2,584 research outputs found

    Decentralized collaborative transport of fabrics using micro-UAVs

    Full text link
    Small unmanned aerial vehicles (UAVs) have generally little capacity to carry payloads. Through collaboration, the UAVs can increase their joint payload capacity and carry more significant loads. For maximum flexibility to dynamic and unstructured environments and task demands, we propose a fully decentralized control infrastructure based on a swarm-specific scripting language, Buzz. In this paper, we describe the control infrastructure and use it to compare two algorithms for collaborative transport: field potentials and spring-damper. We test the performance of our approach with a fleet of micro-UAVs, demonstrating the potential of decentralized control for collaborative transport.Comment: Submitted to 2019 International Conference on Robotics and Automation (ICRA). 6 page

    Dynamic Speed and Separation Monitoring with On-Robot Ranging Sensor Arrays for Human and Industrial Robot Collaboration

    Get PDF
    This research presents a flexible and dynamic implementation of Speed and Separation Monitoring (SSM) safety measure that optimizes the productivity of a task while ensuring human safety during Human-Robot Collaboration (HRC). Unlike the standard static/fixed demarcated 2D safety zones based on 2D scanning LiDARs, this research presents a dynamic sensor setup that changes the safety zones based on the robot pose and motion. The focus of this research is the implementation of a dynamic SSM safety configuration using Time-of-Flight (ToF) laser-ranging sensor arrays placed around the centers of the links of a robot arm. It investigates the viability of on-robot exteroceptive sensors for implementing SSM as a safety measure. Here the implementation of varying dynamic SSM safety configurations based on approaches of measuring human-robot separation distance and relative speeds using the sensor modalities of ToF sensor arrays, a motion-capture system, and a 2D LiDAR is shown. This study presents a comparative analysis of the dynamic SSM safety configurations in terms of safety, performance, and productivity. A system of systems (cyber-physical system) architecture for conducting and analyzing the HRC experiments was proposed and implemented. The robots, objects, and human operators sharing the workspace are represented virtually as part of the system by using a digital-twin setup. This system was capable of controlling the robot motion, monitoring human physiological response, and tracking the progress of the collaborative task. This research conducted experiments with human subjects performing a task while sharing the robot workspace under the proposed dynamic SSM safety configurations. The experiment results showed a preference for the use of ToF sensors and motion capture rather than the 2D LiDAR currently used in the industry. The human subjects felt safe and comfortable using the proposed dynamic SSM safety configuration with ToF sensor arrays. The results for a standard pick and place task showed up to a 40% increase in productivity in comparison to a 2D LiDAR

    A Time of Flight on-Robot Proximity Sensing System for Collaborative Robotics

    Get PDF
    The sensor system presented in this work demonstrates the results of designing an industrial grade exteroceptive sensing device for proximity sensing for collaborative robots. The intention of this design\u27s application is to develop an on-robot small footprint proximity sensing device to prevent safety protected stops from halting a robot during a manufacturing process. Additionally, this system was design to be modular and fit on an size or shape robotic link expanding the sensor system\u27s use cases vastly. The design was assembled and put through a number of benchmark tests to validate the performance of the time of flight (ToF) sensor system when used in proximity sensing: Single Sensor Characterization, Sensor Overlap Characterization, and Sensor Ranging Under Motion. Through these tests, the ToF sensor ring achieves real time data throughput while minimizing blind spots. Lastly, the sensor system was tested at a maximum throughput load of 32 ToF sensors and maintained a stable throughput of data from all sensors in real time

    Working together: a review on safe human-robot collaboration in industrial environments

    Get PDF
    After many years of rigid conventional procedures of production, industrial manufacturing is going through a process of change toward flexible and intelligent manufacturing, the so-called Industry 4.0. In this paper, human-robot collaboration has an important role in smart factories since it contributes to the achievement of higher productivity and greater efficiency. However, this evolution means breaking with the established safety procedures as the separation of workspaces between robot and human is removed. These changes are reflected in safety standards related to industrial robotics since the last decade, and have led to the development of a wide field of research focusing on the prevention of human-robot impacts and/or the minimization of related risks or their consequences. This paper presents a review of the main safety systems that have been proposed and applied in industrial robotic environments that contribute to the achievement of safe collaborative human-robot work. Additionally, a review is provided of the current regulations along with new concepts that have been introduced in them. The discussion presented in this paper includes multidisciplinary approaches, such as techniques for estimation and the evaluation of injuries in human-robot collisions, mechanical and software devices designed to minimize the consequences of human-robot impact, impact detection systems, and strategies to prevent collisions or minimize their consequences when they occur

    Perception Methods For Speed And Separation Monitoring Using Time-of-Flight Sensor Arrays

    Get PDF
    This work presents the development of a perception pipeline to passively track the partial human ground pose in the context of human robot collaboration. The main motivation behind this work is to provide a speed and separation monitoring based safety controller with an estimate of human position on the factory floor. Three time-of-flight sensing rings affixed to the major links of an industrial manipulator are used to implement the aforementioned. Along with a convolutional neural network based unknown obstacle detection strategy, the ground position of the human operator is estimated and tracked using sparse 3-D point inputs. Experiments to analyze the viability of our approach are presented in depth in the further sections which involve real-world and synthetic datasets. Ultimately, it is shown that the sensing system can provide reliable information intermittently and can be used for higher level perception schemes

    The development of a human-robot interface for industrial collaborative system

    Get PDF
    Industrial robots have been identified as one of the most effective solutions for optimising output and quality within many industries. However, there are a number of manufacturing applications involving complex tasks and inconstant components which prohibit the use of fully automated solutions in the foreseeable future. A breakthrough in robotic technologies and changes in safety legislations have supported the creation of robots that coexist and assist humans in industrial applications. It has been broadly recognised that human-robot collaborative systems would be a realistic solution as an advanced production system with wide range of applications and high economic impact. This type of system can utilise the best of both worlds, where the robot can perform simple tasks that require high repeatability while the human performs tasks that require judgement and dexterity of the human hands. Robots in such system will operate as “intelligent assistants”. In a collaborative working environment, robot and human share the same working area, and interact with each other. This level of interface will require effective ways of communication and collaboration to avoid unwanted conflicts. This project aims to create a user interface for industrial collaborative robot system through integration of current robotic technologies. The robotic system is designed for seamless collaboration with a human in close proximity. The system is capable to communicate with the human via the exchange of gestures, as well as visual signal which operators can observe and comprehend at a glance. The main objective of this PhD is to develop a Human-Robot Interface (HRI) for communication with an industrial collaborative robot during collaboration in proximity. The system is developed in conjunction with a small scale collaborative robot system which has been integrated using off-the-shelf components. The system should be capable of receiving input from the human user via an intuitive method as well as indicating its status to the user ii effectively. The HRI will be developed using a combination of hardware integrations and software developments. The software and the control framework were developed in a way that is applicable to other industrial robots in the future. The developed gesture command system is demonstrated on a heavy duty industrial robot
    corecore