
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

Spring 4-23-2013

Collaborative Communication And Storage In
Energy-Synchronized Sensor Networks
Mingsen Xu

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Xu, Mingsen, "Collaborative Communication And Storage In Energy-Synchronized Sensor Networks." Dissertation, Georgia State
University, 2013.
https://scholarworks.gsu.edu/cs_diss/74

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

COLLABORATIVE COMMUNICATION AND STORAGE IN

ENERGY-SYNCHRONIZED SENSOR NETWORKS

by

Mingsen Xu

Under the Direction of WenZhan Song

ABSTRACT

In a battery-less sensor network, all the operation of sensor nodes are strictly con-

strained by and synchronized with the fluctuations of harvested energy, causing nodes to

be disruptive from network and hence unstable network connectivity. Such wireless sensor

network is named as energy-synchronized sensor networks. The unpredictable network dis-

ruptions and challenging communication environments make the traditional communication

protocols inefficient and require a new paradigm-shift in design. In this thesis, I propose a

set of algorithms on collaborative data communication and storage for energy-synchronized

sensor networks. The solutions are based on erasure codes and probabilistic network codings.

The proposed set of algorithms significantly improve the data communication throughput

and persistency, and they are inherently amenable to probabilistic nature of transmission in

wireless networks.

The technical contributions explore collaborative communication with both no coding

and network coding methods. First, I propose a collaborative data delivery protocol to ex-

ploit the optimal performance of multiple energy-synchronized paths without network coding,

i.e. a new max-flow min-variance algorithm. In consort with this data delivery protocol, a

localized TDMA MAC protocol is designed to synchronize nodes’ duty-cycles and mitigate

media access contentions. However, the energy supply can change dynamically over time,

making determined duty cycles synchronization difficult in practice. A probabilistic ap-

proach is investigated. Therefore, I present Opportunistic Network Erasure Coding protocol

(ONEC), to collaboratively collect data. ONEC derives the probability distribution of coding

degree in each node and enable opportunistic in-network recoding, and guarantee the recov-

ery of original sensor data can be achieved with high probability upon receiving any sufficient

amount of encoded packets. Next, OnCode, an opportunistic in-network data coding and

delivery protocol is proposed to further improve data communication under the constraints

of energy synchronization. It is resilient to packet loss and network disruptions, and does

not require explicit end-to-end feedback message. Moreover, I present a network Erasure

Coding with randomized Power Control (ECPC) mechanism for collaborative data storage

in disruptive sensor networks. ECPC only requires each node to perform a single broadcast

at each of its several randomly selected power levels. Thus it incurs very low communication

overhead. Finally, I propose an integrated algorithm and middleware (Ravine Stream) to

improve data delivery throughput as well as data persistency in energy-synchronized sensor

network.

INDEX WORDS: Collaborative network coding, Probability distribution, Opportunistic
routing, Disruptive sensor networks

COLLABORATIVE COMMUNICATION AND STORAGE IN

ENERGY-SYNCHRONIZED SENSOR NETWORKS

by

MINGSEN XU

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2013

Copyright by
Mingsen Xu

2013

COLLABORATIVE COMMUNICATION AND STORAGE IN

ENERGY-SYNCHRONIZED SENSOR NETWORKS

by

MINGSEN XU

Committee Chair: WenZhan Song

Committee: Xiaolin Hu

Yingshu Li

Yichuan Zhao

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2013

iv

DEDICATION

This dissertation is dedicated to Georgia State University.

v

ACKNOWLEDGEMENTS

My doctorate venture would not be complete without the support of many people.

First, I want to express my sincere gratitude to my advisor Professor WenZhan Song, for

his generous financial support throughout my PhD study. This dissertation would not be

possible without his insightful guidance and patience over the last four and half years. He

shares his great research experience and passion with me. He not only motivates me to

learn and grow along the phd course, but also surpass him in the future. It is not only

his invaluable academic knowledge and methodologies, but also his passionate attitude and

discipline to succeed my future career development.

I am also very grateful to my parents for their unconditional love and support for all these

years, even I am barely around. My entire life would not be considered perfect until I met

my wife, ChuiYing (Eunice) Law in 2009. She shows me great resolution and determination,

and inspires me every single day. Every time I struggle and look for the support, she is

always there to be with me, supporting and encouraging me throughout the tough moments.

My euphoric time is filled with much more joyful memory with her presence. I thank her

and love her from the bottom of my heart.

I also made many great friends at both Washington State University and Georgia State

University during my PhD endeavor. Renjie Huang, Gang Lu and Xiaogang Yang, we are

involved in the same research team at WSU, live in the same apartment, play and hang

out all together for most of time. The joyful time reminds me of the beautiful nature scene

and atmosphere of Vancouver Washington. I am happy for the graduation and good career

development of them. They are still available for chatting from time to time. Debraj De,

Lei Shi, Song Tan, Qinjun Xiao and Lei Zhang, we start our research journey in a brand

new environment - GSU in 2010. During past two years, all of them show me passion,

perseverance and ability on finding and solving difficult problems. I would like to thank

them for their superior intelligence and time spent on helping me with countless discussions.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS xvi

CHAPTER 1 INTRODUCTION 1

1.1 Introduction . 1

1.1.1 Challenges from Environment . 1

1.1.2 Challenges from Energy Harvesting 2

1.2 Our Approach . 3

CHAPTER 2 RELATED WORKS 5

2.1 Optimal Data Rate Assignment in Data Communication 5

2.2 Duty-cycled MAC Protocol . 6

2.3 Erasure Codes . 7

2.4 Micro Solar Power System . 7

2.5 Network Coding in Collaborative Data Communication 8

2.6 Network Coding in Collaborative Data Storage 11

CHAPTER 3 COLLABORATIVE DATA COMMUNICATION WITH-

OUT CODING 15

3.1 Problem Statement and Motivation 15

3.2 System Design . 18

3.2.1 Network Algorithm for Throughput Maximization and Fairness . 18

3.2.2 Localized TDMA MAC Protocol for Duty-cycle Synchronization . 26

vii

3.3 System Evaluations . 28

3.3.1 Experimental Evaluations . 28

3.3.2 Simulation Evaluations . 33

CHAPTER 4 DATA COMMUNICATION WITH ENERGY-FREE NET-

WORK CODING (ONEC) 35

4.1 ONEC Protocol Design . 37

4.1.1 Network Initialization and Update 38

4.1.2 Recursive Degree Deconvolution 39

4.1.3 Opportunistic In-Network Recoding 49

4.1.4 Data Decoding . 51

4.2 Protocol Implementation Detail . 51

4.3 Performance Evaluation . 53

4.3.1 Simulation Setup . 53

4.3.2 Network codes validation . 54

4.3.3 Communication evaluation . 54

4.3.4 Energy and resource evaluation 59

4.3.5 Robustness evaluation . 63

CHAPTER 5 DATA COMMUNICATION WITH ENERGY-SYCHRONIZED

NETWORK CODING (ONCODE) 67

5.1 Preliminaries . 68

5.1.1 Network Model . 68

5.1.2 Erasure Codes . 70

5.2 Algorithm Design and Analysis . 71

5.2.1 Design Overview . 71

5.2.2 Adaptive Source Encoding . 72

5.2.3 Opportunistic In-Network Encoding 75

5.2.4 Algorithm Analysis . 78

viii

5.3 System Design and Implementation 83

5.3.1 Energy-Synchronization Module 85

5.3.2 Protocol Implementation . 86

5.4 Experimental Evaluation . 87

5.4.1 Simulation Evaluation . 87

5.4.2 Testbed Evaluation . 91

5.5 Related Works . 94

5.5.1 Micro Solar Power System . 94

5.5.2 Network Coding for Data Delivery 95

CHAPTER 6 DATA PERSISTENCE WITH STORAGE-CONSTRAINED

NETWORK CODING (ECPC) 96

6.1 Distributed Erasure Coding with Randomized Power Control . 98

6.1.1 Network Model and Problem Statement 98

6.1.2 ECPC In a Nutshell . 99

6.2 ECPC Algorithm Design and Analysis 103

6.2.1 Randomized Power Control . 103

6.2.2 Distributed Erasure Coding . 106

6.2.3 Analysis on Pseudo Randomness 109

6.3 Protocol Implementation . 111

6.4 Performance Evaluation . 112

6.4.1 Communication Overhead . 113

6.4.2 Data Recovery Ratio . 116

6.4.3 Data Recovery under Disruptive Networks 117

6.4.4 Evaluation of Long-term Stability 119

CHAPTER 7 INTEGRATED SOLUTION FOR DATA COMMUNICA-

TION AND STORAGE IN ENERGY-SYNCHRONIZED

SENSOR NETWORKS (RAVINE STREAM) 121

ix

7.1 Ravine Stream Algorithms and Analysis 122

7.1.1 Determine Data Acceptance . 124

7.1.2 Probabilistic Data Redistribution 125

7.1.3 Algorithm Analysis . 133

7.2 Performance Evaluation . 135

7.2.1 Experimental setup . 135

7.2.2 Data persistence under disruptive networks 136

7.2.3 Storage cost . 139

7.2.4 Energy cost . 139

CHAPTER 8 CONCLUSIONS 143

REFERENCES . 144

x

LIST OF TABLES

Table 3.1 List of notations in max-flow and min-variance algorithm 17

Table 4.1 Decoding comparisons with different symbol sizes under lossy links 65

Table 5.1 List of notations in protocol design and analysis 69

Table 5.2 Analytical comparison of communication overheads 83

Table 6.1 Notation in ECPC Algorithm . 100

Table 7.1 Notation in Algorithm . 124

xi

LIST OF FIGURES

Figure 1.1 Protocol Implementation of Ravine Stream 4

Figure 3.1 Illustration of original network topology and node capacity. In a many-

to-one data collection network, a Virtual Source (VS) can be added to

apply max network flow algorithm. 16

Figure 3.2 Illustration of data collection tree, where 4 nodes are starved. . . 16

Figure 3.3 Illustration of max flow network generated by our “loop-free” max-

flow algorithm, where only 1 node is starved. In this and following

examples, we assume each node has unit flow demand. 17

Figure 3.4 Max-flow network with long push loop 19

Figure 3.5 Virtualization example. 27

Figure 3.6 Outdoor experiment test-bed of 15 nodes synchronized by WWVB

radio. 29

Figure 3.7 The snapshot of topology of testbed. The upper number inside the

circle denotes the node ID, the lower one is the node capacity. . . 29

Figure 3.8 Data throughput. 30

Figure 3.9 Average delivery delay in the network. 30

Figure 3.10 The number of times of depleting quota energy. 31

Figure 3.11 The CDF of expected life time in the network. 33

Figure 3.12 Maximum and Average Delay in different network sizes. 33

Figure 3.13 Average throughput per node against different network sizes. . . . 33

xii

Figure 4.1 The Comparison of network erasure code and individual LT code in

network. 36

Figure 4.2 Overview of ONEC working flow. 38

Figure 4.3 Flow chart for recursive degree distribution deconvolution. 42

Figure 4.4 Illustration of recursive degree distribution deconvolution. 43

Figure 4.5 Opportunistic in-network recoding. 50

Figure 4.6 Software Implementation on TinyOS, with shaded part as our ONEC

components. 52

Figure 4.7 Opportunistic network erasure codes validation. 55

Figure 4.8 The number of encoded packets needed to decode the raw data set is

compared between RSD and ONEC. 55

Figure 4.9 CDF of decoding success probability under different sent packet num-

bers. 56

Figure 4.10 Total amount of packet transmissions required under different network

size. 56

Figure 4.11 Total amount of packet transmissions required with varying sizes of

input symbol. 57

Figure 4.12 Energy consumption of different coding schemes 60

Figure 4.13 Average buffer size in forwarding nodes 61

Figure 4.14 Packet delivery ratio under different link loss rates. 61

Figure 4.15 CDF of decoding success probability under different link loss rates. 62

Figure 4.16 Symbol decoding ratio in the disruptive networks. 62

xiii

Figure 5.1 Example of transmission latency within one hop. 74

Figure 5.2 Operation flowchart for opportunistic in-network recoding. . . . 77

Figure 5.3 Illustration of theoretical analysis 84

Figure 5.4 Energy-Synchronization Module. (a) Front View: Solar Cell; (b) Rear

View: TelosW mote powered by PMS with ultra-capacitor as energy

storage unit. 84

Figure 5.5 Protocol Implementation. 86

Figure 5.6 Impact of system parameter η and Communication overhead. . . . 88

Figure 5.7 Average effective throughput under different energy maps. Each block

indicates the energy in each node, and different gray scales denote

energy levels. Energy is in the unit of 10mW , “mean” is the mean

energy value across network, and σ is the energy deviation. 89

Figure 5.8 Impact of system parameter λ and ρ. 90

Figure 5.9 Energy trace: (top) trace of 12-hr harvested energy in mW, (mid-

dle) node energy consumption, and (bottom) residual voltage of ultra-

capacitor . 92

Figure 5.10 Average throughput over time. 93

Figure 5.11 Average Delivery Latency. 93

Figure 6.1 ECPC Overview. 100

Figure 6.2 ECPC example. 102

Figure 6.3 An example for a parity-check matrix H. 107

Figure 6.4 ECPC Protocol Implementation 112

xiv

Figure 6.5 Communication overhead: total message cost 114

Figure 6.6 Total energy consumption in distributed data storage schemes. . . 115

Figure 6.7 The communication overhead: total termination time. 115

Figure 6.8 The decoding performance under varying network sizes: Max data

recovery ratio for different network sizes 116

Figure 6.9 The decoding performance under varying network sizes: sequential

snapshots of data recovery ratio as time elapses. 117

Figure 6.10 Recovery ratio under varying failure probabilities 118

Figure 6.11 The decoding performance with varying percentage of failure nodes at

early encoding stages. 118

Figure 6.12 The decoding performance with varying percentage of failure nodes at

middle encoding stages. 119

Figure 6.13 Recovery ratio under different sensor periods 120

Figure 7.1 Example of transmission power control 129

Figure 7.2 Average TX power level for data redistribution. 130

Figure 7.3 Illustration of symbol recoding in rebroadcast node. 132

Figure 7.4 Data redundancy under various node densities. 133

Figure 7.5 Data delivery ratio over different storage spaces (Node Failure Proba-

bility is 20%). 137

Figure 7.6 Data delivery ratio over different failure probabilities (storage=1MByte). 138

Figure 7.7 Data delivery ratio v.s. amount of data generators (storage=1MByte,

failure prob. = 20%). 139

xv

Figure 7.8 Available storage space ratio v.s. amount of data generators (storage=1MByte,

failure prob. = 20%). 140

Figure 7.9 Transmission Power Level Distribution. 141

Figure 7.10 Energy Consumption Rate (storage=1MByte). 141

xvi

LIST OF ABBREVIATIONS

• LT - Luby Transform

• ISD - Ideal Soliton Distribution

• RSD - Robust Soliton Distribution

• WSN - Wireless Sensor Network

• TDMA - Time Division Multiple Access

• MAC - Media Access Control

• CTP - Collection Tree Protocol

• LDPC - Low Density Parity Check

• EXOR - Extreme Opportunistic Routing

• ONEC - Opportunistic Network Erasure Coding

• OnCode - Opportunistic in-Network Coding

• ECPC - Erasure Coding with randomized Power Control

• PRR - Packet Reception Rate

• HMM - Hidden Markov Model

• XOR - Exclusive OR

• TCP - Transport Control Protocol

• TOSSIM - TinyOS Simulator

• QoS - Quality of Service

xvii

• ASE - Adaptive Source Encoding

• OINE - Opportunistic In-Network Encoding

• EFU - Encode and Forward Utility

• PMS - Power Management System

• ESM - Energy Synchronization Module

• EWMA - Exponentially Weighted Moving Average

• EDFC - Exact Decentralized Fountain Codes

• RCDS - Raptor Codes based Distributed Storage

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Sensor networks consist of spatially distributed devices communicating with radios and

cooperatively sensing physical or environmental conditions. They have emerged as a key

technology to enable many critical social and military applications. It is especially useful in

catastrophic or emergency scenarios, such as floods, fires, volcanos, battlefields, where human

participation is too dangerous and infrastructure networks are impossible or too expensive.

1.1.1 Challenges from Environment

Sensor networks provides people with great facility to enable different applications in

various challenging environments. However, those challenging environments also pose signif-

icant challenges to network sustainability and reliability at the same time. For example, in

a volcano monitoring application [1], the occasional eruptions, rock avalanches, landslides,

earthquakes, gas/steam emissions, as well as harsh weather conditions, often exacerbate link

qualities and even destroy stations. In a battleeld surveillance application [33], the sensors

may be jammed, hijacked or destroyed by the adversaries. In the mountainous forest en-

vironment, the communication link bandwidth and reliability is severely limited by leaves,

branches, and rugged terrain. In addition, weather conditions, such as heavy rain, wind, and

snow, may further challenge network connectivity. In those challenged sensor networks, a

predictable and stable path may never exist, the network connectivity is intermittent, and a

node could suddenly appear or disappear. The link quality may vary significantly and asym-

metric links are common. The rare upload opportunity and unpredictable node disruptions

often result in data loss. Since the unpredictable node disruptions often result in data packet

lost, which makes traditional reliable data transfer protocols infeasible. On particular, the

2

lost of important ACK (acknowledgment) or NACK (negative acknowledgment) message

can cause message implosion disaster in reliable data transfer. This demands a new design

paradigm to collaboratively utilize the limited communication, energy and storage resources

to combat network disruptions and maintain reliable operations.

1.1.2 Challenges from Energy Harvesting

Renewable energy holds great promise of making wireless sensor network truly battery-

less. It will enable sensor nodes to sense, compute and communicate for a prolonged and

even perpetual lifetime. However, the amount of harvested energy has dynamic and volatile

patterns, since it depends on many uncertain environmental factors (such as weather, light

intensity, temperature etc.). Energy synchronization is the key to meet the lifetime require-

ment in battery-less sensor networks, preventing the residual energy from being overdrawn.

The term “energy synchronization” means that total energy consumption due to node oper-

ations (including radio communication, sensing and computing) need to match the dynamic

harvested energy or residual energy constraints.

In the literature, several works (such as in [2]) adapt radio duty cycle in MAC protocol

to different energy constraints. Other existing methodologies, such as opportunistic routing

and joint energy-routing optimization were proposed to deliver data collaboratively. Oppor-

tunistic routing is adopted [3–5] to take advantage of multiple transmission opportunities

to improve data throughput. Opportunistic routing allows packet overhearing. Any node

closer to sink and receiving packet, has opportunity to forward the packet. Random linear

coding is combined to make full use of spatial diversity in the work of [4, 5]. The reduced

communication overhead further enhances the network throughput. Source nodes demand

explicit ACK feedback message from decoder to advance encoding blocks. The reliance on

ACK message for reliable data delivery makes it difficult in such a disruptive multi-hop net-

work. More importantly, existing solutions are unaware of dynamic energy fluctuations in

nodes. The obliviousness of energy may cause nodes to fail in practice. Joint optimization [6]

considers energy and routing together for the decisions and gives an optimal solution. But

3

joint optimization requires determined communication pattern and energy information and

intensive computation cost, which prevents it from being conducted dynamically on sensor

nodes. Designing efficient data delivery protocol, which fully take advantages of both hetero-

geneous nodal energy constraints and transmission opportunities, remains under-explored.

An appropriate protocol design needs to allow for the unpredictable disruptions due to nodal

energy constraints, and at the same time utilize opportunistic transmission with minimum

cost. Such a challenging data communication environment makes the traditional data deliv-

ery protocol insufficient, thus it requires a paradigm-shifting design.

1.2 Our Approach

The technical contributions explore collaborative communication with both no cod-

ing and network coding methods. First, I propose a collaborative data delivery protocol

to exploit the optimal performance of multiple energy-synchronized paths without network

coding, i.e. a new max-flow min-variance algorithm. In consort with this data delivery pro-

tocol, a localized TDMA MAC protocol is designed to synchronize nodes’ duty-cycles and

mitigate media access contentions. However, the energy supply can change dynamically over

time, making determined duty cycles synchronization difficult in practice. A probabilistic

approach is investigated. Therefore, I present Opportunistic Network Erasure Coding pro-

tocol (ONEC), to collaboratively collect data. ONEC derives the probability distribution

of coding degree in each node and enable opportunistic in-network recoding, and guarantee

the recovery of original sensor data can be achieved with high probability upon receiving

any sufficient amount of encoded packets. Next, OnCode, an opportunistic in-network data

coding and delivery protocol is proposed to further improve data communication under the

constraints of energy synchronization. It is resilient to packet loss and network disruptions,

and does not require explicit end-to-end feedback message. Moreover, I present a network

Erasure Coding with randomized Power Control (ECPC) mechanism for collaborative data

storage in disruptive sensor networks. ECPC only requires each node to perform a sin-

gle broadcast at each of its several randomly selected power levels. Thus it incurs very

4

low communication overhead. Finally, I propose an integrated algorithm and middleware

(Ravine Stream), illustrated in Figure 1.1 to improve data delivery throughput as well as

data persistency in energy-synchronized sensor network.

EnergyMeter Sensing Data

PowerControl

Sensing Application

Opportunistic Broadcasting

Opportunistic Broadcasting

Radio Control

Encode &
Recode Proc.

Reachability
Estimation

Distribution
Deconvolution

Ravine Stream

Tx
Control

ParityCheck &
Data Selection

Code Header
Preprocess

Opportunistic Network Interface

Energy Synchronization

HardwareSensor Mote Energy Supply Circuit

Charging Rate
Estimation

Residue Energy
Estimation

Energy
Consumption

Duty Cycle
Adjustment

RadioControl

EnergyMeter Sensing Data

Radio

Duty
Cycle

PacketReceive PacketSend

RadioSend RadioReceive

Raw Data

Packet Flow

Control Flow

Sensing Data

Voltage Sensing Data

Flash Storage

Adaptive Power
Control

Storage Space Nodal Utility

Tx Power
Distribution

I/O Storage

Network Erasure Coding

Figure 1.1 Protocol Implementation of Ravine Stream

The rest of thesis is organized as follows. Chapter 2 describes the related works in

the literature. Chapter 3 discuss the collaborative data delivery without network coding,

exploring the optimal data delivery paths and synchronizing nodes’ duty cycles. Chapter 4

introduces opportunistic network coding method to collaboratively collect data and improve

data communication throughput. Chapter 5 propose OnCode by considering the real energy

constraints in sensor motes. And chapter 6 describe ECPC distributed data storage to

preserve data persistency. Chapter 7 integrates the collaborative communication and storage

into the final solution, “Ravine Stream”, for energy-synchronized sensor networks. Chapter

8 concludes this work.

5

CHAPTER 2

RELATED WORKS

2.1 Optimal Data Rate Assignment in Data Communication

The max-min optimal rate assignment for network fairness have been studied in a few

related works. In [7], it presents an iterative linear programming solution, which has the

same goal as our max-flow and min-variance algorithm. They proved that there is one and

only one such assignment for a given configuration of the sensor networks. Its worst-case

time complexity is O(|V |2C(|E|)), where C(|E|) is the complexity of linear programming

with O(|E|) variables and constraints. The complexity of C(|E|) is not given in the paper,

however, it is known to be polynomial O(|E|α)(α ≥ 1), which is at least O(|E|). Recall that

the time complexity of our max-flow and min-variance algorithm is bounded by O(|V |2|E|)
which is lower. [7] did not provide any simulation or test bed results. In [8], it aims at

designing a solution for fair and high throughput data extraction from all nodes in the

presence of renewable energy sources. It gives both a centralized algorithm and distributed

algorithm. The centralized algorithm is similar to [7], except that they assume resources are

dynamic and vary over the time. However, the asynchronous distributed algorithm assumes

that the data collection flow is a tree structure, so it may not achieve maximum throughput

as discussed earlier in the paper.

A follow-up work [6] from the same group further considers resource dynamic over time

in a rechargeable sensor network and proposes to adapt the sampling rate and route with

the objective of maintaining the battery at a target level. Some related works have studied

congestion control and fair rate assignment schemes. [9] proposes a distributed rate allocation

scheme (IFRC) without end-to-end reliability. IFRC scheme detects the congestion point,

and advertises the congestion by overhearing each other’s messages, finally converges to a rate

assignment, which is fair and avoids congestion collapse. A more recent work [10] presents

6

a reliable centralized algorithm (RCRT) to allocate the fair date rate to each node, which

can achieve more than twice the rate achieved by IFRC. Those works are not optimized

for heterogeneous duty-cycled networks, where optimization in MAC and routing layer is

necessary. Our work differs from the aforementioned work: they are designed as transport

protocols for sensor network which are evaluated on either static routing trees or dynamic

routing trees. However, our proposed algorithm, involving network and MAC protocols,

can adjust fair flows on multiple routing paths, and achieve the maximum flow and fairness

simultaneously.

2.2 Duty-cycled MAC Protocol

The related works on MAC protocol design for duty-cycled sensor networks are plenti-

ful. A common goal is to reduce the energy consumption, while increasing the possibilities

of rendezvous between sender and receiver. [11] provides a distributed transmission slot

scheduling protocol to save power consumption in wireless sensor networks. But the control

message would be appreciable under large sensor network, and “hidden terminal” could cause

the collision of advertisement or confirmation messages. In B-MAC [12] and X-MAC [13],

preambles are used by sender to wake up receiver. In contrast, RI-MAC [14] let the receiver

wake up the sender to transmit and can avoid buffer overflow and data losses. The current

consumption of preambles or control messages is not necessarily small. Our proposed algo-

rithm differs in synchronizing the wake-up scheduling by allocating wake-up time slot based

on MaxFair flow ID and nodes’ hop-count, reducing the energy consumption on wake-up

scheduling.

[2] designs a localized energy synchronization control mechanism that shuffles or adjusts

the working schedule of a node to optimize delays in the presence of varying energy budget

over time. In their work, a delay model for cross-traffic at individual nodes is derived

and a stair effect is observed in low-duty-cycle networks. More recently, [15] proposes a

proactive solutions for minimizing sink-to-node communication delay in energy-harvesting

sensor networks. They introduce a delay maintenance algorithm with minimum energy

7

consumption. In both works, they assume node duty-cycles can be augmented to reduce

delays. We note that in an energy-synchronized network, each node’s duty-cycle shall be

determined by its residual energy (or energy harvesting rate) and augmenting duty-cycles

may sacrifice lifetime. Therefore, we utilizes multiple paths to minimize delays.

2.3 Erasure Codes

Erasure codes enable the recovery of k symbol from a subset of n symbols. It has

been employed in many applications. For example, the most widely applied erasure codes is

Reed-Solomon codes. Additionally, LDPC [16] codes and fountain codes were also designed

to allow for low complexity and computation cost encoding and decoding.

LT Codes [17] is the first effective implementation of erasure codes. LT Codes propose a

Robust Soliton Distribution (RSD), which is essential to the success of decoding process. The

theoretical analysis guarantees that the decoding can succeed with high probability under the

proposed degree distribution. Raptor Codes [18] is designed to yield a encoding solution of

less packet complexity. Raptor codes reduce the degree to a constant factor of raw symbols

size by inserting a pre-code stage before LT codes. Though Raptor codes requires a less

decoding complexity, the pre-code stage is not rateless and lost packets are possible to fail the

decoding. LT codes are completely rateless coding schemes, in which random encoded packets

are independent from each other and lost packets do not compromise the entire decoding. In

other words, it can be applied to combat the disruptive network communications. Therefore

we focus on the LT codes and design a LT codes based network coding to cope with data

collection in disruptive sensor networks.

2.4 Micro Solar Power System

Recent research works on micro-solar system have shown the potential of driving low-

power devices without battery, such as Prometheus [19], AmbiMax [20], Heliomote [21] solar

system, and Trio [22]. The work in [23] proposes a model and guideline for analyzing the

design of micro-solar system, based on the empirical study of Heliomote and Trio system.

8

The work in [24] proposes a leakage-aware energy control layer to adapt the operation of ap-

plication to harvesting energy. [25] proposes energy-harvesting low-power device, EnHANTs.

[26] study how to allocate energy spending rate with various predictable energy inputs. Our

contribution is proposal of a coding-based network protocol that can adaptively utilize the

energy from micro-solar power system. It is evaluated on a real micro-solar powered indoor

testbed.

Based on the solar-powered devices, SolarStore in [27] provides a storage-centric service,

which adaptively balances between the data reliability and data sensing. SolarCodes [28]

maximize the usage of surplus energy by adjusting the redundant factor of erasure coding

in each link respectively. OnCode protocol is distinguishable from two perspectives: (1)

OnCode synchronizes data delivery with any energy constraints, not only of surplus energy,

but also of insufficient energy. (2) OnCode exploits opportunistic routing instead of a pre-

determined routing, which reduces the coding overhead significantly. The diversity and

randomness in opportunistic coding improve quality of data delivery by enhancing flow

throughput and fairness.

2.5 Network Coding in Collaborative Data Communication

DCAR [29] discover available paths and detect potential network coding opportunities

between a given source and destination, eliminating two-hop coding limitation. It also pro-

poses a routing metric CRM to compare “coding-possible with “coding-impossible paths.

However, DCAR is based the “best-path” routing, without considering lossy link and dy-

namic characteristics of wireless channel. In disruptive wireless networks, the coding oppor-

tunity on a path could vary according to different traffic and link quality. CORE in [30]

proposes a coding-aware opportunistic routing protocol. It improves the link-level data de-

livery reliability and network throughput by combing hop-by-hop opportunistic forwarding

and localized inter-flow network coding.

The aforementioned schemes are deterministic network coding, where coding opportu-

nities are identified beforehand, and nodes are assigned with fixed coding responsibilities.

9

Thereafter, they are heavily reliant on the topology of the network and it may be a challenge

in disruptive wireless network.

Distributed LT Codes [31, 32] gives a data relay model, based on which it derives in-

dividual degree distribution for each source node one hop away from relay. The degree

deconvolution can yield a received packet degree distribution closely approaching to RSD.

We distinguish our work by designing a network coding that not only apply to a more general

data collection structure, but also employ the opportunistic routes to construct the random

structure in disruptive network.

There are another recent work [33] which applies LT codes to network coding for data

collection in wireless sensor networks. In LTNC [33], if a node needs to generate a recoded

packet, it first generates an encoded packet of degree d, where d is drawn from a Robust

Soliton Distribution, selecting the packets in the buffer; second, it refines the obtained packet

so that the variance of the distribution of degrees for native symbol is reduced. LTNC

maintains the RSD property of encoded packet in a decentralized way which in turns make

a decoding process of low computation cost. However, it introduces the intermediate coding

latency and requires a considerable amount of memory space to store the received packets

for future encoding. Moreover, it does not design and evaluate the scheme in the context

of disruptive sensor network. To the best of our knowledge, our proposed ONEC protocol

is the first coding scheme to solve the problem of achieving reliable data transmission by

applying low-complexity network coding in disruptive communication network.

The opportunistic routing proposed in ExOR [3] utilizes the probabilistic receiving in

multiple hops distance to accelerate the packet forwarding. MORE [4] uses random linear

coding to mix packets before forwarding them. It has advantages over the ExOR [3], which

is first routing protocol with opportunistic forwarding. MORE [4] takes advantages of spa-

tial reuse by random linear coding to ease the problem of forwarder selection in ExOR, and

improve the data delivery quality. CCACK [5] utilizes a Null-Space Based (NSB) message

to acknowledge the reception of encoded packets, which suppress not only redundant packet

retransmission, but also the non-innovative encoded packets. It is because that neighbors,

10

hearing NSB messages, can determine if it can generate another linearly independent pack-

ets for its neighbors. Though CCACK improves MORE by suppressing overhead packet

from transmission, the time of moving to next data segment still relies on the ACK from

destination. Observing the delay introduced in data delivery of segmented network coding,

SlideOR in [34] explores sliding window mechanism. The random linear coding is employed

in SlideOR, since the decoder can determines the up-to-date decodable data by Gaussian

Elimination of received packets. However, SlideOR is sensitive to ACK notification from

decoder to advance encoding window, which would be impractical in disruptive communica-

tion environments. SlideOR does not consider spatial diversity and opportunistic coding to

improve coding gain and quality of data delivery. GROWTH [35] achieves the data reliabil-

ity in a catastrophic network. The main contribution is that growth codes increase its code

degree over time, which maximize the partial decoding probability at any given time during

the decoding process. We evaluate and compare our ONEC schemes with these two network

coding in section 7.2.

The difference of our OnCode work from previous approaches are: first, we use erasure

codes, which fully benefits from the low complexity of belief propagation decoding. Second,

OnCode maximizes the space diversity and probabilistic packet transceiving by opportunistic

in-network encoding. ONEC [36] is the work close to OnCode, which explores network

erasure coding in disruptive network. However, ONEC requires a collection tree structure

to conduct recursive deconvolution of degree distribution, which costs considerable overhead

whenever updating. OnCode conduct deconvolution based on distributed packet reachability

estimation, with low communication overhead. Moreover, ONEC costs more overhead and

can not adapt to network dynamics well, especially in energy-synchronized sensor network

where the energy resource are dynamic volatile over time. OnCode self-tunes the data coding

and probabilistic forwarding in-situ with energy distribution and variations.

11

2.6 Network Coding in Collaborative Data Storage

In [37], Dimakis et al. propose a class of distributed erasure codes to solve the data

collection query problem. The contribution of paper is to prove that O(ln(k)) “pre-routed”

packets for each data node is sufficient such that collecting packets from any k of n storage

nodes can retrieve raw data with high probability. Essentially, Dimakis et al.’s contribution is

to make this random bipartite graph as sparse as possible by constructing a perfect matching

w.h.p., which ensure the codes are decodable by proof. Another interesting point in [37] is

the connection between distributed erasure codes and network codings. Distributed erasure

codes can be viewed as the linear network codes between data nodes and storage nodes

placed in distinct parts of a random bipartite graph. There is no explicit routes between

data nodes and storage nodes, because the packets are randomly generated. In [38], Dimakis

et al. studied the problem of establishing fountain codes for distributed storage and data

collection. The technical contribution of [38] is a degree distribution for fountain codes, which

enables the “pre-routing” degree of each data node is bounded by a constant a.a. (almost

always). Later a randomized algorithm is also proposed to find the random “pre-route”

between each encoded packet and raw data on a given grid topology.

[39] provides a LT codes based network coding to solve the data persistence problem

in a large-scale network. The contribution is to find random routes between data node and

encoded packet using random walks. Each data node disseminate a constant number of

packet to the network which will stop in specific storage node with probability computed

by its selected RSD (Robust Soliton Distribution) degree. To ensure the stop probability

closely approach to the desired degree distribution in the network, [39] utilized the Metropolis

algorithm to construct a transition probability for forwarding packets on random walks.

Nevertheless, max node degree is required for constructing Metropolis transition matrix,

which is hard to obtain in large-scale network, especially when topology changes. In [40],

Aly et al. designed two distributed data dissemination algorithms based on LT codes, which

eliminate the global knowledge of maximum node degree. In the first algorithm, network size

12

n and number of raw symbol k is still assumed available in each local node, while the n and

k is obtained by estimating the random walk data dissemination in the second algorithm.

Later in [41], Aly et al. extend to develop Raptor codes based coding scheme, which reduce

the packet demand from logarithmic to constant ε by inserting a proper pre-code in front

of LT codes. Most recently, a survey [42] provides a summary of research problems and

results in maintaining the reliability of distributed storage system by partially repairing the

encoded packets in poor nodes. This repairing demand a partial recovery of the replaced

codes, while the distributed network coding mentioned above focus on the full decoding of

the raw symbols from a sufficient subset of codes. In [38], Dimakis et. al. presented a new

degree distribution of fountain codes for distributed storage and data collection. It enables

the “pre-routing” degree of each data node to be bounded by a constant number almost

always. Later an algorithm is also proposed to find the random “pre-route” between each

encoded packet and raw data on a given grid topology. [43] proposes a “packet-centric”

approach for distributed data storage. It is also based on random walk mechanism. Every

rateless packet is initiated with a selected code degree. While the rateless packet randomly

traverses through the network, it collects the exact same number of encoding symbol from

uniformly distributed sensor data as its code degree, and terminates in a random node, which

may require different storage spaces at different nodes.

However, in those random walk based schemes [38–41, 43], the message cost is significant.

Our works reduce message cost during the codewords construction period to O(1) per node.

Each node only needs to perform several rounds of broadcast, and each node just needs

to encode several randomly heard packets to a single encoded packet at each period. It

also implies that the storage space requirement is uniform across the network. It has a fast

termination time, which means more resilience to network disruptions as well.

Distributed data storage proposed in [44, 45] maximize network storage capacity by

offloading local data to network when memory overflow. However, they do not consider

disruptive network conditions. In [46], the proposed scheme replicates data items on mobile

hosts to improve the data accessibility in case of partitioned network, by considering mobile

13

users’ access behavior, and read/write patterns. SolarStore in [27] maximizes the retrieval

data under energy and storage constraints. The proposed approach can dynamically adjust

the degree of data replication according to the energy and storage.

Recently, applying network coding to preserve the data persistence against disruptive

node conditions is a subject of increasing research interest [47–50]. The advantage of network

coding is to increase the diversity and redundancy of data packets so as to improve data

persistence. [35] proposes Growth Codes to preserve data persistence in a disruptive sensor

network. Growth Codes increase their code degrees on-the-fly efficiently as data is collected

in the gateway. The changing point of code degree is designed to maximize data persistence

when decoding. [51] proposes geometric random linear codes, to encode data in a hierarchical

fashion in geographic regions with different sizes. It enables to locally recover small amount

of node failures. In [52], Albano et al. construct a random linear coding for distributed

data storage with near linear message cost. In particular, the paper employs spatial gossip

to construct the linear codes. The idea is that each node i chooses another node j with

probability proportional to 1/|ij|3, where |ij| is the Euclidean distance between i and j.

It is proved that a data symbol from node i is delivered to a node j with the probability

1−O(1/n) after O(log3.4n) iterations. Thus, using spatial gossip constrains the total number

of transmissions during codes construction to O(n polylogn). The above methods explore

random linear coding, which requires data packets to traverse through network to generate

the linear codes. Our ECPC approach only needs to encode data received from localized

broadcast.

Tang et al. [53] formalizes storage depletion induced data redistribution as the minimum

cost flow problem, and devises a distributed data redistribution algorithm (PoF). [54] con-

sider the energy and storage depletion to maximize data preservation time. Valero et al. [55]

formulates the problem as an optimization problem and use Linear Programming to find the

optimal solution. A distributed algorithm (EDR2) is implemented for in-network storage

and later data retrieval. [56] proposes a probabilistic broadcasting based data redistribution

scheme. Their contribution is to derive a proper probability distribution for rebroadcasting

14

packet. Receivers encode data using LT codes and store them, so that a collector can retrieve

data by visiting small set of data. Hou et al. [57] seeks to maximize the minimum remaining

energy among the nodes storing data items. It presents a centralized greedy heuristic to

approximate the optimal solution under certain conditions.

The above optimization algorithms, though considering energy and storage constraint,

ignore an important fact that disruptive condition may happen in the course of data redis-

tribution. The disruptive network seriously challenges data redistribution. Distinct from

the existing works, our contributions of Ravine Stream are three fold: first, Ravine Stream

conducts probabilistic broadcasting with adaptive transmission power to overcome the dis-

ruptive connection during data redistribution. It has high energy efficiency and low message

redundancy. Second, in-situ recoding can reduce data redundancy in symbol wise. Third,

Ravine Stream generalizes the energy and storage constraints to nodal utility, which includes

failure probability and storage constraint. According to the nodal utility, data storage deci-

sion can be made distributively.

15

CHAPTER 3

COLLABORATIVE DATA COMMUNICATION WITHOUT CODING

3.1 Problem Statement and Motivation

In a duty-cycled sensor network, sensor node can stay in any of the three states: trans-

mitting, receiving and sleeping. Given a node u, we denote Tu, Ru and Su as its total time

duration of transmitting, receiving and sleeping respectively in the entire lifetime. Clearly,

the transmitting and receiving data rate of node u is proportional to the active time duration

of transmitting and receiving. If link loss ratio is also considered, then Tu and Ru repre-

sent the effective transmission and receive data rate of node u. Then the node u’s capacity

Cu = (Tu + Ru) · r denotes the total flow node u can handle, where r is the radio data

rate in each node. Let Du be the bandwidth demand of node u’s own data, then the flow

conservation Tu = Ru + Du
r

shall hold to avoid data losses. To meet lifetime requirement,

Cu shall be synchronized with the usable energy of each node u. Under the heterogeneous

constraints on node capacity Cu, network nodes need to find Tu and Ru for each node u,

such that the network throughput is maximized and flow fairness is guaranteed. We solve

this through the following max-flow and min-variance algorithm.

In a heterogeneous duty-cycled sensor network, a data collection tree for data delivery

is not necessarily the best solution. Each node may use multiple paths to deliver data for

itself and its upstream nodes. Clearly, multiple paths may provide nodes with more delivery

opportunities. In Figure 3.1, we show a sensor network with heterogeneous node capacities.

It can be clearly observed that using collaborative “multi-path” can deliver more data than

using only one single path. To be more specific, in Figure 3.2, we illustrate that there are

4 starved nodes if a collection tree is used. Here, we assume each node has one unit flow,

which applies to the rest figures and examples in this paper. A node is starved when its

own unit flow is held due to the bottleneck in the downstream nodes. In Figure 3.2, node

16

A
15

VS
virtual
source

virtual
 link

Node ID &
Capacity

A
15

F
15

C
7

sink
B
16

J
6

N
5

O
3

Q
3

S
3

P
5

G
6

D
11

I
6

E
11

H
9

R
1

K
4

L
3

M
6

T
3

Figure 3.1 Illustration of original network topology and node capacity. In a many-to-one
data collection network, a Virtual Source (VS) can be added to apply max network flow
algorithm.

T and S are starved, because their unit flows are throttled due to the bottleneck in node

I. Compared with the Figure 3.3, it is easy to see that collaborative “multi-path” can

deliver more data than a single path. And it motivates us to fully utilize the collaborative

data delivery paradigm to improve data throughput. Then, the challenge is how to find

the optimal paths for each individual node and how to manipulate the data flows such that

network throughput and flow fairness are maximized, assuming network nodes’ duty-cycles

are fixed but heterogeneous. Next, the problem of finding max delivery throughput can be

converted to the max flow problem. To solve the max flow problem in this converged tree

topology, a virtual source is added and connected to each source node, which transforms the

“many-to-one” flow maximization problem to “one-to-one” flow maximization problem.

A
15

F
15

C
7

5

7

4

3

3
4

2

2

2

2

1

1

1

3 sink
B
16

J
6O

3

Q
3

S
3

P
5

G
6

D
11

E
11

H
9

R
1

K
4

L
3

M
6

1

1
N
5

I
6

T
3

Starved
Node

Figure 3.2 Illustration of data collection tree, where 4 nodes are starved.

17

A
15

F
15

C
7

7

8

4

3

4

2

4

2

1

1

1

3

2

1

sink
B
16

J
6

N
5

O
3

Q
3

S
3

P
5

G
6

D
11

I
6

E
11

H
9

R
1

K
4

L
3

M
6

1

6

1

3

2

1

1

T
3

1

1

Starved
Node

Figure 3.3 Illustration of max flow network generated by our “loop-free” max-flow algorithm,
where only 1 node is starved. In this and following examples, we assume each node has unit
flow demand.

We formally state our throughput maximization problem. Given a sensor network G =

{V,E}, where V is the set of nodes and E is the set of links. Each node is subject to its

energy capacity constraint: C : V → R+. Further, let fu(v, w) denote the flow from node

v to w originated at source node u. Our objective is to find the optimal flow scheduling:

{fu(v, w)}, such that the network throughput (F =
∑

x∈V\sink fx(x, sink)) is maximized, and

the variance of originating flow for each node (fu(∗, sink)) is minimized.

Table 5.1 shows the notations used in the paper.

Table 3.1 List of notations in max-flow and min-variance algorithm

Cu capacity of node u
Du source flow demand of node u
Nu neighbors of node u
r radio data rate
h[u] height function of node u
Ef edge set in the residual graph
δf (u, v) distance between u and v in residual graph
Cf (u, v) residual capacity from node u to node v
excess[u] excess flow of node u

f
max/min
∗ max or min source flow in the flow network
fu(v, w) flow from node v to w with source node u

18

3.2 System Design

The proposed system design includes both network and MAC layer protocols. In the

network layer (Section 3.2.1), a max-flow min-variance algorithm is proposed to maximize

network throughput and fairness in the heterogeneous duty-cycle network. In the MAC layer

(Section 3.2.2), with the time synchronization service from hardware, a localized TDMA

MAC called TreeMAC [58] is propose to synchronizes nodes’ duty-cycles in the “multi-path”

flow network. A low-cost WWVB radio receiver is proposed to provide the accurate time

synchronization. The complete hardware and software system has been implemented in both

real sensor network testbed and simulators.

3.2.1 Network Algorithm for Throughput Maximization and Fairness

The software design involves both network and MAC layer. Subsection ?? and ?? de-

scribes our collaborative data delivery algorithm which maximizes network flow and fairness

on heterogeneous duty-cycled network. In subsection 3.2.2, a localized TDMA MAC protocol

is presented for duty-cycle synchronization to support the above collaborative data delivery

protocol.

Loop-free Max-flow Algorithm for Throughput Maximization In this section, we present

our “loop-free” maximum flow algorithm to collaboratively utilize heterogeneous duty-cycles

for throughput maximization. Besides, various optimizations are also given in Algorithm 1,

including eliminating the flow loop to improve the energy efficiency.

The distributed “Push-Relabel” algorithm in [59] solves the max-flow problem under

the edge-capacited network. Initially, the source node has a valid height and start a “push”

operation. “Relabel” operation adapts the height in each node, so that data flow seeps

through the network just as water flow through a terrain. However, it can not directly apply

to our problem due to two main reasons. First, the capacity constraint is not on edges, but

on nodes. In our problem, the constraint is that the total flow amount of the incident edges

of a node u can not exceed its capacity. As stated earlier, each node has a known capacity

19

constraint, while each edge’s capacity is unknown and depends on its surrounding nodes.

Second, there are multiple sources and single sink. All nodes in the network except the sink

sense the environment and deliver data toward the sink, and they need to get a fair flow

allocation.

A
15

F
15

C
7

7

8

4

3

4

2

5

2

1

1

1

1

3

1

2

1

sink
B
16

J
6

N
5

O
3

Q
3

S
3

P
5

G
6

D
11

I
6

E
11

H
9

R
1

K
4

L
3

M
6

1

6

1

2

2

2

1

T
3

1

21

Figure 3.4 Max-flow network with long push loop

Besides the major differences, it is also worthy to point out the “Long Push Loop”

problem, which hinders the efficient data delivery. It is not hard to see that the “PUSH”

operation in original push-relabel algorithm chooses a valid path in an arbitrary way, which

may result in loops. And we have found the “Long Push Loop” problem in the arbitrary

“PUSH” operation, illustrated in Figure 3.4. In Figure 3.4, node I with capacity 6 has 2

inflows. Assuming it has four admissible leaving edges in the residual graph, (I,H), (I, J),

(I, E) and (I, F), node I can push its excessive flow to any of these edges. If node I

arbitrarily selects node H to push, the flow may go through H, E and back to F . Compared

to pushing flow directly to node F , this arbitrary push may result in longer data delivery

path. And if each node maintains the arbitrary selection for PUSH method, the long-loop

path may exist.

In Algorithm 1, we present our loop-free push-relabel max-flow algorithm. At the be-

ginning, the height of every node is initialized as 0. And a source rate Du is assigned to every

node except sink. Notice that, this step is the same as adding a virtual source connecting

every source node with link capacity Du. After that the algorithm executes the push-relabel

20

operation on each overflowed node to solve the max-flow algorithm. A key difference is that

in line 4 of Algorithm 1, the Cf (x, y) is determined by the minimum node residual capacity

of node x and y: Cx and Cy. The reason is that one node may deplete its energy or reach its

node capacity before the transmitting data rate exceeds the limit of its incident link. In the

Algorithm 1, each node implements the PUSH operation with a careful selection on neighbors

with residual capacity. The neighbors with the shortest path to sink and larger node degree

will have higher priority. The rationale of this selection strategy is that the neighbor with

the smallest hop-count and largest degree will likely yield more opportunities to deliver data

to the sink. When the Algorithm 1 terminates, it generates a maximum flow assignment in

the network, which can be easily converted to each individual node’s maximum transceiving

data rate (e.g., Tu, Ru) thereafter.

We now first show that the loops in flow path are eliminated by our algorithm.

Lemma 1 In the flow network generated by Algorithm 1, each of its flow paths is loop-free.

Proof 2 The loop-free flow path can be proved by contradiction. Assuming there is a loop

flow path u, v, ..., w, where the edge (u,w) also belongs to the original graph. The “PUSH”

method given by Algorithm 1 can select v as the parent of u since the shortest path has highest

priority. It implies that the flow path u, v, ..., w, ..., sink is the shortest path. On the other

hand, edge (u,w) is also selected due to the shortest path preference, which means these two

shortest paths shall have equal length. We then assume that the length of path from w to the

sink is l, the length of flow loop is the summation of l and length of u, v, ..., w. Contradiction

is induced.

To prove Algorithm 1 does generate maximum network flow when it terminates, we need

to show that it keeps the height function definition (which is a key condition in Golberg-

Tarjan’s push-relabel algorithm [60]).

Lemma 3 In Algorithm 1, the substitution of node capacity for link capacity still keeps

function h as a height function.

21

Algorithm 1 Loop-free Max-Flow Algorithm

procedure: InitializeNetwork(V,E)

1: for each vertex x ∈ V \ sink do
2: add virtual link connecting x and virtual source
3: excess[x] ← Dx; h[x] ← 0
4: end for

procedure: Push-Relabel(V,E)

while ∃ x ∈ V \ sink && excess[x] > 0 do
2: Ux ← ∅; Wx ← Nx

while Wx 6= ∅ do
4: if Cf (x, y) > 0 then

Ux ← Ux
⋃
y

6: end if
Wx ← Wx - y

8: end while
now Ux is the set of node x’s neighbors with residual capacity. Sort Ux in ascending
order of their hop-count to sink and descending order of node degree (when hop-count
is same).

10: update the shortest path from x to sink
if Ux 6= ∅ then

12: while excess[x] > 0 && Ux 6= ∅ do
y ← Ux[head]

14: if h[x] = h[y] + 1 then
df (x, y) ← min{excess[x], Cf (x, y)}

16: Push(df (x, y), x, y)
excess[x] ← excess[x]-df (x, y)

18: end if
Ux ← Ux - Ux[head]

20: end while
else

22: Relabel(x): h[x] ← 1+ min{h[y] : (x, y) ∈ Ef}
end if

24: end while

22

Proof 4 In the step of InitializeNetwork(V,E), the h is initialized as a height function.

Therefore, the h will be valid if both RELABEL and PUSH methods leave h a valid height

function. First, we look at the RELABEL operation, which is executed in the overflowed

node. If there is a residual edge (x,y) ∈ Ef which leaves x, then after the relabel operation on

node x, h[x] ≤ h[y] + 1 follows. Since we use the node capacity, there are no residual edges

entering to an overflowed node. Thus, the RELABEL operation holds h as a valid height

function. Second, PUSH can only occur in the edge (x, y) with h[x] = h[y]+1, which results

in a residual link (y, x) with h[y] = h[x]− 1 ≤ h[x] + 1. Thus, the height function still holds

after the PUSH operation.

Proven the height function retains as a valid function during Algorithm 1, we then prove

the correctness of our algorithm. In other words, the maximum network flow can be achieved

at the time when algorithm terminates.

Lemma 5 When Algorithm 1 terminates, the computed preflow in the network is a maxi-

mum network flow.

Proof 6 When the algorithm terminates, there is no overflowed node in the V \ sink. So,

the preflow becomes the actual network flow. The Lemma 3 proved that using node capacity

instead of link capacity still retains h as a valid height function. Combining with the Lemma

26.18 in [61], we can conclude that there is no path from source to sink in the residual

graph when algorithm terminates. Therefore, the preflow is a maximum flow according to

the max-flow min-cut theorem.

Besides the correctness of algorithm, we also find the upper bound for algorithm’s time

complexity.

Lemma 7 (Upper bound of saturating pushes) Let G = (V,E) be a flow network generated

by Algorithm 1, the number of saturating pushes in Algorithm Push-Relabel(V,E) are less

than 2|E|.

23

Proof 8 The calculation of saturating pushes is associated with a given connection between

node x and y. If the edge (x, y) is in the original flow graph G, a saturating push can occur

only if h[x] = h[y] + 1. Since height function h can only increase, the next saturating push

occurs in the edge (y, x), when h[y] = h[x] + 1. The second saturating push makes node y an

invalid push neighbor of x, due to its empty node capacity. It implies that the number of any

edge (x, y) in the original graph can have saturating push no more than twice. Multiplying by

the number of edges in the graph renders a upper bound of less than 2|E| saturating pushes

in total.

Lemma 9 (Upper bound of nonsaturating pushes) Let G = (V,E) be a flow network gener-

ated by Algorithm 1, the number of nonsaturating pushes in Algorithm Push-Relabel(V,E) is

bounded by 4|V |(|V |2 + |E|).

Proof 10 According to the Lemma 26.24 in [61], we build a potential function δ =∑
v:e(v)>0 h[v]. Initially, δ is equal to 0, and the value of δ is equal to 0 again when the

algorithm terminates with no excess flow in the nodes. According to the Lemma 3, h is a

valid height function, thus for all nodes h[x] < 2|V | according to Lemma 26.21 in [61]. So, by

Corollary 26.22 of [61], the number of relabel operations is bounded by 2|V |2. Thereafter, the

total relabel operations increase the δ by at most (2|V |)(2|V |2). Also, according to Lemma

7, the number of saturating push operations is at most 2|E|, so the δ can be increased by

at most (2|V |)(2|E|) during saturating pushes operations. Consequently, the δ is at most

4|V |(|V |2 + |E|). The nonsaturating pushes will decrease the δ every time it is executed. If

a nonsaturating push is from node u to v, node u will change from overflowed node to non-

overflowed node, and node v will become overflowed when the nonsaturating push is more

than its own source data rate. So, each nonsaturating push will decrease the δ by at least

h[u]− h[v] = 1. Thus, the upper bound of nonsaturating pushes is 4|V |(|V |2 + |E|).

Consequently, we have the following theorem:

24

Theorem 11 The Algorithm 1 generates a loop-free maximum network flow and terminates

within O(|V |2|E|) operations.

Proof 12 As proved in the Lemma 3, function h is kept as a valid height function throughout

the Algorithm 1. And there is no path from virtual source to the sink in the residual network

Gf , which implies that the assigned flow in the network is the maximum network flow. Com-

bining the Lemma 26.22 in [61], Lemma 7 and Lemma 9, the number of operations in the

Algorithm 1 is up bounded by O(|V |2|E|). In other words, it terminates within O(|V |2|E|)
operations.

In Algorithm 1, we describe it in a centralized way for simplicity of presentation and

understanding. It can be easily implemented as a distributed network protocol, just like the

original push-relabel algorithm [59] can be implemented in distributed fashion.

Flow Balance Algorithm for Fairness Though Algorithm 1 maximizes network through-

put in a duty-cycled network, it does not guarantee flow fairness. In Algorithm 2, we propose

a flow balance algorithm, providing fair flow assignment among nodes while maintaining

maximum network flow. Unlike some other existing works which rely on the predetermined

tree structure, our min-variance flow balance algorithm can apply to general data collection

structure.

In order to apply the distributed flow balance algorithm, each node maintains two flow

vector: Fu(fmin, fmax,∆f), which is the accumulated min flow, max flow and the adjustable

flow amount; F
′
u(f1, f2, ..., fk), which are the flows from its direct neighbors. The overall idea

of distributed Algorithm 2 is to iteratively select the fmaxu and fminu flows out of flow set, and

try to find the shortest augmenting path between them. In each iteration of MinV ariance

of Algorithm 2, the routine FSAP (fminx , fmaxx , G) will find a shortest augmenting path with

either positive or zero adjustable flow amount. If an augmenting path is found in FSAP ()

method, the FSAP () returns a positive ∆f . Then these two flows can be balanced by

letting fmaxu yield ∆f amount of flows to fminu . This is described in line 6 to 8 of procedure:

MinV ariance. After the first pair of fmaxu and fminu has been solved, we rearrange the

25

Algorithm 2 Distributed Min-Variance Flow Balance

procedure: MinVariance(u)

1: while (fmin 6= fmax) and ∆fmin > 0 do
2: Fu ← {fmin, fmax,∆fmin}
3: F

′
u ← {f1, f2, ..., fk}

4: fmaxu ← fmax; f
min
u ← fmin

5: ∆f = FSAP(fminu ,fmaxu)
6: if ∆ = max {∆f,∆fmin} > 0 then
7: fminu ← fminu + ∆ ; fmaxu ← fmaxu −∆
8: Update ∆fmin along the path
9: else
10: Find new fmin by BFS and update ∆fmin
11: end if
12: end while

procedure: FSAP(fminx (∗, ∗),fmaxy (∗, ∗))

1: U
′ ← x; P ← ∅; ∆f ← 0

2: while δf (x, y) < |V | do
3: if Gf contains an admissible edge (U

′
, U
′′
) ∈ Ef then

4: let (U
′
, U
′′
) be an admissible edge in Ef

5: π(U
′′
)← U

′
; U

′ ← U
′′

6: end if
7: if U

′
= y then

8: use π to find an augmenting path P
9: ∆f ← min((fmaxy (∗, ∗)− fminx (∗, ∗))/2, Cf (P))
10: return ∆f
11: else
12: Relabel(U

′
) ; U

′ ← π(U
′
)

13: end if
14: end while
15: return ∆f

26

flow set accordingly, and repeat the procedure until there is no more adjustable flows in the

network. Otherwise, we will update the fmin in line 10 by removing the unadjustable fmin

from corresponding node, i.e. node x, and recompute the fmin for node x based on its F
′
.

The time complexity for FSAP () is O(|E|), and it have at most |V | iterations. And the

algorithm will terminate when fmin equals to the fmax, which is bounded by size of vertex

set |V |. Therefore, the complexity of Min-Variance Flow Balance Algorithm is O(|V |2|E|).

3.2.2 Localized TDMA MAC Protocol for Duty-cycle Synchronization

To actually achieve the performance of aforementioned algorithm, duty-cycle need to

be synchronized in MAC layer. We proposed a localized TDMA MAC protocol with the

objective of synchronizing duty-cycles on the selected network flow paths and eliminating

media access contentions. In order to support the time synchronization in TDMA MAC

protocol, we design a low-power hardware by utilizing the WWVB atomic clock receiver.

We select the CME 6005 [62] as the receiver chip, which is of only about 10 dollars, in our

hardware design. Its current consumption is less than 100µA in full active mode with the

voltage supply of 3.0V, which is much lower energy cost than software-based time synchro-

nization protocols, like FTSP [63]. The software-based time synchronizations need to turn

radio on and exchange time messages periodically so that clock drift of sensor nodes can be

compensated.

The MAC protocol is inspired from TreeMAC [58] - a localized TDMA MAC protocol.

The main idea is to utilize parent-child relationship in a data collection tree to minimize the

signaling overhead. A time cycle is divided into frames and frame into slots. The parent

determines each children’s frame assignment based on their relative bandwidth demand, and

each node calculates its own slot assignment based on its hop-count to the sink. The control

message is between parent and child only. This simple yet effective 2-dimensional frame-slot

assignment algorithm can avoid schedule conflicts in network flow of shortest path tree.

However, TreeMAC [58] can not directly apply to the “multi-path” flow network, as flow

network topology is not a tree structure. Fortunately, such a many-to-one flow network graph

27

v

u

w x v w

u2

x

u1 uk

Figure 3.5 Virtualization example.

can be virtualized as a tree structure. Basically, a node u with k parent can be virtualized as

k virtual nodes {u1, u2, · · · , uk}, and then each ui (1 ≤ i ≤ k) now have a single parent, as

illustrated in the figure 3.5. This virtualization can be further extended: for every node u in

the network (even if it has a single parent or single path to the sink), assuming it has m-unit

flows to forward, it can also be virtualized as m virtual nodes {u1, u2, · · · , um}. Then each

link with m flow units can be virtualized accordingly and a virtual tree structure emerges.

The frame-slot assignment algorithm of TreeMAC can apply to the virtual tree structure

now. For slot assignment, we can directly apply the slot assignment algorithm mentioned

above. For frame assignment, assume each flow has a flow ID fID, we can assign all nodes on

the flow path with the fID-th frame. Now, different flows are guaranteed to be conflict-free,

since they have different frames per cycle. However, this will require that the time cycle size

is bigger than the number of flows. This is not a problem, because the number of flows is

constrained by the sink node’s capacity.

Another concern on the difference between tree and virtual tree is: in a tree structure,

every node only has one parent to forward data, and its hop-count can be determined unam-

biguously; but in a flow network, a node u may have a different hop-count through different

selected flow paths: (u, v, ..., y, sink) and (u,w, ..., y, sink). Thus the virtual nodes ui and

uj from the same node u may have a different hop-count too. Fortunately, this is also not a

problem. This just means that the original node u will get different slots in different frames,

instead of the same slot in different frames.

Theorem 13 The duty-cycle synchronized MAC protocol based on TreeMAC ensures conflict-

28

free transceiving schedules in maximum flow networks.

Proof 14 Using TreeMAC frame-slot assignment in the virtual tree, the frames assigned

to different virtual nodes are non-overlapping, if those nodes do not have ancestor-descent

relationship. Thus, there must exist no schedule conflict between different unit-flow paths. In

addition, according to Lemma 1, our flow paths have no loops. Since parent and child have

no schedule conflicts in TreeMAC, any two nodes in the same flow path also do not have

schedule conflicts.

3.3 System Evaluations

3.3.1 Experimental Evaluations

In this section, we evaluate our system design and implementation, including hardware

design, MaxFairFlow algorithm (Loop-free Max-flow and Min-variance fairness algorithm)

and localized TDMA, by comparing to the commonly used TinyOS protocol stack in three

evaluation criteria: Data Throughput, Data Delivery Latency and Energy Efficiency.

We show our experimental testbed in Figure 3.6, topology in Figure 3.7. The WWVB

antenna is mounted at the top of the pole, and TelosW [64] is attached to the WWVB

receiver circuit board. We implement and deploy our energy synchronized system in the

sensor network testbed of 15 TelosW nodes, which are placed in a square 10*10 meters area

with multihop topology. The sink node is placed in the upper left corner.

In Figure 3.7, each node is indicated by a tuple of ID and node capacity. Low radio

transmission power is configured to form a multihop duty-cycled network, with maximum 5

hops.

Data Throughput We analyze the data throughput to validate the data collection effi-

ciency of our protocol. Figure 3.8 shows the comparison of the data throughput between the

CTP-XMAC and MaxFairFlow-TDMA algorithm. With the total sending packet number of

3600 in each node, the minimum node throughput for CTP-XMAC is 2, 916, which is ap-

proximately 81.0% in terms of packet delivery ratio. It happens on node 13 with hop-count

29

Figure 3.6 Outdoor experiment test-bed of 15 nodes synchronized by WWVB radio.

1
15

5
15

3
7sink 2

16

6
6

10
5

11
3

14
3

15
3

13
5

9
6

4
11

8
9

7
4

12
6

1
15

Node ID
Capacity

Figure 3.7 The snapshot of topology of testbed. The upper number inside the circle denotes
the node ID, the lower one is the node capacity.

30

4. And the maximum throughput is 3, 519 on node 1. In the network, the total throughput

is 6.6% lower than that of MaxFairFlow-TDMA.

 0

 1000

 2000

 3000

 4000

 5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Da
ta

 T
hr

ou
gh

pu
t (

pk
ts

)

Node ID

MaxFairFlow-TDMA
CTP-XMAC

Figure 3.8 Data throughput.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
er

ag
e

De
la

y
(m

s)

Node ID

MaxFairFlow-TDMA
CTP-XMAC

Figure 3.9 Average delivery delay in the network.

The reason for the higher packet delivery ratio is that MaxFairFlow-TDMA algorithm

takes advantages of the “multi-path” for collaborative data forwarding. The max-flow and

min-variance algorithm can achieve the optimal forwarding paths for each node, bypassing

31

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

En
er

gy
 d

ep
le

te
 ti

m
es

Node ID

MaxFairFlow-TDMA
CTP-XMAC

Figure 3.10 The number of times of depleting quota energy.

the congested node. For each node, our algorithm can increase the forwarding probability of

each packet, while for the entire network, the data traffic is balanced over different delivery

paths.

Data Delivery Latency The low-duty-cycled network poses a critical challenge on the

timeliness of delivered data. We have evaluated the data delivery latency in the network

against multiple hopcounts. Figure 3.9 shows that the latency of CTP-XMAC increases

proportionally to the hopcount, while the rate of increasing latency in our algorithm is much

slower. It also shows that the maximum latency for CTP-XMAC is 3100 ms, which is 5 hops

away from sink. But the maximum for our MaxFairFlow-TDMA protocol is only 2387 ms at

node 15. It is because that in MaxFairFlow-TDMA, nodes wake up in the designated slots

with synchronized time, without any delay between the wake-up time of sender and receiver.

Overall, data delivery in TDMA with assigned synchronized slots can provides better latency

for QoS required applications.

Energy Efficiency The energy efficiency is evaluated in this section. Instead of estimat-

ing energy from communication packet number or attaching the oscilloscope physically to

the mote, we exploit the on-board energy meter to measure the real-time energy consump-

tion rate [64]. The benefit is that it evaluates all the real energy consumption including RF

32

transceivers and WWVB radio.

Figure 3.10 shows the total number of times nodes deplete their quota energy within

experiment. Respecting the planned lifetime, each node has a derived energy cap in each

time frame. With the realtime energy consumption measurement from energy meter, a

node can decide if it runs out of the derived “quota energy”. In Figure 3.10, the maximum

energy deplete times for CTP-XMAC approach is 128 times, and every node has, at least

30 times, depleted its own energy. The Figure 3.10 shows that the proposed algorithm

almost never deplete the quota energy, less than 5 times in node 6, 13 and 14 respectively.

It is clear that different duty cycles and asynchronous wake-up times give the asynchronous

scheduling protocol (e.g. CTP-XMAC) a challenge, which can cost more energy in holding

on the radio and waiting for the receiver to wake up. The reasons for the overall advantage of

energy consumption gained in MaxFairFlow-TDMA are two-folded: (i) wake-up schedules are

synchronized among different duty-cycled nodes; (ii) energy consumption is more balanced

through collaborative multi-path selection in the Max-Flow Algorithm and Min-Variance

Flow Balance Algorithm.

Moreover, we examine the network lifetime under different protocols. Network lifetime

is the network up-time from boot-up to the time when the first node dies. In Figure 3.11, the

first node goes down after 180 hours in CTP-XMAC, and the maximum lifetime for nodes

in the network is 221 hours. In MaxFairFlow-TDMA, nodes were running 231 hours before

the first node depletes its residual energy, which is even longer than the maximum node

uptime in CTP-XMAC. Extended network lifetime is due to that our MaxFairFlow-TDMA

algorithm balances the network traffic through multiple paths, and deliver the sensing data

in a collaborative way. In Flow Balance Algorithm, the assigned flows are balanced in each

flow path, achieving maxmin and minmax fairness. Consequently, the algorithm balances

the energy loads in multiple paths as well. All of these contribute to improving the network

lifetime.

33

 0

 20

 40

 60

 80

 100

190 200 210 220 230 240 250 260 270 280 290

Pe
rc

en
ta

ge
 (%

)

Life Time (Hours)

MaxFairFlow-TDMA
CTP-XMAC

Figure 3.11 The CDF of expected life time
in the network.

 0

 1000

 2000

 3000

 4000

 5000

20 40 60 80 100 120 140 160 180

Av
er

ag
e

Pa
ck

et
 D

el
ay

 (m
s)

Network Size

MaxFairFlow-TDMA
CTP-XMAC

Figure 3.12 Maximum and Average Delay
in different network sizes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140 160 180 200

Th
ro

ug
hp

ut
 (p

ac
ke

t/s
ec

)

Network Size

MaxFairFlow-TDMA
CTP-XMAC

Figure 3.13 Average throughput per node
against different network sizes.

3.3.2 Simulation Evaluations

To show the scalability of our proposed algorithm, we have evaluated the performance

on a larger scale with TOSSIM. All the sensor nodes are placed in a 100*100 square grid,

with sink node on the left upper corner.

Network Delay The average and maximum packet delay is evaluated with network size

ranging from 20 to 180. And the maximum delay is affected by the maximum hopcount in

the network. This is why the maximum delay increases from 3100 ms of 20-node network

to 20000 ms in a 180-node network in Figure 3.12. And the delay of MaxFairFlow-TDMA

scheduling has a much slower increasing slope, ending up with the 12000 ms delay in the

network with 180 nodes.

In terms of average delay over the different network sizes, both of the two protocols have

the slow increasing trend. This is because the average hopcount does not increase sharply

as the network size goes larger. It is important to mention that the MaxFairFlow-TDMA

34

method still gets an advantage of 25.2% in the average packet delay. That is because that

collaborative multi-path selection makes the distribution of nodes more balanced, resulting

in a smaller average hop count.

Network Throughput We have measured the average throughput per node in different

network sizes. In Figure 3.13, the bar denotes the average throughput for each node of a

given network size, while the error reflects node throughput deviation in that network size.

As the network size scales, in CTP-XMAC, it is observed that the throughput per node

starts to decrease at the size of 40, and continue declining to the 1.12 packets / second in

each node, at the network size of 180. For the MaxFairFlow-TDMA, the network starts

to saturate at the size of 80, and the throughput for each node decreases until 1.5 packets

per second. Moreover, it is observed that the variance of throughput for each node remains

within the value of 0.05 packets per second in MaxFairFlow-TDMA. However, the variance

for CTP-XMAC is much higher, in which the maximum variance is 0.36 packets per second,

with average variance of 0.30. It is because the Flow Balance Algorithm of section ?? can

efficiently even out the traffic flows and take advantages of multi-path for delivering data

packets.

35

CHAPTER 4

DATA COMMUNICATION WITH ENERGY-FREE NETWORK CODING

(ONEC)

The erasure codes were initially proposed to enable reliable broadcast over “one-to-

many” communication conditions, where feedback is very expensive or even infeasible, such as

satellite broadcast or Internet video broadcast applications. LT (Luby Transform) code [17]

is the first effective implementation of erasure codes with low encoding and decoding com-

plexity. Due to its low complexity in both encoding and decoding sides, it is appropriate to

be utilized in wireless sensor nodes where the computing capability is limited. However, the

redundant coding overhead introduced can compromise its efficiency, if LT code applies with-

out alteration to the network where multiple data sources exist. The core of LT code is the

RSD (Robust Soliton Distribution), which is a probability distribution of encoding degree for

each packet. The data recovery can be proved as high probability, providing that each degree

in encoding packet is independently drawn from RSD, and sufficient amount of packets arrive

at decoder, e.g. K+c·
√
K ·ln2(K

δ
), and K is the symbol size. As each node encodes its own k

symbols using individual RSD, the overhead for successfully decoding, N ·c·
√
k ·ln2(k

δ
), scales

with the network size N . In the other hand, if we view all the source symbols as originating

from single “super node”, allowing recoding in the forwarding nodes, the message overhead

will be significantly reduced to c ·
√
N · k · ln2(N ·k

δ
) for large network size N . For example, in

Figure 7.1, every node has different symbol sizes to send, e.g. 50 or 100 respectively, totaling

400 in the network. In the first case shown in the upper graph of Figure 7.1, individual RSD

is applied to generate encoded packets, and no recoding occurs in the forwarding nodes.

The total amount 650 of packets are required for high-probability recoding, where message

overhead R =
∑

i c ·
√
ki · ln2(ki

δ
) = 4 · 0.1 ·

√
50 · ln2(50

0.05
) + 2 · 0.1 ·

√
100 · ln2(100

0.05
) = 250.

However, in the lower graph, each node derives a degree distribution from RSD, and encodes

36

packet accordingly. Recoding in forwarder nodes make the final degree distribution conform

to the RSD, with much less redundant overhead. The message overhead R can be calculated

as: R = c ·
√∑

i ki · ln2(
∑
i ki
δ

) = 0.1 ·
√

400 · ln2(400
0.05

) = 162. The total packets entailed by

successful recoding is only 400 + 162 = 562, which is 13.7% less under the total symbol size

of 400.

k1=100

k2=50

k4=100

k5=50

k6=50

DECODE:

K = k1+k2+k3+k4=400

M = 400 + 250 = 650

k1=100

k2=50

k4=100

k5=50

k6=50

DECODE:

K = k1+k2+k3+k4=400

M = 400 + 162 = 562

a. Individual LT Codes

b. Network Erasure Codes

d

Pr

1 2 3 4 5 6

k3=50

k3=50

d

Pr

1 2 3 4 5 6

d

Pr

1 2 34 5 6

d

Pr

1 2 3 4 5 6

d

Pr

1 2 34 5 6

d

Pr

1 2 3 4 5 6

d

Pr

1 2 3 4 5 6

XOR

d

Pr

1 2 3 4 5 6

B.S.

B.S.

Figure 4.1 The Comparison of network erasure code and individual LT code in network.

Moreover, intermediate recoding takes advantage of opportunistic overhearing in wire-

less broadcasting to combat communication loss. Those two reasons motivate the design of

ONEC for a collaborative data collection.

In this paper, we present the design, implementation, and evaluation of ONEC, an

Opportunistic Network Erasure Coding protocol for reliable data delivery over disruptive

sensor networks. ONEC is designed to transform the “end-to-end” paradigm of LT codes

to “many-to-one” network LT codes. Firstly, it adopts recursive decomposition structure

to conduct probability distribution deconvolution, supporting heterogeneous symbol sizes

37

in each source nodes. Secondly, it allows every node to carry out selective recoding from

its own sensing data and received packets. Thirdly, it enables opportunistic recoding on

the overheard packets, based on relay hop distance. It can compensate the information

deficit due to lossy transceiving between neighbor nodes. Lastly, ONEC make packet degree

distribution closely approximate the RSD, which enables high probability decoding with

low computation complexity. The preliminary work is published in [36], and we provide

comprehensive design and theoretic analysis details in this article.

The main contributions of ONEC protocol are as follows:

• Low coding overhead : ONEC utilizes the intermediate recoding to reduce the redun-

dant encoding overhead. The recursive deconvolution only takes place during network

initialization and the time when network dynamics happen. The control message cost

for relaying decomposed degree distribution message is minimized.

• Disruption tolerance: By enabling opportunistic encoding in the intermediate nodes on

the forwarding paths, ONEC becomes resilient to disruptive networks. Opportunistic

overhearing of symbols are incorporated into the encoded packets to make the upstream

nodes sustainable in presence of some failure in downstream nodes.

• Low latency and buffer space: In ONEC, the intermediate nodes recode packets but

not decode them. Hence, little buffer space is required to store and conduct XOR on

received encoded packets.

• Performance with low coding complexity : Extensive performance analysis reveals the

advantages of ONEC over existing methods, in terms of network goodput, message

complexity and buffer space.

4.1 ONEC Protocol Design

In this section, we present the ONEC design, followed by detailed discussions of each

component in ONEC. Illustrated in Figure 6.1, ONEC protocol is comprised of four major

38

RSD@Sink

Node k

One-hop
node a

Recursive Distribution Deconvolution

Distribution
ω_k(*) ω'_k(*)

Leaf Node i

Leaf Node j

Ω(*)

Parent
Distribution
ω_p(*)

ω_a(*)

Beacon Exchange

Self Symbol
Size

Neighbor List
1. Parent List
 --<P1, S_P1>
 -- ...
2. Children List
 --<C1, S_C1>
 -- ...

Network
Initialization&Update

Network
Init

Data Rate
Update

Degree 1 2 3 4 5 6 7
Prob. 0.15 0.4 0.2 0.1 0.08 0.04 0.03

Decomposed Degree Distribution

Raw Data
Pool

encoding
degree d

Randomly
draw degree

s1⊕s2⊕s4⊕s5⊕s6

s1

s2

s4

s5

s6
randomly selected d symbolsEncoding @ Node k

Selective XOR

Opportunistic XOR

Opportunistic In-Network
Recoding @ Node c

Belief
Propagation

Decodings2⊕s6

p(ds)
(1−1/hd)

Pr{α < µ(1)
µ(1)+f(1)}

Figure 4.2 Overview of ONEC working flow.

phases: 1) Network Initialization and Update, in which nodes in network use broadcast bea-

con to acquire neighborhood information; 2) Recursive Degree Deconvolution, in which nodes

conduct deconvolution of RSD in an recursive way; 3) Opportunistic In-Network Recoding,

in which sensing nodes produce encoded packet based on derived degree distribution and

forwarding nodes selectively incorporate the overheard symbols to the encoded packets; 4)

Data Decoding, the decoder apply Belief Propagation algorithm to decode data with low

computation complexity.

4.1.1 Network Initialization and Update

In our network model, continuous sensing data is divided into blocks or chucks, on

which the erasure encoding and decoding are applied. Hence, the data rate Ri also denotes

the total symbol size Si for a specific time frame {ti, ti + τ}. We use these two terms

interchangeably in the following presentation. As a distributed protocol, nodes can derive

39

the degree distribution for itself, with only information of neighbors’ status. Illustrated

in Figure 6.1, a local table is established as a prerequisite for distribution deconvolution,

including neighbor list, a tuple of < Pi, S Pi > (parent degree distribution, parent symbol

size), multiple tuples of < Ci, S Ci > (children degree distribution, children symbol size),

and the symbol size for itself. Parent-children relationship can be obtained by constructing a

tree structure T (V,E
′
) rooted at sink, where E

′ ⊂ E, given a network G(V,E) by an effective

routing protocol. As network starts, Ci equals to null, since the distribution deconvolution

initiates from root node, and then spread out to the whole network.

Without loss of generality, each node acts as a source node, which generates data stream

at a specific rate. The source data rates are considered as heterogeneous across the network,

as well as dynamic over the time. Here, we assume that data rate of each node is not

changing so dramatically fast, and kept steady for a time stretch. Thus, the exchange and

update beacons are suppressed when there is no variation among neighbors after network

initialization. Once the topology or the sampling data rate alters, the beacon exchange and

message update is launched to keep the neighbor table and degree distribution updated. The

details of updating degree distribution upon the dynamic conditions is discussed in Section

4.1.2.

4.1.2 Recursive Degree Deconvolution

Degree Distribution of LT Codes For sake of self-contained explanation, we briefly review

the general principle of LT codes before delving into the deconvolution details. LT codes was

designed and proposed in [17]. Assuming k symbols in the source, encoder in LT codes first

select a degree from the designed degree distribution, i.e., d, then XOR d randomly selected

raw symbols to an encoded packet. The encoding process can be conducted in a rateless

fashion, pushing out encoded packets continuously. With LT codes, decoder can recover k

original raw symbols as long as receiving K = k + O(
√
k · ln2(k/δ)) encoded packets with

low computation complexity w.h.p. (with high probability). Note that during the decoding

process, a set of covered but not yet processed symbols, called ripple, is critical to the success

40

of decoding, since decoding stops once the ripple is empty. Therefore, it is vital to keep the

ripple size always larger than 0 during decoding process. LT codes [17] present its core:

degree distribution. The Ideal Soliton Distribution is to guarantee the ripple size equals

to 1 during decoding, while the Robust Soliton Distribution try to increase the ripple size

large enough to survive the practical fluctuation in the course of decoding. We quote the

definitions of these two degree distributions here, and refer the detailed description to [17].

Definition 1 Ideal Soliton Distribution (ISD) [17]:

ρ(i) =

 1/k, if i = 1

1
i(i−1)

, if 2 ≤ i ≤ k

Definition 2 Robust Soliton Distribution (RSD) [17]:

µ(i) =
ρ(i) + τ(i)∑k
i=1(ρ(i) + τ(i))

, 1 ≤ i ≤ k,

where

τ(i) =

R/ik, if 1 ≤ i ≤ k

R
− 1,

R · ln(S/δ)/k, if i = k
R

,

0, otherwise.

with

R = c ·
√
k · ln(

k

δ
)

Deconvolution Overview Since LT codes originate from the context of single source and

destination communication, it introduces considerable redundant messages when applied to

the network data collection without changes. Thus, to apply the LT codes to in-network

erasure codes, which enables the recoding of encoded packet, we convert the desired RSD

into individual degree distributions for each node based on its own symbol size. Though

we employ the similar idea of deconvolution as in [31], our approach can adapt to different

41

network topology with lossy or lossless link connection. Moreover, the bound for expected

encoding symbol under recursive deconvolution is proved.

The overall idea of the deconvolution is that the process is initialized from root, and

conducted recursively level by level along the tree structure. Each parent computes and

disseminates the deconvolved distribution for its children, the process repeats until the leaf

node receives its distribution. Our differences are three-folded: first, the deconvolution

method can support arbitrary number of children with different input symbol sizes, which is

amenable to various topology. Second, we do not restrict the deconvolution of distribution

function to the relay model network. Instead, we deconvolved the distribution function with

the help of a converge-cast tree structure. Each layer derives its own degree distribution from

its parent distribution respectively. In fact, the converged collection tree is only utilized for

message dissemination, in section 4.1.3 we show that opportunistic recoding does not rely on

particular tree structure. Third, this process is able to apply in a network with lossy link. If

the deconvolution message lost, the receiving node can compute the distribution locally with

information overheard from its other neighbors. The trade-off is that accuracy of locally

deconvolved distribution is less than the distribution computed from parent.

Deconvolution Details As described in [31], the “spike” of degree distribution µ(i) needs

to be removed before the recursive deconvolution can be applied. After the preprocessing

the “spike” at µ(1), the distribution deconvolution uses “enumerative combinatorics”. The

essential idea is to explore all the combinations of different children degrees which can con-

tribute to the parent’s distribution. The deconvolved function f(i) from µ(i) is given by

[31]:

f(i) =

√
µ(2), i = 1

µ(i+1)−
∑i−1
j=2 f(j)f(i+1−j)
2·f(1)

, 2 ≤ i ≤ k
R

0, otherwise

(4.1)

42

Receive Message P

From

Child?

From

Parent?

Sink initiate

deconvolutionDiscard

Message

Symbol Size

Change?

Y

N

N

Y

Forward f(*)

to Child Node

N

Forward f(*) &

symbol size

to Child Node

Y

Case III:
Distribution ω(*) changes,

update local distribution f(*)
base on Equation (7).

Case I:
New distribution ω(*)

received, decompose it to f(*)
according to Equation (2).

Case II:
Children symbol size

changes, set high priority
in message.

Symbol Size

Change?

Timer Event Fire

Send Parent

Message P

Y

N

Dynamic
Detection

Forward to Sink

Figure 4.3 Flow chart for recursive degree distribution deconvolution.

We extend this basic deconvolution to apply in any tree structure, by clustering all the

children into 2 child nodes (1 and 2) of different symbol sizes, say k1 and k2.

f(i) =

√
µ(2), i = 1

µ(i+1)−
∑i−1
j=2 f(j)f(i+1−j)
2·f(1)

, 2 ≤ i ≤ Θ

µ(i+1)−
∑Θ
j=2 f(j)f(i+1−j)
f(1)

, Θ < i ≤ k
R

0, otherwise

(4.2)

where Θ = min{ k
R
,min(k1, k2)}, and i is the symbol index ranging from 1 to k1 and k2

respectively. We then show how to deconvolve the “spikes” of degree distribution µ(i), such

that the recovered degree distribution from those two children conform with the parent’s

distribution. The deconvolved degree distributions given by Equation (1) does not deal with

the “spike” points. The idea is to explore the individual probability that degree 1 symbol

43

falls into each of two data sets: k1 and k2. The probability of µ(1) split into two parts is

proportional to the symbol size k1 and k2. Thus, the final deconvolved degree distribution

is given as:

pj(i) =

 f(1) +
kj∑2
j=1 kj

µ(1), j = 1, 2 and i=1

f(i), i > 1
(4.3)

Recursive Deconvolution. We relax the previous assumption that any subtree of a node

consists of 2 child nodes (u and v). In other words, we make the above degree decompo-

sition not only fit for the 2-child case, but also for more general m-child sub-tree case, in

which m is not necessarily equal to power of 2. Illustrated in Figure 4.4, if a parent T has

multiple children A,B1, B2, ..., Bn, the above combinatorics approach can not directly apply.

Fortunately, we can do the node clustering and hierarchically deconvolve the distribution

into each node. The recursive deconvolution in single level is illustrated in the right figure,

which shows that all Bi node can first be considered as a super node, which has the total

input symbol equal to
∑n

i=1 (Bi). By this transformation, “2-child” deconvolution can be

recursively conducted to generate the corresponding distribution function for each source

node.

T

A B

T

A B1 B2 B3

B1 B2 B3

Figure 4.4 Illustration of recursive degree distribution deconvolution.

Selective Recovery. For recovering the “spike” (i = 1), we adopt selectively XOR to

produce encoded packet, upon receiving the packet of “spike” degrees. In the receiver, the

44

recoding accept a packet of degree i = 1 with the probability: Pr{α < µ(1)
µ(1)+f(1)

}, where α is

a random variable uniformly distributed within range [0, 1].

Local Deconvolution. Practically in lossy link communication, the message for dissemi-

nating the computed degree distribution may get lost. Nodes which miss the dissemination

message from its parent can still obtain degree distribution by conducting local computation.

It yields a rough degree distribution by decomposing RSD recursively into two parts with

k − w and w symbols, assuming that node has w symbols.

Update Distribution. In dynamic network conditions, target distribution µ(i) for decon-

volution operation can vary due to two reasons: first, topology alteration. Children nodes

switch their parents, resulting in symbol size changes in subtree. Second, data sampling

rate fluctuation. As illustrated in Fig 4.3, there are three update cases which address the

dynamic distribution calculation and update.

Case I: Receive new distribution through initialization. Decompose distribution ac-

cording to Equation (2).

Case II: Update on the variation of children symbol size. When one node receives the

children symbol size update packet, it forwards this message to sink. Then, sink initiates

the distribution deconvolution from RSD.

Case III: Update only on the distribution µ(i) from parent. Node and its children can

apply the following equation to update their degree distribution without re-decomposing

µ
′
(i):

f
′
(i) =

√
µ′(2), i = 1

f(i) + µ
′
(i+1)−µ(i+1)

2·f(1)
, 2 ≤ i ≤ Θ

f(i) + µ
′
(i+1)−µ(i+1)

f(1)
, Θ < i ≤ k

R

f(i), otherwise

(4.4)

where f
′
(i) can be derived by simple addition operation based on previous probability dis-

tribution f(i).

45

Analysis of distribution deconvolution The degree distribution deconvolution closely

approximate the desired degree distribution from the decoder perspective. Besides the effec-

tiveness of distribution reconstruction, it is important to analyze the efficiency of proposed

distribution deconvolution, in terms of message complexity and decoding robustness.

Message Complexity. We first give a message complexity bound on the data delivery

based on distribution deconvolution approach.

Lemma 15 Given k symbols, and distribution function µ(i) (1 ≤ i ≤ k
R

)), the deconvolved

function f(i) satisfies:
k
R∑
i=1

f(i) ≤

√√√√ k
R∑
i=2

µ(i)

Proof 16 The function f(i) is derived from µ(i) by “enumerative combinatorics” approach,

which list all the possible combinations of f(i) for each µ(i). The combination is illustrated

as follows:

µ(2) = f(1)f(1) + 2f(2)f(0)

µ(3) = 2f(2)f(1) + 2f(3)f(0)

µ(4) = 2f(3)f(1) + f(2)f(2) + 2f(4)f(0)

...

µ(i) = 2f(i− 1)f(1) + ...+ f(i/2)f(i/2) + 2f(i)f(0)

Add up the left and right items of equations respectively, we can obtain:

k
R∑
i=2

µ(i) ≥ f(1)f(1) + 2f(1)f(2) + 2f(3)f(1) + ...

= (f(1) + f(2) + ...+ f(
k

R
))2

The left side is larger than the right side because we omit the f(0) item. Thus, we prove the

46

claim that:
k
R∑
i=1

f(i) ≤

√√√√ k
R∑
i=2

µ(i)

We now show that the expected value for the degree of encoding symbol after distri-

bution deconvolution. By obtaining expected number of degree for encoding symbols, we

further analyze the total message complexity compared with the case in which LT codes are

applied individually in each node.

Theorem 17 The recursive distribution deconvolution gives an upper bound on the expected

number of encoding symbols in the network as O(logN ·
√
k

ln(k/δ)
) · (k + c ·

√
k · ln2(k/δ)).

Proof 18 The essential idea is to prove the expected number of encoding symbols required

for each node after degree distribution deconvolution does not exceed that before degree distri-

bution deconvolution. We define an indicator variable Xi for each symbol, and X =
∑

iXi.

After j-th deconvolution, we assume the distribution function as f(i), thus, the expected

number of encoding symbol is computed as:

Ej(X) =

k
R∑
i=2

f(i) · i+ p(1)

≤
k
R∑
i=2

f(i) · k
R

+ p(1) (4.5)

≤ (

√√√√ k
R∑
i=2

µ(i) + p(1)) · k
R

(4.6)

= (
√

1− µ(1) + p(1)) · k
R

(4.7)

< 2 · k
R

where in (3), we use the fact that i ≤ k
R

, the inequality holds by replacing each i in the

expected number Ej(X) with k
R

. Inequality (4) holds true according to Lemma 1. Equality

47

(5) shows that the summation of probability distribution should equals to 1. As a result, the

expected number Ej(X) after j-th deconvolution is less than 2 · k
R

(R = c ·
√
k · ln(k

δ
)). And

in tree structure, the depth of network is O(logN). Since decoder of ONEC will observe the

RSD, the number of encoding packets required in decoder side is k+c·
√
k·ln2(k/δ). Therefore,

the total expected number of encoding symbols is O(logN ·
√
k

ln(k/δ)
) · (k + c ·

√
k · ln2(k/δ)),

where N is network size.

[17] proves that the average degree of encoding symbol for LT codes is O(ln(k
δ
)). When

every node applies LT codes independently, its average message complexity is O(log2N ·
ln(k

δ
)) · (k + c ·

√
k · ln2(k/δ)). The O(log2N) is due to the fact that every intermediate

node forwards all packets from subset nodes. After distribution deconvolution, ONEC save

considerable amount of overhead compared with LT codes.

Decoding Robustness. We use “And-Or Tree”, an theoretic analysis tool proposed in

[65], to give an analysis of the decoding robustness of ONEC. Specifically, it turns out to

see what fraction of raw symbol data can be recovered when a portion of encoded packet

are lost during communication. We consider every communication link of reliability ϕ, and

the average hop-count in the network as h. Thus, the probability of lost encoded packets is

expected to be (1− ϕ)h. Since encoded data stream contain packets of degree 1, which can

be directly recovered, and packets of higher degree (d > 1), which require the conducting

of Belief Propagation algorithm on decoding graph. It is obvious from RSD analysis in [17]

that the average number of packets of degree 1 equals to c ·
√
k · ln(k

δ
), and overall number of

packets required for high-probability decoding is c ·
√
k · ln2(k

δ
). Now, we denote the fraction

of raw data which are not received as φL = (1−ϕ)h

ln(k
δ

)
, and the fraction of missing encoded packet

with degree (d > 1) as φR = (1− ϕ)h · (1− 1
ln(k

δ
)
).

Next, we gives some terminologies for decoding process. During belief propagation

decoding, a bipartite graph is utilized to illustrate the procedure, with raw data symbols

on the left and encoded packets on the right. Let (p0, p1, ..., pL) and (q0, q1, ..., qR) be the

probability vectors, denoting that each node on the left has degree i with probability pi, and

each node on the right has degree j with probability qj independently. According to the

48

“And-Or Tree” analysis, we first consider a subgraph Gs: choose an edge (u, v) uniformly at

random from all the edges between left and right sides, then construct Gs as by taking the

left node u and all its neighbors within certain distance 2l after deleting the edge (u, v) [65].

Then, for any left node i, αi := ipi∑L
i=1 ipi

is the probability that a uniformly chosen edge is

adjacent to it; and βj :=
jqj∑R
j=1 jqj

is the probability for a node on the right who is attached to

the chosen edge. Define the polynomials: α(x) =
∑L

i=1 αi · xi−1 and β(x) =
∑R

j=1 βj · xj−1.

According to Lemma 1 in [65], in order to make the probability γl that the left node u

can not be recovered approach 0 as l grows, the following condition needs to be true:

ϕL · α(1− (1− ϕR) · β(1− x)) < x(1− ε) (4.8)

for all x ∈ (0, ϕL], with a constant ε > 0.

When we consider a dual inequality of the above problem, with the fraction ϕR of nodes

on the right are lost, we then can get:

β(1− ϕL · α(1− (1− ϕR)x)) > x(1 + ε) (4.9)

for all x ∈ (0, x∗]. Here, x∗ is the largest value for which Inequality (9) holds. Therefore, we

can draw the following theorem.

Theorem 19 When there is ϕ fraction (ϕ = ϕL + ϕR, ϕL denotes lost fraction of degree 1

packets and ϕR for the lost fraction of packets of degree greater than 1) of encoded packets

lost, the recovery ratio of decoding can be obtained by: 1 − ϕL · P (1 − (1 − ϕR) · x∗), where

P (x) =
∑L

i=1 pi ·xi and x∗ is the maximum fraction of edges, to which right node can recover

left node.

Proof 20 The value of x∗ can be considered as the maximum fraction of edges between left

and right nodes, so that each of right node v has all its neighbor nodes recovered except u,

making u recoverable during decoding. And ξ = (1 − (1 − ϕR) · x∗) is the fraction of edges

(u, v) between left and right which are not able to recover the value at node u. Therefore, at

49

the end of decoding, a left node u with degree i has probability δ · ξi to be unrecovered. In

total, there are pi fraction of such node with degree i, and summing up all the nodes from

degree 1 to degree L gives the results.

4.1.3 Opportunistic In-Network Recoding

We recall that our goal is to achieve data collection of high reliability in challenged

sensor network. The alive nodes status are intermittent and link connection is lossy. In such

a disruptive communication environment, the data collection at the base station becomes

partial, which might compromise or even halt the decoding procedure. ONEC design has

observed this and as a result employ the opportunistic recoding to combat the disruptive

network communications.

We then explain the idea for opportunistic recoding. Once every node derives its degree

distribution, each source node produces encoded packet based on its own derived degree

distribution. In forwarding nodes, a reception window (buffer) is set to receive packets for

recoding. To note that, this buffer is only used to store the received packets inside window,

and it is cleared as soon as the XOR is carried out and the encoded packet has been generated.

In the good link communication, each intermediate node can receive more packets than those

from all its children in the reception window, then generate recoded packets and forward

them towards the sink. In the poor link connection, some packets from children can get

lost, but some opportunistic overheard packets can fill the gap. According to the degree

distribution deconvolution, the aggregated packet degree distribution eventually satisfies the

RSD in the sink.

Illustrated in Figure 4.5, overheard link is denoted by dashed line, and tree routing path

is in solid line. By on-path opportunistic recoding, if node 5 fails, node 3 can still overhear

the packet from 7. If the node 5 comes alive, node 3 can selectively receive and recode the

packet from node 7 by checking the symbol redundancy in the packet from node 5. However,

if the node 1 fails, sink node will miss the the packets from node 3 and the nodes in its

subtree even with on-path opportunistic XOR. It is because that only node 1 and 2 can

50

43

1 2

S

5

p1 p2

p3 p4p5

Opportunistic

Path

Tree Routing

Path

6
p6

Sink

100%

7 p7

Figure 4.5 Opportunistic in-network recoding.

reach the sink in one hop. As illustrated, node 2 is able to overhear the encoded packet from

3 and 7 respectively. If we make full utilization of this overhearing over multiple paths to

execute the opportunistic XOR in the forwarders, more innovative symbols can seep through

the disruptive network to reach sink, and hence the data reliability can be largely improved.

The Algorithm 3 described the approach on how to calculate the probability that a node

accept and recode the overheard packets.

Algorithm 3 Opportunistic XOR Algorithm

1: Receive an overheard encoded packet
2: Calculate the difference of hop-count: hd
3: if Entire symbol is contained in current received packet then
4: Drop the symbol
5: else
6: The symbol is accepted with probability: p(ds)

(1−1/hd)

7: end if

In the Algorithm 3, ds is the degree of innovative overheard packet and p(ds) is the

probability for forwarder to select the symbol with degree of ds, derived from its own degree

distribution. And hd is the hop-count difference between the source of overheard packet and

current forwarder. The acceptance probability is proportional to hop-count difference. The

reason is that the overheard packet would be more likely to reach the sink, by assigning more

51

probability to the nodes closer to the sink. And fi equals max{(p(ds))(1−1/hd)} on the path

i. In line 6 of Algorithm 3, if hd equals to 1, the accept probability is 1, which conforms

with the normal encoding scheme.

One practical issue of on-path opportunistic recoding scheme designs is that encoded

symbol along different paths might get cancelled in converged points because of the simplistic

XOR operation. The cancellation occur only when there are even number of nodes along the

path who encode the same symbol into packet. In fact, in our simulation, the occurrence of

symbol cancellation by XOR is rare.

Overall, with the opportunistic overhearing applied in the network, the original encoded

symbol can have a considerably higher probability to reach sink.

4.1.4 Data Decoding

Finally, the code degree distribution of arrival packets in decoder is expected to be

consort with the Robust Soliton Distribution. At the beginning of decoding, when an encoded

packet arrive, it will be buffered for later decoding if it is not a packet with degree one. If a

native packet (degree one) is received and recovered, it is placed in the ripple.

While the ripple size is above 0, a released symbol x in the head of ripple is processed,

and every encoded packet y containing x is XOR-ed with x and hence the packet degree

is reduced by 1. When the degree of an encoded packet decreases to 1, its value can be

recovered. The value can be stored into ripple, as long as the symbol has not been processed

and not in the ripple either. The decoding is successful if all the data is recovered.

4.2 Protocol Implementation Detail

We present the implementation of proposed ONEC protocol. The protocol resides in

the routing layer, with a traditional converge-cast routing protocol sitting together. We

adopt the Collection Tree Protocol (CTP) [66] to construct a tree structure for control

message communication, including recursive degree distribution deconvolution, dynamic no-

tification of symbol size fluctuation and incremental degree distribution update. Illustrated

52

in Figure 4.6, the ONEC protocol components (shaded parts) are implemented as flexible

components, which co-work with TinyOS protocol stack. When enabled, it takes charge of

opportunistic routing, recoding and forwarding to improve the data collection performance.

Sensing Application

Routing & Forwarding

Opportunistic Broadcasting

Radio Control

Collection Tree
Protocol

Neighbor
Management

Radio

Recoding & Forwarding

Encode Proc. Decode Proc.

Selective
Recode

Opportunistic
Recode

Forward Management

LT Encode & Decode

MAC

Distribution
Deconvolution

SendReceive

Receive
Send

Send

RadioSend RadioReceive

Recovered Data

RawDataSend

NeighborTable
Feed

ExtractNbr

Sensor Mote
Hardware

Packet Flow

Control Flow

Sensing Data

Figure 4.6 Software Implementation on TinyOS, with shaded part as our ONEC components.

Besides, we employM&M Markov Model [67] to simulate the wireless link in radio stack.

TOSSIM comes with different models simulating several radio characteristics, in which CPM

model [68] models the variations in radio signal strength using a statistical noisy reading

traces. However, M&M Markov Model [67] utilizes Hidden Markov Models (HMMs) and

Mixtures of Multivariate Bernoullis (MMB) to mimic the long and short time scale behavior

of lossy wireless links. Multi-level Markov Models characterize the data traces based on

packet reception rate (PRR), which provides much better matching between simulated model

and the time-varying data traces collected from real testbed. We settle the system parameter

Q1 = 6 in level-1 hidden Markov model (L1-HMM), which represent Q1 transitions between

long-term states; Q2 = 2 in level-2 hidden Markov model (L2-HMM); and mixture component

53

M = 20. In terms of LT coding, we adopt the system parameters δ = 0.05, which allows

for decoding success probability (1− δ) = 95% with sufficient packets received, and C = 0.1

respectively.

4.3 Performance Evaluation

In this section, we have evaluated the performance of our proposed ONEC based on

simulation experiments. The experiments are conducted on TOSSIM [69], the TinyOS [70]

simulator. Experiments are conducted in large-scale networks by varying network sizes, input

symbol sizes, link loss rates and node failure percentages.

4.3.1 Simulation Setup

We consider a random graph of network size N , where nodes construct a data collection

tree for distributed degree deconvolution. We deploy the network in a random fashion, so

that each node in the constructed coding tree contains different subtree sizes. Each node

i is able to generate certain amount of data and is required to deliver them to the base

station reliably. The packet generation rates in each node (denoted as Ri for node i), are

heterogeneous across the network. The generated packet is comprised of different number of

raw innovative neighbor symbols, which are encoded by XOR operation. We also define the

tree level of node i as the shortest hop count from node i to sink, so that we can inspect the

transmitted packet number level by level along the data collection tree. Since each node has

different sub-tree sizes, without loss of generality, we unify the input symbol size k of each

node. The size k varies from 50 to 500. The performance is evaluated mainly by the metric

of message complexity. Here, the message complexity is the expected transmitted number

of packets (including the control messages), that is needed for reliably decoding data from

network. The result is the average of the 500 runs of the simulation experiment.

Performance of ONEC is compared with other coding schemes, under the same network

conditions: TCP : it only uses TCP protocol to realize reliable data delivery. LT : it simply

applies the LT encoding in every source node, but no network coding in the intermediate

54

nodes. MORE [4]: Random linear encoding is used in the forwarding nodes, and Gaussian

Reduction is applied in decoder. GROWTH [35]: the GROWTH CODES increases the

degree of encoded packet is growing over time, which make sure that increase is in efficiency

as data accumulates at the sink. CCACK [5]: a node can suppress the redundant packets of

its neighbors, by broadcasting the acknowledge message. The duplicated dependent encoded

packets are reduced by CCACK. SlideOR [34]: SlideOR applies random linear codes and

utilizes the sliding window to encode intra-flow data traffic. The sliding window advances

only in the source upon receiving the ACK feedback from decoder. The ACK message is

assumed to be reliable in the design.

4.3.2 Network codes validation

Before we evaluate the performance of decomposed distribution in the network, we first

validate the correctness of ONEC codes evaluating on the received degree distribution for

decoding. We validate the distribution of total received degree. Figure 4.7 shows the com-

parison, in which the top figure indicates the packet degree distribution received from single

node running RSD, and the bottom figure shows the actual received degree distribution

from a network running the ONEC. The symbol size k is preset as 50 for the entire network

and single node as well. It can be observed that the received degree distribution matches

the Robust Soliton Distribution. Moreover, we validate the total number of received packets

required to decode the raw data set with the probability at least (1 − δ). The simulation

results are shown in Figure 4.8. ONEC presents constantly close performance to RSD when

varying the input symbol size k. Thus, the correctness of decomposed degree distribution is

validated.

4.3.3 Communication evaluation

We conduct simulations to evaluate the impact of various factors on the data decoding

probability, including total message cost, network size and symbol size. The comparison

results show the advantages of ONEC coding, which has consistent performance with the

55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Pr
ob

ab
ilit

y

Encoding Degree

Robust Soliton Distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Pr
ob

ab
ilit

y

Encoding Degree

Recovered Distribution

Figure 4.7 Opportunistic network erasure codes validation.

 0

 100

 200

 300

 400

 500

 600

16 32 48 64 80 96 128 250 256 500

Av
er

ag
e

re
qu

ire
d

en
co

de
d

pa
ck

et
s

Symbol Number (K)

RSD
ONEC

Figure 4.8 The number of encoded packets needed to decode the raw data set is compared
between RSD and ONEC.

56

scaling factors.

 0

 0.2

 0.4

 0.6

 0.8

 1

2.5 5 7.5 10 15 20 25 30 35 40 45 50

CD
F

Total number of packet sent (k)

TCP
LT

MORE
GROWTH

ONEC

Figure 4.9 CDF of decoding success probability under different sent packet numbers.

 0

 20

 40

 60

 80

 100

 120

10 20 30 40 50 60 70 80 90 100

To
ta

l m
es

sa
ge

 c
os

t (
K)

Network size

TCP
LT

MORE
GROWTH

ONEC

Figure 4.10 Total amount of packet transmissions required under different network size.

Impact of message cost We evaluate the impact of message cost on decoding by varying

the number of sent packets under the network size of 100, with 50 symbols in each node. The

link reliability is assumed as 20%. The simulation is conducted in random tree topology with

100-time repetition. The results illustrated is measured in average value. In Figure 4.9, the

57

 0

 500

 1000

 1500

 2000

 2500

50 100 150 200 250 300 350 400 450 500

To
ta

l m
es

sa
ge

 c
os

t (
K)

Input symbol size

TCP
LT

MORE
GROWTH

ONEC

Figure 4.11 Total amount of packet transmissions required with varying sizes of input symbol.

number of total sent packets during evaluation ranges from 2, 500 to 50, 000. It unveils that

ONEC has higher decoding probability than other coding schemes, at any given number of

packet sent. ONEC achieves 100% decoding with message cost of 20, 000 packets, which is at

least one-third less than MORE, GROWTH and LT codes. Though the decoder expect the

same degree distribution from ONEC and LT codes, the decomposed degree distribution and

opportunistic recoding help ONEC reduce considerable amount of redundant message cost

in the entire network. Thus, from the network perspective, ONEC considers the network

as an integral source, which saves message from redundant encoded messages and shift the

“increasing leap” of LT codes earlier.

Since shifted earlier, the performance of ONEC also surpass the GROWTH. For

GROWTH, it makes the optimal degree changing point to accommodate the decoding pace.

But, the considerable amount of neighbor data exchanging make the message cost high.

Comparing to MORE, ONEC still has performance advance as the opportunistic re-

coding take place with different probability based on hop-count discrepancy. But, MORE

makes nodes in the forwarding list encode the packets and forward them, which has slightly

more message cost. We evaluate their performances in various network environment, includ-

ing disruptive networks in subsequent sections.

58

Another observation from Figure 4.9 is that TCP has similar decoding probability as

ONEC codes when the total 2, 500 packets are sent at the beginning. With the increasing

number of packets sent, decoding probability of TCP grows slowly, ending in 45, 000 packets

for 100% decoding. It is because TCP uses end-to-end acknowledgement mechanism to

guarantee delivery, which cause a lot of message waste in the ACK messages.

Impacts of network size

We have evaluated the performance of TCP (no coding), LT codes, MORE and ONEC

in the randomly deployed network, with k = 50 symbols in each node. In Figure 4.10, we

measure the average number of transmitted packets (which is required for successfully decod-

ing raw data) in the networks of varying sizes. It can be observed that ONEC outperforms

all other coding schemes. For TCP , which needs end-to-end acknowledgement message to

enable reliable transmission, the message complexity is expected to grow exponentially with

the network size. TCP has a message complexity of 50% more costly than that of the LT

codes, and twice as many as that of ONEC. LT codes apply erasure coding only on source

nodes, such that forwarded packet number is still exponentially related to the network size.

With increasing network size, the packet number required for TCP and LT codes increases

much faster than ONEC. This indicates that we obtain more benefits with the ONEC

schemes when the network size increases.

Applied to a large-scale network, ONEC gains its increasing benefit margin, since

the ONEC enables opportunistic recoding in intermediate nodes. Its transmitted packet

number has a linear relation with the network size, which results in a smaller growing rate.

MORE utilizes random linear coding and opportunistic recoding in forwarding nodes. It

has smaller message complexity than LT and TCP schemes. However, MORE still asks

for more transmitted packets than ONEC in different network size to decode the raw data

reliably. As in MORE, every node belonging to the forwarding list of a specific packet needs

to encode it, as long as the packet is “innovative”. ONEC distinguishes the overheard packet

by difference in hop-count, and recodes them with different probability. Also it can reduce

the redundancy of transmitting similar encoded symbols. The packet cost for GROWTH

59

codes also maintain higher than ONEC under different network size. The reasons are two-

folded: 1) in GROWTH, the exchanging message is considered as a waste if the “innovative”

data in the neighbor already in the codeword; 2) the decent decoding performance relies on

a good “mixing” of random selected data, which requires a considerable amount of message

exchanging.

Impacts of input symbol size Next, we examine the impact of various input symbol sizes

in the same network size of 100. Since randomly deployed network has heterogeneous subtree

size for each node, without loss of generality, we assign the same symbol size to each node.

In Figure 4.11, it shows the similar trend in performance margins of ONEC as the one

illustrated in Figure 4.10. Moreover, ONEC has more advantages when input symbol size

increases.

4.3.4 Energy and resource evaluation

Besides decoding performance, energy efficiency is also a major evaluation metric for

network coding scheme to improve data reliability in a disruptive network. The energy

consumption contains three parts: (1) communication cost of data packets; (2) cost of control

packets; (3) computation cost for encoding and decoding. Both radio communication costs

are evaluated by counting the amount of packets transmitted and received inside network.

Energy consumption is calculated by considering the transceiver model of CC2420, where

current consumption for radio transmitting is 17.4mA, and 19.7mA for radio receiving.

Computation cost is calculated based on TI MSP430 MCU. We evaluate these metrics in

different network coding schemes of TCP , MORE, GROWTH, SlideOR, CCACK and

ONEC when 1000 symbols are successfully decoded, and normalize energy consumption to

TCP .

First, TCP uses no coding scheme, and its ACK control message takes more than 50%

in the final energy consumption. The reason that TCP consumes more energy than any

other coding schemes is that the lossy ACK transmission deteriorate the efficiency of slid-

ing window. TCP ’s computation cost can be neglected compared with coding methods.

60

 0

 20

 40

 60

 80

 100

 120

TCP MORE GROWTH SlideOR CCACK ONEC

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

Network Coding Schemes

Data Message
Control Message

Computation

Figure 4.12 Energy consumption of different coding schemes

Second, the approach using random linear coding, e.g. MORE, SlideOR and CCACK,

requires more sophisticate encoding and decoding, which entails more energy consumption

for computation. In contrast, the GRWOTH and ONEC are based on erasure codes, which

demands much less computation complexity. Third, in terms of control message, ONEC

is not the best, since it needs to recursively decompose the degree distribution along for-

warding paths, and basic beacons are needed to maintain a neighbor list. The GROWTH

codes consume less energy consumption, since it is designed for zero-configuration network

with lossy link condition. Finally, ONEC has the least energy consumption for data trans-

mission. In other words, ONEC introduce less data redundancy for decoders. We can see

that CCACK has less energy cost for data transmission than MORE, since it introduces

NSB, which suppresses redundant data. SlideOR can also introduce data redundancy if the

window advances inappropriately due to missing ACK.

Figure 4.13 evaluates the recoding buffer size in the forwarding nodes. In Figure 4.13, it

is shown that ONEC has much less buffer size requirement for intermediate nodes. However,

GROWTH and MORE consume a considerable amount of buffer, with about 270 bytes and

220 bytes under network size 100 respectively. The buffer is required for GROWTH to store

the received packet in the past to reconstruct a newly encoded packet. MORE stores received

61

 0

 50

 100

 150

 200

 250

 300

10 20 40 60 80 100

Av
er

ag
e

Bu
ffe

r S
ize

 (B
yt

es
)

Network size

GROWTH
MORE
ONEC

Figure 4.13 Average buffer size in forwarding nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

De
liv

er
y

Ra
tio

Link loss rate

TCP
LT

MORE
GROWTH

ONEC

Figure 4.14 Packet delivery ratio under different link loss rates.

62

 0

 0.2

 0.4

 0.6

 0.8

 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

CD
F

Link loss rate

TCP
LT

MORE
GROWTH

ONEC

Figure 4.15 CDF of decoding success probability under different link loss rates.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

5 10 15 20 25 30 35 40

De
co

di
ng

 ra
tio

Percentage of disruptive nodes

TCP
LT

MORE
GROWTH

ONEC

Figure 4.16 Symbol decoding ratio in the disruptive networks.

63

data for checking if the packet is “innovative”. However, ONEC is an opportunistic network

coding scheme that has very little demands on the buffer size, since it does not need to store

the history packet either for “innovative” packet check or for generating newly encoded

packet.

4.3.5 Robustness evaluation

Now we study robustness of ONEC and other coding schemes in the disruptive network

environment, which includes node failures and lossy link communications.

Impacts of link loss rate ONEC is designed and developed for improving data reliability

in disruptive sensor networks. Now we evaluate its feasibility and performance in different

networks with diverse link reliabilities. The network size is 100 with symbol size 50 on each

node. Figure 4.14 and Figure 4.15 indicates the probability of delivery ratio and decoding

success under different link loss rates respectively. Sink node starts to decode or check the

completeness of received data, when total amount of transmitted packet in the network

reaches 100, 000.

Figure 4.14 illustrates the delivery ratio of different coding schemes under various link

loss rates. ONEC and MORE have the similar performance, while the LT and GROWTH

have worse delivery ratio. The reason is that the opportunistic forwarding or recoding help

more symbols seep through the network to reach sink. However, larger delivery ratio can not

guarantee the higher decoding probability, as it contains much redundancy in the packets

seeping through network.

In Figure 4.15, it is not hard to discover that both LT and TCP have the earliest drop

at the link loss rate of 15%. However, ONEC can maintain more than 90% decoding success

ratio until the link loss rate degrades to 40%. MORE’s performance is between LT and

ONEC. The reason why ONEC can outperform the MORE scheme is that ONEC is free

of maintaining the forwarding list for each packet. In the disruptive network, nodes’ status

are transient and disruptive. Therefore it is difficult to keep the forwarding list updated

every time packet is about to be transmitted. Some recipient node will drop the packet

64

simply because it does not belong to the forwarding list of the received packet, wasting the

chance to recode the packet. ONEC utilizes the symbol degree probability and hop-count

between transmitting node and recipient node, and determine the probability of “recoding”

received symbols into current packet.

For GROWTH codes, the decoding probability drop dramatically when the link re-

liability is under 70%, and there is almost no successful decoding when the link loss rate

reach 40%. Since GROWTH codes hard-coded the changing point k1, ..., ki, ..., kn to the

nodes before deployment, the lost packet could significantly hamper the decoding process.

As insufficient packet number of degree ki will stop the decoding of ki+1, the GROWTH

fail to decode the rest of the packets at the point of 40% loss rate. With the link loss rate

increases, the TCP gets much worse in an exponential fashion due to the ACK implosion

effect. Thus, it is not the appropriate solution to guarantee data reliability in the disruptive

networks.

In Table 4.1, we further evaluate the decoding performance of ONEC in lossy commu-

nication network by comparing with other recent works, including CCACK and SlideOR.

The network size is 100, with varying symbol size on each node from 50 to 200 bytes. We

set the check point for decoding performance evaluation when network message number υ

achieves 100, 000, 210, 000 and 470, 000 for symbol size 50, 100 and 200 respectively. Lossy

link is simulated by 2-Level Hidden Marcov Model, with varying loss rate from 5% to 60%,

which prohibit most of decoding procedure from success.

The first thing observed from Table 4.1 is that ONEC has a better overall decoding per-

formance than CCACK and SlideOR in varying loss rate conditions. Particularly SlideOR

has the worst behavior and fail in 100% decoding when link reliability drops to the rate

90%. It is due to the fact that SlideOR relies on a reliable ACK feedback to advance the

encoding window. In other words, the loss of ACK message will halt the encoding window

and degrade decoding performance as well. Nodes of CCACK can suppress the transmission

of redundant encoded packets, which gives it a better throughput over MORE. However, it

65

Table 4.1 Decoding comparisons with different symbol sizes under lossy links

Proposed ONEC CCACK SlideOR

Link
Loss LLR

Symbol Size Symbol Size Symbol Size

Rate

Mean±StdDev 50 100 200 50 100 200 50 100 200

0.10 0.101±0.012

1 1 1 1 1 1 0.98 1 1

0.20 0.202±0.029

1 1 1 1 1 1 0.90 0.91 0.91

0.30 0.301±0.012

0.99 0.99 1 0.95 0.96 0.97 0.65 0.67 0.68

0.40 0.405±0.011

0.93 0.95 0.96 0.83 0.85 0.84 0.45 0.45 0.46

0.50 0.50±0.018

0.50 0.56 0.57 0.26 0.31 0.33 0.13 0.14 0.14

0.60 0.60±0.020

0.02 0.12 0.20 0.03 0.05 0.07 0.01 0.01 0.02

66

is subject to the forwarding list maintenance cost of MORE. The advantage of ONEC is

that it is free of updating the forwarding list, received packets are encoded into packet with

a probability respective to the hop-count. Second, the advantage of increasing symbol size

is not significant, and performance gain decreases when link reliability drops.

Impacts of disruptive nodes

In the previous discussion, we show the advantage of utilizing opportunistic recoding in

disruptive networks. ONEC enables to recode any overheard symbol packet with a proba-

bility. Thus, forwarding list is not necessary for each transmitted packet. Figure 4.16 shows

symbol decoding ratio of three schemes under different percentage of disruptive nodes. In

Figure 4.16, the total number of sent packets in each node is fixed. The figure illustrates that

a decoding ratio of average 85% is reached by ONEC in the network of 15% malfunctioned

nodes. In other words, all the symbols except the ones from failure nodes are successfully de-

coded in sink, by enabling opportunistic recoding. With the percentage of disruptive nodes

increasing, the decoding ratio of MORE decreases faster than the ONEC. The reason is

that more disruptive nodes in the forwarding list, MORE will become less efficient. That

is to say, the forwarding list of MORE is not fully capable of capturing the node status in

presence of disruptive communication.

In Figure 4.16, we observe that GROWTH codes can render better decoding probability

than any other schemes, including ONEC, in the case of large percentage of disruptive nodes.

It is because the exchanging messages used in GROWTH are reduced when the neighbor

size decreased. Moreover, the message cost of achieving good “mixing” is decremented as

well.

67

CHAPTER 5

DATA COMMUNICATION WITH ENERGY-SYCHRONIZED NETWORK

CODING (ONCODE)

Renewable energy holds great promise of making wireless sensor network truly battery-

less and have perpetual lifetime. However, the amount of harvested energy has dynamic

and volatile patterns, since it depends on many uncertain environmental factors (such as

weather, light intensity, temperature etc.). Energy synchronized design is the key to meet

the lifetime requirement in battery-less sensor networks, preventing the residual energy from

being overdrawn. The term energy synchronized design means the node operations (including

radio communication, sensing and computing) need to synchronize with energy fluctuation.

In the literature, several works (such as in [2]) adapt radio duty cycle in MAC protocol

to different energy constraints. Other existing methodologies, such as opportunistic routing

and joint energy-routing optimization were proposed to deliver data collaboratively. Oppor-

tunistic routing is adopted [3–5] to take advantage of multiple transmission opportunities to

improve data throughput. Data source nodes demand explicit ACK feedback message from

receiver to advance to next data blocks. Relying on ACK message for reliable data delivery

becomes very difficult (if not impossible) in a disruptive multi-hop network. More impor-

tantly, those solutions often underestimate the effects of dynamic energy fluctuations in the

nodes. Joint optimization [6] considers energy and routing together for the decisions and

gives an optimal solution. But joint optimization requires pre-determined communication

pattern and energy information and intensive computation cost, which is often not practical

in real applications since energy fluctuation is not easy to predict. In an energy-harvesting

sensor network, a good data delivery protocol shall immunize network from the unpredictable

disruptions caused by energy fluctuations, while utilize opportunistic communications for re-

liable data delivery.

68

In this paper, we present the design, implementation and evaluation of OnCode protocol.

OnCode is an opportunistic in-network coding and data delivery protocol. OnCode adapts

the network coding and probabilistic forwarding in-situ to energy variations. It exploits

probabilistic coding gain without relying on any predefined network structure and achieves

high data delivery ratio without need of end-to-end feedback. It also self-tunes the encoding

block to adapt to dynamic source data rates and ON/OFF wake-on ratios 1 from ambient

neighbor nodes. Both theoretical analysis and experimental evaluations are conducted to

demonstrate the performance of OnCode. To the best of our knowledge, OnCode is the first

work that explores opportunistic network coding to synchronizes data delivery operation

with dynamic nature of renewable energy sources, and does not depend on any particular

routing structure underneath the network.

The rest of the paper is organized as follows. In section 5.1, we summarize the prelimi-

nary backgrounds. Then we present the design and analysis of OnCode protocol in section

7.1. In section 5.3, we discuss the details of hardware testbed and protocol implementation.

In the following section 7.2, we present evaluation results in both testbed and simulation.

We describe the related works in section 5.5, and conclude our work in section ??.

5.1 Preliminaries

In this preliminary section, we present the network model in our problem and back-

ground knowledge about erasure codes and distribution deconvolution. Table 5.1 shows the

notations used in the subsequent sections.

5.1.1 Network Model

We study the problem in a random network of node size n, where each node is powered

by a renewable energy source, which has unstable energy harvesting rate. Because nodes’

operations need to be synchronized with energy fluctuation, which causes nodes’ activities

1Wake-on ratios denotes the portion of time radio is kept on.

69

Table 5.1 List of notations in protocol design and analysis

µ(∗) Raptor Codes degree distribution
ω(∗) Deconvoluted degree distribution
n Size of network
m Size of data set
D Average node degree
wi Disruption ratio of node i
Hij Hitting time from node i to j
Lij Hitting latency from node i to j
Ri Estimated number of delivered packet for node i
Bi Encoding block size in node i
S Total amount of innovative symbols in the network
di Degree drawn from distribution ω(∗) in node i
dp Packet degree drawn from distribution µ(∗) for packet p
dr Packet degree for parity check degree
λ Redundancy ratio of transmitted packets
ρ Packet forwarding probability
Λ Node priority

to become intermittent. Intermittent behaviors cause nodes to be disruptive from networks,

which is denoted as disruption ratio wi in node i.

In such a disruptive network, the opportunistic routing [3] is utilized to take advantage

of the nature of radio broadcast in wireless communication environment to improve the data

delivery efficiency. It has been shown that even if all data losses are correlated in different

paths, the packet delivery probability still increases by some “lucky” transmissions, which

reach further nodes than others. In opportunistic forwarding, multiple recipient nodes may

overhear the same packet, where the node of highest priority forward the packet. The packets

rebroadcast by forwarder suppress the rebroadcasting of the same packet from other nodes

in the forwarding list. And the transition matrix of packet during opportunistic routing in

each node can be defined as follows:

Pij =

qij · ΠΛk>Λj(1− qik), j ∈ N(i)

1−∑j 6=i Pij, i = j

0, j /∈ N(i)

(5.1)

70

where N(i) denotes the set of neighbors of node i, Λk is the priority of node k, and qij is

packet transmission reliability from node i to node j.

5.1.2 Erasure Codes

Erasure codes enable the recovery of all the m symbols by decoding a sufficient amount

of m(1+ ε) encoded packets with a high probability. The XOR based encoding and decoding

methods are effective and computation efficient. Unlike other random linear codes, the com-

putational cost of erasure codes is more suitable for networks of low computational power

devices. It has also been employed in many challenging applications, especially those envi-

ronments with narrow feedback channels, since erasure codes improve the data throughput

by removing dependence on ACK feedback control messages.

The key to the erasure codes is the degree distribution, which describe a probability

distribution of encoding degrees among encoded packets. However, degree distribution is for

end to end transmission, because encoding and decoding only happen in end systems. In

order to apply erasure codes to network coding, we need to decompose degree distribution

from end system to network nodes. The technique we use is deconvolution. The principle

of using deconvolution in degree distribution decomposition is studied in previous works

[36]. Generally, given a degree distribution µ(∗) as an output function, node u takes two

independent input encoded data streams from node v and w respectively, and tries to produce

an encoded packet stream with degree distribution conforming with output function. Since

node u XORs the incoming encoded symbols, the output degree in each packet is the sum

of the degrees of those incoming stream. Moreover, node v and w generate their encoded

symbols in an independent way based on their own degree distributions. Thus, the “recoded”

packet degree conforms with the convolved function of distribution µu[i] = (ωv · ωw)[i] =∑i
j=1 ωv[j] · ωw[i− j], where ωv(∗) and ωw(∗) are two input degree distributions.

71

Algorithm 4 OnCode Data Delivery

Input: Innovative sample data set M=
⋃N
i=1 Mi, disruption ratio wi,t and degree

distribution µ(∗)
Output: Encoded packets stream received by sink node: P =

⋃
i{p̂1, p̂2, ..., p̂t} (∀ i ∈ V &

∀ t ∈ [1, τ])

1: P = NULL;
2: for t = t1 → tT do
3: for i ∈ V do
4:

⋃
i{p1, ..., pt}= ASE (Si, wi,t, µ(∗)); (Adaptive-Source-Encoding)

5: end for
6: P ′ =

⋃
i{p1, ..., pt}

7: P ′ = OINE (P ′ , ⋃N
i=1 Mi); (Opportunistic-In-Network-Recoding)

8: t← t+ ∆T ;
9: end for
10: P = P ′

5.2 Algorithm Design and Analysis

OnCode is an energy-synchronized network protocol, designed for data delivery over

unpredictable network disruptions. OnCode adapts the delivery and coding strategy in-situ

to energy distribution, maximizing quality of data delivery in disruptive sensor network.

5.2.1 Design Overview

Algorithm 4 illustrates OnCode data delivery. First, source node exploits Adaptive

Source Encoding (ASE), using a set of sample data S i, disruption ratio wi,t and degree

distribution µ(∗) as input. In G = (V,E), each node i ∈ V generates encoded packets and

forwards them on probabilistic links, as shown in line 3 − 5. Second, during data delivery

cycle T , Opportunistic In-Network Encoding (OINE) is applied whenever an opportunistic

packet is overheard as shown in line 6−8. Payloads of encoded packets are recoded with the

random portions of local data set in nodes decided by local degree distribution ω(∗). This

procedure repeats until packet degree dp is satisfied. Output of OnCode is a sequence of

encoded packets, which can be decoded with high probability. OnCode avoids the reliance

on a specific routing structure and makes coding procedure of low complexity.

72

Algorithm 5 Adaptive Source Encode: Algorithm running on a source node i (i ∈ V)

1: Constant: µ(∗), λ, ρ, ε, ∆i

2: Variable: Ri, ω(∗), M , Mi, wi,t, Bi
3: for all j ∈ V do
4: Construct matrix Pij; /*See Equation (5.2)*/
5: end for
6: Compute hitting latency Li,sink; /*See Equation (5.3)*/
7: Derive packet reachability Ri;
8: Decide encoding block size: Bi = Ri

(1+ε)·λ ;

9: Compute ω(∗) = f(µ(∗), Bi,Mi); /*See Equation (5.4)*/
10: for t = t1 → tT do
11: P ′ i = P ′ i

⋃
EFU(Bi, ω(∗)); /*EFU: Encode &Forward Utility*/

12: t← t+ ∆T ;
13: end for
14: Move to next encoding block.
15: UPON receiving energy update, go to Step 1.
16: Go to Step 8.

5.2.2 Adaptive Source Encoding

The procedure of adaptive source encoding in each node is illustrated in Algorithm 5.

First, packet forwarding reliability is drawn to establish the state transition matrix in line

3 − 5. Second, packet reachability to sink is estimated in line 6 − 7. Third, an appropriate

encoding block can be derived and the local degree distribution ωi(∗) is deconvoluted for

source encoding (line 8 − 9). Line 10 − 13 encodes and forwards the data using EFU(*).

EFU is a custom routine designed to generate encoded packet based on selected block and

forward them over probabilistic links.

Packet Forward Probability We denote the probability of successfully transmitting

a packet from node i to node j as qij. The parameter qij is only determined by the node

disruption ratio in nodes i and j respectively. Let wi denote disruption ratio for node i. Node

i obtains the wj from its neighbor nodes during initialization phase. Then node i calculates

qi,j by the following equation: qij = (1− wi) · (1− wj).
Each node has its priority determined by individual node disruption ratio. For instance,

73

node i has higher priority than node j, if (1−wi) > (1−wj). Node i knows its priority ranking

among its neighbors by sorting the wj among neighbors. Then nodes elect themselves to

forward the packet from node i with the probability as follows:

Pij =

qij · (1− ρ · log(Λ + 1)), j ∈ N(i)

1−∑j 6=i Pij, i = j

0, j /∈ N(i)

(5.2)

where ρ is the forwarding probability, Λ is the priority ranking of neighbor node j among its

own neighbors. Node j is elected as forwarder with a probability of qij · (1− ρ · log(Λ + 1)).

If Λ equals to 0 (denoting node j has the highest priority) node j forwards packet as long

as it received it from node i with probability of qij.

Packet Reachability Estimate Every node estimates its packet reachability to base

station based on updated wake-on ratios of neighbor nodes. For estimation purpose, the

duration ratio of radio ON and OFF mode of neighbor nodes is sufficient, no further demand

for the exact time slots. The estimation of packet reachability in node i is to calculate hitting

latency Lij, based on transition probability matrix Pij. Lij is the expected transmission delay

between node i to j.

Figure 5.1 illustrates an example of radio wake-on in a case of sender i and receiver

k. Time difference Tij between Tarrive when a packet arrives at sender i and Tforward(k) is

denoted as the one-hop transmission delay. We do not assume specific wake-on schedules

applied. wi is the disruption ratio of node i in a cycle of time stretch τ . The wake-on point

is uniformly distributed during time τ . T
′

ik is the delay decided by wake-on interval in node

i:

T
′

ik =

b(wi)·τc∑
X=0

X · (τ −X) · (wi)X · (1− wi)τ−X

where delay time X ranges from 0 to b(1− wi) · τc, which is the maximum dormant time

stretch of node i. Inside the cycle T , there are (τ −X) time segments with dormant length

of X. T
′′

ik can be derived from similar equations, replacing wi with wk as the disruption ratio

74

in node k.

Sender i

Receiver k

Time
T'trans (i)

Tarrive(i)

T'trans (k)Ttrans (k)

Ttrans (i)

T'ik

T''ik

Tik = T'ik + T''ik

T

Figure 5.1 Example of transmission latency within one hop.

One-hop latency is evaluated as: Tik = α1 ·T ′ik +α2 ·T ′′ik, where α1 and α2 are statistical

probabilities for patterns of “immediate forwarding” and “hold-and-forward”. Here, we select

α1 = α2 = 1
2
. Thus, Lij is evaluated as follows:

Lij =
m∑
l=1

(Pik · (Tii′ + ...+ Tkj)) =
n∑
k=1

Pik · (Tik + Lkj) (5.3)

where Pik is packet forward probability for node i to k. Tij indicates the transmission delay

from node i to j and the delay inside node j before packet is sent by j. The term of

(Tii′ + ...+ Tkj) is to sum up all the segments of Tik along path l. Moreover, hitting latency

satisfies the recursive condition, hence the estimated latency from each node i to node j can

be evaluated by adding local latency to Lkj. The packet reachability Ri (estimated number

of packet delivery) is evaluated as: Ri = 1/Li,sink.

Adaptive Block-based Deconvolution The general principle of deconvolution is

described in Section 5.1.2. Particular reasons for adopting degree distribution deconvolu-

tion are twofold. First, packets initiated with deconvoluted degree distribution have gained

recoding opportunities to convolute their degree with other degree distributions in network

to achieve final µ(∗). This increases the mixing randomness of data. Second, with recoding

opportunity, the problem of spatial reuse is addressed.

75

Though decoding performance is preserved by achieving final degree distribution µ(∗)
in decoder, the stopping criteria of each node is no longer the same as (1+ε) ·k for successful

decoding k samples. Indeed, Raptor Codes support a wide spectrum of output degree func-

tion. If employing a modified soliton-like distribution, it requires (1+ε) ·k packets to recover

k symbols with high probability. If the output degree function is Ω(x) = x, it asks for at

least k · ln(k/δ) packets for successful decoding with probability (1−δ). After deconvolution,

probability of encoded packet of degree 1 takes major portion. Thus, nodes need send λ

times of extra packets. λ is a system parameter of packet redundancy, which is analyzed

and evaluated in later section. By considering redundancy parameter λ, the appropriate

encoding block can be decided based on the packet reachability Ri : Bi = Ri
(1+ε)·λ , where ε is

the Raptor decoding parameter.

Node i, with sensor sampling rate Si, divides data stream into encoding blocks of size

B̂i = min{Bi, Si}. By adaptive block size B̂i, transmissions on node are synchronized with

dynamic energy supply underneath. In other words, it can avoid the failure of recovering

raw data due to insufficient reception of encoded packets. The rest of nodes V/{i} can be

considered as an integral node with data size of S − B̂i, in which S =
∑n

k=1 B̂k. The degree

distribution deconvolution can be formulated in following equation:

ω(i) =

√
µ(2), i = 1

µ(i+1)−
∑i−1
j=1 ω(j)ω(i−j)

2ω(1)
, 1 < i ≤ B̂i

(5.4)

Notice that the total symbol size S is known as an initial variable for each node. Periodic

message of B̂i from node i is piggybacked in data packet to update S of other nodes.

5.2.3 Opportunistic In-Network Encoding

In the process of opportunistic network recoding, two critical statistical characteristics

of erasure codes, namely code degree distribution and randomness in encoded symbol, are

well preserved for optimal decoding. First, we exploit “double-deck degree” on encoded

packets to ensure that final degree distribution conform with µ(∗). Each node draws local

76

degree di from local distribution ω(∗), as shown in Equation (5.4) and recodes the received

data with randomly selected di samples. Moreover, an optimal left-distribution is derived in

nodes to encode data in such a random manner that data decoding probability is optimized.

In the following, we present detailed discussions on the behaviors of both packets and nodes

respectively during opportunistic in-network encoding.

Packet coding behavior We adopt a pre-coding LDPC with rate R, and generate

(1
R
− 1) · S parity check packets. Encoding packet is generated by each sensing node, with a

degree dp associated with the packet. This degree terminates the encoding procedure when

it is satisfied. Then packets are forwarded to sink with no further recoding afterwards, so

that the degree distribution can be closely approximated. Besides, the node elected as parity

check node will associate another degree dr with packet, which controls the generation of

parity check data. Parity-check data will be encoded along with data encoding, but with

different randomly selected sets.

As illustrated in Fig. 5.2, di is randomly drawn from derived distribution ω(d). As

long as (cp + di) does not exceed the threshold of dp, di samples are encoded; otherwise, the

overflowed data are discarded in order to satisfy the degree dp. Packet p̂ is generated to carry

both parity-check data and encoded data. We discuss two cases of in-network recoding as

follows.

Case I : carry encoded data only. When packet p̂ originates from a non-parity-check

node, the packet has only one associated degree dp and a counter cp respectively. It first

encodes di randomly selected data in starting node, and then be forwarded to neighbor nodes.

Whenever dp is satisfied, packet p̂ is marked as “non-recodable” and forwarded to sink with

no further recoding.

Case II : carry extra parity-check data. In this case, the packet p̂ has two degrees,

saying dp (degree for encoded data) and dr (degree for parity-check data). We initialize two

counter cp and cr to trace coding vector size. Incrementally, cp and cr are updated by adding

di every time the XOR happens for encoded data and parity-check data. Note that di data

77

Node i elect to generate parity check
with probability (1-R)/R
& set ElectedFlag true

Produce parity
check ?

LT encode di data
(di randomly selected)

N

Draw dr from right distribution P(x)
 & set ParityFlag true

Any neighbor to
send (Pij >0)?

Y

Parity check precode:
Randomly select another di data
& encode as partial parity check

dr satisfied?

neighbor received packet
& draw degree di from local ω(d)

LT data encode:
Encode di randomly selected data

dp satisfied?
Y

N

N

Copy parity check as
normal data for encoding

Y

Radio wake up
Draw dp from degree distribution Ω

& di from local ω(d)

N

Sleep until next
wake-up schedule

Does dp
satisfied?

Set packet non-
recodable &

forward to sink

Y

N

set ParityFlag false

Node already
elected ?

Y

N

Y

Figure 5.2 Operation flowchart for opportunistic in-network recoding.

78

set is independently randomly selected for data encoding and parity-check encoding, which

are of no correlation.

Node coding behavior Node u has probability (1−R)/R to become a parity-check

node. Once node u is elected as the parity-check node, it draws a degree dp from right

probability distribution P (x) of LDPC. Upon receiving packet p̂ from its neighbor, node u

adds di parity-check coding data from local sample pool. Thus, (1
R
− 1) ·S parity-check data

can be generated and stored in multiple random walks.

A left probability distribution ψ(∗) is derived in each node, satisfying that

Ψ(1− Ω(1− x)) < x (5.5)

where Ψ(x) =
∑

i=1 ψ(i) · xi−1 and Ω(x) =
∑

i=1 ω(i) · xi−1. Each node uniformly draws a

degree dl from ψ(∗) at random. During encoding, each node makes sure that the number of

encoded packets, where native data from a source node u is included, is upper bounded by

dl derived in node u.

5.2.4 Algorithm Analysis

In this section, we theoretically analyze the data throughput and communication over-

head of OnCode under disruptive network conditions, and compare its analysis results with

other state-of-art data collection protocols: NoCode (custody data delivery), ONEC (op-

portunistic network erasure codes) [36] and SlideOR (sliding window based random linear

coding) [34]. Given a network of size n, each node’s activity is synchronized with its energy

dynamics. Nodes’ operations (ON/OFF) have to be synchronized with energy supply. The

OFF state of node causes node to fail to respond data transmission or reception, which is

denoted as node failure. For ease of presentation, we assume node disruption ratio is homo-

geneous across network, denoted as w. All nodes are data sources which have the certain

amount of data needed to be delivered to sink node, which add up to m in total. Then, an

79

average hop counts for m data is estimated by:

Eh =
∞∑
i=1

1

2i
· log2

n

2i−1
= log2 n− 1

Theorem 21 Given a network of size n and m total amount of data, node disruption ratio

is denoted as w. The delivery ratio of OnCode algorithm is lower bounded by (1− δ
e2

), with

communication overhead as (mδ)Eh, where e is natural number, δ = 1
D

[1− (1−w)2], and D

is the expected node degree and Eh = log2 n− 1.

Proof 22 OnCode satisfies the code degree distribution ω(x) by “double-deck degree”, so

that the data set can be recovered with high probability if network data encoding procedure is

conducted in a pure random manner. Due to the nature of opportunistic network encoding,

pure randomness is not guaranteed, affecting the final data delivery ratio. Thus, we derive

the delivery ratio by directly analyzing decoding probability given network encoding operation

and network data loss rate δ.

Let (ψ(1), ψ(2), ..., ψ(L)) and (ω(1), ω(2), ..., ω(R)) be the probability vectors, denoting

that each node on the left of encoding bipartite graph has degree i with probability ψ(i), and

each node has degree j with probability ω(j) independently. Then we construct “And-Or”

tree [65] from encoding bipartite graph to analyze the decoding probability as follows. Ran-

domly choose one edge (u, v), and construct the subgraph Gs by selecting s − hop neighbors

of node u and removing all other edges. The data from node u is labeled with δ probability

initially, denoting that δ fraction of missing data. The goal of encoding and decoding proce-

dure is to reduce the missing fraction as much as possible. It is clear that data of node u will

be recovered if it is labeled as 1 eventually on subgraph Gs.

And data from node u is eventually recovered only if it is directly delivered or at least one

of its right-side neighbor v (encoded packet) has all its neighbors decoded except u. Note that

node u has i children with probability ψ(i) and node v has j children with probability ω(j).

Thus, from Lemma 1 in [65], we have yl = δ·Ψ(1−Ω(1−yl−1)), where Ψ(x) =
∑

i=1 ψ(i)·xi−1

80

and Ω(x) =
∑

i=1 ω(i) · xi−1. In this recursion, we let y0 = δ, yl will determine the final

recover probability of node u in subgraph Gs. If the condition yl < yl−1 holds, the yl goes to

0 as l grows. According to Equation (5.5), yl = δ · Ψ(1 − Ω(1 − yl−1)) < yl−1. We set l to

2/ε, then it is clear that yl ≤ δ/e2, which means recovery fraction (1− δ) ≥ (1− δ/e2).

OnCode adapts source encoding and sending rate, so that m amount of data can be

delivered to destination through opportunistic encoding paths in a disruptive network over

estimated (log2 n− 1) hops. Since opportunistic network coding help regenerate loss encoded

packets during network encoding, the data loss probability for OnCode is upper bounded by

δ ≤ 1
D

[1 − (1 − w)2]. Therefore, the communication overhead to achieve (1 − δ
e2

) delivery

ratio, is upper bounded by:
∑log2 n−1

i=1 mδ = m(log2 n− 1) · 1
D

[1− (1− w)2].

For comparison, we analyze communication overhead of existing data collection proto-

cols: NoCode, SlideOR and ONEC. NoCode is a data collection approach which leverage

custody transmission to ensure data reliability. In NoCode, the acknowledge control mech-

anism is carried out within one hop transmission. Sender advance sending window once

it receives acknowledges from receiver. The packet loss effect is restricted within one hop

distance. In contrast, “end-to-end” TCP reliable data transmission employs cascaded ACK

relay from destination to source, and incur much more communication overhead to reach the

same delivery ratio in lossy network condition. Without control mechanism, UDP even can

not guarantee any delivery ratio. Therefore, we chose to analyze custody TCP transmission

denoted as NoCode mechanism, which is the best of those no coding approaches.

Theorem 23 Employing custody based NoCode to deliver m amount of data over network

of size n, it achieves the delivery ratio of (1− δ
e2

) with communication overhead: 1
2
m(log2 n−

1)σ[1 + σ
log2 δ/e

2

log2 σ] · log2 δ/e
2

log2 σ
, where w is the node disruption ratio (0 < w < 1), e is the natural

number, δ = 1
D

[1− (1− w)2] and σ = 1− (1− w)4.

Proof 24 NoCode uses custody transfer to collect data over multi-hop networks. ACK con-

trol messages are utilized within one hop to ensure the reliable data transmission. Each lost

data packet will incur ACK feedback control to notify sender for retransmission. After the

81

first data transmission, m(1−w)2 out of m amount of data arrives at receiver, where w is the

node disruption ratio. And there are m(1− (1−w)2) data is lost during transmission, which

should be notified by ACK control messages. Note that the ACK messages can also become lost

over this lossy communication pairs. After a round trip transmission, the receiver can expect

the lost data to be decreased to: m[1−(1−w)2]·[1−(1−w)4]. After k times of round trip trans-

mission, the expected lost packets is reduced to: m[1−(1−w)2]·[1−(1−w)4]k. By constraining

expected packet lost less than δ = 1
D
· [1 − (1 − w)2], we get k ≥ log2

δ
e2
/ log2[1 − (1 − w)4].

That is to say, the data loss will be no greater than δ, if at least NoCode carries k times of

retransmission in every hop. Therefore, the communication overhead inside each hop would

be m
2

[1−(1−w)4][1+(1−(1−w)4)k]k. And in total, the communication overhead is obtained

as: m
2

(log2 n − 1)σ[1 + σ
log2 δ/e

2

log2 σ] · log2 δ/e
2

log2 σ
, where m is the size of data set, n is the network

size, δ = 1
D

[1− (1− w)2] and σ = 1− (1− w)4 and 0 < w < 1.

Theorem 25 ONEC achieves the delivery ratio of (1 − δ
e2

) with communication overhead

m(log2 n− 1) · 1
D

[1− (1− w)2] + n
2(1−w)2 , where m is the size of data set, n is network size,

D is expected node degree, w is node disruption ratio, and δ = 1
D

[1− (1− w)2].

Proof 26 ONEC uses erasure codes based coding mechanism, which achieves decoding prob-

ability (1− δ
e2

), with δ percentage of lost encoded packets. Its communication cost on deliv-

ering raw data is the same as that of OnCode. The difference is that ONEC requires explicit

ACK feedback message from destination to source to move to next data block. These ACK

message transmission is extra communication overhead compared with OnCode. Retransmis-

sion of ACK messages are required to achieve reliable feedback control. Since ACK message

is broadcast to all the nodes in the network, and the ACK is retransmitted by intermediate

nodes, the total number of retransmission of ACK message is estimated as: 1
(1−w)2 . And there

are only n
2

nodes that need to transmit the ACK. Therefore, total communication overhead

is: m(log2 n− 1) · 1
D

[1− (1− w)2] + n
2(1−w)2 .

We analyze the delivery ratio and communication overhead of a network coding scheme

based on random linear codes (SlideOR).

82

Theorem 27 SlideOR achieves an upper bound of delivery ratio as (1− δ
e2

) with communi-

cation overhead m(log2 n−1)· 1
D

[1−(1−w)2]+ m(log2 n−1)

(1−w)2(log2 n−1) , where m is the size of data set, n

is network size, D is expected node degree, w is node disruption ratio and δ = 1
D

[1−(1−w)2].

Proof 28 In SlideOR, a coded packet is generated as pj =
∑

iCjipi, where Cji is random

coefficient variable selected from Galois Field of size q, GF (q). The native data set of

{p1, ..., pN} can only be recovered when at least N linearly independent coded packets are

received for decoding. In order to obtain the probability that receiving matrix Gq has a full

rank N , we analyze the coding vector generation. In the first extraction, any non-zero vector

{Cj1, ..., CjN} is a valid coding vector. And the probability for generating such a non-zero

vector is (1 − 1/qN). For second coding vector, there are q vectors which are dependent;

and q2 vectors dependent with previously generated vectors for the third extraction and so

forth. Thus, the probability of having N linearly independent coding vector is given by:∏N−1
j=0 (1− qj/qN) =

∏N
j=1(1− 1/qj) = (1− 1/q). So, by letting 1− 1/q = 1− δ/e2, we obtain

q = e2/δ. That is to say that SlideOR reaches a delivery ratio of 1− δ
e2

, by letting q = e2/δ.

For communication overhead, by opportunistic random linear encoding, senders trans-

mits m(log2 n−1) · 1
D

[1− (1−w)2] in order to make the receiver obtain at least m · δ encoded

packets. This communication cost is the same as ONEC and OnCode. However, receiver

apply Gaussian Elimination for decoding and ACK message is initiated immediately to no-

tify sender to advance the sending window. Thus, receiver unicast m ACK messages to each

of n senders to advance sending window. The total communication cost for delivering m

ACK messages to network nodes is computed as: m(log2 n−1)

(1−w)2(log2 n−1) , where log2 n− 1 is the esti-

mated hop counts ACK messages is forwarded through. Therefore, the total communication

overhead is: m(log2 n− 1) · 1
D

[1− (1− w)2] + m(log2 n−1)

(1−w)2(log2 n−1) .

Table 5.2 shows the communication overhead in the theorem, where σ = 1− (1− w)4,

δ = 1
D

[1 − (1 − w)2]. From table 5.2, we can observe that under the same network model

of size n, data set size m and node disruption ratio w, coding based approaches consume

less communication overhead than NoCode approach. And because the ACK in ONEC is

83

Table 5.2 Analytical comparison of communication overheads

protocol communication overhead delivery ratio
OnCode m

D
(log2 n− 1)[1− (1− w)2] (1− δ/e2)

NoCode mσ
2

(log2 n − 1)[1 + σ
log2 (δ/e2)

log2 σ] ·
log2 (δ/e2)

log2 σ

(1− δ/e2)

ONEC m
D

(log2 n−1)[1−(1−w)2]+ n
2(1−w)2 (1− δ/e2)

SlideOR m
D

(log2 n − 1)[1 − (1 − w)2] +
m(log2 n−1)

(1−w)2(log2 n−1)

(1− δ/e2)

broadcast to network nodes instead of unicast to each node, ONEC has less communication

overhead than that of SlideOR, where sliding window in sender side only advances when it

receives unicast ACK feedback from receiver. However, OnCode moves to next data block

without the ACK notification, significantly reducing the communication overhead to only

m
D

(log2 n− 1)[1− (1− w)2].

This analytical results are illustrated in Figure 5.3, where we let m = 500, n = 100,

D = 5 and e = 2.718. It is observed from Figure 5.3 that communication overhead of NoCode

approach increases exponentially when node disruption ratio grows. It is because both hop

by hop ACK messages and the message retransmission explode when nodes become more

disruptive from the network. While ONEC uses opportunistic in-network coding, it still

requires feedback control to move to next data block. Thus, ONEC consumes more message

overhead than OnCode. But the feedback message ONEC needs only broadcast instead of

unicast, so it still consumes much less than SlideOR which applies the unicast for each of

feedback control.

5.3 System Design and Implementation

In this section, we describe the design of energy-synchronized component and protocol

implementation details of OnCode protocol in TinyOS [71].

84

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (p
ac

ke
ts

)

Node disruption ratio

NoCode
SlideOR

ONEC
OnCode

Figure 5.3 Illustration of theoretical analysis

Figure 5.4 Energy-Synchronization Module. (a) Front View: Solar Cell; (b) Rear View:
TelosW mote powered by PMS with ultra-capacitor as energy storage unit.

85

5.3.1 Energy-Synchronization Module

As illustrated in Fig. 5.4, our Energy-Synchronization Model (ESM) consists of solar cell,

Power Management System (PMS) and TelosW sensor mote. Solar cell is used in our system,

which can be charged by either fluorescent or incandescent light indoor, with an open-circuit

voltage of 2.0V . PMS carries an ultra-capacitor of 10F as energy storage, which holds a

voltage of 1.8V when fully charged. PMS regulates its output voltage to 3.3V as the voltage

of ultra-capacitor reaches over 0.6V . TelosW sensor mote discharges the energy from PMS.

ESM keeps track of the energy gain and consumption in past time slots, conducts prediction

for the future time slot, and adapts the wake-on ratio of TelosW mote. The functionalities

of ESM are elaborated as follows.

First, ESM evaluates energy gain and consumption on time slot basis. For clear ex-

pression, we denote the energy harvested in time period ∆t = (t2− t1) as Eh(∆t), and the

energy consumption as Ec(∆t) for the same time slot. The energy consumption Ec(∆t) is

the difference of energy meter values at two time points: et(t2) − et(t1). Since Ec(∆t) is

obtained from on-board energy meter, the value corresponds to the total current drawn by

TelosW mote. For computing the energy harvested by solar cell Eh(∆t), we adopt equation:

Eh(∆t) = Elk+Ec(∆t)+Ecap(∆t). The leftover energy change in capacitor has the relations

to the voltage change of capacitor Vcap as: Ecap(∆t) = 1
2
CV 2

cap(∆t). And Elk is the leaking

energy in capacitor, which carries in a rate related to the voltage. ESM obtains Elk from

empirical data.

Second, ESM predicts the energy gain in the future slot, Êh(t), based on estimated

energy gains. Exponentially Weighted Moving Average (EWMA) is applied to estimate the

Êh(t) by applying weight factors. We estimate Êh(t) as a weighted sum of the observed

harvested energy as: Êh(t) = α · Êh(t − T) + α · (1 − α) · Êh(t − 2T) + ... + α · (1 − α)k ·
Êh(t− (k + 1)T). The coefficient α represents the degree of weighting decrease, a constant

smoothing factor between 0 and 1. Based on predicted value of Êh(t), ESM tune wake-on

ratio to satisfy condition: Ec(t) + Elk ≤ Êh(t).

Third, the prediction may result in a bad performance due to dramatic energy fluc-

86

tuations. Thereafter, besides energy prediction, Additive Increase Multiplicative Decrease

(AIMD) approach is adopted to adjust wake-on ratio in order to react to the energy gain

changes rapidly. Prediction-based and reaction-based adjustment work in concert to fulfill

the goal of energy synchronization.

5.3.2 Protocol Implementation

The software protocols are developed and implemented in TinyOS [71]. The protocol

stack is illustrated in Fig. 5.5, and shaded parts are our contributions of “OnCode Protocol”

and “Energy Synchronization” respectively.

Sensing Application

Opportunistic Broadcasting

Opportunistic Broadcasting

Radio Control

Encode Proc. Reachability
Estimation

Distribution
Deconvolution

OnCode Protocol

MAC

ParityCheck &
Data Selection

Code Header
Preprocess

Opportunistic Network Interface

Energy Synchronization

Hardware Sensor Mote Energy Supply Circuit

Charging Rate
Estimation

Residue Energy
Estimation

Energy
Consumption

Duty Cycle
Adjustment

RadioControl

EnergyMeter Sensing Data

Radio

Duty
Cycle

PacketReceivePacketSend

RadioSend RadioReceive

Raw Data

Packet Flow

Control Flow

Sensing Data

Voltage Sensing Data

Figure 5.5 Protocol Implementation.

OnCode implementation comprises of following components:

1. Energy-Synchronization Module estimates energy gain and consumption, and tunes

wake-on duration dynamically.

2. Reachability Estimate is to initialize and update the reachability of node to sink based

on wake-on ratio. It is to be noted that, each node only needs to know the duration

ratio of ON and OFF mode of neighbor nodes, and do not need to know the exact time

slots of ON and OFF.

87

3. Distribution Deconvolution is to adaptively determine the block size for encoding and

conduct deconvolution of degree distribution correspondingly.

4. Opportunistic In-Network Encode is in charge of encoding raw data and parity check

data with randomly selected symbols.

5.4 Experimental Evaluation

We conduct the simulation in Section 5.4.1 first to evaluate OnCode performance with

two purposes: first, the efficiency of OnCode algorithm can be systematically studied by

tuning the system parameters in the simulation; second, the scalability of algorithm can be

extensively evaluated in simulation environment. The OnCode algorithm is further validated

in a real energy-synchronized test-bed in Section 5.4.2.

5.4.1 Simulation Evaluation

The simulation experiment is conducted in TOSSIM [69]. In the simulation, a network

of 100 nodes is deployed in 100m∗100m area at random. Only one sink node is present in the

network to decode and collect data. Each node sends sensing data to sink node, subject to

the energy supply in each node. Energy distribution is simulated by different input profiles.

We evaluate the average data throughput of OnCode by varying energy distribution,

packet redundant ratio λ, and forwarding probability ρ. Additionally, the communication

overhead is evaluated as well. All the performances of OnCode are compared with four other

coding schemes: NoCode: It does not employ coding schemes in data delivery; ONEC [36]: A

tree structure based degree distribution deconvolution, and opportunistic recoding is applied;

CCACK [5]: A node can suppress redundant packets of its neighbors, by broadcasting the

acknowledge message; SlideOR [34]: SlideOR applies random linear codes and utilizes the

sliding window to encode intra-flow data traffic. The result is the average of 500 rounds of

simulation runs.

88

Impact of varying energy distribution Since communication operations must be

synchronized with available energy to fulfill the lifetime requirement, wake-on ratio η of

nodes are derived by ESM according to the energy supply. First, we assign the homogeneous

energy to network nodes with varying amount, resulting in wake-on ratio η from 0.1 to 0.9,

as illustrated in Figure 5.6(a). The average effective throughput of OnCode increases from

4Kbps to 14Kbps.

 0

 2

 4

 6

 8

 10

 12

 14

 16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Av
er

ag
e

Ef
fe

ct
iv

e
Th

ro
ug

hp
ut

 (K
bp

s)

Node Wake-on Ratio

NoCode
SlideOR
CCACK

ONEC
OnCode

 0

 5

 10

 15

 20

 25

NoCode SlideOR CCACK ONEC OnCode

To
ta

l N
et

w
or

k
Th

ro
ug

hp
ut

 (K
bp

s)

Network Coding Schemes

Data
Control Overhead

(a) Impact of system parameter η (b) communication overhead

Figure 5.6 Impact of system parameter η and Communication overhead.

In Figure 5.6(a), OnCode outperforms other data delivery approaches in varying wake-

on ratio η. It is due to following reasons. First, the sole reliance of ACK to advance to next

encoding window is alleviated in OnCode. Second, OnCode takes advantages of different

wake-on ratios in the opportunistic delivery paths, by accumulative packet reachability Ri.

The encoding window and degree distribution are adaptively tuned to improve the data

delivery throughput. Third, the protocol requires reduced control overhead, and updated

wake-on ratio η from neighbor nodes can be piggybacked in the data packets.

We also evaluate impact of heterogeneous energy distribution on effective data through-

put. In Figure 5.7, it shows different distributions of energy profiles, normalized by 10mW .

In general, effective network throughput increases as average energy supply rises. More-

over, the energy map shows that average effective throughput increases when the gradient of

energy distribution increases towards sink, as illustrated in “Near-Sink” of Figure 5.7 com-

89

Center (mean = 10; σ=4) Near-Sink (mean = 13; σ=6)

 0

 5

 10

 15

 20

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Av
er

ag
e

Ef
fe

ct
ive

 T
hr

ou
gh

pu
t (

kb
ps

)

Time t (hour)

NoCode
CCACK
SlideOR

ONEC
OnCode

 0

 5

 10

 15

 20

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Av
er

ag
e

Ef
fe

ct
ive

 T
hr

ou
gh

pu
t (

kb
ps

)

Time t (hour)

NoCode
CCACK
SlideOR

ONEC
OnCode

LowEnergy (mean = 4; σ=1.7) HighEnergy (mean = 17; σ=2.4)

 0

 5

 10

 15

 20

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Av
er

ag
e

Ef
fe

ct
ive

 T
hr

ou
gh

pu
t (

kb
ps

)

Time t (hour)

NoCode
CCACK
SlideOR

ONEC
OnCode

 0

 5

 10

 15

 20

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Av
er

ag
e

Ef
fe

ct
ive

 T
hr

ou
gh

pu
t (

kb
ps

)

Time t (hour)

NoCode
CCACK
SlideOR

ONEC
OnCode

Energy Map

 0 2 4 6 8 10
X Coordinate of Node

 0

 2

 4

 6

 8

 10

Y
C

oo
rd

in
at

e
of

 N
od

e

 0

 5

 10

 15

 20

Energy Map

 0 2 4 6 8 10
X Coordinate of Node

 0

 2

 4

 6

 8

 10

Y
C

oo
rd

in
at

e
of

 N
od

e

 0

 5

 10

 15

 20

Energy Map

 0 2 4 6 8 10
X Coordinate of Node

 0

 2

 4

 6

 8

 10

Y
C

oo
rd

in
at

e
of

 N
od

e

 0

 5

 10

 15

 20

Energy Map

 0 2 4 6 8 10
X Coordinate of Node

 0

 2

 4

 6

 8

 10

Y
C

oo
rd

in
at

e
of

 N
od

e

 0

 5

 10

 15

 20

Figure 5.7 Average effective throughput under different energy maps. Each block indicates
the energy in each node, and different gray scales denote energy levels. Energy is in the unit
of 10mW , “mean” is the mean energy value across network, and σ is the energy deviation.

pared with “center”. With the average energy 17 ∗ 10 = 170mW and deviation of 24mW for

communication in the case of “HighEnergy”, mean effective throughput reaches 14kbps for

OnCode. Other coding schemes have less effective throughput, although they all experience

certain increments on throughput.

Communication Overhead We evaluate communication overhead of OnCode pro-

tocol and compare with the other approaches. The dedicated communication overhead in

OnCode includes broadcast message to notify initial neighbors’ wake-on ratio and broadcast-

ing messages of updated global symbols. Parity check bits and updated wake-on ratio from

neighbors are piggybacked in the data packet. Though they make much less radio overhead

compared to dedicated control message, we still count them.

Figure 5.6(b) illustrates all the composition of entire throughput. The overhead in

OnCode is less than other coding schemes. NoCodes still requires ACK feedback, which are

considered as control message as well. If considering the ratio between control overhead and

effective data throughput, OnCode presents a much smaller portion of cost than others. It

is attributed to the reason that OnCode is a structure-less routing protocol, in which coding

and forwarding packets follows probabilistic delivery paths with less deterministic control

90

messages.

Impact of varying packet redundant ratio λ The role of redundant packet ratio,

λ, is to decide the ratio of packets delivered to the number of packets required for decoder

for successful decoding, based on packet reachability estimation. The redundant packets are

injected by source to combat the dynamic network fluctuations. An explicit trade-off is that

the increasing redundant ratio λ can enhance the decoding probability, hence improving

the effective throughput. On the other hand, the extra packets can also be the useless

communication overhead which does not help in decoding.

In Figure 5.8 (a), redundant ratio λ increases from 1.2 to 3.2. λ has less effect on

SlideOR, CCACK and NoCode. Redundant packet ratio of 2.4 explores the maximum trade-

off in OnCode and ONEC codings. This is attributed to the fact that both of them adopt

network erasure encoding, which applies similar Belief Propagation algorithm to decode

packets.

 0

 2

 4

 6

 8

 10

 12

1.2 1.6 2.0 2.4 2.8 3.2

Av
er

ag
e

Ef
fe

ct
iv

e
Th

ro
ug

hp
ut

 (K
bp

s)

Redundant Ratio

NoCode
SlideOR
CCACK

ONEC
OnCode

 0

 2

 4

 6

 8

 10

0.1 0.2 0.3 0.4 0.5

Av
er

ag
e

Ef
fe

ct
iv

e
Th

ro
ug

hp
ut

 (K
bp

s)

Forwarding Probability

NoCode
SlideOR
CCACK

ONEC
OnCode

(a) λ (b) ρ

Figure 5.8 Impact of system parameter λ and ρ.

Impact of varying forwarding probability ρ System parameter ρ influences the

contribution of node priority ranking to the packet forwarding probability, and the network

throughput. We vary parameter ρ from 0.1 to 0.5. As illustrated in Figure 5.8 (b), as ρ gets

larger, the average effective throughput reduces. It is due to the fact that when ρ increases,

91

neighbor nodes have less forwarding probability. With smaller ρ, neighbor nodes with lower

priorities can have more forwarding probabilities, which indicates packets can take advantage

of more spatial diversity.

5.4.2 Testbed Evaluation

We present the proof-of-concept of OnCode protocol, and validate that OnCode can

achieve good quality of data delivery over energy-synchronized sensor network. Sixteen

TelosW [64] nodes are used in the experiments, and they are driven by ESM system, as

shown in Fig. 5.4. Sensor nodes are deployed to form line topology with sink node in one

end, or grid topology with sink node in the top left corner. The radio power level of CC1101

is set to the lowest level as −5dBm to construct multi-hop communication, with 2.5 meter

physical distance between nodes. Sink node is connected to and powered by PC gateway, so

that it does not perform energy management and wake-on schedule.

A small capacitor of 10F is adopted in ESM for indoor environment. We synthesize

the light intensity variation, by performing different temporal patterns of on and off in

lamp light. We obtain the energy leakage rate of ultra-capacitor during empirical study and

incorporate into the energy consumption to calculate the energy gain from environmental

light. Experimentally we adopt α = 0.8 to make the EWMA energy prediction adapt to

energy dynamics fast. Every ESM starts with fully charged capacitor.

Energy-Synchronized System Sustainability The design goal of ESM system is

to tune node’s wake-on ratio, so as to prevent sensor node from running out of energy supply

and ideally perform perpetually. However, the indoor lighting condition can be worse than

solar radiation over the day time. Our dynamic pattern of lighting intensity pose even more

severe challenge, as shown in Fig. 5.9.

This experiment is conducted for 12 hours to evaluate the system sustainability under

dynamic energy recharging condition. Every 100 minutes, renewable energy sources are

present for harvesting, and the duration also vary over time. Highest peak of recharging

92

 0
 5

 10
 15
 20

En
er

gy
 (m

W
)

Harvested Energy

 0
 5

 10
 15
 20

En
er

gy
 (m

W
)

Consumed Energy

0.0
1.0
2.0
3.0

 0 100 200 300 400 500 600 700

Vo
lta

ge
 (V

)

Time (Minutes)

Capacitor Residue Voltage

Figure 5.9 Energy trace: (top) trace of 12-hr harvested energy in mW, (middle) node energy
consumption, and (bottom) residual voltage of ultra-capacitor

rate can reach 14mW , while it can drop to 3mW within 10 minutes. ESM reacts to this

dramatic change by multiplicatively decreasing the wake-on ratio after detecting the decline

in capacitor voltage. Thus, the falling of residual voltage of capacitor is prevented in a

timely manner. For the first 7 hours, the average capacitor voltage declines gradually even

under short-term recovery. ESM compensates this long-term loss by automatically further

reducing the wake-on ratio, leading to a self-sustainable energy-synchronized system.

Network Data Throughput Network throughput is evaluated in the testbed of 16

nodes deployed in grid and line topology respectively.

In Fig. 5.10, with the same pattern of varying energy recharging rate, there are distin-

guishable observations between two topologies: (1) the average network throughput in grid

topology is 40% higher than that of line topology. Line topology of maximum 15 hops is

much longer than maximum 6 hops in grid topology, and there is fewer forwarding oppor-

tunities in line topology. Larger opportunistic forwarding probability and encoding choices

in grid topology result in a lesser overhead and higher decoding ratio than in line topology.

(2) In grid topology, the surge of energy recharging rate enhance network throughput in a

93

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700
Av

er
ag

e
N

et
w

or
k

Th
ro

ug
hp

ut
 (k

bp
s)

Time (Minutes)

Grid Topology
Line Topology

Figure 5.10 Average throughput over time.

significant way. However, the network throughput of line topology stays insensitive to energy

changes. It is also observed in line topology that the energy surge in far-end node has less

impact on the throughput enhancement, compared to that in the grid topology.

Network Data Latency Delivery latency is evaluated in grid and line topology re-

spectively. Average delay from node 1, node 9 and node 15 are shown in Fig. 5.11.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700

Av
er

ag
e

D
el

iv
er

y
D

el
ay

 (m
s)

Time (Minutes)

Node 1
Node 9

Node 15

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700

Av
er

ag
e

D
el

iv
er

y
D

el
ay

 (m
s)

Time (Minutes)

Node 1
Node 9

Node 15

(a) Grid Topology (b) Line Topology

Figure 5.11 Average Delivery Latency.

In grid topology, the average delivery latency is 9 milliseconds per packet for node 1,

which is one quarter of the average latency of node 15. It is observed that the latency in

node 15 has less fluctuations among nodes in the network due to two factors: (1) packets

from node 15 experience less opportunistic forwarding, such that latency deviation may vary

94

based on the specific travel paths to sink. (2) Recharging energy variation also make the

reachability of node 15 to sink change in a less dynamic way. In contrast, in line topology,

it costs 25% more on delay for node 15, 11% more on node 8. It is because that in line

topology, nodes with multiple hops distance has less opportunistic delivery paths, and hence

more delay is introduced to each packet forwarding transmission.

Another observation is that grid topology provides better robustness to temporal energy

instability. In other words, the deviation of jitter is less sensitive to the energy fluctuations

in grid topology, compared with that of line topology.

5.5 Related Works

The related work presents the state-of-art in energy harvesting and network coding

based delivery method respectively.

5.5.1 Micro Solar Power System

Recent research works on micro-solar system have shown the potential of driving low-

power devices without battery, such as Prometheus [19] AmbiMax [20], Heliomote [21] solar

system, and Trio [22]. The work in [23] proposes a model and guideline for analyzing the

design of micro-solar system based on the empirical study of Heliomote and Trio system.

The work in [24] proposes a leakage-aware energy control layer to adapt the operation of ap-

plication to harvesting energy. [25] proposes energy-harvesting low-power device, EnHANTs.

[26] study how to allocate energy spending rate with various predictable energy inputs. Our

contribution is a coding-based network protocol that can adaptively utilize the energy from

micro-solar power system. It is evaluated on a real micro-solar powered indoor testbed.

Based on the solar-powered devices, SolarStore in [27] provides a storage-centric service,

which adaptively balances between the data reliability and data sensing. SolarCodes [28]

maximize the usage of surplus energy by adjusting the redundant factor of erasure coding in

each link respectively. OnCode protocol is distinguishable in two perspectives: (1) OnCode

synchronizes data delivery with any energy constraints, not only of surplus energy, but also

95

of insufficient energy. (2) OnCode exploits opportunistic routing instead of a pre-determined

routing, which reduces the coding overhead significantly. The diversity and randomness in

opportunistic coding improve quality of data delivery by enhancing flow throughput and

fairness.

5.5.2 Network Coding for Data Delivery

The opportunistic routing proposed in ExOR [3] utilizes the probabilistic receiving in

multiple hops distance to accelerate the packet forwarding. MORE [4] takes advantages of

spatial reuse by random linear coding to improve the data delivery throughput. CCACK [5]

utilizes a Null-Space Based (NSB) message to acknowledge the reception of encoded pack-

ets, which suppress not only redundant packet retransmission, but also the non-innovative

encoded packets. Though CCACK improves MORE by suppressing overhead packet from

transmission, the time of moving to next data segment still relies on the ACK from destina-

tion. SlideOR in [34] explores sliding window mechanism. But SlideOR is sensitive to ACK

notification from decoder to advance encoding window, which would be impractical in dis-

ruptive communication environments. ONEC [36] is a recent work to explore network erasure

coding in disruptive sensor networks. However, ONEC heavily relies on a strict structure, e.g.

tree structure, to conduct recursive deconvolution of degree distribution, which brings con-

siderable overhead when updating degree distribution during disruption. Additionally, the

on-path opportunistic recoding may result in distorted final degree distribution which ham-

per the decoding success probability. ONEC is not adaptive to the dynamic data rate and

energy source. Our technical contributions of OnCode are three-fold: first, OnCode conduct

deconvolution based on a distributed packet reachability estimation, with low communica-

tion overhead when updating. Second, OnCode self-tunes the data coding and probabilistic

forwarding in-situ with energy distribution and variations. Third, OnCode maximizes the

space diversity and probabilistic packet transmission by opportunistic in-network encoding,

while guaranteeing the desired coding degree distribution.

96

CHAPTER 6

DATA PERSISTENCE WITH STORAGE-CONSTRAINED NETWORK

CODING (ECPC)

A sensor network consists of spatially distributed devices communicating with radios and

cooperatively sensing physical or environmental conditions. It has found critical applications

in catastrophic or emergency scenarios, such as floods, fires, volcanos, battlefields, where

human participation is too dangerous and infrastructure networks are impossible or too

expensive. However, in those challenging environments, sensor nodes can become unstable

and disruptive, even fail occasionally, thus preserving data in a disruptive sensor network is

a challenging research subject. Efforts to engage raw data replication for provisioning data

persistence is only a makeshift fix, since it is cumbersome and may not scale with the network

size. In fact, the constrained sensor memory space and increasing scale of network make the

raw data replication inefficient. Some recent works explore the advantage of erasure codes,

i.e. LT Codes [17] and Raptor Codes [18]. In [39–41], the sensor nodes disseminate the data

to storage nodes through multiple random walks, which aim to simulate the random selection

of neighbor symbols during encoding. Each storage node has an associated stop probability

for each random walk packet based on the code degree it draw from the degree distribution.

Based on random walk theory, a random walk can stabilize after a sufficiently long walk, and

the distribution of packet number in storage nodes will conform to the expected code degree

distribution. Therefore, original data can be recovered by decoding any sufficient subset of

encoded packets from the network. However, the communication overhead during random

walk procedure is considerable. In addition, random walk could fail in the middle since node

failures could also happen during random walk.

In this paper, a distributed Erasure Coding with randomized Power Control (ECPC)

algorithm is proposed. This work makes a distinction from the literature: it achieves data

97

persistence only by localized data packet broadcasting and erasure coding. In particular,

distributed erasure coding procedure of ECPC does not incur multiple random walks, which

travel network nodes to ensure the coding randomness and degree distribution, thus result-

ing in low communication overhead. The basic idea works as follows. Firstly, each node

determines the number of encoded packets in storage, which are required to guarantee a suc-

cessful data recovery with high probability, assuming the failure probability of every node

is a given knowledge. If the failure probabilities is heterogeneous, we conservatively use the

maximum failure probability of the network as the failure probability for each node, which

makes ECPC tolerate the worse case. Second, each node evaluates a posterior probability

distribution of radio transmission power, based on which each packet broadcasting is con-

ducted. The required code degree distribution of the chosen erasure codes is proved to be

satisfied after sufficient bouts (storage redundancy τ) of broadcast and encoding. The above

derivation of posterior distribution of transmission power is only executed occasionally, if

the network conditions do not change.

Notice that, the proposed ECPC protocol are generally applicable with any other erasure

coding schemes. Given different code degree distribution of different erasure code, we just

need to compute the posterior probability distribution of transmission power levels differ-

ently. In this paper, we choose Raptor codes [18] as the erasure coding scheme for illustration.

Raptor codes, as with fountain codes in general, encode a given message consisting of a num-

ber of symbols, k, into a rateless sequence of encoding symbols such that knowledge of any k

or more encoding symbols allows the message to be recovered with high probability. Raptor

codes are the first known class of fountain codes with linear time encoding and decoding,

and are a significant theoretical and practical improvement over LT codes [17].

It is not hard to see our ECPC algorithm has advantages over the random walk based

approaches in terms of efficiency and reliability. Firstly, with several localized broadcast

instead of several random walks, it considerably saves the communication overhead signifi-

cantly. Secondly, nodes only have to encode the data received from neighbors, which has a

faster termination time. Rapid termination makes our ECPC more reliable in the disruptive

98

network conditions, since node failures could also fail during the procedure. However, imple-

menting this advantage into a plausible design needs to solve several research challenges: (1)

ECPC has to identify the number of encoded packets needed in each individual node, given

the node failure probability. A balance between redundancy introduced and desired data

persistence is non-trivial. (2) Transmission power of each node needs to be adjusted locally

while ensuring the distribution of received packet number conforms to the expected code

degree distribution. (3) Pseudo randomness needs to be proved to approximate the original

decoding performance of erasure codes, in terms of the number of encoded packet required.

We have successfully solved them in this work as presented later. Our theoretical analysis

shows that the collaborative storage with the ECPC mechanism can preserve all data with

high probability when some nodes fail. In other words, under φ percent node failures, all

network data can be recovered from nodes with probability (1−6 ·exp((1+ε)
(1−φ)·Γ·0.06

−8)), where

Γ is the number of encoded packets per node and 0 < ε < 1. Notice that Γ is configurable as

long as it is larger than Γmin = 1+ε
(1−φ)Λ

, where Λ = (0.48 + 0.06 ln δ
6
) and 0 < δ < 1. Larger Γ

means higher redundancy and higher data recovery ratio. Performance comparisons between

ECPC and random walk based approaches show that ECPC mechanism reaches higher data

reliability under varying node failure probabilities. In addition, our approach is scalable and

has low communication overhead.

6.1 Distributed Erasure Coding with Randomized Power Control

In this section, we give the network model and problem statement, and present the

overview of distributed Erasure Coding with randomized Power Control (ECPC), followed by

a walk-through example.

6.1.1 Network Model and Problem Statement

We model sensor network as a random geometric graph [72], where |V | nodes are uni-

formly and randomly deployed in a area A = [D,D]2, and D is the length for each of

dimension of the deployed region. Then network density is denoted as: η = n/D2. Note

99

that the area can have different lengths in each of dimensions, we use D for the ease of

presentation. We also assume that nodes can broadcast its packet at different power level

Pi in the range of [Pmin, Pmax]. Here, the maximum radio communication radius does not

necessarily cover the entire network. The upper and lower bound on transmission power

level are constrained by the physical transmission power output. The value can be obtained

from datasheet of selected radio type.

Each node senses its surrounding environment and generates data at the same rate.

Every data sample is considered as equally important, so that the raw data should be equiv-

alently preserved. Each node is sensing data and also storing data with its limited memory

storage. In addition, nodes inside the network fail with φ probability due to exceptional

reasons, like environment changes, hazard damage and system crash. The failure event of

nodes under consideration is random and independent from each other. This work does not

consider spatially correlated failure models.

The research challenge is to preserve sensor data in disruptive sensor network without

node repairing. In particular, with φ percent fail nodes, the original n data items can be

successfully recovered by decoding packets retrieved from available nodes. The repairing

of malfunction nodes and corresponding data replacements are out of scope of this paper.

The prior knowledge available to each node is limited to network size n and node failure

probability φ.

The mathematical notation and meaning in ECPC algorithm is shown in Table 7.1.

6.1.2 ECPC In a Nutshell

ECPC utilizes network erasure coding scheme to accomplish distributed data storage

in disruptive sensor networks. It works by multiple-round encoding, where for each round a

local broadcast is carried out to offload sensing data to other storage nodes. The encoding of

ECPC works by XORing data received from multiple neighbors’ broadcasts into one packet.

The transmission power of each node is locally and randomly adjusted based on a posterior

100

Table 6.1 Notation in ECPC Algorithm

Notation Meaning

n network size |V |
φ node failure probability
η network density
Pi transmission power level
R(Pi) radio transmission range under Pi
N i
u neighbor set of u at power level Pi

Γ number of encoded packets per node
Ω(·) code degree distribution
d code degree
Cm(λ, ρ) LDPC parity check coding
fP (Pi) power distribution function
E encoded packet
h range of transmission power set
δ probability of decoding failure
Λ ratio on number of packets needed to decode single sym-

bol between Raptor and ECPC

Determine Storage
Redundancy τ

Network Size
N = |V|

Failure Prob.
Φ=max{Φ_i}

Tx Power Distribution F(Pi)

Degree
Distribution Ω(x)

Neighbor Size
Ν(u)

1

2

34

5

6

7
8

9

P3

P1 P2

P2

P2

P3

P2

P2

P3

 τ rounds

1 2
6

5

4
3

7
8

9

 In node: n=8, round τ=1

8 + 9 + 3 + 5

XOR overheard packets
from neighbors:

Pr

d

d

Pr

1 2 3 4 5 6

Achieve RSD distribution in the network

Pr

d

Collect encoded
packets

After ECPC terminated

ECPC Feature

0.Preserve data persistence;

1.Uniform storage space;

2.Fast encode process;

3.Energy efficient.

Pr

d

Pr

d

Pr

d

Figure 6.1 ECPC Overview.

101

Algorithm 6 ECPC Distributed Data Storage

Input: Node failure probability φ = max{φi}, final degree distribution Ω(∗) and network
size N = |V |
Output: Encoded packets stored in distributed nodes: E =

⋃
Ei
{ê1, ê2, ..., êt} (∀ i ∈ V & ∀

t ∈ [1,Γ])

1: E = NULL;
2: set Λ = (0.48 + 0.06 ln δ

6
) (Analysis on randomness in Section 6.2.3);

3: Γ = 1+ε
(1−φ)Λ

;
4: for i ∈ V do
5: fP (Pi) = RPC(Ω(∗),Γ, N) (Algorithm 7);
6: Ei = DEC(Γ, fP (Pi)) (Algorithm 8);
7: end for
8: E =

⋃
i{Ei}

probability distribution. Figure 6.1 illustrates the ECPC design in a nutshell.

First, given the node failure probability φ and network size N in Figure 6.1, the requisite

rounds of encoding, τ , is determined to deliver sufficient amount of encoded packets to

storage nodes, ensuring data decoding with high probability. Second, a posterior distribution

of transmission power level in node u is derived based on degree distribution Ω(x) and

its neighbor size N(u). Then the transmission power of sensor node is locally adjusted

following the derived power distribution (see Section 6.2.1 for details). Sensor nodes repeat

broadcasting data using the randomly adjusted transmission power in τ rounds, until the

requisite encoded packets are delivered and offloaded. Upon receiving overheard packets,

distributed network erasure coding is conducted. In every round, every node encodes received

data from neighbors, shown in Figure 6.1 (see Section 6.2.2 for details). Finally, the decoding

algorithm based belief propagation is executed to recover data from encoded packets. Notice

that the power control algorithm is conducted only when the network starts or network

conditions, such as network size, sensing rate or failure probability change dramatically.

Otherwise, ECPC only needs to run distributed erasure coding as described in Section 6.2.2.

Algorithm 6 illustrates ECPC for distributed data storage. The output of ECPC al-

gorithm is a set of encoded packets distributed in nodes, i.e. E , whose aggregated degree

distribution comply with final degree distribution Ω(∗). In line 2, the decoding coefficient is

102

assigned based on the randomness analysis in Section 6.2.3. Line 3 determines the storage

redundancy τ in each node to achieve (1− δ) decoding success probability. From line 4 to 7,

randomized power control (Algorithm 7) and distributed erasure coding (Algorithm 8) are

carried out in tandem with each other.

1 2

6

5

4

3

Distributed Network

Erasure Encode

1 4 + 1 1 + 4 + 5

Node

2 2 + 4 + 6

3 3 + 6 3 + 4 + 6

4 1 + 3 2 + 4 + 5

2

+ 4

(b)

,

,

,

,

(a)

First Round Second Round

5 5 5

6 3 + 6 4 + 6

,

,

Randomize Power

Control

Figure 6.2 ECPC example.

We further illustrate ECPC algorithm by a walk-through example. In Figure 7.1, we

assume that the failure probability φ = 10%, δ = 0.1 and ε = 0.05. In the first step, we

calculate the requisite amount of encoded packet: Γ = 1+ε
(1−φ)Λ

= 5, where Λ = (0.48 +

0.06 ln δ
6
). It suggests that each node encode 5 packets through 5 encoding rounds. Due

to space constraint, two out of five encoding results are shown in Figure 7.1. For the first

round, each node selects a power level randomly from power distribution fP (Pi). The power

assignment in the first round is {(1, 99), (2, 95), (3, 99), (4, 103), (5, 97), (6, 97)}, where the

first element is node ID, the second underscored item is the power level randomly drawn.

The power range is [95, 127]. After sensor nodes broadcast data with the assistance of power

control in Figure 7.1(a), encoded packets are generated in each node, shown in Figure 7.1(b).

The generated encoded packets in ECPC can guarantee a successful data recovery under the

certain failure probability φ, e.g. 10% here. For continuous sensor data stream, ECPC

only needs to repeat distributed erasure coding after network initialization. We present the

103

in-depth description of ECPC designs and analysis in the following sections.

6.2 ECPC Algorithm Design and Analysis

ECPC is a distributed approach to preserve data persistence in disruptive networks.

In this section, we describe the distributed ECPC algorithm which contains two major

procedures: (1) Randomized Power Control ; (2) Distributed Erasure Coding. The theoretical

analysis is given to validate its correctness and effectiveness.

6.2.1 Randomized Power Control

In disruptive network, only partial nodes are present in the network when the data

retrieval is conducted. Thus, the redundancy of encoded packet must be introduced to

compensate the data lost in failure nodes. This redundancy is to ensure that the sufficient

number of packets are available to decoder whenever the retrieval is conducted.

In any retrieval time, the expected number of alive nodes equals to n(1− φ). Thus, the

available encoded packets is: n(1−φ) ·Γ, where Γ is the amount of encoded packets per node.

In the other end, according to Raptor Codes and randomness analysis, the decoder requires

1
Λ

(1 + ε) ·n packets to successfully recover the original n data, shown in Lemma 2 of Section

6.2.3. To determine the adequate redundancy, the necessary encoded packets per node is

Γmin = 1+ε
(1−φ)Λ

, where Λ = (0.48 + 0.06 ln δ
6
) and 0 < δ < 1. δ is the probability of decoding

failure in Raptor Codes, which is an adjustable parameter in Raptor Codes design. Notice

that Γ is configurable as long as it is larger than Γmin. Larger Γ means higher redundancy

and higher data recovery ratio.

Once determining the redundancy per node, a novel randomized transmission power

control is applied. This randomized power control is conducted Γ times to generate the

desired encoded packets in each node. The purpose of this power control is to make the node

degree distribution conform to the expected code degree distribution Ω(Y). We transform

the design paradigm of drawing a code degree from a known degree distribution for encoding.

Instead, code degree is auto-determined by the actual data packets received from neighbors,

104

i.e. actual node degree. The node degree is determined by the transmission power level of

neighbor nodes in the vicinity.

Towards this goal, we derive a posterior probability distribution fP (Pi), taking the code

degree distribution Ω(Y) as the known observation. Then randomized power control can be

achieved by selecting on power level from derived power distribution once per iteration.

The key approach to deriving the power distribution is based on Bayes’ Theorem [73].

Define Y as the event for code degree selection. Since we consider a random graph, the node

distribution conforms to the Poisson distribution. Thus, according to Poisson Distribution,

given an event of transmission power {P = Pi}, the likelihood function of Y is denoted as:

fY (y|P = Pi) =
λye−λ

y!
=

(ηπR2(Pi))
ye−ηπR

2(Pi)

y!
(6.1)

where e is the Euler’s number, λ = ηπR2(Pi) is the expected node degree. When each node is

assigned with the same transmission power Pi, then the probability distribution of neighbor

number is defined by this likelihood function. Since each node holds the same transmission

power, resulting in symmetric link conditions, the number of different nodes it can cover

equals to the number of its neighbors. Thus, the node degree can be described by λ in

Equation (6.1).

Next we can compute the posterior probability distribution of transmission power:

fP (Pi|Y = y) =
fP,Y (Pi, y)∫ +∞

−∞ fY (y|P = ξ)fP (ξ)dξ

=
fY (y|P = Pi)fP (Pi)

fY (y)

=
fY (y|P = Pi)fP (Pi)

Ω(y) · (1/ϕ)
(6.2)

where fP (Pi) and fY (y) are the marginal probability density functions of P and Y respec-

105

tively. Without any prior knowledge about the event P , we provisionally assume the prior

distribution of P , fP (Pi), is uniformly distributed over the interval [Pmin, Pmax]. And fY (y)

is expected to be Ω(y) · (1/ϕ), so that encoding any ϕ (0 < ϕ < 1) portion of received data

can make the code degree distribution conform to Ω(·). Meanwhile, fY (y|P = Pi) can be

calculated by Equation (6.1) accordingly. As we already characterize the distribution of Y

for each event {P = Pi} in Equation (6.1), the probability distribution of event P can be

computed by Equation (6.2), given the probability distribution of event {Y = y}. The final

power distribution is derived as: fP (Pi) =
∑

y fP (Pi|Y = y). Note that the normalization

on fP (Pi) is conducted thereafter to make the sum of probability equal to 1.

Algorithm 7 Randomized Power Control of node u

Input: Code degree distribution Ω(Y), Γ, n

1: while Pmin ≤ i ≤ Pmax do
2: if N i

u = 0 then
3: Broadcast a beacon message with Pi
4: Start a timer with ∆T fire interval
5: end if
6: Upon reception of beacon message
7: Reply ACK with the same power level Pi
8: Upon reception of a ACK message
9: Increase neighbor counter N i

u ← N i
u + 1

10: if ∆T fire then
11: Get the neighbor size under power Pi: N i

u

12: end if
13: i← i+ 1
14: end while
15: Compute the fP (Pi|Y = y) according to Equation (6.2)
16: Derive power distribution: fP (Pi) =

∑
y fP (Pi|Y = y)

Next we describe the power control algorithm of ECPC (Algorithm 7) to derive the

above power distribution, and conduct the randomized control accordingly. In Algorithm

7, transmission power level is controlled by a power distribution fP (Pi). Firstly, line 1

computes the lowest power level Pmin which guarantee that the actual node degree is larger

than the expected code degree in each node. Secondly, procedure from line 2-15 collects

the neighbor size information for each power level per node. Thirdly, based on Equation

106

(6.2), the fP (Pi|Y = y) is computed, and hence fP (Pi) is derived. It is worthy to mention

again that, when network condition does not change, the power distribution only needs to be

calculated once at the initialization. Normally, only distributed erasure coding is performed

at each sensing round, as presented in next section.

6.2.2 Distributed Erasure Coding

In this section, we present the design of distributed erasure coding in Algorithm 8 and

its analysis. Since Raptor Codes is the first known class of fountain codes with linear time

encoding and decoding, our design uses Raptor Codes as the encoding and decoding ap-

proach. Raptor codes relax the condition that all the input symbols required to be recovered

by introducing extra intermediate encoded parity-check data [18]. Therefore, the LT codes

operated in the second phase have a decoding complexity of O(n).

Raptor Codes encoding contains two-phase operation, we first discuss the construction

of intermediate parity check symbols in the pre-coding phase. We denote this pre-code as

Cm(λ, ρ), with the coding rate as (r = 1 − λ
ρ
). LDPC (Low-Density Parity-Check) codes

are proven to be a competitive codes for linear block coding purpose. LDPC codes exhibit

a linear encoding complexity in many cases. A Cm(3, 6) regular LDPC, with input symbol

length of k, consumes the actual number of operations no more than 0.0172k2 +O(k). Thus

even large block lengths exhibit quite manageable encoding complexity [74]. Therefore, our

design specifically implements Cm(3, 6) regular LDPC codes for pre-coding in a distributed

fashion.

The key to the construction of LDPC codes is generating an appropriate parity-check

matrix H, such that HxT = 0. In Figure 6.3, we show an example of parity-check martix

H for Cm(3, 6), with 10 input symbols and 5 output check nodes. In {0, 1}-matrix H, a

nonzero entry at row i and column j indicate a connection between the jth symbol data

and ith parity-check data. In Cm(3, 6), the sum of component 1 in each column should equal

to 3, and summation of component 1 in each row should be 6. The parity-check martix H

can be constructed in a distributed manner illustrated in Pre-Coding Phase of Algorithm

107

8. By using Cm(3, 6), we generate n/2 parity-check nodes, resulting m = 1.5n. Therefore,

every node elects itself as parity-check node with m−n
n

= 50% probability. And each node

broadcasts a message indicating its parity-check node status, waiting for the contribution

messages.

V2

C2

V1 V4V3 V6V5 V8V7 V10V9

C1

C4

C3

C5

H =

1

1

0

1

0

1

0

1

0

1

0

1

1

1

0

1

0

0

1

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

0

0

1

0

1

1

0

1

1

0

1

0

0

1

1

1

Figure 6.3 An example for a parity-check matrix H.

The second phase of Raptor Codes is to directly apply LT codes with the m input sym-

bols from the first phase. As customary, our Raptor codes scheme is specified by parameter

tuple (n, Cm(λ, ρ),Ω(x)).

In Algorithm 8, we propose a distributed erasure coding algorithm. Procedure pre-

coding phase constructs a regular (λ, ρ) LDPC codes. In particular, we use (3, 6) LDPC

codes. In line 6, each node u contributes to λ of parity-check nodes in its vicinity, whose

parity-check matrix H is not satisfied. Thus, code constructions from line 2-9 can satisfy the

matrix H’s requirement. Note that the (λ, ρ) can be altered to have different performances

of LDPC [16].

Each node locally draws a transmission power level Pi from fP (Pi), and broadcast its

symbol with power Pi. It can be observed that if theNu equals to n−1, the global randomness

in original RSD is preserved. As Nu decreases, we obtain a pseudo-global randomness in the

neighbor symbol selection, because node u no longer has full access to other nodes in the

network, like the case in complete graph. The analytical proof in Section 6.2.3 shows that

decoding cost for successful recovery is bounded, even when node u selects its input symbols

from its current neighbor list only.

108

Algorithm 8 Distributed Erasure Coding of node u

Input: Γ and fP (Pi)
procedure: Pre-Coding Phase: (λ, ρ) regular LDPC

1: Elect as parity-check node with probability λ/ρ
2: if Node u is parity-check node then
3: Constraint status C(u) = 0
4: while C(u) < ρ do
5: Broadcast its C(u)
6: Send message to its parity-check neighbors, whose C(v) < ρ
7: Upon reception of contribution message
8: Update C(u)← C(u) + 1
9: end while
10: Encode the contribution message to parity-check packet
11: end if

procedure: LT-Coding Phase

1: while Γ > 0 do
2: Randomly draw transmission power Pi from fP (Pi)
3: Broadcast its own sensor data under power Pi
4: if Node u is parity-check node then
5: Broadcast parity-check packet
6: end if
7: Upon receiving packet Sv from neighbor v
8: Store Sv into encoding pool
9: Γ← Γ− 1
10: end while
11: Randomly select

(Nu
bϕ·Nuc

)
symbols

12: Encode packet Eu = S1

⊕
S2

⊕
...
⊕

Sbϕ·Nuc

109

6.2.3 Analysis on Pseudo Randomness

In this subsection, we perform a theoretical analysis of the impact of pseudo randomness

on the decoding performance.

Inspired by the proof in [75], we prove that during recovery process, the occurrence of

neighbor symbols appear to be independent from each other. We model the recovery set

S by randomly selecting input symbols out of k, and put them into set S with probability

p = n−L
n

. L is the set of not yet recovered input symbol: n = |L| + |S|. Let Xi be the

indicator random variable of the event that a input symbol belongs to set S, so Xi is an

independent variable. Then, we have the following lemma.

Lemma 29 Given an encoded packet of degree d covers an input symbol, at least a (1− δ)
fraction of sets S (0 < δ < 1) satisfy: for all m /∈ S, the probability that the encoded packet

covers m is at least (1− 4β2(16− 2 ln(δ/6))) 1
L

, where 0 < β < 0.1.

Proof 30 We first define fm as the probability that symbol m is covered when some packet

of degree d has been released.

fm =

∑
i∈Nm X1...Xm−1(1−Xm)Xm+1...Xi...Xd∑

i∈GX1...Xi...Xd

.
=

A

B

Conditioned on m /∈ S, the expected number of A can be computed as E[A] = pd−1dπηP 2
E,

where PE is the expected transmission power derived from fP (Pi). Since m is covered, its

d − 1 neighbors should already be in the set S. Thus, we have pd−1 term. The item dπηP 2
E

is the number indicating the total combinations of degree d encoded packet holding symbol

m in the network. For denominator, we have E[B] = pd−1(1 − p)dnηP 2
E, and E[A]/E[B] =

1
n(1−p) = 1/L. We derive a lower bound on fm by proving the A and B are close to their

expected values respectively.

110

We first apply Janson Inequality [76] to bound the A from below. In Janson Inequality,

we define ∆ =
∑

Ai∼Aj P[Ai
∧
Aj], where Ai ∼ Aj means that the intersection of these two

set are not empty. Let A =
∑

iAi, for any 0 < σ < 1, P[A ≤ (1−σ)E[A]] ≤ exp(− σ2E[A]
2+∆/E[A]

).

Recall that E[A] = pd−1dπηP 2
E. Pairs of Ai ∼ Aj of degree d have d options to hold symbol m

respectively, the total number of this is calculated as d2. Besides m symbol, dependent pairs

should have at least one symbol in common, with each of them having d choices in positions of

encoded packets. It renders another d2 possible combinations. Since dependent nodes are with

the vicinity of node producing m symbol, the maximum number of choices common symbols is

upper bounded by πηP 2
E. Moreover, if Ai and Aj are dependent, P[Ai

∧
Aj] ≤ pd−1, where two

sets share all the encoding neighbors. Thus, ∆ ≤ pd−1d4πηP 2
E. In the following deduction,

we let σ = αd2 lnn
(n−1)(1−p) , where α =

16−2 ln(δ
6

)

lnn
[75]. Since E[d] < n/R =

√
n/c ln(n/δ) < β

√
n

according to LT codes [17], then E[d2] < β2n. Therefore, σ < (16− 2 ln(δ/6))β2.

Next, based on Janson bound we can obtain:

P[A ≤ (1− σ)E[A]] ≤ exp(− σ
2E[A]

2 + ∆
E[A]

)

≤ exp(−
αd2 lnn

(n−1)(1−p)dπηP
2
E

2 + d3
)

≤ exp(−
αd3 · lnn · πηP 2

E

n−1

3d3
)

= n−
α
3 (6.3)

Thus, P[A ≥ (1 − σ)E[A]] is at least (1 − n−
α
3). Then we bound denominator B with

no conditioning on Xm, using Chernoff bound as described in [77]. We can have: P[B ≤
(1 + 3σ)E[B]] ≥ 1− n3−α.

Now we can get the lower bound for fm: fm ≥ (1− 4σ) 1
L
≥ (1− 4β2(16− 2 ln(δ/6))) 1

L

with probability at least (1 − n−α3) · (1 − n3−α) ≥ (1 − 3n8−α
3) ≥ (1 − δ

3
) > (1 − δ). Under

the system parameter δ = 0.05, the range of β can be determined. The upper bound of β is

111

0.1, which makes Λ > 0. When n increases further, the β can be lower, as long as making

E[d2] < β2n hold. The proof is complete.

Theorem 31 Given the network of n sensor nodes, power control assisted encoding process

(ECPC) can recover n input symbols with probability (1−δ) even with 1− (1+ ε)/(Γ · (0.48+

0.06 ln δ
6
)) percent node failures.

Proof 32 During decoding period, set S is the recovery set containing the symbols that have

been recovered, and set L holds the uncovered symbols. To prove the randomness in neighbor

symbol selection, it is critical to prove that the distribution of the set S of already recovered

input symbols remains uniformly distributed throughout the execution of the recovery process.

In Lemma 1, it has been proved that with probability at least (1− δ), we can lower bound the

release probability of every uncovered symbol of set L with Λ 1
L

. That is to say, it needs 1
Λ

encoded packet to cover each uncovered symbol with probability 1
L

for at least (1− δ) percent

case. Since β < 0.1, it is the worst case of Λ when β = 0.09. Thus, Λ = (0.48 + 0.06 ln δ
6
).

6.3 Protocol Implementation

ECPC protocol is implemented in TinyOS [70], which supports light-weight embedded

system design. In Figure 6.4, we show ECPC protocol implementation in the shaded boxes,

which are core parts of the entire system of distributed data storage. The supporting com-

ponents in system include data sensing, flash storage, MAC protocol for local broadcasting

and radio communication drivers.

As illustrated, the ECPC protocol consists of two shaded components: ECPC Encoding

and ECPC Power Control. In ECPC Power Control, a posterior distribution of transmission

is calculated with two input information, which are size of neighbor nodes and appropriate

degree distribution Ω(∗). The component “Tx Power Distribution” is responsible for adjust-

ing Tx power in MAC layer for one-hop message broadcasting, through a command control

interface. We select the degree distribution parameters as follows: δ = 0.1, ε = 0.05, and

ϕ = 0.5 for evaluating transmission power distribution fP (Pi) in Equation 6.2. In ECPC

112

Sensing Application

Opportunistic Broadcasting

Storage
Redundancy τ

ECPC
Encoding

MAC

Broadcast
Queue

ECPC Encode Queue

Radio Radio Control

Data Queue

TX
POWER

Encoded Data

ECPC Power
Control

Final Degree
Distribution Ω(*)

Tx Power
Distribution

Neighbor
Size

RadioControl

Packet Flow

Control Flow

Sensor MoteHardware

PacketReceivePacketSend

RadioSend RadioReceive

Raw Data

Figure 6.4 ECPC Protocol Implementation

Encoding, storage redundancy τ is first determined by knowing the failure probability Φ

and deployed network size N . The obtained τ is used to rein the broadcasting cycle of raw

data. Data queue is implemented to buffer the sensing data for two purposes: (1) encoding

sensing data with data from other nodes; (2) inserting into broadcast queue for one-hop

broadcasting. ECPC encoding utilizes network erasure coding to encode data, including

pre-code stage (LDPC) and LT-code stage (LT Codes). We select system parameter λ = 3

and ρ = 6 for pre-code LDPC.

As a full protocol implementation, ECPC is light weighted in two aspects. First, the data

offloading for distributed storage solely counts on one-hop broadcasting, without obligation

of maintaining packet forwarding probability matrix in every node for random walks. Second,

final packet degree distribution is accomplished by broadcasting with ECPC transmission

power control, reducing the complexity in tracing packet among multiple random walks.

6.4 Performance Evaluation

In this section, we present the evaluation of the proposed ECPC algorithm, comparing

to the existing approaches for distributed data storage: Exact Decentralized Fountain Codes

113

(EDFC) in [39] and Raptor-Codes based Distributed Storage (RCDS) in [41]. EDFC dissem-

inates data through multiple random walks to ensure the data received per node is no less

than code degree selected. The transition matrix is constructed by Metropolis Algorithm

with stop probability proportional to code degree selected. RCDS initiates only one random

walk for each data item, which has length of O(nlogn) to ensure this random walk visit each

node at least once. Every node accept the random walk packet with a specific probability

and encode by Raptor Codes. The ECPC and compared approaches are implemented in

TOSSIM simulator [69].

We model the network as a Random Geometric Graph [72], which is deployed in a

area A = [D,D]2, where D is the length for each of dimension of deployed region. In

the simulation, we fix the area as A = [20, 20]2, but vary the network size n. Since the

network density can be computed as: η = n/D2, different network sizes denotes different

network density as well. An independent failure probability is associated with each node.

The adjustable radio power range is given as [95, 127], which maps to the radio transmission

range [1, 8], with 32 levels in total. To alleviate the uncertainty of single experiment, we

average each of our results from 50 separate experiments.

6.4.1 Communication Overhead

We examine three metrics under different network sizes: Message Cost, Energy Cost,

and Termination Time. In Figure 6.5, we compare the total message cost of our ECPC

algorithm with EDFC and RCDS. In general, the total message cost of ECPC is much lower

than other two approaches. And the message cost difference increases faster as the network

size scales up. This is because that the dissemination in EDFC and RCDS rely on the random

walks, which is at least O(n2 · polylogn), while the dissemination of ECPC only consumes

O(1) message per node. In particular, the message cost of ECPC stays under 1, 000 under

the network size of 500. RCDS requires 2, 000, 000 messages in total to achieve the expected

code degree distribution across the network. Approximately 1, 200, 000 messages is consumed

in EDFC.

114

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 50 100 150 200 250 300 350 400 450 500

T
o
ta

l
m

e
s
s
a
g

e
 c

o
s
t

Network size

RCDS
EDFC
ECPC

Figure 6.5 Communication overhead: total message cost

Since the packet transmission power is dynamically adjusted in ECPC, energy cost for

every message broadcasting indeed vary dramatically. Thus, reduction of message cost does

not guarantee a better energy efficiency. We consider the total energy consumption required

for protocol, avoiding the arguable concerns about the energy efficiency of proposed ECPC.

In Figure 6.6, the measurement of total energy ratio between RCDS and ECPC, EDFC and

ECPC are presented respectively. For RCDS, the energy ratio to ECPC could rise from about

20 (N = 100) to 100 (N = 500). Compared with RCDS, EDFC decreases the number of

random walks for each raw data by reducing the exact condition to approximated conditions.

Hence, the maximum energy ratio between EDFC and ECPC is about 60 under network size

500. The reason behind this significant energy saving is that ECPC only adopts single-hop

packet broadcasting to ensure the final degree distribution is satisfied among encoded and

stored packets. Though transmission power may be increased to cover more neighbors in

one broadcasting attempt, the expected Tx power value throughout multi-round encoding

process is closer to P̄ .

In terms of time for data dissemination, ECPC method terminates at a short time

period, e.g. less than 10 time units under varying network sizes, shown in Figure 6.7. In

EDFC and RCDS, each source node can initiate its own random walk at the same time, as

115

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200 250 300 350 400 450 500

E
n
e
rg

y
 C

o
s
t

R
a
ti
o

Network size

RCDS/ECPC

EDFC/ECPC

Figure 6.6 Total energy consumption in distributed data storage schemes.

far as there is no media access conflict. Their termination of encoding did cost a considerable

time, with 200 time units for EDFC and 400 time units for RCDS respectively under the

network size of 500.

 0

 100

 200

 300

 400

 500

 50 100 150 200 250 300 350 400 450 500

T
o

ta
l
te

rm
in

a
ti
o

n
 t

im
e

Network size

RCDS

EDFC

ECPC

Figure 6.7 The communication overhead: total termination time.

116

6.4.2 Data Recovery Ratio

Illustrated in Figure 6.8, we study the decoding performance in terms of data recovery

ratio. Data recovery ratio denotes the percentage of original data recovered after decoding.

The node has a failure probability of 10%. First, we observe that the recover ratio of ECPC

has 40% at the network size 50, but, increase to over 90% as network size increases beyond the

400. In experiment, ECPC select a β of 0.07 from range (0, 0.1) to maintain the randomness

properties. The decoding performance of EDFC and RCDS also experience an increasing

trend as network size grows. The reasons for their poor performance is that nodes can fail

when the random walk is still going. It may result in a stop condition for the random walk on

that failure node. Thus, the resultant degree distribution is not the best match of expected

code degree distribution. In particular, the data recovery ratio is only 67% and 62% for

EDFC and RCDS respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450 500

D
a
ta

 R
e

c
o
v
e

ry
 R

a
ti
o

Network size

ECPC
EDFC
RCDS

Figure 6.8 The decoding performance under varying network sizes: Max data recovery ratio
for different network sizes

We examine the data recovery ratio for 500 nodes along the axis of experiment time

elapsed in Figure 6.9. We keep node failure probability as 10%. Since we repeat the exper-

iments 50 times with node failure occur randomly each time, the overall failure occurrence

time is also uniformly distributed. Since EDFC and RCDS need 300 to 400 time units to

117

perform the random walk based data dissemination, the recovery ratio is 0 during the early

time period of data dissemination for both EDFC and RCDS. On the other hand, ECPC

terminates in a short time period, making data recovery possible even in a early stage, like

at the time of 100 time units. The peak recovery ratio of EDFC can only reach 67% is due to

the node failure occur during the data dissemination. As the time elapses, the recovery ratio

of three approaches decrease. It is because that more nodes fail as time elapses. However,

the decoding performance of ECPC degrades much less than other two approaches.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

D
a
ta

 R
e
c
o
v
e
ry

 R
a
ti
o

Time Elapsed (Time Units)

ECPC
EDFC
RCDS

Figure 6.9 The decoding performance under varying network sizes: sequential snapshots of
data recovery ratio as time elapses.

6.4.3 Data Recovery under Disruptive Networks

In this subsection, the impact of varying failure probabilities φ on data recovery ratio

is shown in Figure 6.10. The network size is 1000 nodes. In Figure 6.10, it is shown that the

three approaches have higher data recovery ratio in case of lower node failure probability.

For instance, in the case of 10% failure probability, ECPC’s recovery ratio is close to 100%,

and EDFC and RCDS have 90% and 82% recovery ratio respectively. However, as the failure

probability increases, the recovery ratio in EDFC and RCDS decreases significantly. At the

network of 80% node failure probability, ECPC can still preserve 80% data on average, which

118

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

D
a
ta

 R
e
c
o
v
e
ry

 R
a
ti
o

Node Failure Probability

ECPC
EDFC
RCDS

Figure 6.10 Recovery ratio under varying failure probabilities

is 160% as much as the decoding ratio of EDFC, and 200% as much as the that of RCDS.

It is due to two reasons. First, ECPC has a fast termination time. It can reduce the chance

of experiencing disruptive nodes, which may halt the data dissemination process. Second,

redundant packets, determined in Section 6.2.1, account for the failure node, by encoding

extra packets in each node.

 0

 0.2

 0.4

 0.6

 0.8

 1

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

D
a
ta

 R
e
c
o
v
e
ry

 R
a
ti
o

Percentage of Failure Nodes (%)

ECPC
EDFC
RCDS

Figure 6.11 The decoding performance with varying percentage of failure nodes at early
encoding stages.

119

 0

 0.2

 0.4

 0.6

 0.8

 1

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

D
a
ta

 R
e
c
o
v
e
ry

 R
a
ti
o

Percentage of Failure Nodes (%)

ECPC
EDFC
RCDS

Figure 6.12 The decoding performance with varying percentage of failure nodes at middle
encoding stages.

We further investigate the impact of disruptive nodes in different stages of data dissem-

ination and encoding. According to the experiment in Figure 6.9, we categorize the stages

into two stages: early stage (0−100 time units) and middle stage (100-600 time units), shown

in Figure 6.11 and Figure 6.12 respectively. In Figure 6.11, early node failures compromise

the decoding ratio of ECPC most, making recovery ratio 40% in case of 90% node failures.

In the other hand, node failure during middle stage has less impacts on ECPC. Under 40%

failure nodes, ECPC can recover over 95% data. However, the best recovery ratio of EDFC

and RCDS are less than 30% and 70% under (a) and (b) respectively.

6.4.4 Evaluation of Long-term Stability

To preserve the persistence of real-time data stream in a disruptive network, distributed

erasure coding with randomized power control run repeatedly to offload, encode and store

data. ECPC protocol re-evaluates a new posterior distribution of transmission power only

when the number of neighbor nodes change significantly.

The long term stability of ECPC is to evaluate the decoding performance of data recov-

ery only based on initial transmission power distribution. Long-term stability is shown in

Figure 6.13, in the case that power control algorithm is only conducted once at the initial-

120

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50 60 70 80 90 100

D
a
ta

 R
e
co

ve
ry

 R
a
tio

Sensing Rounds

MAX
MEDIAN

MIN

Figure 6.13 Recovery ratio under different sensor periods

ization. In the simulation setup, we set the disruption probability of each node as 10%. The

MAX, MEDIAN and MIN curves illustrate the maximum, median and minimum recovery

ratio during the long-term stability evaluations. The uncertainty of disruptive nodes during

sensing period can compromise decoding performance by 10% at most. However, even under

inaccurate estimation, ECPC decoding is stable, which recovers more than 90% data by

decoding packets on average (MEDIAN curve).

121

CHAPTER 7

INTEGRATED SOLUTION FOR DATA COMMUNICATION AND

STORAGE IN ENERGY-SYNCHRONIZED SENSOR NETWORKS

(RAVINE STREAM)

In a large-scale sensor network deployment, one of major reasons contributing to in-

termittent connections and disruptive communication is sensor nodes failure. Note that the

reasons for node failure have a quite broad range, which can be either power depletion, un-

able to route packet to destination or overflowed receiving and transmitting buffer. Each

node failure influences the data collection flow routed through it. In the worst case, sink

node failure impairs the entire network traffic. To preserve data persistence, data stream has

to be rerouted to other paths or redistributed to other storage nodes if none active routes are

found. Existing algorithms from the literature studied this data preserving as an network

flow optimization problem, like [57] maximizes the minimum residue energy in the network

for the next data redistribution to arise; [55] combines minimizing data redistribution and

retrieval cost into a single problem.

Though optimal solutions are devised under either energy or storage space constraints,

most of the previous works ignore the fact that node failures could happen in the course

of data rerouting or redistribution. The determined approach is not capable of scheduling

data redistribution without the global knowledge of which part of nodes could fail in the

middle. Moreover, the data redistribution is conducted in the network of heterogeneous node

failure probabilities. This fact implies that data should move towards more reliable nodes

with sufficient residue energy and storage space, such that higher data delivery rate can be

achieved.

In this paper, we propose Ravine Streams to preserve data stream persistence in disrup-

tive sensor networks. Source data is initiated and delivered in its encode form by network

122

erasure codes OnCode [78]. For data preservation, receiving nodes distributively make the

acceptance decision based on local failure probability and storage space. Note that here

nodal failure probability has taken the residual energy into account and dynamically update

across the process. Adaptive transmission power control in RS ensures that data accep-

tance probability by neighbor nodes is expected at 1 for each broadcasting under minimum

transmission power. With data packet recoding, the dispensable data content redundancy

is constrained for more energy efficiency. Moreover, we show that the delivery performance

of proposed RS is bounded by Optimal solution: η =
OPT·ln(B

δ
)

2λ
[1 + ω(1) · 1

B
+ 2ω(2) · B−2

(B2)
].

In summary, this work has three contributions: (1) RS leverages probabilistic transmis-

sion power control and network erasure recoding to preserve data throughout disruptive net-

work connection. Additionally, the data redundancy is largely reduced, increasing algorithm

energy efficiency. (2) RS makes distributed probabilistic decision that directs redistribution

data to more reliable storage nodes, without global knowledge of density and node failure

probabilities, smoothing data collection traffic under disruptive connections. (3) Our analy-

sis shows that the proposed RS algorithm has bounded performance compared with optimal

solution.

7.1 Ravine Stream Algorithms and Analysis

Ravine Streams is an integrated set of distributed algorithms that protect data collection

stream from disruptive network nodes and connections. The data persistence preservation

of RS is built upon the opportunistic in-network coding and delivery (OnCode) [78]. Data

packets are initially encoded and transmit by OnCode. When local storage space vanishes,

RS redistributes excessive received data packets to more reliable nodes to preserve data

persistence. RS considers both heterogeneous failure probabilities (due to energy depletion

or other factors) and storage constraints, and addresses the problem of disruptive connection

during data redistribution. RS leverages network erasure coding in data redistribution, and

determines the rebroadcasting probability and transmission power level according to nodal

utilities. It is worth to mention that RS algorithms are probabilistic, adapting to the dynamic

123

network conditions with minimum execution overhead.

We describe the properties of an ideal data recode and redistribution algorithm, which

is referred to as OPT. As the optimal benchmark solution, OPT presents the following

properties that our algorithm design concerns. First, OPT does know how much data can be

accepted and how much data needed to be redistributed if the node happens to be disruptive

at a certain time. Here, we define a node is disruptive as it can not forward any data towards

sink, and data stream is disconnected hereafter. In other words, OPT determines the data

acceptance in an optimal way so that the storage use are balanced across the network.

Second, for a data redistribution in a time range ahead, OPT can always find a determined

path from disruptive node to destination storage node with stable communication link and

ensured data delivery. And only one copy of source data packet needs to be maintained inside

network. In practice, it is unlikely to predict a stable communication link across multi-hop

connection in the disruptive network conditions, which means the data redistribution is not

guaranteed to be successful every time. Thus, multiple copies of data packet are necessary

to reduce the risk of data loss. Under this condition, data redundancy needs to be reduced

between multiple survived data copies. Third, OPT can observe if the disruptive node is

trapped in bad region or not, so as to adjust the appropriate radio transmission power to

assist the communication. In fact, without perfect knowledge ahead of time, it consumes

considerable overhead to search different levels of transmission powers until a proper power

is found.

RS adopts two integrated mechanisms to tackle the unideal situations: Determine Data

Acceptance, Probabilistic Data Redistribution. RS is able to preserve data persistence in

heterogeneous situations subject to node failure probability and storage constraints. The

mathematical symbol and notations are described in Table 7.1.

124

Table 7.1 Notation in Algorithm

Notation Explanation

Nm
i Neighbor set of node i under

power level m
Um
i Nodal utility under TX power m

δi Failure probability of node i
Ci Free storage space on node i
Cmax Maximum storage space
β System parameter for data accep-

tance
α Replacement factor
qi Probability of accepting incoming

packet in node i
pm Selection probability for power

level m
τ Exponential index of power ad-

justment

7.1.1 Determine Data Acceptance

Due to the opportunistic nature of encoded network traffic, it is unlikely to predict the

exact amount of incoming packet in a certain time window. Therefore, when disruption

occurs, there is hardly a determined way to calculate the exact amount of data needed to be

redistributed. The best approach is to make this decision based on the dynamic available

storage space in each node. RS adopts the reactive methods to discern available storage in

node i, defined as Ci. We first look at an example of a data stream from i→ j → k, where

node k becomes disconnected, making node j not able to forward any incoming traffic. Node

j stores data packets unsent in its own buffer. To preserve data persistence, node j has to

redistribute the excessive data to other nodes for storage before its space is used up.

If data packets are redistributed only when storage space is full, the network will ex-

perience a sudden and unexpected traffic burst. To avoid this dramatic traffic change, RS

adopts probabilistic method to pre-estimate the probability qj for each incoming packet. The

probability qj indicates the probability with which node j accept the received packet. With

this smoothing technique, network traffic can remain relatively stable even under unforeseen

125

disruptive conditions.

The probability qj is determined distributively, based on local ratio of nodal available

storage space Cj and maximum storage space Cmax. With less available storage ratio, in-

coming packet will be less likely to be accepted. Moreover, each node i has a certain failure

probability δj due to either energy depletion or other external factors. Therefore, final data

acceptance probability is estimated against factors
Cj

Cmax
and δj. We combine these two

factors by multiplicative operation.

qj = β · Uj = β · (δj · Cj
Cmax

) (7.1)

where Uj represents the available nodal utility, and β is introduced by RS algorithm to hold

a tolerance guard, which is tunable. If node decides not to save the received packet, it will

proceed to redistribute the packet to other nodes for storage.

7.1.2 Probabilistic Data Redistribution

The reason of redistributing data packet following a probabilistic manner is two fold.

First, having packets probabilistically broadcast consume significantly less communication

cost for offloading data to other storage nodes than that of gossip flooding. Second, statis-

tically such a probabilistic redistribution can mitigate the risk of data loss despite the fact

part of delivery paths may fail in the course of redistribution.

Two main challenges arise in design. First is about how to make data redistributed

towards reliable storage nodes instead of nodes with higher failure probability. Due to

heterogeneous node densities, rebroadcast message can be heavily stored in nodes with denser

vicinity but unreliable nodes. Data is unlikely to be redistributed to other nodes, which might

have better connection to sink node for collection purpose. RS integrates the adaptive power

control to change the outcome of data redistribution towards more reliable nodes.

Second challenge is to reduce data redundancy in redistribution. More redundant data

packets broadcast in the network implies more energy are consumed to achieve this process.

Although energy cost for preserving data persistence is the extra overhead must paid, this

126

cost needs to be carefully conserved. Excessive waste of energy severely causes nodes to fail

due to power depletion.

Probabilistic data redistribution is articulated in Algorithm 9, which describes the trans-

mission power control based rebroadcast and recoding based data redundancy constraining.

When the node with decreasing storage space decides not to save the incoming packet, it

starts to redistribute the data to other storage nodes with adaptively controlled transmission

power. In line 5 − 8 of Algorithm 9, node i selects a certain power level for broadcasting,

according to a posterior probability distribution of transmission power, i.e. {p1, p2, ..., pm}.
This power distribution is dynamically updated based on available storage space among

neighbor nodes. This rebroadcast is invoked when the message is not accepted by the node.

Since it is the source of data redistribution, there is no duplicate copy of this packet in the

network yet.

Then the rebroadcast packets are treated differently. When a rebroadcast packet arrives

at a node with sufficient storage, the message will be accepted and stored (line 11-13). In

the other hand, when no sufficient storage is available, receiving node will operate recoding

before it rebroadcast out the message with a selected probability. In line 14, it examines the

code distance between received packet κ and encoded symbols in the storage space with the

same code degree. If there exists data of the same degree which has different code symbols,

the packet will replace the one with smallest coding distance from other symbols with a

probability α. The purpose of replacement is to maximize the decoding probability, since

the encoded symbol with minimum code distance contribute little to the decoding.

In case that no symbol with the same degree is found in the storage, algorithm evaluates

the opportunity that rebroadcast packet can be recoded by XOR operation with stored

symbols to generate a new symbol. Note that the recoding does not change the code degree

associated with the packet (line 23-25). Recoding the same rebroadcast message in different

nodes can mix the message randomly with diverse symbols, generating non-duplicate encoded

data. Hence, it reduces the data redundancy in rebroadcast messages, avoiding wasting

energy in broadcasting duplicate messages.

127

Algorithm 9 Probabilistic Data Redistribution

Input: Effective storage space Ci, β, max storage Cmax, replacement factor α, Power dis-
tribution {p1, p2, ..., pm}
1: Draw random variable ρ from range (0, 1)
2: Set qi = β · Ui = β · (δi·Ci

Cmax
)

3: if ρ < qi then
4: Save this data packet to local storage
5: else
6: Node i select power level m with probability pm
7: Rebroadcast the data packet κ using selected transmission power m.
8: end if
9: Node j upon receiving a rebroadcast data packet κ
10: Draw random variable ρ from range (0, 1)
11: if ρ < qj then
12: Save the data packet to local storage flash
13: else
14: if Check coding distance(κ,S) > 0 then
15: Select symbol Sl with smallest distance with other symbols in storage
16: Replace Sl with κ with probability α
17: if ISRECODABLE(κ,S) == TRUE then
18: Recode κ by XORing symbols in storage
19: end if
20: Rebroadcast packet κ′ with probability (1− α)
21: else
22: if ISRECODABLE(κ,S) == TRUE then
23: Recode κ into κ′ by XORing symbols from storage
24: end if
25: Rebroadcast new packet κ′

26: end if
27: end if

128

Adaptive power control and constrained data redundancy are two major technical build-

ing blocks in the probabilistic data redistribution, which are described as follows.

Adaptive Power Control Without adjusting radio transmission power, packets may

be trapped in low storage region. Adjusting transmission power moves packet out to the

nodes with more sufficient and reliable storage space. The transmission power adjustment

procedure itself is probabilistic. An intuitive way for adjusting probability of transmission

power m is to make it proportional to the total available nodal utilities
∑
Um
j in node j:

pm = c ·
∑

Um
j (7.2)

The above equation implies that transmission power that reach larger amount of
∑
UPi
j

has a larger probability to be selected for data rebroadcast. However, there exists one draw-

back of directly using the proportional equation to determine the probability of transmission

power. Applying this strategy, each node greedily selects the maximum power to rebroadcast

throughout the process, leading to significant message flooding and useless data redundancy,

though the local data entrapment is relieved. Figure 7.1 shows an example depicting this

problem. In the figure, nodes from A to G select their maximum power respectively, i.e.

m = 3, for it can reach nodes with most nodal utilities. However, each node, like node F ,

receives 6 copies of rebroadcast messages, which are mostly duplication. Meanwhile, trans-

mission with power m can consume quadratically more energy than that of power m − 1.

The energy efficiency can be enhanced by letting each node selects their transmission power

conservatively. Meanwhile, we still wish to preserve the data persistence, which means that

rebroadcast message is stored by at least one storage node. Adaptive power control has been

designed to achieve both of goals.

The probability of selecting transmission power level is redistributed to be exponentially

proportional to the total nodal utilities among rebroadcasting node’s neighbors.

129

U_A =0.1

0.1

0.1

0.2

0.2 0.3

0.3

m=1 m=2 m=3

B

C

D

E

F

G

A

Figure 7.1 Example of transmission power control

pm = (
Ūm
j

Ūm−1
j

∑
j

(Um
j))τ (7.3)

where τ is the exponential system parameter tunable between 0 and 1 and Ūm
j is the average

nodal utilities of node j and node j’s neighbors, when power level m is applied in node

j’s transmission. When the sum of nodal utilities equals to 1, the expected probability of

storing the rebroadcast message is ≥ 1. This ensures that the corresponding power level is

selected to guarantee the data persistence. Rather than linear proportional relationship, the

above equation has the power exponent τ ∈ (0, 1). With system exponent τ , the power level

pm, under which the sum of nodal utilities Um
j is closest to 1, has highest probability in all

power levels. The reasons of adding coefficients Ūm
j /Ū

m−1
j are two fold. First, the power

level m, which increases not only total nodal utilities but also the average values, should be

given a higher probability in the power distribution. Second, pm needs to approach to 1 more

aggressively once the next power level m leads to a larger average utility amount, so that

cut-off power level may appear smaller. A smaller cut-off power level indicates exponential

energy conservation. In Equation 7.3, if the calculated pm ≥ 1, then let pm = 1. Notice that

m, in which pm ≥ 1, is the cut-off power level in power probability distribution. Through

probability normalization, it ensures that
∑

m pm equal to 1. The average nodal utility

follows that:

130

Ūm
j =

1

|Nm
j |+ 1

∑
Um
j

In order to calculate the nodal utility summation and average value, node j needs to know its

neighbors’ utilities. Thus, RS algorithm adds two extra fields in each broadcasting packets:

power level indicator and available nodal utility. Upon receiving rebroadcast message, node

j records both power level received and available nodal utility from neighbor node.

For instance, in Figure 7.1, before adaptive power control, node A choose power level

based on Equation 7.2, so that a total nodal utility can reach or exceed 1. Since (0.1 + 0.1 ∗
2 + 0.2 ∗ 2 + 0.3 ∗ 2) = 1.3 > 1, the most likely power level for node A is m = 3. We set

τ = 0.4. With adaptive power control, when m = 1, it gives p1 = (0.1 ∗ 3)0.4 = 0.618. Set

m = 2, then p2 = (0.14
0.1
· 0.7)0.4 = 1. Thus, node A’s cut-off power is reduced from level 3 to

level 2.

 0

 2

 4

 6

 8

 10

 12

 14

 4 6 8 10 12 14 16

Av
er

ag
e

TX
 P

ow
er

 L
ev

el

Node Density

APC
BPC

Figure 7.2 Average TX power level for data redistribution.

Figure 7.2 shows the average TX power levels selected by Equation 7.2 (BPC) and

Equation 7.3 (APC) under different node densities respectively, within the TOSSIM [69]

network simulator. From the results, it shows that adaptive power control (APC) reduces

the power level by 60% on average compared with basic power control (BPC). In addition,

131

the smaller deviation of power level among nodes indicate that energy consumption of TX

power is relatively more balanced if executed by APC. Moreover, the value of power level

decreases slowly in BPC. The reason is that each node greedily selects its power level, so

that storage space is consumed faster than necessary, making other nodes have to take higher

transmission power to discover more storage nodes.

Data Redundancy Constrain Adaptive power control (APC) reduces the energy

consumption of rebroadcast as well as the total amount of rebroadcast data replication. How-

ever, redistribution packets consist of duplicate data due to the rebroadcasting process. Data

content redundancy wastes communication energy as well as the storage space. Therefore,

we further constrain the content redundancy of rebroadcast message by conducting symbol

recoding without impairing the original code degree distribution.

Recoding procedure is shown in Algorithm 10. Recoding step takes as input the rebroad-

cast encoded packet S, a set X of both decoded symbols and encoded packets of degree less

than 2 and regenerates a fresh encoded packet with the same degree as d. This recoding

step mixes the encoded symbol of rebroadcast packet with local symbols in storage, such

that multiple copies of broadcast packets can be stored with distinct encoding contents after

their redistribution process.

Algorithm 10 Data Recoding

Input: Received rebroadcast packet S, a set X of both decoded symbols and encoded packets
of degree ≤ 2
Output: Recoded packet Y

1: for all s ∈ S do
2: B ← ∅
3: for all x ∈ X do
4: B ← x, if{x ⇔ s&freq(x) < freq(B)}
5: end for
6: if B 6= ∅ then
7: Y ← S ⊕ x
8: end if
9: end for

132

The basic operation in network erasure coding is XOR, which is effective and of low

computation cost. It verifies the properties that swapping symbol only requires another XOR

operation. For instance, a native symbol s1 in S can be replaced with s2 if target pair (s1⊕s2)

is available, where s2 is not contained in S. That is, (s...⊕ s1)⊕ (s1⊕ s2) = (s...⊕ s2) = S ′.

We denote this relationship as “s1 ⇔ s2”. Since there are more than 50% encoded packet

of degree equals to or less than 2 in LT Codes and Raptor Codes and the search for degree

2 packets are faster than higher degree packets, we mainly leverage those local packets with

degree d ≤ 2 to recode rebroadcast packets. When multiple target pairs are found in the

storage or can be generated from native symbols, like (s1⊕ s3) and (s1⊕ s4), the symbol si,

with less appearance frequency is selected.

Illustrated in Figure 7.3, conduction of symbol recoding constrains the data redundancy.

In Figure 7.3, packet of {x1 + x2 + x3} is broadcast from node C, and two duplicate copies

are received by node A and B respectively. There exist different groups of encoded symbols

previously cached in node A and B storage. For example, node A has 3 decoded native

symbols x3, x4, x6 (degree 1), which has different appearance frequency in the prior symbol

recoding, shown in number marked in the right-top corner. According to line 4 in Algo-

rithm 10, node A selects {x2 + x5} to recode, because x5 satisfies “x5⇔ x2” and {x2 + x5}
has the lower frequency than {x3} and {x4} as well. The recoded packets from node A and

B become distinct and carry different native symbols.

C

A BRebroadcast
Node

Rebroadcast
Node

Redistribution
Node

x1+x2+x3 x1+x2+x3

x6
x2+x5
x3 x4

x7+x8+x9

(2) (2) (1)

(1)

(1)
x4+x5
x8+x9

(2)

(1)

x3+x4 (1)

x1+x2+x3 + x2+x5

x1+x3+x5

x1+x2+x3 + x3+x4

x1+x2+x4

Figure 7.3 Illustration of symbol recoding in rebroadcast node.

133

Although a successful decoding probability depends on the code degree distribution

adopted during encoding, symbol recoding does increase the decoding probability. From LT

encoding point of view, our data redundancy constrain approach builds stronger and more

reliable connections between left and right components in the Tanner Graph. Introducing

more connections between symbol and encoded packet prevent decoding from early failure,

in the case of encoded packet loss.

 0

 2

 4

 6

 8

 10

 12

 14

5 6 7 8 9 10 11 12 13 14 15Av
er

ag
e

Pa
ck

et
 R

ed
un

da
nc

y

Node Density

Recode
noRecode

Figure 7.4 Data redundancy under various node densities.

Figure 7.4 evaluates the data redundancy against different node densities. With our

recoding on rebroadcast packet, the redundancy of data content has been reduced by at

least 50%. With node deployment becomes denser the data redundancy with recoding can be

further lowered to approach to 1, which means that there is almost no identical rebroadcast

message on the network. In contrast, without recoding the data redundancy increases as

the node density, because more nodes are involved in packet rebroadcasting, causing more

duplicate packets in the network.

7.1.3 Algorithm Analysis

RS preserves data when disruptive connection causes buffer to overflow. This data

quality preservation layer is built upon opportunistic in-network coding-based (OnCode [78])

134

data delivery. The packets delivered in the network before redistribution are handled by

OnCode protocol. The deliverable symbol size B for unit time span is based on the disruption

probability distribution Π, shown in [78].

Lemma 33 [78] Given a disruption probability distribution Π = {πw1 , πw2 , ..., πwn}, with

πwi denoting the probability for discretized disruption probability wi, then by recursive hitting

time estimation, the deliverable symbol size B =
∑n

i=1Bi=
∑n

i=1
Ri

(1+ε)λ
=
∑n

i=1
1/(1+ε)λ
L(i,sink)

=∑n
i=1

1/(1+ε)λ∑
k∈Nbr(i) Pik(Tik+L(k,sink))

, where both Pik and Tik are determined by distribution Π.

Hence, the performance bound of OnCode is described as:

Theorem 34 [78] Given the size of symbol set as B and degree distribution of Raptor Codes

ω(∗), the delivery ratio of OnCode is OPT/λ, where λ =
1+
√

1+4·(1−e−εB/δ)
2·ω(1)·(1+ε)

(δ, ε ∈ (0, 1]), with

a successful decoding probability of all symbols ≥ (1− e−εB).

[78] shows that OnCode provides a OPT/λ performance bound. We continue to consider

the optimal solution of data preserving in the course of disruptive network connection: OPT.

A stable path from distribution node to storage node is always perceived in OPT for dis-

tributing data, and exact one copy of data distribution is sufficient for preserving persistence.

Therefore, the storage cost for OPT is O(1). For RS, adaptive power control in section 7.1.2

ensures that in each broadcast the expected acceptance probability of distribution data in

storage node approximates 1, and RS adopts 2-hop rebroadcast to make sure the event that

storage nodes accept distributed data with probability equivalent to 1.

We assume that there are available B storage space for B innovative data symbols.

OPT can exactly leverages all of these space to store redistribution data for persistence.

Then, the delivery ratio of RS is derived as follows.

Theorem 35 Given the size of source data set B, and degree distribution of Raptor Codes

ω(∗), the final delivery ratio of RS: η = OPT · ln(B
δ

)

2λ
[1 + ω(1) · 1

B
+ 2ω(2) · B−2

(B2)
], where

λ =
1+
√

1+4·(1−e−εB/δ)
2·ω(1)·(1+ε)

and δ, ε ∈ (0, 1], with a successful decoding probability of B symbols

≥ (1− e−εB).

135

Proof 36 RS adopts 2-hop redistribution to ensure the acceptance of data, therefore only B
2

can be accepted in storage nodes expectedly without recoding. In other words, the final delivery

ratio of RS becomes 1
λ·2 . However, RS leverages recoding to eliminate data duplication, so

that any 2 copies are distinct from each node when they are stored. Therefore, the final

delivery ratio is determined by the portion of data that can be recoded shown in Algorithm 9.

Only packets of degree 1 and 2 are utilized in recoding. And we define the event A as that

packets are recodable when there exists a symbol x in the packet that can find x ⇔ y in the

storage symbol set of either degree 1 or 2. The probability of event A is ln(B
δ

)·(ω(1)· 1
B

+ω(2)·
B−2

(B2)
). If this event occurs, the corresponding delivery ratio of RS is 1/λ, otherwise 1/2λ.

Therefore, the final expected delivery ratio equals to: OPT · ln(B
δ

)

2λ
[1 + ω(1) · 1

B
+ 2ω(2) · B−2

(B2)
].

7.2 Performance Evaluation

In this section we present the performance evaluation of RS on TOSSIM [69] simulation.

The performance of RS is compared against other existing data collection and redistribution

algorithms from the literature. The experimental results demonstrate that data delivery

ratio under disruptive networks is substantially improved by our RS algorithm, with an

efficient energy cost and moderate storage cost. Experimental setup and result analysis are

discussed as follows.

7.2.1 Experimental setup

To illustrate the advantages of Ravine Streams in improving data delivery ratio, hence

enhancing data persistence over disruptive sensor networks, this work implements and com-

pares RS with three other existing data collection and redistribution protocols: EDR2 [55],

PoF [53] and NoCode. EDR2 is proposed to optimally solve the data redistribution problem

under intermittent network connection, i.e. minimizing the data redistribution and retrieval

cost. EDR2 is implemented in a distributed manner by “push-relabel” network flow meth-

ods. PoF devises an index based potential field, which is used to determine the amount of

data redistributed to storage nodes. It shows the optimality of data redistribution without

136

data retrieval cost. NoCode is a plain data collection protocol, without specific redistribution

and coding strategy. Once node disruption happens, data is redistributed randomly to other

storage nodes by broadcasting.

The experiment is carried out in 100m × 100m square area with nodes randomly de-

ployed. We test the algorithms in a network of size 100 and 500 respectively, and the total

storage space, nodal failure probability and number of data generators inside network vary to

compare the performances under different scenarios. Moreover, energy cost and flash storage

cost are also evaluated among different algorithms. For RS, the total power levels are set

as 8, each of which can reach areas of different radii. Set nodal utility factor β = 0.9, and

replacement factor α = 0.5. We show the experimental results in the following sections.

7.2.2 Data persistence under disruptive networks

For numerical evaluation, we use data delivery ratio to represent data persistence. Data

delivery ratio is defined as the ratio between the amount of data sent and the actual amount

of data recovered by the destinations. Figure 7.5 shows the data delivery ratio for multiple

algorithms under variable total storage spaces. The average nodal failure probability is 20%

and there are 50 and 200 data generators in network size of 100 and 500 respectively. Each

of data generators has 1kbps data rate. In Figure 7.5, y-axis denotes the percentage of data

sent which can be preserved throughout the network disruption, with x-axis showing different

total storage space in nodes. RS outperforms other algorithms for all cases of different storage

spaces. From both of experiments, the ratio of data persistence improves along with the

increasing storage space. For example, it can be observed that with increasing nodal storage

space (0.4Mbytes to 1.0Mbytes), the ratio of data persistence is significantly improved by

RS, increasing from 50% to 93%, which is much more than the increments in other algorithms.

Compared with the EDR2 and PoF, the application of network erasure coding in RS makes

packet redistribution more robust. Unlike the EDR2 and PoF, which does not has reliable

data redistribution to storage node, RS adopts probabilistic broadcasting together with

randomized recoding for data redistribution. Therefore, more data packets are preserved even

137

in the present of disruptive nodes and network conditions. Compared with the NoCode, RS

eliminates the duplicate packet retransmissions. The recoding of redistributed packet with

innovative data in RS is beneficial for mitigating the data content redundancy. Each packet

carries different innovative symbols which contribute to the final decoding. Recoding not

only reduces the data redundancy, but also promotes the randomness in mixing symbols.

The network erasure coding based data delivery can maximize its coding gains when the

symbol selection is pure random across the entire source symbol set.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.4 0.5 0.6 0.7 0.8 0.9 1.0

D
el

iv
er

y
R

at
io

Storage Space (MBytes)

NoCode
PoF

EDR2
RS

 0

 0.2

 0.4

 0.6

 0.8

 1

0.4 0.5 0.6 0.7 0.8 0.9 1.0

D
el

iv
er

y
R

at
io

Storage Space (MBytes)

NoCode
PoF

EDR2
RS

(a) Network Size 100 (b) Network Size 500

Figure 7.5 Data delivery ratio over different storage spaces (Node Failure Probability is 20%).

Figure 7.6 demonstrates the delivery ratio under different node failure probabilities.

The storage space of each node is set to 1Mbytes. In the left figure, it shows that RS

stills has the best performance in terms of delivery ratio. More importantly, when average

nodal failure probability increases, the delivery ratio of RS only reduces by 30%, and still

maintains above 60% delivery ratio under 90% failure probability. On the contrary, the

delivery ratio of EDR2 and PoF fall below 20%, and NoCode has even less than 5% data

delivery ratio. The right figure in Figure 7.6 demonstrates the same trend. An essential

reason is that algorithms other than RS fail to consider disruptive network condition during

data distribution, and hence algorithms are not able to adapt to intermittent connection and

disruptive communication link. For example, after redistribution node in PoF determines

how many amount of data should be rerouted to the destination storage node, based on

138

the potential index, redistribution nodes take it for granted that the redistribution data

can reach or be stored in the destination. Unfortunately, it is not always true, especially

in disruptive networks where the intermittent connection can happen any time during the

entire data delivery. This experiment manifests that disruptive communication poses a big

challenge to existing data redistribution protocols.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 0.9

D
el

iv
er

y
R

at
io

Failure Probability

RS
EDR2

PoF
NoCode

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 0.9

D
el

iv
er

y
R

at
io

Failure Probability

RS
EDR2

PoF
NoCode

(a) Network Size 100 (b) Network Size 500

Figure 7.6 Data delivery ratio over different failure probabilities (storage=1MByte).

Figure 7.7 demonstrate the delivery ratio under different data generators in the net-

work. With increasing number of data generator, the network traffic becomes heavier and

preserving data persistence is hence more challenging. The figure shows that when there are

100 data generators in a network of 500 nodes, EDR2 and PoF can still preserve more 50%

data, with 45% data persistence for NoCode. However, the data delivery ratio of all three

approaches drop significantly as the number of data generator increases from 100 to 350. In

the worse case, all three data preserving algorithm only manage to preserve less than 20%

amount of innovative data. By comparison, it shows the advantages of RS, which retains a

steady performance of above 90% data persistence across different number of data genera-

tors. Efficient data duplication avoidance (by recoding) and message redundancy reduction

(by opportunistic rebroadcasting and adaptive power control) in RS play an important role

in maximizing data delivery ratio.

139

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

100 150 200 250 300 350

D
el

iv
er

y
R

at
io

of Data Generators

NoCode
PoF

EDR2
RS

Figure 7.7 Data delivery ratio v.s. amount of data generators (storage=1MByte, failure
prob. = 20%).

7.2.3 Storage cost

We evaluate the storage cost for each of the algorithms in Figure 7.8. We observe that

NoCode method consumes more storage space than others when number of data generator

increases higher than 100. Under 350 data generators, there are only 6% storage space on

average is available in each of nodes. This implies that the uncontrolled rebroadcasting

of NoCode results in much redundant packets which requires much more storage space.

Although RS consumes less storage space than PoF and EDR2 in the network of light traffic,

RS requires more storage space as the network traffic becomes higher. This is because RS

adopts the opportunistic rebroadcasting to accommodate the disruptive communication link

which introduces moderate duplicate messages. PoF and EDR2 consume less storage space

but introduce much more energy cost.

7.2.4 Energy cost

Energy cost is critical to the data preserving, since excessive energy consumption will

increase the nodal failure probability due to energy depletion. Illustrated in Figure 7.6,

140

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

100 150 200 250 300 350

Av
ai

la
bl

e
St

or
ag

e
R

at
io

of Data Generators

NoCode
PoF

EDR2
RS

Figure 7.8 Available storage space ratio v.s. amount of data generators (storage=1MByte,
failure prob. = 20%).

all the algorithms experience a performance degradation under higher failure probability.

Therefore, energy conservation is not only for the sake of efficiency, but also for maximizing

data persistence.

The energy cost increment is exponentially proportional to transmission power level.

Thus, we evaluate the experimental output of power level adaptation algorithm in Figure 7.9.

Figure 7.9 represents the transmission power probability distribution according to Equation

7.3. The diamond-dotted curve is the cumulative probability of power selection. It shows

that more than 70% probability fall into power level 3 and 4, which are low-moderate power

level for the radio. This results is consistent with the preliminary results from Figure 7.2. It

also depicts that adaptive power control can adapt to network dynamics, including neighbor

node failure, node storage space changes and node density alteration, with small transmission

power cost.

Figure 7.10 demonstrates total energy consumption of different algorithms, normalized

against the Optimal solution. The optimal solution is assumed to establish a stable delivery

path from distribution node to storage node, which only consumes minimum energy cost.

In low failure probability, RS only expend 2.3 times as Optimal solution. It is due to that

141

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8

Pe
rc

en
ta

ge

TX Power Level

Power Select Frequency
Selection Cumulative

Figure 7.9 Transmission Power Level Distribution.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0.2 0.4 0.6 0.8 0.9

En
er

gy
 C

on
su

m
pt

io
n

R
at

e

Failure Probability

Optimal
RS

EDR2
PoF

NoCode

Figure 7.10 Energy Consumption Rate (storage=1MByte).

142

in RS probabilistic rebroadcasting is applied to accommodate the disruptive connection.

Compared with Optimal, more redundant nodes are required to rebroadcast packets in the

absence of global knowledge of node failure prediction. In the worse case, RS consumes 3.5

times as much as Optimal solution. Although RS adjusts its transmission power for better

expected coverage, its total energy consumption is 40% less than EDR2 and PoF. The

packet retransmission in those two approaches consume considerable energy when the path

for data redistribution becomes intermittent. NoCode randomly rebroadcasts the packet for

redistribution, which is unaware of network dynamics, so that energy consumption of NoCode

remains 5 times as much as the Optimal solution. But the data preserving performance of

NoCode is dramatically influenced by failure probability as in Figure 7.6.

143

CHAPTER 8

CONCLUSIONS

This doctoral thesis proposes a set of algorithm based on network erasure coding theory

to improve the data quality and preserve data persistence in disruptive wireless sensor net-

works. Max-flow min-variance algorithm schedule flows among multiple energy-synchronized

data paths without coding techniques. It established a benchmark for optimal solution. Due

to network dynamics and heterogeneous disruption across network, opportunistic routing

and coding is studied to practically preserve data persistence. ONEC lays a theoretic foun-

dation for later three works, with respect to the degree deconvolution and applying erasure

codes to network codings. The coding overhead is minimized because the advantageous sta-

tistical property of erasure codes is well preserved in our proposed network codings. And

OnCode is proposed to provide good quality of data service under the constraints of energy

synchronization. The Ravine Streams simultaneously consider the constrained of energy and

limited storage space in disruptive sensor networks. ECPC addresses the problem of data

storage when sink node becomes unavailable.

144

REFERENCES

[1] R. Huang, W.-Z. Song, M. Xu, N. Peterson, B. Shirazi, and R. LaHusen, “Real-World

Sensor Network for Long-Term Volcano Monitoring: Design and Findings,” IEEE Trans-

actions on Parallel and Distributed Systems, 2011.

[2] Y. Gu, T. Zhu, and T. He, “ESC: Energy Synchronized Communication in Sustainable

Sensor Networks,” in The 17th International Conference on Network Protocols, Oct.

2009.

[3] S. Biswas and R. Morris, “ExOR: Opportunistic Multi-hop Routing for Wireless

Networks,” in Proceedings of the Special Interest Group on Data Communication

(SIGCOMM’05), ser. SIGCOMM ’05, vol. 35, no. 4. Philadelphia, Pennsylvania,

USA: ACM, Oct. 2005, pp. 133–144. [Online]. Available: http://dx.doi.org/10.1145/

1080091.1080108

[4] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure for randomness

in wireless opportunistic routing.” in ACM SIGCOMM, Aug. 2007.

[5] D. Koutsonikolas, C.-C. Wang, and Y. C. Hu, “CCACK: Efficient Network Coding

Based Opportunistic Routing Through Cumulative Coded Acknowledgments,” in IEEE

INFOCOM, Mar. 2010.

[6] R.-S. Liu, P. Sinha, and E. C. Koksal, “Joint Energy Management and Resource Allo-

cation in Rechargeable Sensor Networks,” in INFOCOM 2010, Mar. 2010.

[7] S. Chen, Y. Fang, and Y. Xia, “Lexicographic Maxmin Fairness for Data Collection

in Wireless Sensor Networks,” IEEE TRANSACTIONS ON MOBILE COMPUTING,

vol. 7, pp. 762–776, Jul. 2007.

[8] K.-W. Fan, Z. Zheng, and P. Sinha, “Steady and Fair Rate Allocation for Rechargeable

145

Sensors in Perpetual Sensor Networks,” in SenSys 2008, Raleigh, North Carolina, USA,

Nov. 2008.

[9] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis, “Interference Aware Fair

Rate Control in Wireless Sensor Networks,” in Proceedings of the Special Interest Group

on Data Communication (SIGCOMM’06), Sep. 2006.

[10] J. Paek and R. Govindan, “RCRT: Rate-Controlled Reliable Transportfor Wireless Sen-

sor Networks,” in Proceedings of the ACM conference on Embedded network sensor sys-

tems (SenSys ’07), Nov. 2007.

[11] B. Hohlt, L. Doherty, and E. Brewer, “Flexible power scheduling for sensor networks,”

in Proceedings of the third international symposium on Information processing in sensor

networks (IPSN), 2004.

[12] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access for Wireless

Sensor Networks,” in The 2nd ACM Conference on Embedded Networked Sensor Systems

(SenSys), 2004.

[13] M. Buettner, G. Yee, E. Anderson, and R. Han, “X-MAC: A Short Preamble MAC

Protocol For Duty-Cycled Wireless Sensor Networks,” in Proceedings of the ACM Con-

ference on Embedded Networked Sensor Systems (SenSys’06), Boulder, Colorado, USA,

Nov. 2006.

[14] Y. Sun, O. Gurewitz, and D. B. Johnson, “RI-MAC: A Receiver Initiated Asynchronous

Duty Cycle MAC Protocol for Dynamic Traffic Load.” in Proc. 6th ACM conference on

Embedded networked sensor systems (SenSys), Nov. 2008.

[15] Y. Gu and T. He, “Bounding Communication Delay in Energy Harvesting Sensor Net-

works,” in ICDCS, Jun. 2010.

[16] R. G. Gallager, Low-Density Parity-Check Codes. MIT Press, 1963.

146

[17] M. Luby, “LT Codes,” in The 43rd Annual IEEE Symposium on Foundations of Com-

puter Science (FOCS), 2002.

[18] A. Shokrollahi, “Raptor Codes,” IEEE Transactions on Information Theory, vol. 52,

no. 6, pp. 2551–2567, 2006.

[19] X. Jiang, J. Polastre, and D. Culler, “Perpetual Environmentally Powered Sensor Net-

works,” in IPSN/SPOT 2005, UCLA, Los Angeles, California, USA, Apr. 2005.

[20] C. Park and P. H. Chou, “AmbiMax: Autonomous energy harvesting platform for

multi-supply wireless sensor nodes,” in SECON, Sep. 2006.

[21] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, “Design consid-

erations for solar energy harvesting wireless embedded systems,” IEEE SPOTS, 2005.

[22] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle, K. Whitehouse, and

D. Culler, “Trio: Enabling Sustainable and Scalable Outdoor Wireless Sensor Network

Deployments,” in IPSN2006, Nashville, Tennessee, USA, Apr. 2006.

[23] J. Jeong, X. Jiang, and D. Culler, “Design and analysis of micro-solar power systems

for Wireless Sensor Networks,” in INSS 2008, Kanazawa, Japan, Jun. 2008.

[24] T. Zhu, Z. Zhong, Y. Gu, T. He, and Z.-L. Zhang, “Leakage-Aware Energy Synchro-

nization for Wireless Sensor Networks,” in MobiSys 2009, Krakow, Poland, Jun. 2009.

[25] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang, and G. Zussman, “Chal-

lenge: Ultra-Low-Power Energy-Harvesting Active Networked Tags (EnHANTs),” in

MobiCom, Sep. 2009.

[26] M. Gorlatova, A. Wallwater, and G. Zussman, “Networking Low-Power Energy Har-

vesting Devices: Measurements and Algorithms,” in IEEE INFOCOM, Apr. 2011.

[27] Y. Yang, L. Wang, D. K. Noh, H. K. Le, and T. F. Abdelzaher, “SolarStore: Enhancing

Data Reliability in Solar-powered Storage-centric Sensor Networks,” Jun. 2009.

147

[28] Y. Yang, L. Su, Y. Gao, and T. F. Abdelzaher, “SolarCode: Utilizing Erasure Codes

for Reliable Data Delivery in Solar-powered Wireless Sensor Networks,” Mar. 2010.

[29] J. Le, J. C. S. Lui, and D.-M. Chiu, “DCAR: Distributed Coding-Aware Routing

in Wireless Networks,” IEEE TRANSACTIONS ON MOBILE COMPUTING, vol. 9,

no. 4, Apr. 2010.

[30] Y. Yan, B. Zhang, J. Zheng, and J. Ma, “Core: A coding-aware opportunistic routing

mechanism for wireless mesh networks,” IEEE Wireless Communications, vol. 17, no. 3,

pp. 96–103, Jun. 2010.

[31] S. Puducheri, J. Kliewer, and T. E. Fuja, “Distributed LT Codes,” in International

Symposium on Information and Theory, Sep. 2006.

[32] ——, “On the Performance of Distributed LT Codes,” in Allerton Conf. Communica-

tions, Control and Computing, Sep. 2006.

[33] M.-L. Champel, K. Huguenin, A.-M. Kermarrec, and N. Le Scouarnec, “LT Network

Codes,” in ICDCS, Jun. 2010.

[34] Y. Lin, B. Liang, and B. Li, “SlideOR: Online Opportunistic Network Coding in Wireless

Mesh Networks,” in Mini-Conference at IEEE INFOCOM 2010, Mar. 2010.

[35] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth Codes: Maximizing

Sensor Network Data Persistence,” in ACM SIGCOMM, Sep. 2006.

[36] M. Xu, W.-Z. Song, and Y. Zhao, “Opportunistic Network Erasure Coding in Disruptive

Sensor Networks,” in The 8th IEEE International Conference on Mobile Ad-Hoc and

Sensor Systems (IEEE MASS’11), 2011.

[37] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Ubiquitous Access to Dis-

tributed Data in Large-Scale Sensor Networks through Decentralized Erasure Codes,”

in 4th International Symposium on Information Processing in Sensor Networks (IPSN),

Apr. 2005.

148

[38] ——, “Distributed fountain codes for networked storage,” in Proceedings of Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2006.

[39] Y. Lin, B. Liang, and B. Li, “Data Persistence in Large-scale Sensor Networks with

Decentralized Fountain Codes,” in Proceedings of the 26th Annual IEEE International

Conference on Computer Communications (IEEE INFOCOM), May 2007.

[40] S. A. Aly, Z. Kong, and E. Soljanin, “Fountain codes based distributedstorage algo-

rithms for large-scale wireless sensor networks,” in Proceedings of the 7th International

Conference on Information Processing in Sensor Networks (IPSN), Apr. 2008.

[41] ——, “Raptor Codes Based Distributed Storage Algorithms for Wireless Sensor Net-

works,” in IEEE International Symposium on Information Theory, Jul. 2008.

[42] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A Survey on Network Codes for

Distributed Storage,” Proceedings of IEEE, vol. 99, no. 3, Mar. 2011.

[43] D. Vukobratovic, C. Stefanovic, V. Crnojevic, F. Chiti, and R. Fantacci, “A Packet-

Centric Approach to Distributed Rateless Coding in Wireless Sensor Networks,” in

Proceedings of IEEE SECON, Jun. 2009.

[44] L. Luo, Q. Cao, C. Huang, T. Abdelzaher, J. A. Stankovic, and MichaelWard, “Envi-

romic: towards cooperative storage and retrieval in audio sensor networks,” in ICDCS,

Jun. 2007.

[45] L. Luo, C. Huang, T. Abdelzaher, and J. Stankovic, “EnviroStore: A cooperative storage

system for disconnected operation in sensor networks,” in Proceedings of INFOCOM,

May 2007.

[46] T. Hara and S. K. Madria, “Data Replication for Improving Data Accessibility in Ad

Hoc Networks,” IEEE TRANSACTIONS ON MOBILE COMPUTING, vol. 5, no. 11,

Nov. 2006.

149

[47] A. Oka and L. Lampe, “Data Extraction from Wireless Sensor Networks Using Dis-

tributed Fountain Codes,” IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 57,

no. 9, Sep. 2009.

[48] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Net-

work Coding for Distributed Storage Systems,” IEEE TRANSACTIONS ON INFOR-

MATION THEORY, vol. 56, no. 9, Sep. 2010.

[49] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital Fountain Approach

to Reliable Distribution of Bulk Data,” in ACM SIGCOMM, Sep. 1998.

[50] D. Munaretto, J. Widmer, M. Rossi, and M. Zorzi, “Resilient Coding Algorithms for

Sensor Network Data Persistence,” in Proc. EWSN, 2008.

[51] Y. Lin, B. Liang, and B. Li, “Geometric random linear codes in sensor networks,” in

IEEE International Conference on Communications, May 2008.

[52] M. Albano and J. Gao, “In-Network Coding for Resilient Sensor Data Storage and

Efficient Data Mule Collection,” The 6th International Workshop on Algorithms for

Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities, Jul. 2010.

[53] B. Tang, N. Jaggi, H. Wu, and R. Kurkal, “Energy-Efficient Data Redistribution in

Sensor Networks,” in MASS, Aug. 2010.

[54] M. Takahashi, B. Tang, and N. Jaggi, “Energy-Efficient Data Preservation in Intermit-

tently Connected Sensor Networks,” in The Third International Workshop on Wireless

Sensor, Actuator and Robot Networks, Apr. 2011.

[55] M. Valero, M. Xu, N. A. Mancuso, W.-Z. Song, and R. Beyah, “EDR2: A Sink Failure

Resilient Approach for WSNs,” in IEEE International Conference on Communications,

Jun. 2012.

150

[56] J. Liang, J. Wang, X. Zhang, and J. Chen, “An Adaptive Probability Broadcast-based

Data Preservation Protocol in Wireless Sensor Networks,” in IEEE International Con-

ference on Communications, Jun. 2011.

[57] X. Hou, Z. Sumpter, L. Burson, X. Xue, and B. Tang, “Maximizing Data Preservation

in IntermittentlyConnected Sensor Networks,” in IEEE International Conference on

Mobile Ad hoc and Sensor Systems, Oct. 2012.

[58] W.-Z. Song, R. Huang, B. Shirazi, and R. Lahusen, “TreeMAC: Localized tdma mac pro-

tocol for high-throughput and fairness in sensor networks,” in The 7th Annual IEEE In-

ternational Conference on Pervasive Computing and Communications (PerCom), Mar.

2009.

[59] T. L. Pham, I. Lavallee, M. Bui, and S. H. Do, “A Distributed Algorithm for the Max-

imum Flow Problem,” in Proceedings of the 4th International Symposium on Parallel

and Distributed Computing, Jul. 2005.

[60] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum flow problem,”

Journal of the ACM (JACM), vol. 35, pp. 921–940, Oct. 1988.

[61] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.

McGraw-Hill Book Company, 2001.

[62] CME6005:http://www.c-max-time.com/products/showProduct.php?id=2.

[63] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The Flooding Time Synchronization

Protocol,” in Proc. 2nd ACM conference on Embedded networked sensor systems (Sen-

Sys), Baltimore, MD, USA, Nov. 2004.

[64] G. Lu, D. De, M. Xu, W.-Z. Song, and B. Shirazi, “TelosW: Enabling Ultra-Low Power

Wake-On Sensor Network,” in Seventh International Conference on Networked Sensing

Systems (INSS’10), Kassel, Germany, Jun. 2010.

151

[65] M. Luby, M. Mitzenmacher, and A. Shokrollahi, “Analysis of Random Processes via

And-Or Tree Evaluation,” in Proc. of the 9th Annual SIAM Symp. on Discrete Algo-

rithms (SODA), Jan. 1998.

[66] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection Tree Protocol,”

in Proc. of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys),

2009.

[67] A. Kamthe, M. A. Carreira-Perpinan, and A. E. Cerpa, “M&M: Multi-level Markov

Model for Wireless Link Simulations,” in SENSYS, Nov. 2009.

[68] H. Lee, A. Cerpa, and Levis, “Improving wireless simulation through noise modeling,”

in IPSN, Apr. 2007.

[69] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and Scalable Simulation

of Entire TinyOS Applications,” in Proceedings of the 1st ACM Conference on Embedded

Networked Sensor Systems (SenSys’03), 2003.

[70] P. Levis, “TinyOS: http://www.tinyos.net.”

[71] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill, M. Welsh,

E. Brewer, and D. Culler, “TinyOS: An Operating System for Sensor Networks,”

Ambient Intelligence. W. Weber, J. Rabaey, and E. Aarts (Eds.), Springer-Verlag, 2004.

[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.6525

[72] M. Penrose, Random Geometric Graphs. Oxford University Press, 2003.

[73] E. T. Jaynes, Probability theory: the logic of science. Cambridge University Press,

2003.

[74] T. J. Richardson and R. L. Urbanke, “Efficient Encoding of Low-Density Parity-Check

Codes,” IEEE Transactions on Information Theory, vol. 47, no. 2, Feb. 2001.

152

[75] C. Harrelson, L. Ip, and W. Wang, “Limited Randomness LT Codes,” in Proceedings

of the 41st Annual Allerton Conference on Communication, Control, and Computing,

2003.

[76] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 3rd ed. Oxford

University Press, 2001.

[77] N. Alon and J. H. Spencer, The Probabilistic Method. Wiley-Interscience Series in

Discrete Mathematics and Optimization, 2000.

[78] M. Xu, W.-Z. Song, and D. Heo, “OnCode: Opportunistic In-Network

Coding and Delivery in Energy-Synchronized Sensor Networks,” available at

http://sensorweb.cs.gsu.edu/˜xum/pub/OnCodeTR.pdf, Tech. Rep., May 2012.

	Georgia State University
	ScholarWorks @ Georgia State University
	Spring 4-23-2013

	Collaborative Communication And Storage In Energy-Synchronized Sensor Networks
	Mingsen Xu
	Recommended Citation

	tmp.1366904070.pdf.Sgz6g

