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Abstract—This paper presents a comprehensive review on the 

security aspect of the smart grid communication network. The 

paper focus on the Neighborhood Area Network (NAN) 

cybersecurity and it laid emphasis on how the NAN architecture 

is such an attractive target to intruders and attackers. The paper 

aims at summarizing recent research efforts on some of the 

attacks and the various techniques employed in tackling them as 

they were discussed in recent literatures and research works. 

Furthermore, the paper presents a detailed review on the smart 

grid communication layers, wireless technology standards, 

networks and the security challenges the grid is currently facing. 

The work concludes by explaining current and future directions 

NAN communication security could consider in terms of data 

privacy measures. The data privacy measures are discussed in 

terms of prevention and detection techniques.  

Keywords— Smart grid, Cyber-security, Neighbourhood Area 

Network, SCADA, AMI. 

I.  INTRODUCTION 

Utility providers in the old electricity grid struggled in 
monitoring the performance of the grid. Infact, old grid 
operators usually await reports on blackouts, low voltage 
supplies, tripped distribution electric poles, faulty feeders, 
faulty transformers from energy consumers, after all the grid’s 
sole expectation was to supply electricity. The modern 
electricity grid otherwise known as smart grid (SG) or 
intelligrid symbolizes the integration of advanced information 
communication technologies (ICT) and varieties of digital 
computing into the power-delivery infrastructure [1-3]. The 
characteristics of resilience, reliability, robustness, security, 
interoperability, and efficiency symbolizes the new grid [4]. 
Furthermore, the new grid incorporates beneficial goals such as 
efficient energy usage, distributed energy sources (DES) and 
robust cyber-safety etc. The National Institute of Standards and 
Technology (NIST) acknowledged a SG conceptual model [4-
5] which gives the expected characteristics, requirements, 
operations and services for the SG. It is presented in figure 1. 
The model highlights seven key areas which are; bulk 
generation, transmission, distribution, customer, service 
provider, operations and markets. 

The control and operation of the current and future SG 
network hinge on communication network complexity and its 
security. The advanced communication facilities make the 
electricity grid “smarter”. The communication infrastructures 

utilize varieties of network nodes, control and monitoring 
devices that allows a two-way communication network 
between the various domains or sublevels of the electricity 
grid, thereby uniting every part of the grid into a single 
network [5]. 

Fig. 1.  Smart Grid Conceptual Model [4,5] 

 However, the fact that SG communication is the backbone 
of the electricity grid exposes the grid to all sorts of attacks. 
Numerous plethora of security concerns are uprising daily due 
to increased dependency on the interconnected network nodes 
that do the job of taking accurate state measurements, pricing 
information, control actions etc and transmitting the data to 
other nodes. Also, other reasons such as increased endpoints at 
SG domains as well as widespread SG devices and numerous 
commercial hardware and software have constituted to bigger 
security issues for successful SG implementation. A 
preliminary estimate at a utility presents a daily generation of 
22 gigabytes of data from its 2 million customers [6], with this 
quantity of vital information from different residents, efficient 
security measures in terms of data privacy is imperative to 
maintain a successful grid network. [7] emphasized that, often 
security measures focus on outsider’s attack, but attacks 
originating from grid insiders are equally destructive and 
damaging. From a report [8], insider attacks accounted for 
approximated 34% of reported cyber-crimes in the United 
States.  A typical example of insider attacks was the Stuxnet 
attack whereby the grid network was infiltrated using USB 
devices [9]. Furthermore, attacks do not only lead to the 
shutting down of the grid, it also inflicts financial implications 
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on operators as experienced in the August 14, 2003 attack that 
caused blackout in some part of Canada and United States. The 
blackout yielded an estimated bill of $4 billion and $10 billion 
(U.S. dollars) and $2.3 billion for USA and Canada 
respectively [10, 11]. 

  At the energy consumer level, the utility deploys Smart 
Meters (SM) as a component of the (Advanced Metering 
Infrastructure) AMI [1,3,5]. The smart metering facility 
integrates all appliances in the residential domain for effective 
home energy management systems (HEMS), thereby residents 
can manage their loads, energy billings and interact with the 
utility in real time. Various data being transmitted from various 
SMs create avenues for attackers to launch attacks. Retrieving 
and analyzing the real-time data being transmitted in the AMI 
architecture, various intimate information about residents’ 
lifestyle and properties, such as types and number of household 
appliances and daily routine activities can be revealed to 
attackers. Also, a skilled cyber-expert who wishes to avoid 
enormous bills may tamper with his smart meter, hence making 
his SM vulnerable to bigger attack risks [12] 

  These security challenges and several others have 
consistently had inestimable socioeconomic effect not just on 
the grid and utility, but also on government, more especially 
with the fact that a country’s electricity grid is the foundation 
for most other infrastructure as well as the country’s economy. 
Hence, an attack on the electricity grid affects other sectors 
[11, 13] such as economy, defense, health, education etc. 

   To position current research work and gives direction for 
future research efforts, the paper presents a review on the smart 
grid communication layers, networks and the security 
challenges it is currently facing. The paper presents some of the 
recent research works on cyber-attacks and solutions for future 
grid. As the research and development of the SG is evolving, 
this review paper may not contain all relevant details 
comprehensively, however, the paper summarizes the status 
and future expectations of the communication security 
especially at the NAN architectural level of the SG 
communication.  

   The rest of the paper is organized as follows. Section II 
presents an overview on SG communication. An overview on 
NAN architecture in terms of communication infrastructure 
was presented in Section III. Section IV analyses an extensive 
overview of NAN cyber-security and prominent attacks. 
Section V presents solutions and future trends. Sections VI 
provides analysis on data privacy measures and Section VII 
concludes the paper. 

II. SMART GRID COMMUNICATION 

 In several countries of the world, the transformation of the 
old electric grid to SG is highly imperative to achieve energy 
efficiency and sufficiency [4, 14]. The widespread monitoring 
and control by the communication substructures enables the SG 
in reacting to dynamic changes at all parts of energy 
generation, transmission and distribution (G, T&D), as well as 
energy usage [1]. 

 In the communication pattern of the SG, several sensors 
and measurement devices are deployed for continuous 

monitoring of the energy generation, transmission, distribution 
and usage in real time [15-17]. The communication layer, 
being the heart of the SG is one of the most critical elements of 
the SG and it has consistently played a leading role in operation 
and automation of the power system through applications 
including Advanced Metering Infrastructure (AMI) and Wide-
Area Monitoring, Protection and Control systems (WAMPAC) 
[16]. The AMI [17-18] is defined as the communication 
hardware, software as well as other various data management 
systems in the smart grid that plays important roles of creating 
effective operational network between all the elements 
involved in the generation and utilization of the electricity. 
AMI enables the collection and transmission of real time 
energy data from sensors, smart meters and phasor measuring 
units (PMUs) in various homes, substations and fields, for state 
estimation processing and effective operation of the SG [19]. 
As explained in [3,20,21], Advanced Metering Infrastructure 
(AMI) collects metering information of Home Area Network 
(HAN) devices via the smart meters, provides the information 
to Meter Data Management System (MDMS), detect spike 
electricity demand based on consumption detail records and 
provide billing information to customers. Typical messages 
such as consumption data, power loss/restoration notification, 
billing pricing, remote load control and load shedding 
constitutes AMI communication node messages [22]. The main 
components of the AMI include [23-24]; 

1) Smart Meters (SM): These are installed on energy 
consumers’ domains. SM records energy consumption among 
other information, in regular time intervals ranging from 15 to 
60 minutes and communicates that data to the utility server via 
the DAP. Typically, a reading utilizes about 4 bytes [24]. It is 
estimated that by the year 2020, an approximately 800 million 
Smart meters would have been installed worldwide [24].  

2) Data Aggregation Point (DAP)/ Concentrators: DAPs 
act as the intermediary between SMs and a utility center, within 
a NAN domain covering a few kilometers [23-25] The DAP 
has a massive effect on the communication quality-of-service 
(QoS) factors such as packet delay, packet error probability and 
data rate [20].  

3) Utility center: Located at control center, the server relays 
the electricity generators and controllers with real time 
consumption information for state estimation, thereby keeping 
track on demand expectations. The center houses the meter 
data management system (MDMS) database [24]. The MDMS 
comprehends analytical tools which includes Consumer 
Information System (CIS), Outage Management System 
(OMS), Enterprise Resource Planning (ERP), power quality 
management, Geographic Information System (GIS) 
Transformer Load Management (TLM) and Outage 
Management System (OMS) etc which are in charge of 
locating smart meters and defective meters, consumer 
information system (CIS) that is in control of customer billing 
and profiling as well as distribution management system 
(DMS), which controls energy quality [26].  

In SG communication, characteristics such as coverage area 
and data rate are determining factors in deciding the category 
of information being communicated. Based on these factors, 



TABLE I.  SOME POPULAR WIRELESS STANDARDS EMPLOYED IN SMART GRID COMMUNICATION LAYER [34,74] 

Layer     Standard      Spectrum   Data Rate       Coverage      Advantages Disadvantages Security  

 

 

 

 

 

 

HAN 

 

ZigBee 

(IEEE 802.15.4) 

2.4GHz, 

784MHz, 

868-915mhz 

250Kbps 30-50m Low cost, low 

power and 

operates in ISM  

Low data rate, 

short range 

128-bit symmetric 

encryption key 

Bluetooth 

(IEEE 802.15.1) 

2.4 - 2.485 GHz 721Kbps 10-100m Low cost  Short range  secure and fast 

encryption routine 

+ (SAFER+) with a 

128-bit key 

Z-wave 868.42 MHz/ 

908.42 MHz 

40Kbps 30- 100m Stronger security 

compared to 

ZigBee and 

Bluetooth, low 

cost 

Low data rate Z-Wave protocol 

supports AES-128 

 

 

 

 

NAN 

WLAN (IEEE 

802.11X 

900MHz, 

2.4-60GHz 

1Mbps-

20Gbps 

(depending 

on 

standard) 

20m-5Km 

(depending on 

the standard) 

High data rate 

and it is widely 

used 

Interference 

and costly 

(depending on 

the standard 

employed) 

AES encryption, 

Extensible 

Authentication 

Protocol (EAP) 

Authentication 

WiMax 

(IEEE 802.16) 

2.5GHz, 

3.5GHz, 

5.8GHz 

75Mbps 10- 50Km (Line-

of-sight, 

1-5Km (Non-

Line-of-Sight) 

High data rate, 

QoS 

provisioning, low 

latency and 

scalability 

Not widespread DES, AES, 

Extensible 

Authentication 

Protocol (EAP) 

using Initial 

Network Entry 

Authentication 

(INEA) 

 

 

 

 

 

 

WAN 

 

Cellular (GSM, 

 3G, 

 

 

4G, 

LTE 

900-1800MHz, 

1.92-1.98GHz, 

2.11-2.17GHz 

(licensed), 

700-2500GHz, 

900MHz  

up to 

2Mbps, 

LTE allows 

up to 

300Mbps 

1-10Km, 

LTE allows up to 

30Km 

Ubiquitous 

coverage, 

High data rate 

Costly 

spectrum, 

 

Depending on 

cellular standards, 

there are various 

EAP and 

encryption at all 

nodes  

 

Satellite 

 

1-40GHz 1-15Mbps up to 6000Km Ubiquitous 

coverage, low 

latency 

Very costly Authentication 

includes Timed 

Efficient Stream 

Loss-tolerant 

Authentication 

(TESLA) protocol 

etc 

Optical Fibre up to 1625 to 

1675 nm in 

wavelength 

273 Gbps up to 165Km Ubiquitous 

coverage 

Very costly AES encryption & 

other nodal 

authentications 

 

 

 

the communication layer within the SG has a structural design 
similar to the one depicted in fig. 2 [27-30]. 

Fig. 2.  Smart Grid Communication layers [27-30] 

A. Wide Area Network (WAN) 

The WAN provides a two-way real data transmission and 
monitoring communication between Generation domain and 
utility centers (Transmission domain) [27]. WAN connects the 
power grid control centers and several Data Aggregation Points 
(DAPs) (smart metering gateways), thereby transmitting 
massive energy data over high bandwidth links in a high-speed 
manner. These data transmission allows wide area situation 
awareness and it utilizes applications such as WAMS (Wide 
Area Monitoring Systems) [31]. WAN connects to several 

kilometers over numerous NANs in a big geographical space. 

B. Neighborhood Area Network (NAN) 

 The NAN covers the distribution domain and it 
incorporates advanced bi-communication technologies between 
DAP and the smart meters located in various HANs/BANs in a 
smaller geographical location compared to WAN. The NAN 
can connect to a few hundred kilometers, housing several 
HANs/BANs smart meters [31-32]. In a NAN, the data 
transmission bandwidth rate is not as high compared to WAN.  

C. Home Area Network/ Building Area Network (HAN/BAN) 

 The HAN/BAN is mainly categorized as the final energy 
consumers’ domain. It describes a communication network 
within a building in which, different intelligent devices such as 
sensors, actuators, voltage controllers, circuit breakers etc 
installed in houses, exchange status information, energy usage 
data and instructions with the resident’s smart meter to enable 
home energy management system [33]. Home area networks 
support low-bandwidth communications with bandwidth rate 
ranging between 10 and 100 Kbps per device [24]. 

Several communication technologies ranging from up to 
date wired and wireless communication standards have been 
employed in SG communication. The choice of either 
wired/wireless technologies depend on cost, maintenance and 
ease of connection to various geographical areas [34]. Also, 
there is the possibility of visible light communication (VLC) 



technologies as proposed in [20, 35]. However, current 
research innovations are tending towards wireless technology 
standards due to various advantages such as reliability, 
maintenance cost, self-healing and fast processing of data etc 
[36] which complements the expected features of the smart 
grid adoption. Table 1 presents some of the popular wireless 
standards utilized in SG communication layers and their 
various properties. Note that there are several other protocols 
(not included in table 1) that are currently being deployed in 
current and future grid.  However, most of these wireless 
standards have technical vulnerabilities which intruders and 
attackers exploit in attacking the grid network. Irrespective of 
the type of communication technology (wired or wireless) 
employed, the SG network faces series of challenges, attacks 
and threats ranging from man-made or natural.  

III. NAN ARCHITECTURE 
 The Neighborhood Area Network (NAN) is an essential 
element of the AMI that connects smart meters to the 
DAP/concentrators [31]. In recent times, wireless 
communications tend to be more efficient and mostly 
employed for transmitting the data between the NAN domain 
and even beyond [37]. As explained in [19], the participation of 
energy users is paramount for the implementation of the SG 
vision. SM installations and the connection of DES 
(photovoltaic, and micro-CHP etc) are popular trends in 
today’s residential and other energy consumers’ domain. Also, 
the SM allows energy users in interacting with utility providers 
for optimized energy usage, less consumption patterns and 
other demand side management (DSM) advantages. The SM 
performs four distinct power management functions [38]; a) 
monitoring and recording usage, b) logging relevant events 
such as blackouts, c) transmitting catalogued messages to 
utility providers, and d) retrieving and activating control 
messages such as remote appliances disconnection.  

 Smart meters are continuously being deployed in several 
countries worldwide. SMs are expected to be in all household 
within the next 10 years, with Italy having the world’s largest 
smart meter deployment so far [39]. The UK government plans 
on rolling out smart meters to every home by 2020 [40]. In 
2012, United States electricity utility providers had 
approximately 43 million SM installed, out of which 89% were 
in the residential domain [43]. With the replacement of the 
previously used one-way communication meters with the 
advances SMs, functionalities such as billing, monitoring, 
scheduling, controlling and planning power consumption, 
production and detecting blackouts are easily accessible to all 
parties involved (operators, energy users and market) [32].  

IV. NAN CYBER-SECURITY 

   Electric Power Research Institute (EPRI) acknowledged 
cybersecurity as one of the biggest challenges disturbing the 
SG vision [42]. As explained in [30] the transformative effects 
of the grid domains have yielded numerous benefits on 
electricity users, however, it comes with severe cyber risks 
that are yet to be fully explored or known. The security in 
NAN layer of SG means security to communication network 
and the power grid. On the communication network side, 
typical considered characteristics includes energy efficiency, 

limited latency, guaranteed bandwidth, data manipulation 
avoidance etc. On the power grid side, the main security 
measures are reliability, stability and power quality, QoS 
availability & scalability. The authors in [4, 20] categorized 
SG attacks as; 

A. Physical attacks  

These are attacks that target the utility hardware 
components such as generator buses, transformers and 
transmission lines.  

B. Cyber-attacks  

Massive integration of wireless technologies and 
infrastructures has geometrically increased cyber threats and 
attacks. SG cyber-attacks can be classified based on topology 
as: 

• Attack on the hardware: these include attacks on the 
human–machine interface (HMI) devices, automation devices, 
Terminal unit devices such as MTU and RTU. 

• Attack on software: these attacks exploit vulnerabilities 
in protocols employed such as DNP3 and Modbus. 

• Attack on network topology: these attacks exploit 
network topology vulnerabilities. 

Furthermore, based on the mode of operation, [41] 
grouped cyber-attacks as passive and active attacks. Attacks 
such as eavesdropping, spoofing, traffic-analyzing and 
monitoring constitute passive attacks while DNS attack, 
flooding attack, DoS attack, IP hijacking, wormhole attacks 
etc constitute active attacks. Also, according to [44], security 
attacks in the NAN architecture can be via network protocol 
flaws or via component flaws. Security vulnerability which 
arises from flaws in network areas including protocol routing, 
network configuration, encryption, authentication protocol 
whereas component flaws include hardware/ software flaws 
which occurs in design/implementation e.g access to 
encryption key, read and write access to data storage.  

The SCADA network utilizes cyber physical systems 
which provides relevant information on the state of the grid 
based on real time meter recordings and controlling gadgets 
such as Master Terminal Unit (MTU), Remote Terminal Unit 
(RTU), Programmable Logic Controllers (PLC), IEDs 
distributed at strategic locations, thereby creating a vast 
communication network [26, 45]. The meter measurements 
include the smart meter readings at HAN level and the 
readings from various substation domains such as bus 
voltages, bus power injections and reactive power flows. For 
substation automation standards, SCADA uses several 
standards including the Distributed Network Protocol 3 
(DNP3), Generic Object-Oriented Substations Events 
(GOOSE), IEC 61850 etc [8, 42]. These measurements are 
conveyed to various SCADA facilities such as DAP, WAMS, 
control center etc whereby they are stored in telemetry files 
for state estimation, billing among other things. State 
estimation (SE) is a data processing technique that is used 
extensively for calculating power system state variables based 
on measurement collected from SCADA devices [46-47]. The 
various tasks performed by the SCADA networks makes the 



network a profitable avenue for intruders to attack the SG 
network. Attacks targeting the SCADA system opens it up to 
varied level of risks and impacts. Some attacks increase the 
SCADA system’s vulnerabilities to bigger risks.  

In recent times, smart grid cybersecurity is an area that 
continuously receive attention in the industrial and academic 
world. Ideally, security should be considered more, in form of 
prevention, which involves detecting the attacks before they 
happen. NAN attacks occur in various ways and forms, 
including but not limited to: 

• By accessing the messages sent from HAN’s SM, 
various intimate information about residents’ lifestyle 
and properties, such as types and number of 
household appliances and specific daily routine 
activities etc can be revealed to attackers. 

• Attackers try to alter the content, sequence or/and 
timing of transmitted data to suit their motives. 

• Attackers can create a signed and encrypted message 
to deceive legal receivers. 

• Injecting false data and modifying/replaying the 
transmitted data that may destabilize the entire grid. 

NIST identified integrity, availability and confidentiality 
as the major cyber-security requirements for SCADA systems 
as [48-49] 

1)  Integrity: Integrity is defined as the ability to verify 

that a transmitted message arrived at the destination node 

unaltered nor tampered with. It is a vital requirement whereby 

message/data received at either the NAN gateway or HAN 

gateway is a true copy of transmitted data. An antagonist 

having enough knowledge of the grid configuration can 

compromise meter measurements. Typical integrity attacks 

include the popular Man in the Middle (MiTM) attacks such 

as replay attacks. These form of attacks typically act in form 

of instructions changes i.e false data injection (FDI) which can 

result in fake state estimation thereby causing negative impact 

on electric power operation [43].  

2) Availability: For any system to achieve its aim and 

objectives, the system’s components must be available when 

needed. Availability requirements in SCADA network means 

that the cyber system’s components for storing and processing 

data, the control devices and the communication channels 

must be available and functioning efficiently. Availability of 

power facilities ensures efficient service and protection against 

communication failures, manipulation and deceits due to 

failures and other various form of attacks [50]. 

3) Confidentiality: Confidentiality refers to the ability to 

avoid disclosing or interfering with the data flow by intruders 

or unauthorized personnel i.e ability to hide/protect data. 

Confidentiality requirement refers to a situation whereby only 

sender/receiver could access data being transmitted between 

nodes. Confidentiality attack focus on exploiting 

vulnerabilities. The SCADA systems and networks, just as any 

other systems have vulnerabilities that are exploitable by 

intruders. Typical confidentiality attacks include the popular 

DoS/DDoS. Distributed Denial of Service attack is a popular 

threat to servers, clouds and system nodes. DDoS attacks 

exhaust resources and hold up network bandwidth. The attacks 

have the capability of creating massive traffic and then 

spreading the attack to the whole network and causing a total 

shutdown [51]. In SG communication, DDoS attack can cause 

the flooding of the AMI network with volumetric traffic, 

thereby limiting resources even for legit users [52]. Estimation 

result showed that over 7000 DDoS attacks are succesfully 

launched daily, hence making DDoS a serious threat for data 

transmission [70]. Typical DDOS attacks that are peculiar to 

Smart grid AMI includes TCP SYN flooding, UDP flooding 

and ping flooding attacks [43,53]  
Just as any other infrastructure, cyber-attacks have the 

capability to inflict massive damages on electricity grid. A 
report of the lengthy blackout in Yemen recently was 
attributed to rival political group who were accused of 
attacking transmission lines via cyber-attacks [54]. Russia was 
accused of bringing down Georgian critical infrastructure via 
cyber-attacks during Russian-Georgian war in 2008 [55]. A 
report from the wall street journal in 2009 stated that cyber-
spies have penetrated the country’s power grid [56]. In 2012, 
flame malware was discovered to be actively attacking many 
sites in Middle East and North Africa for at least two years 
[57]. In December 2015, cyber-attack on the Ukrainian power 
grid affected numerous circuit breakers thereby causing 
blackout to an estimated 230,000 energy users [8, 18]. Also, in 
January 2016, Israel’s energy minister announced that the 
country grid was targeted successfully, hence the operators 
had to paralyze several grid computers [58]. 

V. SOLUTIONS TO CYBER-ATTACKS/FUTURE TRENDS 

Addressing cyber security must not be restricted to 
deliberate attacks from resentful employees, industrial 
espionage, and terrorists. Failures attributed to human errors, 
equipment failures and natural causes are also feasible [42]. 
Utility companies in collaboration with federal agencies, such 
as the Department of Energy, North American Electrical 
Reliability Corporation-Critical Infrastructure Protection 
(NERC CIP) and the National Institute of Standards and 
Technology (NIST), via various programmes are consistently 
making efforts in addressing security and interoperability 
requirements for smart grid [39, 42]. All the mentioned 
organizations have various security procedures in place to 
cater for systems vulnerabilities. Examples of such is the USA 
Department of Energy (DoE) and the National Energy 
Technology Laboratory (NETL) project M635NL34 that 
involved designing cryptographic modules for SCADA data 
encryption [59]. Also, some of the current security solution are 
physical controls such as meter data authentication and 
encryption, tamper resistance seals on meters [38] and 
network control measures such as firewall/ deployed at access 
point [60]. 

However, cyber security research works in terms of attacks 

and their impacts are constrained due to non-availability of 

realistic practical and statistical data on cyber-physical 



electricity infrastructure systems. Most research works on 

SCADA cybersecurity rely on models and testbeds 

developments on various simulation tools to achieve network 

security analysis. Numerous testbeds have been developed by 

various research centers, labs and varsities for monitoring, 

mitigating and analyzing the impacts of cyber-attacks. 

Examples of such testbeds include the Idaho National 

Laboratory SCADA testbed which was employed in 

investigating cyber-attack impacts using an aurora generator 

test [61]. Also, Sandia National Laboratory designed a virtual 

control system environment (VCSE) for studying impacts of 

cyber threats, defense training as well as exploring power 

system vulnerabilities [62]. A testbed was designed at the 

University of Arizona for simulating SCADA protection 

techniques against cyber-attacks [63]. Other various research 

works exploited commercial simulation tools, such as 

MATLAB, PSCAD/EMTDC, OpenDSS, PSSTMNETOMAC, 

NS2/3, OPNET, OMNET tools. 

VI. DATA PRIVACY MEASURES 

Security solutions to smart grid data privacy can be 
grouped into two main techniques namely; [64]:  

A. Prevention techniques (Encryption & Authorization) 

B. Detection techniques (Intruder Detection Scheme {IDS}) 

1. Prevention techniques 

To prevent interception of wireless transmitted data over 
open channels such as the smart grid communication domains, 
the most effective and widely used security measure is 
encryption and authorization (E & A). Encryption and 
Authorization are popularly achieved via cryptography [30]. 
After the NIST announcement of AES in 2001 as the new 
standard encryption algorithm replacing DES and the adoption 
of Rijndael algorithm as the new AES for being strong 
security-wise, its ease of deployment on nearly all platforms, 
Rijndael has been favorably received and it has been 
continuously deployed [68]. Key management is the main 
issue in cryptography [22]. Conventional Symmetric and 
Public Key Infrastructure (PKI) [66-67] architectures are 
popular cryptography methods. In symmetric cryptosystems, 
both communicating nodes share the same key, hence making 
it extremely vulnerable to attackers. In PKI, each 
communicating node is assigned a public and private key for 
encryption and decryption [67]. Public key is issued by a 
trusted service provider [65] (TSP) otherwise known as Key 
Generation Center typically located at utility centers. Several 
E&A schemes have been proposed for SG data privacy [17, 
67]. However, existing public key infrastructure schemes 
cannot be used efficiently for SG communications because of 
some drawbacks such as [69]: (1) PKI maintenance is costly, 
since the SG have numerous nodes (energy consumer meters), 
hence there is scalability issues, (2) Implementation of key 
recovery system is stressful. It requires a secured database of 
nodes key pairing, and (3) each entity is required to verify the 
public keys of receivers, which is arduous for SG operators.  

NIST has endorsed against the deployment of PKI based 

cryptography for SG data privacy because PKI is costly [69]. 

To avoid key management issues, Identity based 
cryptosystem has been proposed in several literatures for SG 
data privacy [6, 65, 69]. Identity-based cryptography [65] 
concept was introduced in 1984. Just like PKI, IBC involves 
using a private key and a public key. The public key in IBC is 
taken from identities such as IP address, model number or 
license number, thereby eliminating certificate management 
issues associated with PKI schemes.  The main advantage of 
IBC that makes it an ideal method for SG data privacy is that 
it simplifies key management and it does not require secured 
database to store key pairs. Furthermore, the cryptography 
type allows re-keying from message sender. 

2. Detection techniques 

A good security must be able to detect intruders. Intrusion 
detection models can be described as the second layer of 
security (after the prevention-based techniques might have 
failed). IDS can be described as the process of monitoring and 
analyzing the events in a network for any violation or abuse 
signs that is unusual [29, 70, 71]. IDS use various algorithms 
such as machine learning tools and prediction models to detect 
attacks and triggers an alarm when there is a sign of an 
intruder in the network. Detection techniques are categorized 
as [72, 73, 78]:  

• Signature-based detection/ misuse detection: They detect 
attacks based on known template patterns i.e signature-based 
detection make use of the comparison between current 
observations of the network traffic and known attack 
signatures that have been previously stored.  

• Anomaly-based detection employs statistical measures in 
performing a comparison check on the parameters of an 
observed traffic and a normal system behavioral traffic. 
Anomaly based detection simply declares the presence of an 
intruder once there is an observed change compared to a 
normal traffic. 

The IDS is adjudged by many researchers as a secured way 
of securing the SG against attackers targeting the 
communication network, hence several IDS schemes [29, 75-
78] have been proposed using prediction algorithms and 
machine learning tools etc.  

VII. CONCLUSION 

     The fact that wireless communication technology is the 
future of the Smart Grid vision makes cybersecurity one of the 
most critical issues affecting the modernized grid. In this 
article, we focused on this cybersecurity issue and provided a 
comprehensive review on the current communication security 
in terms of attackers and intruders feasting and interfering with 
grid data. First, we review the smart grid communication layers 
and grid components. Then, we addressed the smart grid 
security challenges in terms of attacks and the solutions for the 
current and future grid. Finally, we identified the data privacy 
measures in terms of prevention techniques and detection 
techniques. 
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