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Abstract: Summary

Deep learning is a genre of machine learning that allows computational models to learn
representations of data with multiple levels of abstraction using numerous processing
layers. A distinctive feature of deep learning, compared to conventional machine
learning methods, is that it can generate appropriate models for tasks directly from the
raw data, removing the need for human-led feature extraction.

Medical images are particularly suited for deep learning applications. Deep learning
techniques have already demonstrated high performance in detection of diabetic
retinopathy on fundoscopic images and metastatic breast cancer cells on pathologic
images. In radiology, deep learning has the opportunity to provide improved accuracy
of image interpretation and diagnosis. Many groups are exploring the possibility of
using deep learning based applications to solve unmet clinical needs.

In chest imaging, there has been a large effort to develop and apply computer-aided
detection (CAD) systems for the detection of lung nodules on chest radiographs and
chest computed tomography. The essential limitation to CAD is an inability to learn
from new information. To overcome these deficiencies, many groups have turned to
deep learning approaches with promising results. In addition to nodule detection,
interstitial lung disease recognition, lesion segmentation, diagnosis and patient
outcomes have been addressed by deep learning approaches.
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The purpose of this review article is to cover the current state of the art for deep
learning approaches and its limitations, and some of the potential impact on the field of
radiology, with specific reference to chest imaging.
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U. Joseph Schoepf, M.D.  

Editor-in-Chief 

Journal of Thoracic Imaging 

 

June 1, 2018 

 

Dear Dr. Schoepf: 

 

We submit a manuscript entitled “Deep Learning Applications in Chest Imaging: Current 

State of the Art” for consideration of publication in Journal of Thoracic Imaging. This 

manuscript was invited to the IWPFI group for review article by Journal of 

Thoracic Imaging. 

 

This manuscript addressed the current state of the art for deep learning approaches 

and its limitations, and some of the potential impact on the field of radiology, especially in 

chest imaging. We presented basic concepts and applications of deep learning such as 

classification, segmentation, and detection. In chest imaging, chest radiography and 

chest CT is the mainstay of discussion and computer-aided detection system using deep 

learning was focused on. Furthermore, image normalization, disease pattern classification, 

and patient outcome prediction based on deep learning was also dealt with. 

Due to extensive search of literature, the number of references reached 94. 

 

This work has not been published previously or submitted elsewhere for review. All 

authors have read and approved this manuscript and none of the authors have 

conflicts of interest or financial disclosures. 

 

We thank you for your consideration of our manuscript and look forward to your decision 

concerning its suitability for publication. 

 

 

Sincerely, 

 

Cover Letter



Joon Beom Seo, MD  

 

Department of Radiology, 

University of Ulsan College of Medicine, Asan Medical Center, 

88 Olympic-ro 43 Gil, Songpa-gu, 

Seoul 138-736, Korea. 

E-mail: seojb@amc.seoul.kr 



Our detailed responses to the recommendations and comments of the reviewers are as follows. 

 

Reviewer #1: 

 

I would like to congratulate the authors on this excellent review. This is a well-written, 

coprehensive, clinically relevant overview of the current status of deep learning in chest 

imaging. The manuscript combinds an excellent introduction into the technical aspects of 

deep learning with expert knowledge of clinical chest radiology - a rare and precious 

combination. The literature review is up to date. Figures are informative and of high quality. 

Limitations and challenges are discussed adequately. 

 

I would suggest the authors comment in some more detail on two issues: 

 

1-1. In clinical practice, the (differential) diagnosis is greatly dependent on factors other than 

the imaging features of the examination at hand: reasons for the examination, comparison 

with previous studies, clinical information such as medical history, immune status, laboratory 

parameters etc. This adds a much greater complexity to the task that deep learning algorithms 

need to master. Please comment on how such challenges are being addressed in deep learning. 

 Thank you for your comment. We also believe that the diagnosis should be made in the 

clinical context using various information and deep learning based clinical decision support 

system should integrate information in the different domains. Although many groups have 

focused on medical imaging at present, efforts to add clinical or pathological information 

using deep learning network and determine the output has been made. For example, Suk et al. 

showed a deep learning-based method for Alzheimer’s Disease and Mild Cognitive 

Impairment diagnosis using multimodality information including CSF findings and Minimum 

Mental State Examination. We expect to see more advanced and flexible deep learning 

network dealing with various medial data in the near future.   

 

Reference: Suk HI, Shen D. Deep learning-based feature representation for AD/MCI 

classification. Med Image Comput Comput Assist Interv. 2013;16:583-590. 

 

1-2. Reference standard remains a major issue, especially in areas where the performance of 

human readers is poor (such as diagnosing pneumonia on a chest x-ray, distinguishing 

Response to Reviewers



different insterstitial lung diseases on chest CT). Whenever claims are made that deep 

learning algorithm have shown superior performance to human readers (also in various places 

in this manuscript), it should be made more transparent what exactly was used as the 

reference standard to train the algorithms - and the validity of the reference standard should 

be critically analyzed. 

 We understand and agree with your concern on ground truth issue. As you mentioned, 

some abnormalities cannot be definitely diagnosed in imaging modalities. Therefore, 

subspecialty radiology societies can play important roles in defining appropriate tasks for 

deep learning algorithms as well as assisting in making publicly available strongly labeled 

training data sets and validation datasets. 

 In term of performance of deep learning algorithm, we also agree with your opinion that 

careful and thorough validation is required and the validity of the reference standard should 

also be critically analyzed.



Reviewer #2: This review presents an overview of deep learning (DL) algorithms applied to 

chest radiography and CT images. 

 

2-1. As the main focus of this paper is on CT, I would suggest to change the title of the 

manuscript in: "Deep learning applications in chest radiography and CT: Current state of the 

art". Otherwise this title is in my opinion misleading the reader to expect a larger portion of 

e.g. MRI DL as well. 

 We followed your suggestion and made the appropriate change in the title page. 

 

2-2. In this regard, I would suggest to delete section III. CMR completely, because this does 

not fit in the review and more importantly is lacking a lot of references on MRI DL. 

I would also like to invite the authors to shortly comment about other radiological imaging 

technologies (MRI, PET, US) and their deep learning methods. In comparison to CT the other 

imaging technologies are way more challenging for DL applications because image content is 

not as consistent (image intensity, …) as in CT. Please also discuss this shortly. 

 We followed your suggestion and made the appropriate changes in pages 16, 17, 18, 31, 

and 32 of the annotated manuscript. 

 

Specific comments: 

 

2-3. Introduction: I do not fully agree with the statement "no a priori bias to the extraction", 

because there is a large bias depending on which architecture, loss function, training set etc. 

was chosen. The performance is at the moment a priori dependent on this defined setting. The 

authors commented on this part in the discussion, therefore I would rephrase this part. 

Otherwise readers might tend to think of DL as a magical tool which can generalize and 

perform any task. This should not be the statement of this review! 

 We followed your suggestion and made the appropriate change in page 3 of the annotated 

manuscript. 

 

it can extract fully automated features and generate appropriate models for tasks directly from 

the raw data on its own, removing the need for human-led feature extraction. There is no a 

priori bias given to the extraction process except for the desired outcomes, such as separation 



of image data into two or more groups. 

 

2-4. Introduction, 2nd paragraph: Typo "medical field, the application …." 

 We followed your suggestion and made the appropriate change in page 3 of the annotated 

manuscript. 

 

2-5. DL and CNN, 2nd paragraph: A CNN is not necessarily composed of convolutional, 

pooling and fully-connected layers. There exist CNNs with only convolution and softmax 

activation output. Please rephrase to "The architecture of a CNN can be composed..." 

 We followed your suggestion and made the appropriate change in page 5 of the annotated 

manuscript. 

 

2-6. DL and CNN, 2nd paragraph: I do not understand why a pooling layer should retain the 

shape and position of the detected semantic feature. The sole purpose of a pooling layer is to 

reduce the input to the next stage: coarse-to-fine feature extraction and reduction in trainable 

parameters. Please correct it. 

There are also other techniques besides pooling (dilated convolutions, convolutions with 

stride, …) which are worth to be mentioned. 

 We followed your suggestion and made the appropriate change in page 5 of the annotated 

manuscript. 

 

2-7. DL and CNN, last paragraph: "However, there is still concern that deep learning is 

overhyped and that we still need rigorous clinical validation of this technology." 

This statement reads at the moment as if rigorous clinical validation is not necessarily needed. 

I don't think that this was the intended message?! Please rephrase it. 

 We followed your suggestion and made the appropriate change in page 4 of the annotated 

manuscript. 

 

2-8. Classification: The authors should better clarify that at the moment there are several 

different "building blocks" available which were introduced by the respective architectures 

(VGG, ResNet, Vnet, ...): conv, pooling, BN, inception, atrous conv, dilated conv, residual, 

dense, …). Current DL architecture designs use combinations of these building blocks to 



perform the desired tasks - instead of relying on the bare previously proposed architecture. 

 We followed your suggestion and made the appropriate change in page 6 of the annotated 

manuscript. 

 

2-9. Perspective, challenges, …: There have also been other work which provided a feedback 

to the reader: Kuestner et al. MRI 2018 (10.1016/j.mri.2018.07.003), Lorente et al. ISBI 2014 

(10.1109/ISBI.2014.6868128). Please cite them as well. 

 Thank you for your suggestion, but, we are afraid that the two articles which you 

recommended are out of our scope.  
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Summary 

Deep learning is a genre of machine learning that allows computational models to learn 

representations of data with multiple levels of abstraction using numerous processing 

layers. A distinctive feature of deep learning, compared to conventional machine learning 

methods, is that it can generate appropriate models for tasks directly from the raw data, 

removing the need for human-led feature extraction.  

Medical images are particularly suited for deep learning applications. Deep learning 

techniques have already demonstrated high performance in detection of diabetic 

retinopathy on fundoscopic images and metastatic breast cancer cells on pathologic 

images. In radiology, deep learning has the opportunity to provide improved accuracy of 

image interpretation and diagnosis. Many groups are exploring the possibility of using deep 

learning based applications to solve unmet clinical needs.  

In chest imaging, there has been a large effort to develop and apply computer-aided 

detection (CAD) systems for the detection of lung nodules on chest radiographs and chest 

computed tomography. The essential limitation to CAD is an inability to learn from new 

information. To overcome these deficiencies, many groups have turned to deep learning 

approaches with promising results. In addition to nodule detection, interstitial lung disease 

recognition, lesion segmentation, diagnosis and patient outcomes have been addressed by 

deep learning approaches.  

The purpose of this review article is to cover the current state of the art for deep learning 

approaches and its limitations, and some of the potential impact on the field of radiology, 

with specific reference to chest imaging. 

 

Keywords 

Chest imaging; Machine learning; Deep learning; Radiography; Computed tomography; 

Magnetic resonance imaging 

  



Introduction 

Deep learning is a genre of machine learning that allows computational models to 

learn representations of data with multiple levels of abstraction through the use of a 

number of unique processing layers 1. The most distinctive feature of deep learning, 

compared to the conventional machine learning methods, is that it can extract fully 

automated features and generate appropriate models for tasks directly from the raw data 

on its own, removing the need for human-led feature extraction. There is no a priori bias 

given to the extraction process except for the desired outcomes, such as separation of 

image data into two or more groups. 

In recent years, deep learning methods have shown breakthroughs in various fields 

including image recognition 2, speech recognition 3 as well as information technology. 

However, in the medial medical field, the application of deep learning is currently in its 

infancy. Medical images and their respective patient electronic medical records are well 

suited for analysis by deep learning. Some of the first successful demonstrations of deep 

learning techniques were reported in the detection of lymph node metastasis from 

hematoxylin and eosin stained pathologic micrographs, analysis of skin cancer from 

photographs of the lesion, and the diagnosis of diabetic retinopathy from fundoscopic 

images 4-7. 

In radiology, deep learning will help to improve efficiency by automated image 

interpretation and generation of an appropriate differential diagnosis. Data mining of the 

patient’s electronic medical record data (big data) combined with deep learning applied to 

the patient’s medical images should help to improve patient outcomes. Cloud based 

applications also allow the deep learning algorithm to continuously learn on data sets that 

are not restricted to a single institution. Many groups are now exploring deep learning-

based applications for solutions to unmet clinical needs. In chest imaging, significant effort 

has been directed at developing and applying computer-aided detection (CAD) 8 systems 

for the detection of  nodules on chest radiographs and chest computed tomography (CT) 

9, 10. Although many CAD systems are being used in clinical practice, the implementation 

of CAD has not been widely accepted due to its poor performance (i.e. frequent false 
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positive and false negative cases). Deep learning approaches have the potential to 

overcome the limitations of existing CAD systems, with several studies showing promising 

results 11, 12. Moreover, disease pattern recognition, lesion segmentation, diagnosis and 

survival prediction have been successfully studied using deep learning in chest imaging 13. 

However, there is still concern on this technology in terms of clinical applicationthat deep 

learning is overhyped and that we still need rigorous clinical validation of this technology.  

In this review article, we introduce the principle methods of deep learning, their 

potential applications and clinical promise in chest imaging. 
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Deep Learning and Convolutional Neural Networks 

Machine learning is defined as a set of methods that can automatically detect 

patterns in data, and then utilize the uncovered patterns to classify, predict, or conduct 

various types of decision making under uncertain conditions 14. Conventional machine 

learning techniques rely on extensive data engineering and considerable domain expertise 

to design a “feature extractor” algorithm that converts the raw data into suitable 

representations for computational analysis. A convolutional neural network (CNN) is a 

special type of deep learning and is quite similar to the overall learning process (e.g. 

neuronal pruning) of the mammalian visual cortex 15, and is responsible for the recent 

improvements in the field of computer vision (e.g. self-driving automobiles). With the 

availability of large datasets and increased computing power, CNNs have produced 

promising results for many tasks including image classification, correct image detection, 

correct image segmentation and understanding speech (e.g. natural language processing). 

The architecture of a typical CNN isa CNN can be composed of convolutional, 

pooling, and fully connected layers (Figure 1): (1) the convolutional layers detect 

distinctive local motifs by applying multiple filters and generating multiple feature maps, 

(2) the pooling layers effectively reduce the dimensions of feature maps (other techniques 

such as dilated convolutions, convolutions with stride can also be used), and robustly 

retains the shape and position of detected semantic features within the image, (3) the 

fully connected layers integrate all feature responses and eventually project onto an output 

layer which serves to answer the task at hand. By using deep CNN architecture (repeating 

the convolutional and pooling layers several times) to mimic the natural neuromorphic 

multi-layer network, deep learning can automatically and adaptively learn a hierarchical 

representation of patterns and consequently identify the most significant features for a 

given task 2. In order to deal with complex tasks, networks with many layers – so called 

Deep Networks – are required. However, adding additional layers increases the number of 

parameters in the model and can make it more difficult to train it for a specific task without 

overfitting the data. 
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1. Classification 

One key task for radiologists is creating an appropriate differential diagnosis for 

each patient’s medical images. This job can be computationally defined as a typical 

classification task using input from medical images and any available clinical information. 

There are many different CNN network architectures for classifying images. In order to 

improve the efficiency of the training procedure and reduce the number of parameters, 

the deeper networks have introduced more effective subroutines - “building blocks”. These 

building blocks are small branching/spanning convolution blocks with pooling and batch 

normalization layers, which can be repeated to construct deeper architectures 16. VGG19 

17 used small and fixed size kernels in each layer to win the ImageNet challenge of 2014. 

Another CNN named GoogLeNet ( i.e. “ Inception”) 18 made use of the building block that 

is a multi-level feature extractor with a set of convolutions of different sizes. ResNet 19, 

which won the ImageNet challenge of 2015, introduced the subroutine of a  “residual 

building block”  which was designed to learn the residual (e.g. features that remain 

important) in order to make it easier to train deeper neural networks. This residual block 

was implemented by adding the input of the block to the output of the layers within the 

block (Figure 2). Since 2014, the performance on the ImageNet benchmark has saturated, 

but use of these architectures remains popular for medical image processing. 

Moreover, these days, various combinations of these building blocks are used to 

construct deep learning architectures for the desired tasks, instead of relying on the bare 

previously proposed architecture.  

 

2. Segmentation 

The innovations of object classification have now shifted to semantic segmentation. 

This is a common task for both natural and medical image analysis whereby each voxel is 

classified in an image to determine the boundary conditions that define a specific object. 

The fully convolutional network (FCN) 20 represents a critical breakthrough for deep 

learning based semantic segmentation. In a FCN, the fully connected layers in the standard 

CNNs are replaced by convolutions with large receptive fields. This method achieves this 
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segmentation by using coarse class score maps obtained by feed forwarding an input 

image. U-Net 21, which is the most well-known segmentation architecture in medical image 

analysis, combines an equal amount of upsampling and downsampling layers with skip 

connections between opposing convolution and deconvolution layers. Mask Region-based 

CNN (R-CNN) 22 detects objects in an image while simultaneously generating segmentation 

masks for each instance. This method has achieved the state-of-the-art performance on 

Microsoft Common Objects in Context 23. 

 

3. Detection 

The detection of objects of interest (i.e. lesions) is a key part of diagnosis and is 

one of the most labor-intensive tasks for radiologists. Several CNN network architectures 

have been shown to be able to detect a variety of objects quickly and accurately. R-CNN 

24 combines region proposals (from a defined set of candidate detections) with CNNs and 

has then been improved to Fast R-CNN 25 and Faster R-CNN 26 with better performance. 

There are a few methods that computationally approach the problem of image detection 

by using multivariate regression; two of the most popular CNNs are You only look once 

(YOLO) 27 and Single shot multibox detector (SSD) 28, successfully predicting bounding 

boxes and classification probability. 

 

4. Generative Model 

Generative adversarial networks (GANs) have the advantage of automatically 

producing new images (e.g. synthetic image data) similar to samples from the training set 

by using two competing CNNs where one is generating artificial samples and the other is 

discriminating artificial from real samples 29 (Figure 3). These GANs could be trained end-

to-end and learn representative features in a completely unsupervised manner. The 

representations learned by GANs are employed in various applications including medical 

image syntheses 30, 31, image normalization 32, 33, and super-resolution 34, 35. 

 

  



Applications in Chest Imaging 

 

I. Chest Radiography 

Chest radiography is the most commonly performed diagnostic imaging procedure 

and over 35 million chest radiographs are performed each year in the United States alone 

and the average radiologist reads more than 100 chest radiograph exams per day 36. 

Although these exams are clinically useful, efficient, and cost-effective, chest radiography 

consists of complex 3-dimensional anatomic information condensed in a 2-dimensional 

projection. Accurate interpretation of chest radiographs requires a great deal of experience 

and medical knowledge on the part of the radiologist. Increased radiologist work-loads 

combined with the intrinsic challenges of interpreting chest radiographs is associated with 

considerable inter- and intra-reader variability, missed lesions, and  reporting delays in 

today’s medical practice 8. Deep learning technology has the potential to automatically 

detect abnormalities or assist radiologists in reading chest radiographs. Such technology 

would be very attractive for rural areas with few radiologists as well as for state-of-the-art 

medical centers to help support high volume workflows and improve efficiency of the 

radiology departments 12. 

 

1. Lung Nodule Detection 

Lung nodule detection from chest radiographs is another promising area for the 

application of deep learning technology. Lung cancer is the leading cause of cancer death 

worldwide and chest radiography has been the most widely adopted screening and imaging 

tool to detect lung cancer. However, unfortunately, due to the confounding effects of 

anatomic complexity on chest radiographs, lung cancer screening using plain chest film 

has yielded unsatisfying results, with reports of missed nodules being as high as 40% 37, 

38.  

CAD systems have been developed to help radiologists detect lung nodules. 

Recently this method has shown a sensitivity of 71% with 1.3 false-positive CAD marks 

per image39. Using bone-suppressed dual energy chest radiographs, another stand-alone 



CAD system achieved a sensitivity of 74% with a 1.0 false-positive CAD mark per image 

9. In the setting of follow-up of patients with previous cancer (of any type), another CAD 

system showed promise by improving sensitivity from 63% to 92% for detection of lung 

nodules while only slightly decreasing specificity (from 98% to 96%) 40. Although there 

has been improvement in CAD nodule detection on chest radiograph, these methods still 

need better accuracy before they are routinely accepted. 

Recently CAD systems using deep learning techniques have shown improved 

accuracy for nodule detection on chest radiograph. A deep learning based technique 

identified by Wang et al. extracted deep learning features by transfer learning and 

combined them with traditional hand-crafted features. This CAD system achieved a higher 

sensitivity (69.3%) for nodule detection at a significantly lower false positive rate (1.19 

false positive marks per exam) 41. There is a recent report using CNN with visual attention 

networks generating respective accuracies of 0.76 for nodule detection and 0.65 for nodule 

localization on chest radiographs 42. 

 

2. Diagnosis of Tuberculosis 

Another specific field of research with great potential benefit to public health is 

utilizing deep learning technology for the diagnosis of pulmonary mycobacterium 

tuberculosis (TB) based on chest radiography. TB is an infectious disease caused by the 

acid fast (i.e. outer capsule appears red on hematoxylin and eosin staining) bacillus 

mycobacterium tuberculosis. In western countries, it is often thought as a “disease of the 

past”, but TB is still a major health problem in the developing world, with millions of new 

cases encountered every year.  

While the diagnosis of TB can be confirmed by bacteriology or the whole blood 

gamma interferon release assay (Quantiferon Gold, Qiagen), chest radiography is a highly 

sensitive imaging tool for triaging and screening for current and previous pulmonary TB 

infection. This organism is very difficult to culture in vitro and is often not able to be 

confirmed bacteriologically 43. In locations where the prevalence of TB is high, there are a 

limited number of experienced chest radiologists available to use chest radiography as a 



method to confirm this disease. This shortage impairs screening efficacy and limits the 

opportunity to start medical therapy for a complete recovery 44. Therefore, considerable 

effort developing CAD systems for the detection of pulmonary TB on chest radiographs has 

been extended. Traditional CAD systems without deep learning technology have shown 

acceptable TB detection performance with an area under the curve ranging from 0.71 to 

0.84 45.  

Recently Lakhani et al. reported the performance of CAD using CNN for detection 

of pulmonary TB 12 and in that study, the CAD system reached an AUC of 0.99, which is 

greater than any previously reported CAD system. Although external validation is still 

needed to determine the true clinical benefit, CNN based CAD is a feasible and promising 

approach in this clinical scenario.   

 

3. Multiple Abnormal Pattern detection 

Although the detection of lung nodules and TB on chest radiographs has gained 

attention for many deep learning researchers, these findings can be relatively rare. Each 

chest radiograph may contain many abnormalities, for example: pneumonia, pleural 

effusions, pneumothorax, medical devices and cardiomegaly (Figure 4, 5). Therefore, 

facilitating deep learning technology to detect multiple abnormal patterns (MAP), rather 

than concentrating simply on nodules or TB would be more clinically practical.       

Emergence of deep learning has drastically improved the performance of machine 

learning for object recognition, detection, and localization when compared to previous 

methodologies. Critical to the success of these methods are well-annotated (“strongly 

labeled”) large datasets for effective system training. Recently two large datasets of chest 

radiographs, Open-I and ChestX-ray14, consisting of more than 110,000 chest radiographs 

from 30,805 patients, have been publicly released and have attracted considerable 

attention in the deep learning community. These publicly available data are external 

validation sets for any deep learning application using chest radiographs 

In 2017, Wang et al. trained various known CNN models to detect 8 abnormal 

patterns (atelectasis, cardiomegaly, effusion, infiltration, mass, nodules, pneumonia, 



pneumothorax) on chest radiographs and achieved accuracy ranging from 0.56 to 0.78 46. 

Another study by Cicero et al. reported that a retrospective analysis of 35,038 chest 

radiographs from a single medical center using CNN (GoogLeNet), they were able to obtain 

MAP classification accuracy of 0.88 11. MAP detection in CXR with deep learning technology 

is still an area of active ongoing research and different methodologies are being tested 

and validated, and overall accuracy will likely improve. 

 

II. Chest Computed Tomography 

Unlike chest radiographs, chest CT provides cross-sectional images, allowing for 

direct 3-dimensional visualization of anatomic structures. Chest CT has a much higher 

sensitivity and lower inter-reader variability for detection of lung abnormalities and is 

frequently employed in the diagnosis and follow-up of most pulmonary diseases. 

Additionally, enhanced clinical availability, decreased cost, reduced radiation dose, and 

overall technical improvements of CT machines have resulted in a progressive increase in 

numbers of CT exams performed each year. Therefore, effective CAD system for chest CT 

interpretation would promote overall workflow for radiologists, by reducing the time 

required to read each CT exam and enhance reading accuracy. 

 

1. Nodule Detection / Screening 

Accurate nodule detection on chest CT has become a recent point of emphasis for 

efficient lung cancer screening. Despite advances in cancer treatment and screening 

programs, most lung cancer patients are still initially diagnosed at an advanced stage of 

the disease, which is associated with less than 20% 5-year survival 47.  

Since the National Lung Screening Trial (NLST) announced a significant 

improvement (20%) in lung cancer mortality in high-risk populations when screened with 

low-dose chest CT (LDCT) 48, LDCT for cancer screening has been widely accepted 49. 

Potentially this will lead to an increased volume of LDCT, which will require expert analysis 

from a radiologist for the detection and classification of nodules into either benign or 

malignant diagnoses.  



A CAD system could aid radiologists in both detection and classification of lung 

nodules (Figure 6). Although traditional CAD systems have provided solid results, they 

often consist of complex pipelines of algorithms that depend heavily on manual human 

input such as pre-processing, segmentation, feature extraction, and model training, 

potentially hindering their performance 50. Application of deep learning technology, on the 

other hand, can potentially remove innate challenges in traditional CAD systems by 

providing seamless feature identification and classification and removing the need for 

complex human-led feature extraction pipelines. 

In 2011, the Lung Image Database Consortium (LIDC) database, containing 1018 

cases of thoracic CT scans and image annotations by 4 thoracic radiologists, was released 

and has motivated deep learning researchers to develop CAD systems for chest CT nodule 

detection and classification 51. CNNs are the most commonly utilized deep learning 

technology for lung nodule detection on CT images, and achieves good nodule detection 

sensitivity while maintaining an acceptable false positive rate. The first report of CAD 

system with deep learning technology for lung nodule detection on CT was Hua et al. in 

2015, achieving sensitivity of 73% and specificity of 80%, which was superior to any other 

available conventional CAD systems 52. In 2016, Setio et al. trained CNN to detect 

pulmonary nodules and achieved 85.4% sensitivity with only one false positive lesion per 

scan 53. Studies that are more recent have shown the ability of CNNs to boost nodule 

detection sensitivity on CT to a higher level (95%) but were associated with a wide range 

(1.17 - 22.4) of false positive rates 54-56. 

Classification of detected lung nodules is also a potential area that could benefit 

from the use of CAD systems. CT characteristics of a lung nodule, mainly nodule type and 

size, are closely associated with the likelihood of malignancy. These CT features are 

important determinants for planning treatment and follow up strategy. However, there is 

considerable observer variability in classification of pulmonary nodules among radiologists 

and this can lead to redundant follow-up examinations, unnecessary invasive procedures, 

or neglected malignancy 57. In 2017, Ciompi et al. introduced a deep learning system that 

achieved good performance for nodule type classification based on lung-RADS system and 



was even within the inter-observer variability among four experienced human readers 58. 

Furthermore, one study found that nodule classification accuracy of CAD system was 

improved by combining deep residual learning, curriculum learning, and transfer learning 

59. Other studies using different CNN models have  achieved a classification accuracy as 

high as 87.1% 60, 61. 

 

2. Interstitial Lung Disease 

Interstitial lung disease (ILD) pattern classification is another area of research for 

deep learning technology. ILD is characterized by progressive fibrosis or inflammation of 

lung tissue and eventual deterioration of respiratory function 62. Accurate diagnosis of ILD 

presents a challenge for the multidisciplinary medical panel at each institution that cares 

for these disorders because most ILDs have similar clinical manifestations, despite the fact 

that they are a histologically heterogeneous group of diseases with distinct prognoses.  

High-resolution CT (HRCT) is currently the diagnostic imaging tool of choice for 

the diagnosis and evaluation of ILDs. However, ILDs have similar appearance on CT and 

CT readings are prone to high inter- and intra-observer variability 63. Therefore, automatic 

identification and classification of different ILD patterns on chest CT may be helpful even 

for experienced chest radiologists, and application of deep learning technology could play 

an eminent role in developing such CAD systems. Segmentation of the lung with ILD could 

be enhanced by semantic segmentation with CNN 64. In 2016, deep learning technology 

with CNN showed accuracy of 85% for classifying 6 different ILD patterns in dataset of 

14,696 image patches 65. In 2017, Kim et al. compared shallow and deep learning methods 

on classifying six ILD patterns on CT and found that deep learning methods showed 

significantly better accuracy and that accuracy was further increased with addition of more 

convolution layers 66 (Figure 7).  More recently, a new CNN method achieved an ILD 

pattern classification accuracy of 87.9% using the holistic input of the entire CT data set 

67. Moreover, CAD methodology demonstrated a prognostic ability of lung function decline 

using quantifiable ILD on CT studies 68. 

 



 

3. Chronic Obstructive Pulmonary Disease 

A more basic field of application for deep learning technology is the segmentation 

and reconstruction of organs-of-interest from chest CT scans. Organ segmentation usually 

is the first step of many CAD systems, even those using deep learning methods, and 

accuracy of segmentation process is critical because any errors in this process would affect 

all the subsequent analysis. Various methods for organ segmentation have been developed 

and tested, showing promising results, but deep-learning based models could potentially 

improve methodological robustness and generalizability across imaging platforms, thus 

providing outcomes that are more reliable.  

In 2017, Harrison et al. developed a deep model called progressive holistically-

nested networks (P-HNNs) and reported that their P-HNNs model showed significant 

improvements of lung segmentation performance compared to previous segmentation 

approaches 69. As for lobar segmentation, traditional methods are semi-automatic at best 

and largely relied on airway or vessel anatomy to delineate the lobar borders, with only 

few exceptions 70. To address these problems, a deep learning method for lobe 

segmentation was introduced in 2017 and this method achieved high accuracy without 

reliance on prior airway or vessel segmentations, even when tested in lungs that had 

underlying disease 71, 72 (Figure 8). 

Aside from lung tissue segmentation, robust and reliable airway segmentation is 

also essential for quantitative evaluation of various diseases involving the airways, such 

as chronic obstructive pulmonary disease (Figure 9). A large number of prior methods 

have common limitations that they are substantially influenced by morphologic changes in 

airway trees and measurement errors, such as airway leak that are most prevalent at 

smaller (or more peripheral) airways 73. In fact, 15 different traditional algorithms were 

evaluated at an airway segmentation challenge in 2009 (EXACT 09), and precise 

delineation of a small bronchus without airway measurement leaks remained a common 

unsolved problem from this challenge 74. In 2017, a deep learning method was developed 

and tested using a dataset from EXACT 09, and found that CNN significantly decreased 



airway leaks during segmentation process, resulting in higher sensitivity and specificity 

compared to all the other algorithms that participated in the EXACT 09 challenge 75. In 

another study, even with incompletely annotated data, 3D deep fully convolutional 

networks demonstrated considerable improvements in airway segmentation while 

maintaining acceptable quantity of airway leaks 76. 

 

4. Image Normalization 

The reconstruction kernel is one of the most important technical parameters that 

determine the trade-off between spatial resolution and image noise in CT 77. Since the 

selection of kernel affects quantitative analysis 78, CT images with different reconstruction 

kernels are necessary for various diagnostic or quantitative purposes. To overcome the 

limitation that it is difficult to save the raw data before reconstruction with various kernels, 

post-processing techniques have been developed to permit interconversion among CT 

images obtained with different kernels. Kim et al. 79 recently demonstrated that CNNs 

could be taught differences between high- and low-resolution images (residual images) 

and then they could be used to accurately and rapidly convert low-resolution images to 

high-resolution images. This approach is also applicable for interconverting CT images 

obtained using different kernels (Figure 10). 

 

5. Radiomics and Deep Survival 

Radiomics and prediction of patient outcomes (a.k.a.” deep survival”) are also 

active areas of research for the application of deep learning technology. Radiomics, which 

has gained substantial interest from researchers around the globe, involves the high-

throughput extraction of quantitative features from medical images to develop reliable 

models to predict genomic information, clinical outcomes, and survival 80. Extraction of 

radiomics features is a critical process in radiomics research and the majority of previous 

studies use handcrafted features, which are limited by current medical knowledge and 

human observation. On the other hand, CNN and transfer learning can be incorporated 

into radiomics models to extract more diverse features (deep features), which are free 



from prerequisite medical knowledge and biases. In this context, Lao et al. extracted 

98,304 deep features (this would qualify as an example of over-fitting of the data) from 

images of glioblastoma multiforme and found 6 deep features that could predict overall 

survival with a concordance index of 0.71 81.  

In chest imaging, Paul et al. combined deep features of lung nodules detected on 

chest CT with traditional radiomics features to predict  the probability of a malignant 

nodule and reported an overall accuracy of 76.8% and an AUC of 0.87 82. Another group 

used  CNN to predict patient outcomes in a large cohorts of smokers and COPD patients 

and the CNN model predicted mortality with fair discrimination 13. Deep radiomics and 

deep survival are promising new fields for study.  

 

III. Cardiac Function Assessment 

 

Cardiovascular magnetic resonance (CMR)   

Cardiac mass and function are key parameters for diagnosis, monitoring and 

prognosis for numerous cardiac pathologies in clinical practice 83. Currently the clinical 

workflow for reading CMR studies is prolonged by the time-consuming semi-automated 

extraction of biventricular mass and function assessments, which require user interaction. 

Therefore, the human expert is still a factor for variability of cardiac function 

measurements especially between observers with different segmentation styles in multi-

center multi-vendor settings 84. Novel deep learning CNNs are expected to provide the 

potential to overcome human variability and reduce the time required for analysis. 

The fully automated measurement of cardiac metrics from CMR exams is a 

particularly attractive problem, but previous attempts have been confounded by 

endocardial or epicardial border-tracking difficulties and have proved to be inaccurate  85, 

86. Novel machine learning approaches 87-89 are among the most successful methods for 

automated image segmentation of 2D short axis cardiac cine MRI stacks. Recently, Winther 

et al. developed ν-net CNN, which achieved equal or better performance compared to the 

human expert readers in a multicenter multivendor data set 87. Especially in the 



anatomically complex right ventricle, the performance of ν-net was superior (Figure 11). 

Also they could show that systematic differences between observers could be adjusted to 

account for different segmentation styles 90. Using the fact that the prediction of a 

segmentation on one slice is dependent upon the already existing segmentation of an 

adjacent slice, Zheng et al.  also achieved comparable or even better than the state-of-

the-art results with data from the UK Biobank and three other cohorts 91. Their method 

combines the strengths of 2D CNN methods but still addresses key 3D issues. Currently, 

high quality data from human experts (Strongly labeled and/or ground truth) is still needed 

to adequately train CNNs for the automated generation of CMR cardiovascular metrics. 

While guidelines already exist, further harmonization of segmentation methods between 

human experts and different sites are needed 92. 

As CMR analysis software companies become more heavily invested in artificial 

intelligence, machine-learning approaches will begin to enter routine clinical application. 

These post-processing tools will minimize the need for direct expert reader manipulation 

and thereby drastically reduce physician time to interpret these exams. The expert reader 

will simply be able to conduct a quality assessment of the fully automated segmentation 

results and interpret the functional cardiac MRI parameters in their appropriate clinical 

context. In the future, deep learning algorithms will automatically extract regional wall 

motion/strain, infarct size as well as T1 and T2 relaxation times, which are often not 

assessed due to time constraints. 

 

  

Commented [이상8]: R2-2 



Perspective, Challenges, and Limitations 

In this manuscript, we reviewed basic concepts of deep learning and its various 

applications in chest radiography and CTimaging. In comparison to CT, MRI is more 

challenging for deep learning application because there is no pulse sequence dependent 

standardized intensity scale like the Hounsfield units in CT 93. The application of this new 

technology to radiology has barely started, but it has shown remarkable results when 

compared with previous studies. We believe that these improvements in performance will 

soon offer new possibilities for the clinical practice of radiology.  

The first deep learning based CAD application may be used to find critical findings 

on chest radiograph and triage the worklist before a radiologist’s read. In brain CT, 

Prevedello et al. 94 already demonstrated that deep learning based algorithm could 

automatically identify critical findings and notify the interpreting radiologist. Furthermore, 

if the performance of CAD can be clinically acceptable in terms of prioritization of chest 

radiograph, it implies that deep learning based CAD have potential to differentiate normal 

chest radiographs from grossly abnormal exams. Thus, deep learning based CAD should 

improve the workflow and efficiency of radiology departments. 

Second, CAD can help diagnosis of disease such as ILD and generate a preliminary 

quantitative report based on CAD results. This CAD report is repeatable with the same 

results and has no “intra-reader” variability. CAD combined with big data technology may 

retrieve similar images or diagnosis when radiologists require during interpretation of CT.  

It can also help to reduce the reading time.  

Third, automation of lesion detection, segmentation, quantification by deep 

learning techniques facilitates reporting of the quantitative analysis of medical images 

more easily. Deep learning based segmentation tool improves accuracy and decreases 

image interpretation time. Furthermore, these data will likely provide improve the 

prediction of patient outcomes and risk stratification. 

However, there are still many challenges to overcome. Currently, training deep 

learning algorithms requires large, strongly labeled and anonymized image datasets. 

These data sets are very challenging to acquire. While some abnormalities such as 
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pneumothorax and malpositioned lines/tubes can be based upon imaging findings alone, 

most diseases require clinical documentation and/or pathological confirmation. Ambiguous 

or overlapping radiographic terms such as “consolidation” and “infiltrate” should not be 

used as surrogates for pneumonia to label training cases. This has been recognized as a 

limitation of some publically available datasets. National organizations (e.g. ACR, RSNA) 

and subspecialty radiology societies can play important roles in defining appropriate tasks 

for deep learning algorithms, as well as assisting in making publicly available strongly 

labeled training data sets and validation data sets. 

Futhermore, the challenges regarding the ethical and legal aspects of data sharing 

and patient privacy are also paramount. There are severe monetary penalties (i.e. fines) 

in the United States of America 95 for any medical facility that allows compromise of 

personal health information/images. In the USA, the Health Insurance Portability and 

Accountability Act (HIPPA) governs any use of a patient’s health information; as such, it is 

of critical importance that these imaging and medical data that are used for training, 

testing and validation of deep learning methods are fully anonymized and comply with this 

law. New data protection laws have also been introduced throughout Europe. As deep 

learning requires an enormous amount of high-quality data, the laws governing the safe 

handling of medical images and medical record data need to be followed. New technology, 

such as Blockchain, may be helpful in guarantying secure data sharing. 

Lastly, we should demand a thorough and systematic clinical validation of any deep 

learning based applications as a prerequisite to commercial application. A well-known 

problem with these methods is overfitting and lack of utility when asked to analyze other 

data sets (e.g. poor interoperability). Most machine learning publications have shown their 

results in carefully preselected and enriched test sets (e.g. spiked to favor that algorithm 

with a higher prevalence of the condition than is found clinically). Thus, beyond just 

determining the feasibility of using any deep learning application in a test set chosen by 

the author, each deep learning application should be tested by a publicly available external 

validation set. We believe that this should be a requirement for any commercially approved 

deep learning method. 



 

Conclusion 

The application of deep learning methodology to help solving many tasks associated 

with medical imaging is at its infancy.  While there are problems with every disruptive 

technological innovation, we believe that deep learning will soon be an indispensable tool 

for radiology. This is analogous to how the picture archiving communication systems and 

radiology information systems have transformed medical imaging and improved radiology 

while at the same time decreasing the cost of medical care. Reasonable expectations for 

this disruptive technology are needed, along with careful attention to any ethical, legal, 

and regulatory issues that may arise. This technology will enable radiologists to become 

more productive and improve patient care. The full potential of this technology will require 

radiologists to have an active role in governing its successful introduction to the clinic.   
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Figure legends 

 

Figure 1. Architecture of convolutional neural network (CNN): (a) A CNN is comprised of 

one or more convolutional layers (often with a pooling layer) and then followed by one or 

more fully connected layers, (b) the convolutional layers compute the sum of the element-

wise multiplication between the input image and multiple filters (i.e. kernel) to detect 

distinctive local motifs, (c) the pooling layers, which is a form of non-linear down-sampling 

(e.g. max and average pooling), serve to progressively reduce the spatial size of the 

representation and  reduce the number of parameters and amount of computation in the 

network; this process helps to limit overfitting of the data. 

Figure 2. By a skip connection (i.e. identity mapping) and element-wise addition, a 

residual block makes it easier to train a deeper network without extra parameter and 

computational complexity. 

Figure 3. Generative adversarial networks (GAN)s consist of a generator and a 

discriminator, wherein the generator aims to generate sample (synthetic images) that 

resemble those in the training data while the discriminator tries to distinguish between the 

two. 

Figure 4. A model for detecting five kinds of pulmonary abnormalities (including nodule 

(ND), consolidation (CS), interstitial opacity (IO), pleural effusion (PE), and pneumothorax 

(PT)) on chest radiograh with weak labeled data, which indicate the presence of 

abnormalities’ labels only. Upper rows of each case depict the regions of interest labeled 

by radiologists, and lower rows show the class activation map (CAM). Localization of 

trained abnormal patterns through CAM could assist radiologists to diagnose lung diseases 

much easier. 

Figure 5. Detection of multiple abnormal lesions on chest radiograh. A CNN model was 

trained with strongly labeled data, which indicates not only the type of abnormalities but 

also their locations and boundaries. Multiple lesions were detected in the whole lung 



images, and detected regions matched with those of interest delineated by radiologists. 

This approach could assist radiologists to diagnose and monitor multiple lesions of whole 

lung. 

Figure 6. A method for detecting multi-scale nodules. By Training with RGB color images 

that were comprised of three adjacent slice in the axial plane, we detected nodules of 

various sizes. (a)-(d) depict the detected nodules with sizes of 3.4 mm, 5.6 mm, 9.8 mm, 

and 14.4 mm, respectively. 

Figure 7. Regional image patterns of Diffuse interstitial Lung Disease (DILD) using 3D 

CNN. Since the diagnosis of DILD shows significant variation in inter- and intra-observer 

interpretation due to a lack of standard criteria and a burden of reviewing a large amount 

of data, CNN based automated classification on voxel-by-voxel basis is necessary for the 

quantification of disease extent and distribution of DILD. 

Figure 8. We employed 3D U-Net (a typical type of 3D CNN) to develop a robust lobe 

segmentation. This approach also performed well in the fake and incomplete fissures, since 

this network was trained on lobe-by-lobe expert human training set. 

Figure 9. The fully automated airway segmentation method in a patient with chronic 

obstructive lung disease (a), which started from (b) the initial airways by using the region 

growing method. (c) Our method achieved a high sensitivity at a low false positive rate 

with fast execution time (2-8 min). (d) Manual segmentation usually required 1-2 hours 

by an experienced research assistant. 

Figure 10. Conversion of CT images reconstructed with one kernel to images with 

different kernels without using a sinogram: (a) CNN architecture for CT kernel conversion. 

(b)-(c) CT images reconstructed with B10f and B70f, respectively. (d) A CT image 

interconverted from B10f to B70f using (a). (e)-(f) Difference images between (b)-(c) and 

(b)-(d), respectively. 

Figure 11. A selection of images of the Hannover Medical School (MHH), MICCAI 2009 LV 



Segmentation Challenge (LVSC), and the Right Ventricular Segmentation Challenge (RVSC) 

data sets. From the left to the right column, the images depict the MR image, the predicted 

segmentation, the ground truth segmentation and the difference between ground truth 

and prediction, where the error is denoted in red. The upper two rows show good 

agreement between the predicted segmentation by v-net and the ground truth at the apex 

and the base. The lower three rows display the apex and base and the disagreement 

between the predicted segmentation and ground truth from the experts. Retrospectively, 

one could argue that the v-net segmentation provides a more accurate delineation of the 

epi- and endocardium, compared to the ground truth (with permission from ν-net: Deep 

learning for generalized biventricular cardiac mass and function parameters. arXiv preprint 

arXiv:170604397 2017). Commented [이상11]: R2-2 



 

Deep Learning Applications in Chest Radiography and CT: Current State 

of the Art 

 

Type of Manuscript: Invited review  

  

Revised Manuscript - Clean Copy



Summary 

Deep learning is a genre of machine learning that allows computational models to learn 

representations of data with multiple levels of abstraction using numerous processing 

layers. A distinctive feature of deep learning, compared to conventional machine learning 

methods, is that it can generate appropriate models for tasks directly from the raw data, 

removing the need for human-led feature extraction.  

Medical images are particularly suited for deep learning applications. Deep learning 

techniques have already demonstrated high performance in detection of diabetic 

retinopathy on fundoscopic images and metastatic breast cancer cells on pathologic 

images. In radiology, deep learning has the opportunity to provide improved accuracy of 

image interpretation and diagnosis. Many groups are exploring the possibility of using deep 

learning based applications to solve unmet clinical needs.  

In chest imaging, there has been a large effort to develop and apply computer-aided 

detection (CAD) systems for the detection of lung nodules on chest radiographs and chest 

computed tomography. The essential limitation to CAD is an inability to learn from new 

information. To overcome these deficiencies, many groups have turned to deep learning 

approaches with promising results. In addition to nodule detection, interstitial lung disease 

recognition, lesion segmentation, diagnosis and patient outcomes have been addressed by 

deep learning approaches.  

The purpose of this review article is to cover the current state of the art for deep learning 

approaches and its limitations, and some of the potential impact on the field of radiology, 

with specific reference to chest imaging. 
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Introduction 

Deep learning is a genre of machine learning that allows computational models to 

learn representations of data with multiple levels of abstraction through the use of a 

number of unique processing layers 1. The most distinctive feature of deep learning, 

compared to the conventional machine learning methods, is that it can extract fully 

automated features and generate appropriate models for tasks directly from the raw data 

on its own, removing the need for human-led feature extraction. 

In recent years, deep learning methods have shown breakthroughs in various fields 

including image recognition 2, speech recognition 3 as well as information technology. 

However, in the medical field, the application of deep learning is currently in its infancy. 

Medical images and their respective patient electronic medical records are well suited for 

analysis by deep learning. Some of the first successful demonstrations of deep learning 

techniques were reported in the detection of lymph node metastasis from hematoxylin and 

eosin stained pathologic micrographs, analysis of skin cancer from photographs of the 

lesion, and the diagnosis of diabetic retinopathy from fundoscopic images 4-7. 

In radiology, deep learning will help to improve efficiency by automated image 

interpretation and generation of an appropriate differential diagnosis. Data mining of the 

patient’s electronic medical record data (big data) combined with deep learning applied to 

the patient’s medical images should help to improve patient outcomes. Cloud based 

applications also allow the deep learning algorithm to continuously learn on data sets that 

are not restricted to a single institution. Many groups are now exploring deep learning-

based applications for solutions to unmet clinical needs. In chest imaging, significant effort 

has been directed at developing and applying computer-aided detection (CAD) 8 systems 

for the detection of  nodules on chest radiographs and chest computed tomography (CT) 

9, 10. Although many CAD systems are being used in clinical practice, the implementation 

of CAD has not been widely accepted due to its poor performance (i.e. frequent false 

positive and false negative cases). Deep learning approaches have the potential to 

overcome the limitations of existing CAD systems, with several studies showing promising 

results 11, 12. Moreover, disease pattern recognition, lesion segmentation, diagnosis and 



survival prediction have been successfully studied using deep learning in chest imaging 13. 

However, there is still concern on this technology in terms of clinical application.  

In this review article, we introduce the principle methods of deep learning, their 

potential applications and clinical promise in chest imaging. 

  



Deep Learning and Convolutional Neural Networks 

Machine learning is defined as a set of methods that can automatically detect 

patterns in data, and then utilize the uncovered patterns to classify, predict, or conduct 

various types of decision making under uncertain conditions 14. Conventional machine 

learning techniques rely on extensive data engineering and considerable domain expertise 

to design a “feature extractor” algorithm that converts the raw data into suitable 

representations for computational analysis. A convolutional neural network (CNN) is a 

special type of deep learning and is quite similar to the overall learning process (e.g. 

neuronal pruning) of the mammalian visual cortex 15, and is responsible for the recent 

improvements in the field of computer vision (e.g. self-driving automobiles). With the 

availability of large datasets and increased computing power, CNNs have produced 

promising results for many tasks including image classification, correct image detection, 

correct image segmentation and understanding speech (e.g. natural language processing). 

The architecture of a CNN can be composed of convolutional, pooling, and fully 

connected layers (Figure 1): (1) the convolutional layers detect distinctive local motifs by 

applying multiple filters and generating multiple feature maps, (2) the pooling layers 

effectively reduce the dimensions of feature maps (other techniques such as dilated 

convolutions, convolutions with stride can also be used), (3) the fully connected layers 

integrate all feature responses and eventually project onto an output layer which serves 

to answer the task at hand. By using deep CNN architecture (repeating the convolutional 

and pooling layers several times) to mimic the natural neuromorphic multi-layer network, 

deep learning can automatically and adaptively learn a hierarchical representation of 

patterns and consequently identify the most significant features for a given task 2. In order 

to deal with complex tasks, networks with many layers – so called Deep Networks – are 

required. However, adding additional layers increases the number of parameters in the 

model and can make it more difficult to train it for a specific task without overfitting the 

data. 

 



1. Classification 

One key task for radiologists is creating an appropriate differential diagnosis for 

each patient’s medical images. This job can be computationally defined as a typical 

classification task using input from medical images and any available clinical information. 

There are many different CNN network architectures for classifying images. In order to 

improve the efficiency of the training procedure and reduce the number of parameters, 

the deeper networks have introduced more effective subroutines - “building blocks”. These 

building blocks are small branching/spanning convolution blocks with pooling and batch 

normalization layers, which can be repeated to construct deeper architectures 16. VGG19 

17 used small and fixed size kernels in each layer to win the ImageNet challenge of 2014. 

Another CNN named GoogLeNet ( i.e. “ Inception”) 18 made use of the building block that 

is a multi-level feature extractor with a set of convolutions of different sizes. ResNet 19, 

which won the ImageNet challenge of 2015, introduced the subroutine of a  “residual 

building block”  which was designed to learn the residual (e.g. features that remain 

important) in order to make it easier to train deeper neural networks. This residual block 

was implemented by adding the input of the block to the output of the layers within the 

block (Figure 2). Since 2014, the performance on the ImageNet benchmark has saturated, 

but use of these architectures remains popular for medical image processing. 

Moreover, these days, various combinations of these building blocks are used to 

construct deep learning architectures for the desired tasks, instead of relying on the bare 

previously proposed architecture.  

 

2. Segmentation 

The innovations of object classification have now shifted to semantic segmentation. 

This is a common task for both natural and medical image analysis whereby each voxel is 

classified in an image to determine the boundary conditions that define a specific object. 

The fully convolutional network (FCN) 20 represents a critical breakthrough for deep 

learning based semantic segmentation. In a FCN, the fully connected layers in the standard 

CNNs are replaced by convolutions with large receptive fields. This method achieves this 



segmentation by using coarse class score maps obtained by feed forwarding an input 

image. U-Net 21, which is the most well-known segmentation architecture in medical image 

analysis, combines an equal amount of upsampling and downsampling layers with skip 

connections between opposing convolution and deconvolution layers. Mask Region-based 

CNN (R-CNN) 22 detects objects in an image while simultaneously generating segmentation 

masks for each instance. This method has achieved the state-of-the-art performance on 

Microsoft Common Objects in Context 23. 

 

3. Detection 

The detection of objects of interest (i.e. lesions) is a key part of diagnosis and is 

one of the most labor-intensive tasks for radiologists. Several CNN network architectures 

have been shown to be able to detect a variety of objects quickly and accurately. R-CNN 

24 combines region proposals (from a defined set of candidate detections) with CNNs and 

has then been improved to Fast R-CNN 25 and Faster R-CNN 26 with better performance. 

There are a few methods that computationally approach the problem of image detection 

by using multivariate regression; two of the most popular CNNs are You only look once 

(YOLO) 27 and Single shot multibox detector (SSD) 28, successfully predicting bounding 

boxes and classification probability. 

 

4. Generative Model 

Generative adversarial networks (GANs) have the advantage of automatically 

producing new images (e.g. synthetic image data) similar to samples from the training set 

by using two competing CNNs where one is generating artificial samples and the other is 

discriminating artificial from real samples 29 (Figure 3). These GANs could be trained end-

to-end and learn representative features in a completely unsupervised manner. The 

representations learned by GANs are employed in various applications including medical 

image syntheses 30, 31, image normalization 32, 33, and super-resolution 34, 35. 

 

  



Applications in Chest Imaging 

 

I. Chest Radiography 

Chest radiography is the most commonly performed diagnostic imaging procedure 

and over 35 million chest radiographs are performed each year in the United States alone 

and the average radiologist reads more than 100 chest radiograph exams per day 36. 

Although these exams are clinically useful, efficient, and cost-effective, chest radiography 

consists of complex 3-dimensional anatomic information condensed in a 2-dimensional 

projection. Accurate interpretation of chest radiographs requires a great deal of experience 

and medical knowledge on the part of the radiologist. Increased radiologist work-loads 

combined with the intrinsic challenges of interpreting chest radiographs is associated with 

considerable inter- and intra-reader variability, missed lesions, and  reporting delays in 

today’s medical practice 8. Deep learning technology has the potential to automatically 

detect abnormalities or assist radiologists in reading chest radiographs. Such technology 

would be very attractive for rural areas with few radiologists as well as for state-of-the-art 

medical centers to help support high volume workflows and improve efficiency of the 

radiology departments 12. 

 

1. Lung Nodule Detection 

Lung nodule detection from chest radiographs is another promising area for the 

application of deep learning technology. Lung cancer is the leading cause of cancer death 

worldwide and chest radiography has been the most widely adopted screening and imaging 

tool to detect lung cancer. However, unfortunately, due to the confounding effects of 

anatomic complexity on chest radiographs, lung cancer screening using plain chest film 

has yielded unsatisfying results, with reports of missed nodules being as high as 40% 37, 

38.  

CAD systems have been developed to help radiologists detect lung nodules. 

Recently this method has shown a sensitivity of 71% with 1.3 false-positive CAD marks 

per image39. Using bone-suppressed dual energy chest radiographs, another stand-alone 



CAD system achieved a sensitivity of 74% with a 1.0 false-positive CAD mark per image 

9. In the setting of follow-up of patients with previous cancer (of any type), another CAD 

system showed promise by improving sensitivity from 63% to 92% for detection of lung 

nodules while only slightly decreasing specificity (from 98% to 96%) 40. Although there 

has been improvement in CAD nodule detection on chest radiograph, these methods still 

need better accuracy before they are routinely accepted. 

Recently CAD systems using deep learning techniques have shown improved 

accuracy for nodule detection on chest radiograph. A deep learning based technique 

identified by Wang et al. extracted deep learning features by transfer learning and 

combined them with traditional hand-crafted features. This CAD system achieved a higher 

sensitivity (69.3%) for nodule detection at a significantly lower false positive rate (1.19 

false positive marks per exam) 41. There is a recent report using CNN with visual attention 

networks generating respective accuracies of 0.76 for nodule detection and 0.65 for nodule 

localization on chest radiographs 42. 

 

2. Diagnosis of Tuberculosis 

Another specific field of research with great potential benefit to public health is 

utilizing deep learning technology for the diagnosis of pulmonary mycobacterium 

tuberculosis (TB) based on chest radiography. TB is an infectious disease caused by the 

acid fast (i.e. outer capsule appears red on hematoxylin and eosin staining) bacillus 

mycobacterium tuberculosis. In western countries, it is often thought as a “disease of the 

past”, but TB is still a major health problem in the developing world, with millions of new 

cases encountered every year.  

While the diagnosis of TB can be confirmed by bacteriology or the whole blood 

gamma interferon release assay (Quantiferon Gold, Qiagen), chest radiography is a highly 

sensitive imaging tool for triaging and screening for current and previous pulmonary TB 

infection. This organism is very difficult to culture in vitro and is often not able to be 

confirmed bacteriologically 43. In locations where the prevalence of TB is high, there are a 

limited number of experienced chest radiologists available to use chest radiography as a 



method to confirm this disease. This shortage impairs screening efficacy and limits the 

opportunity to start medical therapy for a complete recovery 44. Therefore, considerable 

effort developing CAD systems for the detection of pulmonary TB on chest radiographs has 

been extended. Traditional CAD systems without deep learning technology have shown 

acceptable TB detection performance with an area under the curve ranging from 0.71 to 

0.84 45.  

Recently Lakhani et al. reported the performance of CAD using CNN for detection 

of pulmonary TB 12 and in that study, the CAD system reached an AUC of 0.99, which is 

greater than any previously reported CAD system. Although external validation is still 

needed to determine the true clinical benefit, CNN based CAD is a feasible and promising 

approach in this clinical scenario.   

 

3. Multiple Abnormal Pattern detection 

Although the detection of lung nodules and TB on chest radiographs has gained 

attention for many deep learning researchers, these findings can be relatively rare. Each 

chest radiograph may contain many abnormalities, for example: pneumonia, pleural 

effusions, pneumothorax, medical devices and cardiomegaly (Figure 4, 5). Therefore, 

facilitating deep learning technology to detect multiple abnormal patterns (MAP), rather 

than concentrating simply on nodules or TB would be more clinically practical.       

Emergence of deep learning has drastically improved the performance of machine 

learning for object recognition, detection, and localization when compared to previous 

methodologies. Critical to the success of these methods are well-annotated (“strongly 

labeled”) large datasets for effective system training. Recently two large datasets of chest 

radiographs, Open-I and ChestX-ray14, consisting of more than 110,000 chest radiographs 

from 30,805 patients, have been publicly released and have attracted considerable 

attention in the deep learning community. These publicly available data are external 

validation sets for any deep learning application using chest radiographs 

In 2017, Wang et al. trained various known CNN models to detect 8 abnormal 

patterns (atelectasis, cardiomegaly, effusion, infiltration, mass, nodules, pneumonia, 



pneumothorax) on chest radiographs and achieved accuracy ranging from 0.56 to 0.78 46. 

Another study by Cicero et al. reported that a retrospective analysis of 35,038 chest 

radiographs from a single medical center using CNN (GoogLeNet), they were able to obtain 

MAP classification accuracy of 0.88 11. MAP detection in CXR with deep learning technology 

is still an area of active ongoing research and different methodologies are being tested 

and validated, and overall accuracy will likely improve. 

 

II. Chest Computed Tomography 

Unlike chest radiographs, chest CT provides cross-sectional images, allowing for 

direct 3-dimensional visualization of anatomic structures. Chest CT has a much higher 

sensitivity and lower inter-reader variability for detection of lung abnormalities and is 

frequently employed in the diagnosis and follow-up of most pulmonary diseases. 

Additionally, enhanced clinical availability, decreased cost, reduced radiation dose, and 

overall technical improvements of CT machines have resulted in a progressive increase in 

numbers of CT exams performed each year. Therefore, effective CAD system for chest CT 

interpretation would promote overall workflow for radiologists, by reducing the time 

required to read each CT exam and enhance reading accuracy. 

 

1. Nodule Detection / Screening 

Accurate nodule detection on chest CT has become a recent point of emphasis for 

efficient lung cancer screening. Despite advances in cancer treatment and screening 

programs, most lung cancer patients are still initially diagnosed at an advanced stage of 

the disease, which is associated with less than 20% 5-year survival 47.  

Since the National Lung Screening Trial (NLST) announced a significant 

improvement (20%) in lung cancer mortality in high-risk populations when screened with 

low-dose chest CT (LDCT) 48, LDCT for cancer screening has been widely accepted 49. 

Potentially this will lead to an increased volume of LDCT, which will require expert analysis 

from a radiologist for the detection and classification of nodules into either benign or 

malignant diagnoses.  



A CAD system could aid radiologists in both detection and classification of lung 

nodules (Figure 6). Although traditional CAD systems have provided solid results, they 

often consist of complex pipelines of algorithms that depend heavily on manual human 

input such as pre-processing, segmentation, feature extraction, and model training, 

potentially hindering their performance 50. Application of deep learning technology, on the 

other hand, can potentially remove innate challenges in traditional CAD systems by 

providing seamless feature identification and classification and removing the need for 

complex human-led feature extraction pipelines. 

In 2011, the Lung Image Database Consortium (LIDC) database, containing 1018 

cases of thoracic CT scans and image annotations by 4 thoracic radiologists, was released 

and has motivated deep learning researchers to develop CAD systems for chest CT nodule 

detection and classification 51. CNNs are the most commonly utilized deep learning 

technology for lung nodule detection on CT images, and achieves good nodule detection 

sensitivity while maintaining an acceptable false positive rate. The first report of CAD 

system with deep learning technology for lung nodule detection on CT was Hua et al. in 

2015, achieving sensitivity of 73% and specificity of 80%, which was superior to any other 

available conventional CAD systems 52. In 2016, Setio et al. trained CNN to detect 

pulmonary nodules and achieved 85.4% sensitivity with only one false positive lesion per 

scan 53. Studies that are more recent have shown the ability of CNNs to boost nodule 

detection sensitivity on CT to a higher level (95%) but were associated with a wide range 

(1.17 - 22.4) of false positive rates 54-56. 

Classification of detected lung nodules is also a potential area that could benefit 

from the use of CAD systems. CT characteristics of a lung nodule, mainly nodule type and 

size, are closely associated with the likelihood of malignancy. These CT features are 

important determinants for planning treatment and follow up strategy. However, there is 

considerable observer variability in classification of pulmonary nodules among radiologists 

and this can lead to redundant follow-up examinations, unnecessary invasive procedures, 

or neglected malignancy 57. In 2017, Ciompi et al. introduced a deep learning system that 

achieved good performance for nodule type classification based on lung-RADS system and 



was even within the inter-observer variability among four experienced human readers 58. 

Furthermore, one study found that nodule classification accuracy of CAD system was 

improved by combining deep residual learning, curriculum learning, and transfer learning 

59. Other studies using different CNN models have  achieved a classification accuracy as 

high as 87.1% 60, 61. 

 

2. Interstitial Lung Disease 

Interstitial lung disease (ILD) pattern classification is another area of research for 

deep learning technology. ILD is characterized by progressive fibrosis or inflammation of 

lung tissue and eventual deterioration of respiratory function 62. Accurate diagnosis of ILD 

presents a challenge for the multidisciplinary medical panel at each institution that cares 

for these disorders because most ILDs have similar clinical manifestations, despite the fact 

that they are a histologically heterogeneous group of diseases with distinct prognoses.  

High-resolution CT (HRCT) is currently the diagnostic imaging tool of choice for 

the diagnosis and evaluation of ILDs. However, ILDs have similar appearance on CT and 

CT readings are prone to high inter- and intra-observer variability 63. Therefore, automatic 

identification and classification of different ILD patterns on chest CT may be helpful even 

for experienced chest radiologists, and application of deep learning technology could play 

an eminent role in developing such CAD systems. Segmentation of the lung with ILD could 

be enhanced by semantic segmentation with CNN 64. In 2016, deep learning technology 

with CNN showed accuracy of 85% for classifying 6 different ILD patterns in dataset of 

14,696 image patches 65. In 2017, Kim et al. compared shallow and deep learning methods 

on classifying six ILD patterns on CT and found that deep learning methods showed 

significantly better accuracy and that accuracy was further increased with addition of more 

convolution layers 66 (Figure 7).  More recently, a new CNN method achieved an ILD 

pattern classification accuracy of 87.9% using the holistic input of the entire CT data set 

67. Moreover, CAD methodology demonstrated a prognostic ability of lung function decline 

using quantifiable ILD on CT studies 68. 

 



 

3. Chronic Obstructive Pulmonary Disease 

A more basic field of application for deep learning technology is the segmentation 

and reconstruction of organs-of-interest from chest CT scans. Organ segmentation usually 

is the first step of many CAD systems, even those using deep learning methods, and 

accuracy of segmentation process is critical because any errors in this process would affect 

all the subsequent analysis. Various methods for organ segmentation have been developed 

and tested, showing promising results, but deep-learning based models could potentially 

improve methodological robustness and generalizability across imaging platforms, thus 

providing outcomes that are more reliable.  

In 2017, Harrison et al. developed a deep model called progressive holistically-

nested networks (P-HNNs) and reported that their P-HNNs model showed significant 

improvements of lung segmentation performance compared to previous segmentation 

approaches 69. As for lobar segmentation, traditional methods are semi-automatic at best 

and largely relied on airway or vessel anatomy to delineate the lobar borders, with only 

few exceptions 70. To address these problems, a deep learning method for lobe 

segmentation was introduced in 2017 and this method achieved high accuracy without 

reliance on prior airway or vessel segmentations, even when tested in lungs that had 

underlying disease 71, 72 (Figure 8). 

Aside from lung tissue segmentation, robust and reliable airway segmentation is 

also essential for quantitative evaluation of various diseases involving the airways, such 

as chronic obstructive pulmonary disease (Figure 9). A large number of prior methods 

have common limitations that they are substantially influenced by morphologic changes in 

airway trees and measurement errors, such as airway leak that are most prevalent at 

smaller (or more peripheral) airways 73. In fact, 15 different traditional algorithms were 

evaluated at an airway segmentation challenge in 2009 (EXACT 09), and precise 

delineation of a small bronchus without airway measurement leaks remained a common 

unsolved problem from this challenge 74. In 2017, a deep learning method was developed 

and tested using a dataset from EXACT 09, and found that CNN significantly decreased 



airway leaks during segmentation process, resulting in higher sensitivity and specificity 

compared to all the other algorithms that participated in the EXACT 09 challenge 75. In 

another study, even with incompletely annotated data, 3D deep fully convolutional 

networks demonstrated considerable improvements in airway segmentation while 

maintaining acceptable quantity of airway leaks 76. 

 

4. Image Normalization 

The reconstruction kernel is one of the most important technical parameters that 

determine the trade-off between spatial resolution and image noise in CT 77. Since the 

selection of kernel affects quantitative analysis 78, CT images with different reconstruction 

kernels are necessary for various diagnostic or quantitative purposes. To overcome the 

limitation that it is difficult to save the raw data before reconstruction with various kernels, 

post-processing techniques have been developed to permit interconversion among CT 

images obtained with different kernels. Kim et al. 79 recently demonstrated that CNNs 

could be taught differences between high- and low-resolution images (residual images) 

and then they could be used to accurately and rapidly convert low-resolution images to 

high-resolution images. This approach is also applicable for interconverting CT images 

obtained using different kernels (Figure 10). 

 

5. Radiomics and Deep Survival 

Radiomics and prediction of patient outcomes (a.k.a.” deep survival”) are also 

active areas of research for the application of deep learning technology. Radiomics, which 

has gained substantial interest from researchers around the globe, involves the high-

throughput extraction of quantitative features from medical images to develop reliable 

models to predict genomic information, clinical outcomes, and survival 80. Extraction of 

radiomics features is a critical process in radiomics research and the majority of previous 

studies use handcrafted features, which are limited by current medical knowledge and 

human observation. On the other hand, CNN and transfer learning can be incorporated 

into radiomics models to extract more diverse features (deep features), which are free 



from prerequisite medical knowledge and biases. In this context, Lao et al. extracted 

98,304 deep features (this would qualify as an example of over-fitting of the data) from 

images of glioblastoma multiforme and found 6 deep features that could predict overall 

survival with a concordance index of 0.71 81.  

In chest imaging, Paul et al. combined deep features of lung nodules detected on 

chest CT with traditional radiomics features to predict  the probability of a malignant 

nodule and reported an overall accuracy of 76.8% and an AUC of 0.87 82. Another group 

used  CNN to predict patient outcomes in a large cohorts of smokers and COPD patients 

and the CNN model predicted mortality with fair discrimination 13. Deep radiomics and 

deep survival are promising new fields for study.  

 

 

  



Perspective, Challenges, and Limitations 

In this manuscript, we reviewed basic concepts of deep learning and its various 

applications in chest radiography and CT. In comparison to CT, MRI is more challenging for 

deep learning application because there is no pulse sequence dependent standardized 

intensity scale like the Hounsfield units in CT 83. The application of this new technology to 

radiology has barely started, but it has shown remarkable results when compared with 

previous studies. We believe that these improvements in performance will soon offer new 

possibilities for the clinical practice of radiology.  

The first deep learning based CAD application may be used to find critical findings 

on chest radiograph and triage the worklist before a radiologist’s read. In brain CT, 

Prevedello et al. 84 already demonstrated that deep learning based algorithm could 

automatically identify critical findings and notify the interpreting radiologist. Furthermore, 

if the performance of CAD can be clinically acceptable in terms of prioritization of chest 

radiograph, it implies that deep learning based CAD have potential to differentiate normal 

chest radiographs from grossly abnormal exams. Thus, deep learning based CAD should 

improve the workflow and efficiency of radiology departments. 

Second, CAD can help diagnosis of disease such as ILD and generate a preliminary 

quantitative report based on CAD results. This CAD report is repeatable with the same 

results and has no “intra-reader” variability. CAD combined with big data technology may 

retrieve similar images or diagnosis when radiologists require during interpretation of CT.  

It can also help to reduce the reading time.  

Third, automation of lesion detection, segmentation, quantification by deep 

learning techniques facilitates reporting of the quantitative analysis of medical images 

more easily. Deep learning based segmentation tool improves accuracy and decreases 

image interpretation time. Furthermore, these data will likely provide improve the 

prediction of patient outcomes and risk stratification. 

However, there are still many challenges to overcome. Currently, training deep 

learning algorithms requires large, strongly labeled and anonymized image datasets. 

These data sets are very challenging to acquire. While some abnormalities such as 



pneumothorax and malpositioned lines/tubes can be based upon imaging findings alone, 

most diseases require clinical documentation and/or pathological confirmation. Ambiguous 

or overlapping radiographic terms such as “consolidation” and “infiltrate” should not be 

used as surrogates for pneumonia to label training cases. This has been recognized as a 

limitation of some publically available datasets. National organizations (e.g. ACR, RSNA) 

and subspecialty radiology societies can play important roles in defining appropriate tasks 

for deep learning algorithms, as well as assisting in making publicly available strongly 

labeled training data sets and validation data sets. 

Futhermore, the challenges regarding the ethical and legal aspects of data sharing 

and patient privacy are also paramount. There are severe monetary penalties (i.e. fines) 

in the United States of America 85 for any medical facility that allows compromise of 

personal health information/images. In the USA, the Health Insurance Portability and 

Accountability Act (HIPPA) governs any use of a patient’s health information; as such, it is 

of critical importance that these imaging and medical data that are used for training, 

testing and validation of deep learning methods are fully anonymized and comply with this 

law. New data protection laws have also been introduced throughout Europe. As deep 

learning requires an enormous amount of high-quality data, the laws governing the safe 

handling of medical images and medical record data need to be followed. New technology, 

such as Blockchain, may be helpful in guarantying secure data sharing. 

Lastly, we should demand a thorough and systematic clinical validation of any deep 

learning based applications as a prerequisite to commercial application. A well-known 

problem with these methods is overfitting and lack of utility when asked to analyze other 

data sets (e.g. poor interoperability). Most machine learning publications have shown their 

results in carefully preselected and enriched test sets (e.g. spiked to favor that algorithm 

with a higher prevalence of the condition than is found clinically). Thus, beyond just 

determining the feasibility of using any deep learning application in a test set chosen by 

the author, each deep learning application should be tested by a publicly available external 

validation set. We believe that this should be a requirement for any commercially approved 

deep learning method. 



 

Conclusion 

The application of deep learning methodology to help solving many tasks associated 

with medical imaging is at its infancy.  While there are problems with every disruptive 

technological innovation, we believe that deep learning will soon be an indispensable tool 

for radiology. This is analogous to how the picture archiving communication systems and 

radiology information systems have transformed medical imaging and improved radiology 

while at the same time decreasing the cost of medical care. Reasonable expectations for 

this disruptive technology are needed, along with careful attention to any ethical, legal, 

and regulatory issues that may arise. This technology will enable radiologists to become 

more productive and improve patient care. The full potential of this technology will require 

radiologists to have an active role in governing its successful introduction to the clinic.   
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Figure legends 

 

Figure 1. Architecture of convolutional neural network (CNN): (a) A CNN is comprised of 

one or more convolutional layers (often with a pooling layer) and then followed by one or 

more fully connected layers, (b) the convolutional layers compute the sum of the element-

wise multiplication between the input image and multiple filters (i.e. kernel) to detect 

distinctive local motifs, (c) the pooling layers, which is a form of non-linear down-sampling 

(e.g. max and average pooling), serve to progressively reduce the spatial size of the 

representation and  reduce the number of parameters and amount of computation in the 

network; this process helps to limit overfitting of the data. 

Figure 2. By a skip connection (i.e. identity mapping) and element-wise addition, a 

residual block makes it easier to train a deeper network without extra parameter and 

computational complexity. 

Figure 3. Generative adversarial networks (GAN)s consist of a generator and a 

discriminator, wherein the generator aims to generate sample (synthetic images) that 

resemble those in the training data while the discriminator tries to distinguish between the 

two. 

Figure 4. A model for detecting five kinds of pulmonary abnormalities (including nodule 

(ND), consolidation (CS), interstitial opacity (IO), pleural effusion (PE), and pneumothorax 

(PT)) on chest radiograh with weak labeled data, which indicate the presence of 

abnormalities’ labels only. Upper rows of each case depict the regions of interest labeled 

by radiologists, and lower rows show the class activation map (CAM). Localization of 

trained abnormal patterns through CAM could assist radiologists to diagnose lung diseases 

much easier. 

Figure 5. Detection of multiple abnormal lesions on chest radiograh. A CNN model was 

trained with strongly labeled data, which indicates not only the type of abnormalities but 

also their locations and boundaries. Multiple lesions were detected in the whole lung 



images, and detected regions matched with those of interest delineated by radiologists. 

This approach could assist radiologists to diagnose and monitor multiple lesions of whole 

lung. 

Figure 6. A method for detecting multi-scale nodules. By Training with RGB color images 

that were comprised of three adjacent slice in the axial plane, we detected nodules of 

various sizes. (a)-(d) depict the detected nodules with sizes of 3.4 mm, 5.6 mm, 9.8 mm, 

and 14.4 mm, respectively. 

Figure 7. Regional image patterns of Diffuse interstitial Lung Disease (DILD) using 3D 

CNN. Since the diagnosis of DILD shows significant variation in inter- and intra-observer 

interpretation due to a lack of standard criteria and a burden of reviewing a large amount 

of data, CNN based automated classification on voxel-by-voxel basis is necessary for the 

quantification of disease extent and distribution of DILD. 

Figure 8. We employed 3D U-Net (a typical type of 3D CNN) to develop a robust lobe 

segmentation. This approach also performed well in the fake and incomplete fissures, since 

this network was trained on lobe-by-lobe expert human training set. 

Figure 9. The fully automated airway segmentation method in a patient with chronic 

obstructive lung disease (a), which started from (b) the initial airways by using the region 

growing method. (c) Our method achieved a high sensitivity at a low false positive rate 

with fast execution time (2-8 min). (d) Manual segmentation usually required 1-2 hours 

by an experienced research assistant. 

Figure 10. Conversion of CT images reconstructed with one kernel to images with 

different kernels without using a sinogram: (a) CNN architecture for CT kernel conversion. 

(b)-(c) CT images reconstructed with B10f and B70f, respectively. (d) A CT image 

interconverted from B10f to B70f using (a). (e)-(f) Difference images between (b)-(c) and 

(b)-(d), respectively. 
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