169 research outputs found

    LB-MAC: A Lifetime-Balanced MAC Protocol for Sensor Networks

    Full text link
    Abstract. This paper presents LB-MAC, a new MAC protocol for asyn-chronous, duty cycle sensor networks. Different from existing sensor network MAC protocols that usually focus on reducing energy consump-tion and extending lifetime of individual sensor nodes, LB-MAC aims at prolonging the network lifetime through balancing the nodal lifetime between neighboring sensors. LB-MAC is lightweight and scalable as the required control information is only exchanged locally between neighbors. LB-MAC has been implemented in TinyOS and evaluated on a sensor network testbed with extensive experiments. Results show that LB-MAC is able to achieve a significantly longer network lifetime than state-of-the-art MAC protocols such as X-MAC, RI-MAC and SEESAW, while maintaining comparable levels of network power consumption, packet delay and delivery ratio.

    Security assessment of the smart grid : a review focusing on the NAN architecture

    Get PDF
    Abstract: This paper presents a comprehensive review on the security aspect of the smart grid communication network. The paper focus on the Neighborhood Area Network (NAN) cybersecurity and it laid emphasis on how the NAN architecture is such an attractive target to intruders and attackers. The paper aims at summarizing recent research efforts on some of the attacks and the various techniques employed in tackling them as they were discussed in recent literatures and research works. Furthermore, the paper presents a detailed review on the smart grid communication layers, wireless technology standards, networks and the security challenges the grid is currently facing. The work concludes by explaining current and future directions NAN communication security could consider in terms of data privacy measures. The data privacy measures are discussed in terms of prevention and detection techniques

    Collaborative Communication And Storage In Energy-Synchronized Sensor Networks

    Get PDF
    In a battery-less sensor network, all the operation of sensor nodes are strictly constrained by and synchronized with the fluctuations of harvested energy, causing nodes to be disruptive from network and hence unstable network connectivity. Such wireless sensor network is named as energy-synchronized sensor networks. The unpredictable network disruptions and challenging communication environments make the traditional communication protocols inefficient and require a new paradigm-shift in design. In this thesis, I propose a set of algorithms on collaborative data communication and storage for energy-synchronized sensor networks. The solutions are based on erasure codes and probabilistic network codings. The proposed set of algorithms significantly improve the data communication throughput and persistency, and they are inherently amenable to probabilistic nature of transmission in wireless networks. The technical contributions explore collaborative communication with both no coding and network coding methods. First, I propose a collaborative data delivery protocol to exploit the optimal performance of multiple energy-synchronized paths without network coding, i.e. a new max-flow min-variance algorithm. In consort with this data delivery protocol, a localized TDMA MAC protocol is designed to synchronize nodes\u27 duty-cycles and mitigate media access contentions. However, the energy supply can change dynamically over time, making determined duty cycles synchronization difficult in practice. A probabilistic approach is investigated. Therefore, I present Opportunistic Network Erasure Coding protocol (ONEC), to collaboratively collect data. ONEC derives the probability distribution of coding degree in each node and enable opportunistic in-network recoding, and guarantee the recovery of original sensor data can be achieved with high probability upon receiving any sufficient amount of encoded packets. Next, OnCode, an opportunistic in-network data coding and delivery protocol is proposed to further improve data communication under the constraints of energy synchronization. It is resilient to packet loss and network disruptions, and does not require explicit end-to-end feedback message. Moreover, I present a network Erasure Coding with randomized Power Control (ECPC) mechanism for collaborative data storage in disruptive sensor networks. ECPC only requires each node to perform a single broadcast at each of its several randomly selected power levels. Thus it incurs very low communication overhead. Finally, I propose an integrated algorithm and middleware (Ravine Stream) to improve data delivery throughput as well as data persistency in energy-synchronized sensor network

    Real-time Monitoring of Low Voltage Grids using Adaptive Smart Meter Data Collection

    Get PDF

    Agent-Based Computational Architectures for Distributed Data Processing in Wireless Sensor Networks.

    Full text link
    As the structural health monitoring (SHM) community continues to develop algorithms for monitoring performance and detecting degradation in engineered systems, the importance of pervasive sensing and autonomous data processing methodologies will increase. Fortunately, the emergence of wireless sensor technologies at the forefront of SHM research has provided a platform on which problems related to both sensor density and processing autonomy can be addressed. By utilizing wireless communication links instead of expensive data cables, wireless monitoring systems can be deployed with much greater sensor density and at significantly lower costs than traditional SHM systems. Perhaps more importantly, because wireless sensing units typically integrate a traditional sensor with a low-power microprocessor, analog-to-digital converter, and wireless transceiver, wireless sensing networks (WSNs) have shown great promise in their ability to process sensor data in-network (i.e., without the need for a centralized data center). Over the past decade, the wireless SHM community has shown that it is possible to minimize problems associated with power efficiency, data loss, and finite communication range by processing data before transmitting it to a central repository. Recently, in an effort to further improve the efficiency and capability of in-network computation, researchers have started to move away from centralized processing frameworks (where no data is shared between nodes) towards more hierarchical data processing architectures. However, work to date in this area has yet to fully leverage the computational advantages provided in large networks of wireless sensors. In this dissertation, several distinct agent-based architectures are developed for distributed data processing in WSNs. Each of these agent-based architectures leverages the ad-hoc communication and pervasive nature inherent to wireless sensing technology, and can be viewed as a parallel computing system with an unknown and possibly changing number of processing nodes. As such, sophisticated data analysis can be performed while maintaining a scalable environment that is not only resistant to sensor failure, but that also becomes increasingly efficient at higher nodal densities. These agent-based architectures represent a significant step towards the creation of a fully autonomous WSN for application to SHM.Ph.D.Civil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/75799/1/atzimmer_1.pd

    Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    Get PDF

    Towards self-powered wireless sensor networks

    Get PDF
    Ubiquitous computing aims at creating smart environments in which computational and communication capabilities permeate the word at all scales, improving the human experience and quality of life in a totally unobtrusive yet completely reliable manner. According to this vision, an huge variety of smart devices and products (e.g., wireless sensor nodes, mobile phones, cameras, sensors, home appliances and industrial machines) are interconnected to realize a network of distributed agents that continuously collect, process, share and transport information. The impact of such technologies in our everyday life is expected to be massive, as it will enable innovative applications that will profoundly change the world around us. Remotely monitoring the conditions of patients and elderly people inside hospitals and at home, preventing catastrophic failures of buildings and critical structures, realizing smart cities with sustainable management of traffic and automatic monitoring of pollution levels, early detecting earthquake and forest fires, monitoring water quality and detecting water leakages, preventing landslides and avalanches are just some examples of life-enhancing applications made possible by smart ubiquitous computing systems. To turn this vision into a reality, however, new raising challenges have to be addressed, overcoming the limits that currently prevent the pervasive deployment of smart devices that are long lasting, trusted, and fully autonomous. In particular, the most critical factor currently limiting the realization of ubiquitous computing is energy provisioning. In fact, embedded devices are typically powered by short-lived batteries that severely affect their lifespan and reliability, often requiring expensive and invasive maintenance. In this PhD thesis, we investigate the use of energy-harvesting techniques to overcome the energy bottleneck problem suffered by embedded devices, particularly focusing on Wireless Sensor Networks (WSNs), which are one of the key enablers of pervasive computing systems. Energy harvesting allows to use energy readily available from the environment (e.g., from solar light, wind, body movements, etc.) to significantly extend the typical lifetime of low-power devices, enabling ubiquitous computing systems that can last virtually forever. However, the design challenges posed both at the hardware and at the software levels by the design of energy-autonomous devices are many. This thesis addresses some of the most challenging problems of this emerging research area, such as devising mechanisms for energy prediction and management, improving the efficiency of the energy scavenging process, developing protocols for harvesting-aware resource allocation, and providing solutions that enable robust and reliable security support. %, including the design of mechanisms for energy prediction and management, improving the efficiency of the energy harvesting process, the develop of protocols for harvesting-aware resource allocation, and providing solutions that enable robust and reliable security support

    Structural Health Monitoring for Bridge Structures using Smart Sensors

    Get PDF
    Structural health monitoring (SHM) has drawn significant attention in recent decades because of its potential to reduce maintenance costs and increase the reliability of structures. An important class of structures that can potentially benefit from SHM are bridges, many of which are structurally deficient due to lack of adequate maintenance. Through condition assessment of these bridges, an effective plan of maintenance can be determined, offering the possibility to prolong service life, as well as to prevent catastrophic disasters due to sudden collapse. To date, numerous damage detection algorithms have been proposed. Still, challenges remain in applying such algorithms to monitor bridges in the field. In reality, the extent of an SHM system is limited by available budgets, which define the number of sensors that can be deployed. A solution to include many sensors within a limited budget with increased efficiency is to use a Wireless Smart Sensor Network (WSSN) because of the merits of low cost, easy installation, and effective data management. An acceleration-based SHM algorithm for WSSN has been developed with a decentralized network topology. This approach has been implemented into a modularized damage detection service. The SHM application is designed to leverage the on-board computation capability of the WSSN, reducing the transmitted data size by distributing the computation burden. The SHM application for WSSN has been validated in lab-scale experiments on a truss bridge model. Nonetheless, the real challenge of SHM is in the deployment on full-scale bridges for continuous monitoring. The usability and stability of WSSN has been validated on an architectural staircase in the Siebel Center. Based on the usability investigation, the deployment of the world’s largest WSSN on the Jindo Bridge, a cable-stayed bridge has been achieved in South Korea. The main purpose of the deployment was to validate the bridge monitoring system using WSSN and energy harvesting devices in a long-term manner. The ultimate goal of this report is to deploy the developed on-board decentralized damage identification application using WSSN on a historic truss bridge. As a first step, a series of dynamic tests were conducted for modal analysis using both wired and wireless sensor systems. During the tests, the functionality of the wireless sensor system with ISHMP Services Toolsuite was confirmed. For model-based damage identification approach developed herein, a finite element (FE) model was created. The initial FE model was updated based on a visual estimate of the corrosion. The updated model was used to generate baseline information for damage detection. Finally, the WSSN-based autonomous SHM system using the decentralized damage detection application was deployed on the historic bridge. The permanent SHM system was installed on the bridge, and the damage detection application was successfully run on the bridge. The damage detection results using the decentralized comprehensive application will be compared with those from the centralized approach using WSSN. The performance of WSSN and energy harvesting devices will be evaluated. In summary, this report provides a robust SHM system for bridge structures in use of WSSN.Financial support for this research was provided in part by a Samsung Scholarship, the National Science Foundation (NSF) under NSF grant CMS 06-00433 (Dr. S. C. Liu, Program Manager), and the Global Research Network program from the Natural Research Foundation in Korea (NRF-2008-220-D00117).Ope

    Comprehensive Survey and Taxonomies of False Injection Attacks in Smart Grid: Attack Models, Targets, and Impacts

    Full text link
    Smart Grid has rapidly transformed the centrally controlled power system into a massively interconnected cyber-physical system that benefits from the revolutions happening in the communications (e.g. 5G) and the growing proliferation of the Internet of Things devices (such as smart metres and intelligent electronic devices). While the convergence of a significant number of cyber-physical elements has enabled the Smart Grid to be far more efficient and competitive in addressing the growing global energy challenges, it has also introduced a large number of vulnerabilities culminating in violations of data availability, integrity, and confidentiality. Recently, false data injection (FDI) has become one of the most critical cyberattacks, and appears to be a focal point of interest for both research and industry. To this end, this paper presents a comprehensive review in the recent advances of the FDI attacks, with particular emphasis on 1) adversarial models, 2) attack targets, and 3) impacts in the Smart Grid infrastructure. This review paper aims to provide a thorough understanding of the incumbent threats affecting the entire spectrum of the Smart Grid. Related literature are analysed and compared in terms of their theoretical and practical implications to the Smart Grid cybersecurity. In conclusion, a range of technical limitations of existing false data attack research is identified, and a number of future research directions is recommended.Comment: Double-column of 24 pages, prepared based on IEEE Transaction articl
    • 

    corecore