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SUMMARY

Platform-driven crowdsourced manufacturing is an emerging manufacturing
paradigm to instantiate the adoption of the open business model in the context of achieving
Manufacturing-as-a-Service (MaaS). It has attracted attention from both industries and
academia as a powerful way of searching for manufacturing solutions extensively in a
smart manufacturing era. In this regard, this work examines the origination and evolution
of the open business model and highlights the trends towards platform-driven
crowdsourced manufacturing as a solution for MaaS. Platform-driven crowdsourced
manufacturing has a full function of value capturing, creation, and delivery approach,
which is fulfilled by the cooperation among manufacturers, open innovators, and platforms.
The platform-driven crowdsourced manufacturing workflow is proposed to organize these
three decision agents by specifying the domains and interactions, following a functional,
behavioral, and structural mapping model. A MaaS reference model is proposed to outline
the critical functions and inter-relationships among them. A series of quantitative,
qualitative, and computational solutions are developed for fulfilling the outlined functions.
The case studies demonstrate that the proposed methodologies and can pace the way

towards a service-oriented product fulfillment process.

This dissertation originally proposes a manufacturing theory and decision models
by integrating manufacturer crowds through a cyber platform. This dissertation reveals the
elementary conceptual framework based on stakeholder analysis, including dichotomy
analysis of industrial applicability, decision agent identification, workflow, and holistic

framework of platform-driven crowdsourced manufacturing. Three stakeholders require

XXV



three essential service fields, and their cooperation requires an information service system
as a kernel. These essential functions include contracting evaluation services for open
innovators, task execution services for manufacturers, and management services for
platforms. This research tackles these research challenges to provide a technology

implementation roadmap and transition guidebook for industries towards crowdsourcing.

Accordingly, mathematical and computational models are developed within the
framework to support: 1) value capture function from a functional view for manufacturing
resource selection and aggregation; 2) value creation function from a behavioral view for
crowdsourcing task execution decision making; 3) value delivery function from a structural
view for crowd dynamics modeling and operational protocol revision; 4) cyber kernel as a
prerequisite for information services of platform-driven crowdsourced manufacturing.
These coherent technical elements along the service reference model lay the theoretical

foundation of this research, as described below.

First, in order to search and select manufacturers through a crowdsourcing process,
a crowdsourcing contracting mechanism incorporating explicit and inexplicit criteria
evaluation methods is proposed. It perceives crowdsourcing product fulfillment efforts
through a cyber platform as tournament-based crowdsourcing, formulated with various
activities and symbolic systems. The challenge of a crowdsourcing contracting evaluation
mechanism can be further decomposed as engineering functional and business operation
reputational evaluation, with explicit and inexplicit criteria, respectively. This research
proposes a quantitative methodology of manufacturers evaluation for engineering
functional requirements based on information-content measurements and a decision-tree

learning algorithm for business operational reputational evaluation of manufacturers

XXV



through monotonic classification. The results of various criteria are aggregated through

multi-attribute utility theory.

Second, based on the platform-driven crowdsourced manufacturing, a
crowdsourcing task derivation method is proposed to optimally solve the tradeoff between
product family planning and manufacturing load balancing. It formulates the
reconfiguration of a series of innovative products as a product family planning problem
from the front-end, and a manufacturing load planning problem from the back-end, which
pursuits maximum sale profits and minimum unbalanced task segmentation, respectively.
It can be mathematically modeled as a bilevel programming problem, solved by a proposed

nested-bilevel genetic algorithm.

Third, a networked material flow management service through cross-docking is
proposed to serve manufacturers to peel off their peripheral activities and concentrate on
their leading competing edges. As a platform-driven logistics solution, cross-docking
divides service routes into pickup and delivery routes and enhances overall efficiency by
exploring similarities among routes and minimizing inventory cost at the depot. A branch-
and-price algorithm is proposed to solve this large-scale combinatorial optimization
problem efficiently. This logistic service decision-making can be modeled as a
crowdsourcing vehicle routing problem with cross-docking. A pulse algorithm is applied
to solve the pricing problem, and a branching heuristic is applied to solve the problem

effectively and exactly.

Fourth, to support the optimal decision-making of manufacturers on production

planning, a real-time order acceptance and accommodation methodology is established. It
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aims to serve manufacturers with optimal decision making for accepting crowdsourcing
orders and mixing the incoming and existing orders incorporating the real-time status of
the manufacturing facility. This problem can be modeled following a bilevel architecture
with order acceptance and scheduling on the leader level as well as job release planning on
the follower level. A construction methodology of digital twins of manufacturers’ shop
floor is proposed, and the algorithmic solution of this bilevel problem incorporating real-

time status is established.

Fifth, blockchain-based information service systems are proposed to serve all
stakeholders for crowdsourcing contracting, real-time status monitoring, and product
fulfillment data management. Adopting blockchain-based smart contracts is a key to
managing distributive databases to ensure security. The proposed architecture also
incorporates smart sensing technologies and enables real-time informed decision-making

in platform-driven crowdsourced manufacturing.

Sixth, an evolutionary competition-cooperation game model is developed to find a
robust revision protocol to sustain a prosperous manufacturer population. It formulates the
cohort decision-making process as an evolutionary model. Thus, enable behavioral
modeling of adoption and reversion of crowdsourcing strategy in a multi-cluster

manufacturer population, which serves operation excellence of platforms.
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CHAPTER 1. INTRODUCTION

Manufacturing companies are confronted with challenges for satisfying various
individual customer needs while more efficiently managing product variety for product
development than their competitors (Brettel et al., 2017, Jiao et al., 2003). The extent of
market-of-one has been foreseen as a potential driving force for next transformation of the
global economy, leading to the traditional mass production paradigm being shifted to mass
customization and personalization (Pine, 1993, Tseng et al., 2010). This paradigm shift
introduces a large variety to not only the product domain but also the production domain.
Thus, this change implies a higher variance of demands and markets, as well as a complex

technology portfolio and dynamic supply chain structure (EIMaraghy et al., 2013).

Manufacturing companies utilize information sharing and coordination
technologies to deal with the variety, where companies cooperate with a peer of suppliers
through a series of fabrications to finish final products in the time deadlines (Sahin and
Robinson Jr, 2005). Manufacturing companies usually own excess production capacities
to avoid the violation of the deadline, while approaching manufacturing capabilities and
resources from a scalable and changeable production network is a more efficient way to
adjust capacities (Freitag et al., 2015). The cloud-based manufacturing resource sharing
can explore the value of idle resources, as well as utilize the excess capabilities from the
cooperation of the global supply chain (Wu and Yang, 2010). Following the vision of
industry 4.0, the synergy of the highly customized products and intense competition
challenges the manufacturers with a decreased product lifecycle, quick response to

emerging technologies, and agile organization structure (Brettel et al., 2017).



1.1  Open Business Model

The open business strategy has been recognized as an efficient way of constructing
a quick response problem-solving system in terms of utilizing external assets and
knowledge to develop its own capabilities (Chesbrough and Appleyard, 2007). An open
business strategy can be defined as participating in an open initiative to capture value,
which can be divided into the reliance of the external assets or knowledge and the access
to project results by external partners (Appleyard and Chesbrough, 2017). It has been
witnessed that a growing amount of companies have adopted open business strategies and
geared towards the installation of open business models through their business activities,
which have achieved an agile enterprise structure and more massive capability arsenal
(Kortmann and Piller, 2016). The open business model allows the creation of whole new
complementary links in a value chain, which explicitly arranges the stakeholders along
with positions of value creation, deliveries, and capturing (EIMaraghy and ElMaraghy,
2014). This openness provides the structure to integrate the various external partners to

ease the installation of new technologies and scaling up of capabilities.

In a manufacturing environment, the external suppliers act as a subcontractor who
serves the value chain with its core competence, while the core company can outsource its
peripheral economic activities and focus on its essential competitive edges (Trentin et al.,
2012). This outsourcing can decompose the volatile yet complex value chains to simpler
jobs, which potentially enables the subcontractors to handle the variety by exploring the
commonalities among the jobs to maximize the reutilization of their competitive edges
(Jiao et al., 2007a). The concentration of the competitive edges will enhance the production

volume in companies’ core manufacturing activities to achieve economies of scale in a



high product and production variety as well as a significant variance of demand
environment (EIMaraghy et al., 2009). The mass cooperation of the manufacturers entails
a highly interactive manufacturing network that relies on the cooperative collaboration

mechanism along the value chain (Tapscott and Williams, 2008).

1.2 Platform-Driven Crowdsourcing

Crowdsourcing has been recognized as a connecting approach to installing the open
business model by transcending organizational boundaries in order to leverage resources
and capabilities across distributed stakeholders (Kohler, 2015). Different from the
conventional strategy of outsourcing in supply chain management that emphasizes how to
assign a task to a designated agent, crowdsourcing utilizes an open call to a crowd for
maximally exploiting the external resources (Blcheler and Sieg, 2011). Crowdsourcing
entails a new value-based model as a social-economic computational platform in which
products and services are created and delivered in an open, collaborative, and distributed
manner (Green et al., 2017). As a computational production platform, crowdsourcing is a
large problem-solving model that utilizes Internet technologies to coordinate, negotiate,
and manage the crowds for performing the specific organizational tasks (Saxton et al.,
2013). It implies a superior broker system to coordinate the information and material flow
among the stakeholder crowds and therefore enable the companies to crowdsource their
peripheral activities and concentrate on their core competitive edges (Redlich and Bruhns,

2008).

Among many perspectives of crowdsourcing, we approached from a platform-

driven method to peel out the coordinating and negotiating responsibilities from the



crowdsourcer and eases the way of applying the open business model as the foundation of
product innovation and development. Following a “four pillars” taxonomy of the
crowdsourcing, namely the crowd, crowdsourcer, crowdsourced task, and crowdsourcing
platform, precisely, the crowdsourcing platform plays an intermediate role between the
crowdsourcer and crowd (Hosseini et al., 2014). Thus, the crowdsourcing platform can
help the crowdsourcer to explore external knowledge and resource by coordinating the
activities of designers and manufacturers to achieve a collaborative product fulfillment

network.

A stream of state-of-the-art information and communications technologies (ICT)
and industry trends enable the platform to transcend the partners’ borders extensively and
build up information exchanging network as a driving power for the crowdsourcing product
fulfillment process. This platform-driven and collaborative integration of various business
and operation processes forge an extended enterprise, in which crowdsourcing and early
involvement of partner crowds become new competitive edges for innovative products
development (Fdller, 2010). The integration of smart sensors and the networked
manufacturing systems has established a cyber-physical manufacturing environment,
where the synergy of Internet of Things (10Ts), big data analysis, machine intelligence and
the conventional manufacturing technologies, like computer integrated manufacturing
system (CIMS), supply chain management (SCM), production logistics has stimulated a
gigantic manufacturing technology advancement for crowdsourcing product realization,
which is collectively envisioned as Industry 4.0 (Schwab, 2017). Owing to the
competitiveness in collaboration across multiple entities towards an enterprise with an open

yet virtual architecture, decentralization has been recognized as one core characteristic of



Industry 4.0 (Schuh et al., 2014). Many advancing enterprise information technologies
have been advocated, and continuously emerging, for the achievement of a digitalized
enterprise. Specifically, the new advantages of discrete event simulation (DES), model-
based system engineering (MBSE), and CAX software provides the possibility of modeling
the manufacturing activities from a distance (Jahangirian et al., 2010). The synergy of
cyber-physical systems (CPS) and manufacturing execution system (MES), enterprise
resource planning (ERP) in a manufacturing environment vertically integrates the real-time
data from the equipment fleet and the cyber architecture based on a digitalized platform

(Weyer et al., 2015).

A successful application of the open business model requires collaboration among
external partner crowds sharing resources and capabilities along with a coherent product
fulfillment flow (Simard and West, 2006). The platform-driven method can be installed to
penetrate the partners’ boundaries and utilize the data stream to enhance the product
fulfillment activities to a collaborative-crowdsourcing one. Thanks to the platform peel the
peripheral activities of the manufacturers and links to a large population of the partners, it
drives the collaborative-crowdsourcing product fulfillment workflow by formulating the

functions, interactions, and processes (Gong, 2018).

1.3 Smart Manufacturing

The recent technological trends reshape the product realization facility to a smarter
and more autonomous system, which enables the manufacturing companies to optimize
material flow for large manufacturing network accommodation, implement predictive

decision-making scheme for dynamic reaction, agile reconfiguration for end-to-end



throughput improvement, as well as the optimal partner allocation for cost minimization
(Crawford, 2018). These revolutions bring ubiquitous connectivity to the manufacturing
environment, which allows the collection of significant volumes of dispersed information
and leads to the support of distributed decision-making in the context of manufacturing
(Monostori etal., 2016). The blockchain technology enables a distributed and decentralized
knowledge management system to support the connecting among the manufacturer crowds
in an open environment (Li et al., 2018a). Besides, to connect to the decentralized
computing power, the synergy of cloud computing and edge computing explores the
connections through a virtual platform (Li et al., 2018b). This synergy has transformed
manufacturing into an agile and intelligent process, which paves the way for adopting open
business models via autonomous reconfiguration of the distributed manufacturing

resources (Rosen et al., 2015).

Such technological progress consolidates the foundation of the future
manufacturing paradigm shifts. Open manufacturing explores the technical prerequisite
and information architecture for a manufacturing company to install open business models,
which aims to achieve an open yet agile enterprise architecture and integrates external
resources to its own fulfillment workflow based on a crowdsourcing information platform
(Li et al., 2018b). The achievement of an open architecture envisions a transformation
towards a large-scale cooperative product fulfillment model, which connects a large
manufacturer peer crowds and reconfigure a collaborative network to satisfy volatile
customer needs. The requirement of accommodating a dynamic and collaborative network
implies the adoption of a service-oriented paradigm which installs X-as-a-service to the

manufacturing regime as service manufacturing (Kusiak, 2019). Social manufacturing



studies the interactive relationship among the manufacturer crowds, which formulates the
construction of a manufacturing network as an autonomous organizing process (Jiang et
al., 2016a). The paradigm of cloud-based design and manufacturing offers the framework
of connecting smart entities across a population of companies, thus, enable a demand-
capacity matching mechanism to serve the collaboration for product realization (Wu et al.,

2015).

Specifically, the crowdsourced manufacturing has been proposed based on the
application of cloud-based design and manufacturing. It has been further developed to
organize a dynamic resource sharing mechanism across manufacturers in a crowd to
achieve the production network construction from a large manufacturer population
(Kaihara, 2001). The coordination mechanism, which is offered by the crowdsourcing
platform, synchronizes manufacturing activities across the companies and lets the
manufacturer own an excessive capacity from the cooperation of the partners in the
production network (Freitag et al., 2015). The resource matching and pricing mechanisms
enable a cloud-based capability and knowledge exchanging marketplace to accelerate the
production network reconfiguration process (Kang et al., 2016). From the variety
management perspective, crowdsourced manufacturing provides a rapidly responsive

reconfiguration of the existed resources and knowledge to serve volatile customer needs.

1.4 Research Objectives

The primary objective is to investigate the platform-driven crowdsourced

manufacturing to achieve Manufacturing as a Service (MaaS). The specific objectives and



motivations are organized in Figure 1-1. Accordingly, the primary objective can be

decomposed into the sub-objectives that are to answer the following research issues:

1) How to model and analyze crowdsourced manufacturing workflow across all
decision agents systematically;

2) What are the models and mechanisms for crowdsourcing tasks execution;

3) How to serve the information flow across the decision making in crowdsourced
manufacturing;

4) What operational protocols can sustain a long-time prosperity of the manufacturer

crowads.

Motivation 1: Mass Customization: volatile customer needs,
complex technology portfolio, dynamic supply chain structure

———> Research Logic Link
@— > Research Area Link
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Figure 1-1 Research motivations and objectives

Towards this end, the corresponding objectives are proposed as follows.



1.4.1 Model and analyse platform-driven crowdsourced manufacturing workflow for

crowdsourcing supply network reconfiguration

Obijective 1 proposes a workflow to organize all decision agents in a crowdsourced
manufacturing workflow. In line with the principles of axiomatic design (Suh, 1998), the
product fulfillment process comprises a set of cascading mapping of “what-how”
relationships across four consecutive domains, including the customer, functional,
physical, and process domains. Systematic design decisions in each of the domains are
characterized by the Customer Needs (CNs), Functional Requirements (FRs), Design
Parameters (DPs), and Process Variables (PVs), respectively. Traditionally, the mapping
decisions from one domain to another are processed centrally within one enterprise (Jiao
et al., 2007a). With the adoption of the open business model, such decisions are becoming
decentralized across many decision agents while transcending organizational boundaries
in order to leverage resources and capabilities through crowdsourcing (Montes and
Goertzel, 2019). The platform-driven crowdsourced manufacturing should ensure the
responses from crowds can satisfaction of customers, which implies the requirement of

robust and generic contracting evaluation mechanisms.

It is hypothesized that a proper crowdsourced manufacturing workflow can present
the full function of crowdsourcing in the context of manufacturing, which specifies the
interaction sequence, functional domains, information flow, material flow, and contracting

evaluation mechanism among the decision agents.

1.4.2 Investigate the methods and mechanism to support crowdsourcing task execution



Obijective 2 propose service-oriented systematic methods and mechanisms to ease
the accommaodation of crowdsourced manufacturing. The motivation of the manufacturer
to participate in crowdsourced manufacturing is capturing the value of its abilities to
manage manufacturing resources, planning the process, and executing the crowdsourcing
tasks. It relies on the cooperation of the open innovators and platform to serve the
manufacturer with a system of approaches to link the upstream and downstream partners,
as well as to touch and connect the customers. This service system offers functions as
planning an arsenal of manufacturing capabilities to fulfil a broader market, rapid
configuration of the manufacturing network, and material flow management tools to

accelerate the manufacturer’s accommodation of crowdsourced manufacturing.

It is hypothesized that a service system can restructure the design of the innovative
products to the executable crowdsourcing tasks, serve these tasks with logistic services, as

well as the decision-support for accommodating these tasks in the model of crowdsourcing.

The objective can be further decomposed into three sub-objectives, which aim to
solve problems in the product, platform, and manufacturing domain, respectively. The first
sub-objective is crowdsourcing task derivation and decomposition to serve the
transformation of the product design to executable crowdsourcing tasks. The subsequent
sub-objective is planning the material for the task flow to transport the material and work-
in-progress (WIP) in time based on the partner selection. The last sub-objective is
developing a systematic method to help the manufacturers determine the acceptance of the

tasks and mix the tasks to their shop floor, according to the real-time situation.
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1.4.3 Crowdsourced manufacturing information service system analysis and architecture

design

The third objective is the development of a decentralized information management
system to serve the decision agents. Because the manufacturers are searched by
crowdsourcing to serve the value chain fulfillment, these agents can be widely dispersed.
Data management in crowdsourced manufacturing is challenged to handle the process data,
which is generated by the dispersed partners. Moreover, these process data stream should
be visited by both open innovators and platforms for execution quality monitoring and
large-scale cooperation of the manufacturers, respectively. The synergy of the cloud
database and blockchain technology offers the distributed query and retrieve services for
the manufacturing data source from the machine level data, manufacturing resources data,
production data, as well as logistic data (Li et al., 2018a). The platform-based blockchain
structure for 10T can also ease the adoption of crowdsourced manufacturing since it enables
interactions among manufacturers via smart contracts in a dispersed and peer-to-peer

network without intermediary trust (Bahga and Madisetti, 2016).

It is hypothesized that an information service system can serve the decision agents
in crowdsourced manufacturing with the required information and decision support, which
can manage the distributed product fulfillment data, backtrack the fulfillment process, as

well as provide optimal decision-support on the resource planning.

1.4.4 Crowdsourced manufacturing operational protocols optimization and simulation

The fourth objective is investigating managerial protocols to make optimal

decisions on the operation of the two-folded demand-capacity marketplace to achieve long-
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time prosperity. Different from the traditional product manufacturing process, which plans
the manufacturing processes inner an enterprise or outsources several peripheral activities
to designated partners, the decision making in the crowdsourced manufacturing shows a
collective and distributive characteristic. Thus, MaaS requires moving beyond exclusive
use of hierarchical decision making, drawing on the power of crowdsourcing and markets
wherever possible. Because the crowdsourced manufacturing entails competitive and
collaborative workflows that relies on a group decision support system to facilitate the
problem-solving process (Thuan et al., 2013a), a successful operational protocol indicates
an understanding of the behaviour and evolution of not only manufacturer individual but
also the crowd population. The existence of evaluation and awarding processes imply a
natural competition inner a manufacturer cluster. Due to the product realization relies on
the mass-collaboration across the manufacturer clusters, the inter-cluster cooperation is
observed, which can enhance the capability of the manufacturer population to attract more

open innovators.

It is hypothesized that it can consider the evolutionary competition-cooperation
relationship in the manufacturer population and provide a robust “if-then” scenario to

predict the evolution of the population.

1.5  Organization of This Dissertation

In this regard, this dissertation proposes platform-driven crowdsourced
manufacturing as a systematic solution towards the installation of MaaS. Figure 1-2

presents the technical roadmap of this dissertation, including motivation & significance,
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problem formulation, technical approach, methodology & solution, and validation &

application.

Chapter 1 discusses the motivation and significance of this research topic, along
with a holistic view of research goals and scope. Chapter 2 provides a comprehensive

review of various topics related to this research.

Chapters 3, 4, and 5 are responses to research objective 1. Chapter 3 proposes the
conceptual framework through stakeholder analysis. It explores applicable industries,
essential stakeholders, and their driven forces towards platform-driven crowdsourced
manufacturing. A running case study of tank trailer crowdsourcing is presented to examine
the potential of platform-driven crowdsourced manufacturing. This chapter sketches
essential concepts to formulate crowdsourced manufacturing in terms of workflow on the
project level, holistic framework, as well as networked information and material flow

across decision agents.

Chapter 4 formulates the key research problems of this dissertation. It presents the
fundamental issues underlying platform-driven crowdsourced manufacturing through a
structural implication approach. These fundamental issues help provoke insights into how

to solve them systematically.

Chapter 5 proposes a crowdsourcing contracting evaluation mechanism to select
manufacturers considering the satisfaction of the customer. The evaluation process can be
decomposed into engineering functional performance and business operational ranking to
reflect the efficiency of performance delivery to customer expectation range and business

reputation through historical review, respectively.
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Chapters 6, 7, and 8 are devoted to gear forward research towards research objective
2. Chapter 6 reports the development of task derivation and decomposition of the
executable crowdsourcing tasks based on the Stackelberg game-theoretical decision-
making scheme. This chapter formulates the profit maximization problem in the front-end
customer domain as a product family planning problem, which can be solved as a
combinatorial problem to seek an optimal solution of a combination of function modules.
Since the product functional modules have intrinsic connections to manufacturing
processes, the decomposition of innovative products into crowdsourcing tasks entails a
manufacturer load planning problem, which can be formulated as a separation optimization

problem. A bilevel joint optimization algorithm is proposed and validated in Chapter 6.

Chapter 7 is devoted to logistic service modeling for manufacturers to handle a
networked material flow across the agent crowd. A crowdsourcing environment introduces
dynamic and networked material flow to logistic service in platform-driven crowdsourced
manufacturing. Adopting an X-as-a-Service, MaasS requires the platform to provide logistic
decision support services through vehicle route planning. A pick-up and delivery problem
with crossdocking is formulated and solved through an effective branch-and-price

algorithm.

Chapter 8 focuses on the interactive bilevel optimization formulation for
crowdsourcing task acceptance and accommodation by investigating the interplay between
task allocation on a supply chain perspective and order rescheduling on a factory
perspective. It builds a digital twin of the manufacturer’s shop floor based on a max-plus
algebra model, which enables reflecting real-time data on a decision-making service. It

formulates a real-time order acceptance and scheduling for data-enabled permutation flow
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shops, which is solved by a bilevel interactive programming algorithm. Finally, a case

study and comparisons with prevailing approaches are reported.

Chapter 9 conducts an architecture design of a blockchain-based smart contracting
and distributed data management system for information services to all stakeholders in
platform-driven crowdsourced manufacturing. This chapter reflects research objective 3. It
uses smart contracting technology to solidify a crowdsourcing supply cooperation network
and use it as an encryption key to manage product fulfillment data. A blockchain-based
database is established to manage wide dispersed product fulfillment data. The
stakeholders in platform-driven crowdsourced manufacturing can stream product
fulfillment data from Industrial 10Ts and enterprise software. Finally, a case study is

reported to reflect the potential of the proposed architecture.

Chapter 10 introduces optimal operational protocol derivations and adjustment
mechanisms for platform-driven crowdsourced manufacturing. This chapter adopts a
population dynamics perspective to model the behavioral interactions among manufacturer
clusters and formulates an optimal operational protocol derivation problem as an
evolutionary competition-cooperation game. An optimal operational protocol can be

explored by finding an equilibrium point and the corresponding stability analysis.

The last chapter, Chapter 11 summarizes the achievements in addressing the
research objectives and issues. A critical assessment is given to highlight the limitations

and possible improvements of this research, along with recommendations for future work.
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CHAPTER 2. LITERATURE REVIEW

2.1 From Open Business Model to Open Manufacturing

The business model is defined as a framework that consists of stakeholders
gathering structures, as well as the methods of creating, delivering, and capturing the value
(Zott et al., 2011). The purpose of a business model is to provide a set of heuristic logic to
connect the technical ideas and realize the economic value (Chesbrough and Rosenbloom,
2002). With the opening of the conventional enterprise borders, the company can explore
a larger volume of ideas and knowledge, as well as utilize a broad spectrum of external
assets, resources, and positions for a more efficient value capturing (Chesbrough, 2007).
The open business model is coined by Chesbrough to describe the linking organizations
outside the company border to yield new products or services by using the power of
division of labor (Chesbrough, 2006). Following the generic product development process
in engineering design (Eppinger and Ulrich, 2015), the open business model provides the
transition of conventional product fulfillment to a series of open activities. The mapping
relationship of the open innovation, open design, and open manufacturing with generic

product development process is shown in Figure 2-1.

Plannin N Concept N System-Level Detail Desian Testing and \ Production '\ Ongoing \
9 Vi Development / Design 9 Refinement / Ramp-up Production /}
Mission Concept System Critical Design Production Product
Approval Review Spec Review Review Approval Launch
_ Open Innovation |1 J Open Manufacturing -
[~ s~ s~ |

Figure 2-1 Generic product development process
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As an earlier base of the open business model, open innovation is applied to depict
the distributive innovation process based on purposively managed knowledge flows across
the boundaries of organizations (Bogers et al., 2017). Companies have widely recognized
the open innovation as an accelerator for the internal leap from research to development
and market expansion of external acquisition of their knowledge (Vanhaverbeke and
Chesbrough, 2014). In contrast to the traditional vertical integration model, the open
innovation horizontally structures a dynamically interactive network for various clusters of
autonomous firms throughout the innovation process (Dhanaraj and Parkhe, 2006).
Moreover, from a value chain perspective, an increasing amount of the industries organize
the firms as a central platform structure, where the core firm seeks the inflow of the external
knowledge for their targeted markets, while the surrounding firms outflow their knowledge
to help the core company to save the cost from do-it-all-yourself (Gawer and Cusumano,
2014). Through this innovation network, the participating firms of the open innovation can
identify their market opportunities, link to the advanced research and technology, collect a
variety of product concepts, as well as initiate the configuration of product family
architecture (Gronlund et al., 2010). From a product development perspective, open
innovation provides a systematical method to install the open business model to cover
product planning, along with the concept development, and end at the transition stage of

system-level design.

Targeted at the later product innovation and development process, the open design
depicts the installation of the open business model by design communities to open the
border of the company, collaborate with the external designer crowds, and achieve a

flexible design capability (Boisseau et al., 2018). The concept of the open design originates
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from the free/libre open-source software (F/LOSS), which has created legends like Linux
and Wikipedia (Weber, 2004). The open design enables a decentralized development
process, a dynamic development structure, as well as the involvement of a crowd of
developers (Wheeler, 2011). Since the physical products are increasingly data-driven and
digitalized, the open business model propagates from digital information processing to the
design of tangible products (Raasch et al., 2009). The concept of the open design has been
defined as the designers allowing external partners to access, modify, and derive from the
product design (Micklethwaite, 2012). Based on the designer crowds and advanced Internet
access, open design structures a collaborative design team from external designer crowds
and harmoniously integrates the design outcomes (Koch and Tumer, 2009). Open design
is capable of parametric design of modularized design tasks based on a given product
architecture (Vallance et al., 2001), as well as aggregate design results with a systematical
computation mechanism to coordinate the numerical conflicts (Binnekamp et al., 2006).
These developments of open design imply that it can be served as a transforming approach
to gear the transition stage of system-level design to detail design and the start of product

testing and refinement towards more open activities.

The rise of smart manufacturing enables a highly democratized manufacturing
network, which is characterized as decentralized, service-oriented, and easy to access (Bull
and Groves, 2009). The democratization of the manufacturing will lead to the installation
of the open business model, which is empowered by a dynamic network of agents who are
acquiring technologies and resources in a self-directed and ad hoc way (Richardson, 2016)
This post-Fordism sociotechnical trends can be summarized as open manufacturing to

depict this manufacturing ecosystem. The open manufacturing integrates the
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manufacturing resources and knowledge from the distributed manufacturer community by
a decentralized network to support the manufacturing operation (Li et al., 2018b). The
collaboration of the manufacturer crowds utilizes cloud computing technologies to access
the manufacturing agents, as well as blockchain for production knowledge and information
exchanging (Li et al., 2018a). An open-source exchanging marketplace will provide a
variety of external manufacturing technologies and sharing excessive manufacturing
resources and capabilities, which will ease the configuration of manufacturer crowds to a

collaborative team for fulfilling various product orders (Banerjee et al., 2015).

2.2 Collaborative-Crowdsourcing Product Fulfillment

Among the approach of accessing external knowledge and resource to implement
an open business model, crowdsourcing has been highlighted as an ICT-enabled and social
media-based innovation tool (Kittur et al., 2008, Martini et al., 2014). This concept has
been introduced to describe the utilization of open calls to form a peer-production for a
task from a crowd of undefined people (Howe, 2006). Thanks to the wisdom of crowds,
the collection of intelligence from a large group of heterogeneous participants are believed
to show the superiority of a limited group of elites (Leimeister et al., 2009). Several factors
have been highlighted as the impulses of the participants, includes self-market or
promotion, tangible or intangible compensation, social fames, and reputation, to name but

a few (Bayus, 2010).

Since the crowdsourcing mechanism has been recognized as beneficial to problem-
solving for the technical tasks, a stream of research has geared forward the formulation of

crowdsourcing. Surowiecki (2005) identifies four essential prerequisites to ensure the
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successful crowdsourcing decision-making: 1) diversity, each participant can offer unique
knowledge or capabilities; 2) independence, to avoid the influence from peers; 3)
decentralization, the information is sharable for locally process by participants; 4)
aggregation, the fulfilled crowdsourcing tasks can be collectively aggregated. Bonabeau
(2009) divides the crowdsourcing decision-making processes into two stages, the
generation of possible solutions and the evaluation of these solutions. The essential
cornerstones of crowdsourcing have been summarized as: 1) the application of open calls
to explore the crowd; 2) a task set that needs to be fulfilled; 3) compensation of the
contribution (Allon and Babich, 2020). Considering the complexity of the crowdsourcing
task set, the success of crowdsourcing emphasizes independence and decentralization in
the solution generation process to ensure the cognitive diversity, as well as the semantic

coherence of the most successful solution sets to ensure the aggregation (Rosen, 2011).

The advancement of ICT brings ubiquitous connectivity to the decision-making
entities worldwide through the mobile network and social media. Meanwhile, the synergy
of industrial 10Ts and CPS paves the way for an extensive collaboration among the
practitioners from industry. Several industry pioneers have started the installation of
crowdsourcing. These practices can be generally divided into two categories, existed giants
operate a designated platform to reach the external resources via crowdsourcing to majorly
serve their market, like MyStarbucks operated by Starbucks and Haier Open Partnership
Ecosystem (HOPE) by Haier, as well as the third-party company operate a crowdsourcing
platform to serve their customer’s market, like Amazon Mechanical Turk and ZBJ.com in

China.
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A stream of researchers summarizes the classification methodology to analyze the
type of these crowdsourcing practices. Based on the types of requirements and collecting
methods of contributions, two dimensions has been summarized as subjective or objective
contents, as well as aggregated or filtered contributions (Prpi¢ et al., 2015). The research
of crowdsourcing has revealed a series of crowdsourcing model from the industry
application based on the characteristics of the demands, which includes “winner-takes-all”
or multiple responses, defined task or unresolved problem, individual efforts or
collaborative manners, crowds qualification, activity-targeted or fundraising, requirements
on response qualities, activeness of participation, to name but a few (Grewal-Carr and
Bates, 2016). Since collaborative-crowdsourcing product fulfillment is a process to realize
the innovative product planning, the crowdsourcing tasks can be identified as an explicitly
defined design or manufacturing requirement. Thus, it requires qualified designers and
manufacturers to fulfill the tasks through a series of design solution derivations and
fabrications, respectively. The crowdsourcing models for the collaborative-crowdsourcing

product fulfillment task are sketched in Figure 2-2.
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Figure 2-2 Crowdsourcing models for product fulfillment tasks
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The crowdsourcing models for defined crowdsourcing tasks can be classified into
three categories based on their openness, business motivations, and operation management
issues: 1) Open collaboration, 2) Tournament based crowdsourcing, and 3) Virtual labor
market (Allon and Babich, 2020). Open collaboration is a social media-based idea
searching approach, where the organizations publish crowdsourcing tasks to a community
of agents and aggregate the responses in the community to serve the decision making. In
this approach, the crowdsourcing task can be identified as an unsolved problem, which has
no sophisticated problem definition but expects innovative contributions after a mass
collaboration of the community. This crowdsourcing type usually has no monetary
incentives for the agent crowds, and the agents are not expecting to be qualified as an
entering barrier in most cases. Tournament based crowdsourcing formulate a series of
activities to let the seeker connect to the solvers and select the winner after idea
competition. The existence of the tournament implies more objective incentives and a
relatively open environment, as well as the stimulation of competition among solver
crowds. In contrast, the virtual labor market entails a web-based platform that plays an
intermediate role between the crowdsourcer and a crowd with required qualifications. The
platform can match the capabilities in the crowd and the requirement of a crowdsourcing
task. It has also been observed that the platform can play an evaluation role to test the

program (i.e., Upwork) or service monitoring (i.e., Uber and DiDi).

The crowdsourcing tasks in the virtual labor market can be further classified by the
problem scale, the wellness of problem definition, and the specialty of required skills. The
microtask model serves a well-defined problem structure, which is easy enough to be

classified as an everyday task. This model can be identified as an extension of the
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traditional subcontracting, which explores the natural resources external from the
company. The emerging Instacart and Uber is a microtask crowdsourcing application in
the service industry sector. The Mechanical Turk by Amazon can serve the user-involved
product design by hiring a crowd of potential customers for the prototype survey. The
mesotask is a well-defined task that expects the specialist to provide routine and
straightforward solutions. It has an explicit expectation on solution quality, delivery
guantity, and methods, as well as the violation terms. This model can be used for software
development as well as mechanical fabrication, which has a clear process routine and a set
of specified qualifications. The efforts for the mesotask are less complicated and innovative
comparing with the macrotask model. The macrotask serves the complex crowdsourcing
objective, which is often installed on the research and development of the product or
strategic consultant. The efforts for macrotask are more knowledge-based and subjective,
which can help the crowdsourcer to expand their knowledge and resource arsenal without
owning a designated department or sign a long-term subcontract. For example, the HOPE
platform enables Haier to develop broad connections to an ocean of research groups to

develop new products.

Although recognized as an emerging paradigm of product development by both
industries and academia, there is a lack of systematical installation roadmap of
crowdsourced product development (Shergadwala et al., 2020). Crowdsourcing can be
utilized for product idea generation, concept design, detailed design, physical prototyping,
and design evaluation, which are the essential product innovation and design stages in the
new product development (Tran et al., 2012). The generic crowdsourcing process for new

product development can be summarized as five consecutive stages, namely task definition,
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task broadcasting, response collection, response evaluation, and winner awards (Qin et al.,
2016). After the product planning and design stage, crowdsourcing has been explored to
install on the production stage. The concept of crowdsourced manufacturing originates
from the cloud-based manufacturing system, which reflects a manufacturing capability
sharing and production organizing mechanism among the cloud-based and widely

connected manufacturing network (Wu et al., 2015).

2.3 Industry Initiatives Toward Crowdsourcing

Crowdsourcing has been widely applied to a spectrum of industries worldwide.
Recognizing the power of “wisdom of crowds,” rapid growth in the crowdsourcing sector
is observed to enable a broad application to a spectrum of industries. Figure 2-3 shows the
annual number of investments and the corresponding amount on crowdsourcing companies
in China from 2006 to 2018. It shows that a large amount of investment has been devoted
to incubating the funding of crowdsourcing companies, which implies a rapid growth in

the past decades.

7000 6065 80
6000 \ 70
5000 [ \ 4573 60
/ 50

4000
3390\, 20

3000
2031 30
2000 1479 1725 20

936

1000 s g 137 o i 377 10

2006 2007 2008 2009 2010 20112012 2013 2014 20152016 2017 2018

m Number of Investment P==Investment Amount (Million RMB)

Figure 2-3 Investment on crowdsourcing in China
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Figure 2-4 summarizes the representative crowdsourcing platform companies in
terms of their targeted markets, founded time, and the latest monthly page views of their
domain page. A sizeable monthly page view number implies a prosperous crowd ecosystem
and substantial fulfillment capability. The average monthly page view number of the

selected representative companies is around 300 thousand.
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Figure 2-4 Representative Crowdsourcing Platform Companies

The crowdsourcing platform companies like Amazon Mechanical Turk and
Samasource paves the way of connecting a large amount of labor to the companies to fulfill
micro-tasks at a relatively low cost. Thanks to the massive amount of the Internet users,
Amazon Mechanical Turk can sustain a large yet diversified crowd to serve the human-
subject survey, data annotation, as well as the data cleaning and verification, to accelerate
the development of artificial intelligence-related projects (Buhrmester et al., 2016).

Samasource, a company established in 2008, utilizes the exponentially growing Internet
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users globally by employing low-income workers in the developing countries to providing

high-quality, large-scale training data for profit (Ojanperé et al., 2018).

Compared to the micro-task, which only requires the crowds to have general
capabilities, crowdsourcing can also link the expert crowds. The crowdsourcing platform
companies in China have linked a large population of developers and serves the ICT giants
like Alibaba and Huawei with heterogeneous capabilities and rapid response, which
includes proginn.com, Code Mart, zb.oschina.net, mayigeek.com, to name but a few. Out
of the IT-related industries, the leading home appliances and consumer electronics
manufacturer Haier has installed the open business model and established HOPE to
restructure the centralized enterprise to “a sea of entrepreneurs” and sustain a vast
innovation ecosystem to serve the product research and development for their appliance
sector (Chen, 2016). The HOPE platform provides crowdsourcing services for both internal
development teams and external partners, which achieve a series of successful products by
gathering the “wisdom of crowds” (Lewin et al., 2017). The local motors, which is founded
in 2009 as a US vehicle manufacturing company, explores the design ideas via
crowdsourcing and manufacturing the products by the cooperation of the manufacturer
network (Norton and Dann, 2011). Crowdsourcing can also serve the mechanical
fabrication, by linking the demands and fabrication capabilities, like machining, metal
sheet forming, heat treating, along with others. Vtoall.com is a Chinese fabrication
crowdsourcing platform that serves a two-sided marketplace for demands-capability

matching.

Since the graphical design relies less on the physical assets like manufacturing

facilities and equipment than IT and manufacturing industries, crowdsourcing can establish
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the approaches to the designer crowds. Designhill serves the design service with a broad
spectrum of logos, websites, apparel, and other projects by linking a large crowd of
designers. Threadless is a more expertized company that operates an online artist
community and e-commerce to fulfill volatile t-shirt and other apparel customer needs. The
stock photography company iStock provides photos and video transaction services in a
crowdsourcing way, which serves a large crowd of creators. The societal issue is a less
objective and complex problem that influences a large number of individuals in a society.
Crowdsourcing company OpenIDEO is a social impact platform that builds connections to

a crowd of companies to solve the tough social problem (Fuge et al., 2014).

Thanks to the development of crowdsourcing and related Internet technologies,
some crowdsourcing companies broaden their targeted market sectors and restructure their
platform to a general purposed platform. InnoCentive is funded by Eli Lilly and Company
to accelerate the research internal of the companies. However, after a series of partnerships
and acquiring, the InnoCentive is a general purposed open innovation and crowdsourcing
company to allow the organization to publish the problem as well as the problem solvers
to earn monetary rewards and reputations. ZBJ.com is a Chinese crowdsourcing company
that started from targeting industrial design to coverage of legal services, marketing
services, ICT development, software engineering, engineering design, and graphical design
by utilizing problem solver crowds. Upwork is a virtual labor marketplace that enables
demand-expertise matching and remote collaboration to serve a broad spectrum of
industries. EPWK.com is a creative crowdsourcing service company in China, which
serves small and medium companies with project planning and marketing services,

knowledge, and software development transactions and services.

28



These successive industry initiatives verify the feasibility of crowdsourcing and
value of “wisdom-of-crowds,” thus, pave the way of installing crowdsourcing to the
manufacturing environment by forging a collaborative and coordinated manufacturing

network.

2.4 Emerging Consensus on MaaS

As an emerging technology vision, smart manufacturing reshapes the landscape of
manufacturing industries with sensors, computing platforms, communication technologies,
as well as data-intensive modeling and predictive engineering (Kusiak, 2018). Driven by
the advancement of the knowledge exchange marketplace, sharing economies on the
manufacturing shop floor, as well as increasingly democratizing and opening trends, smart
manufacturing is characterized as decentralized, service-oriented, and platform-based
(Kusiak, 2019). Originates from network manufacturing that uses centralized
crowdsourcing, the open manufacturing adopts decentralization ideology. It utilizes
blockchain and edge computing to construct a cross-enterprise knowledge and service
sharing framework (Agostinho et al., 2016, Li et al., 2018b). The open manufacturing can
be viewed as an incubator for small and medium manufacturers since it regulates the
knowledge and service sharing standards and protocols. It can support manufacturers to
develop scalable and flexible business scale at a lower cost and eventually improves the
overall quality, efficiency, and effectiveness of manufacturing services. From a supply
chain aspect, the open manufacturing decouples design, logistics, and service layers from
physical assets (Kusiak, 2020). Targeted at achieving this capability, the open
manufacturing enterprises will be amenable to the X-as-a-service mode, where X

represents, e.g., manufacturing, supply chain, and logistics. This manufacturing paradigm
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is also called service manufacturing. Recognizing the great benefit of resource and service
sharing, several technical challenges have been highlighted as the bottlenecks towards an
extensively opened manufacturing environment, includes crowdsourcing contract design,
diversified supply chain reconfiguration, distribution coordination mechanisms, to name

but a few.

The implications of social media and the Internet change the consumption-
manufacturing relationship in industries from four aspects: production socialization, role
shift of consumers, the driving force of production innovation, and virus-like information
propagation in social media (Hamalainen and Karjalainen, 2017, Jiang et al., 2016b). These
aspects drive the current manufacturing paradigm to a more decentralized, open, adaptive,
and socialized one, which is coined as social manufacturing. Focus on this new
manufacturing paradigm, a large volume of research has geared forward the content of
social manufacturing, which includes, the blockchain-based tracking system for the self-
organizing process (Leng et al., 2019), RFID-based execution systems for inter-enterprise
monitoring and dispatching (Ding et al., 2016), the socialized production network
generation framework (Jiang and Ding, 2018), and outsourcer-supplier coordination
mechanisms (Guo and Jiang, 2019, Leng et al., 2017), to name but a few. These research
streams hold the opinion that small and medium service-oriented enterprises can be
aggregated into different kinds of horizontal manufacturing communities to enlarge their
bargain power and common profits through initial clustering and self-organization. As a
systematical software solution, social manufacturing provides a series of demands-
capability matching functions, includes requirement and capacities releasing, intelligent

matchmaking, production monitoring, and participator collaboration management (Ding et
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al., 2016). However, current related research has a limited exploration of the coordination
for manufacturing networks, collaborative-negotiation contracting among stakeholders,

and an evaluation for solution validation and quality control.

Cloud manufacturing follows the successful application of cloud computing, in
which diversified resources and abilities are intelligently sensed and connected into the
broader Internet, and automatically managed and controlled using 10T technologies (Wu et
al., 2013, Tao et al., 2014). In this manufacturing environment, users search and invoke the
qualified manufacturing cloud services from a related cloud based on their requirements
and organize them to be a virtual manufacturing environment or solution to complete their
manufacturing tasks (Tao et al., 2011). Based on this concept, Wu et al. (2012) propose a
cloud-based design and manufacturing model which identifies cloud consumer, cloud
provider, cloud broker, and cloud carriers as its stakeholders and a distributed infrastructure
with an interfacing system. Thanks to the dynamic characteristic of cloud manufacturing,
the manufacturing equipment across multiple dispersed manufacturing sites can be rapidly
reconfigured and repurposed (Schaefer et al., 2012). Thus, the significance of automation
and digitization of manufacturing operations is highlighted in cloud manufacturing, which
implies a widely connected manufacturer community (Wu et al., 2013). The researchers in
cloud manufacturing pay more attention to the cloud-based technologies, includes a
consumer-provider interactive framework, cloud-based equipment automation, and web-
based service-oriented system for resource monitoring and controlling, but minimal
research has focused on the construction of manufacturing network to serve the targeted
market and cooperation architecture for different business entities along the product

fulfillment workflow.
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The cloud-based framework enables the manufacturing companies widely
connected while transcending the conventional enterprise borders. This manufacturing
network paves the way for installing negotiation-based cooperation between the factories
to share their excessive capabilities and outsource their peripheral manufacturing
capabilities. The reconfigurable supply chain system can support the quickly responsive
construction of a product fulfillment chain for both the production network and the
knowledge marketplace (Chida et al., 2019). This dynamic production network enables the
realization of a highly personalized product family (Tan etal., 2017), and achieves efficient

manufacturing resource sharing among federated production networks (Kadar et al., 2018).

2.5  Chapter Summary

The topics reviewed in this chapter offer guidance to examines stakeholder analysis
and conceptual framework of platform-driven crowdsourced manufacturing in the Chapter
3. Considering the complexity of the platform-driven crowdsourced manufacturing,
Chapter 4 examines fundamental issues and reference model as a research agenda.
Considering the limitations of various topics reviewed here, | propose methodologies that
can overcome their respective limitations in Chapters 5, 6, 7, 8, 9, 10 to address a

cornerstone of crowdsourced manufacturing.
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CHAPTER 3. STAKEHOLDER ANALYSIS AND CONCEPTUAL
FRAMEWORK OF PLATFORM-DRIVEN CROWDSOURCED

MANUFACTURING

Crowdsourced manufacturing forms a dynamic supply chain with a trichotomy of
its stakeholder roles, namely client, requester, and provider (Chida et al., 2019). This
concept describes a broadcasting and searching process based on the crowdsourcing model.
Considering the adoption of open business model, it entails a “maker-platform operator”
business model as an upgrade of the current peer-to-peer manufacturing network based on
the maker to platform model (Kortmann and Piller, 2016). The client serves as an open
innovator in the open business model as well as a crowdsourcer in the crowdsourcing
model, who installs the open business model, designs a new product, and seeks a structured
supply chain to fulfill the corresponding product. The requester serves as the operator of
the crowdsourcing platform, who broadcasts the crowdsourcing tasks, collects the
responses, as well as evaluates the response, and awards the winner with contracts. The
provider serves as a participant of the manufacturer crowd who shares their expertized

manufacturing capabilities to capture value.

In line with the principles of axiomatic design (Suh, 1998), the product fulfillment
process comprises a set of cascading mapping of “what-how” relationships across four
consecutive domains, including the customer, functional, physical, and process domains.
Systematic design decisions in each of the domains are characterized by the CNs, FRs,
DPs, and PVs, respectively. Traditionally, the mapping decisions from one domain to

another are processed centrally within one enterprise (Jiao et al., 2007a). With the adoption
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of the open business model, such decisions are becoming decentralized across many
decision agents while transcending organizational boundaries in order to leverage

resources and capabilities through crowdsourcing (Montes and Goertzel, 2019).

The differences among driven forces in various industries implies different ways of
adapting to open business models, as well as adaptabilities to the crowdsourcing model.
Section 3.1 will focus on the applicable analysis of the innovative products and variant
product industries. The differences among decision agents imply different expected
benefits from the participation of crowdsourced manufacturing, which significantly
diversify the decision-making processes among the agents in crowdsourced manufacturing.
To explore the driving force of decision agents in crowdsourced manufacturing in the
applicable industries, section 3.2 after the next examines their current challenges, potential
contributions to the entire community, and specific needs from the crowdsourced
manufacturing paradigm. In section 3.3, a running illustrative case of tank trailer is kicked-
off to demonstrate the installation map of crowdsourced manufacturing on the existed

production network.

Moreover, this paper develops the conceptual framework of crowdsourced
manufacturing in detail. Section 3.4 proposes the crowdsourced manufacturing workflow
along a value chain. It explains the fundamental mechanism underlying the workflow,
which includes the decision agents, domain, processes, as well as crowdsourcing
contracting mechanism. Section 3.5 presents a holistic framework of crowdsourced
manufacturing workflow in the case that multiple value chains link customer clusters and
manufacturing agent crowds through the same platform companies. It also examines the

networked flow in crowdsourced manufacturing, which includes information flow and
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manufacturing flow among the customers, open innovators, platforms, and manufacturing

agent crowds.

3.1  Dichotomy of Industrial Applicability

As an emerging manufacturing paradigm, various industries show different
accordance with the distinctive context of company and compatibilities to crowdsourced
manufacturing. Generally, there is a common dichotomy to analyze the pulse of innovative
product development, namely, market-pull versus technology-push (Brem and Voigt,
2009). Market-pull industries innovate the value chain from the inadequate satisfaction
from current customer needs, as well as a variant product by rearranging existed value
chain. In contrast, technology-push industries to invent new technologies when the target
market is ambiguous then finds paths to target markets to commercialize the new technical

know-how (Lubik et al., 2013).

Because the new technical invention is reckoned to be the prerequisite and core
competitive edges in the companies by technology push industries, the benefits of large
manufacturer crowds and a consequent quickly responsive manufacturing network show
less attractiveness to these companies. The effect of intellectual property as a barrier to
market entry will filter a large proportion of manufacturers to participate in crowdsourced
manufacturing. Meanwhile, the risk of mismanagement of intellectual property may harm
these companies. For example, Gore-Tex is a famous technology push innovative products,
which is an expanded Teflon sheet made by W. L. Gore and Associates. The
commercialization of Gore-Tex starts with the successful development of a porous form of

polytetrafluoroethylene with a microstructure characterized by nodes interconnected by
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fibrils (Gore, 1976). Utilizing this innovative material and related process, W.L. Gore
developed a series of products, including apparel fabrics, medical devices, insulation layers
for advanced electric cables, to name but a few. Several apparel companies use Gore-Tex
material and core processes to accelerate the commercialization by collecting customer
needs and provide access to the market. In this case, due to W.L. Gore has ownership of
the intellectual property of Gore-Tex and lacks access to the market. It acts as a material
supplier and process solution provider. Thus, the company entails a manufacturer in
crowdsourced manufacturing and serves the other innovators like apparel companies,
surgical apparatus start-ups, or electric device manufacturers. These industries have a

different innovation impulse and involve Gore-Tex as an incremental improvement.

Different from technology push, market pull industries based on the existed
connections to the customers. The companies sense the volatile customer needs from their
customer in targeted markets, translate these customer needs to specific requirements for
new function realizations, then finding an appropriate technology to achieve maximum
satisfaction. Market-pull industries create value by bringing reconfigured available
technologies and capabilities to customers to achieve “Make-to-Order” (MTO). In this
regard, it provides a reconfiguration roadmap for a crowdsourcing platform to arrange
manufacturers into a network. Since the product development decisions in market pull
industries are customer-driven, these companies provide the directions and evaluation

criteria for the contributions of manufacturer crowds.

3.2 Decision Agents in Crowdsourced Manufacturing

3.2.1 Open Innovators
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The open innovators are transformed from the conventional Original Equipment
Manufacturer (OEM), who collects customer needs and serve the customer after-sales,
develop the product concept, as well as the design of the products. The open innovators
have a large peer population with highly specialized targeted markets and corresponding
highly customized orders in an industry sector. Thanks to the mass customization
paradigm, the combination of platform-based design and modular design can serve a highly
responsive product configuration using existed technologies and sub-systems (Simpson et

al., 2006).

One of the motivations of participating in the crowdsourcing manufacturing
paradigm is to seek a larger population of heterogeneous manufacturers to realize product
innovation. Although the existence of a crowdsourcing platform creates the approach to
manufacturer crowds, the set-up time and risk of initiating crowdsourced manufacturing
with the platform are still barriers to open innovators. That set-up time can be decomposed
to the negotiation between open innovators and platform, the crowdsourcing contracting
between platform and manufacturers, as well as the lead time to fulfilling the
crowdsourcing tasks. The risks for open innovators lie on the leaking of intellectual
property of innovative products, the involvement of under-qualified manufacturers, and the
failure of crowdsourcing task aggregation. These requirements imply a systematical
product variety coordination system to serve the crowdsourcing product information

management, and an information system to monitor the manufacturing process.

Moreover, the transformation of product innovation to fulfilled products requires
the collaboration of platforms and manufacturers per se. The platform decomposes the

product design to subtasks and packages to crowdsourcing tasks for broadcasting. This
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restructuring process relies on the semantic coherence from product design to
crowdsourcing tasks, and a guideline for open innovators can accelerate this transition
process. Moreover, since the essentiality of the review and evaluation in the product
development process, the task fulfillment evaluation criteria set struggles for the evaluator.
The targets are not always explicit, while the criteria are dependent (Jiao and Tseng, 1998).
A system of methods to ease the monitor of the manufacturing activities and evaluation of

contribution from the manufacturer crowds is essential.

3.2.2 Platforms

A platform can be considered as a multi-sided market, which serves distinct crowds
of third-party users and provides each other with network benefits (Eisenmannetal., 2011).
It is operated as a marketplace to enable the match of demands and supplies. From a
manufacturing network perspective, a crowdsourcing platform is a two-sided market,
where the open innovators publish their innovations as a set of manufacturing demands and
manufacturers publish their manufacturing capabilities as supplies. Following a platform
model, the crowdsourcing platform company integrates external open innovators and

manufacturers, thereby create and capture value from that manufacturing network.

This integrating process entails a reconfiguration of the manufacturing capabilities
to serve the innovations. The crowdsourcing platform performs as an intermediator among
the manufacturing activities. It reallocates the existed skills in the manufacturer crowds to
accommodate the emerging innovating value chains based on a system of reconfiguration
mechanism. It can help the open innovator peel the process-related and organization-

related configuration activities and utilize the service from the platform and manufacturing
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capabilities from manufacturer crowds instead. On the other side of the platform,
manufacturer crowds can get rid of finding target markets as well as coordinating with

upstream and downstream manufacturer partners.

In the crowdsourcing model, the expansion of manufacturers and open innovator
population is the platform’s continual pursuit. A larger open innovator population leads to
an increasing number of paths to the market and a wider variety of customer needs. At the
same time, more manufacturers linked to the platform implies a bigger arsenal of capability
and knowledge to fulfill the customers. Since the expansion of the open innovator scale
leads to a rising number of value chains, the platform is challenged by installing a system
of configuration strategies to allocate crowdsourcing tasks as a result of the intermediator
the platform played. A population of manufacturers and dynamic manufacturing networks
significantly raises the complexity of the coordination decision-making process in the
platform. The manufacturing activity synchronization and conflict solving policies for
partner crowds are required by the platform under the paradigm of crowdsourced

manufacturing.

3.2.3 Manufacturers

The manufacturers are advanced from the supplier tiers in the current supply chain
configuration, who operate the factories and provide materials, sub-assembly, and products
according to the orders from open innovators. The manufacturer crowd can be divided into
several sub-clusters according to the position along the value chain, for instance, raw
material providers, secondary suppliers, direct suppliers, assemblers, and so on. The

primary pursuit of the manufacturers is the approaches to the broader market via the
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collaboration between open innovator crowds and crowdsourcing platform. With a broader
explored market, a larger volume of the value chains can be brought to the crowdsourcing
manufacturing network. These value chains constructed a cross-link relationship, while a
manufacturer can achieve maximum reusability based on the commonality of the process.
Thus, with the expansion of the customer clusters, manufacturers can focus on their core

competitive edges and achieve economies of scale.

Under a paradigm shift to the open business model, these manufacturing enterprises
participate in the crowdsourced manufacturing model in two different scenarios. The first
scenario entails a group of manufacturers take crowdsourced manufacturing as their
primary economic activities and plan their schedule in the center of crowdsourced tasks.
They rely on the assignment of crowdsourcing tasks from the platform and the access to
target markets from the open innovators. An inferior task allocation solution will lead to
inefficiency supply chain configuration in platform level and order congestion or avoidable
production line idle at the manufacturer level. A successful task allocation system should
base on the modeling of the manufacturer’s plant and the logistic system, as well as a global
production planning for platform and manufacturers. Because of the participation to
crowdsourced manufacturing implies an increasing number of value chains going through
the manufacturer, the material flow coordination among the upstream and downstream
partners is increasingly complex. As the approach of realizing material flow, the logistics
issue is a rising challenge for manufacturers. The coordination along the material flow is
established on the exchange the information on manufacturing activities, logistics, and

inventory among the manufacturing networks. Thus, a fusion of the current ERP/MES
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system which accommodates the open structure is needed in the crowdsourced

manufacturing paradigm.

In the second scenario, the manufacturers have their value chain to serve their major
manufacturing activities while sharing their excess manufacturing capabilities along with
the manufacturing network. Manufacturers in this scenario operate production line with a
mix of existed tasks from their own value chain and crowdsourcing tasks from the platform.
In addition to the common challenges which are mentioned in the first scenario,
manufacturers in the second scenario struggle with the balance of the existed tasks and the
crowdsourcing tasks. The introduction of crowdsourcing tasks is from a high-frequency
negotiation contracting process among the manufacturing network, which entails a
resource matching process of innovation demands and sharable capabilities. This two-sided
matching process requires the manufacturers to discover their shareable capabilities in
terms of compatible products, time windows, and quantity. The way of sharable capability
calculation is manipulating the order sequencing, batching, and balancing on the shop floor.
A system of methods to help manufacturers maximize their shareable capabilities can be
recognized as a significant barrier to participating in the paradigm of crowdsourced

manufacturing.

3.3  Case Study of Tank Trailer Crowdsourcing

The running example in this paper is the transformation of the tank trailer industry
to the paradigm of crowdsourced manufacturing. The tank trailer industry is driven by
customers and rearranges manufacturing capabilities and technologies to achieve

maximum satisfaction. Most tank trailer companies connect to the market by themselves
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and plan the products considering the customer needs they collected. A large volume of
essential parts and system is relying on the corporation with external partners, including
axles, braking system, pump assembly, accessories, to name but a few. From the after-sale
service, the tank trailer companies can sense some customer needs, for instance, the need
for minimizing maintenance efforts, meters of trailer mileage, tire pressure adjustment, etc.
A broad search for solution suppliers can achieve the innovation of the tank trailer by
defining a series of requirements to collect the solution. For example, the automatic tire
inflation system can be a solution for tire pressure adjustment, and the corresponding
manufacturer can serve the realization of this new tank trailer. The synergy of the existed
capabilities and technologies builds up the backbone of the reconfiguration of

manufacturers.

The volatile customer needs and a large population of suppliers bring a large
amount of product variety to the tank trailer industry, as shown in Figure 3-1. The different
fluids in various market sectors will lead to an extensive product variety, some of the fluids
are flammable or explosive, some fluids may cause the fouling issues, some chemicals are
erosional, some fluids require edible safe through the transportation, to name but a few.
The specific customer has their personalized requirements on the accessories, includes but
not limited to ladders, pump systems, toolboxes. Due to the laws and regulations are
distinctive in different markets, the products vary in length and tonnage, cross-section
shape, as well as the end shape. Currently, configure-to-order is a prevailing strategy to
handle this variety. The practitioners integrate the modules and organize the manufacturing

according to the customer orders.
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This paper specifically focuses on the tank trailer industry in Mainland China,
which shows a firm reliance on the manufacturing network. Nearly a hundred tank trailer
companies have located in Quanpuzhen, Shandong Province in the past three decades and
the total output of this industry cluster takes about two-thirds of the national market share
(Gringer, 2018). The satellite map of this industrial cluster is shown in Figure 3-2, in which

the red label represents a related manufacturer.

3 _.‘- 4 2 Y 1 e S

Figure 3-2 Map of Tank Trailer Industrial Cluster (Created from: Google Earth,
2018)
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The cooperation of these manufacturer crowds relies on the long-term outsourcing
and personal relationship of the owners. This paper will show a transformation roadmap of
the installation of the crowdsourced manufacturing paradigm to the conventional
manufacturing industries. By applying state-of-the-art technologies, the construction of the
cooperative manufacturing relationship can be fully digitalized. At the same time, the
coordination among the manufacturers can be achieved by the pervasive connections and

transferable engineering software.

3.4  Crowdsourced Manufacturing Workflow

The paradigm shift to crowdsourced manufacturing implies offering the integration
path of external partners into all activities in the value creation and capture along the value
chain. Thus, the product manufacturing is fulfilled based on the collaboration of multi-
parties in three physical domains: open innovation domain, crowdsourced manufacturing

platform domain, and open manufacturing domain.

The open innovation domain is the front-end domain, which brings connections to
the customers, as the transportation companies. The open innovator O has been identified
as the primary decision agent in the open innovation domain, who takes in charge of
collecting the CNs, sketching product design, as well as sales and aftersales service of the
final product. Following the tank trailer example, O is a tank trailer manufacturing
company which adopts the open business model and installs the crowdsourcing model as a
crowdsourcer. The O collects the CNs and saves them into customer orders C° as the start
of the product fulfillment process. After the completion of product design, O initiates the

crowdsourced manufacturing process with the platform by delivering the product design
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files. The finish of product manufacturing will lead to the handover of final products to O,

which enables the final sales of products to the customers.

The manufacturing agents M are the decision agents in the back-end of
crowdsourced manufacturing, which is collected in the manufacturing agent domain. The
M own the knowledge of generating manufacturing plans considering their processes
constraints and resource utilization limitation, as well as the fulfillment capabilities of the
actual manufacturing tasks. In the tank trailer example, M represents suppliers in the trailer
industry cluster, which are divided into various clusters based on their specialty. According
to the inherent properties of the value chains and industry, the cluster can be indexed with
a, a € [1,A], where A is the total number of the clusters. For instance, the manufacturers
in tank trailer industries can be divided into frame suppliers, axle companies, steel sheet
factories, welding workshops, to mention just a few. These bidding agents can be denoted
as i, which is a collective set of the bidding manufacturer in every agent cluster a. The
individual manufacturer can be denoted as uy , g% = {u,‘;‘a}l N, » Where ng is the index of
bidding manufacturer in cluster a, n, € N*, and N, is the total number of manufacturers
in the cluster a. The unification of the bidding manufacturers in all clusters is the bidding
agent cluster, @ = {i*}|, . Meanwhile, due to the heterogeneity of the operating
environment, some M may determine not to participate in crowdsourced manufacturing.,
which are collected in the non-bidding agent cluster . The individual manufacturer is
denoted as ¢, V@, € @, where n is the index of agents in the non-bidding cluster and N

is the total size of ¢,,.
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The crowdsourced manufacturing platform domain is the intermediate domain,
which builds up the bridges between the front-end open innovation domain and the open
manufacturing domain. The platform brokers P are the primary agents in the crowdsourced
manufacturing platform domain, who take in charge of tasks processing and deliveries to
0, contracting and coordination with M, as well as the submission of crowdsourcing
contracting results. There are two virtual fields in the crowdsourced manufacturing
platform domain as input and output, namely crowdsourcing information management and
crowdsourcing contracting broker. The field of crowdsourcing information management is
the interface to the open innovation domain, which has two databases to save DPs as design
specs D° and PVs as process specs P°. The other virtual field is the crowdsourcing
contracting broker, which sends open calls to open manufacturing domain to invite M,
collect responses from manufacturer crowds, and award the preferred M with supply
contracts. The open call broadcasting and response collection is realized by two brokers.
Invitation broker P! realizes the invitation function of the crowdsourcing contracting
mechanism. P! follows the index of manufacturing cluster a, VP, € P'. Similarly, the
collecting and evaluation function is fulfilled by manufacturing evaluation brokers PE,
where the individual evaluation broker is PZ, VPE € PE. The index a follows the
manufacturing cluster a, which indicate the accountability of the P! and PE. Project
configuration manager P¢ achieves the coordination of the front-end and back-end
interfaces, who receives product design specs D° and restructures the product design to
crowdsourcing tasks, as well as summarize the manufacturing contracts and save the

process specsto P°. The union of P¢, P!, and PE isthe platform brokers P, P = P¢ U P! u
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PE. The workflow of crowdsourced manufacturing, along with the example of tank trailer

industries, is shown in Figure 3-3.

The workflow of crowdsourced manufacturing is started with the project initiation
process by O after they finish the product design. The deliverables of the initiation process
are the saved product design files. The second process is the accessing of the product
structure from D° by project configuration manager P¢. The product structure is denoted
asA = 6; X .0 X ... 6, , Where &, k € [1,K], depicts a specific manufacturing subtask
like a trailer frame or pump system. The k is the subtask index, and K is the total number
of the subtasks. Following a platform-based product development approach, &, can also be
perceived as a product module. The structured A depicts the internal relationships of the
product, e.g., the assembly structure. After A is retrieved, P¢ restructures it to
manufacturing request for quotation (RFQ) A, € A, where a € [1, A], includes a set of the
manufacturing subtask &,. The number of requests for quotation A, follows the number of
manufacturing agent clusters, thus A, shares the cluster index a with ug . The
broadcasting of A, is done by P! as an invitation. M receives the A,, analyzes the
requirements, and makes the participating decisions. The participating agents uy  respond
with manufacturing bids. The manufacturing bids from each cluster « is collected in
B,,a €N . All the B, are collected by PE in the manufacturing bids set B =
{B, ...,B,, ..., Bp}. The PE also evaluate these bids, thus select the preferred bids B}, and
the corresponding winner u®*. The winner agents are rewarded by manufacturing supply
contracts S = u®” X ...u*" x ...yA*, where the winner 4" in each cluster « is organized

by a cartesian product to entail a manufacturing network. The manufacturing supply
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contracts S will also be sent to PE and the corresponding manufacturing bids B, are saved
to P° as process spec sets B* = {B.}|, . After the execution of crowdsourced
manufacturing, the final products can be manufactured by M and delivered to customers.
As the final stage of crowdsourced manufacturing, the product-related information will be
sent to 0. The information of products serves the sale of the products and also provide

aftersales services.

Different from the “cascading” model in axiomatic design, the product fulfillment
process in the crowdsourced manufacturing paradigm is shown as “zigzagging.” The
reason for this change is the involvement of external partners. Thus, innovative product
fulfillment is achieved by the collaboration of all the decision agents in the fulfillment
process. However, this kind of collaboration is forged in the form of contracting, and the
coordination of product material flow (Jiao et al., 2006). Thus, the workflow in
crowdsourced manufacturing can be characterized as a collaborative-negotiation based

supply contracting process.
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3.5  Holistic Frameworks of Crowdsourced Manufacturing

As an intermediate marketplace for open innovators and manufacturers, the
platform serves a population of distinctive open innovators to connect a broader market,
meanwhile invites extensive manufacturers to expand the capability arsenal and gain the
network benefits. This impulse of expansion leads to a large number of value chains going
through the platform company, which can be treated as a series of projects. The platform
company uses crowdsourced information management fields to serve open innovators in
the front-end, which provides databases to manage design and process specs. The project
configuration manager P¢ serves as a coordinator to manage the project workflow. The
manufacturers are accommodated by the platform by the crowdsourcing contracting
mechanism fields, where they broadcast the crowdsourcing tasks and collect the responses.
A synergy of these three constructs a module to serve a value chain. The increasing number
of value chains requires the platform to scaling up an appropriate amount of serving
modules to serve the manufacturing of the products. The conceptual framework to
demonstrate the platform-driven crowdsourced manufacturing workflow, which

accommodates multiple projects, is shown in Figure 3-4.

A larger population of open innovators O bring a variety of customers, for example,
tank trailers, container trailers, refrigerated trailers, along with others. These open
innovators initiate various value chains as product design projects, which is indexed by
A, A € [1,A], where A is the total number of initiated projects. The platform develops the
corresponding interfaces to serve these open innovators and corresponding manufacturing
agents clusters. The corresponding open innovator and platform brokers of project A can

be represented as 0, and P;, respectively. Each P, has a broadcasting output and bid
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collecting interfaces to connect the manufacturers M in manufacturer agent population,
which is indexed by 7, = € [1,II]. The total number of the manufacturer agent population
is denoted as I1. The scaling up of the platform company leads a stacking of the serving
modules which transforms the two-dimensional perspective of crowdsourced

manufacturing workflow to a three-dimensional holistic framework.

The horizontal dimension is the direction of the workflow. The front-end is the open
innovators, while the back-end is the manufacturing agent crowds. This dimension realizes
the crowdsourced manufacturing workflow with all the processes shown in Figure 3-3. The
vertical dimension is the functions of the platform. The upper interfaces serve the workflow
from front-end to back-end, and the lower interfaces serve the opposite direction. At the
front-end, the upper interfaces are the data management module to receive the project
initiation from 0, and save the product design specs into DY. The upper interfaces at the
back-end let the P} to send the request for quotation to connect the M. The lower interfaces
towards back-end handle the bids proposing from the M to enable the evaluation by Pf.
The lower interfaces towards the front-end manage the process specs in P{ and interact
with 0, to inform the product delivery. The third dimension represents the depth, which
entails a variety of value chains in this holistic view. The corresponding open innovator 0,
and a serving module P, in crowdsourced manufacturing platform P are arranged along

each value chain, where P = {P;}|4.

Based on the holistic conceptual framework of crowdsourced manufacturing,
Figure 3-5 illustrates the information flow and the networked material flow in the paradigm

of crowdsourced manufacturing. The open innovator establishes the information
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connections to the customers to serve the collection of the CNs for product innovation, as
well as sales and aftersales service for the final product. Meanwhile, the platform leads the
manufacturing agent crowds to realize product manufacturing. After the final assembly,
the products can be sent from the last manufacturing agents in the network to the customers.
Therefore, two flows build up the linkage to the customer, the information flow from and
to open innovators I, as the stimulus of the crowdsourced manufacturing paradigm, as well
as the material flow from manufacturing agent crowds as the physical delivery of the
products. In this case, the platform company acts as a bridge to link the information flow
and material flow. The information flows between 0, and P; initiate the crowdsourcing
projects and set the product configuration to serve the crowdsourcing product fulfillment.
Moreover, it also establishes the monitoring approach for the I; to supervise the

manufacturing process.

At the back end of the platform company, the contracting information flow enables
invitation of the M,; and allocate the tasks to forge of the manufacturing network. In the
following manufacturing execution stage, the information flow also serves as the handler
to coordinate the material flow inner the manufacturer agent crowds. Because the
manufacturers utilize their specialties to maximize the economies of scale, one M,, can
participate in multiple value chains. For instance, because of the commonalities between
the value chains, a trailer axle company can participate in three value chains to connect the
tank trailer, container trailer, and refrigerate trailer market, respectively. Moreover, various
value chains imply different process precedence, and a manufacturer can serve distinct

positions.
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3.6 Chapter Summary

This chapter proceeds dichotomy analysis of industrial applicability and
stakeholder analysis of the platform-driven crowdsourced manufacturing, which identifies
targeted industries and three critical stakeholders. Based on a running illustrative examples
of tank trailer industries, the workflow of platform-driven crowdsourced manufacturing is
proposed. The holistic framework is sketched to demonstrate the scaling up of the platform
company, as well as information and material flow in platform-driven crowdsourced
manufacturing. Such a profound understanding of these analysis and models provides a

clear direction for a research agenda in the next chapter.
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CHAPTER 4. FUNDAMENTAL ISSUES AND A REFERENCE

MODEL TOWARDS MANUFACTURING AS A SERVICE

Recognize the paradigm shift towards crowdsourced manufacturing and the
corresponding driving forces, this chapter implements a structural implication on platform-
driven crowdsourced manufacturing and outlines fundamental issues from multiple views
to summarize a MaaS reference model. From the stakeholder analysis in Chapter 3, these
views are from open innovators, manufacturers, and platforms. The views from open
innovators and platforms sketches functional requirements of a contracting evaluation
services to ensure customer satisfactions and management optimal decision-making
service to ensure prosperous manufacturer population, respectively. The view from
manufacturers outlines the functional requirements of a series of task execution services
along with the workflow in Chapter 3, which include task derivation and decomposition in
product domain, logistic route planning in platform domain, as well as task acceptance and
accommodation to link the external and internal material flow in manufacturing domain.
In the end, section 4.6 proposes a Maa$S reference model as a research agenda for critical
technical elements to gear forward the development of platform-driven crowdsourced

manufacturing for MaaS.

4.1  Structural implications of crowdsourced manufacturing

From the analysis of information and material flow in crowdsourced
manufacturing, the operation of companies in one decision agent cluster is influenced by

the collaboration with companies in the rest two decision agent clusters. For instance, the
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operation of the platform companies relies on the characteristics of the participated open
innovators, as well as the capabilities and the variety of manufacturer crowds it linked. The
performance of these external partners restricts the economic behaviors of the companies
itself, like the platform can only link to the targeted market with the collaboration with the
related open innovators and manufacturers. Meanwhile, the capabilities of external partners
can technically support the expansion of the companies. The rest two crowds of partner
structure a two-dimensional decision-making plane, which presents a decision space to
choose a value chain and a position along with it. The company can explore the portfolio
of collaboration potentials in that decision space, where the abundant and diversity of the
partner crowds will determine the limits of participating in crowdsourced manufacturing.
From a service-oriented perspective, the rest two crowds collaboratively construct a service
system to serve the company as a user. This two-dimensional decision-making scheme
generally exists in all three decision agent clusters, namely open innovators, platforms, and

manufacturers.

From the trichotomy analysis of decision agents in crowdsourcing, each three
decision agent clusters have their own standpoints as well as the motivations. Thus, the
views of each decision agent cluster originate from different contexts of companies and
seek various operational objectives. The distinctiveness of decision agents implies
perpendicular relationships among the resulted views. In this regard, a cubic structure is
proposed to represent this system of perpendicular view and corresponding decision-

making planes, as shown in Figure 4-1.
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Figure 4-1 Structural implications of platform-driven crowdsourced manufacturing

There are three dimensions to represent the views of open innovators, platforms,
and manufacturers. From each view, the rest two structure a discretized decision-making
plane and acts as a portfolio of product fulfillment functions of a service system. The
synergy of three views of the decision agent cluster leads the two-dimensional discretized
decision-making planes to a three-dimensional block array to represents the selection and
collaborative relationships among the decision agents. The block represents an engagement
of three specific decision agent to construct a collaborative manufacturing relationship for

innovative product fulfillment. The mapping of each pair of decision agent clusters implies
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a collaboration relationship to form a functional area for accommodating the external
partners. This collaboration can achieve the acceleration of the execution of the value chain
for targeted users. These three manufacturing functional areas entail the X-as-a-service
paradigm, where each functional area aims to lead the crowdsourced manufacturing to be
user-friendly to be quickly responsive and accommodate a variety of partners. In this
regard, three service systems has been highlighted to serve views from decision agents in

crowdsourced manufacturing.

4.2 Contracting Services for Open Innovators

From the position of the value chain, the open innovator holds a functional view
that describes the functional requirements of a crowdsourcing value chain and the
corresponding manufacturing network. This view is the result of the capability of
connecting to the customers, selling products, as well as aftersales services. The impulse
of participating in crowdsourced manufacturing is seeking the cooperation of platforms
and manufacturers to fulfill the innovative products. Specifically, in an X-as-a-service
paradigm, the demands of the open innovators require a service system that can provide
service-oriented solutions of product manufacturing resources, capabilities, as well as the
supply chain reconfiguration mechanisms with a maximized solution delivery efficiency
and minimized deviation from customer expectations. Platform-driven crowdsourced
manufacturing formulates a digitalized platform-manufacturer plane as a decision space of

various capabilities and integrating methods.

As shown in Figure 4-2, platform-driven crowdsourced manufacturing leads the

open innovator O to a broker-based dispersed manufacturing system, where selects the
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platforms P and manufacturers M as partners to realize their innovative product plans. The
selection of the manufacturer is based on a robust evaluation mechanism to reflect their
performance on customer requirements for maximum utility delivery. On the other hand,
the platforms are selected according to their aggregation method of evaluation results for a
better reflection on open innovator’s preference. From the product fulfillment perspective,
the MaaS acts like an e-commerce platform that offers access to the market of
manufacturing capabilities customize the most appropriate product fulfillment services
through crowdsourcing contracting methods. It should integrate evaluation mechanisms
and aggregation methods into a crowdsourcing contracting services to configure a supply

network considering engineering functional and business operational performance.

Aggregation Method
for Evaluation Results

Evaluation Mechanism
for Agent Selection

Engineering Functional
and Business Operational
Performance

Figure 4-2 Functional view from open innovator

60



4.3 Task Execution Services for Manufacturers

The manufacturer holds a behavioral view which reveals the applications of a set
of manufacturing technologies by managing manufacturing resources, process planning,
and crowdsourced manufacturing tasks execution. Following MaaS strategy, task
execution services aim to help manufacturers peeling peripheral activities by offering
substitutive services. As shown in Figure 4-3, it forges the manufacturing network for
manufacturer by providing logistic services, which mobilizes manufacturing resources and

WIP according to the precedence relationship.

Networked Material Flow

Crowdsourcing Task

Planning Derivation

Crowdsourcing Tasks
Acceptance and
Accommodation

Figure 4-3 Behavioral view from manufacturer

A manufacturer describes the subdivision of the product realization process along

the value chain. A crowd of them outline the technological possibilities for the value chain,
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as well as define the limits from the physical world. The impulse of concentrating on core
competitive edges to achieve the economics of scales implies the manufacturers to require
complementary cooperation among the manufacturer crowds. The manufacturer’s purpose
of participating the crowdsourced manufacturing is capturing the value it created, which in
terms of finding a system of approaches to link the upstream and downstream partners, as
well as to touch and connect the customers. Crowdsourced manufacturing formulates a
platform-open-innovator plane as a decision space of various value chains and coordination
mechanisms. The collaboration of open innovators and platform entails a task execution
service system, which offers decision making support functions as optimal task derivation
and decomposition mechanisms, material flow management tools, as well as task
acceptance and accommodation interactive models. The synergy of these functions can
accelerate the manufacturer’s accommodation of crowdsourced manufacturing. The task
execution service acts like an MES/ERP system on a large scale. The research tasks in the

crowdsourcing task handling area can be shown in Figure 4-4.
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Figure 4-4 Task executions in crowdsourced manufacturing
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4.3.1 Crowdsourcing Task Derivation

Crowdsourcing task derivation is embedded in the start phase of an innovative
product fulfillment task. It should balance the requirement from customer side, which seeks
a maximized market share, and constraints from manufacturer sides, which seeks a
minimum manufacturing cost. It entails an optimal planning of the product family and
manufacturer portfolio. These problems are linked by the product and process structure.
The selection of the product modules will generate a BOM, which serves as an input of the
manufacturer allocation problem. On the manufacturer side, an optimal decomposition of
a product into crowdsourcing task. This process is essentially a combinatorial optimization
problem which cluster several processes into a crowdsourcing task. The decomposition
result will constrain the minimum manufacturing cost in the product family planning side.
This interactive decision-making problem should be solved for crowdsourced

manufacturing.

4.3.2 Networked Material Flow Planning

The material flow management domain in crowdsourced manufacturing aims to
send as well as pick up the required material, WIP, subassemblies, or final products on
time. Due to the large variety of value chains and the corresponding process variety, a
manufacturer can be downstream partners for a set of upstream partners, since it is a vertex
in a networked material flow network. Thus, the process variety will propagate from
process domains to the logistics domain, therefore challenges the companies with keeping
a reasonable cost as well as aligning customers, products, processes, and logistics for

delivering an increasing product variety. From a platform-based perspective, a resource
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platform can collect the information from the manufacturer crowds, formulate the origins
and destinations of the service demands, find the common routes in the corresponding
transportation service tasks, and synchronize the manufacturing activities to achieve just-
in-time. Thus, this logistic service function can be modeled as multiple vehicle route
planning with time window (m-VRPTW) to handle a highly networked material flow and

seeks a maximized route re-using for a crowdsourcing environment.

4.3.3 Crowdsourcing Task Acceptance and Optimal Accommodation

Since the crowdsourcing decision-making is summarized as a two-step process,
solution generation by the manufacturer crowds and evaluation by the platform, the
manufacturing task acceptance and accommodation is targeted to serve this interactively
optimal decision making between these two decision agents. The searching for the sharable
capabilities entails an order re-arranging process to allocate the existing orders on the shop
floor to determine the acceptance of the orders. After the awarding process with
manufacturing supply contracts to select the preferred manufacturers, the resources re-
planning serves the management the mix of orders on the shop floor. The results of resource
re-planning decision making are delivered through a re-sequencing process of the newly
assigned crowdsourcing task orders and existed task orders. It can be summarized as an
accelerator for manufacturers to better explore their manufacturing potentials and utilize

them to fulfill open innovator’s demands through crowdsourcing.

4.4  Management Service for Platform

As an intermediate role played in the crowdsourcing value chains, the platform

company holds a structural view that reconfigures the manufacturers to a supply network

64



for product fulfillment. The platform operates a two-sided marketplace as its primary
economic activities, which can link demands from open innovators and capabilities from
manufacturers. Crowdsourced manufacturing presents an open-innovator-manufacturer
plane to serve the platform, which provides various product fulfillment demands and a
large volume of different capabilities. The intermediate role between open innovators and
manufacturers of a platform implies a requirement of monitoring and management tool. Its
function can be further decomposed to model the dynamics of manufacturer population

and derive a set of revision protocols for optimal revenue sharing among manufacturers.

Figure 4-5 shows the structural view from platform. The manufacturer crowd is
naturally divided into various manufacturing clusters according to their competitive edges.
Thus, the manufacturers who are affiliated to one cluster are confronted with a massive
impact of competition. Because of the existence of the awarding process by the
manufacturing evaluation broker in the platform, only the best-performed manufacturer in
each cluster can be selected and awarded with one contract. A robust management strategy
should be derived for balancing and stimulating manufacturing capacity. Besides, the
realization of the value chains requires a broad spectrum of competitive edges and a large
volume of capacity, which is essentially a multi-party process. From this perspective, the
relationships among the manufacturers are not only competition but also cooperation. A
game theoretic model for describing this complex relationship is essential for platform.
Maintaining an active and prosperous manufacturer crowd lead to a management service

system as a solution for the platform company.
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Figure 4-5 Structural view from platform

Information Service System as the Kernel

The collaboration among open innovators, manufacturer, and platform company is
enabled by an information service system which can serve the interactions among these
decision agents. It serves a prerequisite role in crowdsourced manufacturing, which
solidifies the value chains in the form of contract and provides information exchanging
functions for stakeholders. Different from the conventional outsourcing, crowdsourced
manufacturing involves a larger number of external partners, which has high variety and
geographically disputed. A contracting function to serve a such complex population along
crowdsourced manufacturing. The information management is another essential function

in this service system. It should allow the stakeholders access to and stream the product
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fulfillment data without security concern. The synergy of these functions implies a
blockchain-based contracting and distributed information management service system

which accommodate streaming data from Industrial 10Ts.

4.6 A Crowdsourced Manufacturing MaaS Reference Model

Utilizing the functional, behavioral, and structural (noted as FBS) views, the
crowdsourced manufacturing integrates several business functions following a coherent
structure. This integration work is realized by the mappings from views from the three-
dimensional structure of crowdsourced manufacturing, as shown in Figure 4-1. The
mapping from one view to another implies a service system to serve the rest view. Thus,
the combination of mapping relationships among open innovator’s functional view,
manufacturer’s behavioral view, and platform’s structural views sketches a cyclic MaaS
reference model as a research agenda for crowdsourced manufacturing, as shown in Figure

4-6.

Az )
Nagement genie®

Figure 4-6 A Maas reference model of platform-driven crowdsourced
manufacturing
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The view mapping between the behavioral view from manufacturers to a structural
view from platform reflects digitalized contracting evaluation function module of MaaS
system, where ensures the quality of product fulfillment service that open innovator
received. Chapter 5 proposes a contracting mechanism incorporating with explicit and
inexplicit criteria evaluation for quality assurance of the response selection and customer

satisfaction.

The mapping from a functional view and a structural view reflects reconfiguration
and operation of a manufacturing network, which enables the manufacturer to utilize core
competing capabilities and link other manufacturers to outsource the peripheral activities.
This material network requires crowdsourcing tasks execution function modules of MaaS
system. Recognizing manufacturers as the targeted user, Chapter 6, Chapter 7, and Chapter
8 propose the task execution service by sketching a manufacturer-friendly service
architecture which includes task derivation and decomposition methods, inter-
manufacturer material flow planning, as well as task acceptance and shop floor scheduling

interactive framework, respectively.

The mapping between the functional view from open innovators and behavioral one
from manufacturers entails a large volume of digitalized product fulfillment demands,
manufacturers, and the corresponding clusters. This mapping implies a management
service functional module of MaaS for the platform to monitor and derive an optimal
managerial protocol. Chapter 10 proposes a population-dynamics-based model for multi-
cluster manufacturer crowds, as well as a protocol deriving methods based on evolutionary
game. Chapter 9 proposes the information service system by implementing blockchain-

based smart contracts and a distributed database. It provides the technical cornerstones for
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platform, manufacturer, and open innovator to solidify their collaboration relationship and

information exchanging platform without security concerns.

4.7  Chapter Summary

This chapter examines the fundamental issues and proposes a MaaS reference
model for platform-driven crowdsourced manufacturing. Based on the structural
implications of platform-driven crowdsourced manufacturing, these fundamental issues
include contracting evaluation services for open innovators, task executions services for
manufacturers, management services for platform, and information service systems as
prerequisites. A Maas reference model is proposed as a research agenda of the following

studies, which also elaborates the interrelationships underlying the following chapters.
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CHAPTER 5. CROWDSOURCING CONTRACTING
INCORPORATING EXPLICIT AND INEXPLICIT CRITERIA

EVALUATION

MaaS through platform-driven crowdsourced manufacturing offers new
opportunities for reaching external partner’s knowledge and resources while allowing
companies to focus on their core competencies. This chapter envisions a collaborative
organization scenario of a crowdsourcing supply network, in which tournament-based
crowdsourcing entails contracting decisions among design and manufacturing agents as a
best-matching problem (BMP). The most important activity of the crowdsourced
manufacturing process is the selection of the self-interested agents and organizations to
dynamically form and configure a crowdsourcing network with sharable manufacturing
capabilities. A robust agent selection mechanism relies on an effective mix of explicit and
inexplicit criteria evaluation, which reflect engineering functional requirements and
business operational expectations. This chapter develops a quantitative evaluation of
manufacturers for engineering functional requirements based on information-content
measurements. The preference on business operational reputation of manufacturer is
achieved by decision-tree learning for monotonic classification. The evaluation results of
different criteria are aggregated through multi-attribute utility theory. The proposed
method determines which agent best satisfies the pre-defined engineering functional and
business operational requirements from customers, which enables a better matching of

fulfilling agents with customers from a manufacturer crowd. A case study of tank trailer
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mass customization through crowdsourcing is reported to illustrate the potential of MaaS

through crowdsourced manufacturing.

5.1  Contracting Mechanism for Crowdsourced Manufacturing

Successful instantiation of MaaS requires collaboration among external partners,
for which product fulfililment flow management is of primary importance. The open
innovators and open manufacturers from various clusters are all engaged through an inter-
organizational network and their crowdsourcing relationships are contractually tied to
collaboration for fulfilling different knowledge and capabilities along with a coherent
product fulfillment flow (Simard and West, 2006). Such a crowdsourcing contracting
mechanism is akin to traditional supply contracting that formally formulates the
transactions between the stakeholders to pursue the coordination of diverse decision
makers and organize them into supply chain networks (Giannoccaro and Pontrandolfo,
2004). Together with the advancement of a collaborative product fulfillment process, the
negotiation system is proposed to coordinate distributed enterprises (Mansouri et al., 2012).
A negotiation contracting system entails a bilateral negotiation scheme coincides with a
supply contract with an emphasis on the design of the efficient negotiation mechanisms,
protocols, and strategies (Shin and Jung, 2004). In practice, every organization and entities
in the supply chain networks are operating in heterogeneous environments with different
objectives and constraints (Swaminathan et al., 1998). Since it is observed that a successful
crowdsourcing decision-making process requires diversity and independence of the
individuals in the crowds (Surowiecki, 2005), the crowdsourcing contracting is more

challenging than conventional supply contracting.
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The collaborative-negotiation process is generally divided into three consecutive
phases, namely inviting, bidding, and awarding. Following the crowdsourced
manufacturing workflow described in Figure 3-3, these three phases coincide with the
interactions between platform agents P and manufacturing agents M. The inviting process
acts as an RFQ, where the platform agents act as crowdsourcer to send an open call for
solutions or capabilities of an independent crowdsourcing subtask. Subsequently, the
crowds will solve the subtasks and response with a bid. The collection of bids from crowds
can be described as a tournament for a reward, under a scheme of highest-bids-wins,
considering the performance or efforts to the original subtask. The evaluation broker
awards the best manufacturing agent based on the evaluation result. A sophisticated
collaborative-negotiation contracting scheme should serve not only the interactions among
crowdsourcing entities but also the motivation of the crowds and the quality of the final
products. Such requirement implies an effective contracting evaluation mechanism to

explore the maximum satisfaction from the perspective of customers.

The customer satisfaction of a crowdsourcing task is determined by the evaluation

mechanism from platform companies, which is challenged by three aspects:

1) The crowdsourcing contracting evaluation is characterized as a large-scale multi-
criteria decision-making problem. Different from the traditional outsourcing which invites
designated partners to participate in the product fulfillment process, crowdsourcing relies
on the wisdom of crowds, which implies the crowd can generate a large volume of solutions
(Lakhani and Panetta, 2007). Constructing a supply network in a crowdsourcing
environment implies a cooperation with new partners, which requires evaluation

mechanisms to incorporate classification results of their business operational level. This
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process should review their historical performance and exploit their reputation among
customers. It addresses the necessity of an evaluation mechanism incorporating explicit
and inexplicit criteria.

2) A stream of uncertainty is inevitable along the crowdsourcing product fulfillment
workflow. From a design perspective, this uncertainty can be traced from the
subjectiveness lying in the evaluation process and the variation of system performance
(Jiao and Tseng, 1998, Siskos et al., 1984). In practice, the experts conduct evaluation
based on their heuristic “rule of thumb”, which has been historically done on an ad hoc
basis (Thurston and Crawford, 1994). Establishing a model of the preference of the bids
and the decision-making in the evaluation process to serve the contracting mechanism is
critical to the realization of collaborative-crowdsourcing product fulfillment. From the
manufacturing perspective, the performance of the production system shows strong
dynamic and stochastic characteristic in the real manufacturing environment. Such
characteristics are shown in the fluctuation of the throughput time, tolerance, and rejection
rate. In addition, the evaluation of the contracting is in the early stage, which implies the
design and manufacturing solutions are subjected to slight changes in later process. A
method to mimic the uncertainty of the performance is critical in the development of
evaluation mechanism.

3) Since the crowdsourcing is aiming to fulfill the diverse requests, the evaluation is
a two-fold process. It is observed that the crowds in the crowdsourcing activities show a
return of the vast amount of noise (Andrew, 2007). An evaluation mechanism should
ensure the performance of the delivered solution can target the subtasks’ requirements.

From the product fulfillment perspective, the evaluation should pursue a maximized degree
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of satisfaction (DoS) of customers, as well as a minimized deviation of the system
performance to the requirements. Meanwhile, the trade-offs of the crowdsourcing tasks are
reflected by various of conflicting criteria in evaluation. After single-criterion evaluation,
the result should be ready to be aggregated for comparison. To sum up, the evaluation is a
complex problem, a generic and formulated evaluation scheme is essential to handle the

scale of evaluation.

5.2 Crowdsourcing Evaluation for MaaS

From the systematical perspective, the crowdsourcing system is an artificial and
collaborative system, which has three interactive components: crowdsourcer, platform, and
participants (Zhao and Zhu, 2014). For the purpose of product innovation, Littgens et al.
(2014) categorize the interactions inner the crowdsourcing into six stages which are
allocated in two sides of the platform. Following this conceptual framework, the flow of
achieving an innovative product development is separated into two sides of the platform.
The activities between crowdsourcer and the platform include initiating the project,
contract negotiation with the platform, and reintegration of the subtasks to a collaborative
product fulfillment network. These activities are essentially intermediary finding and
authorization processes. In contrast, the activities fall between platform and participants
can be perceived as a “tournament-based crowdsourcing” (Afuah and Tucci, 2012). There
are three stages are summarized in the tournament, namely request for proposal
formulating, open calls for solutions, and bids evaluation. The platform is authorized by
the crowdsourcer to hold a tournament to broadcast the subtasks and rewards the
corresponding participants which submit the best performance bids. After the best bids are

evaluated, the preferred participants are selected from the crowds. The crowdsourcer and
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the selected participants will formulate their collaboration interrelationship in a fold of
contracts and turn the crowdsourcing process to an integrated problem-solving process
(Luttgens et al., 2014). This conceptual framework gears forward the crowdsourcing from
the perspective of a crowdsourcer in the context of an innovation project. Gong et al. (2019)
gear forward this framework with a formulated product fulfillment process in an

engineering context.

The spirit of the diverse participant population and decentralized problem-solving
implies a collaborative crowdsourcing system can be viewed as a multi-agent system
(MAS). MAS technology is a paradigm for the researching of the organizational
architecture, decision-making process and coordination mechanism for distributed,
knowledge-based, and autonomous problem-solving modules (Brenner et al., 2012, Gupta
et al., 2001). MAS collects a set of agents as an agent population; each agent has their
perspective and incentives to maximize its utility in a dynamic circumstance (Wooldridge,
2009). The agents work independently or cooperatively to solve the problem, and their
local goals and objectives can be integrated by the negotiation of the supply contracts to
achieve the system’s overall goals (Kaihara, 2003). The MAS can be applied to analyze
the supply chain coordination issue considering information, material, and financial flow,
respectively (Dudek and Stadtler, 2005, Gaonkar and Viswanadham, 2001, Govindan and
Popiuc, 2014). Jiao et al. (2006) propose a MAS to explore the collaborative negotiation
product fulfillment contracting mechanism in a global network. Besides, MAS enables the
modeling of coordination and behavior mechanism in a dynamic environment (Xiao et al.,

2007).
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The evaluation methods for crowdsourcing tasks have been studied heavily. The
fuzzy analysis can represent and manipulate the imprecise evaluation criteria through the
product fulfillment process (Ragin et al., 2006). To ensure the fulfillment of crowdsourcing
tasks, the fuzzy ranking method can evaluate high variety product fulfillment plans by
maximizing the overlap between the expectation of request for proposal and performance
of the responses (Jiao and Tseng, 1998). The multi-utility theory provides the aggregation
of results of intercorrelated multi-criteria evaluation problems under uncertainty to handle
the subjectivity of the customer preference lying under the evaluation criteria (Claudio et

al., 2014, Keeney et al., 1993).

The high variety product fulfillment seeks an efficient information delivering to the
customers and avoid the deviation and redundant efforts of the system performance (Du et
al., 2006). The evaluation methods based on the information theory have been developed
to accommodate large variety in a crowdsourcing era (Zhao et al., 2016). By measuring the
effective information delivery from the crowds, the candidates can be selected by fuzzy

information axioms (Akay et al., 2011).

5.3  Engineering Functional Evaluation with Explicit Criteria

Contracting evaluation measures the performance of proposed solutions according
to their capabilities of fulfilling various requirements. This section treats the crowdsourcing
contracting evaluation as a multi-criteria decision-making process, which combines
inexplicit business operation and explicit engineering requirements into the solution
selection. In this regard, DoS function is introduced to quantify the evaluation result to a

value between 0 and 1. And a multiplicative multi-attribute utility theory is applied to
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aggregate the DoS vector. The evaluation of design and manufacturing bids has different
characteristics, but information content theory can evaluate their effective deliveries to the

requirements.
5.3.1 Information Content Measure and DoS Formulation

Manufacturer ug will configure a production system and propose it as a
manufacturing bid B, ,, , where n is the index of manufacturer in each cluster a. This bid
acts as a manufacturing plan for fulfilling RFQ A, along its process routes. By 5,  can be
evaluated based on the performance of the configured production system. Discrete-event
simulation (DES) has been widely used to imitate the operations of a real-world agent-
based production system by modeling the changes of state variables at a discrete set of
points in time (Borshchev and Filippov, 2004). The stochastic model of the manufacturing
system can be established based on the output analysis of the DES (Alexopoulos et al.,

1998).

In this case, the preference of a RFQ for a design bid can be modeled by a
preference function, which is represented in a form of utility function of the system
performance. The utility function models the range of performance as perception from
function domain. The preference function for a performance of system is represented as
u(Pr). The probability of a manufacturing bid can fulfill the corresponding RFQ depends
on the performance range it achieved, which can be represented in the form of probability
distribution function (PDF) p(Pr). The calculation of precepted utility of a bid’s
performance can be quantified based on the product of preference u(Pr) and PDF p(Pr)

of performance variable Pr in the fulfilment range. Moreover, the aggregation of
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evaluation results can follow the similar multi-attribute utility scheme. In this regard, this

section will explore the evaluation mechanism for manufacturing bids in a generic form.

To evaluate a bid’s performance on fulfilling a certain requirement, the method of
information content measurement is used. In the original formulation of the information
content, the preference of the design range is assumed as uniform. However, because of
the preference of the requirements, a triangular preference function shows the superiority
in modeling the expected design and manufacturing performance range (Jiao and Tseng,
2004). The preference function of the fulfillment range can be generalized as u(Pr). The
lower and upper limits of these requirement ranges are defined as: [Fr’, FrU]. The PDF of
a bid’s system performance can be generally represented by p(Pr). The lower and upper
limits of these performance range can be generally defined as: VPr € [Prt, PrU]. The

information content I is a measurement of P (Pr), which is defined as equation (5.1).
I =log, P(Pr) (5.1)

As illustrated in Figure 5-1, the probabilities of successfully fulfill the expected
performance P(Pr) can be calculated by the integration of the precepted probability of
success, which is the integral of the product of preference u(Pr) and performance p(Pr).
It models the perceived system performance over the fulfillment range from the customer,

which is shown in equation (5.2).

FrU

P(Pr) = E[u(Pr)] = f u(Pr) - p(Pr) dPr (5.2)

FrL

And the DoS of a bid towards a certain requirement is formulated in equation (5.3).
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Figure 5-1 Preference function and performance distribution

5.3.2 Multi-criteria Contracting Evaluation Representation

This research views bid evaluation as a series of multi-criteria decision-making
problems in the context of collaborative-crowdsourcing product fulfillment, thus ensuring
the fulfillment of the requirements regarding DPs and with a coordinated quantity and lead

time. The manufacturing bids are collected in the finite set B,. Each bid set B, will be

evaluated by the evaluation criteria set ¢« = {c;*, ..., c}®

) ra)"'l

Fa
cg”}, where 1, and R, are

the index and total number of criteria in cf«. The performance of a design bid Bgm, 1S

measured by the criteria c_f;‘ and noted as the DoS(c.f;‘,Ba,ma)where Bym, € B c.f; €
cfe. In a multi-criteria evaluation condition, the evaluation result of a bid Bg,m,, can be

represented by a R,-dimensional vector:
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DoS(Bum,) = [D0S(c}% Bamy ), ~» D0S(c;% Bamy)s --» DOS(ch% By, )] (5.4)

To model the relative importance among the vector, a weighting factor is introduced
and noted as w, for a R, -dimensional vector. The evaluation representation of
manufacturing bids is formulated similarly. The evaluation result of a bid can be

aggregated to total DoS, which is denoted as TDoS(B, m,, ) and defined as:

TDoS(Bym,) = Z Wy, - DS ro(Bame)- (5.5)

However, in practice, the DoS for different requirements are heterogeneous and
correlated per se. Moreover, the multi-attribute utility theory is proposed to handle the

underlying correlation (Ji et al., 2013):

Rq

1
UDoS(Bym,) = e 1_[ (K - Wy - DOS ¢a(Bam,) + 1) -1, (5.6)

Tg=1

where the UDoS(Bg, ) is normalized DoS(B, ) with F2. K is a normalizing constant

which scales UDoS from 0 to 1. K can be derived from the equation (5.7).

Rq
1+K= 1_[(1 +K-wy,) (5.7)
r=1

Moreover, in the multiplicative form in equation (5.5), w,,_ is different from the

additive form. It is not viewed as a weight, but rather an attribute-scaling parameter for

accurate trade-off making (Claudio et al., 2014). The sum of the weights should not require
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to be exactly 1 in additive form equation (5.4) (Lewis et al., 2006). If the K is 0, it indicates
there is no preference of the attributes, and the equation (5.5) is equivalent to the equation
(5.4) (Krishnamurty, 2006). After the evaluation, the results can be collected in a finite set
with M, elements, and the most preferable bid can be selected by finding the minimum or

the maximum value in the set:
max/min ({UDOS(BQ)}M(Z) — B} € B,,. (5.8)

5.4  Decision Tree-based Evaluation for Inexplicit Criteria with Monotone Ordinal

Measures
5.4.1 Intangible Criteria Evaluation

Based on the characteristics of the criteria, evaluation problems can be divided into
both tangible criteria evaluation and intangible criteria evaluation. The former indicates
approaches to quantify the object performance according to the given criteria, like most of
the evaluation for engineering performance. However, not all performance can be
quantified with numeric values based on the criteria requirements. In this scenario,
imprecise linguistic words can be used to fuzzily evaluate the performance, like in some

criteria for business performance.

Because the objective of evaluation is to compare the performance of different
objects from a certain perspective, to replace absolute numeric measurement with ordinal
measurement for describing the DoS is an approach to intangible criteria evaluation. By
doing so, objects can be ranked and ordered based on their performance. This will not

violate the inexplicitness or fuzziness regarding the intangibility of a criterion. Therefore,
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as long as the contracting brokers keep the evaluation mechanism consistent, the ranking
or ordering of the object performance will be based on the same logic, making the objects
at different time points comparable. Furthermore, such evaluation is supposed to be
monotone, which means when one object dominates another, the evaluation of the

dominator will not be worse than the dominated one.

In this regard, the evaluation of intangible criteria can be modeled as a monotonic
classification problem. To address this problem, the rank entropy-based decision tree is
used to learn the evaluation mechanism under intangible criteria, in which rank entropy is

used to branch the decision tree based on the data monotonicity.
5.4.2 Definition of Monotonic Classification

Monotonic classification refers to ordinal classification problems with the
monotonic constraint. Let A be an instance space where p is the number of attributes,
which can be noted as A = A; X A, X ... X A,,. LetU = {x4, x,, ..., x,} be a set of objects
in the instance space A, with D being the ordinal decisions or labels of these objects. The
value of the attribute or the decision related to x; can be expressed as v(x;, a) or v(x;, D),
where a € A. In the ordinal relation, < is used to describe no worse than between two
objects. For example, x; is no worse than x; in terms of D can be noted as v(xj,D) <
v(x;, D) or x; <p x;. Usually, x; dominates x; refers to that every attribute value of x; is
no worse than x;. Based on this concept, a predicting function f that relates A to D can be

expressed as below:

f:U-D (5.9)
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The monotonic constraint is then defined as below, which should always be

satisfied in monotonic classification:
xi <x = f(x) < f(xj), Vx;, xj €U (5.10)

In other words, if x; is dominated by x;, the decision of x; will not be worse than

that of x;, not vice versa.
5.4.3 Rank Entropy-based Decision Tree

Rule extraction from monotonic data attracts some attention from the domains of
machine learning and decision analysis. Decision tree induction is an efficient, effective,
and understandable technique for rule learning and classification modeling (Quinlan,
2014), where a function is required for evaluating and selecting features to partition
samples into finer subsets in each node. The rank entropy measure originates from
Shannon's information entropy, which is robust in evaluating features of the monotone
dataset (Hu et al., 2011). Also, this measure reflects the ordinal structures in monotonic
classification. Therefore, a decision tree algorithm based on the rank entropy measure is

used in this study.

Some preliminary definitions are given for introducing the rank entropy-based

decision tree.
[x,]5 = {xj € Ulx; <g xj}, where B € 4 (5.11)

[Xl]g = {X] € lel <p XJ} (512)
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Equation (5.11) and (5.12) describe objects no worse than x; in terms of attributes
or decision. Similar to the concept of the information entropy, the ascending rank entropy

of an object set U is defined as below:

SIS
Xilg
RH5(U) = ——Zlog L8 (5.13)
n 4 n
i=1
The ascending rank joint entropy of an object set U is defined as
N [x;15
RHu,p(U) = ——Zl x5 0 | " [x‘]Dl. (5.14)

The ascending rank mutual information (RMI) of an object set U is defined as

RMI=(B, D) ==—%210g [l J5] » [l ]’? (5.15)

|
£y 8 b5 0 a5l

The rank entropy-based decision tree uses the RMI value for the branch operation.
Essentially, RMI describes the degree of monotonicity between the attribute set B and the
decision set D. The workflow of the rank entropy-based ordinal decision tree is shown in

Table 5-1.
5.4.4 Monotone Decision Tree Pruning

Like other supervised machine learning techniques, decision tree learning also
faces the overfitting problem during its training process. Given a certain dataset, without
predefined limitations on the tree structure, the decision tree will grow larger until till it

fits all the data in the dataset. This can guarantee the prediction performance with enough
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specialization on the existing dataset by increasing the model complexity, but the trained
decision tree may perform badly with poor generalization on unseen data. On the other
hand, a small tree model may not express important data characteristics due to the scale of
its complexity. Therefore, a balance can be made between model generalization and
specialization to address the overfitting problem, and pruning is the technique for

overfitting in decision trees.

Table 5-1 Algorithm workflow of rank entropy-based ordinal decision tree

Step 1: Generate the root node with input sample data.
Step 2: If this node satisfies the stopping criterion:

make this node as a leaf.

else

branch this node.
Step 3: for each attribute a; € Criteria

for each value ¢; € q;

divide samples into two subsites with c;.

Ifv(a;,x) <

v(a;,x) =1
else
v(a;,x) =2
calculate RMI,; = RMI(a;, D).
end j
end i

Step 4: select a; and ¢; such that RMI = argmax max RMI(al-, Cj» D).
i

j
Step 5: If max RMI > ¢
branch this node using the attribute a; and the value c;.
else
stop branching this node.

There are two pruning approaches based on when pruning happens: pre-pruning
and post-pruning. Pre-pruning is to set stopping criteria during the training process. For
instance, the maximum tree depth or minimum information gain can be specified to stop

the tree from growing deeper or splitting before the decision tree fits the whole dataset.
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Pre-pruning is a fast and efficient method to avoid overfitting. Post-pruning approach refers
to pruning the tree after the training process is complete. The idea is to substitute some
subtree with a leaf node to reduce the model complexity based on some measures. A
common method is the cost-complexity pruning (Breiman et al., 2017), which proposes a

cost-complexity function to optimize on subtrees:

Ry(T) =R(T) + 9 - |T| (5.16)

where T is a decision tree, R(T) is the prediction error of the tree, |T| is the number of leaf
nodes, and 9 is a regularization parameter. The use of this evaluation function is to
calculate its value for every node in the tree, considering that node is being pruned. And
the node with minimum function value should be the node to prune. By adding a penalty
cost on model complexity, this evaluation approach can find a smaller decision tree with

better generalization ability.

Different from non-monotone decision trees, monotonic constraints must be
satisfied in the tree leaf nodes, while direct post-pruning on a monotone decision tree may
make the tree nonmonotone. Therefore, pruning monotone decision trees needs to
guarantee the monotonicity while reducing its complexity. To address this issue, several
fixing methods are proposed to make a nonmonotone decision tree monotone through
minimal adjustments. In this way, the balance between model complexity and prediction

performance on unseen data can be made by continuously pruning and fixing the tree.

In this work, the best fix method is used for monotone tree pruning (Feelders and
Pardoel, 2003). This pruning method prunes the parent node of a nonmonotone leaf that

brings the largest decrease in the number of nonmonotone leaf pairs. To avoid prune parent
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nodes generated in an early stage, the pruning process is conducted bottom-up and firstly
deals with nodes with minimum number of descendants. If multiple nodes have the same
number of nonmonotone pairs, the node with the least number of observations is selected

to be pruned. This process is conducted until the tree is monotone again.

In conclusion, pruning avoids overfitting from the training dataset by reducing the
model complexity, so that it predicts better on unseen dataset. Pruning will be beneficial

when the objects in the instance space are difficult to be enumerated.
5.5  Aggregate Business Ranking Result with Functional Preference

A comprehensive agent comparison needs the aggregation of both business ranking
and engineering functional preference. In this thesis, the multi-attribute utility theory is
used for aggregation, considering equation (5.6) provides an architecture to accommodate
ranking result and the ordinal results from decision tree classification can be defined as a
number from 0 to 1. In this sense, the business ranking result can be viewed as another

evaluation attribute. The aggregation can be formulated as below:
1
UDoS(u%) = E[(K ‘Weng - UDOS + 1) - (K - Wpys - DoSpys + 1) — 1], (5.17)

where DoS,,,, is a predefined value based on the business ordinal ranking, and K is derived

from:
1+K=(0+K- Weng) - (1+ K -wyys) (5.18)

5.6  Case Study on Crowdsourcing Contracting Evaluation
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Tank trailer manufacturing is a typical manufacturing process that involves a
variety kinds of assembly processes and parts. To meet the purpose of carrying different
kinds of chemical substances, varieties of tank trailers are designed which also form a huge
tank trailer family. A case study of tank trailer through platform-driven crowdsourced
manufacturing is used to illustrate the proposed theory. Through the platform-driven
crowdsourced manufacturing flow, the illustration of the contracting mechanism and the

implementation of bid evaluation and agent selection have been explored.

Figure 5-2 shows the structure of the primary objects of a tank trailer family which
combines the product variants and process variants. The name of each assembly operation
and manufacturing operation in the Generic Product and Process Structure (GPPS) are
shown in Figure 5-2. In a generalized tank trailer manufacturing process, there are at least
two manufacturing operations and eight assembly operations. Each raw material,
purchased part, manufacturing operation and assembly operation contains amounts of
alternatives. Therefore, to design a proper tank trailer that meets individual customer needs,
a massive number of alternative parts and operations need to be evaluated in multiple
design criteria before making decisions. This evaluation process can be extremely complex
due to massive number of alternatives. DoS is employed to evaluate design alternatives in

the illustrative case.

Based on the GPPS of the tank trailer family, an ontology model could be built as
shown in Figure 5-2. In the ontology model, purchased parts, raw material and assembly
are class type data. Different from the GPPS, process operation is not shown in Figure 5-2.
Arrows in the figure show the subordinate relationship between classes. For instance,

Insulation, ‘Out Layer’ and ‘Vessel Assembly’ are subclasses of ‘Tank Sub-assembly 2’.
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Figure 5-2 Generic product and process structure of a tank trailer family

5.6.1 Engineering Performance Evaluation with Multi-attribute Utility Theory

As the product fulfillment process and the crowdsourcing supply contracting
mechanism depicted previously, O takes in charge of the generation of C°. This C?is a
series of the customer orders, specified the expectations for a trailer to fulfill the tank usage
process. These orders are sent to virtual field of crowdsourcing information management
and saved as design specs D°. These design specs have internal hierarchical and

precedence relationship, and the products are structured to A = §; X ...§, X ... §,. Before

sending these products to the crowdsourcing invitation broker P!, project configuration
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manager P¢ restructures A to RFQ A, according to the number of manufacturing agent
clusters. In our case, invitation broker P sends the RFQ A,to the crowd as an open call
and specify the evaluation criteria to guide the evaluation process. After receiving RFQ, 4
agents in u? decide to bid, which are noted as {u?, u3,u3, u2}. Accordingly, 4
manufacturing bids are collected by the Pf in a finite set B, , where B, =

{B,1,B;2, B2 3, B;4}. In this case, the bids are described in the Table 5-2.

P¥ evaluates these bids based on their functional performance. Based on the
mechanism established in Section 5.3, the evaluation methods can be decomposed into the
following steps. Firstly, P£ specifies the corresponding range parameters of P, and Pp,
for every criterion and bid, thus the preference function of expected performance and the
PDF of achieved performance is established. Firstly, P£ specifies the corresponding range
parameters of Pr, and Pp,. for every criterion and bid, thus the preference function of
expected performance and the PDF of achieved performance is established. Secondly,
using equation (5.1) and equation (5.2), the information contents I can be derived. Thirdly,
calculating the DoS using equation (5.3) and aggregate these DoS. At last, the preferred
bid can be selected by the rule which is depicted in the equation (5.6). The evaluation
process for the illustrative example is demonstrated in the Table 5-2. The engineering
evaluation results can then be aggregated with agent business performance for final agent

selection.
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Table 5-2 Evaluation process for manufacturing bids

Evaluation Criteria of M, Frame Welding for a Chemical Tank Trailer

Strength Dimension
. - Tolerance of Upper Verticality of Main Estimated Cost
Evaluation Criteria .
Tensile Strength (MPa) | Flexural Strength (MPa) Surface Frame (USD)
(mm) (MPa)
u(Pr) u(Pr) u(Pr) u(Pr) u(Pr)
Fulfillment Range | Frt FrP FrV¥ | Frt Fr? FrY | Frt Frf FrY | Frt  Fr?  FrY | Frt FrP FrY
250 500 500 550 800 800 —-14 0 14 -2 0 2 1000 1000 2000
Attribute
Scaling Wq 0.2 0.1 0.25 0.1 0.3
Constant
Performance Range | Prt p(Pr) PrY | prt p(Pr) prv | pPrt p(Pr) PrVv|Prt p(Pr) PrV | Prt p(Pr) prY
g SHS By, | 240 N(280,20°) 280 | 550 N(630,40%) 710 | -14 N(0,10®) 14 | -2 N(0,15%) 2 | 1500 N(1900,200%) 2300
@ é GMAW B,, | 220 N(250,15%) 280 | 520 N(600,40%) 680 | —14 N(0,72) 14 | -2 N(1,1?) 2 | 1100 N(1200,502) 1300
'c_DE GTAW B, | 220 N(250,15%) 280 | 520 N(600,40%) 680 | —14 N(0,62) 14 -2 N(0,0.8%) 2 1400 N(1500,50%) 1600
& Weslt(;Eng B4 | 320 N(350,15%) 380 | 600 N(700,502) 800 | —14 N(0,4?) 14 -2 N(0,0.5%) 2 1300 N(1400,50%) 1500
SHS B, 0.2481 0.3791 0.4874 0.4753 0.2603
ég GMAW B, 0.1566 0.3063 0.5834 0.5834 0.7564
% gn:j GTAW B3 0.1566 0.3063 0.6260 0.6447 0.5
S X -
T} Stir
Welding B, 4 0.4307 0.5565 0.7282 0.7570 0.5757
UDoS(By1) 0.3411
) UDoS(B 0.5048
Normalized DoS ( 2’2)
UDoS(By3) 0.4425
UDoS(By4) 0.5901
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5.6.2 Business Performance Evaluation through Decision Tree Learning

In this chapter, business performance evaluation is done based on the learning of
history design agent performance with the rank entropy-based decision tree. Due to the
lack of ordinal monotonic classification benchmark data sets for machine learning, to show
the effectiveness of the decision tree-based business performance evaluation, both an
artificial data set of agent business performance and a real-world regression data set are

used, where the latter is further transformed into a monotone one.

The history evaluation is collected as a rated class which results from ordinal
measures in four perspectives: support responsiveness during the design, delivery
punctuality, design concept reliability, and customer service after delivery. Because of the
implicitness of these criteria, evaluation of each single criterion is done by assigning an
integer value from 0 to 3, where a higher value represents higher satisfaction. The rate of
the overall business performance is based on evaluation of the four criteria, which has four
levels: "Wonderful”, "Good", "Ordinary”, and "Bad". The evaluation process should
strictly satisfy the monotonic constraint, meaning one object will not be rated as a lower
class than the other object who has equal or worse evaluation results on four criteria. The
evaluation process from four attributes to the final rate is to be learned by the rank entropy-

based decision tree.

Considering the attribute space only contains 4* unique instances, pruning
operations can do more harm than good, because the model will not be overfitted if the
attribute universal space is not far larger than the space provided by the training dataset.

Therefore, in this illustrative case, the decision tree is not pruned after training.
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Based on the above formulation, the training dataset is displayed in Table 5-3. The
dataset is created with 60 samples by an algorithm that generates unstructured monotone

ordinal data (Potharst et al., 2009).

Table 5-3 The monotone dataset for business performance evaluation

0332,1213,2133,2222,2233,2330,2333,3203,
3213,3231,3232,3311,3313,3321,3322,3323

0213,0230,0320,1132,1303,1311,2122,2131,
2203,2221,2311,3122,3200,3212,3221

Ordinar 0111,0202,0212,1102,1121,1131,1211,2013,
y 2023,2103,2111,2120,2130,3033,3121

0013,0020,0022,0120,0200,0201,1003,
1011,1210,2011,2020,3001,3012,3100

Wonderful

Good

Bad

After the training of the rank entropy-based decision tree, the result is shown in
Figure 5-3. To make the figure readable, the evaluation values of four criteria are noted as
X1, X4, X3, X4, and the overall service evaluation is noted as y, where {3,2,1,0} represents
{wonderful, good, ordinary, bad}, respectively. The final decision tree has 31 leaves,

corresponding to 31 rules for customer service classification.

e
Node 16 Node 17 Node 18 Node19 || Node20 Node 21 Node 22 de 23 Node 24 Node 25 lode Node 27
y=0 y=1 x4<=0 4<=0 y=1 <=2 x2<=2 y=2 <=2 y=3 x4<=1 x1<=2
’—VESALNu—‘ Ve —No—) Ve —No—) ’—vEsJ—ND—‘ e oy rvEsJ—No—‘ Yes——Ni
Node 28 Node 29 Node 30 Node 31 Node 32 Node 33 Node 34 Node 35 Node36 || Node37 Node 38 Node 39 Node 40 Node 41
X1=0 y=1 y=1 <=1 y=2 y=3 x1=0 y=2 X1=0 y=2 x3<=1 y=2 y=3
Yes N ’—Ves—‘—No—‘ VES—LND—‘ ’—v No el 1o
Node 42 Node 43 Node 44 Node 45 Node 46 Node 47 Node 48 Node 49 Node 50 Node 51
y=0 x3=0 y=1 y=2 y=0 x4=0 y=2 X3 1 y=3
ve— Lo ’—vas—‘—ru v o Yes: ND—‘
Node 52 Node 53 Node 54 Node 55 Node 56 Node 57 Node 58 Node 59
y: y=1 y=0 y=1 3 y=3 y=2 x4<=2
Ves—‘—N

Figure 5-3 Decision tree for customer service evaluation
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The existing business performance of the four bidding agents u?, u3, u2, us are
displayed as Table 5-4. The results of agent business performance evaluation are then

aggregated with engineering functional evaluation for the final agent selection.

Table 5-4 The existing business performance of four agents

Manufacturing Responsiveness Punctuality Reliability Customer Rate
agent Service
u? 0 2 0 3 Good
uz 1 3 3 2 Wonderful
us 2 1 3 2 Good
I 2 0 3 1 Bad

The validation of the algorithm on the real-world data set is constructed from a
computer hardware data set (Frank, 1987). This data set contains 209 records, and each
record contains 6 integer attributes and 2 integer responses. In this study, the 6 attributes

and the estimated relative performance are used to construct the monotone data set.

Firstly, to make the data set monotone, MYCT (machine cycle time) is transformed
as equation (5.19), since this attribute originally has a negative correlation with the
response. Secondly, the response is discretized into 6 classes through k-means clustering
as the evaluation result. After process, there are 190 unique records, and the discretized

ranking results are shown in Table 5-5.

To train the monotone decision tree, the data set is split into a training data set
consisting of 141 records and a validation data set with 49 records. The trained decision

tree is illustrated in Figure 5-4. And the accuracy on the validation data set is 93.88%.
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Table 5-5 The discretized ranking results

Ranking 1 2 3 4 5 6

Range of Estimated
Relative Performance

[15,50] [52,107] [113,199] [220,290] [341,603] [749,1238]

Number of Records 107 38 24 9 8 4

Node 5 Node 6
X4<=131 Xd<=24

Y
ode
es
Node 10 Node 11 Node 12
xz 1000 X2<=4000 X2< 4000 X5<=12
N Y Y
- [ | L
N u 15 Node 16 Node 17 Node 18
X2<=384 Y=3 x4c32

Node 20 Node 21
X1<=2000 Xa<=48
o—‘ No—‘ rve es

No d 22 Node 23 Not u 2 Node 25 Node 26
Y=2 X1<=2000 X6<=8 =3

Y ‘ ] Y ‘ ] Y N

Node 27
X2<=8000

Node 31
Y=3

Node N de 37
v: V:i

Node 32
x2c2ouo

Nd33

Figure 5-4 Trained decision tree for validation

5.6.3 Evaluation Aggregation of Engineering and Business Performance

After obtaining the engineering and business evaluation, they will be aggregated
through the multi-attribute utility theory, as described in Section 5.5. In this illustrative
case, DoS for four different business rates “Wonderful”, “Good”, “Ordinary”, and “Bad”
are given 1.0, 0.8, 0.6, 0.3 separately. The weight for engineering performance evaluation

Weng and for business performance evaluation wy,,s are given 0.5 and 0.2 separately.

Considering K = 3, the final evaluation process is shown in Table 5-6. After the

evaluation, x5 shows superiority and B, , is selected to be B;. Thus, the corresponding

bidding agent 2 will be evaluated as u2" and awarded by the supply contract S. This
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evaluation and contracting results will be sent to the crowdsourcing information

management field and saved as process specs P°.

Table 5-6 The final evaluation result

Final aggregation
rggu“g I 13 13 T
UDoS(u“) 0.4124 0.6038 0.4875 0.4082

5.6.4 Managerial Implications

The presenting case study of tank trailer manufacturing service process shows an
example of the implementation of proposed crowdsourcing workflow. It has examined the
feasibility of the platform-driven crowdsourced manufacturing for MaaS. Following the
method of tournament-based crowdsourcing, this case study shows the process of reaching
external manufacturer crowds via a platform and instantiates the tournament to search the
best-performed manufacturing solution. In addition, the proposed evaluation mechanism
provides an approach to constructing the collaborative-crowdsourcing team. The
contracting evaluation mechanism has taken into account the uncertainty of the
manufacturing process, the aggregation of the various criteria from engineering functional

requirements and business operational requirements.

From the managerial perspective, the trailer company can focus on its core
competitiveness by applying crowdsourced manufacturing with platform. Meanwhile, the
main frame company can manufacture the part of trailer assemblies without direct contact
with customers. The platform-driven crowdsourced manufacturing offers a bridge to link

the manufacturing solution provider crowds for sharing their core competitiveness and
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capabilities complimentarily. Therefore, they have higher possibility to achieve economies

of scale and ease the application of the emerging technologies.

5.7  Chapter Summary

Crowdsourcing contracting entails a BMP problem, for which a best-matching
protocol plays a critical role in evaluating and selecting appropriate design or
manufacturing agents for crowdsourcing. The information content measure performs as a
neutral indicator for unifying diverse domain-specific metrics of manufacturing
capabilities within a coherent evaluation framework. Decision tree learning facilitates
selection decision making by incorporating past performance data of crowdsourcing
agents. This data-driven method suggests good opportunities to extend crowdsourcing
contracting to considering a large smart service network over time across a planning

horizon.

The evaluation mechanism is the backbone of the contracting mechanism since it
serves the selection of the best solution. It will not only determine the customer’s
satisfaction of final products, but also the coordination of the crowds’ cohort decision
making. An information contents measurement-based engineering functional evaluation
mechanism is proposed. Such evaluation implies the satisfaction is determined by the
overlap of the expectation and performance. This two-folded evaluation scheme handles
the uncertainty originating from the design and manufacturing domains. The multi-
attribute utility theory supports the aggregation of the evaluation. The various criteria can
be applied to the evaluation of a solution. This scheme serves the simplification of the

evaluation process and allows the scaling of the tournament.

97



Decision tree-based evaluation mechanism is proposed to explore the inexplicit
evaluation of the candidate manufacturer, which highlights the potential of incorporating
the service level based on the history records. Monotonic classification rules are proposed
for regulating the dominance relationship among the manufacturer in crowds. A synergy
of rank entropy-based decision tree learning, and monotone decision tree pruning can
extract the business operational ranking of the manufacturers with a minimum overfitting
from training dataset. The aggregation method of engineering and business evaluation

results are proposed for final selection.

As a technical solution that serves open innovator a contracting evaluation
mechanism, this chapter combines quantitative analysis of a solution’s performance on
functional engineering requirements and the qualitative analysis of the business operation
requirements. By aggregating evaluation results through multi-attribute theory, the open
innovator can ensure that the selected solution is not only a functional satisfied approach,

but also is fulfilled through a reputational solution provider.

98



CHAPTER 6. CROWDSOURCING TASK DERIVATION AND
DECOMPOSITION THROUGH GAME THEORETICAL
DECISION-MAKING: A BILEVEL JOINT OPTIMIZATION

MODEL FOR EQUILIBRIUM SOLUTIONS

The conversions of manufacturing functional areas towards services imply a
transformation of product fulfillment process to a distributed one via a service-oriented
cyber platform. As multiple value chains are executed, the volatility and complexities of
the customer needs are increasing, resulting in a high production variety and risk in the
open manufacturing domain (Gupta et al., 2000). Product differentiation in crowdsourced
manufacturing can be achieved by integrating external partners from a platform-driven
perspective. The crowdsourcing supply contracting implies a collaborative product
fulfillment by a co-creation process of decision agents along the value chain based on the
crowdsourcing task allocation and derivation (Shen et al., 2019). Successful product
fulfillment operations planning must be coordinated with the product family planning
(PFP) at the frontend of open innovation domain. These changes challenge the traditional

PFP decision-making considering its manufacturer loading balancing (MLB) problem.

This chapter proposes a leader-follower interactive decision-making mechanism for
crowdsourced manufacturing of PFP and MLB based on Stackelberg game. A bilevel
optimization model with linear physical programming is developed and solved, comprising
an upper-level PFP optimization problem and a lower-level MLB optimization problem.
The upper-level PFP determines the optimal configuration of product variants with the

objective of maximizing the market share and the total profit in the product family. The
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lower-level MLB seeks for the optimal partition of manufacturing processes among
manufacturer clusters in order to minimizing the operation cost of product variants and
balancing the loads among manufacturers. A case study of is reported to demonstrate the

feasibility and potential of the proposed bilevel interactive optimization approach.

6.1 Crowdsourced Manufacturing Task Derivation and Decomposition

Owing to the ability to fulfill diversified customer needs with high resources
utilization efficiency, the platform-driven strategy explores the common modules among
the products and processes to enable mass customization (Park and Simpson, 2008). The
instantiation of the platform-driven strategy is product family design and development,
which involves multiple domains such as marketing, engineering, and supply chains, and
there are specific decision-making problems in each domain (Pirmoradi et al., 2014). PFP
is at the stage of product definition in the front-end open innovation domain, which
determines product variants with their configuration in the product family according to the
customer needs (Jiao and Zhang, 2005). Since it will be the input of the crowdsourcing task
decomposition to generate tasks in crowdsourced manufacturing platform domain, the

front-end PFP decision-making result will bring an inevitable impact.

Successful crowdsourced manufacturing implementation must include a
coordinated decision-making process between PFP and MLB. Some key technical

challenges should be addressed to achieve a systematic planning:

1) Interactive product fulfillment. Future manufacturing is equipped with ubiquitous
connectivity in the manufacturing environment, allowing collection of significant volumes

of dispersed information to support distributed decision making to fulfill manufacturing
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tasks (Monostori et al., 2016). New open structure of cyber platform will create
opportunities for transforming and expanding the manufacturing sector by developing
intelligent cognitive assistants to perform as decision support systems to facilitate the
crowdsourcing product fulfillment (Li et al., 2018b). Thus, multiple agents will be involved
in PFP for crowdsourced manufacturing. It is necessary to develop decision-making
approaches for this kind of multi-agent online interactive product fulfillment scheme.

2) Conflicting objectives. In a distributed yet collaborative product fulfillment
process, PFP and MLB have different decision objectives (Du et al., 2019b, Medeiros et
al., 2020). For example, the decision objectives of PFP are usually maximizing the
customer perceived utility, maximizing the market share, minimizing the product
development time, and so on (Kwong et al., 2010). The decision objectives of MLB for
crowdsourcing task decomposition are usually minimizing the total manufacturing costs,
minimizing the load indices, maximizing the relevance of manufacturing tasks, to name by
a few (Kusiak, 2019). These decision objectives are interrelated, mutually restrictive and
even conflicting with each other. Therefore, it is necessary to establish an effective
decision-making mechanism to analyze and coordinate the interests of PFP and MLB
decision-makings.

3) Goal preferences. As previously described, PFP and MLB for crowdsourcing task
decomposition are essentially multi-objective optimization problems respectively. In the
traditional weight-based techniques for this kind of multi-objective optimization problem,
the process of determining appropriate weights or priorities is uncertain and time-
consuming, and thus the practicality of these approaches is damaged (Hernandez et al.,

2002). In addition, the decision-makers can not represent their preferences on each goal
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using more physically meaningful preference ranges in these approaches (llgin et al.,
2017). Thus, it needs to adopt a more flexible approach with physically meaningful
formulation of targets for eliminating PFP and MLB decision-makers from subjective

weight setting process.

In this regard, this chapter formulates MLB for crowdsourcing task decomposition
as a distributed networked MLB problem. A leader-follower interactive decision-making
mechanism for distributed collaborative design of PFP and MLB in crowdsourced
manufacturing is proposed. A bilevel optimization model with linear physical
programming is developed and solved, in which PFP plays as a leader and MLB acts as a

follower.

6.2  Bilevel Programming for Product Design and Development

Conjoint analysis, as a mainstream customer choice simulation technology, has
been widely used for predicting customer preferences, and a large number of optimization
models and intelligent algorithms have been developed for characterizing and solving the
PFP problem (Pirmoradi et al., 2014). In the process of PFP, it is necessary to consider the
influence from the manufacturing system factors synchronously (Michalek et al., 2011,
Xiao et al., 2018). However, although the above streams of research consider the impact of
manufacturing factors on PFP, the corresponding design decision-makings of

manufacturing systems are not involved.

Xu and Liang (2006) proposed an integrated approach to plan product module
selection and assembly line design with the objective of minimizing the total cost including

quality loss, the assembly line reconfiguration and material cost, and the assembly

102



operation related cost. Xu and Liang (2006) also established a multi-objective model to
deal with this problem and solved it by adopting the modified Chebyshev goal
programming. Objectives of their model are to minimize the total costs, minimize the
product performance index, and minimize the assembly line smoothness index. Bryan et
al. (2007) considered the concurrent design of product portfolio planning and mixed
product assembly line balancing to develop a multi-objective model for minimizing the
oversupply optional modules and maximizing the assembly line efficiency. However, the
market demands of product variants are determined before optimization in all the above
three models, and thus the effect of consumer preferences and purchase behaviors in
marketing are not considered. Bryan et al. (2013) formulated a mixed integer non-linear
programming model for the product family design with reconfigurable assembly systems
considerations. Bryan et al. (2007b) further proposed co-evolution of product families and
assembly systems over generations, and introduced a two-phase method based on the
model developed by Bryan et al. (2013) for evaluating the co-evolution effectiveness.
Deterministic choice rule was employed to simulate the consumer purchase behavior in the
above two models. Since this rule is based on the assumption that each consumer will select
the product that provides his or her maximum utility surplus, it will overestimate the market
share for the most attractive product and underestimate it for other products (Cao et al.,
2012). Hanafy and EIMaraghy (2017) formulated a mixed integer programming model for
integrating assembly line planning with modular product platform configuration. Abbas
and ElMaraghy (2018) introduced an integrated methodology for synthesizing assembly
systems for customized products by co-platforming of products and assembly systems.

However, all the above research are under the traditional integrated product fulfillment, in
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which a manufacturer implements a series of activities to develop the product and meet the
customer needs. In addition, the constraint satisfaction approach can be used to coordinate
the decisions across the product, process, and the supply chain to derive an effective
manufacturer load planning result (Jiao et al., 2009). The cloud-based cyber platform
synergizes the product and process information and enables the interactive optimization of

product design and process setup (Fatahi Valilai and Houshmand, 2014).

Collaborative design decision-making for different decision-making problems
across different domains in product engineering has attracted more and more attentions in
recent years (Du et al., 2019a). These engineering decision-making issues using
Stackelberg game include joint design of technical system modularity and material reuse
modularity (Ji et al., 2013), joint optimization of product family modularity and material
reuse modularity (Ma et al., 2016), joint optimization of product family module
configuration and scaling design (Yu et al., 2016), coordinated configuration of product
families and supply chains (Yang et al., 2015, Wang et al., 2016, Pakseresht et al., 2020),
joint design of product portfolio planning and viral marketing (Zhou et al., 2015),
coordinated configuration of service and product modules in the product-service systems
(Li et al., 2015), coordinated optimization of product line planning and product platform
configuration (Miao et al., 2017), collaborative design of modular product platforming and
supply chain postponement (Xiong et al., 2018), and etc. All these joint decision-makings
are dealt with by bilevel optimization based on the Stackelberg game theory from the
perspective of distributed collaborative design. In addition, Liu (2016) developed game

theoretic optimization models and algorithms for high variety assembly system design. Du
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et al. (2019b) reviewed this kind of leader-follower joint optimization problems and models

for product design and development.

6.3  Coordinated Bilevel Optimal Decision-Making in  Crowdsourced

Manufacturing

A motivating example of tank trailer product family is considered to illustrate the
problem setting. Considering dynamic market demands and short product lifecycles, tank
trailer company plans to provide products and services for customers by adopting
crowdsourced manufacturing. Tank trailer company has been connected to a crowdsourced
manufacturing platform, which provides a cyber platform to small and medium-sized
automotive and manufacturing factories in customized trailer industry. Following a
crowdsourced manufacturing workflow, a wide spectrum of manufacturing services is
connected and aggregated through cyber platform. Thanks to the adoption of platform-
strategy in crowdsourced manufacturing, volatile product fulfillment demands can be
accessed and the similarity among them can be explored. The platform can assign similar
tasks to a manufacturer, which can allow the manufacturer achieving a maximized
reusability of the related resources. Thus, with the expansion of the customer clusters, the
manufacturers can focus on their core competitive edges and achieve economies of scale.
Assume a tank trailer company plans to develop a family of custom trailer to meet customer
needs in different market segments. Tank trailers can be considered as modular products,
and each module required in the product family can be designed and manufactured by

manufacturer crowds through the service-oriented manufacturing platform.

6.3.1 Crowdsourcing Task Derivation
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The decision-making of PFP and MLB crowdsourcing task decomposition for tank

trailer company is shown in Figure 6-1.
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Figure 6-1 Operation planning in crowdsourced manufacturing
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The first layer is the developed WS product family modular architecture, which
contains six common modules, i.e., axle assembly (M1), tire (M2), steel sheet (M4), hose
tube (M5), anti-flow sets (M6), landing gear and pin assembly (M8), and four selective
modules, i.e., main frame (M3), insulation layer (M7), warning placard (M9), valve
assembly (M10). The number of module instances for selective modules M3, M7, M9, and
M10 are 3, 2, 2, and 3, respectively. For example, there are three module instances for
M10, i.e., safety valve, emergency & flush valve, and API valve. A total number of |
different product variants are configured in the process of PFP based on the trailer product
family architecture, as shown in the second layer. For each product variant in the product
family, one precedence diagram of the manufacturing rout is determined, as shown in the
third layer. The node represents a manufacturing task that joints one model to the
previously completed sub-manufacturing, the number outside the node is the
manufacturing time for the corresponding task, and the arc indicates the precedence order.
The fourth layer obtains the product family precedence diagram and the manufacturing task
assignment. The last layer shows manufacturer clusters linked to the crowdsourced
manufacturing platform, and each manufacturer cluster includes a few related

manufacturing agents.

6.3.2 Coordinated Bilevel Optimal Decision-Making

A bilevel taxonomy of the problem of coordinated decision-making of PFP and
MLB for crowdsourced manufacturing is shown in Figure 6-2. It can be described as
follows: the company has established a modular product family architecture comprising

several common modules and selective modules as a product development platform. Based
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on that platform, it plans to design a family of new product variants by combining different

module instances of selective modules to satisfy diversified needs of customers.
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Figure 6-2 Coordinated bilevel optimal decision-making in crowdsourced
manufacturing

The manufacturing services of these products are provided by the external
suppliers, manufacturing agent crowds, through certain cyber service-oriented
manufacturing platform. Given manufacturing capability requirement for all modules, the
precedence diagrams for product variants in the product family can be derived to represent
the order of task completion. The goal of the coordinated decision-making problem is to
simultaneously determine the optimal configuration of each product variant in the product

family, obtain the product family precedence diagram, as well as partition the
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manufacturing tasks among manufacturers according to competitive products, customer
needs, crowdsourcing operation costs and manufacturing times with the objective of

maximizing the market share and the total profit of the planned product family.

6.3.3 Solution algorithms

Since crowdsourced manufacturing fulfills products through collaboration of
crowds, the traditional product fulfillment process is distributed based on collaborative
negotiation (Gong et al., 2021). Following this scenario, the task derivation can be
summarized as a two-folded decision-making process. Firstly, the platform predicts
manufacturing capabilities, which formulates the portfolio planning problem as a
combinatorial optimization problem based on the contract pricing, sharable time window,
as well as the logistic cost of the manufacturers. This plan outlines the scale and
combination of the manufacturers to accumulate sufficient production capability for
various supply chains. On the other hand, it also serves the platform with a way of
specifying a set of crowdsourcing tasks to minimize the resources idling and inventory.
This two-folded service process requires the decision-making solution provides a
systematic approach to solve the trade-off between the supply configuration to achieve
global satisfaction and the specification of crowdsourcing tasks for local efficiency.
Because a crowd of companies is required in crowdsourced manufacturing, the optimal
configuration problem shows an interactive decision among the decision agents (Wu et al.,
2021). As the crowdsourcing workflow described in chapter 3, the task allocation through
a negotiation process can be decomposed into the requesting for quotation, propose of bids,
as well as the awarding with supply contracts. This process entails an iteratively multi-

level decision-making process, where the manufacturers respond with their manufacturing
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plan according to the limits of their shop floor and the platform responds with

crowdsourcing task allocation to seek an optimal production portfolio plan.

Figure 6-3 illustrates the leader-follower interactive decision-making mechanism
for joint design of PFP and MLB for crowdsourced manufacturing. The PFP design
decision-maker plays a leader’s role and handles the upper-level decision-making problem,
which can be formulated as PFP optimization. The goal of the upper-level problem is to
optimize the selection and configuration of product variants for maximizing the market
share and total profit of the product family, in which considerations about market segments,
customer preferences, and crowdsourcing operation costs should be incorporated. The
MLB design decision-maker acts as a follower and deals with the lower-level decision-
making problem, which can be formulated as MLB design optimization. After obtaining
the PFP decisions derived from the upper-level optimization, the lower-level MLB aims to
partition the manufacturing tasks among manufacturers for minimizing the crowdsourcing
operation costs and the load index. During the formulation of the lower-level problem, the
main influencing factors are operation costs of manufacturer crowds and manufacturing
times of module instances. The total crowdsourcing operation cost obtained in the lower-
level optimization will be fed back to the upper-level, and then the leader will adjust the
PFP decisions for maximizing his own interest according to these cost figures. This
distributed bilevel collaborative optimization of PFP and MLB proceeds in an interactive
manner until the leader-follower equilibrium solution is achieved based on Stackelberg
game. In addition, instead of assigning subjective weights, the preferences on each goal
using physically meaningful preference ranges through linear physical programming (LPP)

should be considered for both the PFP and MLB design decision-makers.
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Figure 6-3 Leader-follower interactive decision-making mechanism

6.4  Joint Optimization of PFP and MLB

In this section, the distributed collaborative decision-making of PFP and MLB for
crowdsourced manufacturing is formulated into a bilevel optimization model with LPP.
Assumptions and nomenclature of this joint decision-making problem are given in Section
6.4.1. The upper-level PFP decision-making is modeled in Section 6.4.2, and the lower-
level MLB design decision-making is modeled in Section 6.4.3. Section 6.4.4 lists other
necessary constraints. Finally, the bilevel optimization model with LPP is presented in

Section 6.4.5.
6.4.1 Model Assumption and Nomenclature
The basic assumptions in this research include:

1) One common module can be viewed as a selective module that has only one module
instance, and a null module instance represents the absence of the corresponding module

from one product variant.
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2) All the module instances are technological feasible, and there is no compatible
restriction on the combinations of these module instances.

3) The manufacturing of all the product variants in the product family are provided
through the service-oriented manufacturing platform linked with various service pools, and
each service pool consists of a few related candidate manufacturers.

4) Only the operation costs for manufacturers are considered in variable costs in this

research, and the unit operation costs for different manufacturers are the same.
6.4.2 Upper-Level PFP Model

The upper-level PFP design decision-making aims to select the optimal product
portfolio and determine the optimal configuration of each product variant with the

objective of maximizing the market share and the total profit in the product family.

Suppose that the product market has been divided into I market segments through
conducting a market survey and adopting a proper clustering technology, and consumers
in each market segment have the same purchase preference. Consumers make purchase
decisions based on the perceived utility surplus obtained from the corresponding product.
Following the commonly used linear-additive part-worth utility model in conjoint analysis,

the utility U;; that one consumer in the i-th market segment can obtain by choosing the j-

th product variant can be formulated as:

Lk
Z Ujpl — rkl)x]kl» i=12,..,1, j=1,2,...,] (6.1)
=1

TTMw

where u;y,; is the part-worth utility of the [-th module instance of the k-th module for the

i-th market segment, 1y, is the cost for buying one unit of the [-th module instance of the
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k-th module, and x;, is the decision variable which indicates whether (1) or not (0) the [-

th module instance of the k-th module is assigned to the j-th product variant.

According to the multinomial logit (MNL) choice model for product family

positioning in marketing, the probability P;; that one consumer in the i-th market segment

purchases the j-th product variant in the product family can be formulated as:

p exp (6U;;)
T yiexp (BU) + TN exp (0US)’

i=12..,1 j=12,..,] (6.2)

where 6 is a positive scaling parameter of the MNL model. If 8 goes to infinity, the MNL
behaves like a deterministic model; and if 6 approaches zero, it becomes a uniform

distribution (Steiner and Hruschka, 2002).

The total market revenue R of the product family can be computed by multiplying
the revenue of each product variant by the demand for this product variant firstly, and then

summing all the product variant revenue, which can be formulated as:

Lk

]
R = iz EK: z Qi PijTuXjiyj » (6.3)

i=1 j=1k=11=1

where y; is the decision variable which indicates whether (1) or not (0) the j-th product

variant is selected in the planned product family.

One objective of the upper-level PFP optimization problem is to maximize the total
profit T of the product family, which is the difference between the total market revenue R

and the total crowdsourcing operation cost OC of the product family, i.e.,

113



1 J K

The other objective is to maximize the market share MS of the product family,

which can be formulated as

1 ]
= Zl Z Py, . (6.5)

6.4.3 Lower-Level MLB Model

When the upper-level PFP decisions are determined, the lower-level MLB
optimization decision-making seeks for the optimal partition solution of the manufacturing
tasks among manufacturers in order to minimizing the crowdsourcing operation cost of

product variants and balancing the loads among manufacturers.

Following the approach based on fixed costs and variable costs, the overall

crowdsourcing operation costs OC of the product family can be formulated as:

ocC = Z(Cﬁx + CYTO)wy, (6.6)

=1

where €/ is the fixed cost for each MaaS service provider, and C¥%" is the

variable operation cost for each manufacturer per unit time.

The load of the whole manufacturing process should be balanced, that is to say, the
total manufacturing time allocated to each manufacturer should be as equal as possible.
The load index among manufacturers LI can be defined by the standard deviation of

manufacturing loads, i.e.,
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1
1 K 272
LI ! z tPF r° ) (6.7)
= m_ 1 k Zkm — I Ji Wr .
a 1n=1 k=1 i=1 Zj=1 QiPij

where T is the planned life of the MaaS operations, t;” is the product family
manufacturing time for the k-th module, which can be computed as the weighted sum of

the manufacturing task times for each product variant in the product family, i.e.,

] Lk
1 Q Pl]
zz b k=12..K (6.8)
L LY Py

j=1

6.4.4 Constraint Modelling

To establish the bilevel optimization model, some additional constraints about
relationships among decision variables are required to be analyzed and formulated as

below.

1) For each module of one product variant, exactly one and only one module instance

can be selected. The exclusiveness conditions can be described as

Ly
zxj,d =1, j=12,..J, k=12,..,K (6.9)
=1

2) Since tasks are indivisibility work elements, each task is assigned to exactly one

manufacturer. The occurrence constraints can be described as

II
z Zin=1 k=12..K (6.10)

=1
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3) For each manufacturer, the total manufacturing time for tasks assigned to this
manufacturer does not exceed the time available at this manufacturer. The time constraints

can be described as

K
0
ZtPFZ < r w, wn=12..1T (6.11)

k kn = 1 ] T )Ly any .
= i=1 %=1 QiPij

Thus, by equation (6.8), the time constraints can be rewritten as

1 ] K
Zzz taXjQiPijzkn < TC -wy, m=1,2,..,1 (6.12)

4) Owing to technological and organizational conditions, the tasks must be assigned
to manufacturers according to the precedence graph, i.e., the resulting sequence of
manufacturing tasks cannot violate the precedence constraints among these tasks. The

precedence constraints can be described as:

T
X < Z Xnn, k=12,..,K, =12 ..1], h € Pre(k), (6.13)

n=1

where Pre(k) is the set of all direct and indirect predecessors of the k -th

manufacturing task.
6.4.5 Bilevel Optimization Model

Based on the objective functions and constraints, the bilevel joint optimization
model of PFP and MLB can be formulated as below.
2

4
Min Z; = Z Z(Wi;d{k + wikdf, (6.14.0)
i=1 k=1
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S.t.

TP —min(TP — TP - Target,,,1,0)
TP -Target,,

+dip,—dt,=1 m=12..4 (614.1)

MS — min(MS — MS - Target,;,,+1,0)

tdyy—din=1 m=12..4 (614.2)

MS - Target,,
Lg
ij,d =1, j=12..], k=12 ..K (6.14.3)
=1
K Lk
Ujj = Zz(uikl — )X, =121 j=1,2,..,] (6.14.4)
k=11=1
exp (BU;;
Py == P Uz)vc —, =120, j=12,.,] (6145)
Yo yjexp (OUj) + Xj=; exp (0Uf5)
TP > TP - Targets (6.14.6)
MS > MS - Targets (6.14.7)
X,y € (0,13 (6.14.8)
4 4
Min Z, = Z Z(Wﬁcdi_k + wikdf, (6.14.9)
i=3 k=1

s.t.

0C — max(0C — OC - Target,;41,0)
OC - Target,,

+ds,—di,=1 m=12..4 (6.14.10)

LI — max(LI — LI - Target,, 1, 0)
LI - Target,,

tdpy—din=1 m=12..4 (614.11)

II
z Zin=1 k=12..K (6.14.12)

=1

117



~

k

1 J K
ZZZZtklxjleiPijzkn < TWT[, =12 ..,1II

i=1 j=1k=11=1

Vs
xanthn, k=1,2..,K, w=12.,0,  hePre(k)

0OC < 0C - Targetsg

LI < LI - Targets

Zrr € {0,1}, w, EN

(6.14.13)

(6.14.14)

(6.14.15)

(6.14.16)

(6.14.17)

LPP is adopted in the upper-level and lower-level optimization, respectively, and it

allows the PFP and MLB decision-makers represent their preferences on each goal using

physically meaningful preference ranges. LPP is proposed by Messac et al. (1996) as a

novel approach to multiple objective optimizations. Application of LPP involves the

following four steps:

1) Identify each decision criteria as Class 1S (Smaller is Better), Class 2S (Larger is

Better), Class 3S (Value is Better), or Class 4S (Range is Better).

2) Define the desirability ranges for each decision criteria: ideal, desirable, tolerable,

undesirable, highly undesirable, and unacceptable.

3) Calculate the values of the weights using the algorithm developed by Messac et al.

(1996) or Hernandez et al. (2002).

4) Formulate a common deviation function to evaluate the alternatives.
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LPP has been applied in industrial engineering and product engineering (Maria et
al., 2003, McAllister et al., 2005, Lai et al., 2006, Kongar and Gupta, 2009, Ilgin et al.,
2017, Liu et al., 2018). For example, llgin et al. (2017) develop an LPP-based disassembly
line balancing method to balance a mixed-model disassembly line. A comprehensive
review of different variants and applications of physical programming can be found in llgin

and Gupta (2012).

The upper-level objective function Z; in equation (6.14.0) is a common deviation
function, which is formulated as a weighted sum of the deviation variables dy, d, (i =
1,2; k = 1,2, ...,4). These deviation variables can be obtained by Constraints (6.14.1) and
(6.14.2) where TP - Target,, and MS - Target;, are the physically meaningful target values
at the desirability level k for the goal TP and MS respectively (k = 1,2, ...,5). These target
values are specified by the PFP design decision-maker to quantify the preferences
associated with the TP and MS criterions. Different from assigning subjective weights, the
weights w;, and wi, (i = 1,2; k = 1,2, ...,4) can be determined by the algorithm proposed
in Hernandez et al. (2002). Similarly, the common deviation function Z, in equation
(6.14.9) is the lower-level objective function, which is a weighted sum of the deviation
variables dg, , df, (i=3,4; k=1,2,...,4) derived from Constraints (6.14.10) and
(6.14.11). Constraints (6.14.6), (6.14.7), (6.14.15) and (6.14.6) indicate that the fifth level
values TP - Targets, MS - Targets, OC - Targets, and LI - Targets are unacceptable. The
values of decision variables x;jx;, y;, Zin, Wy are restricted in Constraints (6.14.8) and

(6.14.17).

6.5  Nested Bilevel Genetic Algorithms for PFP-MLB Joint Optimization
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In this section, a nested bilevel genetic algorithm (NBGA\) is developed to find the
optimal or near optimal solution of the bilevel optimization model with linear physical
programming. The NBGA is a nested sequential approach, in which the PFP and MLB
decision-makings are solved by the traditional single-level genetic algorithm (GA)

respectively and the lower-level GA is performed for each upper-level feasible solution.
6.5.1 Overview of Nested Bilevel Genetic Algorithms

The flow chart of the NBGA algorithm is shown in Figure 6-4. A step-by-step

procedure for the NBGA algorithm can be described as follows:

Initial upper-level population generation
+ Population size N

For each upper-level
{ chromosome
4’{ Constraint handling [ | Initial lower-level population generation
Penalty for invalid ones - ! -
Constraint handling

» Time constraints

l

Fitness evaluation
* Common deviation function Z,

Fitness evaluation
+ Common deviation function Z,

Termination
conditions?

Termination
conditions?

uonedudd [oad-1oddn 1xaN

Select chromosome for reproduction
« Rank chromosome by fitness values

|

Crossover operation
* Multi-point random crossover

l

Mutation operation
« Multi-point random mutation

Select chromosome for reproduction

I

Crossover operation

» Single-point random crossover
Mutation operation

* Two mutation points are picked

4{ Record the optimal MLB decision results|“

UONEISUIT [AI[-19MO] XN

Figure 6-4 Flow chart of NBGA
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Step 1:Initialization. An upper-level initial population of size N is randomly
generated and constraint handling is carried out to ensure that each generated chromosome
satisfy required constraints. Then, for each upper-level chromosome, the corresponding
lower-level MLB optimization procedure is executed to obtain the lower-level optimal or

near optimal chromosome.

Step 2:Upper-level selection operation. Combine the upper- and lower-
chromosomes, and then evaluate each upper-level chromosome by assigning a fitness value
based on the common deviation function Z; in equation (6.14.0). Choose parent
chromosomes for upper-level crossover and mutation operations from the current

population by adopting the rank selection method according to fitness values.

Step 3:Upper-level crossover and mutation operations. Offspring chromosomes are
created by performing multi-point random crossover and mutation operators, in which
single-point random crossover and mutation operators are adopted for each product variant

chromosome section.

Step 4:Lower-level optimization. For each upper-level offspring chromosome, the
corresponding upper-level decision results are transmitted to the lower-level MLB
decision-making problem. After initializing the lower-level population, the fitness value of
each chromosome is computed based on the common deviation function Z,, and a
penalizing strategy is adopted for handling those invalid chromosomes that violate the
lower-level constraints. Then, the selection, crossover, and mutation operations are carried

out successively.
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Step 5:Evaluation of offspring chromosomes. Fitness values of upper-level
offspring chromosomes are evaluated through combining each upper-level offspring
chromosome with its corresponding lower-level chromosome and then computing the

upper-level common deviation value.

Step 6:Examination of termination conditions. A maximal number of generations
is specified as the criterion for the termination check in both the upper- and lower- genetic

algorithm. Proceed to the next generation (Step 2) if the termination check is false.

6.5.2 Encoding and Operators in Upper-Level

To apply GA to the upper-level PFP design decision-making, the integer encoding
strategy is adopted for the chromosome structure, as illustrated in Figure 6-5 (a). A
chromosome is composed of J product variant sections, and there are K module sub-
sections for each product variant section. The value [ in the k-th module sub-section in the
j-th product variant section represents that the [-th module instance of the k-th selective
module is selected for the j-th product variant. Thus, the PFP design decision-making is
described by a chromosome with length of KJ. Each chromosome in the upper-level initial
population is generated randomly by the approach proposed by Jiao et al. (2007b) to ensure
the satisfaction of Constraint (6.14.3). The upper-level fitness function is the common

deviation function Z; in equation (6.14.0).

A single-point crossover operator is adopted for each product variant substring, and
thus the crossover for the upper-level chromosome is carried out with a multi-point
crossover operator, as shown in Figure 6-6 (a). Similarly, a single-point mutation operator

is employed for each product variant substring, in which one mutation point is picked
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randomly and then the corresponding module instance is altered at random. Figure 6-6 (b)

illustrates the detailed process of multi-point random mutation operators.

Module K Module k Module 1 Manufacturing
sub-section  sub-section  sub-section task sub-section
1 || 1 | 3 | 1 | 3 | 1 | 1 | 2 ||4 B | k |10
. Product _| . Product j _; . Product] _ » Task )
1 section section section sequence
section
(a) Genetic encoding for PFP (b) Genetic encoding for ALB

Figure 6-5 Genetic encoding for upper-level PFP and lower-level MLB

Product Product
substring 1~ { {7 substringJ ;
- | : Mutation Mutation
Chmi;‘;g;cl 23] ]1]-]1]3]3 1!1|2|1 point | point |
Parent | _
. . L1 |3f{1[2]4(1]|-|2]2 -I 174(1(1 ' -
Chromosome 2 | | | | | ‘ | | | | Chri?;i‘;me\IE3|1|2[4]1;--72|2[1 1J4|T|
l Crossover
- | I lMutation
Offspring AR D A NE IE ERER ES ER

Chromosome 1 .
Offspring

. | ) L1211 |2(4|1||2|2|1|5]|4]|1]]1
Offspring |] ]|3Il|3‘l|l"“|2‘2|l|1w Chromosome‘ ‘ ‘ | | ‘ ‘ ‘ | ‘
I I

Chromosome 2

(a) Upper-level crossover operator (b) Upper-level mutation operator
Figure 6-6 Upper-level crossover and mutation operators

6.5.3 Encoding and Operators in Lower-Level

Figure 6-5(b) illustrates the chromosome encoding for the lower-level MLB design
decision-making, and there are K assembly task sub-sections for the task sequence section.
Each manufacturing task sub-section, i.e., the gene, indicates the manufacturing sequence,
and the value in the manufacturing task sub-section, i.e., the allele, represents the
corresponding task. In this research, for each lower-level chromosome in the initial
population, the manufacturing task substring is generated by the top sort algorithm

developed by Hou et al. (2014) to satisfy the precedence constraints, i.e., Constraint
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(6.14.14). To ensure the satisfaction of Constraint (6.14.12) and (6.14.13), the algorithm
proposed by Leu et al. (1994) is employed for chromosome decoding, i.e., dividing
manufacturing tasks into manufacturers. The lower-level fitness function is the common

deviation function Z, described in equation (6.14.9).

A single-point crossover operator is implemented for the task sequence substring,
in which two parent chromosome exchange genetic information after selecting the
crossover point randomly. To avoid generating infeasibility offspring chromosomes after
crossover, an improved exchange process is adopted for the task sequence substring, as

illustrated in Figure 6-7 (a).

Task sequence
substring
Parent | Mutation Mutation
Chromosome 1 ! | 2 | 415 | 3 Iim point 1 point 2
Parent *
Chromosome2|1‘4‘3 2|6|5|7| Parent 4 312(6 5

[ Chromosome

Crossover .
l | l Mutation

Offspring |1‘2|4 3|6‘5|7‘

Chromosome 1

Offspring '1]2]6|3]4]5]7]
Chromosome

Offspring
Chromosome 2

[1]4]3]2]5[6]7]
I

(a) Lower-level crossover operator (b) Lower-level mutation operator

Figure 6-7 Lower-level crossover and mutation operators

It can be observed that the exchanged sequence of the task sequence substring in
parent chromosome 1 is 5, 3, 6, and 7, and the ordering of this exchanged sequence in
parent chromosome 2 is 3, 6, 5, and 7. Then, generate a new offspring chromosome 1 by
replacing the exchanged sequence in parent chromosome 1 with 3, 6, 5, and 7. Finally, the

other offspring chromosome 2 can be obtained by using the similar approach, as shown in
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Figure 6-7 (a). Figure 6-7 (b) illustrates the lower-level mutation operator. For the task
sequence substring, two mutation points are picked randomly, between which the
manufacturing tasks are reordered according to the product family precedence graph by the
scheme of producing the initial population. Thus, the obtained offspring chromosomes are

still feasible after crossover and mutation operations.

6.6  Case Study on Crowdsourcing Task Derivation

6.6.1 Case Description

To illustrate the proposed model and algorithm, the joint PFP and MLB design
problem for tank semi-trailer is presented. Suppose that tank trailer company plans to
design a family of two trailers, and there are two existing competitive products in the
market. The precedence diagram for trailer is shown in Figure 6-8. Suppose that the
customized kitchen market has been divided into three segments through market research.
The size of each market segment is given in the second row in Table 6-1. Table 6-1 also
lists the utility surplus of two existing products for each market segment in the last two
rows. The part-worth utilities of module instances for each market segment can be
estimated by conjoint analysis or simulation calculation. In this case, the simulated utility
data is adopted, and it is generated from a uniform distribution randomly. The estimated
manufacturing times are listed in the fifth row in Table 6-2. The estimated purchase costs
of module instances are shown in the last row in Table 6-2. The LPP target values for the
upper-level PFP goals (TP and MS) and the lower-level MLB goals (OC and LI) are shown
in Table 6-3. Applying the algorithm described in Messac et al. (1996), the resulting

weights for both the upper- and lower-level common deviation functions are shown in
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Table 6-4. The scaling parameter 6 in the MNL choice model is set to 0.75. The fixed cost
for each manufacturer C/%* is set to 500, and the operation cost C¥*" for each MaaS service
provider per unit time is set to 0.5. The total planned life T of crowdsourcing operation

cost is assumed to be 3000000.
6.6.2 Implementation and Comparison

To solve the bilevel optimization model for joint decision-making of PFP and MLB,
the proposed NBGA is conducted. In the upper-level GA, the maximum number of
iterations is 500, the crossover probability is 0.8, and the mutation probability is 0.2. In the
lower-level GA, the maximum number of iterations is 100, the crossover probability is 0.8,
and the mutation probability is 0.2. Based on the above assumptions, the NBGA is run
using MATLAB 2017b under the circumstance of Windows 10, Intel i7-7500U 2.90GH

and Ram 8G. The running time is 3628.125s.

Figure 6-9 provides the NBGA evolution processes for the upper-level PFP and the
lower-level MLB optimizations. It shows the upper-level common deviation function value
Z4 and the lower-level common deviation function value Z, for the best individual over
generations, which reflects the dynamic interactive decision-making process between the
upper- and lower- levels. After 250 iterations, the optimal PFP result and the corresponding

MLB result are arrived, which are listed in the third column in Table 6-5.

As shown in Table 6-5, the optimal upper-level chromosome coding scheme is [1
12111212311111121 23], the upper-level common deviation function value is
0.5721, the total profit is 1.5600 x 107 , and the market share is 92.05% . The

corresponding lower-level coding scheme is[1 456 2 3 7 89 10], the lower-level common
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deviation function value is 0.3820, the operation cost is 1.9507 x 107, the load index is
1.1217. According to the lower-level MLB decision-making result, all the manufacturing
tasks are assigned to nine manufacturers, in which task 1 and task 4 are assigned to the
same manufacturer. The numbers of MaaS service providersare 2, 2,2,2,1, 2,3, 1 and 2,

respectively.

Figure 6-8 Precedence diagram for tank trailer

To verify the validity of the proposed method, two experiments are designed to
compare the results of the bilevel approach (TBA) with those of the sequential approach
(TSA), i.e., solving the PFP decision-making and the MLB decision-making sequentially
in two steps, and the cooperative approach (TCA), i.e., the PFP decision-maker and the
MLB decision-maker engage in bargaining and desire a cooperative and binding trade for
maximizing their collective interest. For TSA, in the first step, the total operation cost can
be estimated based on the historical data, and the PFP problem is solved using the upper-
level GA. After obtaining the PFP results in the first step, the MLB problem is solved using
the lower-level GA in the second step. In this experiment, the estimated operation cost in
the first step is set 2.5 x 107. The optimal PFP and MLB results are listed in the fourth

column in Table 6-5.
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Table 6-1 Sizes of market segments and utility surplus of existing products

Segment 1 Segment 2 Segment 3
Estimated number of consumers 250,000 350,000 150,000
Utility surplus of existing product 1 8.7 9.4 8.3
Utility surplus of existing product 2 10.5 8.5 9.6

Table 6-2 Part-worth utilities, manufacturing times and purchase costs for module instances

M3 M7 MO M10
ML M2 M4 M5 M6 — M8
M31 M32 M33 M71 M72 M9l M92 M101 M102 M103
Segment1 89 92 0 68 83 45 65 65 0 59 58 0 58 0 41 68
Part-worth
A Segment2 85 97 0 66 89 47 69 72 0 48 56 0 38 0 45 6.6
Segment3 82 99 0 63 85 49 62 79 0 52 53 0 68 0 48 62
Manufacturing o 6 o0 5 8 7 5 5 0 8 10 0 4 0 6 9
times
Module
78 85 0 53 76 35 57 52 0 39 48 0 28 0 36 48
revenues
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Table 6-3 Sizes of market segments and utility surplus of existing products

Upper-level PFP decision-maker

Level k. Total profit TP - Target (107) Market share MSTarget (%)
1 2 90
2 15 80
3 1 70
4 0.7 60
5 0.5 50

Lower-level MLB decision-maker

Level kK Operation cost OC - Target (107) Load index LI - Target (%)

1 1.5 0.5
2 2 1
3 2.3 1.5
4 2.5 2
5 3 3

Table 6-4 Weights for the goals in the common deviation functions

Upper-level PFP decision-maker

Level Kk Total profit TP (w;/wg,) Market share MS (w5./w;,)
1 0/2.6 0/3
2 0/0.26 0/0.3
3 0/7.15 0/3.63
4 0/21.522 0/7.623
5 0/2.6 0/3
Lower-level MLB decision-maker
Level Kk Operation cost 0C (W3, /ws3y,) Load index LI (wj/w,y;,)
1 15 0.5
2 2 1
3 2.3 1.5
4 2.5 2
5 3 3
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Table 6-5 Results under the bilevel, sequential, and cooperative approach

The sequential The cooperative

The bilevel approach approach approach

Upper-level Productvariantl [1121112123] [1131112123] [1121112113]

PFP result
configuration Productvariant2 [1111112123] [1121112123] [1121111121]

Total profit 1.5600x107 1.2615x107 1.3234x107
Upper-level
objective Market share 0.9205 0.9405 0.7530
values
Z4 0.5721 0.6913 1.0316
Task partition 1 4|5/ 6/2|3|7/8/9] 142/5/6/3|78/9 123|4]|5|6|7|8|9
Lower-level solution 10 10 10
MLB
decisions Manufacturer 5 5599312 222222312 22111211
number per task
Operation cost 1.9507x10’ 2.2508x10 1.3505x10
Lower-level
objective Load index 1.1217 1.8413 0.5000
values
Z, 0.3820 0.6732 7.4919x10
07 T T T T T T T T T 1
[} N [}
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Figure 6-9 The evolution process of NBGA
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Figure 6-10 compares the experimental results of the bilevel approach and the
sequential approach. It indicates that the total profit increases by 23.66% from 1.2615 X
107 (TSA) in the sequential approach to 1.5600 x 107 (TBA) by adopting the bilevel
approach, while the market share decreases by 2.13% from 0.9405 (TSA) to 0.9205 (TBA).
Both the operation cost and the load index obtained in the sequential approach are much
higher than those using the bilevel approach. For the upper-level common deviation
function value Z; and the lower-level common deviation function value Z,, the results
obtained by the bilevel approach are 17.24% and 43.26% less than those of the sequential
approach, respectively. The reason is that the independent PFP optimization in the
sequential approach considers operation costs based on the estimation of existing historical
data, and it cannot make full use of the low-cost advantage brought by the interactive design

between PFP and MLB.

For TCA, the cooperative decision-making of PFP and MLB can be formulated as
a bargaining model which is one single-level optimization formally (Dhingra and Rao,
1995). In this case, the bargaining objective function between PFP and MLB in TCA can

be defined as equation (6.15).

Z1—17Z1 Zy—Z;
MaxZ =[|1—-— —|[1—== - (6.15)
Zy —Z Z; — 17,

where Z; and Z; are the upper-level best and worst common deviation function values
respectively, and Z; and Z; are the lower-level best and worst common deviation function
values, respectively. The traditional GA is employed to solve the proposed single-level

optimization model in TCA. Figure 6-11 illustrates the evolution process of the traditional
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GA for the cooperative approach. The optimal PFP and MLB results are listed in the last

column in Table 6-5.

The target values of TP, MS, OC, and LI under TBA, TSA, and TCA are compared
graphically in Figure 6-12. The values of TP and OC in TBA are in the desirable region,
and those in TSA lies those in TSA lie in the tolerable region. The value of LI in TBA is
in the tolerable region, but that in TSA is in the undesirable region. Compared with TBA,
the values of TP and MS in TCA are only in the tolerable region, although the values of
MS and LI in TCA are in the ideal region. It can be seen that the solution obtained by
adopting the bilevel approach yields a better balance between the four objectives than other

approaches.
6.6.3 Sensitivity Analysis

To explore the influence of competitive intensity on the objective values of upper-
level PFP and lower-level MLB, the following sensitivity analysis experiment is designed

and performed. The competitive intensity can be represented using the utility Uﬁ- of

competitive products in the market. Let U_g =d- Ug where d is fixed as a series of
constants from 0.95 to 1.3 in steps of 0.05. The obtained results are shown in Figure 6-13.
With the increase of the parameter d, the upper-level objective values TP and MS
decrease, and thus the upper-level common deviation function value Z; increases
gradually. This decrease or increase makes the corresponding lower-level objective values
0C and LI, as well as the lower-level common deviation function value Z, fluctuate

accordingly.
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Figure 6-12 Comparison of target values under different approaches
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Figure 6-13 The influence of the competitive intensity

6.7  Chapter Summary

Coordinated optimization of PFP and MLB in platform-driven crowdsourced
manufacturing adopts an interactive decision-making between various agents. A practical
and effective bilevel approach for dynamic interactive design optimization of PFP and
MLB is proposed based on Stackelberg game. Consistent with the leader-follower
interactive mechanism, a bilevel optimization model with linear physical programming is
developed, in which the upper- and lower-level objective functions are the common
deviation functions adapted from the corresponding linear physical programs. NBGA with
upper-level GA for PFP and lower-level GA for MLB is designed for solving the developed
model. The proposed bilevel approach is demonstrated via a joint PFP and MLB design
problem for tank trailer product family. Through comparison with other approaches, this
bilevel approach is shown to yield satisfactory levels of achievement for PFP and MLB

objectives. This approach provides an effective decision-making framework for the multi-
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agent online interactive product fulfillment faced by enterprises adopting the crowdsourced

manufacturing model through service-oriented crowdsourcing platforms.

The managerial insight of this approach is as follows: (1) the PFP optimization
decision-maker should take into account the reactions of competitors, since competitive
intensity has a significant influence on the objective values; (2) with the progress of
technologies and the change of customer preferences, it is important for the PFP design
decision-maker to upgrade products and consider the co-evolution of product families and

manufacturer crowds.

As a task execution decision support tool for manufacturer in platform-driven
crowdsourced manufacturing, this chapter provides an original approach to decompose the
product family into a set of executable tasks. It utilizes a bilevel architecture to imitate an
interactive decision-making process between cyber platform and manufacturers. The
platform can seek a maximum revenue of overall innovation project, while the
manufacturer can consider their local constraints and operational revenues. The proposed
work shows a crowdsourcing task derivation can be achieved through a bilevel game-
theoretic programming. A crowdsourcing manufacturing process can provide the decision-
support service for manufacturers and offers a more profitable task derivation result than

conventional approach.

136



CHAPTER 7. NETWORKED MATERIAL FLOW PLANNING
FOR CROSS-DOCKING LOGISTIC SERVICES: A BRANCH-

AND-PRICE METHOD

Crowdsourced manufacturing through a platform-driven manner has been observed
as an emerging trend towards Industry 4.0 by paving the way of delivering MaaS. It utilizes
a cyber platform and crowdsourcing to reach external partners’ manufacturing knowledge
and resources while allowing companies to focus on their core competencies. It addresses
an underlying logic that maximizes the reuse of resources by searching similarities among
prolific product, process, and manufacturing resources varieties. It also challenges
traditional logistic service for manufacturing industries by expanding a simple material
flow to a complex, networked, fluctuating one. Cross-docking has been widely recognized
as a logistic solution to complex material flow by splitting service routes to pickups and
deliveries for maximizing vehicle reuse. It adopts a platform-driven strategy by exchanging
loads at the cross-docking. This study formulates the logistic service problem in platform-
driven crowdsourced manufacturing as a Crowdsourcing Vehicle Routing Problem with
Cross-Docking (C-VRPCD), which integrates logistic solution provider crowds into the
manufacturing service process. This study considers the logistic provider as a capacitated
homogeneous vehicle started at various pickup points and times in a logistic service. The
vehicles are scheduled in a route to visit service requesters synchronously and arrive at the
cross-dock center simultaneously for load exchanging. All service requests must be
fulfilled in predetermined time duration. Thus, this study formulates a mixed-integer linear

programming (MILP) model for C-VRPCD to minimize the total cost of crowdsourcing
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fleet, which considers logistic solution provider hiring cost and vehicle operating cost. A
branch-and-price (B&P) algorithm is proposed to solve this problem by using column
generation techniques. This B&P algorithm first proves its effectiveness by solving
benchmarking instances and compared with results from the default MILP solver in
CPLEX. Computational analysis shows the proposed algorithm excels default MILP solver

and can provide exact solutions.

In this regard, the rest of this study proceeds as follows. Section 1 discussed how
cross-docking solves challenges raised by platform-driven crowdsourced manufacturing
challenges and algorithm solutions of it. Section 2 presents the problem context and
mathematical formulation of C-VRPCD. Section 3 establishes a branch-and-price
algorithm for C-VRPCD. The computational results and comparison with benchmarks are
presented in Section 4. A case study proceeds in Section 5 to verify the applicability of the

proposed algorithm in the crowdsourcing environment. Section 6 closes this study.

7.1 Logistic Service in Platform-Driven Crowdsourced Manufacturing

Manufacturing industries are challenged by absorbing more disruptive changes that
are impacted by sustainability issues, volatile customer preferences, and macro-
environmental fluctuations and effectively delivering manufacturing services by adopting
Maa$S paradigm (Kusiak, 2019). Platform-driven crowdsourced manufacturing has been
proposed to deliver service-oriented manufacturing through an external searching based on
crowdsourcing and integrating resources into a manufacturing value chain by a cyber
platform (Gong et al., 2021). It provides systematic solutions for manufacturers to peel

their peripheral manufacturing activities and thus achieving economies of scale by offering
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substitutive services. From a perspective from managing material flow across manufacturer
network, an optimal decision support on logistic services is critical, which can manage a

networked material flow to serve materials and WIP transportation synchronously.

Since a cyber platform in crowdsourced manufacturing operates a two-sided peer-
to-peer marketplace to match the open innovators and manufacturers. Thus, multiple value
chains will be initiated by the open innovators and executed simultaneously. Since the
fulfillment of each value chain requires collaboration among a group of manufacturers,
several outstanding manufacturers may be awarded by multiple value chains. Thus, these
manufacturers can be viewed as common vertexes in the networked material flow. The
logistic service system should offer the logistic services to send the corresponding
materials and WIP just-in-time. Because the highly innovative products can be
characterized as large variety yet small volume, the logistic service is required to handle
the product and production variety. In this regard, a service-oriented scheduling mechanism
considering the product and production variety, as well as the manufacturing activities

synchronization, can be recognized as the essential function in a logistic service system.

7.1.1 Cross-Docking for Networked Material Flow Management

The material flow management function in logistic services in platform-driven
crowdsourced manufacturing aims to send as well as pick up the required material, WIP,
subassemblies, or final products on time. Due to the large variety of value chains and the
corresponding process variety, a manufacturer can be downstream partners for a set of
upstream partners, since it is a vertex in a networked material flow network. Thus, the

material and WIP delivery services for this manufacturer has multiple destinations.

139



Similarly, after the accomplishment of the manufacturing tasks, the picking up services
will send the material and WIP to multiple downstream manufacturers. Thus, the process
variety will propagate from process domain to the logistics one, therefore challenges the
companies with keeping a reasonable cost as well as aligning customers, products,
processes, and logistics domain for delivering an increasing product variety (Jiao et al.,
2007b). From a platform-based perspective, a cyber platform can collect the information
from the manufacturing crowds, formulate the origins and destinations of the service
demands, find the common routes in the corresponding transportation service tasks and

synchronize the manufacturing activities to achieve just-in-time (Qu et al., 2016).

The participation in platform-driven crowdsourced manufacturing implies that
manufacturers open to external partners and allow the integration with partner crowds.
Moreover, because recent advancement of information service system enables digitization
of the manufacturing activities and the streaming of process data, the logistic service
system can retrieve real-time data on the shop floor and making optimal decisions. The
new synergy of the 10T and cloud computing architecture enables the visualization of the
logistic on the shop floor and applying big data analysis of the material flow inner the
manufacturers, thus, paves the way towards a holistic optimal logistic plan balancing the
inner- and inter-manufacturers material flows (Zhong et al., 2015). The holistic logistic
plan can synchronize transportation tasks and manufacturing activities. Therefore, the time
gaps between the manufacturing task accomplishment and picking up as well as the
materials or WIP deliveries and the start of order execution can be minimized. The smaller

the time gaps are, the potential inventory level on the shop floor can achieve.

7.1.2 Crowdsourcing Vehicle Routing Problem with Cross-Docking
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There is a stream of operation solutions for a logistic network with a high material
variety with tight time constraints. The service-oriented logistic system installs an agile
control mechanism, which entails a user-friendly, flexible, scalable, and widely connected
engineering system architecture to link internal and external transportation (Evers et al.,
2000). Traditional logistic solutions like direct shipping and milk-run send shipment from
origin to destination directly and to multiple destinations in a tour, respectively, has been
observed a limited capability of serving small shipment size and geographically dispersed
customers (Buijs et al., 2014). To response these shortcomings, warehousing and cross-

docking are developed by using a centralized depot.

Cross-dock can allow the inbound trucks to unload the freight and transported
directly to the outbound trucks with no or simple storage infrastructure (Wen et al., 2009).
Compared to the warehousing that holds an inventory of products to act as a shortage
buffer, cross-docking groups similar shipping requirements and fulfilled by immediately
recombination to a delivery tour in centralized freight terminal, which as known as cross-
dock (Bozer and Carlo, 2008). The cross-docking addresses a platform-driven approach by
operating in a similarity exploration and consolidating freight with the same downstream
manufacturers utilizing fewer handling efforts to serve product varieties (Ladier and
Alpan, 2016). It has been widely accepted as a solution to serve the complex logistic
network with a short delivery lead time and the reduction of the storage space (Van Belle
et al., 2012). It also requires a tightly synchronization of pickup and delivery routes to
achieve a just-in-time paradigm by having no or less storage buffer (Vogt, 2010).

Therefore, a successful cross-docking operation creates demands for holistic approach for
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modeling, quick response to uncertainty, and precise decision-making for resource

planning.

Vehicle routing planning with time window (VRPTW) modeling and solutions for
pickup and delivery truck fleet management builds up the foundation of cross-docking
operation excellence (Shakeri et al., 2012). A large variety of algorithms have been
developed to solve the cross-docking planning problem based on VRPTW formulation with
time constraints and other management concerns (Buijs et al., 2014). The heuristic
algorithm solution for vehicle routing problem with cross-docking (VRPCD) includes tabu
search (Lee etal., 2006), multi-objective population-based heuristics (Arabani et al., 2011),
large neighborhood metaheuristics (Grangier et al., 2017), to name but a few. Analytical
solutions for VRPCD can be derived from MILP formulation by Lee et al. (2006), and it
can be accelerated by adopting branch-and-price approach, which utilizes column
generation techniques to model the transportation planning problem into a pair of master

problem and subproblem and update the possible column pool (Santos et al., 2011).

Other fleet management issues rise along with the instantiation of cross-docking
have also been explored, which includes include arrival uncertainty (Konur and Golias,
2013), pickup and deliveries with cross-docking (Santos et al., 2013), split deliveries
(Moghadam et al., 2014), resource constraints (Grangier et al., 2021), and queue model-
based multi-door facilities (Goodarzi et al.,, 2021). Platform-driven crowdsourced
manufacturing searches a large amount of logistic service provider for materials and WIP
deliveries, which rise a challenge for opening conventional vehicle routes and allowing the
participation of logistic service provider crowds. Open vehicle routing problem has been

proposed to accommodate third party logistic provider (Schopka and Kopfer, 2016).
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Vincent et al. (2016) open traditional VRPCD and solve it by simulated annealing.

According to our knowledge, an analytical solution for C-VRPCD is not existed.

7.1.3 Chapter Organization

In this regard, the rest of this study proceeds as follows. Section 2 presents problem
context and mathematical formulation of C-VRPCD. Section 3 establishes a branch-and-
price algorithm for C-VRPCD. The computational results and comparison with benchmark
are presented in Section 4. A case study is proceeded in Section 5 to verify the applicability

of the proposed algorithm in crowdsourcing environment.

7.2 Problem Definition and Mathematical Model

7.2.1 Problem Context for C-VRPCD

This study focuses on the logistic service system for platform-driven crowdsourced
manufacturing, which is driven by the advantages of cross-docking following a platform-
driven strategy and a crowdsourcing fulfililment strategy to utilize external logistic
provider. The challenges of optimal scheduling in a crowdsourcing environment, which
instantiates platform-driven strategy through cross-docking is solved by the model of C-
VRPCD. Figure 1 conceptually illustrates C-VRPCD by incorporating three logistic
providers to fulfill logistic service for crowdsourced manufacturing. A crowdsourcing
logistic service process starts from a combination of different pickup routes, which has
various locations and service time window. Logistic provider hired from a logistic crowd
are viewed as homogeneous and are indexed as k, k € [1,K], y € Z*. The vehicles are

scheduled to visit every manufacturer in a crowdsourcing network synchronously to
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exchange the WIP and materials they picked and are loaded for delivery routes. The WIP
and material for manufacturers in pickup and delivery routes can be different to achieve a
fulfillment of various innovative product projects. From a perspective of service quality

control, all manufacturers should be visited exactly once per pickup and delivery routes.
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Figure 7-1 Crowdsourcing vehicle routing problem with cross-docking

The overall operational objective for this problem is seeking a minimized
transportation cost following scheduled routes and an optimal number of hired logistic
providers. It is a modification of the VRPCD which requires all vehicle starts from cross-
docking depot. The C-VRPCD integrates logistic provider crowd via crowdsourcing,
which implies that services of vehicles are started and ended by various time and locations.
From a management perspective, this optimal decision-making process can be further
decomposed as a series of VRP problems and an optimal combinatorial problem of
combining possible routes to a fleet plan. An architecture of master problem and

subproblems entails a negotiation process of a pricing and bidding process to plan logistic
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providers. As an analytical method of solving large scale MILP, B&P algorithm updates
potential solution space through a column generation technique (Barnhart et al., 1998).
B&P algorithm can solve m-VRPTW for cross-docking problem by model the route
selection problem as a master one and individual routing problem as a subproblem (Santos

etal., 2011).
7.2.2 Mathematical Formulation of C-VRPCD

C-VRPCD assumes logistic providers are heterogenous vehicles which park in a
dummy cross-dock, which can access to all possible manufacturers with no distance,
collect all vehicle without number limit, and be viewed as a logistic crowd. All of hired
vehicles arrive at cross-dock simultaneously to enable a division of routes to pickup and
delivery process. The nomenclature and MILP model for C-VRPCD is provided as

following.

This model uses a graph-based presentation of potential routes. Consider a directed
graph G = (V,A), where V collects all possible locations as vertices and A collects all
possible trips as arcs. The vertices set IV van be further decomposed as V = {0} U {|0]} U
MY u MP, where {0} represents cross-dock depot, {|0|} represents dummy cross-dock,
MY collects all upstream manufacturers who provide WIP and material, and M? collects
all downstream manufacturers who receive WIP and material. The total number of
upstream manufacturers MU is nV and total number of downstream manufacturers M? is
nP. The arcs can be further decomposed into A = AY U AP, while AY N AP = @, where
AV ={@Y,j¥):iY,jY € {|0],0,1, ...,nV}} denotes all possible arcs connecting upstream

manufacturers, cross-dock depot, and dummy cross-dock. Similarly, AP =

145



{(P,jP):iP, P €{|0],0,1, ...,nP}} denotes all possible arcs connecting downstream
manufacturers, cross-dock depot, and dummy cross-dock. Transportation cost c;;are

attached to these arcs, {Cij >0:(i,j) € c/l}. Logistic service requests are modeled as triples
S = {Siu = (iV,iP,qu): iV € {1, ...,nU}}, where each triple regulating the start and end

positions and undividable load gq,u = 0. These loads are shipped from requester upstream

manufacturer iU to receiver downstream i?. A fleet size of K homogeneous vehicles are
responsible for fulfillment all service request. In our model, every vehicle is required to
stop at cross-dock depot {0} before delivering to downstream manufacturer M? for

possible loads exchange. If the loads g;u from pickup routes R” and delivery routes R

use different vehicle k, an exchanging cost CZ‘U IS generated.

Several decision variables and binary parameters are used for problem modeling.
Decision variable ¥ assumes 1 to indicate a pickup tour r utilize vehicle k, 0 for
otherwise, and a transportation cost c,. are attached to it. Correspondingly, a decision

variable y% assumes 1 for a delivery route use vehicle k, 0 otherwise, and cost is c,..
Exchanging decision variable rfU is introduced to indicate the load iV in vehicle k is

exchanged in cross-dock depot or not, and a cost CikU is attached. Two binary parameters

aiU and b;'? describes the pickup route r and delivery route ' in the form of whether it

visit upstream manufacturer iY and downstream manufacturer i® or not, respectively.

The MILP mathematical formulation of C-VRPCD is equation (7.1.0) — (7.1.7).

Min z cr z Bk + Z Cpr Z vE + z z Ty (7.1.0)

reRP  keK r'erD kek kek iUes
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Z Bk =1vkek (7.1.1)
rerP
vk =1vkek (7.1.2)
r'erP
Z ai’ Z Bk =1 viV e MV (7.1.3)
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Zbi7zyk,=1ViDeMD (7.1.4)
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— Z Blai” + z yf,b;'? +1/y>0,vi’ €S, vk €K (7.1.6)
reRP r'erD
. .D
,Bf,)/fr,Tfu, a,l«U, b,:,l € {0,1} (717)

Equation (7.1.0) formulates the objective function of C-VRPCD, which minimizes
total cost incurred in pickup, delivery, and exchanging operations through crowdsourcing
logistic service process. Equation (7.1.1) and (7.1.2) are convexity constraints to enforce
all vehicle are used in pickup and delivery routes. Equation (7.1.3) and (7.1.4) ensure that
every request is covered without overlap by pickup and delivery routes. Equation (7.1.5)

and (7.1.6) guarantee rfu is 1 if a service load iV use different vehicle. Equation (7.1.7)

require all decision variables and binary parameters are either O or 1.

Following a branch-and-price modeling approach, the master problem modeled in
equation (7.1.0) — (7.1.7) are changed to Restricted Master Problem (RMP) by replacing
pickup R? and delivery routes RP by a restricted routes pool. B&P utilize linear

programming relaxation of RMP by relaxing the integrality constraints. A series of dual
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variables {v*:k € K}, {o*:k € K}, {vw:i¥ € MY}, {p;p:i? € MP}, {m)y:i¥ € MU},
{x%5:iV € MY} are assigned to constraints (7.1.1) — (7.1.6). The routes for RMP are

updated by seeking routes in two minimization pricing problems modeled in (7.2) and

(7.3).

arg min ¢, — Z al’vy — Z aﬁunfu + Z aiu)(g‘u — vk, vk €K (7.2)

rerP . . ,
iVemU iVemU iVemU

arg min ¢, — Z bri?uiu + Z bri?nfu - Z bﬁ?){fu — ok, Vk e K (7.3)

r'erP , , ,
iDemD iVemU iVemU

7.3  Branch-and-Price algorithm for C-VRPCD

B&P method utilizes column generation technique in an iterative way and combines
with branch-and-bond techniques to solve the linear relaxation of large-scale optimization
models that involve a large volume of variables and associated columns (Choi and Tcha,
2007). It adopts divide-and-conquer philosophy, which solve the problem that the large-
scale optimization has to consider massive volume of columns. B&P utilize the observation
that the optimal solution of a combinatorial problem only includes a small subset of
columns. Thus, an iteratively updating scheme can significantly limit the scale of master

problem, and a pricing problem can be solved to seek a fast cost reduction.
7.3.1 Algorithm Architecture of B&P for C-VRPCD

The flowchart of B&P algorithm for C-VRPCD is shown in Figure 7-2. It starts
with a subset of pickup route set RP and delivery route set R? as initial column set, which
is generated through a heuristic to ensure the feasibility of initial solution. A full B&P

algorithm has two cycle, column generation and branching operation. In each iteration of

148



column generation, it solves linear programming relaxation of RMP considering a subset
of the columns and yields dual variables, which includes v¥, *, v.u, wp, Tk, x¥. These
dual variables are used to find negative reduced cost by solving pricing problems modeled
in (7.1). If both pricing problems explored negative reduced cost columns, they can be
added to the RMP. A new set of dual value can be explored by re-solve the RMP with
linear programming relaxation. Otherwise, the current RMP solution founds its optimal

and terminates column generation cycle.

Compute an initial column
set via heuristics

¥

,|Construct linear programming
relaxation of RMP

v
Solve linear programming relaxation of
RMP and get dual variables
vk, o, vy, po, Tk, x¥
v
Solve pricing problems to find
columns with minimum reduced cost

F 3

v
Al pricing problems Yes [ Add columns to the
provide negative reduced > RMP [
cost?
¥ No
Is the solution feasible or Yes | Solve the RMP with
iteration exceeds predefined current columns
limit?
4y No v
Branching operations End

Figure 7-2 Flowchart of branch-and-price algorithm for C-VRPCD
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The second cycle is branching operations to add bounding constraints following a
branching-based tree search. It branches variables from master problem and finds feasible
integer solution of current RMP. After all variables find integer solution after column
generation process, the solution of RMP with current columns can be viewed as an optimal
solution of the master problem. A predefined limit can be added to restrain the iteration of

branching operations.

7.3.2 Pulse Algorithm for Pricing Problem

The objective of the pricing problem is to generate high-quality columns attached
to variables that have the potential to improve the solution performance based on the
current variables until no such variables can be found. This is done by exploring the
variables with minimum negative reduced costs using the dual solution of the current linear
programming relaxation of restricted master problem. Pricing problems are modelled in
equation (7.2) and (7.3), which can be formulated as an elementary shortest path problem
with resource constraints (ESPPRC). It checks the feasibilities of visiting nodes in a certain
precedence and calculates objective value based on resource extension functions along a

route.

Among the exact solutions for ESPPRC, labeling algorithms is the most widely
used solution for pricing problems in B&P problems, which iteratively calculates the label
(a tuple to represent a route) following dynamic programming approach and utilizes
dominance rule to reduce searching space (Costa et al., 2019). Recently, pulse algorithm
has been proposed for VRPTW as a pricing problem to serve column generation method

(Lozano et al., 2016). Pulse algorithm firstly finds lower bounds on the cost given an
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amount of resource consumed, and recursively explores paths connecting vertices based on
inexplicit enumeration in a graph through pulse propagation, which addresses a depth-first
search of a directed graph. Pulse algorithm incorporates three pruning strategies: 1)
feasibility pruning, which prunes infeasible paths by using structural constraints; 2) bound
pruning, which utilize primal and lower bounds to discard suboptimal solutions; 3) rollback
pruning, which compares pulses differing by the latest vertex visited to discard suboptimal

partial paths.

A general pulse algorithm is shown in Table 7-1. Lines 1-4 in Table 7-1 initialize
value for the partial path 2, the cumulative reduced cost (), cumulative path load q(P),
cumulative path time consumption t(2). Line 5 calls bounds function to find lower bound
for every node of the question, which is shown in Table 7-2. Line 6 triggers recursive pulse
which propagates from the start nodes v, (dummy cross-dock {|0]} in pickup routes and
cross-dock depot {0} in delivery routes). This function will explore all of the information
of feasible path from v to end node v, (cross-dock depot {0} in pickup routes and dummy

cross-dock {|0[} in delivery routes).

The pulse algorithm starts with three prune functions, namely Feasible, Bounds,
RollBack, which is called in line 7, 8, and 9, respectively. These prune functions can ensure
that the pulse algorithm can find an optimal elementary path in a limited space efficiently.
If the path is not pruned, the current path is added to partial paths of current node v; in line
10. Line 11 updates the vehicle loads. Line 12 to line 16 forms a for-loop to propagate the

pulse by invoking the pulse procedure to every possible node v; € A, where A; is the

set of accessible nodes set of current one ;.
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Table 7-1 Pseudocode of general pulse algorithm for ESPPRC

Algorithm 7-1: general pulse algorithm for ESPPRC

Input: G directed graph; v start node; v, end node; d bound step size; [g,f] time bound for
planning; () path reduced cost; q(P) path load; t() path time; v; current node; A; set of
accessible nodes set of current one v;.

Output: P* optimal path

1. P « {0};

2:7(P) « 0;

3:q(P) « 0;

4:t(P) « 0;

5: bound (G, d, [t t]);

6: pulse(vs, r(P), q(P), t(P), P);

7 if Feasible(v;, ¢(P), t(P)) = true

8: if Bounds (v, t(P), r(P)) = false

9: if RollBack(wv;, t(P), r(P),P) = false

10: P < PU{wvi};

11 q(P) <« q(P) + qi;

12: for v; € A do

13: r(P) « r(P) +

14: t(P) « max{aj, t(P) + tij};
15: pulse(vs, 7(P), q(P), t(P), P);
16: end for

17: end if

18: end if

19: end if

20: end pulse
21: return P*

Once the pulse algorithm reached the end node 1, the best-performed path P* will
be updated. The algorithm will be terminated until the last recursive propagate reach the

end node v,.

The feasibility pruning is proceeded through function Feasible. The paths that
violate structural constraints can be identified and discarded. The constraints covered by

this study includes time window, vehicle load capacity, and cycle constraints.
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The bound pruning limited the search space by providing the lower bounds
f(/v’i, t(?)) for every node, which is shown in Table 7-2. The bound contains minimum
reduced cost of a path P that reaches «;.The time bound of planning horizon [g, E], bound
step size b, and directed graph are essential input for this function. The time windows for
paths are gradually reduced by the give step size d. The output of this function is denoted
as lower bound matrix B = [g(vi,r)], which stores all lower bonds for every node and
time step. Lines 4 to 9 solves ESPPRC for every node in that consumption using pulse
procedure. Lines 10 — 14 stores optimal reduced cost value found for every node at given

time r(wv;, 7). If the optimal path is an empty set, the reduced cost will be set to infinity.

Table 7-2 Pseudocode of bounds function for pulse algorithm for ESPPRC

Algorithm 7-2: Bounds function for pulse algorithm for ESPPRC

Input: G directed graph; b bound step size; [t, ] time bound for planning.

Output: B = [r (v, )], lower bound matrix.

17« t;

2: while T > t do;

3: T« T—D,

4: for v; € A do

5: P<{}

6: r(P) « 0;

7 q(P) « 0;

8: t(?) « T

9: pulse(vg, r(P), q(P), t(P),P);
10: if P* = {} then;

11: r(v;,T) « oo;

12: else

13: r(v;, 1) « r(PY);
14: end if

15: end for

16: return B
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Rollback pruning aims to avoid exploration of unpromising regions by making
better decisions in the early searching stage by backtrack to a better initial choice in a

depth-first graph search. Once a path P; reaches node v;, a reevaluation of potential

bypath is possible or not, and correspondingly, the reduced cost of these bypaths will be
benefited from or not are proceeded. If the paths are subset of the other one and all of the
values are higher than the other one, it can be evaluated as a dominated path candidate
(Feillet et al., 2004). Compared to conventional labelling algorithm, this pulse algorithm

excels in getting rid-off the storage of saving labels.
7.3.3 Branching Heuristics

B&P synergizes branch-and-bound and column generation by iteratively searching

of branching tree, as shown in Figure 7-2. The variable chosen to be branched in this study
IS rlf‘u, which links the balance of pickup and delivery routes by Equation (7.1.5) and
(7.1.6). The branching of rl?‘u can formulate a pair of k and iV can be used for uploading a
father node of the branching tree. A branching uncertainty index rcfu is introduced for

determining the branching priority, which can be defined in Equation (7.4).

Kk = Z min{al’ Bk, 1 — al’ ¥} + z min {bﬁ?yf,, 1-— bﬁ?yf,},vk EK (7.4)

i
r€RP r'erD

It measures the uncertainty that a vehicle k serve a request iY or not. If a vehicle k
is assigned or unassigned to a request certainly, K:‘U will approach to zero. Otherwise, rcfu

will increase to show a high uncertainty of assigned or unassigned to a request. Thus,
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branching the maximum Kfu in all K can be perceived as a high searching efficiency to

deviate uncertainty.

If the branch variable rlf‘u are branched to zero, a service load iV will not load to or

unload from the vehicle k at cross-dock. rlf"‘U = 0 implies two situations, which are
Y rerP a,‘;Uﬁ,’f =0and Y, /cpDp bﬁ?yf, = 0, which indicates vehicle k never touch service
load iV, and ¥,czral’ B¥ = 1 and X,reqp blsy% = 1. Otherwise, iy = 1 implies that

Y rerP al’ Bk and Y/ erD b;'?yf, have different value, which is shown in Table 7-3.

Table 7-3 Four nodes of branching of a parent node

Vehicle k serves service load iV or not in
pickup routes

.U U k
ZrERP ar pr = ZTERP a pr=1
" 5) k k
Veh_lcle k serl\]/es Y gD b;,yrk, =0 Ty =0 Tu =1
service load i or
. . :D k k
not in delivery Yrrerp bl yf, =1 Ty =1 Ty =0
routes

This branching rule makes C-VRPCD a quadtree, and a best-first strategy with

maximum rcfu can search the branch tree in a depth-first manner.

7.4  Computational Results of C-VRPCD

This experiment is from a case of tank trailer crowdsourced manufacturing. Table
7-4 shows the details of tasks within the planning horizon. The tasks are modified from a
real-world logistic routes planning problem. Six types of data are given: task ID, pickup
time, delivery time, the manufacturer of arrival, and the manufacturer of departure. The

travel time among each manufacturer and cross-dock depot is given in Table 7-5. These
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data are inputs of the networked material flow algorithm. The planning result is shown in

Table 7-6, including the task 1D, and logistic service provider’s ID.

Table 7-4 Crowdsourcing logistic service tasks

Task ID Pickup Time Delivery Time Arrival  Departure
1169624838194331684 2019-01-16 05:25:00 2019-01-16 09:45:00 ‘5’ ‘3’
1169624838190137854 2019-01-16 06:30:00  2019-01-16 18:50:00 ‘N1’ ‘93
1169624838190137684 2019-01-16 05:40:00 2019-01-16 18:04:00 ‘4 ‘95’
1169624838164971555 2019-01-16 07:45:00 2019-01-16 16:05:00 ‘3’ ‘4
1169624838194331933 2019-01-16 12:45:00 2019-01-16 18:05:00 ‘95° ‘95’
1169624838164971640 2019-01-16 06:50:00 2019-01-16 19:10:00 ‘3’ ‘93
1169624838164971620 2019-01-16 11:00:00 2019-01-16 14:20:00 ‘N1’ ‘N1’
1169624838164971621 2019-01-16 07:05:00 2019-01-16 15:25:00 ‘93’ ‘3
1169624838190137954 2019-01-16 12:05:00 2019-01-16 17:25:00 ‘95° ‘N1’
1169624838190137681 2019-01-16 05:10:00 2019-01-16 15:30:00 ‘4 ‘5
1169624838190137969 2019-01-16 06:15:00 2019-01-16 19:39:00 ‘5’ ‘3
1169624838164971543 2019-01-16 09:25:00 2019-01-16 15:45:00 ‘3’ ‘93
1169624838164971545 2019-01-16 12:25:00 2019-01-16 16:41:00 ‘5’ ‘5
1169624838185943261 2019-01-16 08:30:00 2019-01-16 16:46:00 ‘N1’ ‘4
1169624838164971572 2019-01-16 12:35:00 2019-01-16 13:55:00 ‘4 ‘93’
1169624838164971573 2019-01-16 08:40:00 2019-01-16 16:00:00 ‘95° ‘5
1169624838164971523 2019-01-16 09:45:00 2019-01-16 17:09:00 ‘4 ‘N1’
1169624838164971524 2019-01-16 05:50:00 2019-01-16 19:14:00 ‘N1’ ‘3
1169624838164971614 2019-01-16 09:50:00 2019-01-16 13:06:00 ‘5’ ‘95°
1169624838164971533 2019-01-16 05:10:00 2019-01-16 17:34:00 ‘4 ‘93
1169624838164971575 2019-01-16 06:10:00 2019-01-16 18:30:00 ‘93’ ‘4
1169624838185943255 2019-01-16 05:10:00 2019-01-16 13:26:00 ‘93’ ‘5’
1169624838164971534 2019-01-16 10:15:00 2019-01-16 17:39:00 ‘95° ‘4
1169624838164971584 2019-01-16 12:15:00 2019-01-16 18:31:00 ‘95° ‘N1’
1169624838164971585 2019-01-16 08:20:00 2019-01-16 13:36:00 ‘5’ ‘93’
1169624838190137859 2019-01-16 05:20:00 2019-01-16 17:36:00 ‘3’ ‘95’
1169624838185943247 2019-01-16 08:30:00  2019-01-16 15:54:00 ‘N1’ ‘95’
1169624838164971638 2019-01-16 07:35:00 2019-01-16 13:51:00 ‘4 ‘N1’
1169624838185943248 2019-01-16 12:35:00 2019-01-16 16:59:00 ‘3’ ‘95’
1169624838164971566 2019-01-16 11:45:00 2019-01-16 16:05:00 ‘4 ‘N1’
1169624838185943263 2019-01-16 06:45:00 2019-01-16 16:01:00 ‘4 ‘4
1169624838194332048 2019-01-16 11:45:00 2019-01-16 14:09:00 ‘5’ ‘3
1169624838164971567 2019-01-16 10:50:00 2019-01-16 19:10:00 ‘5’ ‘3
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Table 7-5 Travel time among manufacturers and cross-dock

‘3 ‘4 ‘5 ‘93’ ‘95’ ‘NI° oy

‘3’ —_ 15 4 8 46 39 42
‘4 15 T 23 18 38 30 35
‘52 4 23 T— 37 18 19 36
93’ 8 18 37 T 20 16 25
‘95 46 38 18 20 T 25 18
‘N1’ 39 30 19 16 25 T—_ 14
oy’ 42 35 36 25 18 14

Table 7-6 Planning result of B&P for C-VRPCD

Task ID Provider ID Task ID Provider ID
1169624838194331684 1000423 1169624838164971573 1000422
1169624838190137854 1000458 1169624838164971523 1000458
1169624838190137684 1000425 1169624838164971524 1000428
1169624838164971555 1000504 1169624838164971614 1000506
1169624838194331933 1000422 1169624838164971533 1000502
1169624838164971640 1000506 1169624838164971575 1000422
1169624838164971620 1000505 1169624838185943255 1000428
1169624838164971621 1000455 1169624838164971534 1000458
1169624838190137954 1000428 1169624838164971584 1000506
1169624838190137681 1000456 1169624838164971585 1000422
1169624838190137969 1000457 1169624838190137859 1000458
1169624838164971543 1000450 1169624838185943247 1000502
1169624838164971545 1000458 1169624838164971638 1000428
1169624838185943261 1000451 1169624838185943248 1000506
1169624838164971572 1000452 1169624838164971566 1000423
1169624838185943263 1000423 1169624838164971567 1000422

7.5  Chapter Summary

Logistic services for manufacturer entail a networked material flow planning,
which plans a set of optimal vehicle service routes to link manufacturers as a material
network. This chapter propose a cross-docking service method to use a platform-based
strategy by splitting service routes into pickup and delivery ones and exploring maximum
similarities among them. The vehicle can be used maximally by synchronizing pickup and

delivery activities to achieve no or few inventory in cross-dock depot. This service method
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shows the potential of handling a large number of manufacturers and volatile service

requirements in platform-driven crowdsourced manufacturing.

This chapter formulates an optimal decision-making of logistics services for
platform-driven crowdsourced manufacturing through cross-docking as C-VRPCD. A
B&P algorithm for C-VRPCD is proposed in this chapter. It utilizes a divide-and-conquer
philosophy to decompose C-VRPCD into master problem and subproblem, which are
connected by dual value and pricing problems to update column pool for size-controlled
RMP. Pulse algorithm has been applied as the fundamentals of solving subproblem, which
utilizes a recursively depth-first search of the directed graph. The proposed branching rules

search integral solutions in a quadtree manner.

This chapter provides logistic service solutions for manufacturers, which optimally
plans logistic routes for crowdsourcing network. It enables manufacturers peeling off their
logistic department and focusing on manufacturing activities. Also, a B&P algorithm

solution is also proposed to solve the emerging crossdocking solution.
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CHAPTER 8. TASK DISPATCHING AND SCHEDULING
THROUGH REAL-TIME CROWDSOURCING TASK
ACCEPTANCE AND ACCOMMODATION: AN INTERACTIVE

BILEVEL OPTIMIZATION MODEL

With the fourth-generation industrial revolution, manufacturing industries are
focusing on dynamic, fully autonomous, and more customer-oriented production systems.
This customer-oriented change converts classically static customer demand into that which
is dynamic and real-time, as no prior information regarding customer demand is known in
advance. This paper focuses on real-time order acceptance and scheduling (r-OAS) for a
data-enabled permutation flow shop. To compensate for the shortage in prevailing
approaches that make bottleneck-based decisions or assume that the intermediate buffers
among workstations are infinite, an r-OAS scheme is generated based on a data-driven
representation, which can concisely predict the dynamic production status of flow shops
and the corresponding makespan of a job with finite intermediate buffer constraints. Using
this representation, real-time job release planning (r-JRP) can be coupled with r-OAS to
minimize various operational costs of flow shops (i.e., the costs of the work-in-process,
earliness, and tardiness). In terms of the inherent interactive mechanism between r-OAS
and r-JRP, in which r-OAS generates a decision space for r-JRP and r-JRP then feeds the
lowest operational costs back for use in r-OAS decision-making, a bilevel interactive
optimization (BIO) is formulated to simultaneously address the two subproblems based on
the Stackelberg game. The r-OAS acts as the leader, while r-JRP acts as the follower. The

BIO is a type of nonlinear integer programming, and a bilevel tabu-enumeration heuristic
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algorithm is developed to solve it. The efficiency of the BIO is verified through a practical

case study.

8.1  Crowdsourcing Task Acceptance and Scheduling

Order acceptance and scheduling (OAS) is an important decision in make-to-order
production environments, as it may not be beneficial for firms to accept and produce all
potential orders due to limited production capacity and tight delivery due dates. Over the
past few decades, OAS has attracted considerable attention from researchers and
practitioners (Slotnick, 2011), in which order acceptance is considered when determining
which orders to accept, while order scheduling is addressed when identifying a production
sequence for the accepted orders (Lin and Ying, 2015). This stream of research focuses on
OAS problems with different objectives in various production environments: for example,
deterministic and stochastic single- or multiple-machine problems with the objectives of
revenue maximization, lead-time and due-date setting, and cost minimization (Slotnick,
2011). In many manufacturing industries, the OAS for permutation flow shops presents a
challenging problem for sequence-determined setup times and dynamic job transitions
among workstations, which in turn problematize attempts to calculate a given job’s
makespan. Xiao et al. (2012) and Lin and Ying (2015) study the static OAS problem for
permutation flow shops by considering the known arrival time, due date, and composition

of each order.

The recent advancement of ICT brings the real-time data stream to the shop-floor
manufacturing scheduling, which enables manufacturers to focus on constructing dynamic,

fully autonomous, and more customer-oriented production systems. Therefore, OAS is
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becoming dynamic and customer oriented, whereby customers can place orders with
desired order compositions and due dates in the system in real time. This means that
decision makers must accept or reject orders in real time after considering the current
production capacity of flow shops and customer-specified due dates. The newly accepted
orders must be scheduled alongside existing orders, which are either already accepted and
in-process by machine(s) or waiting in a processing queue. We define this problem as r-
OAS, a term that is used to reference an optimization model that can utilize real-time data
to update the pre-determined OAS decision without disrupting production system
operations. Rahman et al. (2015) and Rahman et al. (2019) studied the r-OAS problem for
permutation flow shops by developing heuristic and meta-heuristic algorithms; however,
this research stream oversimplified this problem and may cause challenges when

implemented in the real world:

1) Real-time production status identification is the foundation for r-OAS decision-
making. In r-OAS problems, the OAS decision is dynamically updated based on the current
production status. This status is difficult to identify, as it is affected by various resource-
and job-related disruptions. Previous studies assume that production systems are
deterministic, such that their real-time status can be derived simply by analyzing
production planning and scheduling schemes (Wang et al., 2013, Lin and Ying, 2015).

2) Reliable prediction for job makespan is the core of generating an optimum r-OAS
scheme (De Jong et al., 2019). Currently, most permutation flow shop scheduling assumes
that the capacity of the intermediate buffers is sufficient, such that the starvation/blockage
of workstations will not occur. This assumption allows dynamic job transitions among

workstations to be modeled by linear functions, and thus the makespan of a job can be
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easily estimated. While these linear functions are beneficial for developing linear
programming models and solving methods related to r-OAS problems, they are unrealistic,
as the intermediate buffers must be finite for real-time WIP inventory control.

3) The objective of existing studies examining r-OAS focuses on maximizing the
number of accepted orders while minimizing the order completion times (Rahman et al.,
2015). This objective simplifies the coordination among multiple operation costs in flow
shops (i.e., WIP inventory cost, final product inventory cost caused by earliness, and
tardiness penalty cost), as many production systems today are required to operate within

just-in-time paradigms.

Until now, these simplifications have been considered reasonable, as the precise
status of production systems is difficult to perceive in real time. The job transition
behaviors among workstations, which are constrained by finite intermediate buffers and
affected by various disruptions, are difficult to derive; thus, the makespan of a job cannot
be concisely predicted. Due to this shortage, it is impossible to construct an approach for
r-JRP, which is vital in coordinating the various operation costs after receiving an r-OAS
decision (Chen etal., 2020). Owing to new information technologies (e.g., RFID and sensor
networks) in smart manufacturing, many transparent and real-time data that reveal the
production system status are being collected and analyzed. Using these data, the effects of
disruptions can be evaluated and the multi-stage time-varying transition behaviors of flow
shops can then be derived (Chen et al., 2020). This derivation enables the efficient
identification of the real-time status of production systems. The makespan of a job and the
multiple operation costs of a flow shop can be predicted based on this identification, and

the r-JRP decision can then be made along with r-OAS.
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This study’s primary purpose focuses on developing a joint optimization for r-OAS
and r-JRP (referenced as r-OASR herein) problems in permutation flow shops with data-
driven production status and job makespan prediction. Recently, with the increased interest
in the ability to make real-time decisions, several questions and concerns regarding the
effects of using real-time data on production planning and scheduling have been discussed
and reported (Hozak and Hill, 2009, Ghaleb et al., 2020). These discussions show that
continuous replanning and rescheduling may increase the required setups, transportations,
and nervousness of production systems. In our r-OASR problem, the continuous updating
of OAS can simultaneously increase the net revenue and reputation of manufacturers,
whereas it may also sometimes cause system nervousness (Rahman et al., 2015).
Fortunately, today’s smart manufacturing devotes to formulating a universal adaptive
capacity and thus system nervousness caused by r-OASR can be reduced in a certain extent
(Shiue et al., 2018). Moreover, the sequence-dependent setup time for different orders is
considered in our r-OASR problem such that the increased nervousness can be efficiently
dealt with. When designing the searching algorithm, a special solution initiation approach
is constructed, such that the OAS scheme inherited from the previous stage can be
maintained to the extent possible. Based on these issues, the contributions of this research
can be concluded as the following. (1) A data-driven representation approach is proposed
to reveal the time-varying transition behaviors of flow shops with finite intermediate buffer
constraints and sequence-dependent setup times. In turn, the real-time production status of
flow shops can be derived and the makespan of a job can be precisely predicted. (2) Anr-
JRP is constructed based on the data-driven representation to minimize the various

operation costs in flow shops. (3) A BIO is formulated after addressing the inherent
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interaction and hierarchical characteristics between r-OAS and r-JRP. (4) A bilevel
heuristic algorithm comprising a tabu search and an implicit enumeration with a special
solution initiation method is designed to manage this joint optimization. The results of the
case study demonstrate that the proposed BIO performs better than bottleneck-based
approaches and step-by-step optimization methodologies, in terms of maximizing the net

revenue of flow shops.

8.2 Real-time Order Acceptance and Scheduling for Data-enabled Permutation

Flow Shops

The research stream from static OAS problem towards a synthesis of real-time
information and data-driven method is reviewed in this section. Most methods reviewed
focus solely on the r-OAS problem with a tardiness-related objective, while multiple
operation costs, which can be coordinated by r-JRP, are less involved. Some researchers
have undertaken an examination of r-JRP problems at the scheduling stage to
simultaneously minimize tardiness, earliness, and flowtime, but no research has extended
the r-JRP into the area of r-OAS or that of scheduling methods with finite intermediate
buffer constraints. Driven by the application of information and communication
technologies, scholars are now exploring data-driven OAS problems after analyzing the
real-time data from shop floors. They use these data to successfully estimate uncertain
operational parameters in planning and scheduling models but ignore the potential value of
these data in predicting the production status and job makespan of flow shops, which are
both essential for r-OASR decision-making. Additionally, the data-rich environment

enables smart production planning and control. This smart capacity can reduce the
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nervousness caused by real-time rescheduling and thus promote the development of r-

OASR.

8.2.1 Static OAS problems

Static OAS problems in single- or multiple-machine production environments are
generally formulated at the beginning of production, when a shop floor receives a pool of
orders and must determine which ones to accept based on its available capacity and order
due dates (Slotnick, 2011). The OAS that uses a single machine is a generalization of an
OAS problem with a specialized scarce resource, which constitutes the bottleneck of a
production system (Nobibon and Leus, 2011). Many modeling approaches focusing on the
characteristics of this OAS have been developed. For example, Nobibon and Leus (2011)
propose two linear formulations for static OAS problems and design two exact branch-and-
bound procedures to resolve instances including a maximum of 50 jobs. Silva et al. (2018)
examine a new arc-time-indexed mathematical formulation after considering the sequence-
determined setup time and develop two exact algorithms based on Lagrangian relaxation
and column generation. When the size of the problem is particularly large, various efficient
approximation heuristics, whose type can be classified as either construction or
improvement, are produced to find a near-optimal solution within a reasonable
computation time (Chaurasia and Singh, 2017, Lin and Ying, 2015). Construction
heuristics are frequently used to generate a fairly good solution for improvement heuristics
or other metaheuristics, while improvement heuristics begin with an initial solution and are
then repeated to improve the solution within a reasonable period. With the exception of
these approximation heuristics, several metaheuristics, including simulated annealing,

genetic algorithm, artificial bee colony algorithm, and tuba search, have been proposed to
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resolve this OAS problem with different versions (Slotnick, 2011); the last two algorithms

demonstrate the best performance in solving this problem.

The OAS problems involving parallel machines or in flow shops are typical
extensions of OAS with a single machine. Wang et al. (2015) examine an OAS problem
with two identical parallel machines by designing exact and heuristic techniques. The
proposed exact technique can solve small OAS problems with a maximum of 20 jobs. Wu
et al. (2018) extend the model of Wang et al. (2015) to include multiple identical parallel
machines and consider the sequence-dependent setup times among the accepted orders. A
flow-like metaheuristic is developed for this OAS, the efficiency of which has been
compared to classical particle swarm optimization. Flow shop scheduling has been
extensively studied due to its diverse industrial and economic applications (Komaki et al.,
2019). In examining whether the job sequence is the same for all machines, scheduling can
be decomposed into permutation and non-permutation problems (Rossit et al., 2018). Xiao
et al. (2012) and (Xiao et al., 2015) extend permutation and non-permutation flow shop
scheduling into OAS, respectively, after addressing order tardiness. To formulate an exact
algorithm for the problem, Wang et al. (2013) develop a mixed-integer linear programming
model and construct a branch-and-bound algorithm to solve problem instances with a
maximum of 20 jobs. If the problem size is large, a parallel neighborhood search (Lei and
Guo, 2015) and multi-initiator-simulated annealing (Lin and Ying, 2015) are proposed.
Although many new mathematical formulations and solution techniques have recently been
developed for OAS using different production environments, this area of research is still
in its nascent stage and requires further development because of its widespread applications

in today’s make-to-order practice.
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8.2.2 Real-time OAS problems

Today, with the development of information and communication technologies, the
orders in flow shops are becoming increasingly dynamic and customer-oriented, whereby
customers can place orders with their desired compositions and due dates in real-time
(Rahman et al., 2019). Several studies consider future order arrivals in order acceptance
decision-making and define the related OAS as a dynamic problem (Xu et al., 2015). For
example, Ebben et al. (2005) propose several workload-based order acceptance strategies
with stochastic order arrivals; Arredondo and Martinez (2010) develop a novel approach
for the online adaptation of a dynamic order acceptance policy, in which the average-
reward reinforcement learning is used. A few studies investigate dynamic OAS problems
with either a sequence-dependent setup time or cost. van Foreest et al. (2010) assume that
the arriving orders follow an independent stationary Poisson process and use simulation to
compare the performance of several heuristic scheduling and acceptance policies. Xu et al.
(2015) formulate a stochastic dynamic programming model by considering the stochastic

arrival orders and sequence-dependent setup time.

In terms of the real-time characteristic of r-OAS problems, Rahman et al. (2015)
and Rahman et al. (2019) establish programming models for this problem in permutation
flow shops and propose rule-based heuristic and particle swarm optimization algorithms,
respectively. Eriksen and Nielsen (2016) propose another approach for the r-OAS problem
by aggregating incoming customer order requests into a stable inflow. These proposed
approaches focus on minimizing the job makespan and the weight tardiness penalty cost,
while the inventory costs accrued during accepted order fulfillment are ignored (Yenisey

and Yagmahan, 2014, Li et al., 2016). Moreover, these approaches to solving r-OAS
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problems in flow shops all assume that the intermediate buffers are infinite, and no
blockage/starvation exists (Rossit et al., 2018). Because the throughput of a flow shop is
determined by job release plans, WIP inventory, job processing time, and finite
intermediate buffer constraints (Li et al., 2016), this assumption causes inaccuracies in the
real-time estimation for job makespan in flow shops and may also prompt additional

tardiness penalty costs when producing these accepted orders.

Obviously, changing too often the OAS affects other scheduled tasks like
assignment of machine tools and delivery of raw material. These variations may increase
nervousness of a shop floor, which should be taken into consideration from a practical point
of view. As presented in previous literature, nervousness causes an increase of global cost,
a reduction in productivity, and an increase in the bullwhip effect (Hayes and Clark, 1985,
Herrera et al., 2016). In this situation, a company determines a trade-off considering
production costs, quality of service, and schedule instability (Blackburn et al., 1986). For
example, Framinan et al. (2019) address how rescheduling should be performed after
analyzing the instantaneous and accurate information on shop-floor status. Azouz et al.
(2018) discuss nervousness in the context of adaptive pull control systems. A new approach
which relies both on an adaptive freezing interval and a multi-objective simulation
optimization technique is proposed such that nervousness can be reduced. Fahmy et al.
(2007) emphasize that the job insertion obtains revised schedules featuring significantly
lower system nervousness and slightly higher mean flow time than total rescheduling. The
increasing use of sensors, FRID, and networked machines exploit the interconnectivity
among machines to fulfill the goal of producing intelligent, resilient, and self-adaptable.

This intelligence makes real-time scheduling timelier and more crucial as nervousness can
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be efficiently reduced by the quick and smart response to abnormal events (Shiue et al.,

2018, Zhang et al., 2018).

8.2.3 Data-driven OAS problems

Smart manufacturing anticipates a situation in which the shop floor status is
instantly available after analyzing the real-time data (Chen, 2016). Many scholars focus on
the potential use of such real-time data in developing data-driven approaches for order
scheduling problems. In terms of the large amount of data during production, a few papers
study data classification problem in scheduling. Framinan et al. (2019) present a
classification distinguishing between a class of model-based data and another of instance-
based data; Pinedo (2012) classifies scheduling data as static and dynamic. Based on these
data classifications, (Rossit et al., 2018) propose a data-driven architecture for order
scheduling to enable decisions to be made ahead of time. Zhong et al. (2015) use shop floor
data to estimate the arrival of customer orders and standard operation times. Based on this
estimation, real-time advanced production planning and scheduling can ultimately be
achieved. The data-driven job shop scheduling and its new perspectives under Industry 4.0

are reviewed by Zhang et al. (2018).

In OAS decision-making, a reliable estimation of job makespan is critical. De Jong
et al. (2017) develop a multilayer perceptron type neural network machine learning
algorithm for quick and accurate job makespan prediction. They apply makespan
prediction to a wide variety of shop scheduling problems. Because the current estimation
approaches are limited to merely generalizing shop layout configurations and non-visual

data input, a convolutional neural network algorithm for makespan regression is proposed
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by De Jong et al. (2019). To address the problem with order acceptance, Duan et al. (2015)
develop a completion status prediction approach for new orders and then construct an
automated learning-based order admission framework. In addition, considering the
disruptions that may significantly affect the performance of production systems, Zou et al.
(2017) develop an event-driven method for dynamic production system diagnosis and
prognosis. Chen et al. (2020) formulate an event-driven estimation method for the job
makespan under make-to-order production environments after addressing the system input
and finite intermediate buffer constraints. This work is vital to developing an optimization

model for our r-OASR problem.

8.3 r-OASR Problem Formulation and Preliminaries

This section defines the r-OASR problem and demonstrates the four hierarchical
aspects driving decision-making for r-OASR: order acceptance, order scheduling,
production status prediction, and job release. In terms of this interactive framework, three

key technical challenges in modeling and solving the r-OASR problem are addressed.

8.3.1 Replanning policy for r-OASR

In traditional manufacturing supply chains, real-time orders are directly created by
downstream customers (e.g., downstream manufacturers). In this situation, the quantity of
real-time orders at any one moment in time is low. To decrease the nervousness of the
production system, we collect real-time orders placed during the past time horizon t, and
then update the OAS scheme accordingly. This rolling horizon-driven r-OASR is presented
in Figure 8-1 (a). The length of each period is equal to t,. Figure 8-1 (a) contains the new

arrival orders collected during period Q — 1, the unprocessed orders at the end of period
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Q — 1, and the real-time status of production systems that are inherited by period Q for r-
OASR decision-making. However, in platform-driven manufacturing networks, the open
platform collects real-time orders from many customers and recommends a list of orders
for a production system. This recommendation is regarded as an event that drives the
replanning of r-OASR. Because the quantity of recommended orders is sufficiently large
in this case, the production system must immediately update its OAS scheme after
receiving these new orders. Figure 8-1 (b) illustrates a platform that recommends a list of
real-time orders to a production system at time t,_q, to, and ty.q, respectively. These

events all immediately trigger r-OASR decision-making.

. | . | .
r—Penod Q-1 I Period Q I Period Q + 1—-}
I , | New ordersl I ' I
weel T Unprotessed Unprodessed - e
_L_.|  rOAsR orders OASR orders FOASR L1 |
| decision-making | decision-making | decision-making !
T > system Realtime system Real-time system T
| T T productign status production status T T |
| v v | I v v I
! ! New OAS decision  Processed orders | ITime
(a) Rolling-horizon-driven r-OASR
New order arrival event New order arrival event New order arrival event
0-1 0 0+1
la--"" -7 w--" [
M to —to-1 ! to+1 — to ! toyz —loy1 — "
I H | New ordersl I . |
- = Unprocessed Unprocessed T les
_L_.|  rOAsR _orders OASR orders FOASR L1
| decision-making | | decision-making ! | decision-making !
T system "Real-time system Real-ime ' system e
| T T prqduction status production stafus r T |
| H R } L H |
! | NewOASdecision  Processed orders | ITime
to-1 to to+1 to+2

(b) Event-driven r-OASR

Figure 8-1 Replanning policies of r-OASR problem
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Figure 8-3 r-OASR instantiation with four new orders and one existing order
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8.3.2 r-OASR Problem Definition

In terms of the rolling horizon-driven and event-driven mechanisms, the r-OASR
problem can be described as follows: A flow line with M machines (M > 2) and finite
intermediate buffers receives a set of new generated orders Q, (|| € N*) from customers
during the past time horizon t, (or from an open platform at time t,). The manager must
decide which orders to accept or reject based on the real-time production status of this flow
line. If some or all the new orders are accepted, they must be scheduled with the existing
orders Q, (|Q,| € N*) that are waiting for processing. Each incoming order j (j € Q) is
identified with a job quantity q;, earliest release date a;, latest release date b;, processing
time p;; for each job (i is the machine index i = 1,2,...,M), due date d;, revenue e;,
tardiness penalty coefficient wy ;, unit inventory cost w, ; for a final product, and unit cost
wy; for WIP inventory. A sequence-dependent setup time t;(k, k") occurs if job k
immediately precedes job k' in a production sequence. t;(k, k') = 0 if no setup time exists
in the machine i. Each machine can only process one job at a time, and any job can only
be processed on a downstream machine after completing its processing on the current
machine. If we denote the order tardiness penalty cost by 7, ;, the final product inventory
cost by m, ;, and the WIP inventory cost by 5 ;, the net revenue of an order can then be
represented by m; := e; —my j — m, ; — w3 ;. If order j € Q, is accepted, w; > 0. The r-
OAS targets the generation of the best OAS plan to maximize the total net revenue. After
receiving a production sequence from the r-OAS, the r-JRP begins to calculate the lowest

cost my j, T, ;, and w3 ; by addressing the real-time production status and constraints
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pertaining to job release. The lowest cost is sent back to the r-OAS for consideration in the

decision-making process.

The serial line is a typical flow line production in industries such as automotive,
electronics, appliance, and aerospace systems. The merge line comprises several parallel
serial lines, in which each sub-serial line is responsible for processing/assembling a part or
a component. This paper focuses on serial and merge lines to examine r-OASR problems.
The r-OASR decision-making for other flow lines can be extended from our research

results.

8.3.3 Hierarchical decision-making of r-OASR

Generally, real-time order acceptance must be accompanied by a scheduling
problem, in which the order acceptance determines which order to accept and the
scheduling generates a corresponding production sequence with the newly accepted and
current existing orders to minimize the operation cost of flow lines. As stated in the
introduction, the lowest operation cost of a determined scheduling plan is coordinated by
r-JRP. Owing to its multi-stage dynamic transitions, finite intermediate buffers, and
bottleneck shifting caused by multiple-product switching, the operation parameters, that is,
the job completion time, WIP, and final product inventory of a job release plan, are difficult
to measure (Li et al., 2016). To address this problem, a data-driven representation approach
should be developed to reveal the status of flow lines and then predict the operational
parameters of a job release plan. A programming model can then be formulated for r-JRP
based on this prediction. Figure 8-2 represents the interactive framework of real-time order

acceptance, scheduling, production status prediction, and job release. The production status
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prediction necessitates a sensor network to collect the real-time data of flow shops (e.g.,
job processing time and machine breakdown events) and a representative approach after
analyzing these real-time data. After making the hierarchical decisions entailed in r-OASR,
the accepted orders, scheduling plan, and job release plan are stored in a database and then
released into the physical flow line and representation module in sequence. The flow line
produces jobs according to the plan, and the representation module synchronously updates

the production status based on real-time data from the shop floors.

The r-OASR instantiation with four new orders and one existing order is established
in Figure 8-3. Here, one may observe that if the order acceptance stage (Stage 1) accepts
orders 2 and 4, the order scheduling stage (Stage 2) will generate a production sequence
that simultaneously considers existing order 1 and newly accepted orders 2 and 4. Based
on this sequence, the function between the job makespan (y(ky + k), 1 < k < 15) and the
release time of its parts (u; (ko + k), ..., up,1 (ko + k)), P + 1 is the quantity of parts in
a job; the explanation in Section 8.4 can be derived from the data-driven representation
(Stage 3). Parameter k, is the job number that is processed by machines when the OAS
scheme must be updated. In this regard, the lowest operation cost of orders 1, 2, and 4 can
be generated by r-JRP optimization and are sent back to Stage 1 to regenerate the order
acceptance decisions. This cycle continues until the best solution with a maximum net

revenue is found.
8.3.4 Critical Challenges

Focusing on the four decision-making stages of r-OASR, r-OAS decision can be

indicated by several 0—1 variables and are easily formulated as a 0—1 programming model.
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The technical challenges are then focused on determining how to develop a data-driven
representation for physical flow line production, when to release the jobs such that
operation costs can be minimized, and how to construct a programming model to

demonstrate the multi-stage decisions of r-OASR.

1) Data-driven representation for flow line production: Flow line production is a
typical discrete event dynamic system, in which planned deterministic events (e.g.,
changeover events and job movement between adjacent machines) and uncertain
resource/job-related events are contained (Ouelhadj and Petrovic, 2009, Chen et al., 2020).
The modeling and analysis of the time-varying transitions of these discrete events using
state-space models are of primary importance to revealing the real-time production status
of flow lines and predicting the corresponding job makespan with finite intermediate buffer
constraints (lvanov et al., 2012). The prevailing model-based representation (e.g.,
continuous flow models and Markov models) treats disruptions as noise or possible states
and assume that the modes of operation can never be switched (i.e., only one type of
product is processed) (Zou et al., 2017, Farahani et al., 2017, Wang and Ju, 2020). These
methods inefficiently respond to real-time events, especially in reaction to the frequent
switching of products in make-to-order environments. DES is another method that can
efficiently represent mixed-model production with real-time data (Jung et al., 2020).
However, the development of a simulation model generally depends on the operational
logic of a complex system and a professional simulation platform. It should be difficult and
time-consuming to encapsulate a simulation model into r-OAS for decision-making. Thus,
it is necessary to explicitly propose a representation formalism that is capable of supporting

the event-driven propagation of time-varying state-space models among various dynamic
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behaviors. This formalism should be a mathematical model and can be easily encapsulated
into upper-level programming models.

2) The best job release plan for coordinating multiple operation costs: The
operational costs of an r-OAS scheme can be coordinated by a job release plan developed
from the data-driven representation (De Schutter and Van Den Boom, 2001, Chen et al.,
2020). Conventional wisdom concentrates on maximizing the number of accepted orders
after addressing order due date constraints, while ignoring inherent multiple operation costs
during order fulfillment (Slotnick, 2011). Thanks to the real-time data collected from shop
floors, the multiple operation costs can be concisely predicted and thus an r-JRP can be
developed. Unlike previous research, which assumes that intermediate buffers are infinite,
and thus the job competition time between two adjacent machines can be represented as a
linear function (Silva et al., 2018), the r-JRP problem must manage the finite buffer
constraints in flow lines, which converts the dynamic job transitions among machines into
nonlinear types (Chen et al., 2020). These characteristics cause previous programming
models and heuristic/meta-heuristic algorithms to be inefficient in solving our r-OASR
problem.

3) Interactive optimization for order acceptance, scheduling, and job release: r-
OASR can be decomposed into an r-OAS problem and an r-JRP problem, where r-OAS
formulates the best OAS scheme and r-JRP results in the corresponding minimal operation
costs. The r-OAS and r-JRP are closely interdependent because r-OAS generates a solution
space for r-JRP, which generates feedback for an objective function of cost for the r-OAS.
Thus far, the r-OAS and r-JRP have been addressed separately in the literature, although

they are closely interrelated (Slotnick, 2011). In terms of solving a joint optimization, the
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prevailing approaches tend to treat these subproblems as an aggregate and assume that self-
interested decision makers can always be coordinated (Du et al., 2019b). However, in r-
OASR, r-OAS and r-JRP belong to different decision levels and hold conflicting goals
regarding maximizing/minimizing their own benefit. In this sense, such joint optimization
exemplifies a leader—follower decision-making process, whereby r-OAS occurs first and r-

JRP subsequently responds to r-OAS decisions.
8.4 Data-driven Representation with Max-Plus Algebra Framework

The representation approach is vital in predicting the job makespan after receiving
r-OAS decisions. This section elaborates the modeling procedures for flow lines by
addressing the finite intermediate buffer constraints and analyzing real-time data from shop
floors. Max-plus algebra can effectively represent flow shops owing to its ability to derive
time-varying state-space models of discrete event dynamic systems. This approach is based
on a dioid R,,,, represented by the structure (RU {—x},®,Q). & and ® signify
maximization and addition, respectively: a @ b = max(a,b) anda @ b=ab =a+b. ¢
denotes the zero element (¢ = —<°), and e denotes the unit element (e = 0). The matrix
Emxn 1S @ m X n max-plus algebraic zero matrix[E,,xy];; = € for all i, j. The E,, is a
n X n max-plus algebraic identity matrix: [E,]; = e for all i and [E,];; = ¢ for all
i, j (i#J)). 1fABe R and C € Ry,%, then for all i, j: (AD B);; =a;; ® b;j =
max(a;j, b;j), and (A ® C);; =Dk=1 aix ® cx; . Moreover, the max-plus algebraic
matrix power of A € R™X" is defined as follows: A° = E,, and A* = A ® A*~ for k =

1,2, ...
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The transition network is a timed event graph (TEG) of a production line (Baccelli
and Schmidt, 1996). Before developing the max-plus based representation for a flow line,
the transition network should first be determined to describe the job dynamic transition
behaviors. Compared with some advanced DES that perform evaluation functions after
receiving r-OASR decisions, our representation formulates the transition network as a

state-space model and can therefore be easily incorporated into optimization models.
8.4.1 Time-Varying State-Space Model of Serial Production Lines

The serial production line is a time-varying system for multiple-product processing.
The TEG can effectively describe this mixed-model production for its ability to iconify and
model time-varying transitions. Figure 8-4 shows the time event graph of a serial line. The
{Po,....,Pxvc—1,Pi, ..., Pyr_q, P{', ..., Py} Iin Figure 8-4 provides the set of places, and
{u,x,,...,x)} is the set of transitions. Transition x; represents machine i (i = 1, ..., M),
place P; represents buffer B; (1 <i <M — 1), place P; controls the real-time WIP in
buffer B;, and place P’ (1 < i < M) controls the restart of the corresponding machine.
The u(k) is the instant at which the k-th job is fed into the system. The tokens in place P;
signify the real-time WIP, and the tokens in place P; signify the residual capacity of buffer
B;. Let N,,q, = max{N;, N,, ..., N),_1}, where N; is the capacity of buffer B; and x; (k)
(1 <i<Mand1 < k)isthe time instant at which the machine m; begins working on the
k-th job. The buffer B, is infinite. The time-varying transition rules of the serial production

line can then be represented by equation (8.1):

x; (k) =
xi(k =1 ® g;(k — 1) D x;41(k — Niy1) ® 0i41(k — Nip1) D x;_1(k) & 0y_1(k)
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2<i<M-1, (8.1.1)

x1(k) =uk) ®x;(k—1) ®oy(k—1) B x,(k—N,) Q o,(k — N,), (8.1.2)
(k) =xy(k—1) @ oy (k — 1) B xpyy-1(k) @ p—1(k), k = Npgx (8.1.3)
where o;(k) is the job processing time of machine i for the k-th job and consists of both
pure processing and setup times. a; (k) is determined by a given production sequence (see
Figure 8-4). According to this time-varying equation, if the first-input-first-output principle
is obtained, the discrete-event state-space model of this system can be derived as follows

(Chen et al., 2020):
X =4Ak-1)Q@X(k-1) ® Bk Quk), (8.2.1)
y(k) = C(k) @ X(k), Nppgy — 1 < k, (8.2.2)

where X(k—1) = [XT(k — 1), XT(k = 2), ..., XT(k = N;po,)]”T. The matrices, A(k),
B(k) and C(k) are represented by equation (8.3). A(k) is a MN,,,4, X MN,,4, matrix, E
isaM x M (max, +)-identity matrix, B(k) is a MN,,,, matrix, and C(k) is a1 X MN,,4,
matrix. Set Ay (k) =Dg/50 Af;'(k) (Ay (k) is converged because A, (k) is a strictly lower
triangular), the matrix A, (k), ..., Ay, _(k), and B, (k) in equation (8.3) can be generated
by Agr(k) = Ay(k) @ Ay (k), (0<s" < Npgy and By(k) = Aj(k) @ B(k) . The
element [A,(k)];; is the firing time o;(k — s"") of the machine i if the buffer capacity
N; = s""and there is a transition path from machine i to i’, as shown in Figure 8-4;
otherwise, [A, (k)];r; is equal to €. The element [B(k)];; is equal to O if there is a system
input to machine i and [C(k)];; is equal to the firing time o; (k) of machine i if there is a

system output to this machine; otherwise, the two elements are equal to ¢.
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Figure 8-4 Time event graph of serial production lines
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B(k) = [By (k) &, ..., €], (8.3.2)
c(k) =[ck), ¢, ..., €], (8.3.3)

8.4.2 Time-Varying State-Space Model of Merge Production Lines

A merge production line can be decomposed into P sub-serial lines and a main-
serial line. We denote the machine quantity of the z-th sub-line by M, (t = 1, ..., P) and
the machine quantity of the main-line by Mp,,.The machines are numbered in each sub-
line by Zi?leTr + hy, hy = 1,...,M,, and the machine in the main-line by ¥2_, M, +
hohy =1, ...,Mpyy (Z2_ M, =0). We number the buffers in each sub-line by

§7=11MT1 + hy, hy = 1, ..., M, and the buffer in the main line by ¥2_; M; + h,, h, =
1,...,Mp,, — 1. This paper focuses on the assembly merge, which merges stations from
all upstream branches simultaneously and assembles them into a single job (Liu and Li,

2010). Figure 8-5 shows the TEG of a merge production line. Except for the merge machine

and their predecessor machines, the time-varying transition rule of each machine in Figure

182



8-5 can be described by equation (8.1). The merge machine in the main line is set as m,.
For each machine Y.%,_, M,,, the k-th time-varying transition is determined by the k-th
transition of the machine Y.%/_, — 1, the (k — 1)-th transition of machine ¥.7,_, M,,,

and the (k — Nzr,_1 m,,)-th transition of the merge machine m., as shown in equation

(8.4.1). For each merge machine m., the k-th time-varying transition is determined by the
k-th transition of its upstream machine m; — 1 and X.7,_, M,, the (k — 1)-th transition of
machine m;, and (k — Ny,_4)-th transition of machine m; + 1, as shown in equation

(8.4.2).

xzzl M, ,(k) = O-ZT M- l(k)xz‘f M- 1(k) @ O'ZT M ,(k 1)x2;1=1MTI (k — 1)
® om, (k= Ngz,_ ) %m, (k= Nyz,_ ) (8.4.1)

Xm, (k) = O, (k = Dxm (k = 1) @ o -1 (k) X, 1 (k) D 057,y , (K)xge, (k)
@ Um,+1(k Nm,+1)xmr+1(k Nm,+1) (8-4-2)
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Figure 8-5 Time event graph of merge production lines
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If the merge action is not considered, the merge production line can be divided into
P + 1 parallel serial lines. According to transition equation (8.4), the standard state-space

equation for the P + 1 parallel lines can be represented as:

X, (k) A (k—1) € € € € X, (k—1)
X, (k) € A,(k—1) ¢ € € ” X,(k—1)
: = £ & £ £ :

Xp (k) £ £ e Ap(k—1) £ Xp(k—1)
1%, 00l | ¢ ¢ £ ¢ Ak — DIXp (k= D
B, (k) € € € € uy (k)

£ B,(k) ¢ € € U, (k) ‘

Dl ¢ £ € £ (8.5)
€ € e Bp(k) £ Up (k)
€ € € € By, (k) up+1(k)J

where X, (k) = [XI(k—-1), XI(k-2), ..., XI(k—=NM)IT (t=1,..,P+1 ),
X, (k—1") = [xzir_:llMT"fl(k — T’),xzil—:lMT,Jrz(k —1'), . Xy S5 _ M ,(k ’)]
1, ..., N[***), where N/*** is the maximum buffer capacity of each parallel line and
N = max {NZ‘T’=1MT+1' v NPy i Mp gy e NEITa:lMT}. A, (k) € RMNT )X MNF)
B, (k) = RMNF*X1 A state-space equation can be simplified from equation (8.6) as
follows:
X(k) =A(k —1)X(k—1) & B(k)U(k) (8.6.1)
y(k) = C(k) @ X(k), Nppor — 1 < k (8.6.2)
where X (k) = [XT(k),X%(k), .., X5, (k)]" and U(k) = [u;(k), ..., ups1(k)]T . The
(XP_ M;NI"%* + Mp_,)-th element of matrix C(k) is equal to azﬁllMT(k) and the other

elements are €. In terms of the merge actions, several extra elements should be added to
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the state-transition matrix A(k) . Considering the state transition of the machine

Yt _ My, T €{1,.., P} the elements of matrix A(k) can be transferred to the following:

[A(k)](M w35y Nm“")<27‘1 M_, N™AX 4 (N —1>+m 3P, M >
TV gl =1 Mgl N /=1 N P+1 Z;,leT, T gl =1 Mol
= 0m, (k= Nsz,_ ). (8.7)

Each sub-line T affects the transition of machines from m, to X£_; M,. This merge
action changes the elements of the matrix A(k) and B(k), and can be represented as

equation (8.8):

(k)] (ZPoy MeNTOE b, =5 F, M e BE ) Mo NI Mp oy ) (S5, MNP 41: T, M N9
[ O-Z:’=1MT’ (k + 1)
O5T,_ M, (k+ Doy, (k+1)

= UZ;’=1MT’ (k + 1)O'mT(mT+1)(k +1) | ® [/L:(k)](MT)(:) (8.8.1)

_O'ZL:lMT, (k + 1)GmTZ$;-11MT(k + 1)_

[B(k)](Z’;:lMTN{.”ax+mT—Zf,=1 M_1:¥P—q MrN%nax+MP+1)T
UMj,j(k + 1)
O-Z;’=1MT, (k + 1)O-m.[(k + 1)

= 9%L_ M, (k + Doy (m+1k + 1) | [B:(K) e 1<7<P (88.2)

_O'ZzlleT, (k + 1)O-mT(Z$:]_1MT)(k + 1)_

where [A];,) is the i-th row elements of matrix A and 7,/ (s + 1) = 0,(s + 1) ..o,/ (s +

1), v < v'. After updating these elements, the state-space equation (8.6) can be used to

derive the real-time status for the merge production lines.

8.4.3 Event-Driven Switch of State-Transition Matrixes
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The production status of the flow lines is switched with the disruptions of the shop
floors, such as order cancelation, machine breakdown, process quality problems, and
material shortage events, among others. These events were collected via RFID techniques
and sensor networks. The state-space equation can represent the events by updating the
matrices A(k), B(k), and C(k). After modeling the perturbation caused by different
disruptions, the accurate status of flow lines can be derived, and an r-OASR scheme with
high enforceability can then be determined. We define the n-th disturbing event as e,, =
(i, k,,, dy,), indicating that the event can last d,, time when the machine i produces the k,,-
th job. The processing time of the machine i to the k,,-th job should be transferred to
o] (k) = 0;(k,) + d,, . In this regard, the state-transition matrix, A(k,), B(k,) and
C(k,) can be updated with new o/ (k,). If a disruption that changes the production
sequence occurs, the parameter o;(k) can be updated with the new production sequence

and the matrix 4A(k), B(k), and C(k) can then be switched.
8.5  Bilevel Interactive Optimization

The single max-plus-based representation shows ineffective in obtaining an
optimum r-OASR decision as various constraints and objectives about order acceptance
and job releasing should be simultaneously addressed. In this regard, a mathematic
programming model must be developed with this representation (van den Boom et al.,
2020). This section derives a nonlinear integer programming for the BIO of r-OASR based
on the data-driven representation in Section 8.4. In Section 8.5.1, a 0-1 integer
programming model is developed for the leader r-OAS after addressing several net revenue

and logical constraints. Section 8.5.2 formulates a nonlinear integer programming model
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for the follower r-JRP by considering the dynamic transition constraints generated from
the data-driven representation and the existing job release constraints. Bilevel
programming is introduced in Section 8.5.3 to address the interactive optimization of r-

OASR.
8.5.1 0-1 Integer Programming for r-OAS Problem

The order acceptance decision is of critical importance for the revenue creation of

manufacturers. For each order j, j € Q,, a binary decision variable 7; is used to indicate
whether the order is accepted or rejected: r; = 1 if order j is accepted; otherwise, 7; = 0.
If we denote the completion time of the k’-th job in order j by C; - k' =1, ...,q;. The
order completion time C; is then equal to Cia;- For each order, if C; > d;, a tardiness
penalty cost 7, ; exists, which is represented by m;; := wy ;(C; —d;). Because the
finished jobs must wait at the stock until all jobs of an order are completed, an inventory

cost m, ; should be included in this situation. The cost i, ; can be represented as m; ;: =

ZZ{zl w,,j(Cj — C; ). Apart from 1, ; and m, ;, an extra operation cost 73 ; of a flow line

(i.e., the WIP inventory cost in our r-OAS problem) also exists during the order fulfillment

aj
k=1 W3,j(Cj,k’ - uj,k',‘r)v

procedures. This cost 75 ; can be represented as 75 j: = Y.02]
where w; ;s . is the best release time of the z-th part of the k’-th job in order j. If (; < d;,

no tardiness penalty cost exists. The finished jobs of order j must wait at stock until the
delivery time d; is achieved. In this regard, the inventory cost i, ; can be represented as
aj

Ty, it = 2,1, Wo,j(dj — C; ) Based on the above analysis, the total cost 7; to fulfill order

Jj can be determined by equation (8.9) as follows:
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Tj =Ty + T+ 173

= wy,; max {O, Cj,q]. - d]-}

4qj p+1 4j
+ Z W2.j(maX{Cj' dj} - Cj,k’) + 2 2 W3,j(Cj,k’ - uj,k',r) J € Qq (8.9)
k'=1 t=1k'=1

If anew order j is accepted, e; — r; = 0. Thus, the objective of the r-OAS problem,

which aims to maximize the total net revenue, can be formulated by equation (8.10) as

follows:
194 19|
F= Z rj(ej — Ty — Ty — n3,j) + Z(ej — Ty — Ty — 71-3']'), (8.10)
j=1 j=1
where z'j‘;zl'(e,. — ;) is the total net revenue of existing orders. The existing orders cannot

be rejected and e; —m; = 0 j € Q,. To formulate the r-OAS problem, the following

assumptions are made:

1) The orders arrive in real-time, and the manufacturer has no prior information

regarding these orders;

2) Each order contains only one kind of job;

3) The shop floor has the right to accept or reject any incoming orders;

4) An order in process cannot be interrupted;

5) Once an order is accepted, it cannot be rejected later (This assumption states that

our order acceptance scheme cannot be affected by resource-related disruptions, e.g.,

188



machine breakdown or process quality problems.) (Rahman et al., 2015);
6) The setup time for an order on machines cannot be negligible;
7) Each order should be delivered just-in-time.

The order scheduling problem aims to determine the best production sequence for
job release. This scheduling problem can be formulated as a dispatch problem, in which a
binary decision variable z;, is defined as indicating whether order j, j € Q; U Q,, is
assigned to position [, [ € {1,2, ..., 1Q[}, @ = Q; U Q,, or not: z;; = 1 if order j is assigned
to position [; otherwise, z;; = 0. Two types of constraints exist in the scheduling problem:
each position should be assigned a maximum of one order and the accepted order j, j €
Q; U Q,, must be assigned to a position; see equation (8.11) as follows:

|
Y zui<1,j€0, U0 andle {1, ., |0l (8.11.1)

j=1

Q]
Y ai=r.jen, (8.11.2)
=1
19
z z,=1,j €0, (8.11.3)
=1

where constraints (8.11.3) ensure that the existing orders cannot be rejected. If the

124]

variable z;; is determined, the real-time production sequence ® (|®| =X

1idj +

z'j‘;zl' q;) is generated, as the following example.
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Assume that five real-time orders (i.e., Q, = {4,5,6,7,8}) arrive at the current
production period and each order has five jobs. There are three (i.e., i = 1,2,3) existing
orders with five jobs each. If Orders 1, 2, 3, 4, 5, 7, and 8 are accepted and they are
dispatched to Positions 2, 1, 4, 3, 6, 8, and 7, respectively (i.e.,zy, = 1,2z, = 1,234 =

1,2z43=1,256=1,2z,4=1, and zg, = 1), the new production sequence should be

Order 2 Order 1 Order 4 Order 3 O{ii:rG Order 5 Order 8 Order 7
12345 12345123451,2345 [] 1,234,5 1,2,3,4,5 1,2,3,45. This means

that Job 1 in Order 2 is produced first, and then followed by Jobs 2, 3, and so on. Order 6

is rejected and Position 5 in this sequence is therefore empty.
8.5.2 A Nonlinear Integer Programming for r-JRP Problem

The r-JRP searches for the best job release plan to coordinate the three kinds of
operation costs after predicting the system dynamic status (Chen et al., 2020). Assume the
real-time production status of a flow line be X(k,), where k, means the k,-th job that is
processed by machines when new orders arrive. This r-JRP can then be defined as follows:
we find the best release plan {u.(k + k,)} for jobs, where u,(k + k) is an integer and
1 < k < |®|, based on the real-time status of flow lines at step k, to minimize the WIP

1

inventory cost =13, the final product inventory cost ),

12

j=1T2,j, and the tardiness

penalty cost Z'ji'l my,;, thus subjecting them to job release time and state-space equation
constraints. Parameter k denotes the k-th job in the newly generated production sequence,
which it receives from the leader r-OAS problem. According to equation (8.10) and state-
space equations (8.2) and (8.6), these costs can be calculated using equation (8.12). WIP

minimization can be achieved by minimizing the gap between the system output and its
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corresponding release time, as shown in equation (8.12.1). The modeling framework of
this r-JRP can be represented by an IDEFO model: the input of this r-JRP is the order due

date d;, j = 1, ..., ||, order acceptance decision 7;, j € 4, and a job release sequence &,

|®| = Lﬂlllr]q] + Z'Q q;; the output is the best job release plan u,(k + ko)1 < k <

|®|; the control includes the goals of cost minimization (i.e., Z'Ql my; (ITy), Z] 1T

(11,), and ZBml 73, (Il3)), the constraints pertaining to the job release time u.(k + k), and

the constraints regarding state-space equation (8.2) and (8.6); the mechanism comprises
the real-time processing status X (k,) and y(k,), the predictive processing time o;(k +

ko), and an optimization approach.

-1 19

R =ESTLIIY pe1| Y k0+zz Zrq; tk
s = Z Z ZZM W3,j z o1 19 (8.12.1)
=1 k=1 j=1 =1
‘ —U; k0+222j’quj+k

I'=1j=1

19 Ll

10, 410, D)2 Zj0di ZWz;Z;zmaX y kﬁzz z1q; |, d;
'=1j=1
M, = z Z N (8.12.2)

I=1 k=1
=y | ko + zz zjq; +k
'=1j=1
Q| |l Jre]
zmax Zwljz]l y| ko + 22 zjpq; | —d;f,0 (8.12.3)
'=1j=1

The parameters o;(k + ko), a;(k), and b (k) are determined by variables 7; and

zj;. We denote the nearest predecessor of position L, L € {2, ..., [Q,] + |Q,]}, that has been
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assigned an order of L — 1. The a;(k + ky), a;(k), and b, (k) can then be represented by

equation (8.13). If position L has no predecessor position (i.e., Z'QlHlQZl Y-l zj,q; = 0),

O'l(k + kO) = ZlﬂlHlQZij,Lpij ifk=1.

| Q] -1
pl]+t(k+k0,k+k0—1)lesz—landk zZZ]lq]+1
11=
oi(k + ko) = < Q) A s |Q|]L (8.13.1)
pl],leZ]L—1andZszqu+1<k<ZZZ]lq]
\ j=11= j=11=
(%) 12l 1-1 1l 1
a; (k) = szl—landzz qu]+1<k<zz zjpqj, 1sI|Q]  (8.13.2)
Jj=11" =1 j=11" =1
19 1Ql 1-1 ol 1
b, (k) =»b ZZjl—landzz Z,qj + 1<k<22 i rqj,1<I<|Q| (8.13.3)
J=11" =1 j=11"=1

8.5.3 0-1 Integer Programming for r-OAS Problem

Based on equations (8.1) — (8.13), the optimization for the r-OASR problem can be
described as a BIO model. Consistent with a Stackelberg game, the leader r-OAS problem
performs as an upper-level optimization, while the follower r-JRP acts as a lower-level
optimization. Therefore, the general form of the joint order acceptance, scheduling, and

job-release decisions can be represented in the following BIO model.

194 19, 1] 12 19

maxF( l,ur(k+k0) Zre]+Ze] anj anj 2113] (8.14.0)

s.t.
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|

Yaisii=1,..00l

j=1
(9]}
sz,z =1,j € 04
1=1
[
1=1

rj(ej — Ty — Ty, — 7T3,j) >0,j €y

e — My, —Ty; —T3; > 0,j €0,

g
r€{0,1},j € Qy

z,€{0,1},j €, U0, 1 =1,..,|0]

19 (] Q]

min f (u,(k + ko)) = Z Ty, + z Ty, + Z 3,
j=1 j=1 j=1

s.t.

oi(k + ko) = 1( l) j 1=1,..1Q|
a‘l.'(k) = GZ(Zj,l)ajJ l:1,,|.Q|

b, (k) = 05(z,),j, I=1,...10]

Xk+ky)=Ak+ky—1)QX(k+ky—1) D Bk + ky)
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QU +ky),1 <k < |D| (8.14.12)

y(k +ko) = Clk + ko) @ X(k + ko), 1 < k < |®| (8.14.13)

by (k) = u(k + ko) = a,(k),0 <k <|®P,1<T<P+1 (8.14.14)
194 |92,

u(k +ko) EZT,0<k < |®|,|P| = zrjqj +qu’1 <t<P+1 (8.14.15)
j=1 j=1

Functions ©,, ©,, and ©5 are formulated according to equation (8.13). Some
constraints exist in both the upper- and lower-level optimizations. equation (8.14.0)
indicates the objective of the r-OAS problem by summarizing the net revenue of all orders.
Constraints (8.14.1) require that each production position is assigned a maximum of one
order. Constraints (8.14.2) ensure that the newly accepted orders must be assigned to a
position. The existing order cannot be rejected by Constraints (8.14.3). The net revenue of
each order is promised by Constraints (8.14.4) and (8.14.5). Constraints (8.14.6) and
(8.14.7) enforce the binary integrality of the respective decision variables. The objective
for lower-level optimization is revealed by equation (8.14.8). Constraints (8.14.9) —
(8.14.10) describe the relationship between o;(k + ko), a,(k), b, (k) and variable z;,
respectively. The state-space equation constraints are represented by equations (8.14.11)
and (8.14.12). The job release time is restricted by constraints (8.14.13). Constraints
(8.14.14) enforce the non-negativity and integrity of the decision variables at the lower

level.

8.6  Solution Approach
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The solving processes for the BIO model are complex because the optimization
models for r-OAS and r-JRP are NP-hard. Traditional solution approaches in bilevel
programming can be classified into direct and indirect categories. The indirect methods
convert a bilevel model into a single-level model like the Karush-Kuhn-Tucker condition
and penalty function (Ji et al., 2013). The extreme-point search and some intelligence
algorithms are direct approaches for bilevel programming problems (Xiong et al., 2018).
Considering the NP-hard characteristic of BIO, various heuristic algorithms have been
developed, including genetic algorithms, particle swarm optimization, and tabu search
(Xiong et al., 2018). This paper establishes a direct solution approach comprising a tabu
search and an implicit enumeration algorithm. This algorithm’s role is to generate a feasible
solution for the BIO model and derive several managerial conclusions accordingly. The
pseudocode of the bilevel tabu-enumeration algorithm is presented in Table 8-1. To
decrease the nervousness of the production systems, a new insertion procedure is designed
to generate the initial solution (See Section 8.6.1), just as (Fahmy et al., 2007) shows. This
procedure inserts real-time orders into the initial scheduling plan, such that the maximum
net revenue can be achieved. With this insertion, we do not change the scheduling plan that
is inherited from the previous stage until it can generate more benefit. Moreover, to avoid
the exponential increase in search time, only the n most promising neighborhood solutions
after a tabu search are transferred to the enumeration algorithm to search for the best job
release plan (Gromicho et al., 2012). Note that the parameter n setting simultaneously
affects the problem solutions and computation time. For example, setting n = 1 results in

the nearest neighbor heuristic and H = oo results in a whole neighborhood search.
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Table 8-1 The pseudo-code of the tabu-enumeration algorithm

Algorithm 8-1: General interactive procedures of the tabu-enumeration algorithm

Input: A serial of real-time orders 2, a serial of orders that are waiting at job pools £2,, the real-
time production status X(k,) of flow line, a tabu tenure K, an enumeration searching step &,
parameter i, and the ;4.

Output: The best order acceptance decision 7, j € £2;, scheduling decision z;,;, j € 2, Uf,, | =
1, .., 12| + |92,], and job release plan u,;(k + ko), 1 <k < |®|, 1 <T <P + 1.

1. begin

2: Icurrent < 0;

3 Initial solution generation;

4 repeat

3 Icurrent < Icurrent +1;

6 foreach a pair of elements in a solution do

7 Swap the two elements;

8: Reject the orders with a net revenue equal to or smaller than zero and generate the most

feasible solution;

9: Insert the rejected orders and generate the corresponding feasible solutions;

10: Calculate the fitness of each feasible solution with the assumption that u,(k + kg) =

wlower (k + ky), 1 < k<|o®l;

11: end

12: Sort the feasible solutions in descending order based on their fitness;

13: Select the first n feasible solutions and set the fitness of other solutions to zero;

14: foreach selected feasible solution do

15: Call the enumeration search algorithm for best release plan generation,
ie,u(k+ky) 1<k <|o|;

16: Calculate the operation cost and feed the results back into the r-OAS problem;

17: Revise the fitness of each selected feasible solution;

18: end

19: Let current solution be the feasible solution with the greatest fitness;

20: if the fitness of current solution is smaller than the previous then

21: Replace the old solution with the new solution and the new fitness;

22: else

23: Keep the old solution and its fitness;

24: endif

25: Update tabu list

26: if rand < e(Tleurrent/50) do

27. Local search based on the drop-insert operator;

28: Call the enumeration search algorithm for best release plan generation;

29: Calculate the operation cost and feed the results back into the r-OAS problem;

30: Revise the fitness of the current solution;

31: end

32: if the fitness of the current solution is smaller than the previous then

33 Replace the old solution with the new solution and new fitness;

34: else

35: Keep the old solution and its fitness;

36: endif

37: until I rrent > Imax || StOp criteria

38: Return 7", z;;, and uz (k + ko)

39: end
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8.6.1 Tabu Search to Solve r-OAS Problem

Tabu search is a well-known heuristic for handling combinatorial optimization
problems and is particularly successful in its ability to resolve job scheduling problems
(Cesaret et al., 2012). Motivated by the successful applications of tabu search, this section
extends this algorithm to make OAS decisions. The implementation procedures of the tabu

search are described as follows.

1) Solution representation: A solution for the r-OAS problem can be represented by
a vector with size |Q|, in which the value of the [-th element indicates the assigned position
of order j in a production sequence. If an order is not accepted, the value of the
corresponding element is zero. For example, a solution with 15 orders (|Q,| = 12 and
|Q,| = 3) can be represented by {1,3,5,6,2,0,0,4,0,0,7,0,0,8,0}. This representation means
that Orders 6, 7, 9, 10, 12, 13, and 15 are rejected, while Orders 1, 2, 3, 4, 5, 8, 11, and 14
are processed in the first, third, fifth, sixth, second, fourth, seventh, and eighth positions.
Because orders 1, 2, and 3 are existing orders, their position value in a solution must be
greater than zero.

2) Solution initiation: An initial feasible solution S, for r-OAS can be generated by a
greedy rule. This rule first calculates the revenue-load ratio for each order by considering

the order revenue and its processing time. This ratio is represented as RLR; =
ej/(qj max p;; +yM, p,-),j € Q,; U Q,, which signifies the unit revenue created per
1=1,.,

production time. The orders are sorted by this ratio, and the order with the highest value is
first inserted into the initial production sequence. During this insertion, the selected order

is inserted into its possible position in sequence, and the corresponding net revenue is
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calculated. For  example, the  production  sequence  from  solution
{1,3,5,6,2,0,0,4,0,0,7,0,0,8,0} is {1,5,2,8,3,4,11,14} (the element in the set is the order
number) and the possible insert position precedes Orders 1, 5, 2, and so on. Finally, the
order is inserted into the position that can generate the highest net revenue. At this stage,

the costs y ;, 7, j, and w3 ; of Order j are determined according to equation (8.12) and

based on the assumption that u, (ko + k) = ul°Ye" (k + ko), k=1, ..., |®|, T =1,..,P +
1. If this order insertion causes the revenue of some orders in the new production sequence
to be equal to or less than zero, these orders are rejected, and the net revenue of the
remaining orders is recalculated. This insertion procedure continues until all newly arrived
orders are traversed.

3) Neighborhood search with swap operators: Swap and insertion are common
operators in tabu search for similar scheduling problems (Bilge et al., 2007). In swap
operators, the neighborhood of the current solution S is searched by swapping two
elements of S. This pairwise exchange can change both the set of accepted Orders and the
corresponding production sequence. For example, two neighborhood solutions
{1,3,5,7,2,0,0,4,0,0,6,0,0,8,0} and {1,3,5,6,0,0,2,4,0,0,7,0,0,8,0} can be generated by
applying swap operators to the solution {1,3,5,6,2,0,0,4,0,0,7,0,0,8,0}. The first is obtained
by swapping the fourth and eleventh elements, while Order 4 is rejected, and Order 7 is
accepted in the second after swapping the fourth and seventh elements. The two elements
with a value of zero do not need to be swapped, as they cannot generate a new solution.
Because the existing orders cannot be rejected in this decision period, their position
element can be swapped with the position that has been assigned a nonzero element in the

current solution. For example, in the solution {1,3,5,6,2,0,0,4,0,0,7,0,0,8,0}, Element 1 can
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be swapped with Elements 2, 3, 4, 5, 8, 11, and 14. Note that after a swap, the net revenue
of each order changes. If any orders belonging to Q, receive a zero or smaller net revenue,
this neighborhood swap is forbidden. If any of the newly accepted orders receive a zero or
smaller net revenue, they are rejected. Because the number of accepted orders may
therefore decrease, an insertion operator is designed to follow swap operators; the local
search procedure is shown in the following sequence.

4) Tabu list and tabu tenure: The tabu list of tabu search retains the most recent swap
operators to avoid cycling when searching for a new solution. The tabu list in our tabu
search algorithm is formed with the K most recently performed swap operators, where K
is the tabu tenure. In our tabu list, the retained swap pairs prevent the same elements from
being swapped again. For example, if the best neighborhood solution of
{1,3,5,6,2,0,0,4,0,0,7,0,0,8,0} is {1,3,5,6,0,2,0,4,0,0,7,0,0,8,0}, swapping the elements
corresponding to order pairs (5,6) and (6,5) is tabu during the tabu tenure.

5) Local search with a drop-insert procedure: If the iterations proceed with
neighborhood search alone, our tabu search algorithm will likely converge to a poor local
optimum. To remedy this, a local search for the current best solution is conducted by
applying iterative drop-insert operators. To insert an order with larger net revenue, an order
with the lowest net revenue in the current solution is dropped. To select the orders that will
be inserted, a roulette wheel selection from genetic algorithms is then used to generate an
insertion probability for the rejected orders. The probability of selecting each rejected order

is proportional to its RLR;, such that the orders with higher RLR; are more likely to be
selected. This mechanism can introduce some randomness into our tabu search and create

diversified solutions during iterations. This selection is implemented ¢ times, where ¢ is

199



the size of the rejected orders and all the selected but different orders are transferred for
insertion. The insertion procedure is shown in part (2). To ensure the convergence of our
algorithm, the order drop-insert operator is implemented in a manner similar to that of

simulated annealing. That is, the drop-insert operator is implemented if a random number

—lcurrent

between (0,1) is smaller than e so (Icyrrent 1S the current number of iterations).

Otherwise, no order is dropped from the current solution.

6) Fitness evaluation and termination criteria: After the swap operators, the new
solutions are transferred to the r-JRP problem for cost calculation (i.e., 7, j, 7, ;, and 73 ;).
The fitness of each solution can then be determined by equation (8.14.0). If the current tabu
solution with the highest fitness is better than the fitness of the best-known solution, the
current tabu solution is accepted as the best solution. The tabu search is terminated if the

number of generations exceeds the upper limit of the iterations.
8.6.2 Implicit Enumeration Algorithm to Solve r-JRP Problem

Implicit enumeration and gradient-based techniques are two typical approaches for
production system optimization with analytical methods (Matta et al., 2012). Implicit
enumeration is widely applied if the solution space is restricted or if the evaluation
procedure for production system performance is carried out rapidly. In terms of the limited
searching space, which is restricted by order net revenue and the rapid run speed with the
proposed state-space equation, an implicit enumeration algorithm is proposed for r-JRP
optimization. Referring to the enumeration procedures of Hashemian et al. (2014), our
implicit enumeration can be implemented through the following two steps: enumeration

space generation and enumeration strategy with varying search steps.
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The size of the enumeration space can obviously affect the searching efficiency in
the enumeration space generation. In our programming model for r-JRP, the lower bound
of each variable u,(k + ky), 1 < k < |®|, is determined by the processing time of the first
machine in a flow line, such as Machine 1 in serial lines and the Machine X571 M + 1,

(r =1, ..., P) in merge lines, refer to equation (8.15):

k -1
ulower (k + ko) = max{ a,(k), z oi(k" +ky),t=1,..,P, i = M, +1 (8.15)
k''=1 T'=1
where ulover (ko) = u, (ko) and X.2,_; M, = 0. This lower bound is reasonable because a
smaller value for u,(k + k) cannot contribute to improving the system throughput. The
upper bound of the variable u,(k + k) is derived from the order due date and tardiness

penalty cost. For each order, the relationship between the latest delivery time d}ate“ and

due data d; can be represented as follows:

q;(q; — 1)

wy ;(dj* — d;) + wy, 3

ilrll,?fz(M{pij} =ej,j € Q. (8.16)

According to equation (8.16), the d}‘“e“ can be derived as follows:

—1)
(ef W2 2 i=n11,?.),(M{pij }>
d];atest — + dj,j € Q. (8.17)

Referring to equation (8.13), the upper bound of variable u,(k + k), T =

1, ..., P + 1, can be determined by the following:
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Furthermore, in enumeration strategy with varying search steps, the cost m, ;, 75 ;,
and 5 ; are monotonous to variable u,(k + ko). In this case, the best job release plan can
be achieved by increasing each variable from the smallest to the greatest. To improve the
search efficiency, a varying searching step is designed after analyzing the decision space

of variables (see Table 8-1). The six steps of the enumeration are presented as follows.

Step 1: We set u,(k + ko) = ulwe(k + ko), t=1,..,P+1,1 < k < |®|, and
a search step 6 = §, that increases the value of u, (k + k,) by & at every step. We
determine the initial operation cost f; based on equations (8.9) and (9.14.8). We then
initiate the enumeration procedures with k « 1 and 7 « 1.

Step 2: We set u, (k + ko) = u,(k + ko) + 8, and u (k" + ko) = u (k" + ko) +
8, |®| = k" > k. The system throughput y(k" + k,), 1 < k" < |®| is then calculated
based on state-space equation (8.6) and equation (8.14.8) is used to formulate the operation
cost f.

Step 3: If £ = f, setu (k" + ko) = u (k" + ko), 1 < k" < |®|, f, = f, and we
return to Step 2. If £ < f,, weset u (k" + ko) = u, (k" + ko) — 8, k < k" < |®|, and we
move on to Step 4.

Step 4: We set the search stepto § = [6/2]. If § is smaller than the unit production

time, we move to Step 5; otherwise, we return to Step 2.
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Step 5: We set k <« k+1and 6§ =6,. If k> |®P|, we move on to Step 6;
Otherwise, we return to Step 2.
Step 6: We sett <7+ 1. If 7 > P + 1, we stop the enumeration and feed the

function f;, back to the leader r-OAS problem; otherwise, we return to Step 2.

8.6.3 Tabu-Enumeration Interactive Solution Procedure Problem

The nested genetic algorithm is a popular technique for solving the BIO model
(Xiong et al., 2018). Because probabilistic techniques are adopted to search for a feasible
solution for both leader and follower problems, its convergence is difficult to predict with
certainty, especially when the space in which the search is conducted is large. Compared
with existing heuristic algorithms, our bilevel tabu-enumeration search empowers a mutual
look-out global search strategy by developing a probabilistic search technique for the
leader and an exact search technique for the follower. This method can accelerate the speed
at which algorithms converge, thus tremendously reducing the computational load, and in
turn enhancing computational efficiency. Based on the encoding analysis of tabu search
for r-OAS and the implicit enumeration for r-JRP, the bilevel tabu-enumeration is

elaborately designed and includes several decision stages, as follows.

Step 1:Initialization. A feasible solution for OAS is randomly generated.

Step 2:Fitness estimation. The swap operator is called to determine all
neighborhood solutions. We set u,(k + ko) = ulo" (k + ky), 1 < k < |®|, and estimate
the fitness of each solution. These solutions are then sorted in descending order based on
their estimated fitness and the first n feasible solutions for r-JRP optimization are selected.

We set the fitness of these unselected solutions to zero.
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Step 3:Implicit enumeration. For each selected solution, we use the implicit
enumeration to determine the minimum operation cost f according to equation (8.14.8).
We feed cost f back into the tabu search and update the fitness F of each selected solution
according to equation (8.14.0).

Step 4:Best solution update. We choose the solution with the highest fitness as the
current solution. If the current solution is better than the best solution already identified,
we update the best solution and its fitness, and add the corresponding swap operator into
the tabu list; otherwise, we take no action.

Step 5:Loach search with a drop-insert operator. We drop an order with minimal
net revenue from the current solution and select the unaccepted orders for insertion into the
current solution. We update the current and best solutions, as in Step 4.

Step 6:We terminate tabu search if the number of generations exceeds the upper
limit of the tabu search. We then compare and record the best results and move on to Step
7; otherwise, we return to Step 2.

Step 7: Stop.

8.7  Case Study of Crowdsourcing Task Acceptance and Accommodation

To demonstrate the performance of the proposed BIO model for the r-OASR
problem and test the proposed bilevel tabu-enumeration algorithm, a specific case study
from a car seat assembly plant is reported in this section. The bilevel algorithm is performed
ten times on a Windows 10 PC with an Intel ® Core ™ i5-8250U 3.4GHz 16GB of RAM.
The one yielding the highest fitness is recorded as the best objective value for the BIO

model.
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8.7.1 Tabu-Enumeration Interactive Solution Procedure Problem

The car seat assembly line contains twelve workstations and eleven buffers, in
which the jobs between adjacent workstations are transported by conveyor belts, the data
of this case is modified from real-world shop-floor. The TEG of this assembly line is shown
in Figure 8-6. Two parallel sub-lines are merged at Station 5: one for cushion assembly
and the other for back cushion assembly. The flexibility of each station is high, and at least
nine kinds of products can be assembled by this line. Table 8-2 lists the processing time of
the stations for each product, and Table 8-3 shows the buffer capability. This assembly line
is chosen to verify our BIO approach for a variety of production environments and smart

production operations.

1) Decision-making for r-OASR within high variety production environments: The
car seat assembly plant is a first-tier supplier to automakers. Today, with mass
customization, many automakers are coupled with platform-based strategies to achieve
mixed-model production. Because multiple automakers can be serviced by a car seat
assembly plant at the same time, this mixed-model production creates a high level of
product variety for each seat assembly line. For example, the special assembly line selected
in this section must produce nine kinds of car seats and is currently being expanded to
produce twelve products in the future. Moreover, due to various resource-related
disruptions related to stamping, welding, spraying, and assembly shops and job-related
disruptions from customers, the pre-determined car assembly plan is often changed. This
frequent variation creates many real-time orders for car seat assembly plants, as they must
respond to the production plan of automakers in a timely manner. This special assembly

line is designed to accommodate real-time orders in highly varied production
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environments. This line adopts the rolling-horizon-driven replanning policy for r-OASR
decision-making to enable the fulfillment of real-time replenishments from automakers.
By cooperating with this special line, the nervousness of the whole assembly plant can be
decreased, as the schedules of other assembly lines will not be disrupted by new incoming
orders. Additionally, as it is motivated by the open manufacturing paradigm, this plant is
devoted to designing an open platform to collect personalized orders from customers.
Customers can place their orders on the platform in real time, similar to the COSMOPIat
of Haier. This development trend also positions r-OASR decision-making as important.

2) Smart production operations with real-time data: To predict the real-time status
of assembly lines and derive smart actions in response to disruptions, various information-
gathering techniques have been applied to monitor and collect production data from shop
floors. For example, an RFID system is constructed to collect the real-time data of WIP
and job completion at each station. A sensor-based network is developed to perceive the
real-time data of machines and stations (e.g., machine breakdown events), and an image
recognition system is designed to identify the productivity data pertaining to workers (e.g.,
the absence data of workers). A control system is in place that can formulate smart
decisions after fuzzing and analyzing real-time data. In view of the smart manufacturing
environment, the real-time production status of this assembly line can be easily derived.
Moreover, the control system is an open platform. It can provide powerful computing
capacities for users and a flexible environment for the development of new functions. Thus,
many specified functions for production that are operated with complex optimization
models can be incorporated into this control system, such as r-OASR decision-making,

which is the focus of this paper.
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Table 8-2 Processing time of each station (unit: sec)

Product
type m; mp; M3 My Mg Mg M; Mg Mg Mqg Myp1 My

TypeA 82 84 84 92 8 74 8 78 70 89 92 90
Type B /8 8 8 97 93 78 90 80 68 90 89 95
TypeC 88 78 83 80 88 70 92 74 78 95 74 89
Type D 74 88 /8 84 80 776 9 8 71 8 80 91
Type E 77 8 8 8 91 83 97 77 82 93 78 84
Type F 8 91 8 70 93 71 90 69 88 93 83 87
Type G 75 8 68 9% 98 75 99 8 69 79 94 78
Type H 70 8 9 8 84 8 91 67 93 99 89 80
Type | 72 75 9 73 8 69 78 80 92 95 76 84

Table 8-3 Buffer capacity of the assembly line (unit: sec)

Buffer
capacity
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Figure 8-6 Time event graph of the assembly line

Based on these characteristics, the car seat assembly line is extended to make r-

OASR decisions. To identify the parameters of our BIO approach, a series of incoming
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orders during a time horizon t, = 60min is stochastically selected from the information
system. The existing orders are listed in Appendix Il. No release date constraint exists in
this case study. The tabu tenure is K=5, and the iteration number is I,,,,,, = 200. When

new orders arrive, 17 jobs are released to the assembly line and no disruption occurs. Thus,

the real-time status X(17) of this assembly line can be derived.
8.7.2 Performance Experiments by Benchmarking Using Prevailing r-OASR Approaches

To draw a comparison with the performance of the proposed BIO, two prevailing
approaches are presented in this section: (i) the r-OAS model with bottleneck machines (r-
OAS-B) (Nobibon and Leus, 2011, Lin and Ying, 2015), and (ii) the r-OAS model for
permutation flow lines (r-OAS-F) (Rahman et al., 2015, Rahman et al., 2019). To verify
the performance of the r-JRP, we extend these approaches by considering cooperation with
r-JRP as a factor. The approaches are as follows: a single r-OAS-B (r-OAS-B 1), r-OAS-B
with r-JRP (r-JRP-B 11), a single r-OAS-F (r-OAS-F 1), and r-OAS-F with r-JRP (r-OAS-
F11). Inr-OAS-B Il and r-OAS-F I, the r-OAS and r-JRP problems are operated separately.
The r-OAS-B and r-OAS-F are solved by our tabu-enumeration algorithm. For the
comparison, the results of our BIO model are also decomposed into two categories: one

does not cooperate with r-JRP (BIO 1) while the other does (BIO II).
8.7.3 Results and Analysis

Table 8-4 presents the best decision for OAS with |Q;| = 34 and |Q,| = 10. The
r-OAS-B, r-OAS-F, and BIO all accept eighteen new orders. In comparing the results with
Appendix I, one can observe that the nervousness of this production system is low, as the

scheduling plan for existing orders remains unchanged. In this situation, the total net
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revenues of r-OAS-B I, r-OAS-B II, r-OAS-F I, r-OAS-F II, BIO I, and BIO |1 are 338,840,
340,560, 340,470, 345,730, 340,540, and 348,900, respectively. Compared to other
approaches, BIO Il demonstrates better performance, regardless of cost I1;, I1,, or I15. This
performance is achieved by identifying a better production sequence, as the accepted orders
are the same; see the results of r-TAS-B, r-TAS-F, and the BIO. For the flow lines, the
state-space equation is important in reducing the tardiness penalty cost because it can
accurately predict production capacity (see the results of r-OAS-B and r-OAS-F). In view
of the cost I, I1,, or I15, the proposed r-JRP can significantly reduce II, and I1;, whereas

I1; can be increased slightly.

In conclusion, when compared to the bottleneck-based and flow-shop approaches,
our BIO model can increase the profit of this assembly line by 2.79% and 2.48%,
respectively. This improvement is significant, as the average net revenue of this assembly
plant has been only approximately 10% over the last ten years. Except for profit
improvement, the BIO model can provide accurate information for production process
control and can in turn improve the capacity of production systems to make precise
decisions. To further test the performance of our BIO, several experiments regarding the
quantity of real-time orders are designed. We observe the quantity of real-time orders every
60 min over the preceding five days and find that 80% of the samples are located between
6 and 34 orders. Figure 8-7 shows the total net revenue of the proposed six approaches for
r-OASR by changing |Q,| from 6 to 34. Figure 8-7 shows that the total net revenue of the
B1O approach decreases with the quantity of incoming orders. This result is consistent with
reality and shows that the BIO and its tabu-enumeration algorithm can respond to different

production parameters. Upon observing the net revenue of r-OAS-B II, r-OAS-F II, and
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BIO II, it can be observed that BIO Il consistently demonstrates better performance and
yields a more significant benefit for manufacturers. In comparing the results of r-OAS-F
and BIO with r-OAS-B, one may observe that considering the job dynamic transition
behaviors of flow lines enables production capacity to be predicted more concisely, which
can then generate a better OAS scheme. Finally, in examining the results with and without
r-JRP, it can be concluded that the r-JRP can decrease operation cost significantly, although

it can also occasionally prompt a slight increase in the tardiness cost.
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Figure 8-7 The performance of the BIO with different quantities of incoming orders

Table 8-5 and Table 8-6 list the operation costs of the proposed six approaches in
these sensitive experiments. Compared to the r-OAS-B, the research results reveal that the
BIO and r-OAS-F can sometimes improve the quantity of accepted orders due to a more
accurate estimation of the job makespan, such as when |Q,| = 30 and |Q,| = 26. In other

situations, the quantity of orders accepted by the six approaches is the same, but the types
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of accepted orders and the corresponding schedules are different. Our BIO consistently
identifies a better OAS decision, even though the operation costs of production systems are
sometimes higher than those of other approaches. For example, the order tardiness penalty
cost of BIO Il in the case |Q,| = 26 is 18,140. When compared to the r-OAS-B Il and r-
OAS-F I, this cost increases by 34.91% and 47.77%, respectively. However, in this
situation, BIO 11 can increase the net revenue of production systems by 2.09% and 2.03%,

respectively. This increase in profit is significant for an assembly plant.

8.7.4 Sensitivity Analysis and Discussions

Sensitivity experiments conducted on parameters wy ;, d;, w,;, and ws; are

designed in this section, and several managerial implications can be concluded based on
the results. Figure 8-8 shows the total net revenue F and the accepted order quantity for

different w, ; and d;. The sensitivity experiments decrease w, ; by 2 or increase d; by 300
at every step, while keeping other parameters at their initial value. As shown in Figure 8-8,

the accepted order quantity and total net revenue can be increased by increasing d; and
decreasing w, ;, respectively. The results are consistent with reality and demonstrate the
efficiency of our algorithm. Moreover, focusing on the effect of parameter w, ;, the total
net revenue and accepted order quantity can be increased slightly when Aw, ; < 4, while
the two figures can be increased linearly when Aw; ; > 4. Compared to w, ;, the effect of
d; is smaller. The total net revenue F and accepted order quantity obviously increase with
d; when Ad; < 900, while the increasing trends of the two figures slacken when Ad; >

900.
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Figure 8-9 reveals the total net revenue F and the accepted order quantity with

different w, ; and ws ;. The sensitivity experiments increase w, j by 0.2 or increase wj

by 0.1 at every step, while keeping other parameters at their initial value. As shown in
Figure 8-9, the total net revenue F decreases when w, ; and w ; increase Specifically, the
increase in w, ; and ws ; will not reduce (see the rectangle without filling) or even increase
(see the rectangle with filling) the accepted order quantity initially. This phenomenon is
reasonable, as the BIO model must balance the revenue and cost when searching for a

solution. Moreover, comparing the effects of w, ; with those of wj ;, it is known that the
total net revenue F is more sensitive to ws ;. This means that manufacturers should pay

more attention to WIP inventory costs when they desire to improve the net revenue of their

production systems.

Observed from above research results, several substantive insights about r-OASR
development can be obtained. Firstly, the data-rich environment in today’s smart
manufacturing enables us to make precise r-OASR decisions. As presented in previous
literature, the existed bottleneck-based approach and flow-line-based approach with
infinite buffers support making r-OASR decisions by estimating system performance (i.e.,
system throughput, WIP inventory, and final product inventory). This estimation increases
the total operational cost of a production system and thus reduces the net revenue, see the
results in Table 8-4. In contrast, our data-driven representation for r-OASR can recognize
real-time production status and precisely predict system performance by modelling finite
buffer constraints and analyzing real-time data collected from shop floors. This precise
recognition and prediction can help to make a better r-OASR decision and ultimately

increase the net revenue.
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Figure 8-9 The net revenue and accepted order quantity with different unit
inventory cost for a final product and inventory WIP cost

Secondly, the data fusion of a shop floor gives birth to more joint optimization
problems, in which each subproblem traditionally belongs to different decision-making
levels. Conventional wisdom has to separately treat these subproblems because of the
impassability of data. The upper-level problem cannot seek cooperation from lower-level
and in this regard the lower-level problem also cannot obtain the best input. The data fusion

makes joint optimization possible as decisions among different levels can interact with
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each other freely and quickly, see the example in Figure 8-2 and Figure 8-3. This
interaction can create a global optimum solution for a production system. With this
solution, the system can be operated more concisely and with lower costs, see the results

of r-OASR in Figure 8-7, Table 8-5, and Table 8-6.

Thirdly, today’s smart manufacturing necessitates our r-OASR. The r-OASR can
achieve the quick response to abnormal events by minimizing multiple operational costs.
This response is significant in constructing smart production and networked
manufacturing, see the results in Figure 8-8 and Figure 8-9. Certainly, the nervousness
problem of r-OASR is a hot topic in many studies. In smart manufacturing, however, this
nervousness can be reduced as the task rescheduling at different decision-making levels

can be achieved quickly and automatically along with a r-OASR decision.

Table 8-4 Best decisions for OAS with different approaches

Accepted orders  Production sequence Cost Net
Approach Revenue
(7;) (zj1) m, m, I, revenue
17,20,23,25,27,28, 2,4,1,5,3,8,6,10,7,9,44,17,4
r-OAS-B | 29,30,31,34,35,36, 0,25,20,23,36,31,38,41,29, 373,100 17,622 6,487 10,154 338,840
38,40,41,42,43,44 27,35,28,43,42,30,34

17,20,23,25,27,28, 2,4,1,5,3,8,6,10,7,9,44,17,4
r-OAS-B 11 29,30,31,34,35,36, 0,25,20,23,36,31,38,41,29, 373,100 18,082 4,778 5,247 340,560
38,40,41,42,43,44 27,35,28,43,42,30,34

17,20,23,25,27,28, 2,4,15,3,6,8,10,9,7,44,17,4
r-OAS-F | 29,30,31,34,35,36, 0,20,25,23,36,41,31,35,38, 373,100 15,598 6,871 10,166 340,470
38,40,41,42,43,44 27,43,28,42,29,34,30

17,20,23,25,27,28, 2,4,1,5,3,6,8,10,9,7,44,17,4
r-OAS-F Il 29,30,31,34,35,36, 0,20,25,23,36,41,31,35,38, 373,100 15,866 6,156 5,359 345,730
38,40,41,42,43,44 27,43,28,42,29,34,30

17,20,23,25,27,28, 2,4,1,5,3,6,8,10,9,7,44,17,4
BIO | 29,30,31,34,35,36, 0,20,25,23,36,31,38,41,27, 373,100 15,598 6,794 10,164 340,540
38,40,41,42,43,44 35,28,43,29,30,34,42

17,20,23,25,27,28, 2,4,1,5,3,6,8,10,9,7,44,17,4
BIO Il 29,30,31,34,35,36, 0,20,25,23,36,31,38,41,27, 373,100 16,013 3,755 4,456 348,900
38,40,41,42,43,44 35,28,43,29,30,34,42
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Table 8-5 The operation costs without r-JRP

r-OAS-B | r-OAS-F | r-OAS |
[N
B S 1 I, mn, 3y oo I, n, oy o I, I,
34 18 17,622 6,487 10,154 18 15,598 6,871 10,166 18 15,598 6,794 10,164
30 14 12,632 7,027 4,712 15 19,930 6,749 8,974 15 18,930 7,235 7,838
26 13 13,098 7,898 8,371 13 11,856 7,387 8,618 14 17,798 7,883 8,891
22 10 17,184 5,983 8,090 10 15,386 5,951 8,073 10 15,386 5,156 8,028
18 7 17,922 4,801 7,213 7 15,386 4,707 7,248 7 14,386 4,287 6,731
14 5 16,418 2,093 5,744 5 14,562 2,124 5,763 5 13,562 2,124 4,763
10 4 15,432 3,008 5,652 4 14,988 2,108 5,452 4 14,462 2,002 4,052
6 2 14,032 2,320 4,420 2 13,832 3,100 5,020 2 14,002 2,113 4,028
Table 8-6 The operation cost with r-JRP

] r-OAS-B II r-OAS-F 11 r-OAS 11

Q Q

oyl o n, n, ¥y o n, 0, ¥y on M, I

34 18 18,082 4,778 5,247 18 15,866 6,156 5,359 18 16,013 3,755 4,456
30 14 12,632 7,027 4,712 15 20,090 5,720 4,822 15 20,526 2,992 4,725
26 13 13,446 6,441 4,612 13 12,276 5,275 4,592 14 18,140 2,793 4,729
22 10 17,668 4,383 4,333 10 15,610 5,836 4,501 10 15,619 2,588 4,420
18 7 18,248 3,737 4,095 7 15,702 3,659 4,229 7 15,740 2,426 4,150
14 5 16,748 2,084 3,444 5 14,880 2,080 3,595 5 14,880 2,080 3,595
10 4 14,082 2,308 4,966 4 13,002 1,984 4,108 4 10,634 1,884 3,524

6 2 12,122 2,086 3,624 2 9,008 1,548 3,208 2 6,562 1,684 3,004
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8.8  Chapter Summary

This BIO’s efficiency is verified via its practical application to a car seat assembly
line. Given the results of various experiments, several important managerial insights for
the r-OASR problem can be formulated. (1) An inherent bilevel interactive decision
framework exists in r-OASR. The proposed hierarchical joint optimization based on the
leader-follower game can generate a more efficient solution for the r-OASR problem. (2)
The r-OASR problem manages the limited buffer and blocking constraints by analyzing
real-time and transparent data from the shop floor. Various operational costs in terms of
inventory and tardiness are considered in this problem. The research results compensate
for the insufficiency of Rahman et al. (2015) and can increase the enforceability of an OAS
scheme. (3) The parameter design of an order can obviously affects order acceptance,
scheduling, and job-releasing decisions, including exogenous parameters w, ; and d; and
endogenous parameters w,; and ws ;. The design of these parameters should be
coordinated by outsourcers and manufacturers to maximize the benefit of the entire
manufacturing network. (4) Smart manufacturing necessitates r-OASR for its quick
response to abnormal events. The nervousness caused by using r-OARS can be reduced by

the adaptive capacity of smart manufacturing.

This chapter provides decision-making support for manufacturers to synchronize
internal and external material flow, which is achieved by synergizing real-time status of
shop-floor, job acceptance planning and sequencing problem together. This original work
not only eases the acceptance of crowdsourced manufacturing paradigm, but also provides

a new job scheduling architecture in new era.
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CHAPTER 9. BLOCKCHAIN-BASED SMART CONTRACTING
AND DISTRIBUTED DATA MANAGEMENT FOR
INFORMATION SERVICE SYSTEMS IN CROWDSOURCED

MANUFACTURING

Following an X-as-a-Service paradigm, MaaS provides information services for
platform and manufacturer crowds along a crowdsourced manufacturing process. These
services are required to allocate manufacturing resources, track crowdsourcing process,
manage product fulfillme