑏1
2 ⋅ (1 − 𝑔)

𝑔 ⋅ (𝑔 ⋅ 𝛱 − 𝑏1)
< 𝑏2 <

(1 − 𝑔)√4𝑔 ⋅ 𝛱

2𝑔

 (10.32) 

Therefore, the operation of the open enterprise can consist in two scenarios: 1) the 

𝑒4 is an ESS while the 𝑒5 is a saddle point; 2) the 𝑒4 is an ESS while the 𝑒5 is not exist. 

The first scenario is the case that the only the 𝑒1 and 𝑒4 are the ESS, and the 𝑒5 is existed 

as a saddle point, the constraint condition is as same as equation (10. 32). To demonstrate 
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this scenario, an illustrative phase diagram is shown in the Figure 10-1 a). In such case, the 

population can reach the 𝑒4, but a low value of 𝑒5 is the key to enhance the probability of 

reaching 𝑒4. 

The second scenario is the case that the 𝑒1 and 𝑒4 are ESS, the 𝑒5 is not existed due 

to the unbalance income between 𝜇1 and 𝜇2. The constraint condition is shown in equation 

(10.24). In such case, the MaaS ecology can reach the 𝑒4. The illustrative phase diagram is 

shown in Figure 10-1 b). 

{
 
 

 
 0 < 𝑏1 <

𝑔 ⋅ 𝛱

2 

0 < 𝑏2 <
𝑏1
2 ⋅ (1 − 𝑔)

𝑔 ⋅ (𝑔 ⋅ 𝛱 − 𝑏1)
 𝑜𝑟 

(1 − 𝑔)√4𝑔 ⋅ 𝛱

2𝑔
< 𝑏2 <

(1 − 𝑔) ⋅ 𝛱

2
 

 (10.24) 

 

Figure 10-1 Phase diagram of 2-player ECC game 

10.5.2 Two-Strategies, Multi-Player Games  

It can be observed that the set of replicator equations is a nonlinear system of 

differential equations in a form as equation (10.21). 
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{

𝑋1
′(𝑡) = 𝑟1 (𝑋1(𝑡), … , 𝑋Α(𝑡))

…

𝑋Α
′ (𝑡) = 𝑟Α (𝑋1(𝑡), … , 𝑋Α(𝑡))

 (10.21) 

Nullcline method has been widely applied to solve the existence of the equilibrium 

points, by setting 𝑟𝛼 (𝑋1(𝑡), … , 𝑋Α(𝑡)) = 0, calculate the intersection of nullclines, and 

observe the direction change in the corresponding direction field (Hirsch et al., 2012). 

Similar to the derivation of equilibrium points in two-player game, there are two trivial 

fixed points when the whole population consists of bidding (𝐶𝛼) or non-bidding (𝐷𝛼). In 

an Α-player two-strategy game, the maximum number of possible internal equilibrium 

points is 𝛢 − 1, which requires the quantities of 𝜋𝛼
𝐶 − 𝜋𝛼

𝐷 and 𝜋𝛼+1
𝐶 − 𝜋𝛼+1

𝐷  have different 

signs for all 𝛼 (Gokhale and Traulsen, 2010). 

10.5.3 Operational Implications 

From the stability of the equilibrium points, the operational protocol of the ECC 

game model shows a strong influence on the dynamics of manufacturer population. Firstly, 

the equality of income distribution can be evaluated by finding the existence of internal 

equilibrium point. If there is an equilibrium point in real number domain, as shown in 

scenario 2 of Figure 10-1 b), a severe inequality of income distribution among 

manufacturer clusters can be perceived. Secondly, manipulating the position of internal 

equilibrium point is a way of managing manufacturer population, which can be achieved 

by setting income and bidding cost in this model. From a two-dimensional perspective, 

equilibrium point 𝑒5 can be viewed as a peak in a landscape, and the link between 𝑒5 to 𝑒1, 

𝑒2, and 𝑒3 consist of three ridges, while the area from 𝑒5 to 𝑒4 can be viewed as a valley. 



 276 

This separation can be mathematically explained by modeling nullclines of the differential 

equation system constructed. Measuring the current situation of the manufacturer 

population and reflecting these results on the phase diagram can provide a prediction of the 

future evolution direction of the crowd. If the state of the manufacturer population falls 

into the valley area, a long-time prosperity can be predicted. On the other hand, if the state 

of manufacturer population falls below the internal equilibrium point, a future decay of 

crowdsourcing ecology can be predicted. If the current state is close to a fully participation 

and far away from internal equilibrium point, a lower extra income and higher bidding cost 

will not harm the will of participation in manufacturer crowd. By using the proposed rules 

and equations, the operational protocol of the manufacturer can be derived, and a 

judgement of the long-time prosperity can be concluded. 

10.6 Case Study of Tank Trailer Multi-Cluster Cooperation 

An illustrative case of tank trailer manufacturing service through platform-driven 

crowdsourced manufacturing is used to illustrate and examine the potential of proposed 

theory. Through the developing of a crowdsourcing value chain, it demonstrates the 

application of evolutionary game theoretic dynamic analysis of the partners and an optimal 

operational protocol manipulating logic. Due to the variety of customer orders, tank trailers 

are highly customized. By applying platform-driven crowdsourced manufacturing, the 

open innovator opens its boundary to crowdsource the tasks and utilizes external 

knowledge and capacities to achieve MaaS. The fulfillment process of a tank trailer 

requires the collaboration of a trailer frame manufacturer cluster 𝜇1, fuel tank manufacturer 

cluster 𝜇2, and accessory manufacturer cluster 𝜇3, which is achieved by cyber connections 
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built by crowdsourcing platform. The replicator equations of a 3-palyer ECC game model 

is shown in equation (10.22). 

{
 
 
 
 

 
 
 
 𝑑𝑋1(𝑡)

𝑑𝑡
= 𝑋1(𝑡) ⋅ (1 − 𝑋1(𝑡)) (𝑔1 ⋅ Π ⋅∏ 𝑋𝛼(𝑡)

3

1
− 𝑏1 (1 +

𝑋1(𝑡)

𝑋2(𝑡) ⋅ 𝑋3(𝑡)
))

𝑑𝑋2(𝑡)

𝑑𝑡
= 𝑋2(𝑡) ⋅ (1 − 𝑋2(𝑡)) (𝑔2 ⋅ Π ⋅∏ 𝑋𝛼(𝑡)

3

1
− 𝑏2 (1 +

𝑋2(𝑡)

𝑋1(𝑡) ⋅ 𝑋3(𝑡)
))

𝑑𝑋3(𝑡)

𝑑𝑡
= 𝑋3(𝑡) ⋅ (1 − 𝑋3(𝑡)) (𝑔3 ⋅ Π ⋅∏ 𝑋𝛼(𝑡)

3

1
− 𝑏3 (1 +

𝑋3(𝑡)

𝑋1(𝑡) ⋅ 𝑋2(𝑡)
))

 (10.22) 

An ECC game model is implemented to explore the population dynamics among 

manufacturer clusters. Based on the formulation in Section 10.4, a numerical analysis of 

the dynamics model is executed to demonstrate the proposed theory. The highest extra 

income 𝛱 is set to 1000, which can be interpreted as the profits of the highest profits that 

a crowdsourced manufacturing service can reach in a value chain. The bidding cost of three 

manufacturing cluster 𝑏1, 𝑏2 and 𝑏3 are set to 6, 10, and 5, respectively. This cost can be 

interpreted as the cost of generating the bid. The distribution coefficients of three clusters 

𝑔1, 𝑔2, and 𝑔3 are set to 0.3, 0.5, and 0.2. These number entails the distribution among 

manufacturer clusters. The replicator equations are derived by using these parameters, 

which are represented in equation (10.23). 

{
 
 
 
 

 
 
 
 𝑑𝑋1(𝑡)

𝑑𝑡
= 𝑋1(𝑡) ⋅ (1 − 𝑋1(𝑡)) (300∏ 𝑋𝛼(𝑡)

3

1
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𝑋1(𝑡)

𝑋2(𝑡) ⋅ 𝑋3(𝑡)
))

𝑑𝑋2(𝑡)

𝑑𝑡
= 𝑋2(𝑡) ⋅ (1 − 𝑋2(𝑡)) (500∏ 𝑋𝛼(𝑡)

3

1
− 10 (1 +

𝑋2(𝑡)

𝑋1(𝑡) ⋅ 𝑋3(𝑡)
))

𝑑𝑋3(𝑡)

𝑑𝑡
= 𝑋3(𝑡) ⋅ (1 − 𝑋3(𝑡)) (200∏ 𝑋𝛼(𝑡)

3

1
− 5(1 +

𝑋3(𝑡)

𝑋1(𝑡) ⋅ 𝑋2(𝑡)
))

(10.23) 
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Set these equations to zero, it can be found that there is only one internal 

equilibrium point (0.441,0.441,0.376). The phase diagram of this case is shown in Figure 

10-2. This figure also shows three nullclines of equations (10.23), which are set replicator 

equations equal to zero separately. Because this case is a three-player ECC game, nullclines 

are three surfaces. The intersection point of these surfaces is the only internal equilibrium 

point in this game. The area above three surfaces and equilibrium point will lead to a 

convergence of ESS, which implies a fully participation of manufacturers. Otherwise, the 

longtime prosperity cannot be assured. This division shows that manipulating the internal 

equilibrium point below the current state of manufacturer crowd is essential to a long-time 

prosperity. In contrast, if the participation state of manufacturer below all these nullclines, 

it will show a convergence to (0+, 0+, 0+), which is also an ESS. This scenario will lead a 

platform-driven crowdsourced manufacturing to an end. 

Thus, the manipulation of the internal equilibrium point is critical in the 

management of platform-driven crowdsourced manufacturing. When the participation of 

the manufacturers is low, a low internal equilibrium point shows its essentiality. It will lead 

the state to a fully participation state, to achieve the long-time prosperity following the 

concept of ESS. Such manipulation involves a higher extra income and lower bidding costs. 

However, when the agents show a higher participation fraction, a low internal equilibrium 

point is less preferred, because a high extra income to manufacturers implies a lower 

income to crowdsourcing platform. In this case, a crowdsourcing platform can move the 

internal equilibrium point in a reasonable distance. The existence and position of internal 

equilibrium can be utilized as a measurement of a capacity balance. If the equilibrium is 

an external one or far away from the diagonal of state space, the capacity distribution 
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among manufacturer clusters can be evaluated as a result of an inferior operational 

protocol. 

Lastly, from Figure 10-2, the changing rates of states show low values around the 

equilibrium points and higher value near nullclines. It implies the participation fraction will 

change faster near the equilibrium points. From a management perspective, a large distance 

between the participation state and equilibrium point will result in a quicker reforming, and 

an approximation between the participation state and equilibrium point will lead to a stable 

circumstance. 

 

Figure 10-2 Phase Diagram of Tank Trailer Crowdsourced Manufacturing 

10.7 Chapter Summary 

In this chapter, the ECC game theoretic population dynamic model for platform-

driven crowdsourced manufacturing has been established. Different from the traditional 

manufacturing paradigm, MaaS requires companies to open their boundaries and expand 

the all-in-one decision making to group behavior via crowdsourcing. The model proposed 
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in this chapter offers a way of describing the adoption and reversion of the open strategy, 

by formulating competition-cooperation relationships among multiple manufacturer 

clusters. From an operation excellence perspective, this chapter builds the cornerstone for 

prediction and management of the behavior of manufacturers. 

As a conclusion, a higher income and balanced distribution among the domains will 

encourage the participation of the agent. Therefore, the long-time prosperity of a 

crowdsourced manufacturing ecology should be pursued. However, the relationship of the 

income, distribution balance and the growth rates are changing with the participation 

fraction. In a high participation and fraction situation, the requirement of the income and 

distribution balance is loosed. On the other hand, a high income shows a significant 

influence on the growth rates in the low participation fraction. The open enterprise can 

manage the agents’ behavior by taking the proposed model as a guideline. 

This chapter expands the conventional management view, which focuses more on 

one-time contracting and task execution. A management decision-support should 

accommodate concept of crowds, which enlarge the number of partner to a population, and 

adopts a long-time perspective, which considers the evolution of manufacturer clusters.  
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CHAPTER 11. CONCLUSIONS AND FUTURE WORK 

This concluding chapter summarizes the findings and the contributions of this 

research work. It outlines the conceptual architecture and critical technological 

methodologies developed for platform-driven crowdsourced manufacturing and how these 

findings gear forward to MaaS. The limitations and possible improvements are also 

discussed, along with avenues for future research. 

11.1 Conclusions 

This dissertation originally proposes platform-driven crowdsourced manufacturing 

for MaaS through a cyber platform. It bridges the gap between initiatives towards open yet 

service-oriented manufacturing operational goals and challenges of fulfilling 

manufacturing tasks in a distributed and collaborative manner through crowdsourcing. This 

research identifies a series of challenges of extensively searching and utilizing 

manufacturing resources. This research synergizes qualitative analysis, quantitative 

decision model, and computational solutions as a MaaS reference model as a transition 

guidebook for industries to implement platform-driven crowdsourced manufacturing. 

In this regard, this work reviews the state-of-the-art research and industry practices 

to establish a common consensus in a future manufacturing paradigm shift towards 

platform-driven crowdsourced manufacturing. The stakeholder analysis divides the 

decision agents along the crowdsourcing value chain into open innovators, platforms, and 

manufacturers. This trichotomy analysis is based on their roles in the value chain, which is 

value capturing, structuring, and creating, respectively. 
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Based on the characteristics of the crowdsourced manufacturing and analysis of 

applicable industries, the workflow of a crowdsourcing value chain is proposed. Since a 

successful platform attracts a variety of value chains, the platform is required to offer a 

stack of crowdsourcing information management fields and crowdsourcing contracting 

mechanism fields to serve open innovator and manufacturer crowds, respectively. The 

platform strategy implies maximum reuse of the manufacturers, which leads to the 

information and material flow sharing manufacturers as a common vertex. The networked 

information and material flow in the holistic view of crowdsourced manufacturing indicate 

the necessity of a synergy of information, logistic, as well as production coordination 

service in crowdsourced manufacturing. In this regard, a MaaS reference model to provide 

a systematic service for stakeholders in platform-driven crowdsourced manufacturing are 

proposed, dealing with issues of crowdsourcing contracting mechanism, task execution, 

operational protocol derivation, and information service system. 

First, crowdsourcing contracting requires formulated processes and robust 

evaluation mechanism to fulfill customer’s engineering functional requirements and 

business operational preference. This study proposes a multi-criteria evaluation method 

with information content measurement for explicit criteria and decision-tree-based 

monotone ordinal measurement for inexplicit criteria. A major advantage of proposed 

method is that it involves quantitative modeling of customer preference and stochastic 

behavior of candidates to ensure a maximized degree of satisfaction. This process can 

calculate degree of satisfaction for each criterion and aggregate based on the multi-attribute 

theory. 
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Second, coordinated optimization of PFP and MLB in platform-driven 

crowdsourced manufacturing adopts an interactive decision-making between various 

agents. A practical and effective bilevel approach for dynamic interactive design 

optimization of PFP and MLB is proposed based on Stackelberg game. Consistent with the 

leader-follower interactive mechanism, a bilevel optimization model with linear physical 

programming is developed, in which the upper- and lower-level objective functions are the 

common deviation functions adapted from the corresponding linear physical programs. 

NBGA with upper-level GA for PFP and lower-level GA for MLB is designed for solving 

the developed model. The proposed bilevel approach is demonstrated via a joint PFP and 

MLB design problem for tank trailer product family. Through comparison with other 

approaches, this bilevel approach is shown to yield satisfactory levels of achievement for 

PFP and MLB objectives. This approach provides an effective decision-making framework 

for the multi-agent online interactive product fulfillment faced by enterprises adopting the 

crowdsourced manufacturing model through service-oriented crowdsourcing platforms. 

Third, the logistic service through cross-docking acts as an effective solution for 

platform-driven crowdsourced manufacturing, which organizes logistic service routes in 

optimally planned pickup and delivery ones. This approach synchronizes pickup and 

delivery vehicles to let a simultaneously service load exchange to minimize inventory cost. 

This method addresses a platform-driven solution, which explores the similarities among 

pickup and delivery demands and integrates them through a centralized cross-dock depot 

for maximized route reuse. This study formulates a C-VRPCD for optimal decision-making 

through cross-docking in a crowdsourcing environment. This study proposes a B&P 

algorithm to solve C-VRPCD, which solves combinations of routes in master problems and 
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finding optimal routes replenishment through a ESPPRC problem. A column generation 

architecture is proposed to organize branching searching on exchanging operations in 

master problem and pulse algorithm in subproblem. Through a comparison with other 

approaches, this B&P approach shown a high solution quality and quick speed. This 

approach provides efficient platform-driven logistic solutions for crowdsourced 

manufacturing to achieve MaaS. 

Fourth, the r-OAS decision-making is significant in platform-driven crowdsourced 

manufacturing environments, especially in today’s open and collaborative production 

environment. Given the progress in the use of smart technologies on shop floors, this paper 

studies the r-OASR problem by simultaneously addressing the subproblems of r-OAS and 

r-JRP after addressing the objectives of order revenue and various operation costs. 

Considering the interactive mechanism between r-OAS and r-JRP, a BIO model is 

established in this study. This interactive approach reveals the inherent tradeoffs of 

leveraging order revenue and various existing costs. Based on the Stackelberg game theory, 

the BIO defines r-OAS as the leader and a 0–1 integer programming model is constructed 

accordingly, while r-JRP is defined as the follower and accompanied by a nonlinear integer 

programming model. The r-OAS first makes the OAS decision by addressing net revenue 

and some logical constraints. The r-JRP formulates the best job release plan to minimize 

operation costs after receiving the r-OAS decision and feeding the cost back to r-OAS. In 

r-JRP, a data-driven representation approach is proposed to reveal the real-time production 

status of flow lines and is then used to predict the job makespan. This job-makespan 

prediction with an r-OAS scheme acts as the key constraint for r-JRP. A bilevel tabu-

enumeration algorithm is proposed for the nonlinear hierarchical joint optimization model 
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to determine an efficient solution. The case study reveals that the BIO model can 

consistently ascertain a better order acceptance, scheduling, and releasing decision than 

existing approaches that manage the r-OAS and r-JRP separately.  

Fifth, a blockchain-based information service system is proposed to serve as a 

kernel and fundamental of crowdsourced manufacturing through cyber platform. In this 

study, an information service system architecture design is proceeded for all stakeholders, 

which allows them to access product fulfillment in a distributed way. Blockchain 

technology paves a way for smart contracting, which provides an access key for product 

data uploading, extracting, and supervising in a crowdsourced manufacturing process. This 

architecture accommodates industrial IoTs, which acts as a cornerstone of other technical 

elements in this study. The results show a significant improvement by incorporating 

distributive database for streaming product fulfillment data. 

Sixth, in order to manage multiple manufacturer cluster for achieving a long-time 

prosperous of the crowdsourcing ecology, an operational protocol derivation method based 

on the multi-verse population dynamics model is proposed. It formulated multiple cluster 

interactions in platform-driven crowdsourced manufacturing as an ECC game model, 

which describes not only competition-cooperation but also evolutionary interrelationships 

among manufacturer clusters in a set of replication equations. By analyzing nullclines of 

replication equations, the evolution trends of crowdsourcing ecology can be predicted. 

11.2 Contributions 

The major contributions of the dissertation manifest themselves through the 

proposal and development of a coherent framework of platform-driven crowdsourced 
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manufacturing for MaaS. The deliverables are entailed in the strategy, fundamentals, 

methodology, validation, and application aspects, as elaborated below: 

(1) At the strategy level, the following consensuses are achieved (Chapters 1 and 2): 

➢ Propose platform-driven crowdsourced manufacturing as a new manufacturing 

paradigm; 

➢ Build up consensus of MaaS as the next objective of manufacturing industries; 

➢ Highlight the essentiality of adopting platform-driven crowdsourced manufacturing 

for MaaS. 

(2) At the fundamental level, the following findings are obtained (Chapter 3 and 4): 

➢ Proceed dichotomy analysis of industrial applicability; 

➢ Identify essential stakeholders and demonstrate with a running case; 

➢ Propose crowdsourced manufacturing workflow and holistic framework; 

➢ Proceed structural implications of platform-driven crowdsourced manufacturing 

based on FBS model, which identifies needs for crowdsourcing contracting, task 

execution services, and management services are essential driving power from open 

innovators, manufacturers, and platforms, respectively; 

➢ Propose a MaaS reference model of platform-driven crowdsourced manufacturing 

as a research agenda. 

(3) In terms of the methodology and supporting tools, the following deliverables have 

been promised (Chapters 5, 6, 7, 8, 9, and 10): 

➢ Crowdsourcing contracting evaluation incorporating explicit and inexplicit criteria 

through information content measurements, decision-tree monotonic ranking, and 

multi-utility theory; 
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➢ Optimal crowdsourcing task derivation and decomposition through bilevel game 

theoretic decision-making for a joint and equilibrium optimization solution; 

➢ Networked material flow planning through cross-docking logistic services based 

on a B&P algorithm; 

➢ Task dispatching and scheduling through real-time crowdsourcing task acceptance 

and accommodation based on an interactive bilevel optimization model; 

➢ Blockchain-based smart contracting and distributed data management for real-time 

information streaming services in crowdsourced manufacturing; 

➢ Revenue sharing in crowdsourced manufacturing through population dynamics 

modeling and analysis based on an ECC game model. 

(4) As for validation and application, several experimental and case studies have been 

conducted, including: 

➢ A case of tank trailer cluster to demonstrate fundamental issues of platform-driven 

crowdsourced manufacturing; 

➢ A case study of evaluating frame welding for a chemical tank trailer; 

➢ A case study of joint PFP and MLB design problem of tank semi-trailer family; 

➢ A case study and experimental verification of crowdsourcing logistic services for a 

trailer industry cluster through proposed B&P method; 

➢ A case study of car seats assembly plant to demonstrate r-OASR problem based on 

proposed BIO model; 

➢ A case study of information service system design for a crowdsourcing innovative 

project throughout a MaaS process; 
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➢ A case study of tank trailer multi-cluster cooperation through ECC model and 

revenue sharing. 

11.3 Limitations 

As an exploratory study of the proposed platform-driven crowdsourced 

manufacturing for MaaS, it suffers several limitations. 

(1) The types of crowdsourcing process covered is limited: This dissertation only 

covers a crowdsourcing process that the design parameters are defined, and manufacturers 

bid with their solutions. This process has not considered a concurrent engineering 

approach, in which the open innovators act as an OEM and find a manufacturer as a 

collaborator in product research and development. This situation implies a lack of design 

parameters. Besides, the qualification of manufacturers is not involved in this dissertation. 

(2) Ignore the evolution of manufacturers and product family: This dissertation 

holds a stationary view on manufacturers, which ignores capability changing and clusters 

of manufacturers. However, from a dynamic perspective, the capability and quality of 

manufacturers will increase along a collaboration relationship. The open innovator can also 

adjust the design of a product family to achieve a better fit with manufacturers. In service 

manufacturing, co-evolution of product families and manufacturers over generations 

caused by market demand changes and technological progress is worthy of in-depth 

research. 

(3) The robustness of proposed methods: the robustness of evaluation methods needs 

to be further verified. It should prove an efficient behavior on a wider spectrum of 

evaluation criteria and complex manufacturer records. The robustness of methods proposed 
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in task execution should be verified. The negotiations regarding distinct due dates, 

revenues, unit tardiness penalty cost, and so on are important in crowdsourcing task 

execution. 

(4) Experimental validation of proposed methodology: the methodology proposed 

in this research is not validated through an experimental to valid the research foundation. 

The motivation of stakeholders and the efficiency of the proposed platform driven 

crowdsourced manufacturing mentioned in this research requires a further validation. 

(5) Customer’s view: platform-driven crowdsourced manufacturing aims to fulfill 

customer’s need, while the change of MaaS introduced to the market is not covered in this 

research. 

11.4 Future Threads 

Platform-driven crowdsourcing have fundamentally changed the way of organizing 

product fulfillment resources. Several ideas are elaborated below for potential endeavors 

in the future. 

(1) Incorporating uncertainty along task execution: the task execution process 

should modify the existed optimal decision-making architecture to incorporate uncertainty 

from real-world. The task derivation and decomposition, which is formulated as PFP and 

MLB, in an uncertain environment has been separately optimized extensively in the 

literature, little has been done for the uncertain interactive decision-making of PFP and 

MLB in MaaS. 

(2) Include a wide scope of real-world management policies: This dissertation 

discusses platform-driven crowdsourced manufacturing theoretically. A transition 
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roadmap towards MaaS through crowdsourced manufacturing is essential. An interview 

and discussion with professionals from academia and industries will be a milestone, such 

as challenges identification towards crowdsourcing for engineering design (Shergadwala 

et al., 2020, Forbes et al., 2020). 

(3) Relax some assumptions for extended applicability: The methods proposed in 

this dissertation are based on some assumptions to limit the scope of research. Some of 

these can be lifted in the future avenue. The ranking algorithm in Chapter 5 assumes that 

the dataset is clean enough to get rid of any data point that violate monotonic constraints, 

a better classification and ranking algorithm can perform better for real-world data. Chapter 

6 assumes that the manufacturers in each cluster are not able to cross multiple clusters or 

transfer from cluster to cluster. A modified algorithm to accommodate cluster crossing and 

transfer cost is promising in future threads. Chapter 8 assume rolling horizon replanning 

policy and event-driven replanning policies for serial production lines. In future work, the 

performance assessment of these policies using different production systems can be 

beneficial for replanning policy selection under different production operation parameters. 

(4) Experiment design for validation: An experimental design should be covered in 

the future to validate the related theory in platform-driven crowdsourced manufacturing. 

Because it is a method to deliver MaaS, the measurement of service level is essential for 

setting experiment to validate functions of MaaS. Getting along with the increasing 

instances of platform-driven crowdsourced manufacturing are installed in the real-world, a 

survey of stakeholders can also validate this research. And the view of customers can be 

studied based on the real-world instances. 
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