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Abstract 22 

Cardiovascular magnetic resonance (CMR) radiomics is a novel technique for advanced cardiac 23 

image phenotyping by analyzing multiple quantifiers of shape and tissue texture. In this paper, we 24 

assess, in the largest sample published to date, the performance of CMR radiomics models for 25 

identifying subclinical changes in cardiac structure and tissue due to cardiovascular risk factors.  26 

We evaluated five risk factor groups from the first 5,065 UK Biobank participants: hypertension 27 

(n=1,394), diabetes (n=243), high cholesterol (n=779), current smoker (n=320), and previous smoker 28 

(n=1,394). Each group was randomly matched with an equal number of healthy comparators (without 29 

known cardiovascular disease or risk factors). Radiomics analysis was applied to short axis images of 30 

the left and right ventricles at end-diastole and end-systole, yielding a total of 684 features per study. 31 
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Sequential forward feature selection in combination with machine learning (ML) algorithms (support 32 

vector machine, random forest and logistic regression) were used to build radiomics signatures for 33 

each specific risk group. We evaluated the degree of separation achieved by the identified radiomics 34 

signatures using area under curve (AUC), receiver operating characteristic (ROC), and statistical 35 

testing.  36 

Logistic regression with L1-regularization was the optimal ML model. Compared to conventional 37 

imaging indices, radiomics signatures improved the discrimination of risk factor vs. healthy 38 

subgroups as assessed by AUC [diabetes: 0.80 vs. 0.70, hypertension: 0.72 vs. 0.68, high cholesterol: 39 

0.71 vs. 0.65, current smoker: 0.68 vs. 0.65, previous smoker: 0.63 vs. 0.60]. Furthermore, we 40 

considered clinical interpretation of risk-specific radiomics signatures. For hypertensive individuals 41 

and previous smokers, the surface area to volume ratio was smaller in the risk factor vs. healthy 42 

subjects; perhaps reflecting a pattern of global concentric hypertrophy in these conditions. In the 43 

diabetes subgroup, the most discriminatory radiomics feature was the median intensity of the 44 

myocardium at end-systole, which suggests a global alteration at the myocardial tissue level. 45 

This study confirms the feasibility and potential of CMR radiomics for deeper image phenotyping of 46 

cardiovascular health and disease. We demonstrate such analysis may have utility beyond 47 

conventional CMR metrics for improved detection and understanding of the early effects of 48 

cardiovascular risk factors on cardiac structure and tissue. 49 

 50 

1 Introduction 51 

Cardiovascular magnetic resonance (CMR) is the reference standard for assessment of cardiac 52 

structure and function and is used widely in both research and clinical settings. Routine assessment is 53 

reliant on visual inspection of CMR images for identifying global and local abnormalities; this is 54 

both labor-intensive and reader dependent (1–4). Existing quantifiers, such as ejection fraction and 55 

chamber volumes, are overly simplistic and often do not capture subtle and complex changes that 56 

affect the myocardium at early disease stages (5). Current approaches are thus suboptimal for early 57 

disease detection and outcome prediction. Therefore, there is need for novel, more advanced 58 

quantitative approaches to CMR image analysis to improve clinical diagnosis and risk prediction. 59 

CMR radiomics is a novel image quantification technique whereby pixel-level data is analyzed to 60 

derive multiple quantifiers of tissue shape and texture (6). Technological advancements and the 61 

availability of high computational power has allowed deployment of machine learning (ML) methods 62 

with radiomics features to discriminate disease or predict outcomes (7). A distinct advantage of 63 

radiomics modelling over unsupervised algorithms is the potential for explainability through 64 

identification of the most defining radiomic features in the model. It is thought that radiomics 65 

features correspond to alterations at both the morphological and tissue levels and thus, the most 66 

defining features of a particular condition (or its radiomics signature) may provide insights into its 67 

pathophysiology (8). Within oncology, where radiomics is most well-developed, the incremental 68 

value of radiomics models for diagnosis and prognosis have been widely reported (8–14). In 69 

cardiology, early studies have shown promising results from CMR radiomics models for 70 

discrimination of important conditions such as myocarditis, hypertrophic cardiomyopathy, and 71 

ischemic heart disease (15–18). 72 
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While existing works have mostly focused on image phenotyping of established cardiovascular 73 

diseases, CMR radiomics may also provide incremental information to conventional approaches for 74 

improved quantification of cardiac alterations related to cardiovascular risk factors at the subclinical 75 

stage. We thus present the largest and most comprehensive assessment of the performance of CMR 76 

radiomics for image phenotyping of important cardiovascular risk factors including diabetes, 77 

hypertension, high cholesterol, and smoking status, by using a large annotated CMR dataset from the 78 

UK Biobank (UKB). 79 

 80 

2 Methods 81 

2.1 Population and setting 82 

UKB is a large-scale population health resource aimed at enhancing biomedical research and 83 

ultimately improving prevention, diagnosis, and treatment of a wide range of serious and life-84 

threatening illnesses (19). Over 500,000 participants aged 40-69 years old were recruited from 85 

around the UK between 2006 and 2010. The UK Biobank holds an exceptional amount of data 86 

including detailed lifestyle information, medical history, serum biomarkers, physical measures, and 87 

multi-modal imaging including magnetic resonance imaging of the abdomen, brain, and heart (20). 88 

Thus, UKB provides the ideal platform for assessment of the performance characteristics of novel 89 

quantitative biomarkers, such as radiomics, in discriminating common cardiovascular risk factors. 90 

2.2 CMR imaging protocol 91 

CMR cine images were acquired using a standardized UKB protocol, which is detailed in a dedicated 92 

publication (21). In brief, all scans were performed with a 1.5 Tesla scanner (MAGNETOM Area, 93 

Syngo Platform VD13A, Siemens Healthcare, Erlangen, Germany), with typical cine parameters as 94 

follows: TR/TE (repetition time/echo time)= 2.6/1.1 ms, flip angle 80°, Grappa factor 2, voxel size 95 

1.8 mm × 1.8 mm × 8 mm, and a slice gap of 2.0mm. The actual temporal resolution of 32ms was 96 

interpolated to 50 phases per cardiac cycle (~20 ms). The protocol includes a complete cine short-97 

axis ventricular stack with base to apex coverage acquired using balanced steady state free procession 98 

(bSSFP) with one breath-hold per image slice. 99 

2.3 CMR image segmentation 100 

CMR scans of the first 5,065 UKB participants that completed the imaging study were manually 101 

analyzed across two core laboratories (London, Oxford) using a pre-defined standard operating 102 

procedure, which is detailed elsewhere (22). In brief, left and right ventricular (LV, RV) endocardial 103 

contours and LV epicardial contours were drawn in end-systole and end-diastole on the short axis 104 

stack images using the CVI42 post-processing software (Version 5.1.1, Circle Cardiovascular 105 

Imaging Inc., Calgary, Canada). These contours were used to define three regions of interest (ROIs) 106 

for radiomics analysis: RV blood pool, LV blood pool, and LV myocardium. All acquisitions were 107 

ECG gated and thus end-diastole was defined as the first phase in the sequence. End-systole was 108 

defined as the frame with smallest LV cavity area by visual assessment detected at the mid-cavity 109 

level. Papillary muscles were considered part of the blood pool. Slices with more than 50% 110 

circumferential LV myocardium were included in LV contours. RV volume was defined as areas 111 

below the pulmonary valve plane identified by visual assessment.  112 

 113 
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2.4 Selection of study sample 114 

[Figure 1 about here.] 115 

We considered the first 5,065 UKB participants to complete CMR imaging. We excluded 174 116 

individuals due to incomplete segmentations (having either one or more cardiac structures missing in 117 

the segmentations).  From the remaining 4,891 individuals, a healthy cohort (n=1,394) was defined 118 

by considering participants without known cardiovascular disease or risk factors. Diabetes (n=224), 119 

hypertension (n=1,394) and high cholesterol (n=779) were taken from self-reported conditions. 120 

Smoking status was taken as self-report of current (n=320) or previous (n=1,394) tobacco smoking. 121 

Participants positive for each risk factor were compared with an equal number of randomly selected 122 

reference healthy subjects to eliminate bias in the machine learning models due to class imbalance 123 

(Figure 1). 124 

2.5 Conventional CMR indices 125 

For comparison and quantification of the added value of CMR radiomics, conventional CMR indices 126 

were also assessed, specifically: LV end-diastolic volume (LVEDV), LV end-systolic volume 127 

(LVESV), RV end-diastolic volume (RVEDV), RV end-systolic volume (RVESV), LV stroke 128 

volume (LVSV), RV stroke volume (RVSV), LV ejection fraction (LVEF), RV ejection fraction 129 

(RVEF), LV mass (LVM). 130 

2.6 Radiomics analysis 131 

[Figure 2 about here.] 132 

The overall radiomics workflow is depicted in Figure 2. Radiomics shape and signal intensity-based 133 

features were extracted from the three segmented ROIs (LV blood pool: LV, LV myocardium: MYO, 134 

RV blood pool: RV) in end-diastole (ED) and end-systole (ES). The analysis of the radiomics 135 

features in the myocardium may enable identification of tissue-level changes due to the 136 

cardiovascular risk factors. The inclusion of the LV and RV cavities is aimed at identifying changes 137 

in the shapes of each ventricle, or in the patterns of the trabeculation and papillary muscles. 138 

Automated extraction of radiomics features was performed using the open source python-based 139 

radiomics library Pyradiomics (version 1.3.0, October 2017)
1
 (23). The customization of image 140 

preprocessing and feature extraction was performed with Pyradiomics default settings, including a 141 

gray value discretization with a bin width of 25 to extract the intensity-based and texture radiomics 142 

features. In total, 684 radiomics features were extracted per study (consisting of 114 radiomics 143 

features per cardiac structure: LV, RV and MYO at two time-points of the cardiac cycle: ED and ES). 144 

Shape-based radiomics features 145 

16 radiomics shape features were extracted per ROI at ED and ES (see Supplementary table). 146 

Radiomics shape features describe geometrical properties of the defined ROI, such as volume, 147 

maximal diameter, minor/major axis, surface area volume ratio, elongation, flatness and sphericity. 148 

Radiomics shape features may provide incremental value to existing CMR indices as they include 149 

conventional shape indices (e.g. cavity volumes) as well as more advanced geometric quantifiers (e.g. 150 

                                                 
1
 https://www.radiomics.io/pyradiomics.html 
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sphericity, flatness). They also have the potential to define disease-specific patterns of cardiac 151 

alterations beyond those possible with existing CMR indices. 152 

Signal intensity-based radiomics features 153 

Signal intensity-based radiomics features may have the potential to decode variations in cardiac 154 

tissue due to abnormalities induced by disease processes. They are commonly grouped into two 155 

categories, namely first-order and texture features. First-order features are histogram-based statistics 156 

describing the global distribution of signal intensities within the defined ROI without consideration 157 

to their spatial relationships. These include simple measures such as the mean intensity or standard 158 

deviation, as well as more advanced measures such as skewness, uniformity or entropy (see full list 159 

in Supplementary table).  160 

Texture-based radiomics features 161 

In contrast, texture radiomic features allow the quantification of spatial inter-pixel relationships using 162 

more advanced matrix analysis methods (24,25). Through this, signal intensities patterns within the 163 

ROI may be numerically quantified using pre-agreed mathematical definitions. Many texture patterns 164 

may be considered to quantify characteristics such as the complexity, heterogeneity, coarseness or 165 

repeatability of the building blocks of the tissue. The idea is that these texture features may reflect 166 

myocardial tissue characteristics which in turn reflect underlying disease processes. In this study, 19 167 

first-order features and 79 texture features were extracted from each ROI per cardiac phase. 168 

2.7 Identification of optimal radiomic signatures 169 

The goal of the study is to leverage feature selection and machine learning techniques to identify 170 

radiomics signatures that best describe the structural and tissue differences between risk factor (at-171 

risk) and healthy (no-risk) groups in CMR imaging. To this end, we use the risk factors as “proxy” 172 

output variables and build multiple machine learning models by varying the combinations of input 173 

radiomic features through systematic feature selection. We obtain multiple models (and thus multiple 174 

candidate radiomic signatures) and through statistical testing one can select the best model and 175 

therefore the radiomic signature that best separate the at-risk and no-risk groups. Because these 176 

selected radiomics signatures differentiate at-risk from healthy individuals, they can be considered 177 

and analyzed as potential descriptors of the cardiac alterations due to the risk factors in question. 178 

Importantly, we use machine learning as a more advanced means to combine multiple radiomic 179 

features into risk-specific signatures, while taking into account non-linear complementarities between 180 

the parameters.  181 

For feature selection, we used the sequential forward feature selection (SFFS) method as it has 182 

demonstrated good performance in previous CMR radiomics studies (15,26). The termination 183 

criterion was set to 2% in all experiments following literature standards, i.e. the process was stopped 184 

if an added feature did not increase model performance beyond the termination criterion. To obtain 185 

more robust estimates and improve generalizability, ten-fold cross-validation was used in the feature 186 

selection process, rotating training and validation folds (80% and 20% of the dataset, respectively). 187 

We combined SFFS with classical ML algorithms [support vector machines (SVM), random forests 188 

(RF), logistic regression (LR)] to identify the combination of radiomics features that best define each 189 

studied cardiovascular risks/subgroups. For each ML method, hyperparameter optimization was 190 

performed to enhance the discrimination between no-risk and at-risk subgroups [Supplementary 191 

material]. Implementation of the SFFS and the ML techniques was based on the mlxtend (version 192 

0.17.0) (27) and scikit-learn (version 0.20.3) (28) python-based libraries, respectively. 193 
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The selected radiomics features resulting from the SFFS algorithm and ML techniques were 194 

combined to create the radiomics signature that best encode the changes in CMR induced by the 195 

different cardiovascular risk factors. To quantify the added value of the proposed radiomics 196 

approach, we built similar ML models/risk signatures using conventional CMR indices as input 197 

variables. Note that all radiomics features and cardiac indices were normalized (to a mean of zero and 198 

standard deviation of one) to ensure they are equally weighted in all analyses. Note that individuals 199 

with multiple risk factors were not excluded. In the machine learning models, we set the outcome to 200 

each risk factor individually, which enabled the identification of the radiomics signatures specific to 201 

that risk factor.  202 

In this work, we assess model performance (i.e. the ability of the radiomics signatures to discriminate 203 

at-risk vs. no-risk subjects) using receiver operating characteristic (ROC) curve and area under the 204 

curve (AUC) scores. We also report model accuracy, defined as number of correctly discriminated 205 

no-risk vs. at-risk cases based on the radiomics signatures, divided by the total number of cases. 206 

Additionally, statistical tests were performed to assess the statistical significance of the differences 207 

between the various ML models, by using the McNemar’s test for pairwise comparisons, as well as 208 

the Cochran’s Q test, which is an extension of the McNemar’s test for the comparison of more than 209 

two models (29,30).  210 

3 Results 211 

3.1 Summary of subgroups and conventional CMR indices  212 

The subjects included in the analysis are summarized in Table 1. Across all risk factor groups there 213 

was higher proportion of male participants (between 52.3% and 60.1% depending on the risk factor), 214 

whereas in the healthy cohort, there were fewer men (42.5%). Average age across the risk groups was 215 

between 59 (8) and 65 (6) years, while it was equal to 60 (7) years for the healthy cohort. As 216 

expected, there were differences in conventional CMR between the at-risk subgroups and healthy 217 

subjects. In particular, all risk groups had on average greater indexed left ventricle mass (LVMi) in 218 

comparison to the healthy cohort with the greatest difference in the hypertensive group (50.3 g/m2 vs 219 

46.3 g/m2). All risk factor groups had lower indexed left ventricle stroke volume (LVSVi) and 220 

indexed right ventricle stroke volume (RVSVi) in comparison to the healthy cohort. There were also 221 

variations in chamber volumes, with different directions of difference depending on the risk category. 222 

Finally, it is worth noting that no statistically significant differences (Welch’s t-test) in the 223 

conventional indices were found between the healthy and each at-risk subgroups, except for LVEF in 224 

diabetes and LVSVi values in hypertension and current smokers (see Table 1). 225 

3.2 Radiomics signatures have superior discriminatory performance over conventional CMR 226 

indices  227 

In comparison to conventional indices, radiomics signatures provided better discrimination between 228 

healthy and at-risk subjects for diabetes (0.80 AUC for radiomics vs 0.70 for conventional indices), 229 

hypertension (0.72 vs 0.69), high cholesterol (0.71 vs 0.65), and previous smokers (0.63 vs 0.60) 230 

(Figure 3). The obtained models with radiomics vs. conventional indices were also compared using 231 

the McNemar’s test; the differences were found to be statistically significant for diabetes, 232 

hypertension, high cholesterol, and previous smokers but not for current smokers. 233 

 234 

[Figure 3 about here.] 235 
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 236 

 237 

3.3 Comparison of the degree of discrimination achieved for each subgroup  238 

The degree of discrimination (no-risk vs. at-risk hearts) achieved using radiomics models varied 239 

between the different cardiovascular risks, as these have different effects on the heart. The highest 240 

degree of discrimination with radiomics models was seen in diabetes (0.78), suggesting that 241 

radiomics features are particularly important in distinguishing diabetes-related cardiac changes. The 242 

smallest degree of separation was seen in previous smokers (0.61). High cholesterol, hypertension 243 

and current smokers achieved similar degrees of separation by the radiomics models (i.e. 0.68, 0.68 244 

and 0.67, respectively). 245 

3.4 The identified radiomics signatures for each cardiovascular risk factor 246 

The identified radiomics signatures for each risk factor are described in Table 2. Overall, there was a 247 

more prominent role for shape and texture features than first-order features. For instance, in diabetics, 248 

five of the eleven features included in the model were shape-based and in the hypertension group, no 249 

first-order feature was selected. As expected, radiomics features from the LV blood pool and LV 250 

myocardium were the most relevant regions, with the RV blood pool having a minor role for the risk 251 

factors studied in this paper. 252 

In Table 3, we consider the most discriminative radiomics feature for each risk factor, i.e. the feature 253 

assigned the most importance in the model, and compare it with the most discriminative conventional 254 

CMR measure, which was LVM for all risk groups. 255 

For all the subgroups, the mean value of the most important radiomics features and conventional 256 

CMR indices was significantly different in the risk factor vs. healthy cohorts (p<0.001, Table 3). In 257 

addition, the single best radiomics feature outperformed the conventional CMR indices in its 258 

relevance for all risk factors. However, it was the combination of several radiomics features into a 259 

radiomic signature (Table 4) that provided the best overall discriminative power. 260 

4 Discussion 261 

4.1 Summary of findings 262 

This paper described a methodology based on radiomics, machine learning and feature selection to 263 

discover new discriminatory signatures in CMR. Based on over 5,000 datasets, we presented the 264 

largest and most comprehensive study to demonstrate the feasibility and performance of CMR 265 

radiomics for identifying new imaging signatures associated with important cardiovascular risk 266 

factors such as diabetes, hypertension, cholesterol and smoking. Over conventional indices, we 267 

showed that radiomics enable improved quantification of alterations in both cardiac structure and 268 

tissue due to the effects of these risk factors. From the statistical tests performed in Table 1, it can be 269 

seen that the conventional indices do not capture statistically significant differences between the 270 

healthy vs. at-risk subgroups, with very few exceptions (LVEF values in diabetes, LVSVi values in 271 

hypertension and current smokers). In contrast, the McNemar’s statistical tests comparing the 272 

radiomics models and the conventional indices show statistically significant differences between the 273 

two approaches for all cardiovascular risk factors, except for current smokers. This indicates that for 274 

diabetes, hypertension, high cholesterol and previous smokers, radiomics models provide incremental 275 

value in identifying structural and textural differences between healthy and at-risk subgroups. 276 
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4.2 Clinical interpretation of the radiomics signatures 277 

A distinct advantage of radiomics modeling over black-box techniques such as deep learning is the 278 

potential interpretability of the obtained results. Therefore, we can attempt to reason the prominence 279 

of certain radiomics features in disease discrimination models. Shape features were highly featured in 280 

all models and indicate subtle patterns of ventricular remodeling that are specific to conditions under 281 

study. For instance, spherical disproportion (i.e. the inverse of sphericity) of the myocardium at end-282 

diastole was lower in participants with high cholesterol compared with healthy individuals, indicating 283 

that the overall shape of the LV is elliptical and more spherical in this risk factor group. Similarly, for 284 

hypertensive individuals and previous smokers, the surface area to volume ratio was smaller in the 285 

risk subgroups vs healthy subjects; this may reflect a pattern of concentric LV hypertrophy in these 286 

conditions. For certain risk factors, intensity/texture features seemed more important, such as median 287 

intensity for diabetes. As this was a retrospective study, we can only speculate as to the cause of this 288 

association. One hypothesis is that diabetes leads to a global alteration of the myocardial tissue and 289 

thus of the overall myocardial appearance in CMR images, resulting in higher median intensities 290 

compared to non-diabetic subgroups. However, testing this hypothesis is beyond the scope of this 291 

study. 292 

As another example of a prominent textural feature, the most important feature identified for current 293 

smokers in this study was gray level non uniformity. In a previous study (31), the very same radiomic 294 

feature was identified as the most important radiomic feature in hypertrophic cardiomyopathy 295 

(HCM). However, as the authors pointed out in their paper, the intensity heterogeneity of myocardial 296 

tissue is not unique to HCM and it might be of importance for other conditions. As smoking is a well-297 

known cause for such cardiovascular diseases (32), there may be some commonality in the patterns 298 

of myocardial hypertrophy and tissue fibrosis in these cardiovascular conditions that is being 299 

reflected in the observed texture features. Indeed, the increased heterogeneity in grey level intensities 300 

for current smokers as found in our study supports the potential effects on the myocardium for these 301 

subjects. 302 

Thus, radiomics allows more granular distinctions between health and disease in comparison to 303 

conventional CMR indices where, rather crudely, the single most discriminatory feature for all risk 304 

factors was higher LVM. These findings indicate the potential clinical utility of radiomics in 305 

improving understanding of the effects and pathophysiology of important cardiovascular risk factors. 306 

4.3 Comparison with the existing literature  307 

Literature in support of the superior diagnostic performance of CMR radiomics models over 308 

conventional image analysis is slowly gaining momentum. Several studies have shown the feasibility 309 

and clinical utility of CMR radiomics for distinguishing important disease entities. A small study by 310 

Baeßler et al. (31) demonstrates the superior performance of CMR radiomics in discriminating 311 

hypertrophic cardiomyopathy (n=32) from healthy comparators (n=30). The most discriminative 312 

feature was grey level non-uniformity, a radiomics texture feature representing heterogeneity. It 313 

seems intuitive that this feature would be defining of the irregular myofibrillar architecture of 314 

hypertrophic cardiomyopathy. Similar to our observations, in particular with diabetes, it appears that 315 

the observed radiomics signatures may reflect clinically meaningful information about significant 316 

tissue level changes. Furthermore, studies have demonstrated the ability of CMR radiomics to 317 

distinguish important conditions that appear morphologically similar with conventional image 318 

analysis. For instance, Neisius et al. (15) demonstrated high performance of CMR radiomics models 319 

applied to native T1 images to distinguish hypertensive heart disease (n=53), hypertrophic 320 
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cardiomyopathy (n=108), and healthy volunteers (n=71). There is also emerging work on using CMR 321 

radiomics to identify areas of myocardial infarction from non-contrast cine image (16,33,34) and to 322 

identify acute from chronic myocardial infarction (33). 323 

Our paper constitutes the most comprehensive study to assess the relationship between CMR 324 

radiomics and cardiovascular risk factors. However, the concept of utilizing information from CMR 325 

to obtain more complex geometric information has been addressed previously using atlas-based 326 

shape measures. Cardiac atlases produce statistical shape models, giving highly detailed 327 

morphometric information (35–37). Directly comparable to our findings, Gilbert et al. (38) 328 

demonstrate unique morphometric variations associated with individual risk factors (high blood 329 

pressure, smoking, high cholesterol, diabetes, angina), which could be quantified and visualized on 330 

constructed atlases. The derivation of radiomics shape features is methodologically different from 331 

cardiac atlases, however there are conceptual similarities about the type of information they provide. 332 

Both seem to suggest that geometric features not captured by current image analysis approaches may 333 

be extracted from existing CMR images and that this information seems to provide additional insight 334 

into patterns of cardiac remodeling. CMR radiomics has several advantages over cardiac atlas 335 

models. The signal intensity based radiomics features (first-order, texture) have great potential for not 336 

only better disease discrimination and outcome prediction, but also gaining deeper insights into 337 

disease processes at the tissue level; such information is not provided by cardiac atlas 338 

morphometrics. CMR radiomics analysis does not require any dedicated acquisitions or post-339 

processing and the extraction of radiomics features and model building are computationally simpler 340 

than atlas models. Therefore, there is real potential for radiomics to enter the clinical workflow as a 341 

very high yield and complementary image analysis tool.  342 

Note that in this study we chose to select a different healthy subsample than in Petersen et al. (22). 343 

This is due to the differences in the objectives of the papers. While Petersen et al. (22) focused on  344 

the estimation of normal ranges of cardiac indices of structure and function and thus used very strict 345 

inclusion criteria, we are concerned with the study of cardiovascular risk factors and therefore we 346 

excluded subjects with known cardiovascular risk factor or disease. 347 

4.4 Limitations and future work 348 

To the best of our knowledge, this is the largest study to assess the performance of CMR radiomics 349 

model in discriminating several important cardiovascular risk factors. Our findings demonstrate the 350 

feasibility of CMR radiomics models to identify cardiac changes related to important cardiovascular 351 

risk factors (diabetes, hypertension, high cholesterol, and smoking) with greater accuracy than 352 

conventional indices. The UKB provides an excellent platform for this study with a large sample of 353 

well characterized participants with linked CMR imaging. However, the data collection was 354 

conducted through a combination of a touchscreen questionnaire and a face-to-face nurse interview, 355 

and thus there remains some concerns about the accuracy and objectivity of the self-reported 356 

conditions. Studies with consideration of more sophisticated statistical methods to better account for 357 

confounding factors, as well as with inclusion of external validation cohorts, are needed to produce 358 

and validate more disease-specific and generalizable models. In particular, there is a need for 359 

prospective studies to determine the clinical utility of these models in providing incremental 360 

cardiovascular risk information.  361 

As for the pipeline implemented in this paper, alternative approaches may merit exploration, such as 362 

testing different methods for feature selection (e.g. LASSO (39), combination of filter and wrapper-363 

based methods (40)), or applying extensive hyper-parameter optimization for each risk group. Also, 364 



Radiomics signatures of cardiovascular risk factors in cardiac MRI: Results from the UK 

Biobank 

 
10 

This is a provisional file, not the final typeset article 

while cross-validation was performed in the feature selection process to reduce the instability of 365 

radiomics features, other strategies have been proposed such as prior clustering of redundant features 366 

(41), or using a concordance correlation coefficient (42). Additionally, there is need for proper 367 

evaluation of the reproducibility of radiomics features across segmentation protocols and also across 368 

imaging acquisitions, which is important due to non-standard pixel values and large variation in 369 

signal intensities (43). Wider use of radiomics quality scores (44) would also enable better quality 370 

and more uniform reporting of radiomics studies and foster research reproducibility. Finally, as a 371 

common problem of artificial intelligence-based radiomics approaches, we have not assessed the 372 

practical value of the present results since there is no comparative gold standard that can be used for 373 

comparison. 374 

5 Conclusions 375 

CMR radiomics is an emerging technique for deeper and more accurate cardiac phenotyping in 376 

comparison to conventional image analysis. Our preliminary results based on a large sample from the 377 

UKB indicates the feasibility of CMR radiomics analysis and potential clinical utility in superior 378 

image phenotyping of major cardiovascular risk factors, including diabetes, hypertension, high 379 

cholesterol, and smoking. The clinical value of these radiomics signatures for prediction of 380 

downstream events warrants further investigation in prospective cohorts. 381 

6 Abbreviations 382 

ACC: Accuracy; AUC: Area under the curve; bSSFP: Balanced steady state free procession; Conv: 383 

Conventional cardiovascular magnetic resonance indices; CMR: Cardiovascular magnetic resonance; 384 
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 568 

 569 

Tables 570 

 571 

Table 1: Summary of conventional CMR indices for the risk and healthy groups included in the 572 

analysis. 573 

 Diabetes 

n=243 

Hypertension 

n=1,394 

High cholesterol 

n=779 

Current smoker 

n=320 

Previous smoker 

n=1,394 

Healthy 

n=1,394 

Male n(%) 146 (60.1%) 786 (56.4%) 460 (59.1%) 172 (53.8%) 729 (52.3%) 592 (42.5%) 

Age mean(sd)years 64 (±7) 64 (±7) 65 (±6) 59 (±8) 63 (±7) 60 (±7) 

LVEDVi (ml/m2) 73.4 (±13.8) 76.7 (±14.2) 75.0 (±13.9) 77.2 (±15.1) 76.9 (±14.8) 77.9 (±14.7) 

LVESVi (ml/m2) 30.8 (±9.2) 31.6 (±9.3) 30.8 (±8.8) 32.5 (±9,4) 31.9 (±10.5) 31.6 (±8.8) 

LVMi (g/m2) 49.1 (±9.6) 50.3 (±10.2) 48.6 (±9.7) 49.3 (±9.9) 48.3 (±10.1) 46.3 (±9.7) 

LVEF (%) 58.5 (±7.3)* 59.2 (±6.9) 59.3 (±6.7) 58.3 (±6.9) 59.0 (±6.7) 59.7 (±5.9) 

LVSVi (ml/m2) 42.7 (±8.3) 45.2 (±8.4)* 44.2 (±8.3) 44.7 (±8.9)* 45.1 (±8.2) 46.3 (±8.8) 

RVEDVi (ml/m2) 77.2 (±14.5) 80.1 (±14.9) 79.1 (±14.9) 81.2 (±16.1) 80.8 (±14.8) 83.1 (±16.2) 

RVESVi (ml/m2) 34.3 (±9.6) 34.8 (±9.7) 34.7 (±9.7) 36.3 (±10.4) 35.6 (±9.5) 36.8 (±10.5) 

RVEF (%) 56.0 (±6.9) 56.9 (±6.7) 56.5 (±6.8) 55.7 (±6.9) 56.3 (±6.4) 56.2 (±6.3) 

RVSVi (ml/m2) 42.9 (±8.2) 45.3 (±8.4) 44.4 (±8.5) 44.9 (±8.9) 45.2 (±8.3) 46.3 (±8.5) 

 LV: left ventricle, RV: right ventricle, EDV: end-diastolic volume, ESV: end-systolic volume, SV: 574 

stroke volume, EF: ejection fraction, LVM: left ventricle mass, i: indexed, absolute values divided by 575 
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body surface area (calculated according to Du Bois formula). Values are given as mean ± standard 576 

deviation for continuous variables, and count (%) for categorical variables. *: Indicates statistical 577 

differences with respect to the healthy subgroup according to Welch’s t-test. 578 

 579 

Table 2: Radiomics features selected for each risk factor. Features are presented in order of 580 

importance (accuracy using only one feature) in the model for each risk factor. 581 

CV risk factor Radiomics signature Feature type ROI Phase Alone 

High cholesterol Spherical disproportion Shape MYO ED 0.61 

Compactness Shape MYO ED 0.60 

Skewness First-order LV ED 0.59 

Informal measure of correlation Texture LV ES 0.57 

Gray level non-uniformity Texture RV ED 0.55 

Contrast Texture RV ES 0.52 

Diabetes Median First-order MYO ES 0.65 

Surface area to volume ratio Shape MYO ED 0.61 

Energy First-order LV ED 0.61 

Surface area Shape MYO ES 0.58 

Dependence variance Texture LV ED 0.57 

Large area high gray level emphasis Texture MYO ED 0.57 

Energy First-order LV ES 0.57 

Flatness Shape RV ED 0.56 

Surface area Shape LV ES 0.55 
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 ROI: region of interest, Alone: model performance using each radiomic feature individually, LV: 582 

left-ventricle, RV: right-ventricle, MYO: left ventricle myocardium, ED: end-diastolic. 583 

 584 

Max 2D diameter column Shape RV ED 0.50 

Difference average Texture LV ES 0.44 

Hypertension Surface area to volume ratio Shape MYO ED 0.61 

Percentile 10 First-order RV ES 0.58 

Informal measure of correlation Texture LV ES 0.55 

Dependence non-uniformity normalized Texture LV ED 0.54 

Size zone non-uniformity normalized Texture RV ED 0.54 

Current smokers Gray level non-uniformity Texture MYO ES 0.60 

Dependence entropy Texture LV ED 0.57 

Standard deviation First-order MYO ED 0.53 

Max 2D diameter column Shape RV ED 0.50 

Large dependence low gray level emphasis Texture RV ED 0.45 

Previous smokers Surface area to volume ratio Shape MYO ED 0.57 

Busyness Texture LV ES 0.54 

Run entropy Texture MYO ES 0.50 

Skewness First-order RV ES 0.50 

Run length non-uniformity Texture RV ED 0.49 

Zone variance Texture LV ED 0.49 
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 585 

Table 3: Values of the best radiomics features (Rad) and the conventional CMR indices (Conv). 586 

Feature values from risk groups and healthy individuals were statistically significantly different for 587 

all selected features (Bonferroni adjusted p-value < 0.05/684).  588 

S: shape, F: first-order, T: texture, SD: standard deviation, ACC: accuracy, CV: cardiovascular, 589 

MYO: LV myocardium, ED/ES: end-diastole/systole, LVM: left ventricular mass (in grams, g). 590 

 591 

 592 

 593 

 594 

 595 

 596 

CV risk factor Single most defining feature CV risk cohort Healthy cohort ACC 

Mean SD Mean SD 

High cholesterol Rad: Spherical disproportion MYO ED (S) 3.631 0.290 3.779 0.311 0.611 

Conv: LVM (g) 93.493 24.199 85.667 24.104 0.576 

Diabetes Rad: Median MYO ES (F) 67.887 9.058 74.652 10.514 0.658 

Conv: LVM (g) 97.856 24.250 85.931 25.024 0.605 

Hypertension Rad: Surface area to volume ratio MYO ED (S) 0.390 0.054 0.425 0.06 0.618 

Conv: LVM (g) 97.131 25.849 85.623 24.101 0.593 

Current smokers Rad: Gray level non uniformity MYO ES (T) 573.448 134.355 515.789 140.307 0.609 

Conv: LVM (g) 93.614 24.804 84.549 25.426 0.564 

Previous smokers Rad: Surface area to volume ratio MYO ED (S) 0.405 0.058 0.425 0.062 0.574 

Conv: LVM (g) 91.902 24.896 85.623 24.101 0.552 
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Table 4: Selected number of radiomic features used for each risk factor and their discriminative 597 

accuracy, and results obtained based on conventional imaging indices and size information. 598 

Risk factor Radiomics features Clinical indices 

# S/F/T LV/RV/MYO ED/ES ACC/AUC # LV/RV ACC/AUC 

High cholesterol 6 2/1/3 2/2/2 4/2 0.682/0.712 2 1/1 0.626/0.645 

Diabetes 11 5/3/3 5/2/4 6/5 0.782/0.803 4 3/1 0.681/0.704 

Hypertension 5 2/0/3 2/2/1 3/2 0.682/0.721 2 1/1 0.646/0.690 

Current smokers 5 1/1/3 1/2/2 5/0 0.675/0.675 3 2/1 0.628/0.648 

Previous smokers 6 1/1/4 2/2/2 3/3 0.612/0.626 2 1/1 0.579/0.599 

#: total selected number of features, S: shape features, F: first-order radiomics, T: texture features, 599 

LV: left ventricle, RV: right ventricle, MYO: Myocardium, ED: end-diastole, ES: end-systole, ACC: 600 

accuracy (prediction performance), AUC: area under the curve. 601 

 602 

Figures 603 

Figure 1: The data selection process. 604 

Figure 2: The proposed radiomics workflow 605 

Figure 3: Receiver operating characteristic curves for radiomics and conventional CMR indices 606 

models for the cardiovascular risk factor subgroups. AUC: area under the curve. 607 
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