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Abstract
Purpose of Review  This review of the literature aims to present potential applications of radiomics in cardiovascular radiol-
ogy and, in particular, in cardiac imaging.
Recent Findings  Radiomics and machine learning represent a technological innovation which may be used to extract and 
analyze quantitative features from medical images. They aid in detecting hidden pattern in medical data, possibly leading 
to new insights in pathophysiology of different medical conditions. In the recent literature, radiomics and machine learning 
have been investigated for numerous potential applications in cardiovascular imaging. They have been proposed to improve 
image acquisition and reconstruction, for anatomical structure automated segmentation or automated characterization of 
cardiologic diseases.
Summary  The number of applications for radiomics and machine learning is continuing to rise, even though methodological 
and implementation issues still limit their use in daily practice. In the long term, they may have a positive impact in patient 
management.

Abbreviations
AI	� Artificial intelligence
TA	� Texture analysis
ML	� Machine learning
NN	� Neural network
DL	� Deep learning
LAV	� Left atrial volume
CMR	� Cardiac magnetic resonance
AUC​	� Area under the receiver operating characteristic 

curve
CAD	� Coronary artery disease
LGE	� Late-gadolinium enhancement
SPECT	� Single-photon emission computed tomography

Introduction

Recently, there has been growing interest in possible appli-
cations of data mining and artificial intelligence (AI) in 
medicine. The field of radiomics includes a collection of 
techniques used to automatically extract large amounts of 
quantitative features from medical images through the analy-
sis of pixel grey level distribution, thus possibly leading to 
new insights in pathophysiological mechanisms underlying 
different medical conditions [1]. Texture analysis (TA) is 
one of the main areas of radiomics, evaluating grey level 
value patterns in images that are not detectable by qualitative 
assessment by a human reader. Therefore, it plays an impor-
tant role in analyzing features of different tissues or organs 
in radiology, contributing to the potential development of 
new biomarkers [2]. For example, texture features may have 
histopathologic correlates that may help in the evaluation of 
patient prognosis [3].

AI is frequently used to develop classification or regres-
sion models from radiomics data [4]. In particular, machine 
learning (ML) is the subfield of AI which enables predictive 
modeling through automated recognition of patterns in the 
data space (Fig. 1) [5]. ML is based on the use of different 
algorithm types, which can be broadly classified based on 
their training mechanism in supervised, unsupervised, and 
reinforcement learning [6]. The first one requires labeled data 
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Fig. 1   Example of machine 
learning and deep learning-
based image processing pipe-
lines in radiomics
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to guide the training process, whereas the second does not, 
as the software automatically searches for structures in data 
instead. The unsupervised learning process usually results in 
data clustering, which needs subsequent analysis to correlate 
its findings with outcomes of interest. Finally, in reinforcement 
learning, there are both positive and negative reinforcement 
loops which progressively improve the prediction ability of 
the algorithm, leading to growth in accuracy through “experi-
ence.” ML applications may also include a combination of 
these types of learning, even though supervised learning is 
the most common approach in medical imaging. Among the 
different subtypes of ML algorithms, neural networks (NNs) 
are frequently used in radiology, due to their intrinsic ability 
to analyze images. This type of model processes data simi-
larly to the human brain as it is based on a network of nodes, 
also called “neurons.” Every node stores a numeric value, and 
the connection between each neuron represents a weight of 
the NN, which corresponds to the strength of connections 
between nodes. This architecture results in a multilayer net-
work of nodes, each layer progressively working on a higher 
degree of abstraction, with the final layer encoding the desired 
output. Deep learning (DL) is a type of NN which contains 
multiple hidden layers, detecting complex, non-linear relation-
ships between image features [7]. Thus, DL allows high-level 
abstractions of the data present in medical images [8].

In the past few years, ML has proved to be potentially useful 
in multiple subspecialities of healthcare, and several of these 
tools are now approved for clinical practice [9–11]. Radiol-
ogy is one of the most promising fields of radiomics and ML 
application, as these may be used for automatic detection and 
characterization of lesions or segmentation of medical images 
[12, 13]. In particular, there has been a growing number of 
scientific works showing ML as a powerful tool in imaging 
of cardiovascular diseases [14]. For instance, it may improve 
image acquisition and reconstruction time [15]. They have 
also shown promising results in automated segmentation of 
anatomical structures and classification of diseases [16, 17]. 
Finally, ML may provide new understanding of known dis-
eases though its ability to uncover hidden patterns in the data, 
thus improving their future management [18].

This review aims to provide an overview of promising 
applications of radiomics and ML in the domain of cardio-
vascular imaging disease, sorted by imaging modality. Spe-
cifically, we will focus on cardiac imaging, given its essen-
tial role to diagnose numerous cardiologic diseases and the 
consequently growing number of AI tools in this field [19].

Echocardiography

Echocardiography is a widely used imaging modality in 
cardiology, particularly for the assessment and measure-
ment of heart chambers and in the study of valvular disease 

[20]. It may greatly benefit from ML tools as these could 
be used to obtain automated and accurate measurements, 
reducing inter- and intra-rater variability, which are typical 
of ultrasound examinations. For example, ML-based soft-
ware could automatically calculate clinically relevant echo-
cardiography parameters, such as left ventricular ejection 
fraction. Ash et al. developed a ML model, trained on more 
than 50,000 echocardiographic exams, which automatically 
calculates left ventricle ejection fraction with high consist-
ency (mean absolute deviation = 2.9%) and sensitivity and 
specificity (0.90 and 0.92, respectively) [21]. These solu-
tions may improve the imaging workflow, as well as increase 
the accuracy of measurements, in particular in case of less-
experienced operators [22]. Similarly, AI may be used to 
automatically calculate global longitudinal strain and left 
atrial volume (LAV) [23]. As shown by Mor-Avi and col-
leagues, who evaluated 92 patients, the values of LAV 
obtained from echocardiography present high correlation 
with those derived from cardiac magnetic resonance (CMR), 
in particular when using real-rime 3D technique (r = 0.93 vs. 
r = 0.74 for maximal LAV; r = 0.88 vs. r = 0.82 for minimal 
LAV) [24].

AI may also enable automatic detection of wall motion 
anomalies from echocardiography, as shown by Huang and 
colleagues. Their group developed an accurate convolutional 
NN model using a training dataset of 10.638 echocardiogra-
phy exams performed in two tertiary care hospitals [25]. It 
achieved an area under the receiver operating characteristic 
curve (AUC) of 0.891, sensitivity of 0.818, and specificity 
of 0.816 [25]. The potential value of ML is also emerging 
in the setting of aortic valve stenosis management, again 
through automated measurements and image analysis [26].

Another avenue for the implementation of radiomics 
and ML in echocardiography is represented by the char-
acterization of myocardial tissue anomalies. This type of 
analysis may be challenging as changes are often subtle. 
Kagiyama et al. used both supervised and unsupervised 
learning approaches to develop a ML tool. In this case, a 
training dataset of 534 echocardiography scans was used, 
with corresponding CMR images serving as the reference 
standard. The resulting model predicted the presence myo-
cardial fibrosis with an AUC of 0.84, sensitivity of 86.4%, 
and specificity of 83.3% [27].

Finally, ML may identify functional phenotypes from 
whole–cardiac cycle echocardiography. In particular, Lon-
caric et al. used unsupervised learning trained on a dataset 
of 189 patients with known hypertension and 97 healthy 
controls and found that their software could automatically 
identify patterns in velocity and deformation which corre-
late with specific structural and functional remodeling [28]. 
Similarly, AI has been used to analyze diastolic parameters 
correlating with specific phenotypes, thus leading to a more 
personalized patient management [29].
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Coronary Computed Tomography 
Angiography

Coronary computed tomography angiography (CCTA) has 
become one of the most important diagnostic exams in 
cardiology in multiple settings. Indeed, it plays a pivotal 
role in the diagnosis of chronic coronary syndrome, as it 
is recommended as the initial test for diagnosing coro-
nary artery disease, especially when this condition can-
not be excluded by clinical exams alone [30]. Radiomics 
proved to be useful in identifying vulnerable coronary ath-
erosclerotic plaques. For instance, it was used to extract 
features from CCTAs performed on 624 individuals of 
the Framingham Heart Study cohort with and Agatston 
score higher than 0. These patients were clinically fol-
lowed for more than 9 years, and ML accurately identi-
fied subjects at risk of major cardiovascular events among 
them [31]. Furthermore, Kolossváry et al. developed a tool 
which detects the napkin-ring sign, an imaging finding 
of atherosclerotic plaques which correlates with major 
adverse cardiac events [32]. They enrolled 2674 patients 
who underwent CCTA due to stable chest pain. Twenty 
patients with napkin-ring sign were identified within this 
cohort and matched with 30 healthy controls. More than 
4000 radiomics features were extracted from each exam, 
and the model had an excellent discriminatory power, with 
a reported AUC > 0.80. On the other hand, Hamersvelt 
and colleagues used DL to identify patients with signifi-
cant coronary artery stenosis among those classified as 
having an intermediate degree of stenosis (corresponding 
to 25–69% vessel caliber reduction) [33]. This approach 
proved to have a good potential as the AUC was 0.76 and 
sensitivity of 92.6%; however, the specificity was only 
31.1% [33]. Radiomics may also aid in detecting the pres-
ence of coronary inflammation, which has been associated 
with higher risk of major cardiovascular accidents [34].

CCTA is known to have high negative predictive value 
to exclude acute coronary syndrome, in particular in 
patients with low-to-intermediate pre-test probability [35]. 
Some ML tools have been developed to improve CCTA’s 
performance in the setting of acute coronary syndrome. 
For instance, Hinzpeter et al. created a ML model based on 
TA data using CCTAs of 20 patients with acute myocardial 
infarction and 20 healthy controls. This proved to be accu-
rate in distinguishing healthy individuals from those with 
acute myocardial infarction (AUC of 0.90), even if on a 
small sample of cases overall [36]. Hu and colleagues used 
radiomics to predict major adverse cardiovascular events 
from CCTA features [37]. They collected a total of 105 
lesions from 88 CCTAs in the training set, and 31 CCTAs 
were used as the validation set. A total of 1409 radiomics 
features were extracted and the final model demonstrated 

an AUC of 0.762 for the training set and 0.671 for the 
validation one. These results are promising, although this 
tool also requires further validation prior to consideration 
for its introduction in clinical practice.

Recently, imaging of pericoronary adipose tissue on rou-
tinary CCTA has shown to be a good way to measure coro-
nary inflammation [38]. Therefore, Lin et al. created a model 
integrating CCTA and clinical features which employs 
radiomic data of pericoronary adipose tissue to accurately 
(AUC = 0.87) classify patients with myocardial infarc-
tion and those with stable or absent coronary artery dis-
ease (CAD) [39]. Interestingly, Mannil et al. found that AI 
could also be helpful in the setting of non-contrast enhanced 
low radiation CCTA. They investigated the use of differ-
ent models (NN, decision tree, naïve Bayes, random forest, 
sequential minimal optimization), based on TA radiomic 
data. These proved to be effective in detecting myocardial 
infarction from non-contrast enhanced low radiation CCTA, 
with the best (naïve Bayes) achieving a sensitivity of 83% 
and a specificity of 84% [40].

Radiomics can also be used to identify features useful to 
predict higher cardiovascular risk. For instance, Oikonomou 
and colleagues used ML to find features of perivascular adi-
pose tissue associated with major cardiovascular events in 
three experiments [41]: the first analysis compared adipose 
tissue biopsies obtained from patients undergoing cardiac 
surgery with CT images; the second used random forest to 
distinguish patients who suffered from major cardiovascu-
lar events from healthy controls; and the third focused on 
patients with acute myocardial infarction. Radiomics has the 
ability to detect features of perivascular adipose tissue (apart 
from inflammation) associated with CAD [42]. Furthermore, 
ML may accurately identify patients who require coronary 
intervention. Liu et al. enrolled 296 patients with sympto-
matic CAD and stenosis (> 50%) to create a training dataset 
in order to develop a DL tool which could automatically 
calculate fractional flow reserve [43]. It proved to be accu-
rate, thus possibly reducing the need of invasive coronary 
intervention. The automated computation of fractional flow 
reserve with ML may also be useful in the emergency setting 
with patients suffering from acute chest pain [44].

AI may also be useful in the differential diagnosis process 
in particular settings. For example, radiomics can accurately 
differentiate artifact caused by left atrial appendage from 
thrombi, as shown by Ebrahimian and colleagues. They 
developed a highly accurate tool (AUC = 0.85) which only 
requires early-phase contrast-enhanced CT images to work 
[45]. Similarly, a ML model may be used in the setting of 
suspected prosthetic valve obstruction to differentiate pannus 
from thrombi or vegetation [46].

CCTA may also be useful in evaluating the myocar-
dium when CMR is not available. For example, Qin and 
colleagues used radiomics to detect myocardial fibrosis in 
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hypertrophic cardiomyopathy using CMR as reference [47]. 
They enrolled 161 patients and used logistic regression to 
create a classification model which proved to have high diag-
nostic power (AUC = 0.81 in the training set and 0.78 in 
the testing cohort). Esposito et al. used TA to detect extra-
cellular matrix changes in the myocardium of patients with 
ventricular tachycardia, analyzing late iodine enhancement 
images and identifying different phenotypes of remodeling 
[48]. Similarly, the analysis of late iodine enhancement with 
ML may also be useful in distinguishing cardiac sarcoidosis 
from non-ischemic cardiomyopathies [49].

Radiomics and ML could also identify patients with high 
risk of major cardiovascular events among those with left 
ventricular hypertrophy using non-contrast cardiac com-
puted tomography, with high accuracy (AUC > 0.70) [50].

Cardiac Magnetic Resonance Imaging

Cardiac magnetic resonance (CMR) is an essential modal-
ity in cardiovascular imaging as it allows evaluation of both 
function and structure of the heart, and it is crucial in the 
diagnosis and management of many diseases. An increasing 
number of AI tools have been developed to be implemented 
in CMR, aimed at reducing acquisition and reading time as 
well as improve reproducibility. As previously mentioned, 
they may also help in automated classification of lesion 
phenotypes. For instance, Cetin and colleagues extracted 
radiomic features from CMRs to build models for the clas-
sification and diagnosis of cardiovascular diseases [51]. The 
same research group also used different types of ML algo-
rithms (support vector machine, random forest, and logistic 
regression) to identify specific CMR features in patients with 
cardiovascular risk factors (in particular with hypertension, 
diabetes, high cholesterol, current, and previous smoking) 
[52]. This approach proved to accurately identify cardiac tis-
sue textures specific for each risk group, with good accuracy 
(AUC > 0.6).

Regarding myocardial infarction, Chen et al. used TA 
to extract features from native and post-contrast T1 map-
ping images to evaluate the extracellular volume fraction 
mapping and detect irreversible changes after myocardial 
infarction [53]. In their study, an AUC of 0.91 was achieved, 
and thus their pipeline may be helpful in predicting left ven-
tricular adverse remodeling. In this setting, TA may also be 
used to extract features from late-gadolinium enhancement 
(LGE) images which correlate with a higher risk of develop-
ing arrhythmias. This in turn may lead to improved selection 
of patients that would benefit from an implanted cardioverter 
defibrillator [54]. Radiomics may also be employed to dif-
ferentiate non-viable, viable, and remote infarcted myo-
cardial segments analyzing LGE patterns [55]. It may also 
extract important additional information from unenhanced 

images, which may be relevant when it is not possible to 
employ contrast agents (e.g., in case of renal impairment, a 
common condition in CAD patients). Quanmei et al. used 
radiomics features from unenhanced T1 mapping and T1 
values to diagnose myocardial injury in ST-segment eleva-
tion myocardial infarction with high accuracy (AUC = 0.88 
in the training set and 0.86 in the test one) [56]. Similarly, 
Zhang and colleagues developed a DL tool to automatically 
detect and delineate chronic myocardial infarction from 
unenhanced CMRs, which showed an AUC of 0.94 [57]. Eft-
estøl et al. investigated TA’s ability to identify patients that 
would require implantable cardioverter defibrillator among 
those with myocardial infarction with high specificity (84%) 
[58]. ML may also be useful in the differential diagnosis of 
myocarditis with acute clinical presentation and acute myo-
cardial infarction. In this setting, Baesslet et al. performed 
TA of T1 and T2 map sequences from 39 CMRs, achieving 
an AUC of 0.88, a sensitivity of 89%, and a specificity of 
92% [59].

In clinical practice, another role for CMR is represented 
by the diagnosis and management of cardiomyopathies, and 
ML may also help in this domain. For example, TA may 
help to discriminate between hypertensive heart disease and 
hypertrophic cardiomyopathy. Neisius et al. used it to ana-
lyze global native T1 mapping images from 232 subjects 
and their solution achieved an overall accuracy of 0.86 [60]. 
Alis et al. used both TA and ML to identify patients with 
tachyarrhythmia from a population of subjects affected by 
hypertrophic cardiomyopathy [61]. They enrolled 64 patients 
and tested different types of ML algorithms (support vector 
machines, naive Bayes, k-nearest-neighbors, and random 
forest) to analyze LGE patterns, achieving a sensitivity of 
95.2%, specificity of 92.0%, and accuracy of 95%. The anal-
ysis of LGE patterns may also predict the risk of developing 
adverse events in the setting of hypertrophy cardiomyopathy 
with systolic dysfunction [62]. Furthermore, TA may allow 
for the extraction of features correlating with tachyarrhyth-
mia in patients with hypertrophic cardiomyopathy from non-
contrast T1 images [63].

Interestingly, radiomics may help in associating specific 
genetic mutations to imaging phenotypes. Wang et al. devel-
oped an image analysis pipeline to classify hypertrophic car-
diomyopathy patients related to MYH7 or MYBPC3 muta-
tions using exclusively T1 native maps, resulting in an AUC 
higher than 0.90 [64]. Similarly, TA analysis of T1 maps 
may aid in differentiating patients with dilatative cardiomyo-
pathy from healthy controls, as shown by Shao et al. This 
group implemented a support vector machine model with 
an accuracy higher than 0.85 [65]. In dilatative cardiomyo-
pathy, DL and ML may be helpful in identifying specific 
phenotypes and predicting prognosis [66].

Finally, DL may allow to reduce or even avoid the use of 
gadolinium in CMR, as proposed by Bustamante et al. using 
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cardiovascular 4D flow MRI. This software may be useful, 
for example, in congenital heart disease patients as pediatric 
subjects are likely to require long-time follow-up [67, 68]. 
Additionally, the analysis of native T1 maps may help iden-
tifying patients with low-likelihood of LGE, thus avoiding 
contrast administration in selected cases [69].

Nuclear Cardiology

Single-photon emission computed tomography (SPECT) is 
an important imaging modality in assessing significant CAD 
and risk of major cardiovascular events [70]. As with other 
modalities, ML may be useful as it may obtain automated 
segmentations of SPECT images [71]. Furthermore, ML and 
DL may be also used to classify SPECT images and iden-
tify patients with CAD. Apostolopoulos et al. used different 
subtypes of ML (NNs and random forest) to analyze a large 
dataset composed by 566 patients who underwent gated 
SPECT with 99mTc-tetrofosmin. They were able to prove 
that these tools could perform diagnosis with an accuracy 
of 79.15% [72]. Deep convolutional NNs could also predict 
risk of CAD and obstructive disease from 99mTc-tetrofosmin 
SPECT with high accuracy (AUC = 0.80) [73].

ML may be employed to reduce scan time and radiation 
dose by avoiding the acquisition of one or more phases of 
SPECT studies. For instance, Eisenberg et al. used ML to 
potentially avoid the acquisition of the rest phase in SPECT, 
as they developed an algorithm exclusively based on the 
stress myocardial phase in conjunction with multiple clinical 
features. They reported an accurate prediction of obstructive 
and high-risk CAD, with an AUC of 0.84 [74]. Hu and col-
leagues developed a ML tool which can predict per-vessel 
coronary revascularization within 90 days after stress/rest 
99mTc-Sestamibi/Tetrofosmin (AUC = 0.79), even outper-
forming the interpretation of expert nuclear cardiologists 
[75].

ML may also improve automatic detection of myocar-
dial perfusion abnormalities. In particular, a deep convolu-
tional NN improved the detection rate of myocardial perfu-
sion abnormalities from stress/rest SPECT performed with 
99mTc-Tetrofosmin or 99mTc-Sestamibi with an AUC of 0.872 
[76]. ML may also be used in analyzing PET myocardial 
perfusion data to predict the risk of adverse cardiovascular 
events [77].

Image Quality Improvement

Another application of ML, especially DL, is represented 
by improvements in image acquisition. Specifically, DL 
models may be trained to reduce image noise, artifacts, 
radiation dose, and inter- and intra-observer variation of 

measurements [78]. For instance, ML has been used to 
improve echocardiography acquisition, facilitating access to 
this imaging modality in the emergency setting. Narang et al. 
developed a DL software helping non-expert users to acquire 
exams of acceptable quality. They evaluate 240 exams from 
two academic hospitals, obtaining diagnostic echocardiog-
raphy scans in 92.5–98.8% of patients [79].

Regarding cardiac CT, the main aim of ML is to obtain 
good quality images while reducing radiation dose. This may 
be achieved creating synthetic contrast-enhanced images 
from non-enhanced acquisition, thus also avoiding contrast 
injection [80]. Another possibility is to use low dose proto-
cols, which unfortunately usually determine an increase in 
image noise [81]. For example, Wolterink et al. used a con-
volutional NN to automatically convert low dose CT images 
in higher quality images, comparable to routine-dose CT, 
enabling accurate coronary calcium scoring [82].

ML may also improve CMR image quality. In this set-
ting, it can be used to reduce motion artifacts, which may 
strongly deteriorate image diagnostic quality. In particular, 
Küstner et al. used DL to retrospectively obtain high quality 
images from low quality ones, where motion artifacts were 
present. It is interesting to note that, while they obtain high 
quality images, some anatomical structures were erased or 
altered; therefore, this type of image processing requires fur-
ther evaluation prior to introduction in clinical practice [83]. 
Furthermore, ML may be used to improve images recon-
struction, thus improving quality and speeding up scan time 
[84]. For instance, Hauptmann used ML to reduce acquisi-
tion time in patients with congenital heart disease, achieving 
good image quality and also obtaining automated measure-
ments of heart chambers which were comparable with those 
of expert radiologists [85].

Discussion

As shown in our review, radiomics and AI have numerous 
potential applications in the field of cardiovascular imag-
ing. These range from improved image acquisition, higher 
inter-reader reproducibility, better diagnostic accuracy, and 
more personalized patient management. In the future, it 
may also enable automated and accurate prognosis predic-
tion, while more short-medium term implementations could 
allow reduced artifacts, radiation dose, and scan time. Even 
though there is a constantly growing amount of studies per-
formed using these tools, few of them are actually approved 
for clinical practice [86]. As a matter of fact, there are still 
some issues to overcome of which physicians and patients, 
as end users, should be aware.

First of all, methodological quality of radiomics and 
ML studies is frequently low. This has been demonstrated 
by multiple systematic reviews performed in other fields 
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of medical imaging [12, 87–89]. Unfortunately, this find-
ing has also been recently confirmed in the setting of car-
diovascular imaging, in particular regarding CT and CMR 
research [90]. Out of 53 papers reviewed, the median qual-
ity score was only 19.4% (interquartile range = 11.1–33.3%), 
which is not satisfactory. On the other hand, median qual-
ity showed a positive trend over the years, even though it 
peaked at approximately 25%. This systematic review and 
quality assessment highlights the need for higher standards 
that should be expected for this area of research by journals, 
reviewers, and readers.

Specific limitations that lower the quality of studies in 
this area are also tied to inconsistencies in study design or 
presentation. For example, image acquisition protocols and 
preprocessing steps are frequently not described in detail in 
the papers. The limited scope of most radiomics research is 
also limiting its potential value, as exams are usually per-
formed in a single institution, thus limiting assessment of 
model reproducibility and generalization on new data [91]. 
Another common issue is represented by the fact that almost 
all ML studies are retrospective in nature, which increases 
the risk of reporting bias [92]. These points lead to another 
concern, overfitting. This may be due to excessive tailor-
ing of the ML model to the training population, poor qual-
ity of data, or its ineffective preprocessing and results in 
low ability to generalize [93]. In other words, the results 
obtained in one institution will not be replicable in another 
site, hindering the clinical applicability of the process. To 
overcome overfitting, the ideal solution is represented by the 
training of ML models on large multi-institutional datasets 
with appropriate data processing [94]. Finally, as highlighted 
in auditing of public imaging datasets, it is also crucial to 
evaluate the quality of medical images used for the training 
process [95, 96]. Low quality input data can only result in 
low quality models.

In ML, model interpretability and explainability still rep-
resent an open issue, especially for highly complex algo-
rithms, especially DL. Intuitively, it is desirable for the deci-
sion process of a predictive model to be clearly presented, 
facilitating their adoption by physicians. This would also 
allow for greater involvement of the end user in evaluating 
the correctness of the model’s output and timely identifica-
tion of biases or other issues [93]. On the other hand, the 
current technology does not allow for this type of informa-
tion to be actually available or to realistically expect this 
in the next few years. Some domain experts have already 
proposed that our attention should not be focused on “under-
standing” DL models, but rather on requiring strong valida-
tion alone [97]. In any case, a consensus should be reached 
on the actual requirements of radiomics and ML software 
prior to their approval for clinical use. Unfortunately, many 
products are becoming commercially available with a still 
unsatisfactory amount of evidence [9].

Conclusions

The number of radiomics and ML-based tools will probably 
continue to increase in the future. Even in the light of cur-
rent issues limiting their effective implementation in clinical 
practice, they still present the potential to positively impact 
cardiovascular imaging and improve patient outcome. Phy-
sicians must become well-versed in the basics of radiomics 
and familiar with good data science practices to be confi-
dent end users and retain a leadership role in this emerging 
domain of medical imaging.
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