4 research outputs found

    Cooperative Self-Scheduling Secure Routing Protocol for Efficient Communication in MANET

    Get PDF
    In wireless transmission, a Mobile Ad-hoc Network (MANET) contains many mobile nodes that can communicate without needing base stations. Due to the highly dynamic nature of wireless, MANETs face several issues, like malicious nodes making packet loss, high energy consumption, and security. Key challenges include efficient clustering and routing with optimal energy efficiency for Quality of Service (QoS) performance. To combat these issues, this novel presents Cooperative Self-Scheduling Secure Routing Protocol (CoS3RP) for efficient scheduling for proficient packet transmission in MANET. Initially, we used Elite Sparrow Search Algorithm (ESSA) for identifies the Cluster Head (CH) and form clusters. The Multipath Optimal Distance Selection (MODS) technique is used to find the multiple routes for data transmission. Afterward, the proposed CoS3RP transmits the packets based on each node authentication. The proposed method for evaluating and selecting efficient routing and data transfer paths is implemented using the Network simulator (NS2) tool, and the results are compared with other methods. Furthermore, the proposed well performs in routing performance, security, latency and throughput

    Secure Authentication Scheme for the Internet of Things

    Get PDF
    The Internet of Things (IoT) is based on an extensive and wide range of interconnected heterogeneous units’ general applications, including healthcare systems, environmental monitoring, household automation, and business automation. This work presents an approach variant of the elliptic curve; The cryptography approach is implemented to provide more security with fewer key sizes and with protocol enhancements to perform an efficient authentication process. In the process of authenticating the device, we use the Electronic Product Code (EPC) as a key to authentication, where the overhead of giving input is removed. Mention the methods followed to meet all your performance metrics (minimum execution time; low energy consumption, and qualitative comparison). This proposed scheme (i.e., the energy consumption of 0.27 mJ, the reduction in end delay of 0.058 sec., the reduction in the computation cost, and being more resistant to attack) is compared with other recent authentication protocols. The proposed system creates a secure network to lessen the damage if there is an attack in the IoT environment. The performance evaluation results indicate that the proposed scheme has a lower energy consumption and a more resistant authentication scheme, and we observe a trade-off between security and the lightweight factor

    SMART : A Secure Remote Sensing Solution for Smart Cities’ Urban Areas

    Get PDF
    Nowadays, smart cities are becoming an emerging area of research for upgrading and modifying our existing society by adopting the latest and the most trending technologies in the market. Though the number of IoT based applications is constantly increasing, with new products being launched every 6 months, many organizations are afraid of an early adoption of such products because of their security issues. In particular, the transmission and storage of online information causes a lot of cybersecurity issues while ensuring a secure communication mechanism. The aim of this paper is thus to present an efficient and effective communicating mechanism for smart cities using two decision-making models based on the SMART and Subjective approaches. The SMART approach is used to make an intelligent and ideal decision when communicating in the network. In addition, the continuous surveillance of the communicating entities can be done by computing their trust values through a subjective mechanism. The devices having a higher trust value are thus considered as more trustworthy devices. The proposed mechanism is simulated and verified for various security metrics, being compared to the state-of-art approaches. In addition, the proposed mechanism is simulated and out-performed against existing approaches by showing a 97% improvement in terms of accuracy, utility value, delay and threat metrics

    The 10 Research Topics in the Internet of Things

    Full text link
    Since the term first coined in 1999 by Kevin Ashton, the Internet of Things (IoT) has gained significant momentum as a technology to connect physical objects to the Internet and to facilitate machine-to-human and machine-to-machine communications. Over the past two decades, IoT has been an active area of research and development endeavours by many technical and commercial communities. Yet, IoT technology is still not mature and many issues need to be addressed. In this paper, we identify 10 key research topics and discuss the research problems and opportunities within these topics.Comment: 10 pages. IEEE CIC 2020 vision pape
    corecore