5,956 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Unlocking the power of big data in new product development

    Get PDF
    This study explores how big data can be used to enable customers to express unrecognised needs. By acquiring this information, managers can gain opportunities to develop customer-centred products. Big data can be defined as multimedia-rich and interactive low-cost information resulting from mass communication. It offers customers a better understanding of new products and provides new, simplified modes of large-scale interaction between customers and firms. Although previous studies have pointed out that firms can better understand customers’ preferences and needs by leveraging different types of available data, the situation is evolving, with increasing application of big data analytics for product development, operations and supply chain management. In order to utilise the customer information available from big data to a larger extent, managers need to identify how to establish a customer-involving environment that encourages customers to share their ideas with managers, contribute their know-how, fiddle around with new products, and express their actual preferences. We investigate a new product development project at an electronics company, STE, and describe how big data is used to connect to, interact with and involve customers in new product development in practice. Our findings reveal that big data can offer customer involvement so as to provide valuable input for developing new products. In this paper, we introduce a customer involvement approach as a new means of coming up with customer-centred new product development

    Beyond IoT Business

    Get PDF

    Big data analytics and application for logistics and supply chain management

    Get PDF
    This special issue explores big data analytics and applications for logistics and supply chain management by examining novel methods, practices, and opportunities. The articles present and analyse a variety of opportunities to improve big data analytics and applications for logistics and supply chain management, such as those through exploring technology-driven tracking strategies, financial performance relations with data driven supply chains, and implementation issues and supply chain capability maturity with big data. This editorial note summarizes the discussions on the big data attributes, on effective practices for implementation, and on evaluation and implementation methods

    Ethical Implications of Predictive Risk Intelligence

    Get PDF
    open access articleThis paper presents a case study on the ethical issues that relate to the use of Smart Information Systems (SIS) in predictive risk intelligence. The case study is based on a company that is using SIS to provide predictive risk intelligence in supply chain management (SCM), insurance, finance and sustainability. The pa-per covers an assessment of how the company recognises ethical concerns related to SIS and the ways it deals with them. Data was collected through a document review and two in-depth semi-structured interviews. Results from the case study indicate that the main ethical concerns with the use of SIS in predictive risk intelli-gence include protection of the data being used in predicting risk, data privacy and consent from those whose data has been collected from data providers such as so-cial media sites. Also, there are issues relating to the transparency and accountabil-ity of processes used in predictive intelligence. The interviews highlighted the issue of bias in using the SIS for making predictions for specific target clients. The last ethical issue was related to trust and accuracy of the predictions of the SIS. In re-sponse to these issues, the company has put in place different mechanisms to ensure responsible innovation through what it calls Responsible Data Science. Under Re-sponsible Data Science, the identified ethical issues are addressed by following a code of ethics, engaging with stakeholders and ethics committees. This paper is important because it provides lessons for the responsible implementation of SIS in industry, particularly for start-ups. The paper acknowledges ethical issues with the use of SIS in predictive risk intelligence and suggests that ethics should be a central consideration for companies and individuals developing SIS to create meaningful positive change for society

    Engineering Comes Home: Co-designing nexus infrastructure from the bottom-up

    Get PDF
    The ‘nexus’ between water, food and energy systems is well established. It is conventionally analysed as a supply-side problem of infrastructure interdependencies, overlooking demand-side interactions and opportunities. The home is one of the most significant sites of nexus interactions and opportunities for redesigning technologies and infrastructure. New developments in ‘smart city’ technologies have the potential to support a bottom-up approach to designing and managing nexus infrastructure. The Engineering Comes Home was a research project that turned infrastructure design on its head. The objectives of the project were to: Demonstrate a new paradigm for engineering design starting from the viewpoint of the home, looking out towards systems of provision to meet household demands. Integrate thinking about water, energy, food, waste and data at the domestic scale to support userled innovation and co-design of technologies and infrastructure. Test new design methods that connect homes to communities, technologies and infrastructure, enhancing positive interactions between data, water, energy, food and waste systems. Develop a robust Lifecycle Assessment (LCA) Calculator tool to support environmental decisionmaking in co-design. Working with residents of the Meakin Estate in South London, the project followed a co-design method to identify requirements, analyse options and develop and test a detailed design for a preferred option. The outputs were: 1) Ethnographic study of how residents use water, energy and food resources in their homes and key opportunities for engineering design to improve wellbeing and reduce resource consumption. 2) Co-design of decentralised infrastructural systems in three workshops in 2016-2017. The first workshop identified key priorities for development from the community using a novel token-based system design method, to enable participants to build up alternative designs for local provision of water, energy, food and waste services. The second workshop provided participants with factsheets and photographs of the candidate technologies, which were then analysed using a LCA Calculator tool. 47 Rainwater harvesting was selected as the technology for further co-design in the third workshop, which focussed on scaling up a pilot installation. 3) Pilot-scale smart rainwater system was installed in partnership with the Over The Air Analytics (OTA). OTA’s system enables remote control of the rainwater storage tanks to optimise their performance as stormwater attenuation as well as non-potable water supply. 4) Lifecycle Assessment (LCA) Calculator to enable quick estimation of the impacts of new systems and technology to deliver water, energy and food, and manage waste at the household and neighbourhood scale. 5) Stakeholders, including utilities, design consultancies and community based organisations, were engaged in three workshops to inform the wider relevance and development of the co-design methods and tools. 6) Toolbox and method statements to standardise and disseminate the methods used in the project for wider application and development

    Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions

    Get PDF
    Artificial Intelligence (AI) is increasingly adopted by organizations to innovate, and this is ever more reflected in scholarly work. To illustrate, assess and map research at the intersection of AI and innovation, we performed a Systematic Literature Review (SLR) of published work indexed in the Clarivate Web of Science (WOS) and Elsevier Scopus databases (the final sample includes 1448 articles). A bibliometric analysis was deployed to map the focal field in terms of dominant topics and their evolution over time. By deploying keyword co-occurrences, and bibliographic coupling techniques, we generate insights on the literature at the intersection of AI and innovation research. We leverage the SLR findings to provide an updated synopsis of extant scientific work on the focal research area and to develop an interpretive framework which sheds light on the drivers and outcomes of AI adoption for innovation. We identify economic, technological, and social factors of AI adoption in firms willing to innovate. We also uncover firms' economic, competitive and organizational, and innovation factors as key outcomes of AI deployment. We conclude this paper by developing an agenda for future research

    Using big data to make better decisions in the digital economy

    Get PDF
    The question this special issue would like to address is how to harvest big data to help decision-makers to deliver better fact-based decisions aimed at improving performance or to create better strategy? This special issue focuses on the big data applications in supporting operations decisions, including advanced research on decision models and tools for the digital economy. Responds to this special issue was great and we have included many high-quality papers. We are pleased to present 13 of the best papers. The techniques presented include data mining, simulation and expert system with applications span across online reviews, food retail chain to e-health

    Patent Analytics Based on Feature Vector Space Model: A Case of IoT

    Full text link
    The number of approved patents worldwide increases rapidly each year, which requires new patent analytics to efficiently mine the valuable information attached to these patents. Vector space model (VSM) represents documents as high-dimensional vectors, where each dimension corresponds to a unique term. While originally proposed for information retrieval systems, VSM has also seen wide applications in patent analytics, and used as a fundamental tool to map patent documents to structured data. However, VSM method suffers from several limitations when applied to patent analysis tasks, such as loss of sentence-level semantics and curse-of-dimensionality problems. In order to address the above limitations, we propose a patent analytics based on feature vector space model (FVSM), where the FVSM is constructed by mapping patent documents to feature vectors extracted by convolutional neural networks (CNN). The applications of FVSM for three typical patent analysis tasks, i.e., patents similarity comparison, patent clustering, and patent map generation are discussed. A case study using patents related to Internet of Things (IoT) technology is illustrated to demonstrate the performance and effectiveness of FVSM. The proposed FVSM can be adopted by other patent analysis studies to replace VSM, based on which various big data learning tasks can be performed

    Big Data Coordination Platform: Full Proposal 2017-2022

    Get PDF
    This proposal for a Big Data and ICT Platform therefore focuses on enhancing CGIAR and partner capacity to deliver big data management, analytics and ICT-focused solutions to CGIAR target geographies and communities. The ultimate goal of the platform is to harness the capabilities of Big Data to accelerate and enhance the impact of international agricultural research. It will support CGIAR’s mission by creating an enabling environment where data are expertly managed and used effectively to strengthen delivery on CGIAR SRF’s System Level Outcome (SLO) targets. Critical gaps were identified during the extensive scoping consultations with CGIAR researchers and partners (provided in Annex 8). The Platform will achieve this through ambitious partnerships with initiatives and organizations outside CGIAR, both upstream and downstream, public and private. It will focus on promoting CGIAR-wide collaboration across CRPs and Centers, in addition to developing new partnership models with big data leaders at the global level. As a result, CGIAR and partner capacity will be enhanced, external partnerships will be leveraged, and an institutional culture of collaborative data management and analytics will be established. Important international public goods such as new global and regional datasets will be developed, alongside new methods that support CGIAR to use the data revolution as an additional means of delivering on SLOs
    • 

    corecore