111 research outputs found

    Image-Based Cardiac Diagnosis With Machine Learning: A Review

    Get PDF
    Cardiac imaging plays an important role in the diagnosis of cardiovascular disease (CVD). Until now, its role has been limited to visual and quantitative assessment of cardiac structure and function. However, with the advent of big data and machine learning, new opportunities are emerging to build artificial intelligence tools that will directly assist the clinician in the diagnosis of CVDs. This paper presents a thorough review of recent works in this field and provide the reader with a detailed presentation of the machine learning methods that can be further exploited to enable more automated, precise and early diagnosis of most CVDs

    Role of machine learning in early diagnosis of kidney diseases.

    Get PDF
    Machine learning (ML) and deep learning (DL) approaches have been used as indispensable tools in modern artificial intelligence-based computer-aided diagnostic (AIbased CAD) systems that can provide non-invasive, early, and accurate diagnosis of a given medical condition. These AI-based CAD systems have proven themselves to be reproducible and have the generalization ability to diagnose new unseen cases with several diseases and medical conditions in different organs (e.g., kidneys, prostate, brain, liver, lung, breast, and bladder). In this dissertation, we will focus on the role of such AI-based CAD systems in early diagnosis of two kidney diseases, namely: acute rejection (AR) post kidney transplantation and renal cancer (RC). A new renal computer-assisted diagnostic (Renal-CAD) system was developed to precisely diagnose AR post kidney transplantation at an early stage. The developed Renal-CAD system perform the following main steps: (1) auto-segmentation of the renal allograft from surrounding tissues from diffusion weighted magnetic resonance imaging (DW-MRI) and blood oxygen level-dependent MRI (BOLD-MRI), (2) extraction of image markers, namely: voxel-wise apparent diffusion coefficients (ADCs) are calculated from DW-MRI scans at 11 different low and high b-values and then represented as cumulative distribution functions (CDFs) and extraction of the transverse relaxation rate (R2*) values from the segmented kidneys using BOLD-MRI scans at different echotimes, (3) integration of multimodal image markers with the associated clinical biomarkers, serum creatinine (SCr) and creatinine clearance (CrCl), and (4) diagnosing renal allograft status as nonrejection (NR) or AR by utilizing these integrated biomarkers and the developed deep learning classification model built on stacked auto-encoders (SAEs). Using a leaveone- subject-out cross-validation approach along with SAEs on a total of 30 patients with transplanted kidney (AR = 10 and NR = 20), the Renal-CAD system demonstrated 93.3% accuracy, 90.0% sensitivity, and 95.0% specificity in differentiating AR from NR. Robustness of the Renal-CAD system was also confirmed by the area under the curve value of 0.92. Using a stratified 10-fold cross-validation approach, the Renal-CAD system demonstrated its reproduciblity and robustness with a diagnostic accuracy of 86.7%, sensitivity of 80.0%, specificity of 90.0%, and AUC of 0.88. In addition, a new renal cancer CAD (RC-CAD) system for precise diagnosis of RC at an early stage was developed, which incorporates the following main steps: (1) estimating the morphological features by applying a new parametric spherical harmonic technique, (2) extracting appearance-based features, namely: first order textural features are calculated and second order textural features are extracted after constructing the graylevel co-occurrence matrix (GLCM), (3) estimating the functional features by constructing wash-in/wash-out slopes to quantify the enhancement variations across different contrast enhanced computed tomography (CE-CT) phases, (4) integrating all the aforementioned features and modeling a two-stage multilayer perceptron artificial neural network (MLPANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype. On a total of 140 RC patients (malignant = 70 patients (ccRCC = 40 and nccRCC = 30) and benign angiomyolipoma tumors = 70), the developed RC-CAD system was validated using a leave-one-subject-out cross-validation approach. The developed RC-CAD system achieved a sensitivity of 95.3% ± 2.0%, a specificity of 99.9% ± 0.4%, and Dice similarity coefficient of 0.98 ± 0.01 in differentiating malignant from benign renal tumors, as well as an overall accuracy of 89.6% ± 5.0% in the sub-typing of RCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The results obtained using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, and relational functional gradient boosting) as well as other different approaches from the literature. In summary, machine and deep learning approaches have shown potential abilities to be utilized to build AI-based CAD systems. This is evidenced by the promising diagnostic performance obtained by both Renal-CAD and RC-CAD systems. For the Renal- CAD, the integration of functional markers extracted from multimodal MRIs with clinical biomarkers using SAEs classification model, potentially improved the final diagnostic results evidenced by high accuracy, sensitivity, and specificity. The developed Renal-CAD demonstrated high feasibility and efficacy for early, accurate, and non-invasive identification of AR. For the RC-CAD, integrating morphological, textural, and functional features extracted from CE-CT images using a MLP-ANN classification model eventually enhanced the final results in terms of accuracy, sensitivity, and specificity, making the proposed RC-CAD a reliable noninvasive diagnostic tool for RC. The early and accurate diagnosis of AR or RC will help physicians to provide early intervention with the appropriate treatment plan to prolong the life span of the diseased kidney, increase the survival chance of the patient, and thus improve the healthcare outcome in the U.S. and worldwide

    A radiomics approach to analyze cardiac alterations in hypertension

    Full text link
    Hypertension is a medical condition that is well-established as a risk factor for many major diseases. For example, it can cause alterations in the cardiac structure and function over time that can lead to heart related morbidity and mortality. However, at the subclinical stage, these changes are subtle and cannot be easily captured using conventional cardiovascular indices calculated from clinical cardiac imaging. In this paper, we describe a radiomics approach for identifying intermediate imaging phenotypes associated with hypertension. The method combines feature selection and machine learning techniques to identify the most subtle as well as complex structural and tissue changes in hypertensive subgroups as compared to healthy individuals. Validation based on a sample of asymptomatic hearts that include both hypertensive and non-hypertensive cases demonstrate that the proposed radiomics model is capable of detecting intensity and textural changes well beyond the capabilities of conventional imaging phenotypes, indicating its potential for improved understanding of the longitudinal effects of hypertension on cardiovascular health and disease

    Radiomics signatures of cardiovascular risk factors in cardiac MRI: Results from the UK Biobank

    Get PDF
    Cardiovascular magnetic resonance (CMR) radiomics is a novel technique for advanced cardiac image phenotyping by analyzing multiple quantifiers of shape and tissue texture. In this paper, we assess, in the largest sample published to date, the performance of CMR radiomics models for identifying changes in cardiac structure and tissue texture due to cardiovascular risk factors. We evaluated five risk factor groups from the first 5,065 UK Biobank participants: hypertension (n = 1,394), diabetes (n = 243), high cholesterol (n = 779), current smoker (n = 320), and previous smoker (n = 1,394). Each group was randomly matched with an equal number of healthy comparators (without known cardiovascular disease or risk factors). Radiomics analysis was applied to short axis images of the left and right ventricles at end-diastole and end-systole, yielding a total of 684 features per study. Sequential forward feature selection in combination with machine learning (ML) algorithms (support vector machine, random forest, and logistic regression) were used to build radiomics signatures for each specific risk group. We evaluated the degree of separation achieved by the identified radiomics signatures using area under curve (AUC), receiver operating characteristic (ROC), and statistical testing. Logistic regression with L1-regularization was the optimal ML model. Compared to conventional imaging indices, radiomics signatures improved the discrimination of risk factor vs. healthy subgroups as assessed by AUC [diabetes: 0.80 vs. 0.70, hypertension: 0.72 vs. 0.69, high cholesterol: 0.71 vs. 0.65, current smoker: 0.68 vs. 0.65, previous smoker: 0.63 vs. 0.60]. Furthermore, we considered clinical interpretation of risk-specific radiomics signatures. For hypertensive individuals and previous smokers, the surface area to volume ratio was smaller in the risk factor vs. healthy subjects; perhaps reflecting a pattern of global concentric hypertrophy in these conditions. In the diabetes subgroup, the most discriminatory radiomics feature was the median intensity of the myocardium at end-systole, which suggests a global alteration at the myocardial tissue level

    Challenges and Opportunities of End-to-End Learning in Medical Image Classification

    Get PDF
    Das Paradigma des End-to-End Lernens hat in den letzten Jahren die Bilderkennung revolutioniert, aber die klinische Anwendung hinkt hinterher. Bildbasierte computergestĂŒtzte Diagnosesysteme basieren immer noch weitgehend auf hochtechnischen und domĂ€nen-spezifischen Pipelines, die aus unabhĂ€ngigen regelbasierten Modellen bestehen, welche die Teilaufgaben der Bildklassifikation wiederspiegeln: Lokalisation von auffĂ€lligen Regionen, Merkmalsextraktion und Entscheidungsfindung. Das Versprechen einer ĂŒberlegenen Entscheidungsfindung beim End-to-End Lernen ergibt sich daraus, dass domĂ€nenspezifische Zwangsbedingungen von begrenzter KomplexitĂ€t entfernt werden und stattdessen alle Systemkomponenten gleichzeitig, direkt anhand der Rohdaten, und im Hinblick auf die letztendliche Aufgabe optimiert werden. Die GrĂŒnde dafĂŒr, dass diese Vorteile noch nicht den Weg in die Klinik gefunden haben, d.h. die Herausforderungen, die sich bei der Entwicklung Deep Learning-basierter Diagnosesysteme stellen, sind vielfĂ€ltig: Die Tatsache, dass die GeneralisierungsfĂ€higkeit von Lernalgorithmen davon abhĂ€ngt, wie gut die verfĂŒgbaren Trainingsdaten die tatsĂ€chliche zugrundeliegende Datenverteilung abbilden, erweist sich in medizinische Anwendungen als tiefgreifendes Problem. Annotierte DatensĂ€tze in diesem Bereich sind notorisch klein, da fĂŒr die Annotation eine kostspielige Beurteilung durch Experten erforderlich ist und die Zusammenlegung kleinerer DatensĂ€tze oft durch Datenschutzauflagen und Patientenrechte erschwert wird. DarĂŒber hinaus weisen medizinische DatensĂ€tze drastisch unterschiedliche Eigenschaften im Bezug auf BildmodalitĂ€ten, Bildgebungsprotokolle oder Anisotropien auf, und die oft mehrdeutige Evidenz in medizinischen Bildern kann sich auf inkonsistente oder fehlerhafte Trainingsannotationen ĂŒbertragen. WĂ€hrend die Verschiebung von Datenverteilungen zwischen Forschungsumgebung und RealitĂ€t zu einer verminderten Modellrobustheit fĂŒhrt und deshalb gegenwĂ€rtig als das Haupthindernis fĂŒr die klinische Anwendung von Lernalgorithmen angesehen wird, wird dieser Graben oft noch durch Störfaktoren wie Hardwarelimitationen oder GranularitĂ€t von gegebenen Annotation erweitert, die zu Diskrepanzen zwischen der modellierten Aufgabe und der zugrunde liegenden klinischen Fragestellung fĂŒhren. Diese Arbeit untersucht das Potenzial des End-to-End-Lernens in klinischen Diagnosesystemen und prĂ€sentiert BeitrĂ€ge zu einigen der wichtigsten Herausforderungen, die derzeit eine breite klinische Anwendung verhindern. ZunĂ€chst wird der letzten Teil der Klassifikations-Pipeline untersucht, die Kategorisierung in klinische Pathologien. Wir demonstrieren, wie das Ersetzen des gegenwĂ€rtigen klinischen Standards regelbasierter Entscheidungen durch eine groß angelegte Merkmalsextraktion gefolgt von lernbasierten Klassifikatoren die Brustkrebsklassifikation im MRT signifikant verbessert und eine Leistung auf menschlichem Level erzielt. Dieser Ansatz wird weiter anhand von kardiologischer Diagnose gezeigt. Zweitens ersetzen wir, dem Paradigma des End-to-End Lernens folgend, das biophysikalische Modell, das fĂŒr die Bildnormalisierung in der MRT angewandt wird, sowie die Extraktion handgefertigter Merkmale, durch eine designierte CNN-Architektur und liefern eine eingehende Analyse, die das verborgene Potenzial der gelernten Bildnormalisierung und einen KomplementĂ€rwert der gelernten Merkmale gegenĂŒber den handgefertigten Merkmalen aufdeckt. WĂ€hrend dieser Ansatz auf markierten Regionen arbeitet und daher auf manuelle Annotation angewiesen ist, beziehen wir im dritten Teil die Aufgabe der Lokalisierung dieser Regionen in den Lernprozess ein, um eine echte End-to-End-Diagnose baserend auf den Rohbildern zu ermöglichen. Dabei identifizieren wir eine weitgehend vernachlĂ€ssigte Zwangslage zwischen dem Streben nach der Auswertung von Modellen auf klinisch relevanten Skalen auf der einen Seite, und der Optimierung fĂŒr effizientes Training unter Datenknappheit auf der anderen Seite. Wir prĂ€sentieren ein Deep Learning Modell, das zur Auflösung dieses Kompromisses beitrĂ€gt, liefern umfangreiche Experimente auf drei medizinischen DatensĂ€tzen sowie eine Serie von Toy-Experimenten, die das Verhalten bei begrenzten Trainingsdaten im Detail untersuchen, und publiziren ein umfassendes Framework, das unter anderem die ersten 3D-Implementierungen gĂ€ngiger Objekterkennungsmodelle umfasst. Wir identifizieren weitere Hebelpunkte in bestehenden End-to-End-Lernsystemen, bei denen DomĂ€nenwissen als Zwangsbedingung dienen kann, um die Robustheit von Modellen in der medizinischen Bildanalyse zu erhöhen, die letztendlich dazu beitragen sollen, den Weg fĂŒr die Anwendung in der klinischen Praxis zu ebnen. Zu diesem Zweck gehen wir die Herausforderung fehlerhafter Trainingsannotationen an, indem wir die Klassifizierungskompnente in der End-to-End-Objekterkennung durch Regression ersetzen, was es ermöglicht, Modelle direkt auf der kontinuierlichen Skala der zugrunde liegenden pathologischen Prozesse zu trainieren und so die Robustheit der Modelle gegenĂŒber fehlerhaften Trainingsannotationen zu erhöhen. Weiter adressieren wir die Herausforderung der Input-HeterogenitĂ€ten, mit denen trainierte Modelle konfrontiert sind, wenn sie an verschiedenen klinischen Orten eingesetzt werden, indem wir eine modellbasierte DomĂ€nenanpassung vorschlagen, die es ermöglicht, die ursprĂŒngliche TrainingsdomĂ€ne aus verĂ€nderten Inputs wiederherzustellen und damit eine robuste Generalisierung zu gewĂ€hrleisten. Schließlich befassen wir uns mit dem höchst unsystematischen, aufwendigen und subjektiven Trial-and-Error-Prozess zum Finden von robusten Hyperparametern fĂŒr einen gegebene Aufgabe, indem wir DomĂ€nenwissen in ein Set systematischer Regeln ĂŒberfĂŒhren, die eine automatisierte und robuste Konfiguration von Deep Learning Modellen auf einer Vielzahl von medizinischen Datensetzen ermöglichen. Zusammenfassend zeigt die hier vorgestellte Arbeit das enorme Potenzial von End-to-End Lernalgorithmen im Vergleich zum klinischen Standard mehrteiliger und hochtechnisierter Diagnose-Pipelines auf, und prĂ€sentiert LösungsansĂ€tze zu einigen der wichtigsten Herausforderungen fĂŒr eine breite Anwendung unter realen Bedienungen wie Datenknappheit, Diskrepanz zwischen der vom Modell behandelten Aufgabe und der zugrunde liegenden klinischen Fragestellung, Mehrdeutigkeiten in Trainingsannotationen, oder Verschiebung von DatendomĂ€nen zwischen klinischen Standorten. Diese BeitrĂ€ge können als Teil des ĂŒbergreifende Zieles der Automatisierung von medizinischer Bildklassifikation gesehen werden - ein integraler Bestandteil des Wandels, der erforderlich ist, um die Zukunft des Gesundheitswesens zu gestalten

    Radiomics in Cardiovascular Disease Imaging: from Pixels to the Heart of the Problem

    Get PDF
    Purpose of Review This review of the literature aims to present potential applications of radiomics in cardiovascular radiology and, in particular, in cardiac imaging. Recent Findings Radiomics and machine learning represent a technological innovation which may be used to extract and analyze quantitative features from medical images. They aid in detecting hidden pattern in medical data, possibly leading to new insights in pathophysiology of different medical conditions. In the recent literature, radiomics and machine learning have been investigated for numerous potential applications in cardiovascular imaging. They have been proposed to improve image acquisition and reconstruction, for anatomical structure automated segmentation or automated characterization of cardiologic diseases. Summary The number of applications for radiomics and machine learning is continuing to rise, even though methodological and implementation issues still limit their use in daily practice. In the long term, they may have a positive impact in patient management

    Deep learning in medical imaging and radiation therapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pd
    • 

    corecore