A Time of Flight on-Robot Proximity Sensing System for Collaborative Robotics

Abstract

The sensor system presented in this work demonstrates the results of designing an industrial grade exteroceptive sensing device for proximity sensing for collaborative robots. The intention of this design\u27s application is to develop an on-robot small footprint proximity sensing device to prevent safety protected stops from halting a robot during a manufacturing process. Additionally, this system was design to be modular and fit on an size or shape robotic link expanding the sensor system\u27s use cases vastly. The design was assembled and put through a number of benchmark tests to validate the performance of the time of flight (ToF) sensor system when used in proximity sensing: Single Sensor Characterization, Sensor Overlap Characterization, and Sensor Ranging Under Motion. Through these tests, the ToF sensor ring achieves real time data throughput while minimizing blind spots. Lastly, the sensor system was tested at a maximum throughput load of 32 ToF sensors and maintained a stable throughput of data from all sensors in real time

    Similar works