
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

8-2022 

Role of machine learning in early diagnosis of kidney diseases. Role of machine learning in early diagnosis of kidney diseases. 

Mohamed Nazih Mohamed Ibrahim Shehata 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Biomedical Engineering and Bioengineering Commons, and the Computer Engineering 

Commons 

Recommended Citation Recommended Citation 
Shehata, Mohamed Nazih Mohamed Ibrahim, "Role of machine learning in early diagnosis of kidney 
diseases." (2022). Electronic Theses and Dissertations. Paper 3955. 
Retrieved from https://ir.library.louisville.edu/etd/3955 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of 
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/229?utm_source=ir.library.louisville.edu%2Fetd%2F3955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ir.library.louisville.edu%2Fetd%2F3955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ir.library.louisville.edu%2Fetd%2F3955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd/3955?utm_source=ir.library.louisville.edu%2Fetd%2F3955&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thinkir@louisville.edu


ROLE OF MACHINE LEARNING IN EARLY DIAGNOSIS OF
KIDNEY DISEASES

By

Mohamed Nazih Mohamed Ibrahim Shehata
M.Sc., Department of Electrical and Computer Engineering,

University of Louisville, Louisville, KY, USA, 2016

A Dissertation
Submitted to the Faculty of the

J. B. Speed School of Engineering of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy in Computer Science and Engineering

Department of Computer Science and Engineering
University of Louisville

Louisville, Kentucky

August 2022





ROLE OF MACHINE LEARNING IN EARLY DIAGNOSIS OF
KIDNEY DISEASES

By

Mohamed Nazih Mohamed Ibrahim Shehata
M.Sc., Department of Electrical and Computer Engineering,

University of Louisville, Louisville, KY, USA, 2016

A Dissertation Approved on

July 28, 2022

by the Following Dissertation Committee:

Adel Elmaghraby, Ph.D., Co-advisor

Ayman El-Baz, Ph.D., Co-advisor

Ibrahim Imam, Ph.D.

Juw Park, Ph.D.

Amy Dwyer, M.D.

ii



DEDICATION

This dissertation is dedicated to my beloved family.

iii



ACKNOWLEDGMENTS

In the name of Allah the most Merciful, the most Compassionate. All the praises

and deepest thanks are due to Almighty Allah for the uncountable gifts given to me.

I would like to express my deepest gratitude to my thesis co-advisors, Dr. Adel El-

maghraby and Dr. Ayman El-Baz, for their continuous encouragement, guidance, advice,

and support during my Ph.D. studies. Their discussions, comments, and feedback were

valuable and helped me a lot to surpass many challenges towards building my scientific

career.

My appreciation towards the valuable dissertation committee members, Dr. Ibrahim

Imam, Dr. Juw Park, and Dr. Amy Dwyer for being enthusiastic in my research in the

midst of many other responsibilities and commitments.

I also would like to thank Dr. Mohamed Abou El-Ghar, Dr. Mohamed Badawy,

and Dr. Rasha T. Abouelkheir of the Radiology Department, Urology and Nephrology

Center, University of Mansoura, Mansoura, Egypt, for being helpful and letting me gain

from their radiological wide experience. They all spent much of their valuable time in

medical discussions and validating the different analyses and obtained results.

I also express my deepest thanks to all members of the research group in the

BioImaging Laboratory at the University of Louisville. They have been a tremendous

source of support and a lot of fun to work with. Their encouragement, help, and support

during hard times were especially valuable.

iv



Last but not least, I am especially grateful to all of my family members: my dad

Dr. Nazih Shehata, my mom Dr. Mervat Nouh, my beloved wife Yasmin Moustafa, my

little princesses Kenzi Shehata, Carla Shehata, and Kenda Shehata and my sisters Sara

Shehata and Manar Shehata for their great patience and encouragement with me all of

these years during my Ph.D. journey. All of that would not be accomplished without their

unconditional support and love.

Finally, I would like to send a brief message to my very close friends who sup-

ported and encouraged me during my study journey, “I value your friendship and I missed

you very much.”

v



ABSTRACT

ROLE OF MACHINE LEARNING IN EARLY DIAGNOSIS OF KIDNEY DISEASES

Mohamed Nazih Mohamed Ibrahim Shehata

July 28, 2022

Machine learning (ML) and deep learning (DL) approaches have been used as

indispensable tools in modern artificial intelligence-based computer-aided diagnostic (AI-

based CAD) systems that can provide non-invasive, early, and accurate diagnosis of a

given medical condition. These AI-based CAD systems have proven themselves to be

reproducible and have the generalization ability to diagnose new unseen cases with several

diseases and medical conditions in different organs (e.g., kidneys, prostate, brain, liver,

lung, breast, and bladder). In this dissertation, we will focus on the role of such AI-based

CAD systems in early diagnosis of two kidney diseases, namely: acute rejection (AR) post

kidney transplantation and renal cancer (RC).

A new renal computer-assisted diagnostic (Renal-CAD) system was developed

to precisely diagnose AR post kidney transplantation at an early stage. The developed

Renal-CAD system perform the following main steps: (1) auto-segmentation of the renal

allograft from surrounding tissues from diffusion weighted magnetic resonance imaging

(DW-MRI) and blood oxygen level-dependent MRI (BOLD-MRI), (2) extraction of im-

age markers, namely: voxel-wise apparent diffusion coefficients (ADCs) are calculated

from DW-MRI scans at 11 different low and high b-values and then represented as cumu-
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lative distribution functions (CDFs) and extraction of the transverse relaxation rate (R2*)

values from the segmented kidneys using BOLD-MRI scans at different echotimes, (3)

integration of multimodal image markers with the associated clinical biomarkers, serum

creatinine (SCr) and creatinine clearance (CrCl), and (4) diagnosing renal allograft status

as nonrejection (NR) or AR by utilizing these integrated biomarkers and the developed

deep learning classification model built on stacked auto-encoders (SAEs). Using a leave-

one-subject-out cross-validation approach along with SAEs on a total of 30 patients with

transplanted kidney (AR = 10 and NR = 20), the Renal-CAD system demonstrated 93.3%

accuracy, 90.0% sensitivity, and 95.0% specificity in differentiating AR from NR. Robust-

ness of the Renal-CAD system was also confirmed by the area under the curve value of

0.92. Using a stratified 10-fold cross-validation approach, the Renal-CAD system demon-

strated its reproduciblity and robustness with a diagnostic accuracy of 86.7%, sensitivity

of 80.0%, specificity of 90.0%, and AUC of 0.88.

In addition, a new renal cancer CAD (RC-CAD) system for precise diagnosis of

RC at an early stage was developed, which incorporates the following main steps: (1)

estimating the morphological features by applying a new parametric spherical harmonic

technique, (2) extracting appearance-based features, namely: first order textural features

are calculated and second order textural features are extracted after constructing the gray-

level co-occurrence matrix (GLCM), (3) estimating the functional features by constructing

wash-in/wash-out slopes to quantify the enhancement variations across different contrast

enhanced computed tomography (CE-CT) phases, (4) integrating all the aforementioned

features and modeling a two-stage multilayer perceptron artificial neural network (MLP-

ANN) classifier to classify the renal tumor as benign or malignant and identify the malig-

nancy subtype. On a total of 140 RC patients (malignant = 70 patients (ccRCC = 40 and

nccRCC = 30) and benign angiomyolipoma tumors = 70), the developed RC-CAD sys-

tem was validated using a leave-one-subject-out cross-validation approach. The developed
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RC-CAD system achieved a sensitivity of 95.3% ± 2.0%, a specificity of 99.9% ± 0.4%,

and Dice similarity coefficient of 0.98 ± 0.01 in differentiating malignant from benign re-

nal tumors, as well as an overall accuracy of 89.6% ± 5.0% in the sub-typing of RCC.

The diagnostic abilities of the developed RC-CAD system were further validated using a

randomly stratified 10-fold cross-validation approach. The results obtained using the pro-

posed MLP-ANN classification model outperformed other machine learning classifiers

(e.g., support vector machine, random forests, and relational functional gradient boosting)

as well as other different approaches from the literature.

In summary, machine and deep learning approaches have shown potential abilities

to be utilized to build AI-based CAD systems. This is evidenced by the promising diag-

nostic performance obtained by both Renal-CAD and RC-CAD systems. For the Renal-

CAD, the integration of functional markers extracted from multimodal MRIs with clinical

biomarkers using SAEs classification model, potentially improved the final diagnostic re-

sults evidenced by high accuracy, sensitivity, and specificity. The developed Renal-CAD

demonstrated high feasibility and efficacy for early, accurate, and non-invasive identifi-

cation of AR. For the RC-CAD, integrating morphological, textural, and functional fea-

tures extracted from CE-CT images using a MLP-ANN classification model eventually

enhanced the final results in terms of accuracy, sensitivity, and specificity, making the

proposed RC-CAD a reliable noninvasive diagnostic tool for RC. The early and accurate

diagnosis of AR or RC will help physicians to provide early intervention with the appro-

priate treatment plan to prolong the life span of the diseased kidney, increase the survival

chance of the patient, and thus improve the healthcare outcome in the U.S. and worldwide.
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CHAPTER I

INTRODUCTION

Machine learning (ML) and deep learning (DL) approaches are sub-fields of arti-

ficial intelligence (AI) that have shown significant success in many diverse medical imag-

ing applications, such as image segmentation, registration, and classification [1]. They

have been used as indispensable tools in modern AI-based computer-aided diagnostic (AI-

based CAD) systems that assist in making decisions regarding medical diagnosis. These

systems can automate the diagnosis, reduce the subjectivity between different radiological

assessments, and improve the diagnostic performance. Traditional ML approaches mainly

depend on hand-crafted features to convert the input data into suitable patterns that could

be used for diagnostic problems [2]. These kind of AI-based CAD systems encompass

segmentation of the intended organ/region of interest, hand-crafted feature extraction, and

classification. Traditional ML classification algorithms that have been widely used in AI-

based CAD systems include, but are not limited to: k-nearest neighbors (k-NN), support

vector machine (SVM), linear discriminant analysis (LDA), logistic regression (LR), ran-

dom forest (RF), Naive Bayes (NB), decision tree (DT), multi-layer perceptron artificial

neural networks (MLP-ANN), and Adaboost. During the last 5-10 years, DL has evolved

as an exciting field through adaptation of MLP-ANN in which the network has many hid-

den layers [2]. This technique builds a hierarchical data representation (i.e. from less

to more abstracted representations), and thus has the power of learning high-level fea-

tures from the underlying data [3]. Stacked-auto encoder (SAE) [4, 5] is an example of

DL techniques that has the ability to process thousands of hand-crafted features extracted
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from input images to obtain a final diagnosis of a given medical condition. Other examples

of DL techniques are convolution neural network (CNN), deep neural networks (DNN),

and generative adversarial networks (GAN), which have been shown to be efficient in AI-

based CAD systems dealing with large datasets are . Although they can automatically

extract thousands of features from input images data for classification purposes and avoid

the burden of the hand-crafted features, they are limited by the need for large datasets to be

well-trained. In addition, the automated extracted features are not readily explainable and

need much effort for correlation and interpretation [3, 6]. Those AI-based CAD systems

have proven themselves to be reproducible and have the generalization ability to diagnose

new unseen cases with several diseases and medical conditions in different organs (e.g.,

kidneys, prostate, brain, liver, lung, breast, and bladder). In this dissertation, we will focus

on the role of such AI-based CAD systems in early diagnosis of kidney diseases.

Several kidney diseases might rise up and badly affect the kidneys, which hinder

them from performing their functions in a normal way. These kidney diseases [7] include,

but are not limited to: chronic kidney disease (CKD), acute kidney injury (AKI), acute

tubular necrosis (ATN), kidney stones, acute rejection (AR) post kidney transplantation,

and renal cancer (RC). Early and precise diagnosis of kidney diseases is crucial to provide

an appropriate and timely intervention plan to prevent or mitigate kidney failure. This

dissertation will focus on two of the most contributing kidney diseases, namely: AR and

RC. Chronic kidney disease (CKD) is the 10th leading cause of mortality in the United

States. Approximately 37 million patients are suffering from CKD [8], which if it remains

untreated, will result in progressive damage of the kidney until it develops a fatal con-

dition called end stage kidney disease (ESKD). In 2022, the estimated number of ESKD

patients in the U.S. is ≈ 780,000 [8]. ESKD is treated by blood dialysis and eventually

by kidney transplant. While dialysis helps the patient stay alive, it performs only 10% of

the kidney’s function which leads to dangerous health conditions. Meanwhile, transplan-
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tation is considered a long-term treatment as it prolongs patients’ lives. However, organ

procurement and transplantation is a challenging process. Each month, more than 3,000

patients are added to the kidney transplant waiting list while only 17,500 renal transplants

are performed each year due to the paucity of donor organs [9–11]. In addition, during the

first five years after transplantation, there is a 15% - 27% chance that the immune system

will reject the foreign organ, leading to AR [12]. AR is considered the leading cause of

kidney transplant dysfunction with two main types, including T-cell mediated rejection

(TMR) and antibody-mediated rejection (AMR) [13]. Given the dearth of living or ca-

daveric donors, routine clinical follow-up, assessment, and functionality evaluation of the

kidney transplant is crucial to minimize the chance of kidney damage [14]. Chapter II will

provide a comprehensive survey about AR diagnosis. This will be followed by Chapter III,

which will discuss the developed AI-based CAD system for early and precise diagnosis of

AR.

In addition, RC is the 10th most prevalent cancer among men and women. It is

a heterogeneous disease in which the renal cells become malignant (cancerous) and form

tumors called renal masses. These renal tumors, if not detected early and treated promptly,

will lead to mortality [15, 16]. For the past several decades, an increasing number of new

patients have been diagnosed with RC. In the year 2022, approximately 79,000 new cases

are expected to be diagnosed with RC in the United States, and 14,000 patients are ex-

pected to die from RC in that same time period [15]. Roughly two thirds of the time,

RC is diagnosed before it has metastasized, in which case the 5-year survival rate is 93%.

Once it has spread to the lymph nodes or the surrounding abdominal organs or tissues,

the 5-year survival rate falls to 72%. In the worst case of metastasis to distant parts of

the body, the 5-year survival rate falls to 15% [15]. Renal cell carcinomas (RCCs) are

the most common and aggressive malignant tumors (≈ 70%). The World Health Organi-

zation (WHO) states that most common RCC subtypes are clear cell RCC (ccRCC), and
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non-ccRCC including papillary RCC (paRCC) and chromophobe RCC (chrRCC), rep-

resenting 70%, 15%, and 5% of all RCCs, respectively. These malignant tumors have

different grades (I-IV) which specify how aggressive the tumor is as well as different

stages (I-IV), which help specifying the size of the tumor and how far it has spread to

veins, lymph nodes, or other abdominal structures (i.e. metastasis). This RCC taxonomy

is crucial for handling different prognosis [15, 17]. In addition, angiomyolipoma (AML)

and oncocytoma (ONC) are benign renal tumors that can be easily misclassified as RCC

(≈ 15% - 20%) using traditional diagnostic methods such as physical examination and/or

visual qualifications, particularly if these AML are fat-poor tumors, which might lead to

unneeded surgeries [18]. Therefore, early and accurate diagnosis of RC is essential to pro-

vide the appropriate timely intervention and management plans. Chapter IV will provide

a comprehensive survey about RC diagnosis. This will be followed by Chapter V that will

discuss the developed AI-based CAD system for early and precise diagnosis of RC.

This dissertation is given in six chapters with their scopes summarized below:

Chapter I: This chapter gives an overview about different ML and DL techniques that

had been utilized to build AI-based CAD systems to early diagnose different diseases

that might affect many organs in human body with the focus on two of the most critical

kidney diseases. Namely; AR and RC are discussed with their fast facts, consequences,

and different types.

Chapter II: This chapter provides a comprehensive survey about most of the related

studies in the literature that have used ML and/or DL to develop an AI-based CAD sys-

tem to early diagnose AR using magnetic resonance images (MRIs). It starts with the

basic anatomy of the kidney, the gives fast facts about the AR post transplantation and the

traditional diagnostic techniques of AR.

Chapter III: This chapter details the developed AI-based CAD system with its novel-
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ties and contributions for early and accurate diagnosis of AR using multimodal MRIs and

clinical biomarkers. The developed AI-based CAD system performs kidney segmenta-

tion, followed by the estimation of best hand-crafted discriminating functional markers

from multimodal MRIs. These markers are then integrated with their associated clinical

biomarkers. The integrated biomarkers were then used to train and test a deep learning-

based classifier; namely, SAEs to differentiate non-rejection (NR) from AR. Then, the

diagnostic performance of developed AI-based CAD system is evaluated and discussed to

draw a final take-home message.

Chapter IV: This chapter provides a comprehensive survey on most of the related studies

in the literature from the last decade that have utilized ML and/or DL along with Radiomic

markers extracted from multi-phasic contrast enhanced computed tomography (CE-CT)

images to build an AI-based CAD system for early diagnosis of RC, including identifying

the malignancy status, subtyping, grading, and staging. It starts with fast facts about

RC, then discusses briefly the traditional diagnostic techniques of RC, different Radiomic

markers, and possible treatment plans.

Chapter V: This chapter introduces a novel AI-based CAD system to early and pre-

cisely diagnose RC. The developed AI-based CAD system extracts the best discriminating

hand-crafted morphological, textural, and functional markers from CE-CT images. These

markers are then integrated and used to train and test a two-stage MLP-ANN classifier to

differentiate malignant from benign RCC renal tumors and identify the malignancy sub-

type. Then, the diagnostic performance of developed AI-based CAD system is evaluated

and discussed to draw a final conclusion.

Chapter VI: This chapter concludes the work that has been done in this dissertation,

highlights the main contributions and obtained results, and spots the lights on possible

future avenues to be handled.
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Main contributions of this dissertation can be summarized as follows:

• A new AI-based CAD system was developed to precisely diagnose AR post kidney

transplantation at an early stage. The developed system was named Renal-CAD and

encompasses the following contributions:

– Extraction of DW-MR image markers, namely: voxel-wise apparent diffusion

coefficients (ADCs) are calculated from the segmented kidneys at 11 differ-

ent low and high b-values and then mapped to their cumulative distribution

functions (CDFs) for better representation.

– Extraction of BOLD-MR image markers, namely: the transverse relaxation

rate (R2*) values from the segmented kidneys at four different echotimes and

then R2* curves were constructed for better representation.

– Integrating the extracted multimodal MR image markers with the associated

clinical biomarkers serum creatinine (SCr) and creatinine clearance (CrCl).

These integrated biomarkers are then fed to the developed DL classification

model built on SAEs to diagnose the kidney transplant as NR or AR.

• A new AI-based CAD system for precise diagnosis of RC at an early stage was de-

veloped. The developed system was named RC-CAD and incorporates the following

major contributions:

– Integrating the morphological features the best describe the surface complexity

of a given renal tumor, with first and second order appearance-based features

that can capture the texture heterogeneity of a given renal tumor, and with the

functional features by constructing wash-in/wash-out slopes to quantify the

enhancement variations across different CE-CT phases.
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– Modeling a two-stage MLP-ANN classifier using the aforementioned inte-

grated features to diagnose the renal tumor as benign or malignant and identify

the malignancy subtype.
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CHAPTER II

KIDNEY DIAGNOSIS SURVEY

A. Background on Acute Rejection

Kidneys are important organs that are acting as a filtration system in human bod-

ies. Kidneys are able to keep nutrients like salts, sugar, and protein, while at the same

time they are responsible for removing waste products, removing excess fluids, balancing

minerals and chemicals, producing red blood cells, controlling blood pressure, and main-

taining healthy bones [19]. Although most humans are born with two kidneys, one nor-

mally functioning kidney should be enough to live in a healthy manner. However, several

diseases might rise up and badly affect the kidneys, which hinder them from performing

their functions in a normal way. As shown in Figure 1, the kidney is bean shaped and is

composed of an outer ”shell” known as renal cortex; an inner layer known as medulla; and

a hollow area known as renal pelvis, where the urine is collected [20]. Inside the cortex

and medulla are the filtration units known as the nephrons (see Figure 1), which are then

made up of smaller subunits such as the glomerulus, vasa recta, and loop of Henle [20].

Since the kidneys must filtrate the blood, they must be connected to veins and arteries. The

kidneys are connected to the renal artier and vein which are connected to the iliac artery

and vein, respectively. It is clear that kidney has a very complex structure and is associated

with many diseases and medical conditions that might arise (e.g., Chronic kidney disease

(CKD)).
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FIGURE 1: Anatomy of the kidney

CKD is the 10th leading cause of mortality in the United States. Approximately,

15% that is 37 million of the population in the USA suffer from CKD with more than

780,000 patients diagnosed with end-stage renal disease (ESRD) [8]. Over $114 billion is

spent annually on diagnosis and treatment of CKD or ESRD [21]. Although renal trans-

plantation provides the best outcome for ESRD patients, only 17,500 renal transplants are

performed in the USA each year due to the paucity of donor organs [10, 11]. In addi-

tion, during the first 5 years after transplantation, there is a 15% - 27% chance that the

immune system will reject the foreign organ, leading to acute rejection (AR) post kidney

transplantation [12]. AR is considered the leading cause of kidney transplant dysfunction

with two main types including T-cell mediated rejection (TMR) and antibody-mediated

rejection (AMR) [13]. AR of renal allografts has to be detected and treated promptly at an

early stage, to minimize permanent damage and failure of the transplanted kidney [10, 11].

Given the dearth of living or cadaveric donors, routine clinical follow-up, assessment, and

functionality evaluation of the renal allograft post-transplantation is crucial to minimize
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allograft loss [14]. The diagnostic technique that is currently recommended by the Na-

tional Kidney Foundation (NKF) for assessing renal allograft function is the glomerular

filtration rate (GFR). The GFR has low sensitivity and is a late indicator for renal allo-

graft dysfunction as major/noticeable changes can only be observed after>60% of renal

allograft function is lost [22]. Renal biopsy, the gold standard, is used as a conclusive AR

diagnostic tool. However, it cannot be used as a screening or early detection tool due to

high invasiveness, high cost, long time for recovery/report, and associated adverse events

(infection, bleeding, etc.). Therefore, there is a significant unmet clinical need for a non-

invasive diagnostic tool that can provide a precise and early identification of AR renal

allograft. In this chapter, we will discuss most of the related studies that have utilized

magnetic resonance imaging (MRI) to early diagnosis AR post kidney transplantation.

B. Related Work

Dynamic contrast enhanced (DCE) MRI provides, high contrast, low signal-to-

noise (SNR) ratio, and thus; provide sufficient anatomical and functional information

about the kidney [23–26]. Therefore, it had been investigated by researchers to develop

AI-based CAD systems for renal function assessment [24–33]. For example, Farag et

al. [27] developed an AI-based CAD system for early diagnosis of AR. Their CAD was

evaluated on 30 patients and classified kidney status of each patient using four indexes:

the peak signal intensity, the time-to-peak, the wash-in slope, and the wash-out slope,

calculated from the MRI signal for the kidney cortex. Bayesian classifier was used and

their CAD classified 13 out 15 and 15 out of 15 correctly for both training and testing, re-

spectively. They extended their studies in [34] by constructing perfusion curves from the

whole kidney rather than only the cortex. On a larger cohort of 100 patients, their modified

CAD achieved a 94% accuracy using Bayesian classifier as well. Zikic et al. [25] eval-
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uated kidney kinetic parameters as the contrast-invariant similarity measure. However,

the evaluation of perfusion parameters (plasma volume and tubular flow) was performed

visually by trained physicians for 10 data sets of healthy volunteers. De Senneville et

al. [26] evaluated renal function for both native and transplanted kidneys. The renal cortex

was segmented manually and the GFR was estimated with Patlak-Rutland tracer kinetic

model. The study demonstrated a significant uncertainty reduction on the computed GFR

for native kidneys (10 healthy volunteers), but not the transplanted ones (10 transplant

patients). Aslan et al. [28] developed an automated CAD system to classify NR from

AR renal allografts using DCE-MRI. Following kidney segmentation, three classification

methods (least square support vector machines (LS-SVMs), Mahalanobis distance, and

the Euclidean distance) were compared to assess transplant status based on medullary per-

fusion curves. On a cohort of 55 clinical data sets, they a achieved a diagnostic accuracy,

sensitivity, and specificity of 84%, 75%, and 96%, respectively using the Mahalanobis

distance-based classifier. Zöllner et al. [24] extracted functional parameters using k-means

clustering. This system was tested on only 4 DCE-MRI datasets and the evaluation of kid-

ney regions was assessed qualitatively according their mean signal intensity time courses.

Wentland et al. [29] utilized MRI-based intrarenal perfusion measurement to differenti-

ate between NR, ATN, and AR on a cohort of 24 renal allografts. The study concluded

that the cortical and medullary blood flow is significantly reduced in grafts experiencing

AR, as compared with NR. Additionally, AR patients demonstrated medullary blood flow

reduction as compared with ATN patients. Abou El-Ghar et al. [30] explored the feasi-

bility of DCE-MRIevaluated the functionality on 55 patients using the mean medullary

intensity a achieved sensitivity, specificity and accuracy of 75%, 96% and 84%, respec-

tively, to separate NR from AR. Yamamoto et al. [31] utilized DCE-MRI to identify the

cause of acute graft dysfunction. Their study included 60 patients (NR = 31 and AR =

29). Their study employed a multi-compartmental tracer kinetic model to estimate the

GFR and mean transit time (MTT) at different compartments of the kidney. The study
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document differences in the fractional MTT values between NR and AR groups; however,

substantial overlaps among these groups and with normal kidneys were observed. Khal-

ifa et al. [32] included 26 data sets, and a K-nearest neighbor classifier was used. Their

CAD system achieved a 92.31% correct classification using the time-to-peak and wash-out

slope empirical parameters that are estimated from the agent kidney kinetic curves. Their

framework was extended in [33] by using four augmented empirical parameters (peak in-

tensity value, time-to-peak, up-slope and average plateau). Unlike [32], the parameters

were derived from the cortex rather than from the whole kidney and the system was tested

on 50 patients, and the overall diagnostic accuracy increased to 96%

Although AI-based CAD systems that utilized DCE-MRI have shown promising

results to assess the status of the renal allograft post-transplantation, the use contrast agents

may adversely affect the kidney and cause nephrogenic systemic fibrosis [35] when GFR

< 30 ml/min/1.73m2. Thus, medical centers are reluctant to use DCE-MRI anymore in

patients with renal disease [13, 23, 35]. To overcome these limitations, researchers started

to investigate other modalities of MRIs. Diffusion-weighted MRI (DW-MRI) [36–41] and

blood oxygen level-dependent MRI (BOLD-MRI) [37, 42–49] have been widely used to

assess the status of the renal allograft post-transplantation at an early stage. These modal-

ities provide both anatomical and functional information about the kidney while avoiding

the use of contrast agents. DW-MRI enables non-invasive, in-vivo mapping of the diffu-

sion of water molecules in tissues. These in-vivo diffusion maps are known as apparent

diffusion coefficients (ADC) and can be obtained at different magnetic field strengths and

duration (b-value) [50]. Thus, they can reveal the functional status of the kidney (normal

or diseased) [13, 37]. While BOLD-MRI estimates the amount of oxygen diffused blood

(i.e. oxygen bioavailability) in the kidney to determine whether it is functioning properly.

Specifically, the amount of deoxyhemoglobin is measured by the apparent relaxation rate

(R2*) parameter [13, 37].
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Eisenberger et al. [41] assessed the function of kidney transplants using DW-MRIs.

Scans were collected at 10 different b-values (0, 10, 20, 50, 100, 180, 300, 420, 550, 700

s/mm2) for 15 patients with renal allografts (NR = 10, AR = 4, acute tubular necrosis

(ATN) = 1). After placing manual ROIs, means and standard deviations of the ADC val-

ues were estimated from all b-values. The NR renal allografts demonstrated significantly

higher ADC values in both cortex and the medulla compared to AR and ATN patients.

The ADCs were directly correlated with the creatinine levels. Hueper et al. [36] investi-

gated the role of DW-MRIs in assessing the function of transplanted kidneys. Their study

consisted of 64 participants (NR = 33 patients, AR = 31 patients) and DW-MRIs were

acquired at b0 and b600 s/mm2. Manual ROIs were placed in the medulla and cortex of

the allograft, and the associated ADCs were estimated from these ROIs. AR allografts

had a significant decrease in ADC values, which conformed with biopsy reports. A total

of 69 renal allograft patients (non-rejection (NR) = 43, AR= 26) were enrolled in a study

conducted by Xu et al. [51]. Manual regions of interest (ROI) were placed on renal cor-

tex and medulla and the ADCs were estimated. Renal allografts with AR demonstrated

lower ADCs than NR kidneys. The b800 had the highest sensitivity and specificity of all

measured b-values. Palmucci et al. [52] evaluated functionality of 21 transplanted kidneys

by comparing the estimated ADCs and true diffusion (TD) with renal function indices.

Patients were divided into three groups by their CrCl values. The cortical ADC and TD

were evaluated in a user-defined ROI of the transplanted kidney for the three groups. A

moderate positive correlation between the CrCl and both the ADC and TD, as well as no

difference between the ADC and TD values for the adjacent groups, has been found. The

subsequent extension [53] of these evaluations to 35 patients revealed a slightly smaller

positive correlation than the previously reported one [52]. However, acute rejection re-

sponses after transplantation could not be detected. Abou-El-Ghar et al. [38] conducted

a study to assess renal transplants function. Their study included 70 renal allograft pa-

tients. Using only two b-values of 0 and 800 s/mm2, DW-MRI scans were conducted for
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21 patients with acute graft impairment (group 1) and 49 normal renal allografts (group

2). A user-defined ROI was placed in the middle portion of the kidney in a selected cross-

section, and a pixie-wise ADCs were calculated. Their study revealed that group 1 had

significantly higher ADC values than group 2. Katarzyna et al. [54] investigated possible

relations between the diffusion parameters and selected laboratory results in the early stage

after kidney transplantation. The measurements were conducted in kidneys over multiple

user-defined ROIs at b-values of 600 and 1000 s/mm2 only. According to the relative

variability in the results and SNR, the optimum ADC value in the renal cortex was at b1000

s/mm2 with a strong dependency between the ADC measured at the same b-value and the

estimated GFR. Kaul et al. [39] evaluated the allograft function using the ADC values of

cortex and medulla. There were a significant reduction in ADC values of the medulla com-

pared to the cortex in normally functioning donor and transplanted kidneys. They reported

that in case of AR, the ADC values decreased in the cortex and medulla. Remarkably, they

found that when the patients recovered from the AR using anti-rejection treatments, these

values increased significantly. Thus, this method can be used in therapy follow-up of AR

patients. Park et. al. [55] investigated the potential of DW-MRI in early detection of allo-

graft dysfunction. 24 patients with early dysfunction and 10 with normal transplants were

enrolled in the study. The medullary and the cortical ADC values were calculated for the

patients. They found a moderate correlation between cortical or medullary ADC values

and estimated GFR. Moreover, the ADC values were higher in normal allografts than the

AR patients. Steiger et. al. [56] investigated the utilization of DW-MRI to classify kid-

ney allograft biopsies by the seriousness of its pathological conditions. Renal DW-MRI

and biopsy were performed on 40 kidney recipients. The patients were divided by biopsy

results to one group of 15 patients with normal or simple pathological conditions and to

a second group of 25 patients with sever conditions. Classification based on the ADC

resulted in a sensitivity of 84.0% and specificity of 73.3%. When ADC was combined

with intravoxel incoherent motion parameter, an accuracy of 80% was achieved. Xie et.
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al. [57] investigated the ability of DW-MRI to detect the difference in function of renal

allografts. The study included 40 kidney recipients who were assigned to three groups

based on their eGFR with a unit of ml/min/1.73m2. Groups 1, 2, and 3 had 16, 16, and 8

subjects with eGFR ≥ 60, 60 > eGFR ≥ 30, eGFR < 30, respectively. Also, 18 volunteers

who had eGFR ≥ 60 were added as group 4. Cortical total ADC of group1 was higher

than the group3. Also, total ADC and Fp had positive correlation with the eGFR. Their

ROC analysis achieved 97.1% sensitivity and 66.7% specificity based on Fp values.

In addition to diffusion studies, BOLD-MRI has been used by researchers to quan-

tify renal allograft function by estimating the transverse relaxation rate R2*, which cor-

relates with the relative proportion of deoxy- to oxyhemoglobin. Djamali et al. [44] as-

sessed early-stage renal allograft dysfunction (the first four months post-transplantation)

using BOLD-MRI. In their study 23 renal allografts (NR = 5, AR = 13, ATN = 5). After

manual placements of cortical and medullary ROIs, cortical and medullary R2* were es-

timated. Their study reported that AR allografts had the lowest medullary R2* values as

well as the lowest medullary to cortical R2* ratios. Han et al. [42] explored the potential

of BOLD-MRI in demonstrating significant differences between normal and dysfunctional

renal allografts. A total of 110 patients (NR = 82, AR = 21, ATN = 7) who underwent

renal transplants were enrolled in their study. After manual placement of ROIs in cor-

tices and medullas, mean cortical and medullary R2* values were estimated. Their study

demonstrated higher cortical and medullary R2* values in ATN group compared to both

AR and NR groups. The NR group had higher cortical R2* values than the AR group. No

correlations were found between R2* values and the creatinine level. Sadowski et al. [43]

conducted a study on 20 renal allografts (NR = 6, AR = 8, ATN = 6) using BOLD-MRIs.

Their study demonstrated lower medullary R2* values in AR patients compared to NR

and ATN patients. Xiao et al. [58] conducted a study to differentiate between AR and NR

kidneys post-transplantation using BOLD-MRIs. Their study included a total of 122 pa-
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tients (AR = 21, NR = 72, and 20 normal functioning kidneys). After placing 2D manual

ROIs, they estimated the R2* values for all participants. They reported significantly lower

medullary and cortical R2* values in AR than other normal groups. Mendes et al. [59]

investigated the potential power of BOLD-MRI to assess renal allograft post transplanta-

tion. Their study included 19 patients (AR = 4, ATN = 10, and other dysfunction = 5).

Using 2D ROIs, they estimated the R2* values to differentiate between different groups of

patients. Although they failed to find significant differences in cortical R2* values, they

found that the medullary R2* values were significantly higher in the AR group.

Studies that utilized both DW-MRI and BOLD-MRI in assessing renal allografts

post-transplantation have been performed [37, 60]. Vermathen et al. [60] followed up renal

allograft patients for 3-years post transplantation. Nine renal allografts were scanned twice

using both DW- and BOLD-MRIs to determine the changes in functional parameters (i.e.,

ADC and R2*) as an indication of the allograft rejection. They reported only small and

non-significant changes for NR allografts. ADC values were reduced significantly and

R2* values were higher in the second scan for AR allografts. A study by Liu et al. [37]

included 50 patients with renal transplants (NR = 35 AR = 10, and ATN = 5). Lower ADC

values were reported for AR compared to NR. Medullary R2* values were significantly

higher for ATN group compared to NR and AR groups.

C. Discussion and Conclusions

Early detection of AR can help physicians with early intervention with appropri-

ate treatment and thus prolong the renal graft function and improve patient outcomes.

Generally, there are multiple types of AR, and the selection of the appropriate treatment

depends on the rejection type. For example, acute cellular rejection is treated with a high

dose of corticosteroids, administrated intravenously as the first line treatment [61, 62].
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The most popular regimen is the administration of methylprednisolone for three succes-

sive days [61]. In the case of persistent kidney deficiency with the steroid and/or antithy-

mocyte globulin or the presence of a new defect in renal function after treatment of AR,

another biopsy is recommended to discover additional causes of renal dysfunction. T-

cell depleting antibodies are suggested for aggressive vascular cellular rejection and AR

episodes that do not respond to steroid treatments [63]. On the other hand, if antibody

mediated rejection is the resulting diagnosis, the following alternatives are suggested for

treatment: plasmapheresis, immunoadsorption, intravenous immunoglobulin, or mono-

clonal antibodies [64].

DCE-MRI had been efficient imaging modality to assess the status of the renal

allograft post-transplantation by estimating perfusion parameters. However, medical cen-

ters are reluctant to use DCE-MRI anymore in patients with renal disease [13, 23, 35]

as the contrast agent might adversely affect the kidney [35], especially when GFR < 30

ml/min/1.73m2. DW-MRI and BOLD-MRI have been used by researcher as good re-

placement that is safer and suitable for all kind of patients regardless the value of GFR.

It is worth mentioning that most of the clinical research estimates the ADC at a few se-

lect b-values [36–39, 51, 54–57, 65], typically one of the lower b-values and one of the

higher b-values along with the baseline (b0). Perfusion is measurable at low b-values

≤ 200 s/mm2 [66, 67], while the high b-values account for the water diffusion [66–69].

Most of these studies agreed on that AR patients usually demonstrates reduced values of

ADCs. On the other hand, contradictions were found in the values of R2* to be higher

or lower in AR patients. At the end, these studies suggested that DW-MRIs and BOLD-

MRIs are valuable imaging tools to be used for the early evaluation of AR post kidney

transplantation [37, 38, 42–44, 70, 71].

The related work studies, discussed in this Chapter, had several limitations that

need to be addressed: (1) most of the studies investigated only significant differences and

17



correlations among different renal transplant groups, and (2) none of these studies in-

vestigated the integration of image markers from different MRI modalities with clinical

biomarkers to enhance the diagnostic performance, and (3) none of these studies investi-

gated the power of deep learning (DL) to produce a comprehensive, AI-based CAD system

to identify AR at an early stage. To overcome these limitations, in the next Chapter III, a

novel fully automated AI-based CAD system, named Renal-CAD, is developed to provide

an early and precise diagnosis of AR post kidney transplantation.

18



CHAPTER III

KIDNEY REJECTION COMPUTER-AIDED DIAGNOSIS

A. Materials

Forty seven patients who underwent renal transplantation were enrolled in this

study after providing consent. DW-MRI scans (n = 47 patients), BOLD-MRI scans (n =

30 patients), and renal biopsies (n = 47, M = 31, F = 16, age = 35 ± 16.13 years, age

range = 12–65 years) were obtained (June 2016 to June 2019) from two geographically

diverse countries (USA and Egypt). For the DW-MRI and biopsy data, two groups were

identified: NR group (30 patients) and AR group (17 patients). BOLD-MRI data included

20 NR patients and 10 AR patients. Kidney function for all patients participating in this

study, as a part of post-transplantation routine medical care, were assessed with their lab-

oratory values, namely; creatinine clearance (CrCl) and serum creatinine (SCr). The NR

group (30 patients) had an average SCr value of 1.20 ± 0.36 mg/dl and CrCl value of 74.83

± 26.26 ml/min. The AR group (17 patients) had a mean SCr value of 1.63 ± 0.57 mg/dl

and CrCl value of 54.05 ± 22.28 ml/min. Renal biopsies and coronal MRI data were ac-

quired within 48 hours of each other. The biopsy results were used as the ground truth for

comparison with the classification algorithm. The 47 DW-MRI scans (30 in Egypt and 17

in the USA) were acquired using two similar 3T Ingenia MRI scanners (Philips Medical

Systems, Best, The Netherlands) using a body coil and a gradient single-shot spin-echo

echoplanar sequence. However, data acquisition protocols were slightly different and are
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summarized in Table 1. For both DW-MRI acquisition protocols, water signals were ac-

quired at different b-values of b0, b50, and b100–b1000 s/mm2 at 100 increments, see Fig. 2.

Thirty BOLD-MRI scans were acquired in Egypt using the same 3T scanner; TR: 140 ms,

TE: 2 ms, Flip angle: 25◦, Bandwidth: 150 kHz, slice size: 384 × 384, number of signals

acquired: 1, FOV: 14.4 cm, thickness: 6.0 mm. For each subject, the middle/largest coro-

nal image was selected and obtained at five different echo-times (TE = 2, 7, 12, 17, and

22 ms), see Fig. 2. Both biopsy reports and MRI scans were included in the final analysis

and were examined by two clinicians, a radiologist and a nephrologist.

FIGURE 2: Data collection process demonstration for transplanted kidneys. DW-MRI

data are collected at 11-different gradient field strengths and duration (b-values) of (b0,

b50, b100, ..., b1000 s/mm2), while BOLD-MRI data are collected at 5-different TEs (2,

7, 12, 17, 22 ms).
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TABLE 1: Summary of the DW-MRI acquisition protocols of the data collected in USA

and Egypt. Note that TR/TE: repetition time/echo time, SZ: slice size, STH: slice thick-

ness, IG: intersection gap, FOV: field of view, NCS: number of cross-sections.

Acquisition Protocol Metric

TR/TE SZ (pixels) STH (mm) IG (mm) FOV (cm) NCS

Egypt (30) 4400/82 176×176 4 0 22 24

USA (17) 8000/93.7 256×256 4 0 36 38

B. Methods

In this chapter, a novel fully automated AI-based computer-aided diagnostic sys-

tem, named Renal-CAD (Fig. 15), is developed to provide a precise diagnosis of AR

post kidney transplantation at an early stage. The developed Renal-CAD system performs

the following major steps: (1) auto-segmentation of the renal allograft from surrounding

tissues from DW-MRI and BOLD-MRI, (2) extraction of multimodal MR image mark-

ers, namely: voxel-wise apparent diffusion coefficients (ADCs) are calculated from DW-

MRIs at 11 different low and high b-values and then represented as cumulative distribution

functions (CDFs) and the transverse relaxation rate (R2*) values are estimated from the

BOLD-MRIs at different echotimes and then R2* curves were constructed for better rep-

resentation, (3) integration of multimodal MR image markers with the associated clinical

biomarkers, serum creatinine (SCr) and creatinine clearance (CrCl), and (4) diagnosing

renal allograft status as nonrejection (NR) or AR by utilizing these integrated biomark-

ers and the developed deep learning classification model built on stacked auto-encoders

(SAEs). Details of the developed Renal-CAD are discussed below.
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FIGURE 3: The proposed Renal-CAD system for early diagnosis of acute renal transplant

rejection (AR). The input diffusion-weighted (DW) and blood oxygen level-dependent

(BOLD) MRI data acquired at 11-different b-values and 5-different echo-times are first

segmented. Then, the DW-MR image markers (cumulative distribution function (CDF) of

the voxel-wise apparent diffusion coefficients (ADCs)) and the BOLD-MR image markers

(mean R2* curve) are constructed. These image markers are then integrated with clinical

biomarkers (creatinine clearance (CrCl) and serum creatinine (SCr)) and are fed into a

stacked auto-encoder (SAE) with a softmax classifier to obtain the final diagnosis as AR

or non-rejection (NR).

1. Kidney Segmentation

Providing a fully-automated and precise segmentation of the renal allograft is a

key step in the Renal-CAD system. Precise extraction of imaging features for accurate

final diagnosis requires high segmentation accuracy. To improve segmentation accuracy,

data preprocessing was performed prior to applying the previously developed segmenta-
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FIGURE 4: Block diagram illustrating the kidney segmentation approach’s steps. The raw

DW- and BOLD-MRI data are first pre-processed to suppress noise and motion effects.

Then, a joint Markov-Gibbs random field (MGRF) image model that accounts for the

shape, intensity, and spatial features is employed. Finally, a level-set segmentation guided

by the MGRF model is applied to get the final segmented kidney.

tion approach [72], see Fig. 16. Briefly, histogram equalization was first applied on the

bias corrected [73] MR images to suppress noise effects and image inconsistencies. Then,

a nonrigid registration using B-splines approach [74] was employed to handle kidney mo-

tion and to reduce MRI anatomical variability among different patients to improve segmen-

tation accuracy. Subsequently, renal segmentation based on the level-sets method [72] was

performed. To enhance kidney segmentation accuracy, a joint Markov-Gibbs random field

(MGRF) image model that combines three different components: shape, grey level, and

spatial MRI features was employed. Renal segmentation approach accuracy was evaluated

on all DW- and BOLD-MRIs for a more precise estimation of the discriminatory features.

Two examples for the segmentation approach’s results for both DW- and BOLD-MRIs are

shown in Figs. 5 and 6, respectively. Details of this approach has been described in the

published work [72].
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FIGURE 5: Segmentation results example for a DW-MRI subject. The upper raw shows

different DW-MRI coronal cross-sections raw data, while the lower raw shows the corre-

sponding segmentation results with red edges.

FIGURE 6: Segmentation results example for a BOLD-MRI subject. The upper raw shows

different BOLD-MRI coronal cross-sections raw data at different echo times (from left to

right: 2, 7, 12, 17, and 22 ms), while the lower raw shows the corresponding segmentation

results with red edges.
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2. Feature Extraction

Diffusion Weighted Imaging Markers: The significant advantages of DW-MRI is high-

lighted by its ability to quantify local characteristics of blood diffusion and to interrelate

them with the transplant status, due to DW-MRI’s ability to measure the unique charac-

teristics of inner spatial water behavior in the soft tissue (e.g., kidney). This behavior is

quantified by apparent diffusion coefficients (ADCs) [37, 40, 55], which can be utilized

to evaluate the kidney transplant status. Following the accurate segmentation of the kid-

ney, the DW-MR image-markers (i.e. voxel-wise ADCs) are estimated precisely using the

following equation [50, 75] as:

ADCvx =
ln g0:vx − ln gb:vx

b
(1)

vx : A voxel with its 3D Cartesian location (x, y, z).

g0: T2-weighted signal intensity obtained at b = 0.

gb: Diffusion-weighted signal intensity obtained at the given b-value.

The voxel-wise ADCs were estimated at the 11-different b-values to be used as dis-

criminatory features to assess kidney transplant. However, using such voxel-wise ADCs as

discriminatory features has the following limitations: (1) varying input data size that might

lead to data truncation and/or zero padding for smaller and/or larger kidney volumes, re-

spectively and (2) considerable training and classification time is needed, especially, in the

case of large data volumes. In order to overcome these limitations, these voxel-wise ADCs

were characterized at the 11 different b-values, using the cumulative distribution functions

(CDFs) of the ADCs. To construct such CDFs, the minimum and maximum ADCs were

calculated for all input datasets. Then, CDFs of the voxel-wise ADCs were constructed at

the 11-different b-values (100 steps for each CDF) resulting in a DW-MR image markers

(Dmrks) vector of size 1100 × 1. Please see Fig. 7.
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FIGURE 7: Demonstration of DW-MRI features construction procedure. First, the ap-

parent diffusion coefficients (ADCs) are estimated from the segmented kidneys at 11-

different b-values. Then, probability distribution functions (PDFs) and cumulative dis-

tribution functions (CDFs) are constructed consequently from the estimated ADCs at all

b-values.

BOLD-MR Imaging Markers: BOLD-MRI estimates the amount of the renal allograft

content of deoxygenated hemoglobin (R2*). By measuring T2* (i.e., the amount of oxy-

genated hemoglobin [49]) in the allograft, one can calculate the R2* by taking the recipro-

cal of T2*. The mean R2* values were estimated from the delineated allograft using four

different TE (7, 12, 17, 22 ms) resulting in a 4×1 vector of mean R2* values (Fig. 8). This

vector was used as the combined discriminatory BOLD-MR image-markers (Bmrks) to as-

sess renal allograft status. The BOLD-MRI data acquired at 2 ms was used as the baseline.

The pixel-wise T2* and R2* maps can be estimated using the following equations [48]:

T2∗px =
t0 − t

ln S It:px − ln S It0:px
(2)

R2∗px =
1

T2∗px
(3)
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FIGURE 8: Demonstrating the procedure of constructing BOLD-MRI features, where the

mean T2* values are estimated from the segmented allograft at 4-different echo-times (TE

= 7, 12, 17, 22 ms). Then, the mean R2* values are estimated by taking the reciprocal of

the estimated T2* values.

px: a pixel with its 2D Cartesian location (x, y).

SIt: signal intensity obtained at TE = t and extracted from the segmented image.

SIt0: signal intensity obtained at the baseline TE = 2 ms and extracted from the segmented

image.
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3. Deep Learning-based Stacked Autoencoders

Deep learning is a machine learning approach that is widely used in many applica-

tions, including in the medical domain (e.g., detection, diagnosis, prediction, etc.) for spe-

cific diseases. An autoencoder (AE) is an artificial neural network (ANN) that employs an

unsupervised deep learning/training approach followed by a supervised backpropagation-

based refinement algorithm to provide a better classification performance [4, 5, 76]. The

main structure of an AE, shown in Fig. 9, can be basically defined as three main types

of layers: an input layer, a hidden layer, and an output layer. The AE training procedure

can be classified into encoding and decoding processes. In the encoding process, the input

data is mapped into a hidden representation through the hidden layer. In the decoding pro-

cess, the input data are reconstructed from the hidden-layer representation. Both encoding

and decoding processes are primarily used to learn an approximation to the identity func-

tion, which implies that the reconstructed input X̂ (i.e., decoding process output) is almost

identical to the input X, see Fig. 9. The main purpose of this identity function is to force

the AE to learn a compressed representation of the input, especially when the number of

hidden nodes is less than the input size. Conversely, the AE is forced to reconstruct the

input back given only the hidden features/activations.

Given the unlabeled training input dataset {Xn : n = 1 . . .N}, such that each Xn ∈

Rm, Hn ∈ R
k represents the hidden layer’s features/activations resulting from the encoding

process of the input vector Xn, this encoding process can be described by the following

equation:

Hn = fe (WeXn + Be) , (4)

where fe represents the encoder activation function, which in this study is a sigmoid func-
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FIGURE 9: A demonstrative figure for the basic structure of the autoencoder (AE), where

each AE consists of an input layer, a hidden layer, and an output layer. After training

each AE separately, AE1 is stacked with AE2 and a softmax classifier on the top of them

to obtain a stacked AE (SAE). Then, a backprobagation-refinement algorithm is used to

update the hidden weights of the SAE.
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tion, i.e. a differentiable, monotone scalar function with range (0, 1). We ∈ R
k×m and

Be ∈ R
k are the weight matrix and the bias vector of the encoder, which are randomly

initialized. Given the hidden layer’s features/activations Hn obtained from the aforemen-

tioned encoding process, the following equation describes the decoding process to obtain

the reconstructed input X̂:

X̂n = fd (WdHn + Bd) , (5)

where fd represents the decoder function, while Wd and Bd are the weights and biases of the

decoder, respectively. The optimal set of hyper-parameters of the AE can be tuned based

on the compression/decompression reconstruction error minimization criteria as follows:

JAE(W,B) =
1

2n

n∑
i=1

∥∥∥∥X̂W:i − Xi

∥∥∥∥2
, (6)

where ∥X̂W:i − Xi∥
2 represents the loss function that needs to be minimized, which in turn

will lead to the reduction of the reconstruction error JAE(W,B) at the end. To obtain

the final stacked AEs (SAEs) that will be used in the Renal-CAD system for the early

detection of AR, two autoencoders (AE1 and AE2) followed by a softmax classifier were

trained and stacked together, see Fig. 10. Algorithm summarizes building and optimizing

the SAE classification model.

Overfitting and Dropout Technique: Deep neural networks (DNNs) are known with

their complex structure, which makes them prone to overfitting. A DNN is overfitted when

it fails to generalize or provide a correct analysis/output given a new set of input data.

Overfitting typically occurs when the training set is not large enough. Dropout technique

is a proven methodology for its ability to reduce overfitting in the training phase [77,

78]. Using dropout technique, one can obtain various representations for the relationships

between the training data. Some of the hidden neurons can be randomly deactivated, while
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FIGURE 10: An illustrative figure showing the structure of the proposed SAE classi-

fier. The feature vector uses the concatenation criteria to integrate diffusion markers with

BOLD markers and clinical biomarkers. This vector is used as the SAE’s input and pro-

cessed through two hidden layers and a softmax classifier to get the final probability of

being an AR or NR renal allograft.
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Algorithm 1 Building, Stacking, and Optimizing The Developed SAE
1 Train the first autoencoder AE1, separately, by using the input data X1 to obtain the

learned features/activations H1.

2 Use the features/activations (H1) obtained from AE1 as an input to train the second

AE2.

3 Use the features/activations (H2) obtained from the second AE2 as an input to train a

softmax classifier to compute the plausibility of being assigned to class 1 or 2.

4 Stack AE1, AE2, and the softmax classifier together to get your SAEs, and use a super-

vised backpropagation-based refinement algorithm to minimize the conventional error

in the SAEs and update the hidden weights.

5 Finally, fine tune the hyper-parameters by using a grid search criteria that minimizes the

cost function as an optimization metric to provide a better classification performance.

preserving their corresponding weights and biases, in each iteration during the training

phase. In the next iteration, these deactivated neurons could be re-activated and some other

different neurons might be deactivated. These permutating deactivation process leads to

reduction in the total number of the activated neurons and thus hinder the complex co-

adaptations between training data. In this chapter, the dropout technique was used to

suppress the overfitting effect by extracting meaningful features and to improve the final

diagnostic accuracy of the developed Renal-CAD system.

4. Kidney Diagnosis by Integrating Diffusion, BOLD, and Clinical Biomarkers

To obtain an accurate assessment of the kidney transplant, the following different

sources of information were integrated: (i) the estimated Dmrks vector of size 1100×1 to

interrelate local blood diffusion characteristics with the transplant status; (ii) the estimated

Bmrks vector of size 4×1 to quantify the amount of the renal allograft content of deoxy-

genated hemoglobin and interrelating it with the transplant status; and (iii) the combined
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clinical biomarkers (SCr and CrCl) resulting in Cbmrks vector of size 2×1 to measure the

creatinine levels in both blood and urine, and thus; the filtration ability for renal transplant

assessment. These three sources of information were integrated using the concatenation

method resulting in an integrated biomarkers (Ibmrks) vector of size 1106×1 that will be

used as the final discriminatory features between the AR and NR groups.

After obtaining the Ibmrks, a classification process based on using a leave-one-

subject-out cross-validation (LOSOCV) approach was employed using SAEs to obtain

the final diagnosis. The Ibmrks of size 1106×1 were fed as an input vector to SAEs to build

the classification model. A grid search algorithm minimizing the cost function as an opti-

mization metric was employed to find the optimal-set of hyper-parameters. The two-layer

SAEs with the first hidden layer (n = 9 nodes), second hidden layer (n = 3 nodes), output

softmax layer (n = 2 nodes), weight decay parameter = 0.0022, weight of sparsity penalty

term = 20, desired average activation of the hidden units = 0.2421, and dropout fraction =

0.5, provided the optimal diagnostic accuracy using LOSOCV approach and was selected

for the proposed Renal-CAD system (Fig. 10).

C. Experimental Results

Two methods were used for train, test, and validation purposes. The first one is

known as K-fold (i.e., LOSOCV) and is depending on training the network with all data

while leaving only one subject outside for testing purpose. Then, in the next iteration,

the network was reinitialized, and the subject that was left in the previous iteration was

included back in the training data and the next subject was left outside for testing purpose.

This procedure was repeated by the number of the subjects (N = 30, Training Data =

29, Testing Data = 1) and the diagnostic results were reported. The second validation is

known as stratified 10-fold cross-validation in which 90% of the data were used for the
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training and 10% of the data were randomly selected and kept for testing. Then, in the next

iteration, the network was reinitialized and that 10% was included back in the training set

and another randomly selected 10% was kept for testing. This process was repeated for

10 times (N = 30, Training Data = 27, Testing Data = 3).

It is worth mentioning that stratification was assured in the 10-fold cross-validation

to help reduce both bias and variance. Stratification technique does not only allow for

randomization but also ensures that the training/testing spilt percentages of each class in

the entire data will be similar within each individual fold. In this case, NR = 20 subjects

(67%) and AR = 10 subjects (33%), stratification ensures that 67% of the training data

will be derived from NR subjects and 33% will be derived from AR subjects and the same

percentages will be maintained for the test data too.

Renal-CAD software is primarily implemented in Matlab (The MathWorks, Nat-

ick, Massachusetts), with time-critical subroutines developed in C using the Matlab Mex

API. Cross-validation experiments were performed on a Dell Precision workstation with

Intel Xeon eight-core CPU running at 2.1 GHz and 256 GiB RAM.

The developed Renal-CAD system with SAEs classifier was tested using the Ibmrks

constructed for the 30 datasets that had both DW- and BOLD-MRI scans based on the

LOSOCV approach. To demonstrate the effect of integrating Dmrks with Bmrks and Cbmrks

and highlight its advantages, six additional scenarios were performed and compared with

the Renal-CAD system using accuracy, sensitivity, and specificity as performance eval-

uation metrices, see Table 2. The first scenario (S 1) utilized the Dmrks alone on the 47

datasets along with the same SAEs classifier and the LOSOCV approach. The second

scenario (S 2) employed the Bmrks alone on the 30 datasets along with the same LOSOCV

approach. However, because the Bmrks are of smaller size (i.e. 4×30), SAEs were replaced

with a conventional multi-layer preceptron artificial neural network (MLP-ANN) classi-

34



fier with two hidden layers (hl1, n = 3 nodes and hl2, n = 1 node). The third scenario

(S 3) used the Cbmrks alone on the 47 datasets along with the same LOSOCV approach.

However, because the Cbmrks are of smaller size (i.e. 2×47), the SAEs were replaced by

a linear discriminant analysis (LDA) classifier. The fourth scenario (S 4) integrated both

Dmrks with Bmrks resulting in DBmrks on the 30 datasets along with the same SAEs classifier

and the LOSOCV approach. The fifth scenario (S 5) integrated both Dmrks with Cmrks re-

sulting in DCmrks on the 47 datasets along with the same SAEs classifier and the LOSOCV

approach. The sixth scenario (S 6) integrated both Bmrks with Cmrks resulting in BCmrks on

the 30 datasets along with the same LOSOCV approach. However, because the BCmrks

are of smaller size (i.e. 6×30), SAEs were replaced with a MLP-ANN classifier with two

hidden layers (hl1, n = 5 nodes and hl2, n = 1 node). Results in Table 2 suggests that the

utilization of the Ibmrks had a positive effect on the final diagnostic accuracy. This can be

justified in part by the different abilities of each individual marker (i.e. Dmrks, Bmrks, and

Cbmrks) to evaluate renal allograft function, which are complementary to each other.

To ensure that the developed Renal-CAD system is not prone to overfitting (i.e.,

after using the dropout technique) and to validate the reproducibility and robustness of the

Renal-CAD system, a stratified 10-fold cross-validation approach was performed on the

same dataset (N = 30) using the same integrated biomarkers Ibmrks and the same SAEs with

its previously defined structure and hyper-parameters. Results are reported in Table 3 and

compared with the results obtained earlier using the LOSOCV approach in terms of ac-

curacy, sensitivity, specificity, and area under the curve (AUC). In addition, the LOSOCV

experiment was repeated 100 times with different randomly selected network initializa-

tion to ensure that the Renal-CAD system would be able to produce consistent diagnostic

results. The Renal-CAD system produced the following diagnostic results: 91.65 ± 1.74

(% accuracy), 90.0± 0.0 (% sensitivity), and 92.5± 2.64 (% specificity). These validation

experiments demonstrated the reproducibility and robustness of the Renal-CAD system.
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TABLE 2: Diagnostic performance comparison between the proposed Renal-CAD system

using the integrated biomarkers (Ibmrks) and six other scenarios S 1, S 2, S 3, S 4, S 5, and S 6

using the individual DW-MR image markers (Dmrks), BOLD-MR image markers (Bmrks),

clinical biomarkers (Cbmrks), integrated diffusion and BOLD markers DBmrks, integrated

diffusion and clinical biomarkers DCmrks, and integrated BOLD and clinical biomarkers

BCmrks respectively. Let Acc: accuracy, Sens: sensitivity, Spec: specificity, and AUC: area

under the curve.

Classification Performance (NR vs. AR)

S 1(Dmrks) S 2(Bmrks) S 3(Cbmrks) S 4(DBmrks) S 5(DCmrks) S 6(BCmrks) Renal-CAD(Imrks)

Acc% 80.9 86.7 70.2 90.0 87.2 90.0 93.3

Sens% 76.5 80.0 80.0 90.0 82.4 80.0 90.0

Spec% 83.3 90.0 52.9 90.0 90.0 95.0 95.0

AUC 0.84 0.84 0.71 0.90 0.88 0.88 0.92

TABLE 3: Diagnostic performance of the developed Renal-CAD system using the inte-

grated biomarkers (Ibmrks) using LOSOCV approach vs. 10-fold cross-validation approach.

Let Acc: accuracy, Sens: sensitivity, Spec: specificity, and AUC: area under the curve.

Classification Performance (NR vs. AR)

Acc% Sens% Spec% AUC

Renal-CAD (LOSOCV) 93.3 90.0 95.0 92.0

Renal-CAD (10-fold) 86.7 80.0 90.0 0.88
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Statistical analysis was performed using R version 3.6. Differences in ADC or

R2* between groups (AR/NR) were analyzed using MANOVA. Statistical significance

was estimated from Pillai’s trace, converted into its approximately equivalent F statis-

tic. MANOVA was performed using the individual imaging parameters by themselves,

combined imaging parameters, and also in combination with lab values (CrCl and SCr).

Follow up comparisons of ADC or R2* at each individual b-value or time point, respec-

tively, were made using t-tests.

From Tables 4 and 5, renal allografts without AR had a slightly higher, albeit not

significantly, mean ADCs at individual b-values, particularly with higher gradients ≥ 200,

compared to AR. When all gradients were combined together, NR group had significantly

higher ADCs than the AR group. The AR renal allografts had a higher, but not signif-

icant, mean R2* at the different echo-times (i.e. lower T2* values, which means lower

amount of oxygen supply). Similarly, the combined R2* model did not reach significant

differences. Table 6 demonstrates the statistical significance between the two groups (AR

vs. NR) using the individual clinical biomarkers, all of the possible pair-wise multivariate

combinations, and the combination of the imaging modalities with the clinical biomarkers

(All). As reported in Table 6, the CrCl and SCr have shown statistically significant differ-

ences between the two groups (the NR group demonstrated higher CrCl values and lower

SCr values than the AR group). In addition, all possible pair-wise combinations and the

combined model (All) demonstrated statistical significance between the two groups.

The performance of the developed Renal-CAD system was evaluated by construct-

ing the receiver operating characteristics (ROC) [79], see Fig. 11. Furthermore, the per-

formance of Renal-CAD system was compared to the six scenarios (S 1, S 2, S 3, S 4, S 5,

and S 6) in terms of area under the curve (AUC). The Renal-CAD demonstrated the high-

est AUC of 0.92, as shown in Table 2 and Fig. 11. In addition, reproducibility and ro-

bustness of the Renal-CAD system was confirmed by comparing the performance of the
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TABLE 4: A comparison in terms of means and standard deviations (stds) of the ADC

maps at 11-individual b-values between the non-rejection (NR) group and the acute re-

jection (AR) group. Statistic is t with approximately 31 effective degrees of freedom in

univariate case, F with 11 degrees of freedom in the numerator and 35 in the denominator

in the multivariate case.

ADC Maps at Individual b-values: mean(std) ≈

b (s/mm2) 50 100 200 b300 400 500 600 700 800 900 1000 Combined

NR(30) 4.0(0.66) 3.31(0.48) 2.86(0.31) 2.62(0.25) 2.48(0.20) 2.35(0.18) 2.25(0.15) 2.17(0.13) 2.09(0.12) 2.01(0.12) 1.94(0.11) − − − − −

AR(17) 3.99(0.71) 3.37(0.48) 2.81(0.36) 2.53(0.32) 2.37(0.25) 2.26(0.23) 2.17(0.23) 2.07(0.22) 2.00(0.20) 1.93(0.19) 1.87(0.18) − − − − −

Statistics −0.016 0.368 −0.465 −1.00 −1.52 −1.40 −1.36 −1.62 −1.65 −1.61 −1.56 2.49

p-value 0.987 0.715 0.645 0.326 0.139 0.173 0.188 0.119 0.113 0.120 0.133 0.020

TABLE 5: A comparison in terms of means and standard deviations (std) of the R2* maps

at 4-individual echo-times between the non-rejection (NR) group and the acute rejection

(AR) group. Statistic is t with approximately 13 effective degrees of freedom in univariate

case, F with 4 degrees of freedom in the numerator and 25 in the denominator in the

multivariate case.

R2*/s Values at Individual Echo-times: mean(std) ≈

Echo-time 7 ms 12 ms 17 ms 22 ms Combined

NR(20) 23.6(18.0) 19.9(5.8) 19.9(7.2) 19.4(4.7) − − − − −

AR(10) 25.1(16.8) 20.3(9.3) 23.7(11.3) 23.3(10.3) − − − − −

Statistics 0.244 0.149 0.974 1.14 1.95

p-value 0.810 0.884 0.348 0.277 0.133

Renal-CAD using a 10-fold cross-validation to the LOSOCV approach in terms of ROC

(Fig. 12) and AUC (Table 3).
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FIGURE 11: Receiver operating characteristics (ROC) curve for the proposed Renal-CAD

system vs. six other different scenarios, namely; S 1, S 2, S 3, S 4, S 5, and S 6 using the

individual DW-MR image markers (Dmrks), BOLD-MR image markers (Bmrks), clinical

biomarkers (Cbmrks), the combined DW- and BOLD-MR image markers (DBmrks), the com-

bined DW-MR image markers and clinical biomarkers (DCmrks), and the combined BOLD-

MR image markers and clinical biomarkers (BCmrks), respectively. The Renal-CAD area

under the curve (AUC) is almost approaching the unity, demonstrating the feasibility and

robustness of the developed system.
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FIGURE 12: Receiver operating characteristics (ROC) curve for the proposed Renal-CAD

system using the leave-one-subject-out cross-validation (LOSOCV) approach with an area

under the curve (AUC) of 0.92 vs. using the 10-fold cross-validation approach with an

AUC of 0.88. A reduction of only 0.04 in the AUC demonstrates the reproduciblity and

robustness of the developed system.
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TABLE 6: A comparison in terms of means and standard deviations (stds) of the clinical

biomarkers (CrCl and SCr) between the non-rejection (NR) group and the acute rejection

(AR) group. Note: d.f. denotes degree of freedom with different values depending on the

combined variables.

Data CrCl SCr Dmrks+Cmrks Bmrks+Cmrks Dmrks+Bmrks All

NR 74.8(26.3) 1.2(0.4) − − −− − − −− − − − − − − − − − −

AR 54.1(22.3) 1.63(0.6) − − −− − − −− − − − − − − − − − −

Statistics −2.88 2.81 2.51 3.78 3.00 3.57

d.f. 38.1 23.4 13/33 6/23 15/14 17/12

p-value 0.007 0.010 0.016 0.009 0.023 0.015

D. Discussion and Conclusions

The classification results of the Renal-CAD system that integrated multi-modal

imaging markers and clinical biomarkers demonstrated high accuracy, sensitivity, and

specificity. These results demonstrated the feasibility and efficacy of the Renal-CAD

system to precisely and non-invasively identify renal allograft status at an early stage.

Classification results obtained using individual imaging modalities (DW-MRI or BOLD-

MRI) had lower accuracy, sensitivity, specificity, and area under the curve compared to the

Renal-CAD system. The estimated diffusion markers (Dmrks) has the potential to interre-

late local blood perfusion and water diffusion characteristics with the transplant status and

thus, provide a good discriminator between AR and NR renal transplants. Most of the clin-

ical studies estimated the ADC values at two selected b-values. Usually, they select one

with a low gradient strength b-values < 200 to be able to measure blood perfusion [66, 67]
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and one with a high gradient strength > 200 to be able to measure water diffusion inside

the kidney [66–69]. This study utilized 11-different gradients to estimate both blood per-

fusion and water diffusion to enhance diagnostic accuracy. The obtained results are in line

with the findings of other clinical studies [36, 38–41, 51, 56, 57, 65] in that the NR renal

transplants demonstrated higher ADC values than AR transplants (b-value > 200).

The estimated BOLD-MRI markers (Bmrks) can quantify the amount of the renal

allograft content of deoxygenated hemoglobin to interrelate with the transplant status.

There is no consensus regarding whether NR or AR has higher R2* values. Further, the

threshold R2* values to distinguish AR from NR are not known [43, 44, 49]. The findings

of this study suggest that AR renal allografts demonstrate higher values of R2* at the

different echo-times as previously reported [42, 60]. This can be physiologically justified

in part by the fact that the change in oxygenation in the medulla may be associated with an

almost hypoxic condition that makes it vulnerable to a further decrease in oxygen supply.

Clinicians are able to measure the creatinine levels in both blood and urine, and

thus; the filtration ability for renal transplant assessment. However, these clinical biomark-

ers are imprecise and usually a later stage indication of rejection, when the damage to the

kidney and the loss of renal function can be substantial. The developed Renal-CAD sys-

tem integrates all available information to enhance diagnostic accuracy (93.3%), sensitiv-

ity (90.0%), specificity (95.0%), and AUC ( 0.92). This improved diagnostic ability is due

to the integration of each individual marker (i.e. Dmrks, Bmrks, and Cbmrks) that can capture

different aspects of renal allograft dysfunction that are complementary. The Renal-CAD

system is robust to handle missing data, while still providing reasonable accuracy, as evi-

denced by Table 2.

In conclusion, the developed Renal-CAD system demonstrated a high classifica-

tion accuracy (93.3%), sensitivity (90.0%), specificity (95.0%), and AUC (0.92) for early
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stage diagnosis of AR post-transplantation. Renal-CAD integrates individual biomark-

ers (i.e. clinical biomarkers with DW-MR and BOLD-MR image markers) for a better

characterization of renal allograft function and accurate identification of AR.
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CHAPTER IV

RENAL CANCER DIAGNOSIS SURVEY

Renal cancer (RC) is considered the 10th most prevalent cancers in men and women

worldwide. Early and accurate diagnosis of renal tumors, specifically, grading and staging

of malignant tumors help identifying the aggressiveness and the spread of such tumors,

respectively. This can potentially help in administering a timely intervention with the op-

timal management plan. Although biopsy remains the gold standard for diagnosing renal

tumors, it is late, invasive, expensive, and has adverse affects such as bleeding and infec-

tion. In addition, it cannot assess the treatment response. Artificial intelligence (AI) when

paired with Radiomic markers resulted in developing AI-based computer-aided diagnostic

(AI-based CAD) systems, which have shown promising results for early diagnosis of renal

tumors (i.e., specifying malignancy status, subtyping, grading, and staging). Definitely,

this will help reducing diagnosis time, enhancing diagnostic performance, reducing the

need for invasive procedures, and provide the guidance for proper management to avoid

the burden of unresponsive treatment plans. This main goal of this chapter is to spot the

lights on the recent technical diagnostic studies from the last decade, with their pros and

cons, that have utilized AI and Radiomics markers extracted from computed tomography

(CT) and magnetic resonance (MR) images to produce AI-based CAD systems for precise

diagnosis of RC at an early stage.
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A. Background on Renal Cancer

Renal cancer is 10th most common cancer among men and women. For the past

several decades, an increasing number of new patients have been diagnosed with renal

cancer. In the year 2022, approximately 79,000 new cases are expected to be diagnosed

with RC in the United States [15, 80], and 14,000 patients are expected to have died from

renal cancer in that same time period [15, 80]. Roughly two thirds of the time, renal cancer

is diagnosed before it has metastasized, in which case the 5-year survival rate is 93%. Once

it has spread to the lymph nodes or the surrounding abdominal structures (i.e., other organs

or tissues), the 5-year survival rate falls to 72%. In the worst case of metastasis to distant

parts of the body, the 5-year survival rate is a mere 15% [15, 80]. In addition, the National

Cancer Institute had an approximated cost estimate of $5.1 billion for renal cancer care

in the United States by the end of 2022 [81]. Renal cancer is a heterogeneous disease in

which the renal cells become malignant (cancerous) and form tumors called renal masses.

These renal masses, if not detected early and treated promptly, will lead to mortality.

The most common, and also the most aggressive, renal cancer is renal cell carcinoma

(RCC), accounting for 70% of all cases [82, 83]. In turn, 70% of RCC are clear cell

renal cell carcinoma (ccRCC), and of the remaining non-clear cell subtypes (nccRCC), the

most prevalent are papillary (paRCC) and chromophobe (chrRCC) renal cell carcinomas,

accounting for 15% and 5% of all RCC, respectively [84]. The World Health Organization

(WHO) taxonomy of RCC [84] has clinical significance because the various subtypes

can have very different prognoses [84–86]. Differential diagnosis of RCC must look out

for the benign tumors angiomyolipoma (AML) and oncocytoma (ONC), which are easily

confused with RCC using conventional diagnostic techniques [87–91]. AMLs with low fat

content are particularly prone to misdiagnosis [92]. Diagnostic error leads to unnecessary

surgical intervention for benign lesions, to the point where 15–20% of surgically resected

“RCC” may actually be AML [93]. Therefore, accurate characterization of such renal
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masses at an early stage is crucial to the identification of appropriate treatment plan.

Evidence of renal cancer can be found in complete blood count (CBC) to check

for the number of red blood cells; urine tests to look for blood, bacteria, or cancerous

cells in urine; and blood chemistry tests to quantify renal function by checking the levels

of certain chemicals in the blood. These signs are suggestive at best, and inadequate for

diagnosis or typing of renal cancer. Only biopsy, performed by interventional radiologists

and/or nephrologists, can provide a definite diagnosis of renal cancer, and thus remains the

gold standard [15, 80]. However, it can only be used as the last resort due to its high inva-

siveness, cost, and turnaround and recovery times (approximately a week). Therefore, the

investigation of noninvasive diagnostic techniques to provide an early, reliable, accurate,

cost-effective, and rapid diagnosis of renal tumors is ongoing [94–97].

B. Related Work

Contrast-enhanced computed tomography (CECT) [98, 99], contrast-enhanced mag-

netic resonance imaging (CEMRI) [100], and diffusion weighted MRI (DW-MRI) [101]

are the most commonly used imaging modalities for the accurate diagnosis of renal tu-

mors. Different contrast phases of CECTs or CEMRIs are: pre-contrast/unenhanced phase

(Phase 1), corticomedullary/arterial phase (Phase 2), nephrographic/portal-venous phase

(Phase 3), and excretory/delayed phase (Phase 4). CECT and CEMRI can specify the lo-

cation, shape, and size of a given tumor and can distinguish malignant from benign lesions

with high accuracy based on their different uptake of the contrast agent [96, 102, 103]. For

DW-MRI, apparent diffusion coefficients (ADCs) are the most discriminating parameter

that quantify the Brownian motion of water molecules inside the soft tissue and thus, re-

veals the status of that tissue if it is normal or diseased [37, 40, 55]
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For this purpose, Radiomics are quantitative techniques that have been widely per-

formed on CTs and MRIs to extract discriminatory markers/features for better interpreta-

tion [104, 105]. Texture, morphology, and functionality, are different aspects that could be

captured by various types of Radiomic markers, which in turn improve both the diagnos-

tic and prediction capabilities of RC [106] at an early stage. Different types of Radiomic

markers that could be extracted from either CTs or MRIs are shown in Fig. 13. Meanwhile,

recent advances in artificial intelligence (AI), machine learning (ML), and deep learning

(DL) have accelerated the application of Radiomics in clinical practice. A typical example

of AI-based computer-aided diagnostic (AI-based CAD) system to diagnose RC is shown

in Fig. 14. It could be either hand-crafted-based pipeline or a deep learning-based one.

In both pipelines, region of interest (ROI) containing renal tumors is defined from input

CT or MR images. Then, different types of Radiomic markers are extracted, reduced, and

selected to be further processed using ML classification model. After that, diagnosis of re-

nal tumor is then obtained and assessed using different evaluation metrics (e.g., accuracy,

sensitivity, specificity, and area under the curve (AUC)). The higher diagnostic capabilities

will help physicians to early intervene with the optimal treatment plan.

In this chapter, we will review the studies that were performed in the last decade

utilizing AI and Radiomic markers extracted from CECT, multi-parametric MRIs, CEMRI,

or DW-MRI scans to develop an AI-based CAD systems for accurate diagnosis of RC

at an early stage. In particular, identifying the malignancy status of a given renal tu-

mor [92, 107–113], specifying the associated subtype [100, 113–116], grading and stag-

ing of malignant tumors (I-IV) [100, 117–121]. For example, Deng et al. [122] utilized

texture analysis (TA) techniques along with CECT to discriminate malignant from benign

renal tumors. Their study included 501 renal tumors of which 354 were RCCs and 147

were benign lesions. From the portal-venous phase, they manually placed a 2D ROI in

the largest CECT cross-section of the tumor volume. Then, they extracted four textural
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FIGURE 13: A typical taxonomy for the different types of Radiomics. Note that ADCs,

GLCM, GLRLM, GLSZM, GLDM, NGDTM, LBP, FFT, LTE, and DCT denote apparent

diffusion coefficients, grey-level co-occurrence matrix, grey-level run length matrix, grey-

level size zone matrix, grey-level dependence matrix, neighboring gray tone difference

matrix, local binary pattern, fast Fourier transform, Law’s texture energy, and discrete

Cosine transform, respectively.

FIGURE 14: A typical pipeline for an AI-based CAD system for early diagnosis of renal

tumors using CT or MR images.

48



features, namely entropy, kurtosis, mean positive pixel density, and skewness. Utilizing

logistic regression, they found that higher values of entropy were significantly associated

with a greater likelihood of malignancy (p = 0.022). As a diagnostic indicator of RCC,

the entropy feature had high specificity (85.5%), but quite low sensitivity (31.3%) [122].

Kunapuli et al. [123] conducted a study to explore the potential of CECT along with TA

to identify malignant renal tumors. Their dataset included images of 100 malignant (70

ccRCC, 20 paRCC, and 10 chrRCC) and 50 benign (20 AML and 30 ONC) tumors. After

segmenting renal tumors manually using image-rendering software, 2D and 3D TAs were

performed on tumor with the largest diameter and the entire tumor volume, respectively.

They extracted 51 2D and 3D textural features from each of four different CT phases,

yielding a total of two-hundred and four features per subject. These comprised 8 his-

togram features (i.e., first-order textural features), 40 second-order textural features (20

grey-level co-occurrence matrix (GLCM) and 20 grey-level difference matrix (GLDM)),

and 3 spectral features derived from the 2D Fourier transform. Recursive feature elimina-

tion [124] was used to reduce the number of features to 10 per phase, or a total of 40. Their

classification algorithm incorporating these features, using relational functional gradient

boosting, had a reported 82% accuracy and an 0.83 area under the curve. The classifier

was developed to discriminate between malignant and benign tumors only, and the authors

did not investigate the subtype classification of malignant RCC [123].

Kocak et al. [125] conducted a study to classify ccRCC renal tumors from nccRCC

ones using CECT along with TA. A total of 68 RCCs were included for internal validation

(N = 48 ccRCC and N = 20 nccRCC). For external validation purposes, they included

an additional 26 RCC from a public dataset (N = 13 and N = 13 nccRCC). Their study

utilized MaZda image-rendering software [126] to manually segment renal tumors on the

largest/middle cross-section. This was followed by an extraction of 275 textural-related

features from each subject in both the enhanced CT phase and the unenhanced phase. In
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addition, a wrapper-based nested cross-validation approach was employed to select the

reproducible features in both phases and to optimize their classification model. Artificial

neural networks (ANNs) were used, and a classification accuracy of 86.7%, a sensitivity of

80%, and a specificity of 89.6% on internal data and an accuracy of 84.6%, a sensitivity of

69.2%, and a specificity of 100% on external data were reported in differentiating ccRCC

from nccRCC. Although their study reported a good overall classification performance

between ccRCC and nccRCC, they were limited by their low sensitivity. In addition, they

reported a very poor diagnostic performance to differentiate chrRCC from paRCC and

from ccRCC. They suggested that CECT is more powerful at providing useful textural

features than the unenhanced CT. Sun et al. [127] performed a study to compare between

the diagnostic performance of machine learning approaches and four expert radiologists in

differentiating malignant from benign renal tumors, as well as ccRCC from nccRCC ma-

lignant tumors using CECT. Their study included 254 malignant tumors (ccRCC = 190,

nccRCC = 64 (chrRCC = 38, paRCC = 26)), 26 AML benign tumors, and 10 ONCs. Af-

ter performing manual delineation of the tumor lesions, they used open-source software

packages to extract and analyze textural features and used another open-source software

to complete their analysis. Then, they utilized a support vector machine (SVM) classifier

with a radial basis function along with a 10-fold cross-validation approach to obtain the

final diagnosis. They reported sensitivities of 90%, 86.3%, and 73.4% using SVM com-

pared to 73.7–96.8%, 73.7–96.8%, and 28.1–60.9% obtained by the four expert radiolo-

gists in differentiating ccRCC from nccRCC, ccRCC from AML and ONC, and nccRCC

from AML and ONC, respectively. Hence, they concluded that ML approaches along with

textural features have potential power, as well as low-variance performance in diagnosing

renal tumors.

Lee et al. [128] used TA and CECT in their study to differentiate between ccRCC

malignant and AML benign renal tumors. Their study included 80 renal tumors (ccRCC =
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41 and AML = 39). They combined several hand-crafted textural features extracted from

a 2D manually annotated central image of the entire mass with automated deep features

extracted by different ImageNet pretrained convolutional neural network (CNN) classifica-

tion models, namely AlexNet [129], VGGNet [130], GoogleNet [131], and ResNet [132].

Then, they used the combined features to train and test a random forest (RF) classifier.

Using a leave-one-out cross-validation approach, their combined model achieved a diag-

nostic accuracy of 76.6% ± 1.4%, outperforming the individual diagnostic results using

either the hand-crafted features alone or the deep features alone. The reported results were

not accurate enough to consider the developed an independent diagnostic tool. Oberai et

al. [133] investigated the potential power of CNN along with multi-phasic CECT images to

differentiate benign from malignant renal masses. Their study included 143 patients (ma-

lignant = 97 and benign = 46). After performing manual segmentation of the whole tumor

volume, they selected the largest axial segmented tumor image from each CECT phase

to fed to the CNN for training and validation. Using an 8-fold cross-validation approach,

they reported an accuracy of 78%, a sensitivity of 70%, and a specificity of 81%. How-

ever, their dataset had class imbalance, which might contribute to the reduced diagnostic

performance. Although their study included different types of malignant tumors, they did

not investigate the subtyping of malignant class. Zhou et al. [134] conducted a study to

distinguish malignant from benign renal tumors using CECT along with an ImageNet-

pretrained InceptionV3 model. This model was then cross-trained using transfer learning

on their own dataset of 192 renal tumors (malignant: ccRCC = 117 and nccRCC = 17,

benign: renal cyst = 50 and AML = 8). Several image-level models were considered,

using whole CT slices, ROIs, and rectangular subregions of the CT-CT data. Then, dur-

ing the transfer learning, different number of layers were frozen, resulting in two-patient

level models based on the optimal image-level models. Using a five-fold cross-validation

approach, they reported a 69% accuracy using the slice dataset, a 97% accuracy using

the ROI dataset, and a 93% accuracy using the RBR dataset. In spite of achieving a high
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accuracy in differentiating malignant from benign renal tumors, 50 out of 58 benign cases

were renal cysts, which are much easier to distinguish from RCC compared to AML. In

addition, they did not investigate discriminating ccRCC from nccRCC renal tumors.

In differentiating benign from malignant renal tumors, [92, 107] found that first-

and second-order texture features extracted from unenhanced CT achieved an accuracy

range of (82% - 91%) and an AUC range of (0.73 - 0.90) using SVM classifiers. While

[108, 135–137] reported that first- and second-order texture features extracted from multi-

phasic CECT achieved an accuracy range of (72% - 94%) and an AUC range of (0.75 -

0.97) using SVM classifiers. Yan et al. [138], Ma et al. [139], and Tang et al. [140] agreed

with their findings regarding the texture features from multi-phasic CECT. However, Yan

et al. [138] rather suggested ANNs and achieved an accuracy of 97% on a slightly small

unbalanced dataset (N = 50), while Ma et al. [139] and Tang et al. [140] reported an AUC

range of (0.67 - 0.93) on logistic regression (LR) classifiers instead. An extended study by

Ma et al. [139] suggested the superiority of phase 3 of CECT by an AUC range of (0.74 -

0.89). In addition to first and second order texture features, Nassiri et al. [141] integrated

higher order texture features and shape features extracted from phase 3 of CECT and

achieved an accuracy range of (74% - 79%) and an AUC range of (0.77 - 0.84) using

RF and Adaboost classifiers. While Yap et al. [142] integrated the same features but

from multi-phasic CECT and achieved an AUC range of (0.65 - 0.75). Uhlig et al. [116]

achieved an accuracy of 84% and AUC of 0.83 using a RF classifier without the need

for higher-order features. Using DL on multi-phasic CECT, Coy et al. [143] achieved the

best diagnostic performance (74% accuracy) on phase 4 of CECT. Kim et al. [144] found

that entropy as a first order texture feature extracted from unenhanced CT is statistically

significant and can differentiate RCC from benign cysts using LR with an AUC of 0.92.

Tanaka et al. [145] used DL approach based on Inception-V3 CNN with data augmentation

and achieved an accuracy range of (41% - 88%) and an AUC range of (0.49 - 0.85) and
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promoted phase 2 of CECT than over other contrast phases. Li et al. [146] differentiated

malignant chrRCC from benign ONC using first and second order features extracted from

multi-phasic CECT and achieved an accuracy of 0.95 and AUC of 0.85 using an SVM

classifier. They suggested that phases 2 and 3 are superior to other contrast phases for the

specified task. Then, they extended their studies [147, 148] for the same differentiation

problem on bigger datasets and suggested that integrating some clinical factors enhanced

the final diagnostic performance. Zabihollahy et al. [149] utilized 2D and 3D CNNs on

ROIs around the tumor and reported an accuracy range of (77% - 84%).

For the subtyping of RCC tumors, studies [114, 150] suggested that first-order tex-

ture features such as mean, standard deviation (STD), kurtosis, skewness, entropy, and

median extracted from phase 3 of CECT are of high significance for RCC subtyping.

Deng et al. [114] reported a very low accuracy of 47% and an AUC of (0.80 - 0.84) us-

ing LR and Yu et al. [150] reported an AUC of range (0.86 - 0.92) using SVM. Zhang et

al. [115] agreed with them on the significant features, however they extracted them from

phase 2 rather than phase 3 of CECT and achieved an accuracy range of (78%-0.87%) and

an AUC range of (0.94 - 0.96) using an SVM classification model. Verghase et al. [151]

suggested that many of the first-, second-, and higher-order texture features extracted from

multi-phasic CECT are of high importance and achieved an AUC range of (0.80 - 0.98)

using stepwise LR as a statistical analysis method. On two consequent studies by Uhlig

et al. [116, 152], they promoted first- and second-order texture features as well as shape

features extracted from phase 3 of CECT. They demonstrated an accuracy range of (54%

- 92%) and an AUC range of (0.45 - 0.85) using RF and XGBoost classifiers. Chen et

al. [153] suggested that second-order texture features extracted from phase 3 of CECT

achieved an accuracy range of (82% - 88%) and an AUC range of (0.86 - 0.90) using LR.

For grading and staging of RCC tumors, Feng et al. [117] found that entropy, STD,

and kurtosis extracted from multi-phasic CT are statistically significant first-order texture
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features and reported an accuracy range of (70% - 79%) and an AUC range of (0.74 -

0.83). Shu et al. [118] suggested that first- and second- order texture features and shape

features extracted from phases 2 and 3 of CECT are useful Radiomic markers and reported

an accuracy range of (72% - 78%) and an AUC range of (0.77 - 0.82) using LR classifier.

They extended their study on a slightly larger dataset and excluded the shape features.

In addition, they used SVM and RF classifiers instead of LR and reported an improved

accuracy range of (92% - 94%) and AUC range of (0.96 - 0.98). Two studies [154, 155]

extracted second order texture features from phases 2 and 3 of CECT. Ding et al. [154]

reported an AUC ≥ 0.67 using LR classifier, while Yin et al. [155] reported an AUC

of 0.86 using a SVM classifier. Bektas et al. [156] suggested that second- and higher-

order texture features extracted from phase 3 of CECT are very useful evidenced by an

accuracy of 85% and an AUC of 0.86 using a SVM classifier. Lin et al. [157] found that

first- and second-order texture features extracted from multi-phasic CECT can grade renal

tumors with an accuracy of 74% and an AUC of 0.87 using gradient boosting decision

tree classifier. Momenian et al. [158] suggested that first-order texture features extracted

from phase 2 of CECT can potentially grade ccRCC tumors using a RF classifier with an

accuracy of 97%. Lai et al. [159] found that first-order texture features and shape features

extracted from unenhanced CT can grade ccRCC tumors using a Bagging classifier with an

AUC of 0.75. Luo et al. [160] reported that first-order texture features and shape features

extracted from phases 1 and 4 of CECT demonstrated an accuracy of 81% and an AUC of

87% using a RF classifier. Yi et al. [161] suggested that using first-, second-, and higher-

order texture features extracted from unenhanced CT can grade ccRCC tumors using SVM

(accuracy = 90% and AUC = 0.91). He et al. [162] agreed with Yi et al. [161] on the type

of features but contradict with him on the CECT phases where they should be extracted.

He rather suggested phases 2 and 3 of CECT and achieved an accuracy range of (91% -

94%) using ANNs. Xu et al. [163] used an ensamble of different types of DL networks

on 2D ROIs at phase 2 of CECT. They reported an accuracy of 82% and and AUC of
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0.88. Demirjian et al. [119] conducted a study for both grading and staging of ccRCC

tumors. For the grading, they extracted multiple second-order texture features as well as

the mean intensity as a first order texture feature from multi-phasic CECT. While for the

staging, they depended only on the second-order texture features. Using RF classifiers,

they achieved an AUC of 0.73 and 0.77 for grading and staging, respectively.

Table 7 provides summary of the aforementioned AI-based CAD systems that have

been developed, in the last decade, by utilizing multi-phasic CECT images. The Table

encompasses the following details: study, main goal, Radiomics, methods, results, and

findings.
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TABLE 7: Summary of studies utilized CT for renal cancer diagnosis in the last decade.

Study Main Goal Radiomics Method Results Findings

Yang

et al. [107]

Differentiation

of small (≤ 4

cm) AMLwvf

and RCC renal

tumors (N =

163) using multi-

phasic CECT

images

• Shape: 12

• 1st Order Statistics: 17

• 2nd Order Statistics: 74

– GLCM: 23

– GLRLM: 16

– GLSZM: 16

– NGTDM: 5

– GLDM: 14

• 2D ROI

• SVM

• 5-fold CV

• Acc: 0.82

• Sen: 0.83

• Spe: 0.78

• AUC: 0.90

Radiomics ex-

tracted from

unenhanced

CT phase are

sufficient to

accurately differ-

entiate AMLwvf

from RCC using

SVM

You

et al. [108]

Differentiation

of small (≤ 4

cm) AMLwvf

and RCC renal

tumors (N = 67)

using four phases

of CECT images

• 1st Order Statistics: 3

– Phase 1: 2

– Phase 4: 1

• 2nd Order Statistics: 2

– Phase 2:

1 (GLCM)

– Phase 3:

1 (GLRLM)

• 2D ROI

• SFS

• SVM

• k-fold CV

• Acc: 0.85

• Sen: 0.82

• Spe: 0.76

• AUC: 0.85

Radiomics of

small renal

masses extracted

from multi-

phasic CECT can

accurately differ-

entiate AMLwvf

from ccRCC

using SVM

Coy

et al. [143]

Differentiation

of ccRCC from

ONC renal tu-

mors (N = 179)

using four phases

of CECT images

• RGB encoding of the

entire tumor volume in

Phase 4

• 3D ROI

• TL of GTf

• k-fold CV

• Acc: 0.74

• Sen: 0.86

• Spe: 0.44

• AUC: —

Radiomics ex-

tracted from

3D VOI of the

entire tumor

demonstrated the

best diagnostic

performance in

Phase 4 of CECT

using TL of GTf

Continued on next page
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TABLE 7 – Continued from previous page

Study Main Goal Radiomics Method Results Findings

Deng

et al. [114]

(Study 1)

Subtyping of

RCC renal

tumors and cor-

relation with its

grade (N = 298)

using Phase 3 of

CECT images

• 1st Order Statistics: 4

– mean

– entropy

– kurtosis

– skewness

• 2D ROI

• Holm-P

• LR (Statistical

analysis only)

• Acc: 0.47

• Sen: 0.31

• Spe: 0.86

• AUC: range

(0.80 - 0.84)

Entropy had

shown higher

statistically sig-

nificant values

in ccRCC (p

< 0.05). High

entropy is corre-

lated with high

grade RCC.

Deng

et al. [122]

(Study 2)

Differentiation of

RCC from benign

renal tumors (N =

501) using Phase

3 of CECT im-

ages

• 1st Order Statistics: 5

– entropy

– kurtosis

– skewness

– mean

– max

• 2D ROI

• LSSF

• Binary LR (Sta-

tistical analysis

only)

• Acc: 0.47

• Sen: 0.31

• Spe: 0.86

• AUC: 0.62

Entropy had

shown higher

statistically sig-

nificant values in

RCC than benign

tumors (p < 0.05)

and could poten-

tially be used as

a discriminatory

Radiomic marker

Zhou

et al. [134]

Differentiation

between RCC

and benign renal

tumors (N = 192)

using at least one

phase of CECT

images

• Axial Multi-channel

(RGB) 2D ROI images

• 2D ROI

• TL of ImageNet-

pretrained Incep-

tionV3 model

• softmax

• 5-fold CV

• Acc: 0.97

• Sen: 0.95

• Spe: 0.97

• AUC: —

Deep learning

has the potential

to distinguish

malignant from

benign renal tu-

mors using deep

transfer learning

Kim

et al. [144]

Differentiation

between RCC

and benign re-

nal cysts (N

= 286) using

unenhanced CT

images

• 1st Order Statistics: 3

– entropy

– kurtosis

– MGLA

• 2D ROI, Thresh-

old

• 2D ROI, LR

• Acc: 0.84

• Sen: 0.81

• Spe: 0.89

• AUC: range

(0.89 - 0.92)

Entropy ≥ 4 dif-

ferentiated RCC

from benign re-

nal tumors (AUC

= 0.89). The

combined model

using Radiomics

provided AUC of

0.92
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Nie

et al. [164]

Differentiation of

AMLwvf from

ccRCC renal

tumors (N =

99) using multi-

phasic CECT

images

• Shape: 2

– Phase 2: 1

– Phase 3: 1

• 1st Order Statistics: 3

– Phase 2: 1

– Phase 3: 2

• 2nd Order Statistics: 9

– Phase 2:

3 (GLCM),

3 (GLDM),

1 (GLRLM)

– Phase 3:

2 (GLRLM)

• 3D ROI

• LASSO

• Nomogram

• Rad-score ≥

0.017

• 20% validation

• Acc: 0.84

• Sen: 0.85

• Spe: 0.83

• AUC: 0.85

Radiomics ex-

tracted from

multi-phasic CT

can differentiate

AMLwvf from

ccRCC. By in-

tegrating some

clinical factors,

a Nomo-score

≥ 1.451 demon-

strated better

diagnosis (Acc

= 0.89, AUC =

0.95)

Varghese

et al. [151]

Differentiation of

malignant from

benign renal

tumors (N =

174) and their

subtypes using

multi-phasic

CECT images

• 1st Order Statistics: 8

• 2nd Order Statistics: 20

– GLCM: 13

– GLDM: 7

• Higher Order Statistics: 3

– FFT: 3

• 3D ROI

• Stepwise LR

(Statistical anal-

ysis only)

• Acc: —

• Sen: —

• Spe: —

• AUC: range

(0.80 - 0.98)

With a signifi-

cance level (p <

0.05), different

Radiomics are

very useful in

differentiating

benign from

malignant renal

tumors and their

subtypes
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Tang

et al. [140]

Differentiation

between RCC

and AMLwvf

renal tumors (N

= 115) using

multi-phasic

CECT images

• 1st Order Statistics: 24

• 2nd Order Statistics: 52

– GLCM: 23

– GLRLM: 11

– GLSZM: 13

– NGDTM: 5

• Higher Order Statistics:

120

– LTE: 120

• 2D ROI

• 100% Data Aug-

mentation

• LASSO, LR

• Acc: range

(0.8 - 0.92)

• Sen: —

• Spe: —

• AUC: range

(0.67 - 0.92)

Integrating differ-

ent combinations

of Radiomic

markers can po-

tentially provide

preoperative

diagnosis of

AMLwvf and

RCC renal tu-

mors

Cui

et al. [135]

Differentiation

of AMLwvf

from RCC renal

tumors with its

different subtypes

(N = 168) using

multi-phasic

CECT images

• AMLwvf vs RCC: 17

• AMLwvf vs ccRCC: 21

• AMLwvf vs nccRCC: 12

• 1st Order Statistics: —

• 2nd Order Statistics: —

– GLCM: —

– GLRLM: —

– GLSZM: —

– NGDTM: —

– GLDM: —

• 3D ROI

• RFE

• SVM

• SMOTE

• 5-fold CV

• Acc: range

(0.84 - 0.93)

• Sen: range

(0.83 - 0.95)

• Spe: range

(0.85 - 0.96)

• AUC: range

(0.89 - 0.97)

Machine

learning-based

Radiomics tech-

niques can pre-

cisely distinguish

AMLwvf from

RCC, ccRCC,

and nccRCC

when compared

to radiological

assessment

Lee

et al. [136]

(Study 1)

Differentiation of

AMLwvf from

ccRCC renal

tumors (N =

50) using multi-

phasic CECT

images

• 1st Order Statistics: 3

• 2nd Order Statistics: 1

– GLCM: 1

• 2D ROI

• ReliefF

• kNN, SVM

• 5-fold CV

• Acc: 0.72

• Sen: 0.72

• Spe: 0.73

• AUC: 0.75

Proper selection

and integration

of optimal Ra-

diomics and

machine learning

classification

methods could

potentially help

distinguishing

AMLwvf from

ccRCC
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Lee

et al. [128]

(Study 2)

Differentiation of

AMLwvf from

ccRCC renal

tumors renal

tumors (N = 80)

using four phases

of CECT images

• Shape: 7

• 1st Order Statistics: 18

• 2nd Order Statistics: 53

– GLCM: 14

– GLDM: 22

– LBP: 10

• 1000-4000 dimensional

deep features extracted

from ImageNet pre-

trained models (AlexNet,

VGGNet, GoogleNet, and

ResNet) with small renal

mass image patches.

• 2D ROI

• RF

• k-fold CV

• Acc: range

(0.75 - 0.77)

• Sen: range

(0.73 - 0.79)

• Spe: range

(0.75 - 0.77)

• AUC: range

(0.79 - 0.82)

The combined

model that

integrates

hand-crafted

Radiomics with

deep Radiomics

provided an en-

hanced diagnos-

tic performance

than individual

models and thus;

has the potential

to distinguish

AMLwvf from

ccRCC.

Feng

et al. [137]

(Study 1)

Differentiation

of small (≤ 4

cm) AMLwvf

from RCC renal

tumors (N =

58) using multi-

phasic CECT

images

• 1st Order Statistics: 8

• 2nd Order Statistics: 3

– GLCM: 3

• 2D ROI

• RFE

• SVM

• SMOTE

• 5-fold CV

• Acc: 0.94

• Sen: 0.88

• Spe: 1.00

• AUC: 0.96

Combination of

SVM, RFE, and

SMOTE can help

selecting opti-

mal Radiomics

that could accu-

rately distinguish

AMLwvf from

RCC

Feng

et al. [117]

(Study 2)

Grading of

ccRCC renal

tumors (N =

131) using three-

phases of CECT

images

• 1st Order Statistics: 5

– mean

– entropy

– STD

– skewness

– kurtosis

• 2D ROI

• t-test (Statistical

analysis only)

• Acc: range

(0.70 - 0.79)

• Sen: range

(0.76 - 0.95)

• Spe: range

(0.54 - 0.77)

• AUC: range

(0.74 - 0.83)

Entropy, STD,

and kurtosis

were statistically

significant (p

< 0.05) and are

useful Radiomic

markers to grade

ccRCC renal

tumors.
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Yan

et al. [138]

Differentiation

of AMLwvf

from ccRCC and

paRCC renal

tumors (N =

50) using multi-

phasic CECT

images

• 1st Order Statistics: 11

• 2nd Order Statistics: 220

– GLCM: 220

• 2D ROI

• NDA

• kNN, ANN

• 5-fold CV

• Acc: range

(0.97 - 1.00)

• Sen: —

• Spe: —

• AUC: —

Optimal Ra-

diomics extracted

from multi-

phasic CT images

have the power

to distinguish

AMLwvf from

ccRCC and

paRCC

Hodgdon

et al. [92]

Differentiation

of AMLwvf

from RCC re-

nal tumors (N

= 100) using

unenhanced CT

images

• 1st Order Statistics: 2

• 2nd Order Statistics: 7

– GLCM: 5

– GLRLM: 2

• 2D ROI

• Holm-P

• SVM

• 10-fold CV

• Acc: range

(0.83 - 0.91)

• Sen: —

• Spe: —

• AUC: range

(0.73 - 0.90)

Radiomics ex-

tracted from

unenhanced

CT images

can distinguish

AMLwvf from

RCC

Tanaka

et al. [145]

Differentiation of

benign from ma-

lignant renal tu-

mors (N = 168)

using four phases

of CECT images

• 2D ROI images around the

lesion (299 × 299)

• Data augmentation was

performed using rotation

(90°, 180°, and 270°),

mirroring, and the ad-

dition of gaussian noise

(0.05, 0.10, and 0.15)

• 2D ROI

• Augmentation

• Inception-V3

CNN

• 20% testing

• Acc: range

(0.41 - 0.88)

• Sen: range

(0.29 - 0.96)

• Spe: range

(0.33 - 1.00)

• AUC: range

(0.49 - 0.85)

Deep learning

has the potential

to distinguish

malignant from

benign renal

tumors espe-

cially in Phase 2

of CECT (corti-

comedullary/Arterial)

kunapuli

et al. [123]

Differentiation of

benign from ma-

lignant renal tu-

mors (N = 150)

using four phases

of CECT images

• 1st Order Statistics: 2

• 2nd Order Statistics: 8

– GLCM: 7

– GLDM: 1

• 2D/3D ROI

• RFE

• RFGB

• 10-fold CV

• Acc: 0.82

• Sen: —

• Spe: —

• AUC: 0.83

RFGB machine

learning classifier

and Radiomic

markers can be

potentially used

to distinguish

malignant from

benign renal

tumors
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Ma

et al. [139]

(Study 1)

Differentiation of

AMLwvf from

ccRCC renal

tumors (N =

84) using multi-

phasic CECT

images

• Total: 6

• 1st Order Statistics: —

• 2nd Order Statistics: —

– GLCM: —

• 3D ROI

• LASSO

• LR

• 30% testing

• Acc: —

• Sen: —

• Spe: —

• AUC: range

(0.83 - 0.93)

Combined model

integrating ra-

diomics from

different phases

of CECT en-

hanced the

diagnostic perfor-

mance between

AMLwvf and

ccRCC when

compared to in-

dividual models

as well as the

conventional CT

Ma

et al. [165]

(Study 2)

Differentiation of

AMLwvf from

ccRCC renal

tumors (N = 230)

using four phases

of CECT images

• Total: 396

• Shape: —

• 1st Order Statistics: —

• 2nd Order Statistics: —

– GLCM: —

– GLRLM: —

– GLSZM: —

• 3D ROI

• LASSO

• 30% validation

• Acc: range

(0.69 - 0.80)

• Sen: range

(0.66 - 0.79)

• Spe: range

(0.76 - 0.85)

• AUC: range

(0.74 - 0.89)

The perirenal

model using

Radiomics from

Phase 3 of CECT

has superiority

than other phases

to distinguish

AMLwvf from

ccRCC.

Li

et al. [146]

(Study 1)

Differentiation

between chrRCC

and ONC renal

tumors (N = 61)

using four phases

of CECT images

• 1st Order Statistics: 3

– Phase 2 & 3: 2

– Phase 4: 1

• 2nd Order Statistics: 5

– Phase 2 & 3:

3 (GLCM)

– Phase 2 & 3:

2 (wavelet)

• 3D ROI

• LASSO

• SVM

• 5-fold CV

• Acc: 0.95

• Sen: 0.99

• Spe: 0.80

• AUC: 0.85

Radiomics ex-

tracted from

multi-phasic

CECT can

accurately differ-

entiate chrRCC

from ONC using

SVM
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Li

et al. [147]

(Study 2)

Differentiation

of ONC from

ccRCC renal

tumors (N =

122) using multi-

phasic CECT

images

• 1st Order Statistics: 5

– Phase 2: 2

– Phase 3: 3

• 2nd Order Statistics: 6

– Phase 2:

2 (GLCM),

1 (GLSZM)

– Phase 3:

1 (GLCM)

– Phase 4:

2 (GLCM)

• 3D ROI

• LR, LASSO

• Nomogram

• Rad-score

• 30% validation

• Acc: 0.81

• Sen: 0.86

• Spe: 0.83

• AUC: 0.84

Radiomics ex-

tracted from

multi-phasic CT

can differenti-

ate ONC from

ccRCC. By inte-

grating clinical

factors, enhanced

diagnosis is ob-

tained (Acc =

0.87, Sen = 0.86,

Spe = 0.87, and

AUC = 0.90)

Li

et al. [148]

(Study 3)

Differentiation

of ONC from

chrRCC renal tu-

mors with present

central scar (N

= 141) using

multi-phasic

CECT images

• 1st Order Statistics: 5

– Phase 2: 1

– Phase 3: 2

– Phase 4: 2

• 2nd Order Statistics: 7

– Phase 2:

2 (GLCM),

1 (GLSZM)

– Phase 3:

2 (GLCM)

– Phase 4:

2 (GLCM)

• 3D ROI

• LR, LASSO

• Nomogram

• Radscore ≥ -0.55

• 40% validation

• Acc: 0.91

• Sen: 0.84

• Spe: 0.95

• AUC: 0.96

Radiomics ex-

tracted from

multi-phasic

CT can differ-

entiate ONC

from chrRCC.

By integrating

clinical factors,

a Nomo-score

≥ 0.19 provides

better diagnosis

(Acc = 0.95, Sen

= 0.90, Spe =

0.97, and AUC =

0.99)
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Nassiri

et al. [141]

Differentiation

of benign from

malignant renal

tumors (N =

684) using multi-

phasic CECT

images

• Shape: —

• 1st Order Statistics: —

• 2nd Order Statistics: —

– GLCM: —

– GLDM: —

– GLRLM: —

– NGDTM: —

– GLSZM: —

• Higher Order Stats: —

– DCT: —

– FFT: —

– LTE: —

• 3D ROI

• RF, Adaboost

• 10-fold CV

• Acc: range

(0.74 - 0.79)

• Sen: range

(0.73 - 0.80)

• Spe: 0.75

• AUC: range

(0.77 - 0.84)

Radiomics from

Phase 3 of CECT

can potentially

distinguish

benign from

malignant renal

tumors. Integrat-

ing some clinical

factors enhanced

the diagnostic

performance.

Uhlig

et al. [116]

(Study 1)

Differentiation of

benign from ma-

lignant renal tu-

mors (N = 94)

using Phase 3 of

CECT images

• Total: 120

• Shape: —

• 1st Order Statistics: —

• 2nd Order Statistics: —

– GLCM: —

– GLDM: —

– GLRLM: —

– NGDTM: —

– GLSZM: —

• 3D ROI

• RFE

• RF

• 10-fold CV

• Acc: 0.84

• Sen: 0.88

• Spe: 0.67

• AUC: 0.83

Radiomic mark-

ers Phase 3 of

CECT and ma-

chine learning

can potentially

distinguish

benign from

malignant renal

tumors.
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Uhlig

et al. [152]

(Study 2)

Renal tumors

subtyping (N

= 201) using

Phase 3 of CECT

images

• Total: 127

• Shape: —

• 1st Order Statistics: —

• 2nd Order Statistics: —

– GLCM: —

– GLDM: —

– GLRLM: —

– NGDTM: —

– GLSZM: —

• 3D ROI

• SMOTE, RFE

• XGBoost, RF

• 10-fold CV

• Acc: range

(0.54 - 0.92)

• Sen: range

(0.05 - 0.80)

• Spe: range

(0.41 - 0.97)

• AUC: range

(0.45 - 0.85)

Radiomic mark-

ers Phase 3 of

CECT and ma-

chine learning

can potentially

help distinguish-

ing renal tumors

subtypes. Dif-

ferentiation of

ONCs is still a

challenging task.

Uhm

et al. [166]

Subtyping of re-

nal tumors (N =

308) using multi-

phasic CECT im-

ages

• 3D Channel image of size

224 × 224 cropped from

2D ROI image with the

largest segmented tumor

at Phases 2, 3, &4

• ResNet-101 was initial-

ized with weights ob-

tained from a pre-trained

ImageNet.

• 2D ROI

• 16% validation

• (N = 184) exter-

nal test

• Acc: 0.72

• Sen: range

(0.60 - 0.89)

• Spe: range

(0.87 - 0.97)

• AUC: 0.89

Deep learning

outperformed

radiological di-

agnosis of renal

tumors using

multi-phasic

CECT.

Zabihollahy

et al. [149]

Differentiation of

RCC from benign

renal tumors (N =

315) using CECT

images

• 2D ROI images around the

tumor (512 × 512)

• 2D ROI

• MJV

• 2D & 3D CNN

• 50% testing

• Acc: range

(0.77 - 0.84)

• Sen: range

(0.84 - 0.92)

• Spe: range

(0.26 - 0.52)

• AUC: —

Semi-automated

MJV 2D-CNN

demonstrated the

best diagnostic

performance in

differentiating

RCC from benign

renal tumors

using CECT.

Continued on next page

65



TABLE 7 – Continued from previous page

Study Main Goal Radiomics Method Results Findings

Yap

et al. [142]

Differentiation

between malig-

nant and benign

renal tumors (N

= 735) using

multi-phasic

CECT images

• Total: top 10% (79)

• Shape: —

• 1st Order Statistics: —

• 2nd Order Statistics: —

– GLCM: —

– GLDM: —

• Higher Order Stats: —

– FFT: —

• 3D ROI

• RF, AdaBoost

• 10-fold CV

• Acc: —

• Sen: —

• Spe: —

• AUC: range

(0.65 - 0.75)

The combined

model integrating

shape and tex-

ture Radiomic

markers extracted

from all phases of

CECT enhanced

the final diagnos-

tic performance.

Yu

et al. [150]

Differentiating

benign from

malignant renal

tumors as well

as subtyping (N

= 119) using

Phase 3 of CECT

images

• 1st Order Statistics: 14

• 2nd Order Statistics: 20

– GLCM: 5

– GLRLM: 11

– GLGM: 4

• Higher Order Stats: 9

– LTE: 9

• 2D ROI

• SVM

• 5-fold CV

• Acc: —

• Sen: —

• Spe: —

• AUC: range

(0.86 - 0.92)

Machine learning

and 1st Order Ra-

diomic markers

such as kurtosis,

skewness, and

median provides

high diagnostic

performance of

different renal

tumors’ types.

Continued on next page

66



TABLE 7 – Continued from previous page

Study Main Goal Radiomics Method Results Findings

Shu

et al. [118]

Differentiating

low grade from

high grade

ccRCC (N = 260)

using Phase 2 &3

of CECT images

• Shape: 5

– Phase 2: 1

– Phase 3: 4

• 1st Order Statistics: 9

– Phase 2: 3

– Phase 3: 6

• 2nd Order Statistics: 21

– Phase 2:

2 (GLCM),

3 (GLSZM),

2 (GLRLM)

– Phase 3:

3 (GLCM),

8 (GLSZM),

3 (GLRLM)

• 3D ROI

• ICC, LASSO

• LR

• 5-fold CV

• Acc: range

(0.72 - 0.78)

• Sen: range

(0.60 - 0.69)

• Spe: range

(0.83 - 0.84)

• AUC: range

(0.77 - 0.82)

Radiomic mark-

ers extracted

from combined

Phases 2 & 3 of

CECT could be

potentially used

for grading of

ccRCC

Shu

et al. [167]

Differentiating

low grade from

high grade

ccRCC (N = 271)

using Phase 2 &3

of CECT images

• 1st Order Statistics: 4

– Phase 2: 1

– Phase 3: 3

• 2nd Order Statistics: 8

– Phase 2:

1 (GLCM),

3 (GLRLM)

– Phase 3:

2 (GLCM),

1 (GLRLM),

1 (GLSZM)

• 3D ROI

• ICC, LASSO

• SVM, RF, MLP

• 40% validation

• Acc: range

(0.92 - 0.94)

• Sen: range

(0.92 - 0.97)

• Spe: range

(0.86 - 0.95)

• AUC: range

(0.96 - 0.98)

Radiomic mark-

ers extracted

from combined

Phases 2 & 3

of CECT could

be sufficiently

used for grading

of ccRCC using

machine learning.
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Ding

et al. [154]

Differentiating

low grade from

high grade

ccRCC (N = 114)

using Phase 2 &3

of CECT images

• 2nd Order Statistics: 4

– Phase 2:

1 (GLRLM)

– Phase 3:

3 (GLCM)

• 2D ROI

• LASSO

• LR

• (N = 92) external

test

• Acc: —

• Sen: —

• Spe: —

• AUC: ≥ 0.67

Radiomic mark-

ers extracted

from Phases 2 &

3 of CECT could

be potentially

used for grading

of ccRCC

Bektas

et al. [156]

Differentiating

low grade from

high grade

ccRCC (N = 54)

using Phase 3 of

CECT images

• 2nd Order Statistics: 8

– Phase 3:

5 (GLCM),

3 (GLRLM)

• Higher Order Stats: 5

– Phase 3:

4 (wavelet),

1 (gradient)

• 2D ROI

• wrapper, Nested

10-fold CV

• SVM

• Acc: 0.85

• Sen: 0.91

• Spe: 0.80

• AUC: 0.86

Machine learning

(e.g., SVM),

and Radiomics

extracted from

Phases 3 provide

a promising

diagnostic tool

to grade ccRCC

renal tumors

kocak

et al. [125]

Subtyping of

RCC (N = 68)

using Phase 1 &2

of CECT images

• 1st Order Statistics: 9

– Phase 1: 5

– Phase 2: 4

• 2nd Order Statistics: 16

– Phase 1:

3 (GLCM)

– Phase 2:

13 (GLCM)

• Higher Order Stats: 5

– Phase 1:

4 (wavelet),

1 (autoagressive)

• 2D ROI

• wrapper, Nested

10-fold CV

• SMOTE

• SVM, ANN

• (N = 26) external

test

• Acc: range

(0.69 - 0.85)

• Sen: range

(0.69 - 0.71)

• Spe: 1.00

• AUC: —

Radiomics ex-

tracted and

combined from

Phases 1 &

2 (Phase 2 is

superior) can dis-

tinguish nccRCC

from ccRCC

using machine

learning. Distin-

guishing ccRCC,

paRCC, chrRCC

is challenging
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Sun

et al. [168]

Differentiating

low grade from

high grade

ccRCC (N =

227) using three

phases of CECT

images

• 1st Order Statistics: 1

– Phase 2 & 3:

RMS

• 2nd Order Statistics: 6

– Phase 2 & 3:

1 (GLCM),

3 (GLSZM),

2 (GLRLM)

• 2D ROI

• ICC, LASSO

• SVM

• 20% validation

• Acc: 0.87

• Sen: 0.83

• Spe: 0.89

• AUC: 0.91

Radiomics ex-

tracted and

combined from

Phases 2 & 3

of CECT can

sufficiently grade

ccRCC renal

tumors on SVM

Lin

et al. [157]

Differentiating

low grade from

high grade

ccRCC (N =

232) using three

phases of CECT

images

• 1st Order Statistics: 6

• 2nd Order Statistics: 16

– GLCM: 4

– GLDM: 4

– GLRLM: 4

– NGDTM: 1

– GLSZM: 3

• 2D ROI

• CatBoost

• GBDT

• 5-fold CV

• Acc: 0.74

• Sen: 0.14

• Spe: 0.88

• AUC: 0.87

Radiomics ex-

tracted and

combined from

Phases 1, 2 &

3 of CECT can

potentially grade

ccRCC renal

tumors using

machine learning

Zhang

et al. [115]

Differentiating

ccRCC from

nccRCC and

classify nccRCC

subtypes (N =

127) using multi-

phasic CECT

images

• 1st Order Statistics: 4

– mean

– STD

– entropy

– kurtosis

• 2D ROI

• CatBoost

• SVM

• 10-fold CV

• Acc: range

(0.78 - 0.87)

• Sen: range

(0.87 - 0.89)

• Spe: 0.92

• AUC: range

(0.94 - 0.96)

Radiomics ex-

tracted from

Phase 2 of CECT

are sufficient

for subtyping

of RCC renal

tumors using

SVM

Continued on next page
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He

et al. [162]

Grading of

ccRCC renal

tumors (N =

227) using multi-

phasic CECT

images

• 1st Order Statistics: 6

– Phase 2: 4

– Phase 3: 2

• 2nd Order Statistics: 14

– Phase 2:

7 (GLCM),

3 (GLRLM)

– Phase 3:

3 (GLCM),

1 (GLRLM)

• Higher Order Stats: 9

– Phase 2:

1 (gradient),

4 (wavelet)

– Phase 3:

1 (gradient),

3 (wavelet)

• 2D ROI

• LASSO

• ANN

• 15% validation

• 15% testing

• 10-fold CV

• Acc: range

(0.91 - 0.94)

• Sen: —

• Spe: —

• AUC: —

Radiomics ex-

tracted and

combined from

Phases 2 & 3 of

CECT are suffi-

cient for grading

of RCC renal

tumors using

ANN

Continued on next page
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Momenian

et al. [158]

Grading of

ccRCC renal

tumors (N =

103) using three

phases of CECT

images

• 1st Order Statistics: 18

– Phase 1: 6

– Phase 2: 6

– Phase 3: 6

• 2nd Order Statistics: 93

– Phase 1:

20 (GLCM),

11 (GLRLM)

– Phase 2:

20 (GLCM),

11 (GLRLM)

– Phase 3:

20 (GLCM),

11 (GLRLM)

• 2D ROI

• RF

• 10-fold CV

• Acc: 0.97

• Sen: —

• Spe: —

• AUC: —

1st Order Ra-

diomics extracted

from Phase 2 of

CECT had shown

the best grading

performance of

ccRCC renal

tumors using RF

outperforming

the 2nd Order

Radiomics alone

and combined

Radiomics.

Yin

et al. [155]

Grading of

ccRCC renal

tumors (N = 78)

using Phase 2 of

CECT images

• 2nd Order Statistics: 10

– Phase 2:

7 (GLCM),

3 (GLRLM)

• 2D ROI

• ICC, SMOTE

• SVM

• 32% testing

• 10-fold CV

• Acc: 0.88

• Sen: 0.80

• Spe: 0.90

• AUC: 0.86

2nd Order Ra-

diomics extracted

from Phase 2

of CECT pro-

vided the best

grading accuracy

of ccRCC renal

tumors on SVM

Chen

et al. [153]

Differentiating

of ccRCC from

nccRCC renal

tumors (N =

197) using multi-

phasic CECT

images

• 2nd Order Statistics: 9

– Phase 1:

3 (GLCM),

1 (GLRLM)

– Phase 2:

1 (GLCM)

– Phase 3:

1 (GLCM),

1 (GLSZM)

– Phase 4:

2 (GLCM)

• 3D ROI

• LASSO

• SMOTE

• LR

• Acc: range

(0.82 - 0.88)

• Sen: range

(0.81 - 0.89)

• Spe: range

(0.81 - 0.88)

• AUC: range

(0.86 - 0.90)

2nd Order Ra-

diomics when

combined with

non-texture

markers extracted

from Phase 3 of

CECT, the best

differentiation

of ccRCC from

nccRCC renal

tumors( AUC =

0.9) was obtained

Continued on next page
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Lai

et al. [159]

Grading of

ccRCC renal

tumors (N =

137) using multi-

phasic CECT

images

• Shape: 5

– Phase 1: 5

• 1st Order Statistics: 5

– Phase 1: 5

mean,

median,

RMS,

10th Pctl,

90th Pctl

• 2D ROI

• CMIM

• SMOTE

• Bagging

• 5-fold CV

• Acc: —

• Sen: —

• Spe: —

• AUC: 0.75

Shape and 1st

Order Radiomics

extracted from

Phase 1 of CECT

demonstrated the

best ccRCC grad-

ing performance

(AUC = 0.75)

using Bagging

classifier

Yi

et al. [161]

Grading of

ccRCC renal

tumors (N = 264)

using Phases 1

& 3 of CECT

images

• 1st Order Statistics: 6

–Phase 1: 6

• 2nd Order Statistics: 9

–Phase 1: 9 (GLRLM)

• Higher Order Stats: 4

–Phase 1: 4 (wavelet)

• 2D ROI

• ICC, LASSO

• SVM

• 25% validation

• Acc: 0.90

• Sen: 0.94

• Spe: 0.89

• AUC: 0.91

Radiomic mark-

ers extracted

from Phase 1 of

CECT can suc-

cessfully grade

ccRCC renal

tumors (AUC =

0.91) using SVM

Xu

et al. [163]

Grading of

ccRCC renal

tumors (N = 706)

using Phase 2 of

CECT images

• 2D ROI images (224 ×

224 × 3) as input to VGG-

16 pre-trained on Ima-

geNet for segmentation.

• Self-supervised pre-

training using Reg-

NetY400MF, Reg-

NetY800MF, SE-

ResNet50, ResNet101,

and Ensamble.

• 2D ROI

• VGG-16

• Ensamble

• 16% validation

• Acc: 0.82

• Sen: 0.86

• Spe: 0.75

• AUC: 0.88

Deep learning ap-

plied on Phase 2

of CECT images

can potentially

grade ccRCC re-

nal tumors (AUC

= 0.88) using En-

samble/combined

model outper-

forming all

individual mod-

els.

Continued on next page
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Luo

et al. [160]

Grading of

ccRCC renal

tumors (N = 177)

using four phases

of CECT images

• Shape: 7

– Phase 1 & 4: 7

• 1st Order Statistics: 4

– Phase 1 & 4: 4

median,

RMS,

10th Pctl,

90th Pctl

• 3D ROI

• SMOTE

• CIFE

• RF

• 5-fold CV

• Acc: 0.81

• Sen: 0.67

• Spe: 0.87

• AUC: 0.87

Shape and 1st

Order Radiomics

extracted from

Phase 1 & 4 of

CECT provided

the best ccRCC

grading accuracy

(AUC = 0.87)

using RF

Demirjian

et al. [119]

Grading and stag-

ing of ccRCC re-

nal tumors (N =

587) using four

phases of CECT

images

• Grading:

– 1st Order Statis-

tics:

intensity

– 2nd Order Statis-

tics:

2D GLCM,

3D GLCM,

3D GLRLM

• Staging:

– 2nd Order Statis-

tics:

2D GLCM,

3D GLCM,

2D GLDM,

3D GLDM

• 3D ROI

• ICC

• Gini index

• RF

• 32% testing

• Acc: —

• Sen: —

• Spe: —

• AUC:

0.73 & 0.77

Radiomics ex-

tracted from

multi-phasic

CECT could

be sufficiently

used to grade

and stage ccRCC

(AUC = 0.73 and

0.77) using RF

Notes AMLwvf, angiomyolipoma without visible fat; RCC; renal cell carcinoma; CT, computed tomography; GLCM, grey-level co-

occurrence matrix; GLRLM, grey-level run length matrix; GLSZM; grey-level size zone matrix; NGTDM, neighboring gray tone

difference matrix; GLDM, grey-level dependence matrix; ROI, region of interest; SVM, support vector machine; Acc, accuracy, Sen,

sensitivity, Spe, specificity, AUC, area under the curve; CECT, contrast-enhanced CT; std, standard deviation; Phase 1, unenhanced

phase; Phase 2, corticomedullary phase, Phase 3, nephrographic phase, Phase 4, excretory phase; CP, cluster prominence; LRHGE,

long-run high grey-level emphasis; SFS, sequential feature selection; ccRCC, clear-cell RCC; ONC, oncocytoma; TL, transfer learning;
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GTf, Google Tensorflow; chrRCC, chromophobe RCC; Pctl, percentile; RMAD, robust mean absolute difference; MGLA, mean gray-

level attenuation; LR, logistic regression; LSSF; Laplacian spatial scaling factor; FFT, fast Fourier transform; paRCC, papillary RCC,

RF; random forests; SMOTE, synthetic minority oversampling technique; RFE, recursive feature elimination; kNN, k-nearest neighbor;

NDA, nonlinear discriminant analysis; Holm-P, Holm-Bonferroni; RFGB, relational functional gradient boosting; LBP, local binary

pattern; DCT; discrete cosine transform; LTE, Law’s texture energy; XGB, extreme gradient boosting; MJV, majority voting; CNN,

convolutional neural network; GLGM, grey-level gradient matrix; ICC, interclass correlation coefficient; RMS, root mean squared;

MLP, multi-layer perceptron; GBDT, gradient boosting decision tree; CMIM, conditional mutual information maximization; CIFE,

supervised feature selection methods;

In summary, the AI-based CAD systems that used CECT images have shown

promising results in early diagnosis of RC, including differentiating malignant from be-

nign tumors with an accuracy range of (41% - 97%) and AUC range of (0.49 - 0.97),

subtyping of RCC tumors with an accuracy range of (47% - 92%) and AUC range of (0.49

- 0.92), grading and staging of RCC tumors with an accuracy range of (70% - 97%) and

AUC range of (0.67 - 0.98). Entropy, a first order texture feature, has been named several

times as one of the most important Radiomic marker that could be extracted from multi-

phasic CECT. Phase 3, namely; portal-venous/nephrographic phase was the most used and

suggested among all other phases. In addition, SVM, RF, and ANNs classifiers had shown

the best classification results. Although CECT has been proven sufficient for diagnosing

RC, they are not preferred when the radiation exposure is contraindicated (i.e. patient is

pregnant or a child). This motivated researchers to investigate the abilities of other imag-

ing modalities such as MRIs to avoid such radiation exposures, if possible. However,

during our search in the last decade, only limited number of studies were found and thus,

they are discussed in details below.

For differentiating malignant from benign renal tumors, Xu et al. [109] investi-

gated the power of DL and ML on T2-weighted MRI and DW-MRI. A total of 217 pa-

tients with renal tumors were included (training = 173 and testing = 44). After manual
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labeling of ROIs, they developed three different DL ResNet-18 models and three different

handcrafted-based RF models on a total of 96 Radiomics markers. The first model was for

T2-weighted alone, the second model was for DW-MRI alone, and the third model was for

the combination between both. They reported an accuracy of 77%, 80%, and 81.3% using

the ResNet-18 models. For the handcrafted-based RF models, they achieved an accuracy

of 77%, 71%, and 82%. Oostenburgge et al. [110] investigated the ability of texture fea-

tures extracted from the 3D ADC maps of DW-MR images to differentiate benign ONC

from malignant RCC renal tumors. Their study included a total of 39 tumors (RCC = 32

and ONC = 7). They have reported that entropy, STD, tumor volume, and gender were

statistically significant between the different groups. They combined these features to cre-

ate a logistic regression classification model, which achieved an AUC of 0.91, sensitivity

of 86% and specificity of 84%. In addition, they have found that the 25th percentile and

entropy are statistically significant when comparing healthy parts from cortex with the tu-

mor. Li et al. [111] utilized DW-MRI to differentiate between malignant and benign renal

tumors. Their study included a total of 92 renal tumors, of which malignant encompasses

(ccRCC = 38, paRCC = 16, chrRCC = 18) and benign encompasses (AML = 13 and ONC

= 7). They generated 3D ADC maps and then extracted 10 different first-order texture fea-

tures. After making a statistical analysis to find the significant features, they performed

a ROC curve analysis to assess the diagnostic performance. They found that mean, me-

dian, 75th percentile, 90th percentile, STD, and entropy ADCs of malignant tumors were

significantly higher than benign ones. They reported an AUC of 0.85, sensitivity of 80%,

and specificity of 86.1%. Razik et al. [101] investigated the differentiation between malig-

nant and benign renal tumors using multi-parametric MRIs. Their study included 54 renal

masses (RCC = 34, AML = 14, and ONC = 6) obtained from 42 patients. After placing

2D ROIs on the maximum area of the tumor, they extracted a total of six first-order tex-

ture features. Using ROC analysis, they found that mean of positive pixels (MPP) had the

highest diagnostic performance in differentiating RCC from AML with an AUC of 0.89
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on DW-MRI at b-values of 500 s/mm2. While the mean value was the best feature in dif-

ferentiating RCC from ONC achieving an AUC of 0.94 on DW-MRI at b-values of 1000

s/mm2. Nikpanah et al. [169] investigated the power of deep CNNs on T2-weighted MRI,

and multi-phasic CEMRI to differentiate ccRCC from ONC tumors. Their study included

74 patients with 243 renal masses (ccRCC = 203 and ONC = 40). They placed bounding

box (2D ROIs) on the tumors and then feed them to an AlexNet CNN model for diagnosis.

Using a 5-fold cross-validation, they reported an overall accuracy of 91% with an AUC of

0.9. Arita et al. [170] investigated the power of texture analysis on ADC maps extracted

from DW-MRIs to differentiate benign AML from malignant nccRCC renal tumors. Their

study included two datasets. The fist set included 67 tumor (AML = 46 and nccRCC -

21) and was used for developing the diagnostic model. While the second one included

39 tumors (AML = 24 and nccRCC = 15) for the validation. They extracted a total of

45 texture features on 3D ADC maps and used a RF classifier to obtain the final results.

Their study reported that long-zone high grey-level emphasis as a second-order texture

feature was the most important and dominant feature to identify AML. The RF classifier

achieved an AUC of 0.82 and was comparable to the radiological assessment. Gunduz

et al. [171] explored the potential of texture analysis on ADC maps extracted from DW-

MRIs to differentiate benign ONC from malignant chrRCC renal tumors. They included

only 14 patients (ONC = 6 and chrRCC = 8) in their analysis. Their study revealed a total

of six texture features of which five were second-order (short run emphasis, run percent-

age, normalized run length nonuniformity, run variance, long run emphasis) and one was

first-order (squared root of mean ADC). Using ROC analysis, they have reported 87.5%

sensitivity and 83% specificity. Matsumoto et al. [112] investigated the utility of texture

analysis on DW-MRIs to differentiate benign AML from malignant ccRCC renal tumors.

Their study included two datasets. The fist set included 83 tumor (AML = 18 and ccRCC

= 65) and was used for developing the diagnostic model. While the second one included

39 tumors (AML = 13 and ccRCC = 17) for the external validation. They extracted 39
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texture features from ADC maps and then used a RF model to identify the importance of

the features. Their study revealed that the mean ADC value as a first-order texture feature,

and long-run low grey-level enhancement and grey-level run emphasis as second-order

texture features were of the most dominant features in the diagnostic procedure with an

obtained AUC of 0.87.

For subtyping and grading of RCC tumors, Goyal et al. [100] investigated the role

of texture features extracted from multi-parametric MRIs such as multi-phasic CEMRI,

T1-weighted MRI, T2-weighted MRI, and DW-MRI. Their study included 34 renal masses

(ccRCC = 29 (low-grade = 19 and high-grade = 10) and nccRCC = 5). The 2D ROIs were

placed on the maximum viable tumor. First-order texture features; namely: mean, STD,

MPP, entropy, skewness, and kurtosis, were extracted from each MRI sequence for further

analysis. In subtyping of RCCs and using ROC analysis, entropy achieved an AUC of

0.81 on T2-weighted, STD achieved an AUC of 0.81 and 0.88 on DW-MRI at b-values

of 500 and 1000 s/mm2, respectively, mean achieved an AUC of 0.848 on ADC, skew-

ness achieved an AUC of 0.85 on T1-weighted an AUC of 0.91 on phase 2 of CEMRI. In

grading of ccRCC renal tumors, entropy achieved an AUC of 0.82 on DW-MRI at b-value

1000 s/mm2, mean achieved an AUC of 0.89 on phase 2 of CEMRI and MPP achieved

an AUC of 0.87 on phase 3 of CEMRI. They concluded that several first order textural

features extracted from multi-parametric MRIs can be helpful diagnostic tool in both sub-

typing and grading of renal tumors. Sun et al. [120] investigated the possibility of grading

ccRCC tumors using texture analysis of susceptibility-weighted MR imaging (SW-MRI).

Their study included a total of 45 patients (low-grade = 29 and high-grade = 16). They

reduced the total of extracted texture features from 396 to 10. Then, they build their di-

agnostic model using a multivariable logistic regression, which achieved an accuracy of

77.3%, sensitivity of 80.5%, and specificity of 71.4%. Chen et al. [121] performed a study

to grade ccRCC tumors using phase 2 of CEMRI. A total of 99 tumors (low-grade = 61
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and high-grade = 38) were included in their study. After placing 2D ROIs, several first-,

second-, and higher-order texture features were extracted and analyzed. The features were

then reduced and selected using RF importance analysis resulting in a total of six texture

features; namely: kurtosis, entropy, sum of entropy, horizontal grey-level nonuniformity,

runlength nonuniformity, and grey-level nonuniformity. Then, they build a MLP-ANN

classification model to obtain the final diagnosis, which achieved 86.2% accuracy, sensi-

tivity of 72.7%, specificity of 94.4%, and an AUC of 0.76 on the validation dataset (N =

29). Although their system was specific, it was not sensitive enough, which can justified

by the class imbalance. Choi et al. [172] investigated the ability of different Radiomic

features including shape features and first- and second-order texture features extracted

from T2-weighted and multi-phasic CEMRI to grade ccRCC renal tumors. Their study

included 364 renal tumors (low-grade = 272 and high-grade = 92). Their RF classifica-

tion model achieved an AUC of 0.89, accuracy of 98%, sensitivity of 72%, and specificity

of 95%. Although they have achieved an overall good diagnostic performance, the low

sensitivity can be justified by the data imbalance. Uyen et al. [173] investigated the role

of multi-phasic MRI in the differentiation of RCC. Their study included 212 renal lesions

from 36 patients (normal = 96, ccRCC = 87, paRCC = 8, and ONC = 11) of which the

divided into two equal groups, one each for training and validation. After manual place-

ment of 2D ROIs, they extracted first-order texture features (mean, STD, skewness, and

kurtosis). Using a RF classification model, Phase 1 of CEMRI had shown the highest

diagnostic accuracy of 79.1% among all other phases. However, after integrating different

phases an enhanced diagnostic accuracy of 83.7% was obtained. Another study by the

same group [113], investigated the utility of mult-phasic CEMRI to differentiate benign

from malignant renal tumors as well as differentiating common subtypes of RCCs. Their

study include 140 renal lesions from 41 patients (RCC = 90, paRCC = 22, and ONC =

30). They have placed three consecutive 2D ROIs on the slices encompasses the largest

cross-section from each phase of CEMRI. Then, they extracted multiple first- and second-
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order texture features using histogram analysis, GLCM, GLRLM, GLSZM, and NGTDM.

Then, LASSO regression was applied to select the optimal features for classification pur-

poses. They found that first-order texture features were informative in identifying the

malignancy status, while adding the second-order texture features was beneficial in the

subtyping problem. Using RF classification models, they achieved an accuracy of 77.9%

in differentiating paRCC from ccRCC, 79.3% in distinguishing ONC from ccRCC, and

77.9% in differentiating ONC from paRCC.

Table 8 provides summary of the aforementioned AI-based CAD systems that have

been developed, in the last decade, by utilizing different MRI modalities. The Table en-

compasses the following details: study, main goal, Radiomics, methods, results, and find-

ings.
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TABLE 8: Summary of studies utilized MRIs for renal cancer diagnosis in the last decade.

Study Main Goal Radiomics Method Results Findings

Xu

et al. [109]

Differentiation of

malignant from

benign renal

tumors (N =

217) using T2-

weighted MRI

and DW-MRI

• Shape: —

• 1st Order Statistics: 1

• 2nd Order Statistics: 7

– GLCM: 2

– GLRLM: 3

– GLSZM: 1

– GLDM: 1

• 2D ROI

• ResNet-18

• LASSO

• RF

• 10-fold CV

• Acc: range

(0.70 - 0.82)

• Sen: range

(0.81 - 0.94)

• Spe: range

(0.33 - 0.92)

• AUC: range

(0.74 - 0.93)

Combined Ra-

diomics extracted

from multi-

modal MRIs

have the potential

to accurately

differentiate

benign from

malignant renal

tumors by using

handcrafted-

based RFs or

DL-based classi-

fication models.

Oostenburgge

et al. [110]

Differentiation

of benign ONC

from malignant

RCC renal tu-

mors (N = 39)

using 3D ADCs

of DW-MRIs

• 1st Order Statistics: 2

– entropy

– STD

• Tumor volume

• 2D ROI

• LR

• Acc: 0.87

• Sen: 0.86

• Spe: 0.84

• AUC: 0.91

Radiomics ex-

tracted from 3D

ADCs such as

standard devia-

tion and entropy

when integrated

with tumor vol-

ume and gender

can discriminate

ONC from RCC.

Li

et al. [111]

Differentiation of

benign from ma-

lignant renal tu-

mors (N = 92) us-

ing 3D ADCs of

DW-MRIs

• 1st Order Statistics: 6

– mean

– median

– STD

– entropy

– 75th pctl

– 90th pctl

• 2D ROI

• ANOVA

• ROC analysis

• Acc: 0.82

• Sen: 0.80

• Spe: 0.86

• AUC: 0.85

Radiomics ex-

tracted from 3D

ADCs of DW-

MRIs had shown

significantly

higher values in

malignant tumors

than benign ones

(p < 0.05).

Continued on next page
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Razik

et al. [101]

Differentiation

of benign from

malignant renal

tumors (N =

54) using multi-

parametric MRIs

• 1st Order Statistics: 2

– mean

– MPP

• 2D ROI

• U-test (Statistical

analysis only)

• Acc: range

(0.79 - 0.95)

• Sen: range

(0.71 - 0.97)

• Spe: range

(0.80 - 1.00)

• AUC: range

(0.89 - 0.94)

MPP and the

mean value can

differentiate RCC

from AML and

RCC from ONC

with an AUC of

0.89 and 0.94

at b500 s/mm2

and b1000 s/mm2

of DW-MRI,

respectively.

Nikpanah

et al. [169]

Differentiation

of ccRCC from

benign ONC

renal tumors (N

= 243) using T2-

weighted MRI

and multi-phasic

CEMRI

• local ROI patch was au-

tomatically extracted, size

of 100 × 100 mm.

• RGB image patches were

resized to 224 × 224 to

fit the pre-trained AlexNet

configuration.

• 2D ROI

• AlexNet CNN

• 5-fold CV

• Acc: 0.81

• Sen: 0.88

• Spe: 0.75

• AUC: 0.90

The DL-based

system can

potentially dif-

ferentiate ccRCC

from ONC renal

tumors with

high diagnostic

performance

on multi-phasic

MRIs.

Arita

et al. [170]

Differentiation

of benign AML

from malignant

nccRCC renal

tumors (N = 106)

using 3D ADCs

of DW-MRIs

• 1st Order Statistics: 7

• 2nd Order Statistics: 13

– GLCM: 4

– GLRLM: 4

– GLSZM: 4

– GLDM: 1

• 3D ROI

• RFs

• 37% validation

• Acc: 0.77

• Sen: 0.87

• Spe: 0.69

• AUC: 0.82

The long-zone

high grey-level

emphasis was the

most important

Radiomic marker

to differentiate

AML from nc-

cRCC on a RF

classifier with an

AUC of 0.82

Continued on next page
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Gunduz

et al. [171]

Differentiation

between malig-

nant chrRCC

and benign ONC

(N = 14) using

3D ADCs of

DW-MRIs

• 1st Order Statistics: 1

– squared root of

mean ADC

• 2nd Order Statistics: 5

– GLRLM: 5

• 3D ROI

• ROC analysis

• Acc: 0.86

• Sen: 0.88

• Spe: 0.83

• AUC: 0.94

Squared root of

mean ADC and

GLRLM Ra-

diomic markers

of ADC maps can

potentially dif-

ferentiate ONC

from chrRCC

renal tumors.

Matsumoto

et al. [112]

Differentiation

between malig-

nant ccRCC and

benign AML (N

= 122) using

3D ADCs of

DW-MRIs

• 1st Order Statistics: 3

– mean ADC

– skewness

– entropy

• 2nd Order Statistics: 9

– GLCM: 3

– GLRLM: 4

– GLZLM: 1

– GLDM: 1

• 3D ROI

• RF

• 32% validation

• Acc: —

• Sen: —

• Spe: —

• AUC: 0.87

Mean ADC,

long-run low

grey-level,

and grey-level

run emphasis

were the most

dominant and im-

portant Radiomic

markers in differ-

entiating AML

from ccRCC with

an AUC of 0.87.

Goyal

et al. [100]

Subtyping and

grading of ma-

lignant renal

tumors (N =

34) using Ra-

diomic markers

extracted from

multi-parametric

MRIs

• 1st Order Statistics: 6

– mean

– STD

– MPP

– entropy

– skewness

– kutrosis

• 2D ROI

• ROC analysis

• Subtyping:

AUC range

(0.81 - 0.91)

• Grading:

AUC range

(0.82 - 0.89)

Several first

order Radiomic

markers extracted

from multi-

parametric MRIs

can be helpful

diagnostic tool in

both subtyping

and grading of

renal tumors

Continued on next page
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TABLE 8 – Continued from previous page

Study Main Goal Radiomics Method Results Findings

Sun

et al. [120]

Grading of

ccRCC re-

nal tumors (N

= 45) using

susceptibility-

weighted MR

imaging (SW-

MRI)

• Shape: 2

• 2nd Order Statistics: 8

– GLCM: 2

– GLRLM: 1

– GLSZM: 2

– GLDM: 3

• 2D ROI

• U-test (Statistical

analysis)

• ROC analysis

• LR

• 30% validation

• Acc: 0.77

• Sen: 0.81

• Spe: 0.71

• AUC: 0.81

Radiomic mark-

ers extracted

from SW-MRI

can provide a

reliable differen-

tiation between

low and high

grades of ccRCC

Chen

et al. [121]

Grading of

ccRCC renal

tumors (N = 99)

using Phase 2 of

CEMRI

• 1st Order Statistics: 2

– entropy

– kurtosis

• 2nd Order Statistics: 4

– GLCM: 1

– GLRLM: 3

• 2D ROI

• RF

• MLP-ANN

• 30% validation

• Acc: 0.86

• Sen: 0.73

• Spe: 0.94

• AUC: 0.76

First- and second-

order Radiomic

markers extracted

from phase 2

of CEMRI can

potentially grade

ccRCC renal

tumors using

MLP-ANN clas-

sification model

Choi

et al. [172]

Grading of

ccRCC renal

tumors (N =

364) using T2-

weighted MRI

and multi-phasic

CEMRI

• Shape: 5

• 2nd Order Statistics: 15

– GLDZM: 15

• 3D ROI

• ANOVA

• RF

• 30% validation

• Acc: 0.98

• Sen: 0.72

• Spe: 0.95

• AUC: 0.89

Proper selection

and integration

of optimal Ra-

diomic markers

extracted from

MRIs can po-

tentially help in

grading ccRCC

renal tumors

Uyen

et al. [173]

(Study 1)

Differentiation

of RCC renal

tumors renal

tumors (N =

212) using multi-

phasic CEMRI

images

• 1st Order Statistics: 4

– mean

– STD

– skewness

– kurtosis

• 2D ROI

• RF

• 50% validation

• Acc: 0.84

• Sen: —

• Spe: —

• AUC: —

Using a RF clas-

sification model,

first-order Ra-

diomic markers

extracted from

multi-phasic

CEMRI could

potentially iden-

tify RCC renal

tumors.

Continued on next page
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TABLE 8 – Continued from previous page

Study Main Goal Radiomics Method Results Findings

Uyen

et al. [173]

(Study 2)

Differentiation

of benign from

malignant renal

tumors as well

as subtyping of

RCC (N = 140)

• 1st Order Statistics: 5

• 2nd Order Statistics: 40

– GLCM: 9

– GLRLM: 13

– GLSZM: 13

– NGDTM: 5

• 2D ROI

• LASSO

• RF

• 5-fold CV

• Acc: range

(0.78 - 0.79)

• Sen: range

(0.67 - 0.70)

• Spe: range

(0.86 - 0.89)

• AUC: —

First-order Ra-

diomic markers

were informative

in identifying

the malignancy

status, while

adding second-

order markers

was beneficial in

RCC subtyping

Notes ADCs, apparent diffusion coefficients; DW-MRIs, diffusion-weighted magnetic resonance images; MPP, mean positive pixels;

GLZLM, grey-level zone length matrix; GLDM, grey-level dependence matrix; GLDZM, grey-level distance zone matrix;

In summary, these AI-based CAD systems that used different types of MRIs have

shown promising results in early diagnosis of RC, including differentiating malignant from

benign tumors with an accuracy range of (77% - 91%) and AUC range of (0.82 - 0.91) and

subtyping and/or grading of RCC tumors with an accuracy range of (77% - 98%) and

AUC range of (0.76 - 0.89). Entropy, mean, MPP, skewness, and kurtosis as first-order

texture features, have been named several times as the most important Radiomic mark-

ers extracted from multi-parametric MRIs that could be beneficial to differentiate benign

from malignant renal tumors. Additionally, second-order texture features extracted from

GLRLM are important when added to the aforementioned first-order texture features. In

particular, texture analysis of ADCs on DW-MRI was the most used technique among

these MRI studies. In addition the RF classifiers had been nominated by most of these

studies and shown the best classification results. Although MRIs has been proven suf-

ficient for identifying the malignancy status, subtyping RCCs, grading RCCs, there were

almost no studies investigated the staging of RCCs, which is very important for specifying

the spread of the tumor, size, and location.
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C. Discussion and Conclusions

Comparing the number of studies performed on CTs to those performed on MRIs,

one can easily justify that by the reduced cost of CTs when compared with MRIs (≈

half the price of the scan). In both cases, they have been shown sufficient for accurate

and early identification of renal tumors, including: malignancy status, subtyping, grading,

and staging. Especially, when using the enhanced phase 3 (portal-venous/nephrographic

phase). In addition, ADC maps of DW-MRIs have been widely used by researchers who

studied texture differences instead of the functionality for RC diagnosis and have been

showing promising results. Radiomics techniques have been proved successful to extract

the most discriminating features that could help in the intended diagnostic problem. AI,

ML, and DL have proved their diagnostic abilities when paired with good discriminatory

features. Entropy, mean, skewness, kurtosis, STD, and median have been proven to be

sufficient for differentiating benign from malignant renal tumors. However, it will not be

the case if these benign tumors are fatpoor AML. Thus, the second-order texture features

extracted from different constructed matrices (e.g., GLCM, GLRLM, GLSZM, GLDM,

and NGDTM) have played an important role here to capture the spatial relationship be-

tween neighboring voxels, which might overcome the problem of noisy histogram/first-

order texture features, and thus; might improve the low diagnostic sensitivity that most of

the studies suffer from. Not many studies depended on neither morphological nor func-

tional features, which if integrated will definitely enhance the diagnostic performance.

Several hand-crafted AI-based CAD systems have been presented and a few depended on

DL approaches. The hand-crafted ones have been proven efficient evidenced by high ac-

curacy, sensitivity, and specificity are well-understood (i.e. explainable AI), and therefore

are desirable and dependable. In particular, RFs, SVMs, and MLP-ANNs have provided

impressive diagnostic results and had been accepted by many researchers in the field due

to their ability to handle nonlinear and multi-class classification problems.
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The success of early and accurate diagnosis of the malignancy status of renal tu-

mors, the specific subtype, and the associated grade (I-IV) and stage (I-IV) is of immense

clinical importance as it affects the decision of optimal treatment/management plan. Ac-

cording to the American Cancer Society [15], treatment plans could be one or more of

the following options: Surgery (e.g., radical or partial nephroctomy), Active Surveillance,

Ablation Therapy, Radiation Therapy, Adjuvant Therapy, Targeted Drug Therapy, Im-

munotherapy, Chemotherapy Therapy, etc. For a given renal tumour with high suspicious

to be malignant, surgical intervention is considered the optimal management plan. Biopsy

is essential to confirm the existence of RCC in the case of: patient is at high risk for

surgery, tumor is locally advanced or became metastatic, before applying ablative therapy,

the patient has a single kidney (original or allograft), or when other malignancy diagnoses

present such as lymphoma or metastasis. In addition, treatment follow-up procedure is cru-

cial to evaluate the clinical outcome/response, the recurrence rate, and the post-operative

progression free-survival (PoPFs) rate as well.

To sum up, more investigative studies are still ongoing for both CTs and MRIs.

Improvement in early diagnosis of renal tumors depend mainly on finding the optimal

discriminating features for the intended diagnostic problem as well as finding the robust

AI-based classification model that could be reproducible and generalizable. Hence, future

research directions focus on building more comprehensive AI-based CAD systems that

can integrate multiple types of features including morphological features to capture the

complexity of the tumor surface and functional features that can describe the functional-

ity through the wash-in/wash-out slopes quantified by the amount of enhancement in the

case of using contrast-based imaging modalities such as CECT and CEMRI. In addition,

functionality can be measured using ADC values in the case of using DW-MRIs. If not

succeeded, multimodal imaging and even histopathology images and genomic markers

might be other possible solutions to be integrated.
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CHAPTER V

RENAL CANCER COMPUTER-AIDED DIAGNOSIS

A. Materials

Patients who had undergone renal biopsy for suspected cancer (N = 140) ranged

from 15 to 87 years of age (mean = 50.5 years and standard deviation = 13.4 years). There

were 72 patients who were males, while the remaining 68 were female. Informed consent

was obtained from the patients themselves or their parents/legal guardians (age < 18 years)

to participate in this study. Biopsy reports confirmed that 70 patients were malignant with

renal cell carcinoma (RCC) (clear cell RCC (ccRCC) = 40 and non-ccRCC (nccRCC) =

30, of which 17 were papillary RCC and 13 were chromophobe RCC), while the other 70

had benign angiomyolipoma (AML) tumors. Study participants had undergone a multi-

phase computed tomography (CT) examination prior to biopsy. Imaging was performed

with a Brilliance CT 64 multislice scanner (Philips Medical Systems, Best, The Nether-

lands). A mechanical injector was used to administer contrast agent into an antecubital

vein with a dose of 120 mL at a rate of 4.0 mL/s. The abdomen scanning included three

main phases: a precontrast phase, a portal-venous phase, and a delayed-contrast phase

acquired at t = 0, t = 80, and t = 300 s, respectively. All images were acquired using the

following parameters: slice thickness = 2.5 mm; pitch = 0.984; rotation time = 0.75 s.
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B. Methods

FIGURE 15: The proposed renal cancer computer-assisted diagnosis (RC-CAD) system.

The proposed RC-CAD system pipeline (see Figure 15) performs the following

steps to obtain the final diagnosis: (1) constructs 3D models of renal tumors from manually

segmented 2D ROIs, (2) applies applying a new parametric spherical harmonic technique

to estimate the morphological features from the segmented renal tumors to capture the

surface complexity/irregularity between different types of renal tumors, (3) constructs a

rotation-invariant gray-level co-occurrence matrix (GLCM) to extract the textural features

of the tumor volume, (4) estimates the wash-in/wash-out slopes inside the 3D region, and

(5) integrates the estimated morphological features with the first- and second-order tex-

tural features and functional features and performs a two-stage classification using MLP-

ANNs whose inputs comprise all aforementioned discriminant features. The first stage

decides if the renal tumor is malignant (RCC) or benign (AML). In the former case, the

second stage identifies the malignancy subtype as ccRCC or nccRCC. These steps are

detailed below.
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1. Renal Tumor Preprocessing

To provide a more accurate extraction of morphological, textural, and functional

discriminating imaging features, for each subject, each CT slice intersecting the renal

tumor was accurately and manually segmented by expert radiologists to define the 2D

ROI. Then, all 2D ROIs were stacked together to construct the 3D renal tumor object (3D

ROI), as shown in Figure 16.

FIGURE 16: Visualization of the segmentation process to obtain 3D renal tumors.
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2. Extracting Imaging Features

For accurate identification of malignant renal tumors and the associated subtype,

all 3D segmented volumes were characterized by their morphological, textural, and func-

tional features, as described below.

Morphological features: To enhance both the sensitivity and specificity of early

renal cancer diagnosis, morphological features of the tumor are incorporated into the al-

gorithm. These features were designed to quantify the complex shape of the tumor bound-

ary. This was motivated by the hypothesis that rapidly growing, malignant tumors develop

more irregular/complex shapes relative to more slowly growing, benign tumors. There-

fore, the utilization of such shape descriptors would enhance the performance of the auto-

matic diagnosis. Examples of this phenomenon are illustrated in Figure 17.

Naturally, in order to measure the irregularity of the boundary, an accurate shape

model of the tumor must be constructed. In this chapter, a state-of-the-art spectral de-

composition was incorporated in terms of spherical harmonics (SHs) [174] to construct

this shape model. An arbitrary point in the interior of the tumor, or more specifically, the

interior of its convex kernel, was selected as the origin (0, 0, 0). In this coordinate system,

the tumor’s surface may be considered a function of the polar and azimuthal angle, f (θ, φ),

which can be expressed as a linear combination of basis functions Yτβ defined on the unit

sphere. Starting with a discrete approximation of the surface, i.e., a triangular mesh, the

proposed algorithm uses an attraction–repulsion technique [175] to map this mesh to the

unit sphere. The mapping fixes the image of each mesh vertex at the unit distance from the

origin, while preserving the mesh topology and maintaining the distance between adjacent

vertices as much as possible.
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FIGURE 17: Visualizing 3D surface complexity differences between different renal tu-

mors (benign are shown in blue, while malignant are shown in red).

Each iteration α of the attraction-repulsion works as follows. Let Cα,i be the co-

ordinates of the node on the unit sphere corresponding to mesh vertex i at the beginning

of iteration α. Denote the vector from node i to node j by dα, ji = Cα, j − Cα,i; then, the

Euclidean distance between nodes i and j is dα, ji =
∥∥∥dα, ji

∥∥∥. Finally, let Ji denote the index

set of neighbors of vertex i in the triangulated mesh. Then, the attraction step updates the

position of each node to keep it centered with respect to its neighbors:

C′α+1,i = Cα,i +CA,1

∑
j∈Ji

(
dα, jid2

α, ji +CA,2
dα, ji
dα, ji

)
, (7)

The quantities CA,1 and CA,2 are implementation-defined parameters that determine the

strength of the attractive force. The next step, repulsion, inflates the spherical mesh to

prevent it from degenerating (the attraction step by itself would allow nodes to become

arbitrarily close to one another).

C′′α+1,i = C′α+1,i +
CR

2I

I∑
j=1; j,i

dα, ji
d2
α, ji

, (8)

Just as the attraction step, the repulsion step uses an implementation-defined parameter CR
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to set the strength of the repulsive force. Subsequently, the nodes are projected back onto

the sphere by giving them the unit norm, and these are their coordinates at the beginning

of the next iteration, Cα+1,i = C′′α+1,i/∥C
′′
α+1,i∥. At the terminal iteration α f of the attraction–

repulsion algorithm, the surface of the renal tumor is in a one-to-one correspondence with

the unit sphere.

Each node Ci = (xi, yi, zi) of the original mesh is mapped to a corresponding point

Cα f ,i = (sin θi cos ϕi, sin θi sin ϕi, cos θi) with polar angle θi ∈ [0, π] and azimuthal angle

ϕi ∈ [0, 2π). Considering these points as samples of a continuous function f (θ, φ) defining

the boundary, the tumor shape may be estimated by fitting an SH series to the sample

nodes, since the SHs form an orthogonal basis for functions on a sphere. The SH Yτβ of

degree τ and order β is defined as:

Yτβ =



cτβG
|β|
τ cos θ sin(|β|φ) −τ ≤ β ≤ −1

cτβ
√

2
G|β|τ cos θ β = 0

cτβG
|β|
τ cos θ cos(|β|φ) 1 ≤ β ≤ τ

(9)

where cτβ is the SH factor and G|β|τ is the associated Legendre polynomial of degree τ and

order β.

In practice, of course, the SH series is truncated by discarding harmonics above

degree N, yielding an Nth order approximation. N = 70 suffices to accurately model the

surface of renal tumors. Finally, the renal tumor object is reconstructed from the SHs

of Equation (9). The first few harmonics describe the rough extent of the tumor, while

higher degree harmonics provide the finer details of its surface. Therefore, benign tumors

are accurately represented by a lower-order SH model, while malignant tumors, with their

more complex morphology, require higher-order SH model to describe their shape.
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Figure 18 shows the morphology approximation for three different renal tumors:

malignant ccRCC, malignant nccRCC, and benign AML tumors. A summary of the

attraction–repulsion algorithm is provided below.

FIGURE 18: Renal tumors’ reconstruction meshes showing the morphological differences

among malignant ccRCC, malignant nccRCC, and benign AML tumors.

Initialization:

• Triangulate the surface of the tumor.

• Smooth the triangulated mesh with Laplacian filtering.

• Initialize the spherical parameterization with an arbitrary, topology-preserving map

onto the unit sphere.

• Fix values of CA,1, CA,2, CR, and threshold T .

Attraction–repulsion:

• For α = 0, 1, . . .

– For i = 1, . . . , I
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* Calculate C′α+1,i using Equation (7)

– For i = 1, . . . , I

* Calculate C′′α+1,i using Equation (8)

* Let Cα+1,i = C′′α+1,i/∥C
′′
α+1,i∥

– If maxi ∥Cα+1,i − Cα,i∥ ≤ T Then, let α f = α + 1, and Stop.

Textural features: Recently, TA has become a popular research topic, particu-

larly in the field of medical imaging. New techniques of TA provide different quanti-

tative patterns/descriptors by combining the grey values of each pixel/voxel in a tumor

image/volume. As a result of these abilities, TA has been used in the diagnosis of several

tumors and their related subtypes with encouraging classification abilities [104, 105, 176–

182]. Therefore, in this chapter, TA techniques were applied on the segmented 3D re-

nal tumor volumes to precisely extract first- and second-order textural features that best

describe the homogeneity/heterogeneity between renal tumors with different diagnoses.

The use of such comprehensive textural features relies on the fact that malignant tumors

mostly show high textural heterogeneity when compared to benign ones. The success of

these findings would enhance the sensitivity and the specificity towards an early identi-

fication of renal cancer tumors. Figure 19 demonstrates the lesion texture differences of

two malignant ccRCC subjects, two malignant nccRCC subjects, and two benign (AML)

subjects.
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FIGURE 19: An illustrative example showing differences in texture between various renal

tumor types.

First-order textural features: These textural features include any quantity that

can be derived from the gray-level histogram of the tumor volume. In particular, mean,

variance, standard deviation, entropy, skewness, kurtosis, cumulative distribution func-

tions, and the grey-level percentiles [183] were extracted.

Figure 20 shows the average normalized histogram curves for all benign subjects

(blue) vs. malignant (red). To construct these curves, the grey-level range was normalized

first by dividing by the maximum grey-level value obtained from all subjects. Then, all

histograms were constructed for all subjects within the new normalized grey-level range

from 0 to 255. For each subject, the individual grey-level probability was obtained by

dividing the histogram values by the corresponding number of voxels. Then, all normal-

ized histograms from a particular group (malignant or benign) were averaged pointwise to

obtain the final curve.
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FIGURE 20: A visualization of the average normalized histogram curves for all benign

subjects (blue) vs. malignant (red).

Second-order textural features: Since the first-order textural features might not

be sufficient, with their range of values exhibiting significant overlap across classes, es-

pecially between subtypes of malignant tumor, second-order textural features were in-

corporated into the system. These features describe the joint distribution of gray values

in multiple voxels that are considered to be neighbors of each other. In particular, the

grey-level co-occurrence matrix (GLCM) [184] was used to capture the heterogeneous

appearance of renal tumors.

To construct the GLCM, the number of times an ordered pair of two grey values

occurs in two neighboring voxels within the renal tumor object must be counted. This

technique is continued until all conceivable occurrence frequencies within the grey-level

range of the renal tumor item are found, which covers all possible pairs of neighbors. For

this, the renal tumor object’s original grey-level range was first first contrast stretched to

fit the desired span 0–255, yielding a GLCM matrix with a size of 256 × 256. Then,

all feasible pair combinations were identified to construct the GLCM matrix (i.e., neigh-
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bors with gray levels i and j contribute to row i, column j of the GLCM). To define the

neighborhoods, a distance criterion that voxels must be separated by ≤
√

2 mm was used,

making the calculations rotation invariant (see Figure 21). The resultant GLCM was then

normalized and used to extracting the following second-order texture features [183, 184]:

contrast, dissimilarity, homogeneity, angular second moment (ASM), energy, and correla-

tion.

FIGURE 21: Visualization of the rotation-invariant neighborhood calculation system used

to construct the grey-level co-occurrence matrix (GLCM). The GLCM can be constructed

by counting the occurrence frequency of different grey-level pairs in-plane and in adjacent

planes accounting for the 26-neighbor voxels (blue) of the central voxel (red).

The definitions of all first- and second-order textural features are provided in Ta-

bles 9 and 16 in Appendix .A.

97



Functional features: Discriminating RCC from AML, as well as ccRCC from

nccRCC might be achieved using time-dependent characteristics of CE-CT imaging. The

most relevant CE-CT findings for this purpose are generally homogenous and prolonged

enhancement patterns [185]. The time dependency can be expressed by the slopes of

wash-in and wash-out. Wash-in is described as the rate of increasing attenuation (in HU)

from the precontrast to portal-venous phase. Similarly, wash-out is the rate of decrease

in attenuation between the portal-venous and delayed-contrast phase [186]. Higher slopes

of wash-in and wash-out are typically associated with malignancy. Moreover, nccRCC

demonstrates wash-in and wash-out slopes intermediate between those of AML and those

of ccRCC [187]. Therefore, both wash-in and wash-out slopes were constructed for all

renal tumor subjects for the classification of the renal tumor status. Examples of wash-

in/-out slopes showing the differences across ccRCC, nccRCC, and AML are shown in

Figure 22.

FIGURE 22: Example of the wash-in and wash-out slopes construction process for vari-

ous types of renal tumors. When compared to nccRCC (green) and AML (blue), ccRCC

tumors exhibit higher and faster wash-in/-out slopes (red).
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TABLE 9: Definition of first- and second-order textural features.

Textural Feature Definition

First Order

Mean The average grey value of voxels within the tumor.

Variance Second central moment of gray values.

Standard deviation Square root of variance.

Skewness (Skew) Asymmetry of the distribution of gray values about the mean. If Skew

< 0, that means the grey-level spreads out more to the left of the mean

than to the right and if Skew > 0, that means the grey-level spreads out

more to the right of the mean than to the left. Skew will equal to zero in

the case of normal distributions.

Kurtosis (Kurt) Measures the tail weight, or tendency to extreme values, of the object

grey-level distribution. The normal distribution has Kurt = 3; distribu-

tions with heavier tails have Kurt > 3, and distributions with less weight

in the tails have Kurt < 3.

Entropy A measure of randomness of grey values with in an input image.

CDFs A distribution function that accumulates voxel-wise grey values from

the whole tumor with minimum value = 0 and maximum value = 1.

Percentiles Grey values percentiles corresponding to the CDFs (from 10% to 100%)

Second Order

Contrast Measures the disparity in grey-level values between neighbors.

Dissimilarity Finds to what extent voxels are different from their neighbors.

Homogeneity Expresses the inverse difference moment among neighbors.

Angular second moment (ASM) Determines the gray-levels local uniformity (orderliness).

Energy The square root of the ASM.

Correlation Determines the grey-level linear dependency in neighborhood blocks.
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3. Feature Integration and Renal Tumor Classification

Following the extraction of morphological, textural, and functional features from

all given renal tumors, RC-CAD proceeds with two-stage diagnostic classification. The

first stage aims to differentiate malignant (RCC) from benign (AML) tumors. In the case

of malignancy, the second stage provides the classification of RCC tumors as ccRCC

or nccRCC.

The multilayer perceptron (MLP) artificial neural network (ANN) consists of at

least three layers: an input layer, one or more hidden layers, and an output layer, each

with arbitrarily many activation/processing units, known as nodes/neurons. Each layer is

fully connected to the next layer in sequence. Neurons use nonlinear activation functions

to give the MLP-ANN the capability to divide the feature space into arbitrarily complex

regions. The MLP-ANN mainly utilizes supervised backpropagation learning technique

in the training phase, in which gradient descent methods are utilized to update the con-

nection weights and additive biases in order to minimize the loss function. To achieve the

goal, the MLP-ANN was optimized in both classification stages to obtain the final diagno-

sis. Classifier performance was assessed using five different feature sets (Table 10) as the

ANN input in both stages. Feature Set 1 includes first-order histogram textural features

(N = 6; mean, variance, standard deviation, skewness, kurtosis, and entropy); Feature Set

2 includes first-order percentile textural features (N = 10; from the 10th to the 100th per-

centile in 10% point steps); Feature Set 3 includes second-order GLCM textural features

(N = 6; contrast, dissimilarity, homogeneity, ASM, energy, and correlation); Feature Set

4 includes SH reconstruction error (SHRE) morphological features (N = 70); and Feature

Set 5 includes functional features (N = 2; wash-in slope and wash-out slope). At each

classification stage, the individual feature sets were concatenated to obtain the combined

features (N = 94) and were fed to a MLP-ANN to obtain the final diagnosis.
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TABLE 10: Details of the extracted feature-sets used in the two-stage renal tumor classi-

fication.

Texture features

Feature-Set 1: First order (Histogram features) 6 features

Feature-Set 2: First order (Percentiles) 10 features

Feature-Set 3: Second order (GLCM) 6 features

Shape features

Feature-Set 4: Spherical Harmonics Reconstruction Errors 70 features

Functional features

Feature-Set 5: Wash-In/Out slopes 2 features

Combined Features

Feature-Sets 1, 2, 3, 4, and 5 94 features

C. Results

The diagnostic performance of the RC-CAD system on the dataset of 140 renal tu-

mors was assessed using leave-one-subject-out (LOSO) cross-validation. The system’s di-

agnostic capabilities were assessed, evaluated, and compared in both classification stages

using the individual feature sets, as well as the combined features. Each classification pro-

cess was repeated 10 times, and the results were tabulated in terms of the mean ± the stan-

dard deviation to provide a more quantitative expression of the diagnostic performance.

The first stage classification (RCC vs. AML) performance for the RC-CAD system

was first evaluated using individual Feature Sets 1, 2, 3, 4, and 5 (see Table 10) along

with different MLP-ANN classification models. Then, the RC-CAD system was evaluated

using the combined features, resulting in a noticeably enhanced diagnostic performance.
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A summary of the first stage performance in terms of the sensitivity, specificity, and Dice

similarity coefficient (DSC) [188, 189] is presented in Table 11.

TABLE 11: Diagnostic performance results of the first stage classification (RCC vs.

AML) using different individual feature-sets along with multi-layer perceptron artificial

neural network (MLP-ANN) classification models. The RC-CAD system diagnostic per-

formance using the combined features outperformed the diagnostic abilities using individ-

ual feature-sets. Sens: sensitivity, Spec: specificity, DSC: Dice coefficient of similarity,

hln: size of hidden layer n.

RCC vs. AML Classification Performance (Mean±SD ≈)

Feature-Set Sens% Spec% DSC MLP-ANN

Set 1 94.1±1.5 97.9±1.5 0.96±0.01 hl1 = 10 nodes

Set 2 92.4±2.9 95.1±3.5 0.94±0.02 hl1 = 10 nodes

Set 3 94.9±2.2 95.3±2.5 0.95±0.02 hl1 = 10 nodes

Set 4 92.0±2.4 96.6±2.0 0.94±0.02 hl1 = 10 nodes, hl2 = 5 nodes

Set 5 82.7±4.1 91.7±2.0 0.87±0.02 hl1 = 10 nodes

RC-CAD 95.3±2.0 99.9±0.4 0.98±0.01 hl1 = 50 nodes, hl2 = 25 nodes

Hyper-parameters: MLP-ANN (optimization function: trainlm, max epochs = 500, goal = 0, max

validation failure = 6, min gradient = 10−7, training gain (µ): initial µ = 0.001, µ decrease factor = 0.1, µ

increase factor = 10, max µ = 1e10).

The diagnostic performance of the second stage classification (ccRCC vs. nc-

cRCC) of the RC-CAD system was evaluated using the same LOSO cross-validation ap-

proach. As before, specially tailored MLP-ANN models were used with different feature

sets. The best second stage classifier performance was obtained using the concatenated

feature set (Table 12).
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TABLE 12: Results from the second stage classification (ccRCC vs. nccRCC) using in-

dividual feature-sets (1, 2, 3, 4, and 5) along with multi-layer perceptron artificial neural

networks (MLP-ANN) classification models. The RC-CAD system diagnostic perfor-

mance using the combined features outperformed the diagnostic abilities using individual

feature-sets. Acc: accuracy, hln: size of hidden layer n.

ccRCC vs. nccRCC classification Performance (Mean±SD ≈)

Feature-Set Acc% MLP-ANN Architecture

Set 1 76.8±2.6 hl1 = 10 nodes

Set 2 75.7±3.8 hl1 = 10 nodes

Set 3 83.3±5.6 hl1 = 10 nodes

Set 4 81.4±5.1 hl1 = 10 nodes, hl2 = 5 nodes

Set 5 76.2±2.33 hl1 = 10 nodes

RC-CAD 89.6±5.0 hl1 = 50 nodes, hl2 = 25 nodes

Hyper-parameters: MLP-ANN (optimization function: trainlm, max epochs = 500, goal = 0, max

validation failure = 6, min gradient = 10−7, training gain (µ): initial µ = 0.001, µ decrease factor = 0.1, µ

increase factor = 10, max µ = 1e10).

Figure 23 demonstrates a difficult case presentation for two ccRCC, two nccRCC,

and two AML renal tumors. This figure visualizes the texture differences, wash-in and

wash-out slope differences, and morphological differences between the different types of

renal tumors, which emphasizes the potential power of the integration process of such fea-

tures in providing a precise identification of a given renal tumor.
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FIGURE 23: A difficult case presentation showing the textural differences, wash-in and

wash-out slope differences, and shape differences between two ccRCC, two nccRCC, and

two AML renal tumors.

To ensure that the developed system is not prone to overfitting and to validate

the reproducibility and robustness of the RC-CAD, a randomly stratified 10-fold cross-

validation approach was employed in both stages using the combined features. Likewise,

the classification process was repeated 10 times using the same MLP-ANN classification

model, and results are tabulated in terms of the mean ± the standard deviation (Table 13).

To highlight the advantages of using MLP-ANN classifier, the diagnostic perfor-

mance of the RC-CAD was compared with other, well-known machine learning classifiers

(e.g., SVMQuad and RF). As documented in Table 13, the diagnostic performance obtained

by the RC-CAD system outperformed all other classifiers in both classification stages,

which justifies the potential of such MLP-ANN classifiers being utilized for the developed

RC-CAD system. It is worth mentioning that, in each classification stage, a grid search

algorithm was employed to find the optimal set of hyperparameters, with the classification

accuracy optimization criterion, for each of the classifier techniques being evaluated. The

results of the hyperparameter optimization are appended to Table 13.

104



TABLE 13: Diagnostic performance comparison for both classification stages between

the developed RC-CAD system and other classification approaches (e.g., random forest

(RF) and support vector machine (SVM)). Using leave-one-subject-out (LOSO) and a

randomly stratified 10-fold cross-validation approach, the diagnostic abilities of the RC-

CAD outperformed others. Let Sens: sensitivity, Spec: Specificity, DSC: Dice similarity

coefficient, and Acc: Accuracy.

First Stage Classification (RCC vs. AML) Performance (Mean±SD ≈)

Method Validation Sens% Spec% DSC

RC-CAD (Proposed)
LOSO 95.3±2.0 99.9±0.4 0.98±0.01

10-fold 89.0±3.4 91.0±2.7 0.90±0.02

RFs
LOSO 89.0±1.7 92.7±2.7 0.91±0.02

10-fold 88.4±1.0 90.7±3.0 0.89±0.01

SVMQuad

LOSO 82.9±0.0 88.6±0.0 0.85±0.00

10-fold 81.9±2.2 87.7±2.5 0.84±0.02

Second Stage Classification (ccRCC vs. nccRCC) Performance (Mean±SD ≈)

Method Validation Acc%

RC-CAD (Proposed)
LOSO 89.6±5.0

10-fold 78.6±5.7

RFs
LOSO 53.7±3.7

10-fold 51.9±2.6

SVMQuad

LOSO 52.9±0.0

10-fold 54.3±3.0

Hyper-parameters: MLP-ANN (optimization function: trainlm, max epochs = 500, hidden layers: hl1 = 50

nodes, hl2 = 25 nodes, goal = 0, max validation failure = 6, min gradient = 10−7, training gain (µ): initial µ

= 0.001, µ decrease factor = 0.1, µ increase factor = 10, max µ = 1e10); RF (method: Bag, number of

learning cycles = 30); SVM (kernel function: quadratic, box constraint = 1).
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For the comparison with the RC-CAD, the existing state-of-the-art approach [123]

was applied using a total of 10 textural markers extracted from the portal-venous phase

only along with the gradient boosting classification technique. In addition, the state-of-

the-art deep learning CNN approaches proposed by Lee et al. [128] and Oberai et al. [133]

were applied on the same datasets (first stage: N = 140; second stage: N = 70). To high-

light the advantages of the RC-CAD system, all results are compared in Table 14. The

diagnostic performance of RC-CAD exceeded that of other approaches in both classifica-

tion stages.
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TABLE 14: Diagnostic performance comparison for both classification stages between the

developed RC-CAD system and other state-of-the-art approaches. The diagnostic abilities

of the RC-CAD outperformed all other methods in both classification stages. Let Sens:

sensitivity, Spec: Specificity, DSC: Dice similarity coefficient, and Acc: Accuracy.

First Stage Classification (RCC vs. AML) Performance (Mean±SD ≈)

Method Sens% Spec% DSC

RC-CAD (Proposed) 95.3±2.0 99.9±0.4 0.98±0.01

Kunapuli [123] 81.4±0.0 95.7±0.0 0.88±0.00

Oberai [133] 88.9±1.7 87.4±1.4 0.91±0.01

Lee [128]

AlexNet 84.0±1.7 93.4±1.9 0.88±0.02

GoogleNet 88.3±1.7 95.1±1.9 0.91±0.01

ResNet 88.0±3.5 95.7±0.9 0.91±0.02

VGGNet 86.9±0.6 91.4±2.4 0.89±0.01

Second Stage Classification (ccRCC vs. nccRCC) Performance (Mean±SD ≈)

Method Acc% ccRCC/40 nccRCC/30

RC-CAD (Proposed) 89.6±5.0 35±2 28±3

Kunapuli [123] 60.6±2.7 28±1 15±1

Oberai [133] 84.3±3.1 34±1 25±2

Lee [128]

AlexNet 71.7±1.9 31±2 19±2

GoogleNet 68.0±1.5 32±1 15±1

ResNet 70.3±2.5 32±0 17±2

VGGNet 72.6±2.3 33±1 18±1

Hyper-parameters: MLP-ANN (optimization function: trainlm, max epochs = 500, hidden layers: hl1 = 50

nodes, hl2 = 25 nodes, goal = 0, max validation failure = 6, min gradient = 10−7, training gain (µ): initial µ

= 0.001, µ decrease factor = 0.1, µ increase factor = 10, max µ = 1e10).
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D. Discussion and Conclusions

The developed RC-CAD system demonstrated high diagnostic performance in terms

of accuracy, sensitivity, specificity, and DSC in discrimination between benign (AML) and

malignant (RCC) and in classification of the RCC subtype into ccRCC or nccRCC. This

early and precise identification of the malignancy status of a given renal tumor and its asso-

ciated subtype can enable clinicians to provide the appropriate early intervention/treatment

plan and improve the outcomes. CE-CT was utilized as it is an imaging modality with the

ability to provide different aspects of features, including but not limited to, morphological

features, textural features, and functional features. The integration of these features is ef-

fective in determining the malignancy status of a given renal tumor when combined with

a powerful machine learning classifier such as the MLP-ANN.

The grade of malignancy of a given renal tumor largely specifies the morphology

of the tumor. Typically, malignant tumors demonstrate a more complex morphology than

benign ones. Therefore, morphological features based on using spherical harmonics were

utilized to capture possible surface complexity differences between malignant and benign

renal tumors, as well as differences between different subtypes of malignancy.

First- and second-order textural features have been widely utilized to identify a

given renal tumor status as malignant or benign, as well as to describe the malignancy

subtype [122, 123, 125, 127, 128, 134]. These features capture all possible textural homo-

geneity/heterogeneity across renal tumors with different diagnoses. In line with these stud-

ies, the extracted textural features provided high diagnostic performance in discriminating

malignant ccRCC and nccRCC from benign (AML) renal tumors.

Additionally, functionality was utilized to identify the malignancy status renal tu-

mors. The wash-in and wash-out slopes can capture existing differences in the enhance-
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ment characteristics [185, 186]. In this study, the results obtained by functionality metrics

demonstrated the efficacy of such features in discriminating between benign (AML) and

malignant (RCC) and identifying the malignancy subtype as ccRCC or nccRCC.

Although individual features have provided a reasonable diagnostic performance,

they are not sufficient to rule out surgical intervention in (what may turn out to be) be-

nign lesions. Therefore, the integration process of these features is critical to enhance

the diagnostic accuracy to the point of clinical utility. The integration process produced a

reliable and accurate RC-CAD system with an enhanced diagnostic performance in both

classification stages as documented in Tables 11–13.

To sum up, the developed RC-CAD system demonstrated a high classification sen-

sitivity of 95.29% ± 2.03%, a specificity of 99.86% ± 0.43%, an ad DSC of 0.98 ± 0.01 in

differentiating benign AML from malignant RCC renal tumors. In addition, the RC-CAD

achieved an overall classification accuracy of 89.57% ± 5.03% in distinguishing ccRCC

from nccRCC to provide the proper management plan. Integrating accurate morpholog-

ical features with functional features and multiple first-order and second-order textural

features was adequate to significantly enhance the diagnostic capabilities.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This dissertation presented a new computer-assisted diagnostic (Renal-CAD) sys-

tem to precisely diagnose acute rejection (AR) post kidney transplantation at an early

stage. The Renal-CAD system demonstrated 93.3% accuracy, 90.0% sensitivity, and

95.0% specificity in differentiating AR from non-rejection (NR). Robustness of the Renal-

CAD system was also confirmed by the area under the curve value of 0.92. In addition,

a new renal cancer CAD (RC-CAD) system for precise diagnosis of RC at an early stage

was developed. The RC-CAD achieved a sensitivity of 95.3% ± 2.0%, a specificity of

99.9% ± 0.4%, and Dice similarity coefficient of 0.98 ± 0.01 in differentiating malignant

from benign renal tumors, as well as an overall accuracy of 89.6%±5.0% in the subtyping

of renal cell carcinomas (RCCs). The results obtained outperformed other machine learn-

ing classifiers as well as other different approaches from the literature. Machine learning

and deep learning approaches have shown potential abilities to be utilized to build such

AI-based CAD systems. This is evidenced by the promising diagnostic performance ob-

tained by both Renal-CAD and RC-CAD systems. For the Renal-CAD, the integration of

functional markers extracted from multimodal MRIs with clinical biomarkers using deep

learning-based stacked autoencoder (SAE) classification model, potentially improved the

final diagnostic results evidenced by high accuracy, sensitivity, and specificity. The de-

veloped Renal-CAD demonstrated high feasibility and efficacy for early, accurate, and

non-invasive identification of AR. For the RC-CAD, integrating morphological, textural,

and functional features extracted from CE-CT images using a machine learning-based
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multi-layer perceptron artificial neural network (MLP-ANN) classification model eventu-

ally enhanced the final results in terms of accuracy, sensitivity, and specificity, making the

proposed RC-CAD a reliable noninvasive diagnostic tool for renal cancer (RC). The early

and accurate diagnosis of AR and/or RC will help physicians to provide early interven-

tion with the appropriate treatment plan to prolong the life span of the diseased kidney,

increase the survival chance of the patient, and thus improve the healthcare outcome in the

U.S. and worldwide.

A. Summary of Contributions

Main contributions of this dissertation are summarized in the following pullets:

• A new AI-based CAD system was developed to precisely diagnose AR post kidney

transplantation at an early stage. The developed system was named Renal-CAD and

encompasses the following contributions:

– Extraction of DW-MR image markers, namely: voxel-wise apparent diffusion

coefficients (ADCs) are calculated from the segmented kidneys at 11 differ-

ent low and high b-values and then mapped to their cumulative distribution

functions (CDFs) for better representation.

– Extraction of BOLD-MR image markers, namely: the transverse relaxation

rate (R2*) values from the segmented kidneys at four different echotimes and

then R2* curves were constructed for better representation.

– Integrating the extracted multimodal MR image markers with the associated

clinical biomarkers serum creatinine (SCr) and creatinine clearance (CrCl).

These integrated biomarkers are then fed to the developed DL classification

model built on SAEs to diagnose the kidney transplant as NR or AR.
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• A new AI-based CAD system for precise diagnosis of RC at an early stage was de-

veloped. The developed system was named RC-CAD and incorporates the following

major contributions:

– Integrating the morphological features the best describe the surface complexity

of a given renal tumor, with first and second order appearance-based features

that can capture the texture heterogeneity of a given renal tumor, and with the

functional features by constructing wash-in/wash-out slopes to quantify the

enhancement variations across different CE-CT phases.

– Modeling a two-stage MLP-ANN classifier using the aforementioned inte-

grated features to diagnose the renal tumor as benign or malignant and identify

the malignancy subtype.

B. Future Avenues

The success of both AI-based CAD systems (Renal-CAD and RC-CAD) presented

in this dissertation opens research pathway and thoughts towards some future avenues:

• Increasing the number of kidney transplant patients who had both types of scans

(i.e. DW-MRI and BOLD-MRI). In this study, only the DW-MRI analysis pipeline

included data from different geographical areas; and thus, more data could be col-

lected for further validation, optimization, and fine tuning.

• The abilities of the Renal-CAD system could be extended (see Fig. 24 by adding

genomic markers and proteomic markers to identify different types of AR post

kidney transplantation as T-cell mediated rejection (TMR) or antibody mediated

rejection (AMR). These specific identification will enhance the Renal-CAD diag-

nostic abilities, help in administering a timely intervention with the appropriate
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treatment/management plan, prolong the survival rate of the transplanted kidney,

improve the patient outcomes, and thus, improve the healthcare in the U.S. and

worldwide.

FIGURE 24: Suggested pipeline for identifying the AR subtype as TMR or AMR.

• The abilities of the Renal-CAD could also be investigated to identify additional renal

dysfunction conditions such as nephrotic syndrome, acute tubular necrosis, tubular

inflammation, acute kidney injury, and other chronic kidney diseases that might

affect either the native or the transplanted. Integration of histopathology images,

DNA, and RNA analysis could potentially help.

• Investigate the abilities of the RC-CAD system in identifying other tumors such as

oncocytomas. Although they are benign tumors. they usually have a central scar
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and showing similar characteristics of malignant tumors, specifically chromophobe

RCC, which in turn make the differentiating between oncocytomas and chromo-

phobe a challenging task.

• The abilities of the RC-CAD system to differentiate papillary RCC from chromo-

phobe RCC will be investigated.

• Automatic detection, localization, and segmentation of renal tumors is very chal-

lenging for many reasons, including: (1) the wide variety in renal tumors size, some

of them are very small (≤ 4 cm) and some of them are very large and can cover

large portions of the abdomen and (2) different locations, they could be on the right

side, left side, different locations of the kidney (upper, middle, or lower) portion.

Thus; most of the studies still depend on expert knowledge to segment the renal

tumor manually using some segmentation tools before the handcrafted features are

extracted.

• Development of an end-to-end AI-based CAD system is an ongoing research. Such

systmes utilize deep learning techniques (e.g., convolutional neural networks (CNNs))

and could be one of the solutions that can provide the final diagnosis from an input

image without the need for manual segmentation or hand-crafted features.

• Multi-parametric MRIs are other imaging modalities that could be used for diagnos-

ing RC, especially in the cases when the patient is pregnant or a child, then there is

no need to expose them to radiation.

• Potential investigation of an AI-based CAD system that integrate multi-modal imag-

ing Radiomic makers extracted from CTs and MRIs could be helpful in accurate

grading (I-IV) and staging (I-IV) of renal tumors to determine how aggressive the

tumor is and the exact location of the tumor. These findings will help administering

appropriate intervention and treatment plans in a timely manner.
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• The abilities of the RC-CAD systems could be extended (see Fig. 25) to predict the

treatment response such as recurrence rate, post-operative progression free-survival

rate, or good response. This prediction will help physicians/oncologists in deter-

mining the treatment outcome and thus, recommend the change of therapy course

or not.

FIGURE 25: Suggested pipeline for: (1) identifying the malignancy status of a given

renal tumors, malignancy subtyping, grading (I-IV), and staging (I-IV) and (2) prediction

of treatment response.

• This work could also be applied to various other applications in medical imaging,

such as the prostate [190–216], the kidney [33, 72, 217–244, ?–258], the heart [259–

294], the lung [174, 295–348], the brain [349–432], the retina [433–448], the blad-

der [449–455], the liver [456–458], head and neck [459–462], and injury predic-

tion [463] as well as several non-medical applications [464–471].
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[126] P. M. Szczypiński, M. Strzelecki, A. Materka, and A. Klepaczko. MaZda—a soft-
ware package for image texture analysis. Computer methods and programs in
biomedicine, 94(1):66–76, 2009.

[127] X.-Y. Sun, Q.-X. Feng, X. Xu, J. Zhang, F.-P. Zhu, Y.-H. Yang, and Y.-D. Zhang.
Radiologic-radiomic machine learning models for differentiation of benign and ma-
lignant solid renal masses: Comparison with expert-level radiologists. American
Journal of Roentgenology, 214(1):W44–W54, 2020.

[128] H. Lee, H. Hong, J. Kim, and D. C. Jung. Deep feature classification of an-
giomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-
enhanced CT images with texture image patches and hand-crafted feature concate-
nation. Medical physics, 45(4):1550–1561, 2018.

[129] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[130] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[131] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[132] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[133] A. Oberai, B. Varghese, S. Cen, T. Angelini, D. Hwang, I. Gill, M. Aron, C. Lau,
and V. Duddalwar. Deep learning based classification of solid lipid-poor contrast
enhancing renal masses using contrast enhanced CT. The British journal of radiol-
ogy, 93(1111):20200002, 2020.

[134] L. Zhou, Z. Zhang, Y.-C. Chen, Z.-Y. Zhao, X.-D. Yin, and H.-B. Jiang. A deep
learning-based radiomics model for differentiating benign and malignant renal tu-
mors. Translational oncology, 12(2):292–300, 2019.

126



[135] E.-M. Cui, F. Lin, Q. Li, R.-G. Li, X.-M. Chen, Z.-S. Liu, and W.-S. Long. Dif-
ferentiation of renal angiomyolipoma without visible fat from renal cell carcinoma
by machine learning based on whole-tumor computed tomography texture features.
Acta Radiologica, 60(11):1543–1552, 2019.

[136] H. S. Lee, H. Hong, D. C. Jung, S. Park, and J. Kim. Differentiation of fat-poor
angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT
images using quantitative feature classification. Medical physics, 44(7):3604–3614,
2017.

[137] Z. Feng, P. Rong, P. Cao, Q. Zhou, W. Zhu, Z. Yan, Q. Liu, and W. Wang. Machine
learning-based quantitative texture analysis of CT images of small renal masses:
Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.
European radiology, 28(4):1625–1633, 2018.

[138] L. Yan, Z. Liu, G. Wang, Y. Huang, Y. Liu, Y. Yu, and C. Liang. Angiomyolipoma
with minimal fat: differentiation from clear cell renal cell carcinoma and papil-
lary renal cell carcinoma by texture analysis on CT images. Academic Radiology,
22(9):1115–1121, 2015.

[139] Y. Ma, F. Cao, X. Xu, and W. Ma. Can whole-tumor radiomics-based CT analysis
better differentiate fat-poor angiomyolipoma from clear cell renal cell caricinoma:
compared with conventional CT analysis? Abdominal Radiology, 45(8):2500–
2507, 2020.

[140] Z. Tang, D. Yu, T. Ni, T. Zhao, Y. Jin, and E. Dong. Quantitative analysis of multi-
phase contrast-enhanced CT images: a pilot study of preoperative prediction of fat-
poor angiomyolipoma and renal cell carcinoma. American Journal of Roentgenol-
ogy, 214(2):370–382, 2020.

[141] N. Nassiri, M. Maas, G. Cacciamani, B. Varghese, D. Hwang, X. Lei, M. Aron,
M. Desai, A. A. Oberai, S. Y. Cen, et al. A radiomic-based machine learning al-
gorithm to reliably differentiate benign renal masses from renal cell carcinoma.
European Urology Focus, 2021.

[142] F. Y. Yap, B. A. Varghese, S. Y. Cen, D. H. Hwang, X. Lei, B. Desai, C. Lau, L. L.
Yang, A. J. Fullenkamp, S. Hajian, et al. Shape and texture-based radiomics signa-
ture on CT effectively discriminates benign from malignant renal masses. European
Radiology, 31(2):1011–1021, 2021.

[143] H. Coy, K. Hsieh, W. Wu, M. B. Nagarajan, J. R. Young, M. L. Douek, M. S.
Brown, F. Scalzo, and S. S. Raman. Deep learning and radiomics: the utility of
google tensorflow™ inception in classifying clear cell renal cell carcinoma and
oncocytoma on multiphasic CT. Abdominal Radiology, 44(6):2009–2020, 2019.

[144] N. Y. Kim, M. G. Lubner, J. T. Nystrom, J. F. Swietlik, E. J. Abel, T. C. Havighurst,
S. G. Silverman, J. P. McGahan, and P. J. Pickhardt. Utility of CT texture analysis

127



in differentiating low-attenuation renal cell carcinoma from cysts: a bi-institutional
retrospective study. American Journal of Roentgenology, 213(6):1259–1266, 2019.

[145] T. Tanaka, Y. Huang, Y. Marukawa, Y. Tsuboi, Y. Masaoka, K. Kojima, T. Iguchi,
T. Hiraki, H. Gobara, H. Yanai, et al. Differentiation of small ( 4 cm) renal
masses on multiphase contrast-enhanced CT by deep learning. American journal
of roentgenology, 214(3):605–612, 2020.

[146] Y. Li, X. Huang, Y. Xia, and L. Long. Value of radiomics in differential diagnosis of
chromophobe renal cell carcinoma and renal oncocytoma. Abdominal Radiology,
45(10):3193–3201, 2020.

[147] X. Li, Q. Ma, C. Tao, J. Liu, P. Nie, and C. Dong. A CT-based radiomics nomogram
for differentiation of small masses (¡ 4 cm) of renal oncocytoma from clear cell renal
cell carcinoma. Abdominal Radiology, 46(11):5240–5249, 2021.

[148] X. Li, Q. Ma, P. Nie, Y. Zheng, C. Dong, and W. Xu. A CT-based radiomics
nomogram for differentiation of renal oncocytoma and chromophobe renal cell
carcinoma with a central scar-matched study. The British Journal of Radiology,
95(1129):20210534, 2022.

[149] F. Zabihollahy, N. Schieda, S. Krishna, and E. Ukwatta. Automated classification of
solid renal masses on contrast-enhanced computed tomography images using con-
volutional neural network with decision fusion. European Radiology, 30(9):5183–
5190, 2020.

[150] H. Yu, J. Scalera, M. Khalid, A.-S. Touret, N. Bloch, B. Li, M. M. Qureshi, J. A.
Soto, and S. W. Anderson. Texture analysis as a radiomic marker for differentiating
renal tumors. Abdominal Radiology, 42(10):2470–2478, 2017.

[151] B. A. Varghese, F. Chen, D. H. Hwang, S. Y. Cen, B. Desai, I. S. Gill, and V. A.
Duddalwar. Differentiation of predominantly solid enhancing lipid-poor renal cell
masses by use of contrast-enhanced CT: evaluating the role of texture in tumor
subtyping. American Journal of Roentgenology, 211(6):W288–W296, 2018.

[152] J. Uhlig, A. Leha, L. M. Delonge, A.-M. Haack, B. Shuch, H. S. Kim, F. Brem-
mer, L. Trojan, J. Lotz, and A. Uhlig. Radiomic features and machine learning for
the discrimination of renal tumor histological subtypes: a pragmatic study using
clinical-routine computed tomography. Cancers, 12(10):3010, 2020.

[153] M. Chen, F. Yin, Y. Yu, H. Zhang, and G. Wen. CT-based multi-phase radiomic
models for differentiating clear cell renal cell carcinoma. Cancer Imaging, 21(1):1–
13, 2021.

[154] J. Ding, Z. Xing, Z. Jiang, J. Chen, L. Pan, J. Qiu, and W. Xing. CT-based radiomic
model predicts high grade of clear cell renal cell carcinoma. European journal of
radiology, 103:51–56, 2018.

128



[155] R.-H. Yin, Y.-C. Yang, X.-Q. Tang, H.-F. Shi, S.-F. Duan, and C.-J. Pan. Enhanced
computed tomography radiomics-based machine-learning methods for predicting
the fuhrman grades of renal clear cell carcinoma. Journal of X-ray Science and
Technology, (Preprint):1–12, 2021.

[156] C. T. Bektas, B. Kocak, A. H. Yardimci, M. H. Turkcanoglu, U. Yucetas, S. B.
Koca, C. Erdim, and O. Kilickesmez. Clear cell renal cell carcinoma: machine
learning-based quantitative computed tomography texture analysis for prediction
of fuhrman nuclear grade. European radiology, 29(3):1153–1163, 2019.

[157] F. Lin, E.-M. Cui, Y. Lei, and L.-p. Luo. CT-based machine learning model to
predict the fuhrman nuclear grade of clear cell renal cell carcinoma. Abdominal
Radiology, 44(7):2528–2534, 2019.

[158] S. Haji-Momenian, Z. Lin, B. Patel, N. Law, A. Michalak, A. Nayak, J. Earls,
and M. Loew. Texture analysis and machine learning algorithms accurately predict
histologic grade in small (¡ 4 cm) clear cell renal cell carcinomas: a pilot study.
Abdominal Radiology, 45(3):789–798, 2020.

[159] S. Lai, L. Sun, J. Wu, R. Wei, S. Luo, W. Ding, X. Liu, R. Yang, and X. Zhen.
Multiphase contrast-enhanced CT-based machine learning models to predict the
fuhrman nuclear grade of clear cell renal cell carcinoma. Cancer Management and
Research, 13:999, 2021.

[160] S. Luo, R. Wei, S. Lu, S. Lai, J. Wu, Z. Wu, X. Pang, X. Wei, X. Jiang, X. Zhen,
et al. Fuhrman nuclear grade prediction of clear cell renal cell carcinoma: influence
of volume of interest delineation strategies on machine learning-based dynamic
enhanced CT radiomics analysis. European Radiology, 32(4):2340–2350, 2022.

[161] X. Yi, Q. Xiao, F. Zeng, H. Yin, Z. Li, C. Qian, C. Wang, G. Lei, Q. Xu, C. Li,
et al. Computed tomography radiomics for predicting pathological grade of renal
cell carcinoma. Frontiers in oncology, 10:570396, 2021.

[162] X. He, Y. Wei, H. Zhang, T. Zhang, F. Yuan, Z. Huang, F. Han, and B. Song. Grad-
ing of clear cell renal cell carcinomas by using machine learning based on artificial
neural networks and radiomic signatures extracted from multidetector computed
tomography images. Academic Radiology, 27(2):157–168, 2020.

[163] L. Xu, C. Yang, F. Zhang, X. Cheng, Y. Wei, S. Fan, M. Liu, X. He, J. Deng, T. Xie,
et al. Deep learning using CT images to grade clear cell renal cell carcinoma:
Development and validation of a prediction model. Cancers, 14(11):2574, 2022.

[164] P. Nie, G. Yang, Z. Wang, L. Yan, W. Miao, D. Hao, J. Wu, Y. Zhao, A. Gong, J. Cui,
et al. A CT-based radiomics nomogram for differentiation of renal angiomyolipoma
without visible fat from homogeneous clear cell renal cell carcinoma. European
radiology, 30(2):1274–1284, 2020.

129



[165] Y. Ma, X. Xu, P. Pang, and Y. Wen. A CT-based tumoral and mini-peritumoral
radiomics approach: Differentiate fat-poor angiomyolipoma from clear cell renal
cell carcinoma. Cancer Management and Research, 13:1417, 2021.

[166] K.-H. Uhm, S.-W. Jung, M. H. Choi, H.-K. Shin, J.-I. Yoo, S. W. Oh, J. Y. Kim,
H. G. Kim, Y. J. Lee, S. Y. Youn, et al. Deep learning for end-to-end kidney cancer
diagnosis on multi-phase abdominal computed tomography. NPJ Precision Oncol-
ogy, 5(1):1–6, 2021.

[167] J. Shu, D. Wen, Y. Xi, Y. Xia, Z. Cai, W. Xu, X. Meng, B. Liu, and H. Yin. Clear
cell renal cell carcinoma: Machine learning-based computed tomography radiomics
analysis for the prediction of WHO/ISUP grade. European journal of radiology,
121:108738, 2019.

[168] X. Sun, L. Liu, K. Xu, W. Li, Z. Huo, H. Liu, T. Shen, F. Pan, Y. Jiang, and
M. Zhang. Prediction of ISUP grading of clear cell renal cell carcinoma using
support vector machine model based on CT images. Medicine, 98(14), 2019.

[169] M. Nikpanah, Z. Xu, D. Jin, F. Farhadi, B. Saboury, M. W. Ball, R. Gautam, M. J.
Merino, B. J. Wood, B. Turkbey, et al. A deep-learning based artificial intelligence
(AI) approach for differentiation of clear cell renal cell carcinoma from oncocytoma
on multi-phasic MRI. Clinical Imaging, 77:291–298, 2021.

[170] Y. Arita, S. Yoshida, T. C. Kwee, H. Akita, S. Okuda, Y. Iwaita, K. Mukai, S. Mat-
sumoto, R. Ueda, R. Ishii, et al. Diagnostic value of texture analysis of apparent
diffusion coefficient maps for differentiating fat-poor angiomyolipoma from non-
clear-cell renal cell carcinoma. European Journal of Radiology, 143:109895, 2021.
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APPENDIX1

A. Mathematical Formulas for Textural Features

In this appendix, we are going to detail the mathematical formulas used to extract

the textural features:

Basic Notation

• µ: Mean.

• n: Total number of Voxels in the object.

• vi: Gray-level value of Voxel i.

• σ2: Variance.

• σ: Standard deviation.

• Ng: The normalized grey-levels.

• p: The normalized histogram counts.

• ϵ: An initial random small number.

• Ng: Grey-levels (normalized 0–255).

• GN: The GLCM (normalized 0–1).
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TABLE 15: First order texture features formulas.

Feature Formula

Mean (µ)
1
n

n∑
i=1

vi =
v1 + v2 + · · · + vn

n
(10)

Variance

(σ2)

∑n
i=1(vi − µ)2

n
(11)

Entropy

(Ent)
−

Ng∑
i=1

p(i) log2
(
p(i) + ϵ

)
(12)

Skewness

(Skew)

1
n

n∑
i=1

(vi − µ

σ

)3
(13)

Kurtosis

(Kurt)

1
n

n∑
i=1

(vi − µ

σ

)4
(14)

• x̄, σx(i): The row margins (mean and standard deviation).

• ȳ, σy(i): The column margins (mean and standard deviation).
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TABLE 16: Second order texture features formulas.

Feature Formula

Contrast

Ng∑
i=0

Ng∑
j=0

(i − j)2GN(i, j) (15)

Dissimilarity
Ng∑
i=0

Ng∑
j=0

|i − j|GN(i, j) (16)

Homogeneity
Ng∑
i=0

Ng∑
j=0

GN(i, j)
1 + (i − j)2 (17)

ASM

Ng∑
i=0

Ng∑
j=0

(
GN(i, j)

)2 (18)

Energy
√

AS M (19)

Correlation

∑Ng

i=0

∑Ng

j=0 GN(i, j)i j − x̄ȳ

σx(i)σy( j)
(20)
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• 2nd place winner at the 13th annual American Society for Diagnostic and Interven-

tional Nephrology (ASDIN) meeting, New Orleans, Louisiana, USA, Feb 10–12,

2017 (ASDIN’17).

• Merit of Excellence Certificate from Graduate Student Council (GSC) at the Uni-
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versity of Louisville, in the area of community engagement in Graduate Student

Regional Research Conference (GSRRC), April 2016.

• One of The Best 39 papers in the International Symposium on Biomedical Imaging:

From Nano to Macro, Prague, Czech Republic, April 16–20, 2016 (ISBI’16).

• IEEE Signal Processing Society (SPS) Travel Award 2015 and 2018 to attend the

IEEE International Conference on Image processing, Quebec City, Canada, Septem-

ber 27–30, 2015 (ICIP’15).

• GSC at the University of Louisville Travel Award 2015, 2018, 2019, and 2021.

• Theobald Scholarship Award in the Electrical and Computer Engineering Depart-

ment, Speed school of Engineering, University of Louisville, 2015.

• Discretionary Certificate for distinct participation in student activities (Robocon

Competition supervision), 2009–2010.

• Higher Education Enhancement Project Fund Discretionary Certificate for dis-

tinct students in the Department of Communications and Electronics Engineering

for Excellent grade ranked third in the second undergraduate year of education,

Mansoura University , 2005–2006.

Class Work Grade

A total of 72 credit hours in Computer Science and Engineering, Electrical and Computer

Engineering, and Bioengineering subjects with a cumulative GPA of 3.984. Particular

course concentration has been in medical image analysis and machine learning.

Research Activities

• Image modeling, 2D, 3D, and 4D image segmentation and registration.

• Development of computer-aided diagnostic (CAD) system by integrating diffusion-

169



weighted magnetic resonance imaging (DW-MRI), BOLD-MRI, and clinical biomark-

ers for the early assessment of acute renal transplant rejection.

• Development of a CAD system for the early detection of different types of kidney

rejection using DW-MRIs.

• Development of a cascaded two-stage CAD system for differentiating nonrejection

renal transplants from transplanted kidneys with abnormalities using DW-MRIs and

then, classifying abnormal kidney transplants into early rejection and other kidney

diseases including: tubular inflammation, acute tubular injury, graft amyloidosis,

and acute tubular necrosis.

• Development of computer-aided diagnostic (CAD) system by integrating morpho-

logical markers, texture markers, and functional markers for the accurate identifica-

tion of renal cancer tumors.

• Development of computer-aided diagnostic (CAD) system by integrating morpho-

logical markers, texture markers, and functional markers for the accurate grading of

Liver cancer tumors.

• Development of computer-aided prediction (CAP) system for precise evaluation of

favorable response to pre-operative chemotherapy of Wilm’s tumors in children by

estimating tumor size reduction and functionality.

• Development of computer-aided diagnostic (CAD) system for precise grading of

brain cancer tumors (Glioma).

• Development of computer-aided diagnostic (CAD) system for detecting and grading

spine cancer tumors.

• Development of a new scoring system to accurately detect and grade prostate cancer.

• Development of a new scoring system for the early and precise identification of

breast cancer using histopathological images.

• Assisted in grants writing and preparing primary results for the BioImaging Lab,

University of Louisville.
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Out of Reach Connectivity

• I am currently working with three undergraduate student for their summer training

of 2022.

• I am currently working with two of the summer graduate students in summer 2022

and we are working together to prepare two publications.

• I have worked closely with one of the summer graduate students in summer 2021

and she was able to win the 2nd place award in KAS poster competition at Berea

college.

• I have trained one of the summer graduate students in summer 2021 and we are

close to submit a journal article together.

• I have trained one of the undergraduate students from Fall 2019 to Fall of 2020 and

we had one published conference papers and three book chapters.

• I have trained one of the high school students during Fall and Spring of 2015 and

we had two published conference papers.

• I have trained one of the middle school students during Fall and Spring of 2016 and

we had one published conference paper.
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Publications

During Fall 2014–Summer 2022, I have authored or co-authored 15 journal articles, 9

book chapter, 16 peer-reviewed conference papers, 19 abstract in proceedings, and 4

patents/disclosures. The articles have been published in very prestigious journals such

as Scientific Reports: Nature Journal (5-year impact factor 5.516), IEEE Transaction on

Biomedical Engineering (IEEE TBME) Journal (5-year impact factor 5.674), Medical

Physics Journal (5-year impact factor 4.354), Insights into Imaging (5-year impact factor

5.964), Public Library of Science (PLOS) One Journal (5-year impact factor 3.788), Sen-

sors (5-year impact factor 4.069), the British Journal of Radiology (BJR) (5-year impact

factor 3.456), etc. The conference papers were reported as top-rank international confer-

ences in medical imaging, image processing, and pattern recognition e.g., MICCAI, ISBI,

ICIP, and ICPR with acceptance rate less than 30%.

• Journal Articles (Total = 15)

1. H. Magdy Balaha, M. Elgendy, A. Alksas, M. Shehata, N. Alghamdi, F. Taher, M.

Ghazal, M. Ghoneim, E. Hamed, F. Sherif, A. Elgarayhi, M. Sallah, M. Salem, E.

Kamal, and A. El-Baz,”A Novel, Non-Invasive, AI-Based System for Precise Grad-

ing of Anosmia in COVID-19 using Neuroimaging,” Scientific Reports: Nature,

2022. (Under-review).

2. M. El-Melegy, R. Kamal, M. Abou El-Ghar, M. Shehata, F. Khalifa, and A. El-

Baz, ”Kidney segmentation from DCE-MRI converging level set methods, fuzzy

clustering and Markov random field modeling,” Scientific Reports: Nature, 2022.

(Under-review).

3. M. Elgendy, H. Magdy Balaha, M. Shehata, A. Alksas, M. Ghoneim, F. Sherif,

A. Mahmoud, A. Elgarayhi, F. Taher, M. Sallah, M. Ghazal, and A. El-Baz,”Role

of Imaging and AI in the Evaluation of COVID-19 Infection: A Comprehensive
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Survey,” Frontiers in Bioscience-Landmark, 2022. (Accepted with major revision).

4. A. Alksas, M. Shehata, H. Atef, F. Sherif, M. Ghazal, A. Abdel Razek, L. Elsorogy,

and A. El-Baz,”A Novel System for Precise Grading of Glioma,” Medical Physics,

2022. (Accepted with major revision).

5. S. Ayyad, M. Badawy, M. Shehata, A. Alksas, A. Mahmoud, M. Abou El-Ghar,

M. Ghazal, M. El-Melegy, N. B. Abdel-Hamid, L. M. Labib, H. A. Ali, and A. El-

Baz,”A New Framework for Precise Identification of Prostatic Adenocarcinoma,”

Sensors, 2022, vol. 22(5),pp. 1848, 2022.

6. A. Abdel Razek, A. Alksas, M. Shehata, A. AbdelKhalek, K. Abdel Baky, A.

El-Baz, and E. Helmy, ”Clinical applications of artificial intelligence in neuro-

oncology imaging,” Insights into Imaging, 2021, vol. 12(152), pp. 1-17.

7. S. Ayyad, M. Shehata, A. Shalaby, M. Abou El-Ghar, M. Ghazal, M. El-Melegy, N.

B. Abdel-Hamid, L. M. Labib, H. A. Ali, and A. El-Baz,”Role of AI and Histopatho-

logical Images in Detecting Prostate Cancer: A Survey,” Sensors, 2021, vol. 21(8),pp.

2586, 2021.

8. M. Shehata*, A. Alksas*, R. T. Abouelkheir*, A. Almahdy, A. Shaffie, A. Soliman,

M. Ghazal, H. Abu Khalifeh, R. Salim, A. Abdel Razek, N. S. Alghamdi, and A. El-

Baz,”A Comprehensive Computer-Assisted Diagnosis System for Early Assessment

of Renal Cancer Tumors,” Sensors, 2021, vol. 21(14), pp. 4928.

9. A. Alksas*, M. Shehata*, G. Saleh*, A. Shaffie, A. Soliman, M. Ghazal, A. Khe-

lifi, H. Abu Khalifeh, A. Abdel Razek, G. Giridharan, and A. El-Baz,”A Novel

Computer-Aided Diagnostic System for Accurate Detection and Grading of Liver

Tumors,” Scientific Reports: Nature, 2021, vol. 11(1), pp. 1-18.

10. M. Shehata, A. Shalaby, A. E. Switala, M. El-Baz, M. Ghazal, L. Fraiwan, A.

Khalil, M. Abou El-Ghar, M. Badawy, A. M. Bakr, A. C. Dwyer, A. Elmagraby, G.

Giridharan, R. Keynton, and A. El-Baz,”A multimodal computer-aided diagnostic

system for precise identification of renal allograft rejection: Preliminary results,”
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Medical Physics, vol. 47(6),pp. 2427-2440, 2020. (Selected the Cover Article in

its Issue)

11. H. Abdeltawab*, M. Shehata*, A. Shalaby, F. Khalifa, A. Mahmoud, M. Abou El-

Ghar, A. C. Dwyer, M. Ghazal, H. Hajjdiab, R. Keynton, and A. El-Baz,”A Novel

CNN-Based CAD System for Early Assessment of Transplanted Kidney Dysfunc-

tion,” Scientific Reports: Nature, vol. 9(1),pp. 5948, 2019.

12. M. Shehata, F. Khalifa, A. Soliman, M. Ghazal, F. Taher, M. Abou El-Ghar, A. C.

Dwyer, G. Gimel’farb, R. Keynton, and A. El-Baz, ”Computer-Aided Diagnostic

System for Early Detection of Acute Renal Transplant Rejection Using Diffusion-

Weighted MRI,” IEEE Transaction on Biomedical Engineering, vol. 66(2), pp.539–

552, 2019.

13. M. Shehata, A. Mahmoud, A. Soliman, F. Khalifa, M. Ghazal, M. Abou El-Ghar,

M. El-Melegy, and A. El-Baz, ”3D Kidney Segmentation from Abdominal Diffusion

MRI Using an Appearance-Guided Deformable Boundary,” PLOS One, vol. 13(7),

pp. e02000822018, 2018.

14. E. Hollis*, M. Shehata*, M. Abou El-Ghar, M. Ghazal, T. El-Diasty, M. Merchant,

A. Switala, and A. El-Baz, ”Statistical Analysis of ADCs and Clinical Biomarkers in

Detecting Acute Renal Transplant Rejection ,” The British Journal of Radiology,vol.

90(1080), pp.20170125, 2017.

15. E. Hollis, M. Shehata, F. Khalifa, M. Abou El-Ghar, T. El-Diasty, G. Gimel’farb,

and A. El-Baz, ”Towards Non-invasive Diagnostic Techniques for Early Detection

of Acute Renal Rejection: A Review,” The Egyptian Journal of Radiology and Nu-

clear Medicine, vol. 48(1), pp. 257–269, 2017.

• Book Chapters (Total = 9)

1. M. Shehata, A. Elmahdy, A. Alksas, R. Abouelkheir, A. Mahmoud, M. abou El-

Ghar, M. Ghazal, and A. El-Baz “Role of AI and Radiomics in Diagnosing Renal
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Tumors: A Survey,” State of the Art in Neural Networks and Their Applications,

Volume 2, A. El-Baz, and J. Suri, Eds, Elsevier, 2022, Chapter 11, eBook ISBN:

9780128218495, (in press).

2. S. Ayyad, M. Shehata, A. Mahmoud, M. Ghazal, and A. El-Baz “Cloud Comput-

ing in Healthcare and Medical Imaging: A Brief Overview,” Cloud Computing in

Medical Imaging, Healthcare Technologies and Services, Volume 1, A. El-Baz, and

J. Suri, Eds, NYC: Chapman and Hall/CRC, 2022, (in press).

3. S. Ayyad, M. Shehata, A. Alksas, M. Badawy, A. Mahmoud, M. abou El-Ghar,

M. Ghazal, M. El-Melegy, N. Abdel-Hamid, L. Labib, H. Arafat, and A. El-Baz “A

Multimodal MR-based CAD System for Precise Assessment of Prostatic Adenocar-

cinoma,” Texture Analysis in Image Processing, Volume 2, A. El-Baz, and J. Suri,

Eds, NYC: Chapman and Hall/CRC, 2022, (in press).

4. S. Ayyad, M. Shehata, A. Shalaby, M. abou El-Ghar, M. Ghazal, M. El-Melegy, A.

mahmoud, N. Abdel-Hamid, L. Labib, H. Arafat, and A. El-Baz “Prostate Cancer

Detection Using Histopathology Images Analysis,” Artificial Intelligence in Cancer

Diagnosis, Volume 3: Brain and Prostate Cancer, A. El-Baz, and J. Suri, Eds, IOP

publisher, ISBN13 9780750336017, 2021, (in press).

5. M. Shehata, F. Khalifa, A. Soliman, M. Abou El-Ghar, S. Shaker, A. Shalaby, M.

El-Baz, A. Mahmoud, M. Ghazal, A. C. Dwyer, and A. El-Baz “Early Classifica-

tion of Renal Rejection Types: A Deep Learning Approach,” Machine Learning in

Medicine, A. El-Baz, and J. Suri, Eds, CRC Press, 2021, pp. 257-280.

6. M. Shehata, H. Abdeltawab, M. Ghazal, A. Khalil, S. Shaker, A. Shalaby, A. Mah-

moud, M. Abou El-Ghar, A. C. Dwyer, M. El-Melegy, A. M. Bakr, J. Suri, and

A. El-Baz “Accurate Identification of Renal Transplant Rejection: Convolutional

Neural Networks and Diffusion MRI,” State-of-the-Art in Neural Networks and its

Applications: Volume 1, A. El-Baz, and J. Suri, Eds, Elsevier, 2021, pp. 91-115.

7. M. Shehata, F. Taher, M. Ghazal, S. Shaker, M. Abou El-Ghar, M. Badawy, A.
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Shalaby, M. El-Baz, A. Mahmoud, A. C. Dwyer, A. M. Bakr, J. Suri, and A. El-Baz.

“Early Identification of Acute Rejection for Renal Allografts: A Machine Learning

Approach,” State-of-the-Art in Neural Networks and its Applications: Volume 1, A.

El-Baz, and J. Suri, Eds, Elsevier, 2021, pp. 197-218.

8. M. Shehata, A. Shalaby, A. Mahmoud, M. Ghazal, H. Hajjdiab, M. A. Badawy,

M. Abou El-Ghar, A. M. Bakr, A. C. Dwyer, R. Keynton, A. Elmaghraby, and A.

El-Baz, “Towards Big Data in Acute Renal Rejection,” Big Data in Multimodal

Medical Imaging , A. El-Baz, and J. Suri, Eds, Taylor & Francis, 2019, ch. 9, pp.

205–223.

9. M. Shehata, F. Khalifa, A. Soliman, A. Taki Eldeen, M. Abou El-Ghar, T. El-

Diasty, A. El-Baz, and R. Keynton, “An appearance-guided deformable model for

4D kidney segmentation using diffusion MRI,” Biomedical Image Segmentation:

Advances and Trends, A. El-Baz, X. Jiang, and J. Suri, Eds, Taylor & Francis, 2016,

ch. 12, pp. 269–283.

• Peer-Reviewed Conference Proceedings (Total = 16)

1. M. Shehata, F. Khalifa, A. Soliman, R. Alrefai, M. Abou El-Ghar, A. C. Dwyer, R.

Ouseph, and A. El-Baz, “A Novel Framework for Automatic Segmentation of Kid-

ney from DW-MRI,” In: Proceedings of IEEE International Symposium on Biomed-

ical Imaging: From Nano to Macro (ISBI’15), New York, USA, April 16–19, 2015,

pp. 951–954.

2. M. Shehata, F. Khalifa, A. Soliman, R. Alrefai, M. Abou El-Ghar, A. C. Dwyer, R.

Ouseph, and A. El-Baz, “A Level Set-Based Framework for 3D Kidney Segmenta-

tion from Diffusion MR Images,” In: Proceedings of International Conference on

Image Processing (ICIP’15), Quebec, Canada, September 27–30, 2015, pp. 4441–

4445.

3. M. Shehata, F. Khalifa, A. Soliman, A. Takieldeen, M. Abou El-Ghar, A. Shaffie,
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A. C. Dwyer, R. Ouseph, A. El-Baz, and R. Keynton, “3D Diffusion MRI-Based

CAD System for Early Diagnosis of Acute Renal Rejection,” In: Proceedings of

IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’16),

Prague, Czech Republic, April 13–16, 2016, pp. 1177–1180. (Selected as One of

the Best 39 papers from around 340 accepted papers).

4. F. Khalifa, A. Soliman, A. Takieldeen, M. Shehata, M. Mostapha, A. Shaffie, R.

Ouseph, A. Elmaghraby, and A. El-Baz, “Kidney Segmentation from CT Images

Using A 3D NMF-Guided Active Contour Model,” In: Proceedings of IEEE In-

ternational Symposium on Biomedical Imaging: From Nano to Macro (ISBI’16),

Prague, Czech Republic, April 13–16, 2016, pp. 432–435.

5. M. Shehata, F. Khalifa, E. Hollis, A. Soliman, E. Hosseini-Asl, M. Abou El-Ghar,

M. El-Baz, A. C. Dwyer, A. El-Baz, and R. Keynton, “A New Non-Invasive Ap-

proach for Early Classification of Renal Rejection Types Using Diffusion-Weighted

MRI,” In: Proceedings of International Conference on Image Processing (ICIP’16),

Phoenix, Arizona, USA, September 25–28, 2016, pp. 136–140. (Selected for Oral

Presentation).

6. M. Shehata, F. Khalifa, A. Soliman, M. Abou El-Ghar, A. C. Dwyer, G. Gimel’farb,

R. Keynton, and A. El-Baz, “A Promising Non-Invasive CAD System for Kidney

Function Assessment,” In: Proceedings of Medical Image Computing and Computer

Assisted Intervention (MICCAI’16), Athens, Greece, October 17–21, vol (9902),

2016, pp. 613–621.

7. F. Khalifa, M. Shehata, A. Soliman, M. Abou El-Ghar, T. El-Diasty, A. C. Dwyer,

M. El-Melegy, R. Keynton, and A. El-Baz, “A Generalized MRI-Based CAD Sys-

tem for Functional Assessment of Renal Transplant,” In: Proceedings of IEEE In-

ternational Symposium on Biomedical Imaging: From Nano to Macro (ISBI’17),

Melbourne, Australia, April 18–21, 2017, pp. 758–761. (Selected for Oral Presen-

tation).
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8. M. Shehata, M. Ghazal, G. M. Beache, M. Abou El-Ghar, A. C. Dwyer, A. Khalil,

and A. El-Baz, “Role of Integrating Diffusion mR Image-Markers with Clinical-

Biomarkers for Early Assessment of Renal Transplants,” In: Proceedings of In-

ternational Conference on Image Processing (ICIP’18), Athens, Greece, October

7–10, 2018, pp. 146–150. (Selected for Oral Presentation).

9. H. Abdeltawab*, M. Shehata*, A. Shalaby, S. Mesbah, M. El-Baz, M. Ghazal, Y.

Al Khalil, M. Abou El-Ghar, A. C. Dwyer, M. El-Melegy, G. Giridharan, and A.

El-Baz, “A New 3D CNN-based CAD System for Early Detection of Acute Re-

nal Transplant Rejection,” In: Proceedings of International Conference on Pattern

recognition (ICPR’18), Beijing, China, August 20–24, 2018, pp. 3898–3903.

10. M. Shehata, M. Ghazal, F. Khalifa, M. Abou El-Ghar, A. C. Dwyer, A. El-giziri,

M. El-Melegy, and A. El-Baz, “A Novel CAD System for Detecting Acute Re-

jection of Renal Allografts Based on Integrating Imaging-markers and Laboratory

Biomarkers,” In: Proceedings of International Conference on Imaging Systems and

Techniques (IST’18), Krakow, Poland, October 16–18, 2018, pp. 1–6. (Selected for

Oral Presentation).

11. M. Shehata, F. Taher, M. Ghazal, A. Mahmoud, G. Beache, M. Abou El-Ghar, A.

C. Dwyer, A. Elmaghraby, and A. El-Baz, “Early Assessment of Acute Renal Rejec-

tion Post-transplantation: A Combined Imaging and Clinical Biomarkers Protocol,”

In: Proceedings of International Symposium on Signal Processing and Information

Technology (ISSPIT’18), Louisville, KY, USA December 9–12, 2018, pp. 297–302.

(Selected for Oral Presentation).

12. M. Shehata, A. Shalaby, M. Ghazal, M. Abou El-Ghar, M. A. Badawy, G. M.

Beache, A. C. Dwyer, M. El-Melegy, G. Giridharan, R. Keynton, and A. El-Baz,

“Early Assessment of Renal Transplants using BOLD-MRI: Promising Results,” In:

Proceedings of International Conference on Image Processing (ICIP’19), Taipei,

Taiwan, September 22–25, 2019, pp. 1395-1399.
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13. M. Shehata, M. Ghazal, H. Abu Khalifeh, A. Khalil, A. Shalaby, A. C. Dwyer, A.

M. Bakr, R. Keynton, and A. El-Baz, “A Deep Learning-Based CAD System for

Renal Allograft Assessment: Diffusion, BOLD, and Clinical Biomarkers,” In: Pro-

ceedings of International Conference on Image Processing (ICIP’20), AbuDhabi,

UAE, October 25–28, 2020, pp. 355-359.

14. A. Alksas*, M. Shehata*, G. Saleh*, A. Shaffie, A. Soliman, M. Ghazal, H. Abu

Khalifeh, A. Abdel Razek, and A. El-Baz, “A Novel Computer-Aided Diagnostic

System for Early Assessment of Hepatocellular Carcinoma,” In: Proceedings of

International Conference on Pattern recognition (ICPR’20), Milan, Italy, January

10–15, 2020, pp. 10375–10382.

15. M. Shehata*, A. Alksas*, R. T. Abouelkheir*, A. Almahdy, A. Shaffie, A. Soliman,

M. Ghazal, H. Abu Khalifeh, A. Abdel Razek, and A. El-Baz, “A New Computer-

aided Diagnostic (CAD) System for Precise Identification of Renal Tumors,” In:

Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano

to Macro (ISBI’21), Nice, France, April 13–16, 2021, pp. 1378–1381.

16. A. Alksas*, M. Shehata*, H. Atef, F. Sherif, M. Yaghi, M. Alhalabi, M. Ghazal, L.

El Serougy, and A. El-Baz, “A Comprehensive Non-Invasive System for Early Grad-

ing of Gliomas,” In: Proceedings of International Conference on Pattern recogni-

tion (ICPR’22), Montreal Quebec, Canada, August 21–25, 2022, (inpress).

• Abstracts Published in Proceedings (Total = 19)

1. M. Abou El-Ghar, S. Ayyad, M. Shehata, A. Alksas, M. Badawy, M. El-Melegy,

and A. El-Baz, ”Role of MRI Imaging Markers and Clinical Biomarkers for accu-

rate assessment of Prostate Cancer: A Machine Learning Approach”, In: European

Congress of Radiology 2022, Vienna, Austria, July 13 – 17, 2022. (Selected for

EPOS)

2. M. Abou El-Ghar, S. Ayyad, A. Elmahdy, M. Shehata, M. El-Melegy, and A. El-
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Baz, ”Machine learning based algorithm for intravoxel incoherent motion in diag-

nosis of prostate cancer: Preliminary Results”, In: The 58th Scientific Conference

of Egyptian Society of Radiology 2022, Tolip Elforsan, Ismailia, Egypt, March 10 -

11, 2022. (Selected for Oral Presentation)

3. M. Shehata*, M. Abou El-Ghar, M. Badawy, and A. El-Baz, ”A Deep-Learning

Based CAD System That Integrates Diffusion and BOLD MR Image Markers with

Laboratory-Based Biomarkers for Precise Evaluation of Acute Renal Allografts”,

In: International Society for Magnetic Resonance in Medicine (ISMRM’21) Work-

shop on Kidney MRI Biomarkers: The Route to Clinical Adoption, Philadelphia,

PA, USA (and Lisbon, Portugal, and online), Sep. 10 - 12, 2021. (Selected for Oral

Presentation).

4. A. Alksas, M. Shehata, H. Atef, M. Ghazal, A. Abdel Razek, and A. El-Baz,

”Applying Machine Learning over Multimodal MRI Imaging for Early Grading of

Gliomas”, In: Biomedical Engineering Society Annual Scientific Meeting (BMES’21),

Orlando, FL, USA, October 6–9, 2021.

5. M. Shehata, M. Ghazal, M. Abou El-Ghar, M. Badawy, M. El-Baz, A. C. Dwyer,

and A. El-Baz, “Precise Identification of Renal Transplant Status Using BOLD-

MRIs”, In: Proceedings of 16th Annual Scientific Meeting of American Society for

Diagnostics and Interventional Nephrology (ASDIN’20), Las Vegas, Nevada, Febru-

ary 21–23, 2020. (Second Place Winner, Oral Session).

6. M. Shehata*, A. Alksas*, R. T. Abouelkheir, A. Elmahdy, A. Shaffie, A. Soli-

man, M. Ghazal, H. Abu Khalifeh, A. Abdel Razek, and A. El-Baz, ”A Machine

Learning-Based CAD System for Early Detection and Classification of Renal Tu-

mors”, In: Biomedical Engineering Society Annual Scientific Meeting (BMES’20),

Virtual Meeting, USA, October 14–17, 2020.

7. A. Alksas*, M. Shehata*, G. Saleh*, A. Shaffie, A. Soliman, M. Ghazal, H. Abu

Khalifeh, A. Abdel Razek, and A. El-Baz, “Applying Machine Learning Over Mul-
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tiphase Contrast-Enhanced MRI for Detecting and Staging HCC”, In: Biomedical

Engineering Society Annual Scientific Meeting (BMES’20), Virtual Meeting, USA,

October 14–17, 2020.

8. M. Shehata, A. Shalaby, M. Ghazal, M. Abou El-Ghar, M. A. Badawy, G. M.

Beache, A. C. Dwyer, M. El-Melegy, G. Giridharan, R. Keynton, and A. El-Baz,

”Evaluating Renal Transplants using BOLD-MRI: Preliminary Results”, In: Biomed-

ical Engineering Society Annual Scientific Meeting (BMES’19), Philadelphia, Penn-

sylvania, USA, October 16–19, 2019.

9. M. Shehata, M. Ghazal, A. Shalaby, M. A. Badawy, M. Abou El-Ghar, G. M.

Beache, A. C. Dwyer, F. taher, G. Giridharan, A. Bakr, R. Keynton, and A. El-

Baz, ”A Big Data Computer-aided Diagnostic System for Assessing Renal Allo-

grafts”, In: Biomedical Engineering Society Annual Scientific Meeting (BMES’19),

Philadelphia, Pennsylvania, USA, October 16–19, 2019.

10. M. Shehata, M. Abou El-Ghar, T. Eldiasty, and A. El-Baz, “Integrating Clini-

cal with Diffusion Image Markers as a Noninvasive Alternative to Renal Biopsy,”

In: European Congress of Radiology (ECR 2019), Austria Center Vienna, Bruno-

Kreisky-Platz 11220, Vienna, Austria, February 27 – March 3, 2019. (Selected for

Oral Session).

11. M. Shehata, M. Ghazal, G. Beache, M. Abou El-Ghar, A. Dwyer, A. Khalil, A.
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