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Abstract

With the advent of cloud computing, applications are no longer tied to a single
device, but they can be migrated to a high-performance machine located in a
distant data center. The key advantage is the enhancement of performance and
consequently, the users experience.

This activity is commonly referred as computational offloading and it has been
strenuously investigated in the past years.

The natural candidate for computational offloading is the cloud, but recent
results point out the hidden costs of cloud reliance in terms of latency and energy;
Cuervo et. al. illustrates the limitations on cloud-based computational offloading
based on WANs latency times. The dissertation confirms the results of Cuervo et.
al. and illustrates more use cases where the cloud may not be the right choice.

This dissertation addresses the following question: is it possible to build a
novel approach for offloading the computation that overcomes the limitations of
the state-of-the-art? In other words, is it possible to create a computational of-
floading solution that is able to use local resources when the Cloud is not usable,
and remove the strong bond with the local infrastructure?

To this extent, I propose a novel paradigm for computation offloading named
anyrun computing, whose goal is to use any piece of higher-end hardware (locally
or remotely accessible) to offloading a portion of the application.

With anyrun computing I removed the boundaries that tie the solution to
an infrastructure by adding locally available devices to augment the chances to
succeed in offloading.

To achieve the goals of the dissertation it is fundamental to have a clear view
of all the steps that take part in the offloading process. To this extent, I firstly
provided a categorization of such activities combined with their interactions and
assessed the impact on the system.

The outcome of the analysis is the mapping to the problem to a combinato-
rial optimization problem that is notoriously known to be NP-Hard. There are a
set of well-known approaches to solving such kind of problems, but in this sce-
nario, they cannot be used because they require a global view that can be only
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maintained by a centralized infrastructure. Thus, local solutions are needed.
Moving further, to empirically tackle the anyrun computing paradigm, I pro-

pose the anyrun computing framework (ARC), a novel software framework whose
objective is to decide whether to offload or not to any resource-rich device will-
ing to lend assistance is advantageous compared to local execution with respect
to a rich array of performance dimensions.

The core of ARC is the inference nodel which receives a rich set of information
about the available remote devices from the SCAMPI opportunistic computing
framework developed within the European project SCAMPI, and employs the in-
formation to profile a given device, in other words, it decides whether offloading
is advantageous compared to local execution, i.e. whether it can reduce the lo-
cal footprint compared to local execution in the dimensions of interest (CPU and
RAM usage, execution time, and energy consumption).

To empirically evaluate ARC I presented a set of experimental results on the
cloud, cloudlet, and opportunistic domain. In the cloud domain, I used the state
of the art in cloud solutions over a set of significant benchmark problems and
with three WANs access technologies (i.e. 3G, 4G, and high-speed WAN). The
main outcome is that the cloud is an appealing solution for a wide variety of
problems, but there is a set of circumstances where the cloud performs poorly.

Moreover, I have empirically shown the limitations of cloud-based approaches,
specifically, In some circumstances, problems with high transmission costs tend
to perform poorly, unless they have high computational needs.

The second part of the evaluation is done in opportunistic/cloudlet scenar-
ios where I used my custom-made testbed to compare ARC and MAUI, the state
of the art in computation offloading. To this extent, I have performed two dis-
tinct experiments: the first with a cloudlet environment and the second with an
opportunistic environment. The key outcome is that ARC virtually matches the
performances of MAUI (in terms of energy savings) in cloudlet environment, but
it improves them by a 50% to 60% in the opportunistic domain.
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Chapter 1

Introduction

The disappearing computer is a concept introduced by Mark Weiser to indicate
the trend in computer evolution where the computer is embodied in other de-
vices. Smartphones and tablets are the best examples of this evolution allowing
the users to access a rich set of functionalities with novel and natural interaction
mechanisms (e.g. voice recognition) given the enormous number of applications
that are currently available on the dedicated stores.

With the advent of cloud computing, applications are no longer tied to a
single device, but they can be migrated to a high-performance machine located
in a distant data center. The key advantage is the enhancement of performance
and consequently the user experience.

This activity is commonly referred as computation offloading and it has been
strenuously investigated in the past years. The cloud is the natural candidate for
offloading, but there are circumstances where the cloud may not perform well;
for instance, Cuervo et al. [2010] illustrates the limitations on cloud-based com-
putational offloading based on WANs latency times. The dissertation confirms
the results of Cuervo et al. and illustrates more use cases where the cloud may
not be the right choice.

1.1 Motivation

Smartphones are continuously evolving and are becoming increasingly powerful
day-by-day, but their structural requirements (especially portability) still pose
some limitations in their computational capabilities, memory size, and battery
capabilities. To overcome these limitations that affect the current smart devices
several techniques have been proposed. One of them consists in the offload-
ing of smartphone’s computational needs to another device to reduce their local
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2 1.1 Motivation

footprint.
With computational offloading, a set of programmatic instructions, the entire

program, or even a virtual machine are run onto a remote device.
The Internet connectivity is becoming truly ubiquitous, and at the same time,

the Internet is becoming increasingly cloud-centric. In many circumstances, It
is far more cost-effective to outsource resource-intensive tasks to a powerful,
dedicated, high-performance computing infrastructure than to run them locally.
Consequently, the cloud is the natural place to offload, as it offers virtually un-
limited resources and computing power.

Nevertheless, in some circumstances, the cloud is not the right choice and
four scenarios have been identified where the cloud should be avoided:

• Latency times: when the high-speed mobile networks are not fast enough
to offer a sensible gain in offloading.

• Roaming: costs are exacerbated due to the usage of a mobile operator in
a different country.

• Mobile Plan Costs: the majority of mobile plans usually tend to offer only a
certain amount of free data.

• High-Speed Network Unreachable and Overloaded: the high-speed mobile
connectivity is not always available.

• Privacy: users want to maintain the control over their personal information.

Cuervo et al. [2010] have investigated the first scenario (Latency times), they
have reconsidered the usage of 3G network and have decided to use a solution
where the cloud is located in the proximity (cloudlet) to test their Computational
offloading framework. In the dissertation, I show that the observations made by
Cuervo et al. are still valid in modern network scenarios.

In recent years, several approaches (more or less) to cloud-free offloading
have been proposed, and their details are provided in Section 2. Though these
cloud-free offloading schemes are extremely valuable, they are not very flexi-
ble because they all require dedicated computing resources to run the offloaded
code. Using a remote machine over WAN results in increased latency and sub-
optimal energy consumption, as shown by Cuervo et al. [2010], for best results
the dedicated computing hardware should be within the same LAN as the de-
vices that need to offload their code. Thus, state-of-the-art cloud-free offloading
generally lacks flexibility because dedicated resources need to be known prior,
and the offloading device is bound to share a LAN link with such resources. The
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unicast addressing methodology refers to this flavor of computational offloading
as unirun computing.

1.2 Problem Statement

Moving the cloud to the edge of the network is the traditional solution for such
kind of problem, and a full set of solutions are available in the literature (e.g.
Cuervo et al. [2010]; Satyanarayanan et al. [2004]; Kosta et al. [2012] ). The
main limitation of the current solution is the lack of flexibility because dedicated
resources need to be known beforehand, and the offloading device is bound to
share a LAN link with such resources.

Is it possible to build a novel approach for offloading the computation that
overcomes the limitations of the state-of-the-art approaches? In other words, is
it possible to create a computational offloading solution that is able to use local
resources when the Cloud is not usable, and remove the strong bond with the
local infrastructure?

More in details, let us assume that a given device has a portion of an appli-
cation that needs to be executed (the granularity of that portion may vary from
method, thread, or even an entire virtual machine). The device can choose be-
tween a set of options; executing the code locally or asking to another device to
take care of the job. The offloading is usually performed into cloud or cloudlet,
but why not extend this option to other local devices? The core of the following
dissertation is to provide a smart and dynamic solution to exploit the unused
local resources (e.g. any laptop, computer or smart device).

Therefore, the problem approached in the thesis can be simplified as follows
(a detailed categorization is offered in Section 3) :

• a is the portion of the application that must be executed (method, thread
...).

• N is the set of devices that are willing to take care of the offloading (they
may be any device from the current device up to the Cloud)

• C(n ∈ N , a) is a function that expresses the cost of executing that portion
of code a in the device n (e.g. the energy footprint of the current device,
WAN access costs, ...), given the current context.

The problem can be formalised as:

minimize
n∈N :

C(n, a)
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In other words, given the current context (expressed in C) what is the best
host to execute a?

The C function expresses all the possible vagaries in the execution process
such as the local cost, the network vagaries in WAN communication, or the un-
predictable contacts due to user mobility in local scenarios. In Section 3 there is
a complete categorization of the limitation and a complete analytical definition
of the problem.

The problem is an ILP (integer linear programming) problem that is notori-
ously known to be NP-Hard. There are a set of well-known approaches to solving
such kind of problem, but in this scenario, they cannot be used because they re-
quire a global view that can be maintained only by a centralized infrastructure.

Thus, the previous problem has been re-formulated as follow: is it possible to
find the best n ∈ N with only a partial view of the network? The view is partial
because I tackle the problem from the device viewpoint (a better categorization
of the element viewed from the local device will be provided in Section 3).

This dissertation proposes anyrun computing; a novel paradigm for compu-
tational offloading that aims to solve this problem. To define anyrun Computing
inspiration has been taken from the recent advances in computational offload-
ing and opportunistic computing research areas to build a solution that can be
defined as follows:
Rather than assuming the existence of a dedicated piece of higher-end hardware and
being rigidly tied to it, anyrun may elect to use any piece of hardware (locally or
remotely accessible) that can do the job better they can (this concept will be further
clarified in the roaming of the dissertation).

The anyrun computing paradigm can be solved by dynamically deciding if a
portion of an application a that is under execution in given device n should be
offloaded or run locally, and on which device it should be offloaded. To take this
decision on resource-constrained devices, I propose to use the bayesian approach,
which is known to be very efficient and lightweight in terms of resources usage.
However, specific focus is on the NaïveBayes approach, which requires relatively
little computing power and provides an excellent inference quality compared to
more sophisticated approaches. The NaïveBayes inference model is used to select
the best device on which to forward the offloading of computation; in this sense,
offloading is considered advantageous when there is a reduction of the energy
footprint of the smart device.
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1.3 Methodology

To remove the bound between the device that needs to offload and the device that
provides the service (respectively seeker and provider from now on), due to the
usage of solutions with fixed infrastructure. Several communication paradigms
have been introduced. The one investigated in the dissertation is named oppor-
tunistic computing and, according to Conti et al. [2010b], it can be described
as: "when two devices come into contact, opportunistically, it is also a great op-
portunity to share and exploit each other (software and hardware) re- sources,
exchange information, cyber forage, and execute tasks remotely. This opens a
new computing era: the opportunistic computing era". The key idea is to ex-
tend the concept of opportunism that is translated in the possibility to choose
the best option to perform the offloading between cloud, cloudlet and any other
devices that are locally available down to the local device (in case there are no
other options that provide a sensible gain). The selection of the remote host
is crucial and a key challenge in anyrun Computing; a system that approaches
the paradigm must be able to detect which high-performance host (located into
cloud, cloudlet, or proximity) is able to perform better compared to the others
(the current host is also included in the list).

Therefore, I defined a methodology based on the Naive Bayes inference model
to select such best remote host as formally introduced above.

To empirically study the anyrun Computing solution I have proposed I de-
veloped The AnyRun computing framework (ARC) a software solution that ap-
proaches the anyrun Computing paradigm with the scheme presented above.

In anyrun computing, it is impossible to maintain a global fairness because the
usage of opportunistic solutions removes the global view of the network (it could
be maintained only with cloud-based solutions). For this reason, the AnyRun
Computing paradigm cannot be translated into an optimization problem.

The removal of a global view poses also other challenges; for instance, by
removing the cloud we also remove the "trusted host" ( thus Security and Privacy
become two key issues to be solved in the opportunistic domain.

1.4 Contributions

The main focus of this thesis consists of providing a solution to the offloading
problem. The main objective is to provide a solution for computation offload-
ing that is not only tied to physical infrastructure but it can also exploit high-
performance devices via opportunistic access.
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Several challenges must be addressed: the first one consists in having a strat-
egy to select the best host (that can be located in a cloud, cloudlet, or accessed
opportunistically) who will take care of the offloading. This is a key problem
because selecting the wrong host can lead to low performances. Other aspects
to investigate include the management of security and privacy that are crucial
given the distributed nature of the solution. Further, the evaluation of the pro-
posed solution is highly challenging: being the problem interleaved with many
real and physical aspects, i.e. power consumption or real mobility of users, it
cannot be evaluated analytically. As traditionally done in literature, I, therefore,
decided to empirically evaluate my solution. However, differently, from what has
been done till now, I realized that was paramount of having the real measure-
ment of power consumption and not simply the measurement numbers given by
the devices operating systems. In fact, such numbers are affected by the whole
context (e.g. the other code currently running on the device) and do not allow
to correctly reproduce the experiments, and thus fair comparison. As I explain
later, this required to develop a new testbed environment.

After providing a set of use-cases that illustrate the limitation of cloud and
cloudlet approaches to better contextualize the problem, I introduce an analyti-
cal formulation of the anyrun Computing problem. A simplistic view of the key
components and their interaction is: the process starts in the host that is inter-
ested in offloading a portion of its application (seeker), at the beginning, it has
to select the best remote host to satisfy its request (provider). When the provider
has been selected the seeker forwards the data and eventually the code that must
be executed and goes to sleep. It will be woken up from the selected provider
when it forwards the results of the offloading or eventually, it will be woken up
by a timer indicating that the process takes too long to return the results thus the
execution is recovered locally.

To better approach and study the problem, I propose another key contribu-
tion of this thesis that consists of the implementation of a software solution to ap-
proach the anyrun computing paradigm. The solution provides a host-selection
mechanism that is able to provide accurate selection but at the same time avoid
to impact the computation cost, the key challenge is that the solution only has
a partial and incomplete view of the network because a complete view requires
a global view that could be maintained only with the cloud-based solution. The
solution also provides mechanisms to maintain security and privacy in such hy-
brid domain where in many circumstances there is no central authority. Thus,
the solution is able to:

• Match the performance of state-of-the-art solution in traditional and sta-
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tionary network conditions.

• Outperform the state-of-the-art in a more dynamic and realistic environ-
ment to a better host-selection policy and the augmented reachability in
terms of devices.

To make a host selection decision on resource-constrained devices, reference is
made to the bayesian approach, which is known to be very efficient and lightweight
in terms of resources usage. Specific focus on the NaïveBayes approach, which
requires relatively little computing power and provides an excellent inference
quality compared to more sophisticated approaches.

Ferrari et al. [2015a] provides a comparison of three machine learning tech-
niques applied to activity recognition problem. The authors consider two key
measurements: the accuracy of the results and e the energy spent in the pro-
cess. The main outcome of the analysis is that NaïveBayes generates good per-
formances (up to 85% accuracy with the proposed problem) and it has a very
limited impact on the energy consumption due to its linear complexity. The work
justifies the choice to use Bayes in the Offloading domain because the other ap-
proaches require a prohibitive computational effort; in fact, a neural network
has been used as a benchmark problem in the dissertation.

To empirically study my solution I propose ARC (anyrun computing frame-
work) a software solution whose goal is to dynamically decide whether any run
of a method should be offloaded or run locally and on which device it should be
offloaded.

We note ARC does not ensure global fairness because it would require a global
view that could be maintained only with cloud-based solutions.

The host selection process made in ARC seeker is crucial and the most chal-
lenging part. It implements a NaïveBayes as proposed in the dissertation as in-
ference mechanisms to select the adequate remote host. The decisional process
receives a rich set of information about the available remote devices to decide
whether offloading is advantageous compared to local execution, whether it can
reduce the local footprint compared to local execution in the dimensions of in-
terest (CPU and RAM usage, execution time, and energy consumption).

ARC is evaluated in my testing environment that is composed of two key
elements:

• Energy profiling: energy profiling has been performed with success for
decades, however, novel smart devices have a set of peculiarities that re-
quire new solutions. The first problem is in low-granularity of reading
frequencies of the battery on modern devices, and the second is a dynamic



8 1.5 Thesis Organization

environment where smart devices operate (mainly dictated by device mo-
bility). A solution that has been used to test ARC is presented and evaluated
with a simple example in the next section.

• Experiment replication: offering a fair comparison between different so-
lutions in the anyrun domain requires that the same environment is repli-
cated in different experiments. To approach this issue I propose DroidLab;
a testbed that offers realistic emulation of a dynamic environment but it
also offers full control over it.

In the evaluation, I have shown that the main limitations in adopting a cloud-
based approach are still actual and strictly connected to the difference between
computation and transmission costs. After, I demonstrate that ARC virtually
matches the performances of the state of the art in cloudlet environment, but
the performances are improved by a 50% to 60% in opportunistic domain com-
pared with the state of the art.

Concluding, the results of the work extend the state-of-the-art in several areas
ranging from opportunist computing to power measurements on smart devices,
and it also opens the door to novel application scenarios. For instance, a possible
use-case may be to deploy a set of resources in specific locations and offer them
as an incentive to go there (e.g. a restaurant may be interested in offering it as
a service to its client). Another interesting use-case is the use of local resources
like the laptop to improve the user experience in virtual reality applications; it is
notoriously known that virtual reality is computationally expensive and impacts
heavily on the smartphone battery lifetime. With the proposed solution it is possi-
ble to offload the computation to another device located in proximity to improve
the quality of the results and reduce the energy footprint of the smartphone.

1.5 Thesis Organization

The rest of the thesis is organized as follow:
In chapter 2 I present the state of the art that is mainly centred in two research

areas; the first, named opportunistic computing is an appealing solution to a wide
range of problems where the cloud cannot be used, and the second one is mobile
code/computation offloading a solution to lighten the use of resources in smart
devices and at the same time augment the performances. In this section, the
state of the art of the two research areas is deeply illustrated from the point of
view of functionalities and security. The chapter 2 concludes by illustrating a set
of paradigms that have a connection with the work presented in the dissertation.
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The connection between them and the work presented in the dissertation will be
clarified further in the thesis.

In chapter 3 I present an analytical definition of the anyrun Computing paradigm.
In conjunction ARC framework is presented, a software solution specifically cre-
ated to work in the anyrun scenarios. At the end of the chapter the reasons
behind the AnyRun paradigm are deeply investigated; the chapter concludes by
illustrating the main architectural characteristics of ARC.

In chapter 4 I illustrate a novel environment specifically created to measure
anyrun-like solutions. The environment is composed of two main elements: an
accurate energy profiling, and a testbed that offers a realistic emulation of a
dynamic environment.

Chapter 5 shows the empirical investigation performed for both scenarios.
At first, the benchmarks used to perform the evaluation are presented and com-
pared. Then, the testing environment is described in the previous chapter, so the
setup and the results of the evaluation are presented.

The final chapter 6 summarizes the work described in this thesis with an
overview of the key results. The chapter will also provide the future directions
derived from this work and the results of the scientific publications on which the
results of the research has been disseminated.



10 1.5 Thesis Organization



Chapter 2

Related Work

2.1 Introduction

In the past years, the computer has evolved into a wide variety of smart devices.
This mutation has been predicted by Mark Weiser more than two decades ago
in his remarkable work "Computer of the 21st century" (Weiser [1991]), in this
publication the term ubiquitous computing has been proposed to indicate a set of
novel devices that are small, inexpensive and are part of our daily lives in various
form. Devices that follow such paradigm are nowadays available on the market
and offer a full range of services to their users.

Starting from the vision of Mark Weiser, many researchers have created novel
research areas. The work proposed in the following dissertation took inspiration
from two of them; the first, is Opportunistic Computing an appealing solution
to a wide range of problems where the cloud cannot be used, and the second is
mobile code/computation offloading a solution to lighten the use of resources in
smart devices and at the same time increase the performances. In this section,
the state of the art of the two research areas is deeply illustrated from the point
of view of functionalities and security.

At the end, a set of paradigms that have a connection with the work presented
in the dissertation are illustrated. The connection between them and the work
presented in the dissertation will be made clear in Section 3 where the core
solution of the dissertation is deeply investigated.

11
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2.2 Mobile Ad Hoc Networks (MANETs)

Before explaining the opportunistic computing paradigm it is necessary to start
from the mobile ad hoc networks (MANETs) paradigm, then move into the op-
portunistic networks. After, the opportunistic computing paradigm can be intro-
duced.

A lot of research efforts has been dedicated in the field of MANETs during
the past years; the key elements that distinguish them compared to traditional
network paradigms are the self-forming and self-healing concept that enables
peer-level communication between mobile devices (also called nodes) without
relying on any centralized resources. bluetooth or WiFi (nowadays in the form
of WiFI direct) are the most common communication solutions providing a device
ranging from 3 to 30 meters for Bluetooth to 25 to 120 meters for WIFi. The main
contribution offered by MANET-based solutions compared to traditional network
solutions is the fast deployment and maintenance of a network in ad-hoc mode,
features that could be exploited in many fields (e.g. military and emergency
services).

Routing is a key element in MANETs and has attracted the majority of scien-
tific research in the past years. The central challenges are dictated by the mobility
of the devices that creates unstable connections, thus the optimal routes change
over time.

Dozen of protocols have been proposed such as OLSR (Clausen et al. [2003]),
AODV Perkins et al. [2003], and many more (a good survey is provided by Liu and
Kaiser [2005]. Routing algorithms can be distinguished in three main categories:
proactive, reactive, and hybrid.

• Proactive Protocols: In Proactive protocols nodes continuously sample the
network to maintain the routing tables always updated. These protocols
offer high performances in terms of network setup and message delivery
rate, however, they requires extra costs to maintain the table always up-to-
date.

• Reactive Protocols: Nodes set-up the route on-demand. They offer high scal-
ability compared to proactive protocols, however, they may require long
delays to discover the route.

• Hybrid Protocols: The key idea consists in forming clusters of nodes us-
ing proactive algorithms,then exploit such structures to help increase the
performance of reactive algorithms.
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There are different types of MANETs that strongly depend on the end-to-end
device used. For instance, VANETs (Vehicular Ad Hoc Network) are MANET ap-
plied to vehicles that are the core component of the future intelligent transporta-
tion systems.

The key limitation of the MANET paradigm is that whenever a node is not
reachable messages cannot be properly delivered. Even if this seems a trivial
conclusion, it will be explored in the next sub-section that it is one of the distinc-
tive element among MANET and Opportunistic Network

2.2.1 Service Discovery and Selection in MANET

There are several applications that can take advantage of a MANET architecture
ranging from network-recovery in a post-apocalyptical world up to the temporary
group collaboration to share some kind of content or give access to functionalities
that only a small set of nodes own. The concept of Service Discovery is the
bottom layer to build system that offer services into a MANET domain. One of
the early work on this domain is proposed by Kozat and Tassiulas [2003] where
authors propose a service discovery mechanism for Ad-Hoc networks where the
protocol builds a virtual backbone and assumes that all the nodes with distance at
least 1-hop are part of the backbone. The system does not provide any solution
for service selection in case multiple instances are available. This problem is
approached by Helal et al. [2003] where authors build a SOAP-like protocol for
MANET to be built on top of a multicast protocol for service-discovery.

A key element that distinguishes the previously mentioned approaches is that
they do not use any routing algorithm. Koodli and Perkins [2002] propose an
extended version of AODV that supports service discovery. The approach has
been shown not to be very effective because it generates a tremendous amount
of traffic to satisfy all the client’s request.

Mechanism that do not rely on multicast or flooding are currently under in-
vestigation. Sailhan and Issarny [2005] propose a scalable service discovery pro-
tocol that uses a dynamic deployment of directories within the network. To ad-
dress the problem of flooding and service differentiation Lenders et al. [2005]
propose a decentralized mechanism that uses an analogy with electrostatic fields
as heuristic. Each service is modelled as positive charge and the service requests
are modelled as negative charge, which are attracted to service instance. Routing
request are directed towards the high potential service allowing an implicit opti-
mization. I Artail et al. [2008] propose the Minimum Distance Packet Forwarding
(MDPF) algorithm to select the best possible service considering the distance be-
tween nodes as central metric, a set of nodes act as clusters headers and stores
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such metrics in conjunction to other device/service information.
Service discovery in MANET continues to be a hot topic and with the advent

of novel smart devices in the domain of Mobile Cloud Computing (MCC) more
information can be used to determine the best service that can fulfil a given need.
Zhou et al. [2015] propose a context-aware algorithm that uses both network and
remote device usage statistics to associate the best host for a given service need.

2.2.2 Security in MANET

The particular characteristics of MANETs (lack of centralized authorities, dy-
namic topologies, ...) generate free space for novel Security threats. They can
be categorized in two distinct groups:

• Availability Threats: where resources (like bandwidth or even battery) are
disturbed (e.g. abused) such that other nodes cannot get access to them.

• Data Theft Threats: where devices can access sensible data without getting
the consent of the owner.

In the first case (Availability Thread) one of the most common attack is known
as Blackhole Al-Shurman et al. [2004] that occurs when a node advertises that
it is a good candidate for a given route, but it stops the packets. GrayHoles
(Shanmuganathan and Anand [2012]) is similar to Blackholes, but the malicious
node stops only a set of selected packets, so it is much harder to find out who is
responsible. In Bizantine Attacks (Awerbuch et al. [2002]) a node creates a non-
optimal route, but it advertises it as optimal; this attack is very hard to detect
because from the viewpoint of the device, the MANET seems to work properly.
Finally, DoS attacks are a very destructive element in MANET, as well as in other
domains. Such kind of attacks may be performed in many forms. Probably the
most challenging to detect is known as Dynamic DoS (DDOS) (Shanmuganathan
and Anand [2012]) where in MANET it is able to exploit node mobility to create
a devastating attack.

In the second case (Data Theft Threats) several possible threats were found
like the Spoofing Attack where an attacker masquerades itself as a legitimate
node to bypass the security controls and gain access to sensible resources. In
the Sybil attackDouceur [2002] a user creates multiple fake identities, when the
number of nodes become significant compared to the total number of nodes in
the network, the fake nodes can impact the overall behaviour of the MANET in
all tasks that require collaboration (e.g. Routing).
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Countermeasures in MANET are divided in two categories: cryptographic-
based and trust-based. In cryptographic-based authentication encryption is at
the center of the solution. One of the first protocol that addresses this challenge
is SAODV (Lu et al. [2009]) that is an extension to standard AODV meant to
support security. The key concept of SAODV is that each node has a signature
key generated by an asymmetric crypto-system. The algorithm requires that each
node is able to verify the key-address pair and the public key they offer. On
the other hand, in a trust-based system the remote node reputation is used as a
feature to provide a form of identification in the network. For instance TAODV
(Uddin et al. [2012]) is an extended version of AODV that uses subjective logic
as a tool to estimate the reputation.

2.3 Opportunistic Networking

In a sparse system where nodes have a high degree of mobility and the connection
falls very frequently the solutions proposed in MANET domain will not work
properly. The reachability limitation needs to be lifted so that a message can be
delivered even if there is no path at the time it is sent. This is the key concept
of opportunistic network that corresponds to disconnected MANET where nodes
exchange messages opportunistically.

Key elements of such paradigm are denoted as islands (a.k.a regions) that can
be defined as a set of isolated hosts. The islands may be created, destroyed, or
modified in several situations. A wide variety of possible algorithms have been
proposed.

The approach named store, carry and forward (Fall [2003] ), is usually adopted
in the DTN, (Delay Tolerant Networking), and may also be adopted in oppor-
tunistic networks. This approach uses nodes denoted as mules that move across
different islands to propagate the messages between the two groups.

Even though "store, carry and forward" is a very promising approach the un-
predictability of the time where a message is delivered makes it almost impossible
to know beforehand the amount of memory needed to carry all the messages be-
tween islands. Therefore, the routing schemes should seriously consider these
issues if they want to be effective.

During past years the research community has provided a wide variety of pro-
tocols for opportunistic networks. Following the taxonomy proposed by Huang
et al. [2008], there are two main approaches to build such algorithms:

• forwarding based, where a single copy of the message exists at a given
time;
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• flooding-based, where multiple copies of the message are carried around
at the same time.

The first approach is clearly more conservative in terms of memory used with, the
second one attempts to reach the destination node with as many intermediate
nodes as needed. A good survey of the challenge that has to be faced in op-
portunistic networks and routing in opportunistic networks is provided by Conti
et al. [2009] and Pelusi et al. [2006].

One of the first approaches for forwarding-based schemes has been proposed
by Spyropoulos et al. [2004] and is called direct transmission, where a node stores
the message until it meets the final destination. This approach offers advantages
in terms of memory consumption, but it might require an infinite time to reach
the final destination. Other solutions exploit the prediction of future locations
to determine the set of devices that are or will be close to the destination before
sending the message. MoVe proposed by LeBrun et al. [2005] uses the knowledge
of the relative velocities of the nodes to predict their future location.

Using a variegated set of information about the other nodes might be benefi-
cial in such algorithms. For instance, the Context-Aware Routing (CAR) solution
proposed by Musolesi and Mascolo [2009] chooses the node to forward the mes-
sage by computing the so-called delivering-probability that is computed using
prediction techniques based on Kalman filters and utility theory.

In flooding-based approaches, each node stores the message until it finds
a way to reach the destination. Epidemic Routing by Vahdat et al. [2000] that
is a variant of the Epidemic Algorithm (a well-known solution to synchronize
replicated databases) forwards the message to each reachable node. For this
reason, it requires a tremendous amount of memory. To overcome this limitation
Spray And Wait is proposed by Spyropoulos et al. [2005]. The algorithm controls
the level of flooding by limiting the number of copies that are sent across the
network.

Similarly to the forwarding-based scheme, to filter off nodes that will not be
able to deliver the message prediction-bases approaches are proposed in flooding
based scheme. One of the first is PROPHET by Lindgren et al. [2003]. At first, it
computes the probability of success in delivering the message by looking at the
contact. PROPICMAN by Nguyen et al. [2007] extends even further PROPHET by
looking at the context of the node and it computes the probability to successfully
deliver the message if sent to a given intermediary-node by looking at the device
context and the contact history.

Nguyen and Giordano [2012] propose a novel context-aware routing scheme
(CIPRO) that includes the spatial and temporal dimension of the activities per-
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formed inside mobile nodes to predict future mobility patterns

Services discovery and service selection functionalities have also been studied
in opportunistic networks. Passarella et al. [2011] develop an analytical model
to study the behavior of service providers and seekers. The model considers
multiple providers and requests with different delays and parallel execution. This
study is a building block of the Opportunistic Computing paradigm that will be
explained in the next subsection.

The first notable implementation of a framework that supports the Oppor-
tunistic Network paradigm has been proposed in the Haggle project (Scott et al.
[2006a]) where windows mobile OS has been used as a development platform
and the potential of this kind of architecture has been demonstrated with real
mobile users. Similarly to Haggle, the Metrosense project1 implements a simi-
lar architecture for Nokia’s Symbian OS platforms to carry around information
opportunistically (information can be air quality, weather conditions, ..).

More information about routing solutions in Opportunistic Network is pro-
vided by Woungang et al. [2013] and Conti et al. [2009].

2.3.1 Security in Opportunistic Network

This new communication paradigm creates a set of interesting security challenges
that must be addressed. At first, opportunistic networks inherits all the security
challenges from MANETs and extends them even further. For each forwarding
mechanism a different security mechanism is required; for instance, epidemic
forwarding suffers from DoS attacks and context-based algorithms by allowing
the leakage of sensitive information.

Similarly to MANETs, reputation-based solutions have been proposed in op-
portunistic networks to cope with the lack of central authorities. The Sybil attacks
are one of the major opponents to a full adoption of reputation-based schemes.
Trifunovic et al. [2010] propose an extension of a traditional reputation-bases
scheme that uses social network structure and establishes trust among devices
dynamically.

The Haggle platform (Scott et al. [2006a]) uses a certificate exchange to con-
trol the access to sensitive information (i.e. in the context-exchange phase), with
the certificate exchange nodes that prove that they belong to a certain commu-
nity. The certificates must be pre-deployed by the device owner.

1http://metrosense.cs.dartmouth.edu/
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2.4 Opportunistic Computing

A lot of work has been carried out in recent years in opportunistic networking.
One of the key questions that have been raised is "how to extend the opportunistic
concept beyond communication?". This is the case of Opportunistic Computing.

According to Conti et al. [2010b], "when two devices come into contact, op-
portunistically, it is also a great opportunity to share and exploit each others (soft-
ware and hardware) resources, exchange information, cyber forage, and execute
tasks remotely. This opens a new computing era: the opportunistic computing
era".

With opportunistic computing, we have a new distributed computing paradigm
that involves transient and unplanned interactions among mobile devices. It ex-
tends the concept of opportunistic networks allowing devices to tap into each
other’s resources in the form of services (exchange may include but is not lim-
ited to multimedia content, sensors or data ...). Challenges in such domain are
an extension of the challenges presented in Service-Oriented Architecture (SOA)
where node mobility plays a key role.

Similar paradigms have been adopted in SociableSense (Rachuri et al. [2011])
where authors present their approaches to quantify the user’s sociability and il-
lustrates how computationally intensive sensing tasks can be offloaded to the
cloud in fixed networks. Shankar et al. [2012] proposes a system that collects
and indexes updates in mobile social networks. The authors illustrated how user
interaction can be used to reduce the services costs.

One of the first studies on the impact of resource availability of human mo-
bility is by Ferrari et al. [2012] where metrics named Expected Resource Avail-
ability (ERA) are presented. The goal of the metric is to evaluate the quality of
a given mobility-related scenario in the presence of a given set of services in the
context of opportunistic computing. Within this work, some preliminary simu-
lation results confirm the validity of the ERA approach to find a possible service
allocation.

The first framework that supports the opportunistic computing paradigm is
presented in the EU FP7 SCAMPI2 project and is named the SCAMPI framework.
To tackle the project the SCAMPI framework (Kärkkäinen et al. [2012]). The
figure 2.1 shows the rationale of the framework performs three distinct tasks:

• Selecting an appropriate service sequence set out of available services.

2http://www.ict-scampi.eu
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Figure 2.1. Rationale of the SCAMPI framework

• Forwarding service inputs to the device hosting the next service in the com-
position.

• Routing final service outcomes back to the requester.

The framework has been implemented and tested into Android-based platforms.

2.4.1 Security in opportunistic computing

To empirically study the opportunistic computing paradigm, the Twimight appli-
cation (Hossmann et al. [2011]) has been developed within the SCAMPI project.
Twimight is an open source Twitter client for Android phones that includes a
disaster mode. In other words, it enables opportunistic communication between
users in case they lose the direct connectivity to the Internet. In the disaster
mode, tweets are not sent to the Twitter server, but stored on the phone, carried
around as people move, and forwarded via Bluetooth when in proximity with
other phones.

This passage to a decentralized mode requires a security architecture that
protects Twimight from basic attacks. The security architecture of Twimight is
proposed by Hossmann et al. [2011] and is based on the assumption that secu-
rity elements (certificates and keys) can be established before a disaster happens.
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When connectivity is lost and the disaster mode is activated, the protocols can
no longer rely on a central authority. This hybrid security scheme simplifies the
design of the architecture considerably compared to a fully distributed security
architecture, but the key drawback is that when in disaster-mode new users can-
not join the network.

The key elements of the Twimight security architecture are illustrated in Fig-
ure 2.2. The core element is the Twimight disaster server that manages the se-
curity primitives in terms of keys and certificates. Once the device goes into
disaster mode, the communication with this element is compromised and the
disaster-mode communication is started. This architecture has been validated in
a realistic scenario.

Security and Privacy in opportunistic computing have also studied from a
physical-layer perspective. Muntwyler et al. [2012] uses random spreading se-
quences in order to obfuscate the communication in the IEEE 802.15.4 physical
layer.

2.5 Mobile Code/Computation Offloading

Smartphones or tablets are very attractive to consumers for a wide variety of rea-
sons. To maintain this attractiveness they require a trade-off between their size
and resources (in terms of battery, memory and computational capabilities). In
parallel, applications like gaming with complex AI functionalities or augmented
reality are created and deployed in the application market. Those novel applica-
tions heavily impact on the device resources and the user experience.

The rapid growth of capabilities and availability of cloud computing 3 has
opened new doors for mobile developers. Massive scalable and high reliable
hardware is made available at a very competitive price; this solution has allowed
developers to adopt the so called cloud assisted execution where computation is
distributed across both mobile and cloud devices. For instance Chun et al. [2011]
propose CloneCloud, a framework that uses a static analysis and dynamic analysis
of the application code to dynamically partition the application and migrate a
thread at runtime whenever needed. Therefore, results are integrated into the
current execution when and if the thread comes back to the mobile device.

The rationale behind this approach is that the offloading system transforms
a single application into a distributed execution that can leverage both local and
remote resources to enrich the user experience.

3http://www.forbes.com/sites/louiscolumbus/2016/03/13/roundup-of-cloud-computing-
forecasts-and-market-estimates-2016/
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Figure 2.2. Hybrid security infrastructure (courtesy of Hossmann et. al.)
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2.5.1 Mobility of the Computation

As defined by Carzaniga et al. [1997] mobile code languages (MCL) are lan-
guages that offer tools to support mobility of the execution and of the code by
itself at runtime. MCL can offer two types of computational mobility:

• Weak Mobility: where the MCL binds dynamically with the code coming
from a different site, but no execution states (values from the stack and
registers) are transferred.

• Strong Mobility: where code and execution states are moved into a dif-
ferent site.

By analyzing the current state of the art in computation offloading a third
case must be added:

• Semi-Strong Mobility: where only the execution states (in the form of
data from stack and registers) are moved.

In many operating system (e.g. iOS 4) this solution is blocked to maintain an
adeguate level of security.

On Android platforms, the support of code/computation mobility is offered
in the form of semi-atrong mobility, but with the appropriate permission, strong
mobility can be performed (See Section 3). The Dalvik class loader and Java ob-
ject serialization allow a graph of objects to be transformed into a binary stream
and vice versa. The serialization extract data from the memory stack allows the
object instance to be fully replicated in the remote site. Other operating systems
(iOS and Windows Mobile) provide a similar solution.

The key element to run the program remotely is the reflection mechanism
that consists in the ability to manipulate and examine the structure of an object
at runtime (e.g. check all the possible method of a given object and even call
them). Reflection is a basic mechanism on each Java-based virtual machine thus
is part of the Dalvik/ART as well. Similarly iOS and Windows Mobile provide
similar features.

2.5.2 From Cloud to Cloudlet

Nowadays, the situation in mobile communication is defined by Cisco as the
"mobile data tsunami" 5. This definition is dictated by the fact that in recent

4https://www.apple.com/business/docs/iOS_Security_Guide.pdf
5http://blogs.cisco.com/news/the-mobile-data-tsunami-2
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years the number of mobile users has increased by 50% and the mobile traffic
has grown 62 times from 2011 to 2016, but only 36% of network coverage has
been migrated to 4G.

The most usual circumstance where the network bandwidth cannot offer ad-
equate support is when it cannot be reachable or the bandwidth is strongly used,
causing delays. Other circumstances might be due to communication costs (i.e.
roaming) or by limitations of the current mobile-network plans. Nowadays, in
Switzerland, the standard unlimited plans come with a network usage limit; if it
is reached the network bandwidth is reduced.

The common circumstance is that transmission time takes so long that it im-
pacts the overall performance of the offloading to a distant cloud. Empirical
evidence of this problem has been shown by Cuervo et al. [2010].

However, due to the evolution of communication technologies, Cuervo’s ex-
periments have been replicated with a modern networking paradigm in Section
5; the main finding is that the transmission time is still a bottleneck and the
problem illustrated by Cuervo et. al. still exists.

To address the inherent resource-poverty of mobile terminals along with the
setbacks of relying on distant clouds, the cloudlet model (Satyanarayanan et al.
[2004]) has been proposed by Satyanarayanan et. al., who empirically shows the
limitations of WAN-based cloud solutions and proposes a novel approach based
on accessing high-resource devices located in close proximity.

2.5.3 CloudLet-base approaches

One of the first notable examples is the ThinkAir framework from Kosta et al.
[2012] that proposes a novel computational offloading architecture based on
smartphone virtualization in the Cloud. The authors provide method-level com-
putational offloading. The offloading strategy is chosen based on a method’s
energy footprint and device status in terms of resource usage and network con-
nectivity. They also show that the offloading gain in terms of energy consumption
is one order of magnitude greater compared to local execution.

The most notable work on such domain is the Mobile Assistance Using In-
frastructure (MAUI) system (Cuervo et al. [2010]) that has been recently pro-
posed by Cuervo et al. to enable the fine-grained energy-aware offload of code
from a mobile device to a MAUI node, i.e. a nearby piece of infrastructure con-
nected to the mobile device by a high-performance WLAN link. MAUI aims to
reduce the energy footprint of mobile devices by delegating code execution to
remote devices; it dynamically selects the function to be offloaded depending
on the expected transmission costs of the network and provides an easy way for
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the developers to use the framework in their code. Mobile terminals can lever-
age cloudlets of nearby infrastructure that can be accessed over Wi-Fi. This is
certainly a promising strategy, especially given the recent results on the advan-
tages of augmenting 3G with Wi-Fi Balasubramanian et al. [2010]. It is shown in
Cuervo et al. [2010] that "the cost of 3G for computational offloads is prohibitive
compared to Wi-Fi, and that the energy consumption of computational offloads
grows almost linearly with the Round Trip Time (RTT)": using a nearby server
is much more beneficial and energy-efficient than using a distant cloud, which
confirms the conclusions of Cuervo et al. [2010].

The webOS 2.02 proposed by Ostrowski [2012] provides a Node.js3 runtime
environment where developers have the possibility to write event-based network
services using Javascript that can run on both server-side and on webOS 2.0
devices.

Fernando et al. [2011] explore the feasibility of using a mobile cloud comput-
ing framework to perform job-sharing in the ad-hoc and opportunistic network.
Authors prove the usefulness of such approaches by a set of experiments via
Bluetooth and they conclude by proposing an analytical model that determines
where and if is convening to perform the offloading. The key limitation of such
approach is that they do not consider the vagaries of the network.

Mavromoustakis et al. [2014] demonstrated, thanks to a simulation, the pos-
sibility to improve the quality of offloading thanks to the learning of the user’s
social context.

Chen et al. [2012] explore the design of a system able to automatically par-
tition Android applications without modifying the underlying system. Basically,
the application extracts the android-services and redeploy them inside a "virtual-
smartphone" in the cloud. They also provide a set of decision metrics do decide
whether offload or not, the metrics have to be computed before and they con-
sider the local execution costs vs. the transmission costs. This approach is clearly
flawless, first because of the network changes during time thus the metrics are
not available, secondly because services are composed by a whole set of activity
and many of them require accessing the local context (i.e. access to location)
thus they cannot be remotely deployed.

Mtibaa et al. [2013] propose the idea of mobile device cloud, where the
union of mobile devices located in proximity may be used to perform compu-
tationally intensive tasks. The authors built a framework and performed a set
of experiments to show the feasibility to use a mobile device cloud to perform
offloading. The authors also showed by means of simulation that the contact-
history and the relationship between the users can be used to predict future con-
tacts and thus used in an offloading scheme. A similar scheme can also be found
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Framework Granularity Offloading Decision
µCloud by March et al. [2011] Component Fix
MACS by Kovachev et al. [2012] 9 Component Dynamic
CloneCloud by Chun et al. [2011] Thread Dynamic
COMET by Gordon et al. [2012] Thread Dynamic
MAUI by Cuervo et al. [2010] Method Dynamic
ThinkAir by Kosta et al. [2012] Method Dynamic
Cuckoo by Kemp et al. [2012] Method Dynamic
WebOs 2.02 by Ostrowski [2012] Component Fix

Table 2.1. List of computation offloading frameworks. The granularity indi-
cates the level at which the framework offloads the application. The offloading-
decision indicates if there is a certain level of self-configuration in taking the
offloading decision given the status of the environment.

in Mtibaa et al. [2015].
Chen et al. [2015] propose a theoretical formulation for mobility assisted

computational offloading. They formulate the optimal computational offloading
problem as a convex optimization problem with is NP-Hard. The key limitation
of this approach is that it requires the global view of the network. Chen et al.
[2015] propose a similar scheme and they also include the design of a software
architecture that supports this paradigm.

A significant amount of research has been dedicated to the study of the of-
floading framework. Table 2.1 compares the most notable software frameworks
available in this area according to the architectural decision authors have made.

Recently, offloading techniques have been successfully applied to collabora-
tive rendering. Cuervo et al. [2015] provides Kahawaii, a system able to provide
high-quality gaming on smart devices by offloading a portion of the GPU compu-
tations to server-side infrastructure. The distinctive element is that Kahawai uses
collaborative rendering to combine the output of a mobile GPU and a server-side
GPU into the displayed output.

2.5.4 Privacy and Security in D2D Offloading

Privacy and Security in the new domain of D2D offloading is not a trivial task.
In the context of privacy, Langheinrich [2001] extensively defines the concept of
privacy by design in ubiquitous computing and divides the challenges into seven
main areas:
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• Principle of openness or simply notice: users should be aware of the nature
of the data shared.

• Choice and consent: where users can choose to offer that information to
the requester and they have to give explicit consent.

• Anonymity and pseudonymity: anonymization can be defined as the state
of being not identifiable within a set of subjects. The larger the set of
subjects is, the stronger is the anonymity according to Pfitzmann and Köh-
ntopp [2001]. Instead, pseudonymity allows more control of anonymity
e.g. adding an ID to a name of a person.

• Proximity and Locality: in essence, it expresses the fact that information
must not be disseminated indefinitely, not even across a larger geographic
boundary.

• Adequate security: Network and disk security are fundamental.

• Access and recourse: provide mechanisms for access and regulation. Even-
tually, also penalties if someone breaks the rules.

Starting from the previously mentioned areas a lot of effort has been devoted
in that area. An important example is a current research in differential privacy (a
good survey is provided by Dwork [2008]) that is currently implemented natively
into modern devices6. The key goal of differential privacy consists in maintaining
anonymization in a single data-entry but allowing to use statistical inference on
top of the whole set of data.

Another key aspect is security in offloading. At the time of writing, there are
very few solutions that approach security in D2D offloading. Traditional appli-
cations simply consider the fact that a remote device is willing to cooperate and
does not act selfishly. Unfortunately, this is not always the case. To address this
issue Anderegg and Eidenbenz [2003] propose a payment-based mechanism con-
trolled by a central authority. Michiardi and Molva [2002] provide a reputation
mechanism where reputation is still managed by a central entity. As mentioned
before Trifunovic et al. [2010] proposes a similar scheme in a distributed envi-
ronment. Chatzopoulos et al. [2016] uses the principle of hidden marked design
to build a framework that integrates an incentive scheme and a reputation-based
mechanism. The authors have validated their approach with simulation but they
also clearly depict the limitations of this solutions. They are:

6https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/
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• Malicious behaviour of users: users can use a wide variety of attacks to
impact the overall system performance. For instance, if a group of users
join resources, they can virtually augment their reputation.

• Privacy of the Information: In D2D offloading, personal information is shared
among different devices and can be easily stolen.

In conclusion, I would like to reiterate that privacy and security do not play a
key role in the following dissertation, but some preliminary solutions (especially
in the privacy domain) are presented. To address the challenges that have been
raised in the dissertation, the project CHIST-ERA2017 UPRISE-IOT7 has been
initiated.

2.6 Other paradigms

The goal of the following section is to mention the paradigms that have been
taken as inspiration and that can also benefits from the work presented in the
dissertation.

2.6.1 Public resource computing

Public resource computing (also known as global computing or peer-to-peer com-
puting) uses unused resources located in the user’s devices to do scientific su-
percomputing. It enables previously infeasible research and it also encourages
public awareness of their results.

The first system supporting such paradigm has been developed in 1996 in the
Great Internet Mersenne Prime Search project 8 with the goal to find the as large
prime number as possible. Many other projects followed the trend, the most
notable one was SETU@Home 9 carried out in 1999 with the goal in helping
the SETI project finding extraterrestrial life by analyzing a multitude of radio
frequencies coming from space.

2.6.2 Elastic computing

In their seminar work Herbst et al. [2013] defines elasticity as " .... degree to
which a system is able to adapt to workload changes by provisioning and de-

7http://uprise-iot.supsi.ch/
8http://www.mersenne.org/
9https://setiathome.berkeley.edu/



28 2.6 Other paradigms

provisioning resources in an autonomic manner, such that at each point in time
the available resources match the current demand as closely as possible."

There are different architectural solutions to implement elasticity that can
work on different levels. The key element is a resource that can be scaled up or
down. In case the resource is a Virtual Machine elasticity can scale as a function
of RAM and CPU cores assigned to it. In other domains a resource can be a
physical node or a single unit like a CPU core or the RAM consumption.

A notable Elastic Computing implementation is the Amazon’s Elastic Com-
puting Cloud (EC2) 10 that is the core part of the Amazon’s Cloud Computing
Platform. EC2 is used as cloud instance solution this dissertation.

2.6.3 Internet of Things and Fog Computing

The term Internet of Things (IoT), was first introduced by Ashton [2009]. This
new paradigm enables novel applications that extend the traditional Ubiqui-
tous/Pervasive computing scenarios.

According to Atzori et al. [2010] there are three main IoT usage scenarios;
they are illustrated in Figure 2.3 and they can be defined as:

• Things Oriented: where the network is constituted with very simple devices
(i.e. RFID tags) and the main goal is to improve object visibility (i.e. the
traceability of an object and the awareness of its status, current location,
etc.).

• Internet-oriented visions: it is essentially the vision provided by the IPSO
(IP for Smart Objects) alliance 11 and consists in using Internet Protocol as
the main technology to interconnect things (i.e. in 6LowPAN group 12 they
provide a standard for IPv6 over Low Power Area Network).

• Semantic-Oriented vision: the key idea behind this approach is to promote
the usage of semantic technologies to describe and organize the informa-
tion generated by IoT. The necessity of this organization may be dictated
by the fact that the number of devices involved in the IoT may become
extremely high thus making it really challenging to access the necessary
piece of information.

10https://aws.amazon.com/ec2/
11http://www.ipso-alliance.org/
12https://datatracker.ietf.org/wg/6lowpan/documents/
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Figure 2.3. Internet of Things paradigm as a result of the convergence of
different visions. (Courtesy of Atzori et. al.)

Integration between the cloud and the IoT has proven to be really beneficial.
Botta et al. [2014] highlights several advantages in this integration between vari-
ous domains (e.g. healthcare or smart cities), but the key idea is that IoT devices
can take advantage of the capabilities that cloud computing can offer (e.g. to
compensate the technological constraints).

The integration of the IoT with the cloud creates a new paradigm that has
been named Fog Computing 8Bonomi et al. [2012]). It can be defined as a virtual-
ized platform that provides computing, storage and networking service between
devices located in the edge (things) and the Cloud. Fog Computing has been
designed to address applications that tolerate high latencies. The main features
of fog computing are:

• Location awareness and low latency capabilities: rich services shall be sup-
ported at the edge of the network.

• Geographical distribution: applications are distributed across different ge-
ographical locations.

• Support for Mobility: host identification and location must be decoupled.

• Heterogeneity of Resources: since devices are located into "things" there is
an infinite kind of devices that can be part of the fog.
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• Interoperability: in order to provide a given service previously mentioned
requires interoperability among different providers.

It is important to clarify the difference between fog computing and oppor-
tunistic computing. They both consider mobility as an element. In opportunistic
computing, mobility augments the reachability of the devices, while in fog com-
puting it is a problem to be addressed through unique identification. The reason
is that the fog still relies on the cloud to accessing the desired service while in
opportunistic computing services settle for the closest available device.

2.7 Conclusions

This section has illustrated the principles that introduce the solution presented
in the dissertation. It has started by introducing the concept of opportunistic
computing that is a communication paradigm where services can be accessed op-
portunistically among devices located in the closest proximity. The FP7-SCAMPI
Project has deeply investigated this paradigm and has produced a ready-to-use
framework that will be the core of the following dissertation.

Moving further, computation offloading techniques have been introduced.
The core idea of these techniques is to move part of the computation into a dif-
ferent device (usually into the cloud) to reduce the runtime and save energy.

The chapter concludes by introducing a set of complementary paradigms that
may take advantage of the work proposed in the dissertation. The first is named
public resource computing and consists in using the unused resources in personal
devices to perform scientific calculation. The second one is elastic computing and
consists in allocating resources and moving computation dynamically depending
on the application needs. The section concludes by introducing the internet of
things and fog computing; the first is a paradigm to add connectivity to everyday
objects and the second is a solution to merge the IoT and cloud computing to
offer high computation capabilities to the edge of the network.

The dissertation continues by illustrating a new paradigm named AnyRun
Computing, a novel solution to augment the performance of smart devices by
selectively offloading the computation in different hosts.



Chapter 3

AnyRun Computing

3.1 AnyRun Problem Definition and Modelling

Nowadays, applications are no longer tied to a single device. The cloud has al-
lowed novel application paradigms to enhance the performance and the quality
of the user’s experience. The reliability of cloud-based solutions is out of dis-
cussion but there are situations where a given app cannot rely on it. Those sit-
uations require a different approach that is able to leverage different resources
(e.g. located in the proximity). In this chapter I propose a paradigm that ap-
proaches this problem, named anyrun Computing. In conjunction I present the
anyrun computing framework (ARC), a software solution specifically created to
work in the anyrun scenarios. The chapter starts with the motivations behind
the anyrun Computing paradigm. After, a solution to the host-selection prob-
lem is presented. The chapter concludes by illustrating the main architectural
characteristics of the ARC problem.

3.1.1 Motivation

Nowadays, the access of high-performance systems anytime and anywhere have
drastically changed the way people interact with their personal smart devices.
This novel paradigm (namely cloud or cloudlet) makes smart devices able to per-
form computationally prohibitive tasks thanks to the offloading of computations.
This service is made available thanks to recent advances in communication tech-
nologies. However, there are situations where high performance systems cannot
be used. The following use cases present several examples:

• Latency times: in some circumstances, even high-speed mobile networks
are not fast enough to offer a sensible gain when performing the offloading.

31
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This is due to the amount of data needed to be transferred back and forth
during the offloading process that in some cases might be huge.

• Roaming: probably one of the biggest sources of extra costs in the current
mobile plans are the roaming costs. Usually, in such kind of situations,
costs are exacerbated due to the usage of a mobile operator in a different
country; this translates into a double-cost, one for the foreign operator and
one for the national one. Even though in some cases there are special fares
(e.g. E.U. Roaming convention1) such costs continue to be prohibitive for
most of the users.

• Mobile plan costs: the majority of mobile plans usually tend to offer only a
certain amount of free data. One may argue that there are unlimited plans;
it is true that they offer unlimited data but it is common that they slow
down the connectivity (usually down to EDGE speed) after a predefined
amount of data has been used.

• High speed network unreachable and overloaded: the high-speed mo-
bile connectivity is not always available. It depends on the network cover-
age that a given operator offers and to the morphology of the terrain where
the network is located. (Figure 3.1 shows the 4G network coverage of one
of the main Phone Operator in Switzerland Sunrise AG).

The previously mentioned limitations only apply to the cloud. With cloudlet
devices are no longer restricted to WAN technology limitations because the hard-
ware is located in close proximity. However, the cloudlet approach has a huge
limitation due to the fact that hardware must be pre-deployed and known a pri-
ori; thus the cost to give full Cloudlet coverage is definitely prohibitive.

To overcome the previously mentioned limitations I propose the anyrun com-
puting paradigm that can be described as follow:

Rather than assuming the existence of a dedicated piece of higher-end hardware
and being rigidly tied to it, with a device anyrun may elect to use any piece of hard-
ware (locally or remotely accessible) that can do the job better it can (this concept
will be clarified later in the dissertation).

Figure 3.2 shows the dimensions where anyrun operates compared to tradi-
tional paradigms. The key idea is to extend the concept of opportunism, that

1https://ec.europa.eu/digital-single-market/en/roaming-tariffs
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Figure 3.1. Sunrise 4G network coverage in Switzerland (courtesy of Sunrise
AG), we can clearly identify several areas without 4G coverage, consequently,
many services that rely on computation offloading may perform poorly.

Figure 3.2. AnyRun dimensions compared to cloud and cloudlet.
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in this case is translated as the possibility to choose the best option to perform
the offloading between Cloud, Cloudlet and any other devices that are locally
available down to the the local device (in case there are no other options that
provide a sensible gain).

This section continues by providing a detailed definition of the anyrun paradigm
and of the key challenges that must be addressed. After the ARC framework is
described, ARC is the first framework that approaches the anyrun computing
paradigm.

3.1.2 AnyRun Problem Definition

The first action that must be performed to characterize the anyrun paradigm con-
sists in the definition of the key actors and their characteristics. Thus, following
the scheme in Figure 3.2, the key actors are:

• Personal smart devices: portable and small devices (i.e. smartphone, tablet,
...). Due to the required portability, those devices usually have a scarce set
of resources (in terms of computational capabilities, memory, and battery)
compared to their desktop counterpart.

• Personal Stationary devices: they move rarely or not at all (i.e. Desktop
computer or laptop). Some of them are powered by a battery but, com-
pared to smart devices, the power source lasts longer.

• Local and remote shared devices (cloud/cloudlet): they are devices that do
not move at all. The cloud is deployed in a remote location and accessible
through WANs. The cloudlet is only accessible if the user is physically in
its proximity. The core difference between remote devices and stationary
devices is that the last is directly accessible by users while remote devices
offer a set of services accessible through the network.

• Seeker Device: is the device that has the computational needs and is will-
ing to find the best way to satisfy them. Usually, it is a smart device; the
explanation is in the fact that those devices offer a limited set of resources.

3.1.3 AnyRun analytical definition

Figure 3.3 shows the various activities that must be performed in order to have
a successful offloading. When the local host has the need to offloading the com-
putation it performs the following activities:
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Figure 3.3. Sequence diagram that illustrates the various steps performed by
two hosts when the offloading process is started.

1. Select an adequate remote host: in anyrun, selecting the wrong device may
lead to extra costs (for instance the remote device may incur in the problem
to send back the result of the computation, thus the local host must recover
the job from the beginning).

2. Send the information needed to perform the computation: at this stage,
the remote host has been selected, thus the local host sends the data and
eventual the instruction needed to satisfy the request.

3. Sleep: the local host goes in sleep until the remote host sends back the
results of the computation. Usually, timeouts are used to avoid infinite
sleep.

4. Download the results: the local host receives the results of the offloading.

The remote host instead behaves as follows:

1. Accept or Decline: depending on the current context (e.g. status of the
local resources) the remote host may decline the offloading request.

2. In case it accepts, it performs the computation.

3. It might happen that the two hosts are not in contact when the remote
host ends the computation. In this situation, the remote host should wait
until the two hosts return in contact again. Timeouts are used to avoid an
unlimited wait.

4. Sends back the results.
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It is important to point out that the connectivity between the two hosts may be
lost due to users mobility if the devices are in the first two categories presented
before (Smart Devices and Stationary Devices) but it may also be lost due to
network vagaries in the third case (Remote Devices).

Another open point that arises is: why should a device which happens to be
located in the proximity of a seeker and opportunistically accessed (thus without
any form of infrastructure that the users usually pay for) be willing to take care
of the computation? To answer this question I envision a set of use cases:

• The user owns the devices and it uses ARC between them to augment the
performances of its smart devices (for instance to augment the lifetime of
IoT devices).

• The users who own the devices know each other (personally, or belong to
the same community, or ...), thus one of them allows the other to use its
resources.

• The device who provide the computation is offered as a service in a specific
location; for instance, a restaurant or a public transportation system may
offer the offloading of computation as motivation mechanism.

The resources that a device is willing to offer depend on the device characteris-
tics, the relationship between the owners of the devices, and the current load of
the device.

Another approach may be to use incentive-based scheme like the solution
presented by Chatzopoulos et al. [2016], but it poses severe security threats (as
mentioned in Section 2). For this reason, I specifically avoided to use them as
use-cases, but they will be part of my future studies.

Moving further, following the definition of Opportunistic Computing pro-
posed by Ferrari et al. [2012] I can characterize anyrun computing with the
following elements:

• Nt is the set that contains all the instances that are available to perform the
computation at a given time t. Each n ∈ N can be one of the devices pre-
sented before; it could be Cloud, Cloudlet or any other device that is willing
to cooperate. The local device is a member of Nt . Depending on the time
t, Nt changes its content because of the context changes (e.g. the network
conditions change or different devices are available in the proximity).

• R is the set of all the offloading request from a given device. An application
that needs to offload part of its computation must encapsulate the request
into a request r. Each request contains:
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Function Description
Es(Tδ(r, n) is the energy spent waiting for a good provider is accessibile.
Et(Tu(r, n)) is the energy required to upload the data to the chosen provider.
Es(Tc(r, n)) is the energy spent while waiting (sleep state) until the remote

device has accomplished the computation .
Es(Tω(r, n)) is the energy spent while waiting (sleep state) for the

remote device to reach back the seeker.
Et(Td(r, n)) is the energy spent while downloading the results of the computation

from the provider.
E(r, n) is the overall energy spent during the offloading process.

Table 3.1. Characterization of the energy consumed considering the activity
performed and the time required to accomplish it.

– The Information concerning the portion of the application that must
be executed (if needed the software instructions can be shared)

– The data that the application must use to perform the job (usually this
is a dump from the heap space).

Following the previously mentioned steps we can define the following func-
tion over time (we assume that the time T follows T ∈ [0, ..., inf]):

• Tδ(r, n) is function that define the time to wait until a good provider (provider
that is able to satisfy the request) is accessibile for a given request r exe-
cuted on n ∈ Nt .

• Tu(r, n) is function that define the time required to upload the data to the
selected provider for a given request r executed on n ∈ Nt .

• Tc(r, n) is function that define the time of the remote computation for a
given for a given request r executed on n ∈ Nt .

• Tω(r, n) is function that define the delay until the provider reach back the
seeker for a givenfor a given request r executed on n ∈ Nt .

• Td(r, n) is function that define the time required to download the result of
the computation for a givenfor a given request r executed on n ∈ Nt .

Moreover, we can characterize the energy spent in the various offloading ac-
tivities as follow:
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• Es is a function that retrieves the energy consumed when sleep.

• Et is a function that retrieves the energy consumed when transmitting or
receiving.

• Ec is a function that retrieves the energy consumed when performing the
computation.

We can therefore compute the overall energy consumption of the Offloading
process as follow (a clarification for each elements is provided in Table 3.1).

E(r, n) = Es(Tδ(r, n)) + Et(Tu(r, n)) + Es(Tc(r, n)) + Es(Tω(r, n)) + Et(Td(r, n))
(3.1)

In case n is the local device we can shorten it as follow:

E(r, n) = Ec(Tc(r, n)) (3.2)

All the other elements are zero.

AnyRun Problem Definition: Finally, we can define the anyrun Computing
problem as follow:

min E(r, n) | r ∈ R and n ∈ Nt (3.3)

That results in the selection of the best host n (local or remote) for each
request r at a given time t such that it minimizes the energy consumed by the
local device. This definition explains the "better" used in the anyrun definition
at the beginning of the chapter.

Unfortunately, the accuracy of on-board energy measurement on smart de-
vices is measured with a granularity too high to be effective in anyrun according
to Ferrari et al. [2015b]. Luckily, we can use time as a proxy to indicate the en-
ergy consumption. In fact, there is a strict correlation between time spent doing
a given job with the energy consumed in this job. Figure 3.4 illustrates the vari-
ation among different executions of the each energy-related scenario. The main
finding here is that there are very few variations among different executions, thus
since all the experiments have the same time granularity (1 second of activity)
we can argue that it is reasonable to characterize the energy as a function of time
and activity.

To this extent, the total time needed to perform the offloading can be com-
puted as:

T (r, n) = Tδ(r, n) + Tu(r, n) + Tc(r, n) + Tω(r, n) + Td(r, n) (3.4)
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Figure 3.4. This figure illustrates three Boxplots that show the energy con-
sumed for each energy-scenarios presented in the dissertation. The measure-
ments are taken into a Samsung Nexus 3 Smartphone

If the n is the local device the previous expression si shorten as follow:

T (qrn) = Tc(r, n) (3.5)

And the objective function became:

min T (r, n) | r ∈ R and n ∈ Nt (3.6)

Given the dynamic and distributed nature of the anyrun, a deterministic ap-
proach cannot be used; in the remaining part of the dissertation I propose ARC
a dynamic framework that adapt the offloading strategy considering the current
context and learning from past experiences.

Note that anyrun does not ensure global fairness because it would require
a global view that could be maintained only with centralized solutions. The
approach draws inspiration from swarm-based algorithms where each device has
a limited view (usually limited to its neighbors) and local optima are sought.

3.1.4 Remote Host Selection for Anyrun

Remote host selection is the most challenging and critical activity in anyrun. The
method I am proposing to select the best remote host is based on the NaïveBayes
classifier.

The key motivation that dictated the selection of that model between all the
possible solutions presented in literature is that the computational costs may
negatively impact the performances of the offloading process.

A preliminary analysis of the cost of different machine learning solutions is
presented by Ferrari et al. [2015a] where the authors compare accuracy vs. en-
ergy consumption of three machine learning strategies applied to Activity Recog-
nition. The authors have empirically demonstrated that the Naive Bayes has a
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small impact on the energy footprint of the device but they provide a decent
classification accuracy.

Back to the anyrun computing timing function described before:

T (r, n) = Tδ(r, n) + Tu(r, n) + Tc(r, n) + Tω(r, n) + Td(r, n) (3.7)

The selection of the provider directly impact Tδ(r, n), and the evaluation re-
peat its costs for each device that is evaluated (from cloud to locally available
device) it is reasonable to assume that in many circumstances there will be a
multitude of devices to evaluate, thus a solution that impact as less as possibile
is needed.

I categorize Naive Bayes as follow: let Y represent a classification variable
that defines mutually exclusive and collectively exhaustive classes, and let y be
the value of Y . A classifier is a function that assigns a class label to a set of
attributes E = {E1..EN−1} (with N ∈ N). If the attributes Ei are assumed to be
independent, then I have a Naïve Bayesian model (Zhang [2004]), for which

P(E = e, Y = y) =
N
∏

i=1

P(Ei = ei, Y = y). (3.8)

In our case, as the goal is to determine whether a portion of an application
a should be offloaded, our classification variable Y may take on either one of
two mutually exclusive and collectively exhaustive values: offload or run locally.
I focus on O = offload, and P(Y = offload, E = e) is to be interpreted as the
probability that offloading is advantageous in the dimensions of interest given
that the realization e of the set of attributes E has been observed. Since the
two values that I assume Y may take on are mutually exclusive and collectively
exhaustive, P(Y = run locally, E) = 1− P(Y = offload, E).

By definition, the prior probability must be independent from E (Berry [1996]).
I elect to compute the prior probability based on the state of the local node, while
I populate E with attributes of the remote node I wish to offload code to. The first
step is the computation of the prior probability that offloading is advantageous
in the dimensions of interest based on the state of the local node. For each kth
run of the request r, either local or remote, ARC estimates the local footprint as
a function of the dimensions of interest (for more details, please refer to Section
3.2.3).

Let l < k represents the current count of local runs; a moving average of the
cost of the L most recent local runs is maintained by the offloading block and
denoted as Λr , with L = min(l, Lmax). Each request r must be run locally at
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Symbol Description
r incapsulate the portion of the application that must be executed in a request
rk Current run of r
Lmax Maximum size of the most recent executions.
L Number of most recent runs considered.
Λa Average estimate of the cost of running a.
Λr,k Costs of the kth runs of a.
E Most up-to-date observation.
λ Probability Threshold.
Tmax Maximum allowed latency.

Table 3.2. List of symbols that describe the environment where ARC works.

least once to initialize Λr , which serves as our estimate of the average cost of
running a locally under the recent conditions at the local node. In principle, it
suffices to run r locally just once to initialize Λr . It is also possible to initialize Λr

based on estimates of its CPU, RAM, time, and energy footprint. However, in a
realistic scenario with unstable connectivitry, it is not always possible to offload
a, so it is reasonable to expect that there will be a number of local runs and to
leverage them to get an up-to-date estimate of Λr . Because the prior probability
must be independent from the set of selected attributes (Berry [1996]), E is
populated with remote node attributes. The set of attributes E is advertised
by each remote device in its broadcast control messages (ARC presupposes the
existence of a beacon-based neighbor discovery protocol). For the details of the
attribute selection in my implementation, please refer to Section 3.2.3).

Whenever an offloading decision has to be made, ARC uses the most up-to-
date observation of E, say Eo ¬ {e1 . . . eN}, to compute the Bayesian inference,
i.e., the posterior probability that the observed set of attributes can be classified
as c:

P(Y = y, E = Eo) = P(Y = y)
N
∏

i=1

P(Ei = ei, Y = y)
P(Ei = ei)

(3.9)

For C = offload, Equation (3.9) represents the probability that offloading is ad-
vantageous under the conditions represented by the attribute observation Eo. To
compute this probability, for each realization ei ∈ Eo of the random variable Ei ∈
E, I need to compute P(Ei = ei, Y = y) and P(Ei = ei). P(Ei = ei, Y = offload)
represents the probability that the ith attribute within E takes on the value ei

given that offloading is convenient. This probability is estimated based on the
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history of the runs of a given request r as the fraction of the runs with Λr,k ≤ Λr

for which Ei = ei is observed. Likewise, P(Ei = ei) is estimated as the fraction of
the runs of m for which Ei = ei is observed.

Having gauged the probability that offloading is advantageous in the dimen-
sions of interest, I set a threshold λ ∈ [0, 1] that captures how conservative I
wish to be with the use of local resources. For instance, if λ= 1, everything will
be run locally, while if λ= 0, every r will be offloaded. The specific value of the
threshold λ must be set by the application whose requests are to be offloaded or
run locally. For instance, if the application doesn’t have particularly tight timing
requirements, it is acceptable for the application to set λ to a lower value; con-
versely, the tighter the timing constraints of the application, the higher the value
it ought to set λ to.
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3.2 The ARC - AnyRun Computing Framework

To empirically study the anyrun Computing solution I developed ARC - the anyrun
computing framework. The goal of ARC is to dynamically decide whether any
kth run (k ∈ N) of a method m that is part of a given Application A that is un-
der execution in given device d ∈ D should be offloaded or run locally (m is ten
incapsulate in r following the definition from Section 3.1.3):

3.2.1 ARC Architecture

Figure 3.5. The components of the ARC architecture.

In the next subsection I will first deeply describe the ARC architecture, ARC
inference engine, and ARC security mechanisms. The next section will discuss the
tool I have built to accurately evaluated the paradigm and then I will conclude the
dissertation by illustrating and explaining the deep evaluation I have to perform
on top of ARC.
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The system is built on top of the SCAMPI opportunistic computing frame-
work Conti et al. [2010a]; Pitkänen et al. [2012] developed within the FP7 EC
project SCAMPI (Service Platform for Socially Aware Mobile and Pervasive Com-
puting)2. The key issue tackled in SCAMPI is the provision of services on top
of the opportunistic computing paradigm; recent work in this space are offered
from Hyytiä et al. [2015], and Li et al. [2015]; Liu et al. [2014]. SCAMPI offers
a set of API to recognize devices in the proximity with a set of different technolo-
gies (from legacy WIFI to Bluetooth) and allows users to access services on such
devices. Services may be run on multiple devices in parallel (multicast access) or
on a single device (unicast). This work extends SCAMPI with an inference layers
targeted to computational offloading.

There are two key actors that play a role in ARC, they are respectively:

• ARC Seeker: is the devices that is in needs to offload the computation, it
generates the request (r in anyrun definition)

• ARC Provider: is a device that is willing to accept to take care of the Seeker’s
computation (that can be either cloud, cloudlet, or any other device in the
closest proximity) .

Figure 3.5 shows the overall architecture of the two actors and the conjunction
between them that is the SCAMPI Layer. The rest of the section is dedicated to
deeply explaining both actors.

3.2.2 ARC - Seeker

The left side fo the Figure 3.5 illustrates the behavior of the main components of
ARC Seeker. The entry point of the ARC framework is the method stub, which is a
predefined class that allows developers to subscribe to the framework and access
it easily. The stub uses the Inference Engine to assess the probability that offload-
ing is advantageous compared to local execution in the dimensions of interest
(CPU and RAM usage, execution time, and energy consumption). Depending on
the response from the Inference Engine, the stub takes the appropriate course of
action.

In case local execution is chosen, a dedicated architectural block (the Local
Execution Manager in Figure 3.5) uses Java reflection3to call the method. In case

2http://www.ict-scampi.eu/
3I use Java as programming language for the implementation. Though the use of Java is not a

fundamental requirement, certain features of the Java language (i.e., reflection and serialization)
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remote execution is chosen, a dedicated architectural block (the Remote Execution
Manager in Figure 3.5) serializes the part of the Java heap reachable from the
method, sends it to the remote machine through the SCAMPI framework , and
awaits a response. A timeout is set based on the local execution time (I assume
that each method is run locally at least once). If the remote execution exceeds
the timeout, the Remote Execution Manager calls the Local Execution Manager
so the method can be run locally.

The Seeker may decide for three execution strategies:

• Offload to cloud/cloudlet:

• Offload opportunistically

• Local execution

To this extend the first tentative is to check if the offload to cloud/cloudlet is
available. To this extent to detect if the Cloud is available ARC first samples for
WANs connection and if there is one periodically it checks if the cloud service is
reachable. The continuous sampling is necessary because checking for the exis-
tence when is needed it add an extra delay that may lead to failure in offloading.

As said before, Cloudlet solutions requires being known a priory thus we can
assume that ARC knows if a Cloudlet is reachable depending on its position or
LAN identification.

To understand if the cloud or cloudled are able to take care of the ofloading,
ARC executes the procedure at least once and check the outcome. if the resulting
costs are larger than the cost of executing the method locally then di cloud is
discarded for future selection on that specific method call.

if both cloud and cloudlet cannot be used ARC starts looking for opportunistic
solutions via the SCAMPI framework.

The SCAMPI framework offers a remote method invocation (RMI) service that
enables devices to request remote routine execution from each other. In ARC, the
Remote Execution Manager uses SCAMPI’s RMI jointly with an Execution Service
Manager on the remote device. The Execution Service Manager is tasked with
running the desired method on the remote device and provide the related results,
also by way of SCAMPI’s RMI.
I now delve into the details of the Inference Engine, which contains most of the
intelligence in the system.

make it particularly suitable for the implementation of computation offloading schemes. A viable
alternative would be the use of Microsoft’s .NET Framework, employed by Cuervo et al. [2010].
Further details about the Java implementation are provided in Section 3.2.3
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Figure 3.6. ARC Java Refactoring where the method stub is included in the
application control flow.

The Inference Engine receives a rich set of information about the available
remote devices from SCAMPI (for more details, please refer to Section 3.2.3)and
employs the information to help the stub decide whether offloading is advanta-
geous compared to local execution, i.e., whether it can reduce the local footprint
compared to local execution in the dimensions of interest (CPU and RAM usage,
execution time, and energy consumption). The output of the Inference Engine
is an empirical estimate of the probability that offloading is advantageous in the
aforementioned sense.

3.2.3 ARC Seeker - Implementation Details

My ARC implementation is written in Java and works in both the Dalvik virtual
machine (Ehringer [2010]) on Android-based4 devices and the Oracle’s HotSpot
virtual machine 5 used in desktop environments. Portability to other Java-compatible
virtual machine may be possible depending on the implementation of the Java
memory model. I use the standard Java Object serialization to exchange class
instances at runtime and Java reflection to dynamically choose the appropriate
method at runtime. Object mobility is allowed inside the previously cited vir-
tual machines because they share the same object representation in the memory
space.

In ARC, similarly to MAUI, if a developer wishes to offload a portion of her
application, she simply implement a ARC class stub that will call the offloadable

4Due to changes in the virtual machine Android version should be 4.0 (Ice Cream Sandwich)
or newer. The most recent version I have tested is 5.1 (Lollipop).

5http://www.oracle.com/technetwork/java/javase/ tech/index-jsp-136373.html
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code dynamically through the framework.
In ARC I implemented a Java refactoring technique (that could be easily au-

tomatized in the majority of Java IDE, e.g. Eclipse6) to allow developers to easily
include the system in their application. Figure 3.6 shows the standard refactoring
procedure in ARC:

• At first it replaces the initialization of the classes I want to offload with the
ARCSTub class (let C be the class I want to use in offloading).

• It initializes the ARCStub class with C as its constructor argument.

• It replaces each method call in C with the call to the ARCStub.call method
and it passes the method name and the parameters as arguments. If the
user doesn’t want a given method to be offloaded, the "callLocal" function
can be called on ARCStub to force local execution.

I am currently implementing and automatizing this refactoring technique in the
new Android IDE (Android Studio7).

A standard profiler is run by ARC upon the execution of each offloadable
method (either if run locally or remotely).

The ARC profiler keeps track of several variables ranging from the execution
time to the battery drain. In the implementation, ARC estimates the local foot-
print as a function of the dimensions of interest (execution time and energy).
E is populated with remote node attributes and is advertised by each remote
device in its broadcast control messages (ARC presupposes the existence of a
beacon-based neighbor discovery protocol).

ARC Seeker - Inference Engine

This component implements the solution proposed in Section 3.1.4. As said be-
fore, ARC works at method level for this reason the variable a is now replaced
with m for methods. In the implementation, I employ the following attributes
for any method m:

• the CPU and RAM usage and the battery usage on the remote device;

• the mean duration of the past contacts between the local device and the
remote device (computed over a sliding window);

6http://www.eclipse.org
7https://developer.android.com/sdk/installing/studio.html
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• the taxonomy of the remote device m is offloaded to (smartphone, tablet,
laptop, or others);

Information about past contacts is used as an empirical estimate of the ex-
pected duration of the contact time between the local device and the remote
device. The information about the remote device is passed to the inference en-
gine jointly with the information about the local execution of the method and the
local status of the system (in terms of RAM usage and CPU usage) as input pa-
rameters. The inference process then returns an estimate of the probability that
offloading to the remote device will be advantageous in the dimensions of inter-
est. I use this inferred probability to make the offloading decision as explained
in Section 3.1.4. In the remainder of this Section, I set Tmax for each method m
to coincide with the mean local run time; however, in general, Tmax can be freely
set by the application.

In the scenario where it is possible to offload to multiple devices, ARC sends
offloading request in parallel to all available devices that are inferred as possible
good candidates. The requests are sent to all the good candidates in descend-
ing order of probability of success, starting from the one that offers the highest
probability of success. I plan to refine this greedy approach in future work.

I also set a timeout Smax that captures the maximum latency value I can settle
for.
The execution of method m is offloaded if the probability that offloading is ad-
vantageous exceeds or matches λ and is run locally otherwise. If the overall
execution latency exceeds Smax , ARC defaults to local execution.

ARC continuously collects information about newly encountered devices that
advertise their resources to assess whether they could be good offloading part-
ners.

3.2.4 ARC Seeker - Code Mobility

Due to the dynamic nature of the environment, the assumption that Provider
already owns the right set of instruction to process the data it receives during
the offloading is simply impractical due to memory limitations. In fact, there is
not limits of the number of applications and consequently to the line of code that
can be remotely-execute in such paradigm. To address this problem I provide a
utility in the ARC framework that allows a seeker to sent-out to the provider the
instruction he needs to execute in conjunction with the data they must process.

The mobility of the code is something that has been studied for years, the first
notable work on application partitioning for Java-based system is J-Orchestra by
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Tilevich and Smaragdakis [2002], who propose an effective tool to partition Java
applications to dynamically distribute the load onto different virtual machines.
J-Orchestra can correctly partition almost any pure Java program, allowing ob-
jects to be placed on any machine, without the need to know how application
objects access each other and Java system objects. It works at the Bytecode level,
generating several different components that could be dynamically deployed on
different machines if needed. J-Orchestra offers the basic offloading of computa-
tion through Remote Method Invocation (RMI) but it does not tackle the problem
of mobile and heterogeneous devices.

Chen et al. [2012] explore the design of a system able to automatically par-
tition Android applications without modifying the underlying system. Basically,
the application extracts the android-services and redeploy them inside a "virtual-
smartphone" in the cloud. They also provide a set of decision metrics do decide
whether offload or not, the metrics has to be computed before and they consider
the local execution costs vs. the transmission costs. This approach is clearly
flawless, first because the network changes during time thus the metrics is not
available, secondly because services are composed by a whole set of activity and
many of them require accessing the local context (i.e. access to location) thus
they cannot be remotely deployed.

Integration with ARC:

ARC has been developed for Google’s Android 8 and Java-base platforms. The
granularity of ARC offloading is at the method level, where any developer will-
ing to use the framework has to call its methods through the ARC class-stub
objects. Such objects decide whether the method should be run locally or re-
motely depending on the current and past situation in the network. The key
points addressed by the solution are:

• the extraction of portable offloadable code;

• the insertion of the code in an Android Application Package (APK).

Offloadable code extraction

I start with a compiled Android application and use Dex2Jar9 to extract the
Dalvik/Android Runtime (ART) Bytecode (.dex files). I then convert it to Java
Bytecode so I can use standard Bytecode manipulation tools that, nowadays, are

8http://www.android.com
9https://github.com/pxb1988/dex2jar
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Figure 3.7. Steps of the code extraction process; first the APK is passed
through the system and two distinct class containers are generated (JAR and
DEX), then the two containers are injected into the APK.

more advanced and stable compare to Dalvik/ART Bytecode manipulators. In
this work I use the Java Bytecode manipulation and analysis tool ASM 10 .

The rationale of the extraction is illustrated in Figure 3.7. The JAR contains a
set of classes and each class has his own method.First of all we must find the class
that implements the ARC Stub interface. This is the entry point of the offload-
ing process. The output is a JAR file for each implementation of the stub that
contains all the classes needed to run the code inside a Java virtual machine. In
order to produce such jAR the system analyzes the Bytecode to find each internal
reference. I check and extract each reachable class by recursively looking at:

• Superclasses

• Implemented interfaces

• Class Instantiations (at the method and class level)

• Calls to static classes

At the end of the process we obtain a JAR file for each task to be offloaded.
At this point I use the Jar2Dex utility (part of the Dex2Jar library) to convert

10http://asm.ow2.org/
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the Java Bytecode into the Dalvik/ART Bytecode and generate a new file, to be
named classes.dex, that is injected into a new JAR. This last step is very impor-
tant because the DexClassLoader utility offered by the Dalvik/ART platform only
loads files named classes.dex inside JAR files.

APK and ARC Integration

Once the two files are generated, a developer that is willing to exploit this new
feature in ARC must put both files inside her APK. I use the assets folder in the
APK structure that is intentionally designed to contain extra files. Once the APK
is extended, ARC automatically finds the code and spreads it as needed.

When a potential offloading target is encountered, the following steps are
undertaken.

1. Check the device taxonomy (whether it is a computer or a mobile device)
to determine whether a DEX file or a JAR file is to be employed (ARC learns
this from its beaconing process).

2. Ask the offloading target if it already has the code it needs to run.

3. If the offloading target does not have the code, the code is provided.

4. The computational offloading strategy (ARC in our case) is carried out.

At the offloading target, the offloaded code is associated to a time to live
counter to ensure its removal from memory after a pre-determined time.

Note that the overhead of making the code available to the remote device is
ignored by ARC’s decision-making process (to decide whether or not to offload)
because it is a one-off transaction.
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3.2.5 ARC - Provider

ARC Provider performs three main activities:

• It shares information concerning the status of its resources to neighbouring
devices.

• It performs the remote computation.

• It receives and mange extra code from the remote device.

Information Sharing is performed within the SCAMPI framework. This is
implement by sampling at a pre-defined interval the CPU status, virtual memory
status and battery (if one is present otherwise it is indicated a fully charged).
When a beacon is sent it also includes the most up-to-dated observation and the
device taxonomy.

To perform the remote computation the device receive a set of Serialized Class
instances, when they are loaded the fist action consist in checking if the Class is
already present in the system by using the Java Reflection. If not the class has to
be loaded, in case the Seeker has also sent the DexBytecode in the call it has to
be loaded with DexClassLoader into the system.

The major risk there is that the Provider send malicious code able to steal
sensible information, to solve this problem Sandboxing solutions are required
mixed with Mocking techniques are Required.

3.2.6 ARC Provider - Sandboxing

Mocking is a standard software testing technique. Mock-objects are usually used
in objected-oriented unit testing. The key idea is to use mock-object instead of
real ones and for several reasons (e.g. to supply fictitious data Mackinnon et al.
[2001]). The relationship between mocking and privacy is very simple: due to
the fact that I can change the app-parameters I can also conceal the real data and
thus ensure user privacy; this approach is presented in MockDroid from Beresford
et al. [2011] who propose a modified version of Android that grants privacy by
mocking the application behaviour. MockDroid s based on Android 2.2.1 where
authors change the APIs at the system level.

I propose MockingBird, a novel solution that allows users to choose which
context information can be shown to the application. MockingBird offers the
possibility to decide which applications are to be mocked. MockingBird uses
bytecode-manipulation techniques to detect the privacy-challenging instructions
within an app and insert external instructions to preserve user privacy. It also
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uses a dedicated application to enable users to manage their context information
to assemble their custom mocking solution.

Mockingbird is included in ARC Provider to guarantee isolation at the code
shared during the offloading process

MockingBird, uses Dex2Jar 11 work with the Java Bytecode from an Android
application and ASM (Bruneton et al. [2002]) (a bytecode manipulation tool)
to modify and extend the application without the need for recompilation. ASM
(Bruneton et al. [2002] )allows us to clearly determine what information is used
by an application and where it is used by extracting its bytecode, which is then
modified to mock the application. This procedure offers flexibility and portability
because it can be applied at the application level without modifying the operating
system or the virtual machine. I also provide a tool to record real context that can
be fed to the mocked applications, thus eliminating the need for random data in
existing mocking tools. This is useful independently of the reason why I employ
mocking: in the case of app testing, previously recorded data is close to the
real-world data the app will encounter, while in the case of privacy preservation,
previously recorded data will look like real-world data to the application, which
will not be able to easily detect it is being mocked.

The context-related information managed in Mockingbird are:

• Location in the form of coarse location and fine grained location; I replace
latitude and longitude.

• Gyroscope: I replace the rotation rates around the three axes.

• Accelerometer: I replace the acceleration values.

• Barometric pressure: I replace the pressure value.

• WIFI: I modify the connection status, the ESSID, and the signal strength
values shown to the app; I always return an empty list to the app whenever
it requests scanning information.

• Mobile data: I modify the connected cell tower, the network operator, and
the signal strength values.

Other context-related data sources (e.g. calendar information or SMSs) are also
considered; however, in these cases, I currently return randomly generated data
(i.e. a random event or random strings).

11https://code.google.com/p/dex2jar/
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There are several advantages in adopting Mmockingbird as sandboxing tech-
nique in anyrun computing. One may argue that solutions that work on Operat-
ing System level may be more effective, this is true but only in Cloud/Cloudlet
domain where we have full access to the System. Furthermore, anyrun comput-
ing also works on Smart and Mobile devices where any device may be elected
as Provider, consequently, we cannot pretend to have the access to all the OS.
On the other hand, Mockingbird is particularly suited for this domain because it
works at application level.

3.2.7 ARC - Authentication Mechanisms

By definition, Authentication is the process to identify another user or device to
(in our scenario) share with them resources or services. In anyrun computing
authentication is not a trivial part. To this extend the solution has to work in
multiple domains with multiple conditions. Therefore, in ARC I propose a hy-
brid model that adapts itself depending on the provider taxonomy. The solution
is currently under investigation in the CHIST-ERA 20015 UPRISE-IOT12project
where the main goal is to provide security and privacy mechanisms considering
the current mutation in device taxonomies and networking paradigm.

In ARC depending on the Provider’s Taxonomy, different solutions are imple-
mented:

Cloud/Cloudlet

in this scenario, the Seeker is known a priory thus traditional authentication
mechanisms can be applied. in ARC I apply standard SSL techniques. The ratio-
nale is that The cloud/cloudlet behave as certification authority (CA), a certificate
is therefore used as starting point; each certificate is pre-deployed in each cloud
or cloudlet. At the end, the certificate it is used to secure the connection.

Opportunistic Domain:

removing the central authority requires different solutions. The one that is cur-
rently implemented in ARC takes inspiration by Bluetooth 13 authentication.
Bluetooth[15] is a short-range radio technique that operates in a 2.4 GHz ISM
(industrial scientific medic) band. The Bluetooth specification defines link level

12http://uprise-iot.supsi.ch/
13 http://www.bluetooth.com
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security mechanisms fo provide confidentiality, integrity, and authentication be-
tween devices. Services may use one of the following three security levels for
authentication:

• Level 3: they require PIN exchange between devices.

• Level 2: (authentication only) thy use a fixed pin but users has still to con-
firm that they accept the connection.

• Level 1: totally non-secure. Everybody can access without any request.

Devices that are authenticated are placed in the so-called "trusted list" and they
can access all the services in that security level in the remote device.

Other approaches like reputation-based or the one proposed by Hossmann
et al. [2011] in the SCAMPI Project are still possible and will be part of future
studies within the CHIST-ERA 20015 UPRISE-IOT project 14.

3.3 Conclusions

This chapter has illustrated the analytical principles of anyrun computing, a pos-
sibile solution to the Host-Selection problem that is the key challenge in anyrun,
and the architectural design of the ARC framework. In essence, anyrun comput-
ing can be used when a given application cannot rely on cloud-based solutions
(several use-cases have been illustrated in the chapter), to overcome this lim-
itation it exploits resources located in different position (e.g. local). Within
this context, several problems may arise, first of all, the high mobility of devices
and the difference in computation capabilities may compromise the offloading
or sensible affect the gain. Challenges and problems in anyrun are firstly been
enumerated and described in the chapter and then they are addressed in the ARC
framework.

The dissertation continues by explaining the solutions I have implemented in
order to been able to provide a detailed study on the anyrun computing solution.
After, a deep investigation of ARC compared to the state of the art solution is
presented.

14http://uprise-iot.supsi.ch/
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Chapter 4

AnyRun Testing Environment

4.1 Introduction

The advent of smart devices has drastically changed the landscape where such
IT technologies operate. Traditional devices were stationary (or with a very low
degree of mobility) and usually were connected to a power outlet. Nowadays,
devices have become smaller, thus they are more portable, to do this they are
battery powered. This mutation in the physiognomy of the devices requires dif-
ferent approaches in order to measure the performances of new applications such
as the ARC framework presented before.

The goal of this Chapter is to illustrate a new environment specifically created
to measure AnyRun-like solutions. The environment is composed of two main
elements:

• Energy Profiling: Energy profiling has been performed with success for
decades, however, new smart devices have a set of features that require
new solutions. The first problem is in low-granularity of reading frequen-
cies of the battery on modern devices, and the second one is dynamic envi-
ronment where smart devices operates (manly dictated by device mobility).
A solution that has been used to test ARC is presented and evaluated with
a Simple example in the next section.

• Experiment Replication: Offering a fair comparison between different so-
lutions, the AnyRun domain requires the same environment replicated in
different experiments. To approach these issues DroidLab is proposed; a
testbed that offers realistic emulation of a dynamic environment, but it also
offers full control over it.
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The two components will be carefully described in the remaining in the chap-
ter.

4.2 Producing Accurate Energy Profile

AnyRun solutions are mainly meant to increase the user’s experiences. This can
be expressed as the gain, in terms of time and energy consumed, a given appli-
cation obtain when offloading. This leads to a clear need for a detailed under-
standing of the power consumption of a given app.

Due to the poor quality of smartphone internal battery monitoring unit, a set
of freely available solutions that help developers in their work have been pro-
posed in the scientific community. Many of them rely on smartphone hardware
modelling to retrieve accurate power measurements according to Pathak et al.
[2011], whereas others rely on external power monitors to do the same job (Bal-
asubramanian et al. [2009]). On the software side there are several solutions to
study the application behaviour, ranging from static code analysis to the analysis
of the system calls (Yoon et al. [2012]; Li et al. [2013]).

In this section, the design and implementation of a Portable Open Source
Energy Monitor (POEM) is presented. This is a novel solution to overcome the
limitations of current approaches. Based on a portable powermeter, whose de-
sign is in turn based on Battor (Schulman et al. [2011]) and NEAT (Brouwers
et al. [2014]), I extend the state of the art of application analysis with the en-
ergy annotation of the control flow down to the basic blocks, the call graph, and
the Android API calls, been able at the end to find where the energy is spent
inside a given app with the maximum possible accuracy and with the ability to
isolate the Offloading section in our case. Given the power consumption is tied
to the system status (for instance, whether the screen is lit or whether the radios
are on), I also synchronized the energy annotation with a system activities log-
ger. Finally, I offered a powerful and dynamic visualization able to easily isolate
the interesting portioning of the application and analysed where energy is spent.

The rest of the Section is organized as follows: at first I provided more in-
sights in the related work that is needed as background to understand the next
subsection. After I llustrated the details of the design and implementation of
POEM. I concluded the section by illustrating a set of simple examples to clarify
the usage of POEM.
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4.2.1 Related work

I first illustrated the state of the art on the retrieval of accurate power measure-
ments in modern smartphones, after I presented an overview of the state of the
art of the power consumption analysis of smartphone apps.

Energy measurements on smartphones

Power consumption in modern smartphones is generally measured with hardware-
based or model-based techniques. Hardware-based methods are based on the in-
ternal battery unit on the smartphone or external measurement platforms such
as the Monsoon power meter 1. It is notorious that the internal battery unit on
mobile devices is inaccurate and in the majority of cases works in a very high
sampling rate. On the other hand, external power monitors offer high accuracy
and low level sampling rates, but they require tethering the smartphone to a desk,
thus keeping the user outside the testing loop and making it impossible to record
usage patterns and environmental conditions. Model-based (Dong and Zhong
[2011]; Jung et al. [2012]) techniques partly rely on the internal battery unit
(BMU) in the smartphone, but refine the measurements by accurately modelling
the internal hardware consumption. Though these techniques offer an accept-
able level of accuracy, the complexity of modern smartphones makes it virtually
impossible to model every single state according to McCullough et al. [2011]. Re-
cently, solutions based on portable hardware have been proposed. The systems
described by Schulman et al. [2011] and by Brouwers et al. [2014] provide exter-
nal portable power monitoring tools based on a small custom board with memory
and processing capabilities that are connected between the battery and the phone
itself. All current flows between the battery and the smartphone is routed over
a shunt resistor that allows the accurate measurement of the current drawn by
using the Ohm’s Law. All measurements need to be synchronized with the smart-
phone in order to detect which activities are responsible for a recorded energy
pattern. Battor uses predetermined power consumption patterns and NEAT is
physically connected to the phone buzzer, which is dedicated to synchronization
(leading to minimum loss of the user experience). POEM provides a fully open
source version of the portable energy monitor based on the Arduino2 hardware
platform and non-intrusive LED2LED-based (Giustiniano et al. [2012]) synchro-
nization.

1http://www.msoon.com/LabEquipment/PowerMonitor,
2http://www.arduino.cc
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Extracting application behaviour

Several solutions have been recently proposed to determine where the energy is
spent inside an application. AppScope from Yoon et al. [2012] physically mod-
ifies the Android kernel by adding a logger that monitors software/hardware
interactions and provides an estimation model to catch the energy consumption
of the application. Despite its advantages, AppScope does not provide any infor-
mation at the application level (e.g., which method is taking most of the energy).
eCalc by Hao et al. [2012] and vLens by Hao et al. [2012] focus on the appli-
cation side and use static code analysis to extract meaningful information about
the software as well as code-injection to extend and annotate programs in order
to collect information at runtime. The approach in Lit et. al. Li et al. [2013]
uses code injection to annotate and extract information from the application and
employs linear regression to find the energy consumption at the bytecode in-
struction level. These methods all provide high accuracy on the application side,
but fail to consider the control flow of the application (e.g. loops and jumps) and
in many cases they have a significant level of inaccuracy.

My approach focuses on the static analysis of the bytecode and code injection
techniques to obtain measurements with several levels of granularity: class level,
method level, internal control flow level, and Android API level. On the control
flow level I looked at the basic blocks (Lilja [2005] )and employed the technique
known as dominator analysis to extract loops and jumps (Allen [1970]). To
account for the system behaviour, I periodically logged most system activities
(i.e. CPU frequency, network usage, ...) that can be further used to refine the
analysis, in our case, on AnyRun solutions if needed.

4.2.2 System architecture

There are several levels that are simultaneously approached in my solution in or-
der to provide a useful tool chain to accurately measure the power consumption
in modern smart devices. POEMs works at:

• hardware level, where I provide a portable external power meter.

• system level, where I provide an Android system logger.

• software level, where I provide an offline code analysis tool to extract the
internal properties of the application as well as a code-injection mechanism
to annotate the internal state of the application to track what happens at
runtime.
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Figure 4.1 shows the path that must be followed in order to use the POEM.
The first step consists in the annotation and extraction of the meaningful features
from the application’s bytecode. The second step is to run the application and
simultaneously collect the traces with an external power meter and with the
phone logger (basic blocks, method usage, and system status). The final step is
the analysis and the visualization of the results.

Figure 4.1. The various phases needed to analyze the power consumption of a
specific application.
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Hardware Layer

The core of the portable power meter prototype is the Arduino Leonardo board.
It uses the ATmega32u4 micro controller with 32KB flash memory and 2.5KB of
SRAM Memory. Arduino offers 20 digital I/O pins and 5 Analog pins. The ana-
log pins can read signals from 0 to 5 V and their ADCs have a 10 bit resolution
(roughly 5 mV). The minimum reading time for an analog pin is 100 microsec-
onds, which corresponds to a maximum reading frequency of 10KHz.

On the smartphone I used a rooted Galaxy Nexus smartphone 3 equipped
with a 1.2 GHz ARM Cortex CPU, 1 GB of RAM, running Android 4.3 Jelly Bean.
I placed a shunt resistor in series with the phone (a shunt resistor is designed
to have a very low ohmic value causing a negligible voltage drop that does not
affect the smartphone), and I used the Arduino ADC to read the voltage across
the shunt resistor, whose value is equal to 0.1Ω in the prototype. The current
through the shunt is the same as the current drawn by the smartphone and can
be computed with Ohm’s law based on the voltage readings. The corresponding
power draw of the smartphone can be obtained as the product of the computed
current and the input voltage (3.7 V for our phone).

To improve the granularity of the readings, I used an op amp to amplify the
voltage across the shunt (by a factor of ≈ 10 in our implementation), and I used
a reference voltage of 3.3 V in the Arduino ADC to achieve a resolution of 12
mW. I extended the Arduino board to save the results to an external SD-Card
and I created an application to track and record the real-time power draw of a
smartphone. The recorded measurements were synchronized with the device so I
knew the energy footprint of the various components of an app. I used LED2LED
communication Giustiniano et al. [2012] between an external LED connected to
the Arduino and the phone camera LED to initiate and terminate the recording
of energy measurements, which were saved to a dedicated file in the Arduino’s
SD-Card. The Arduino board always begins by measuring prior to the phone due
to the duration of the LED pulse and the lead time of the Arduino board has been
found to be fairly deterministic.

System Layer

Many power consumption factors are not directly related to applications (e.g.
screen light). So I provided a system logger that monitored the phone hardware
usage (CPU usage, memory usage, network usage and connectivity, screen light)
and stored the system logcat, which was used to extract other events (e.g. the

3https://www.google.com/intl/us/nexus/
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calls to the Garbage Collector) and stored the logs of the extended version of the
APK (the original APK is extended with code annotations as shown in Section
4.2.2).

Application Layer

Following Hao et al. [2012], I performed a static analysis of the bytecode to
obtain a model that describes the internal properties of the applications (from
classes to method control flow). I then used code injection techniques to mark
all points of interest inside the application: classes, methods, control flow (ba-
sic blocks), and Android API Calls. I pursued the static analysis of the bytecode
instead of the standard code annotation because different compilers added differ-
ent optimizations that might of change the control flow (e.g. method inlining).
Adding code lines prior to compile time may affect those optimizations, thus
leading to significantly different energy consumption patterns. I automatically
extracted the call graphs regarding the internal methods of the application.

For each method I also extracted the control flow basic blocks Allen [1970],
(that may be described as a a portion of code inside a program that has only a
single entry and a single exit point), A control flow graph may be extracted as
shown in Figure 4.2 and marked each single entry point, which allowed us to
follow the runtime path in the control flow of the application, thus providing
detailed information regarding the power consumption of the runtime path.

As most of the execution time of an application is accounted for by loops,
it is essential to determine whether a certain jump instruction corresponds to
a loop. To this end, I applied dominator analysis Cooper et al. [2001], a well
known technique used to retrieve several meaningful pieces of information from
a control flow graph.

In a control flow graph, G = (V, E), where V are the basic blocks (nodes) and
E are their interconnections (edges), a node d ∈ V dominates a node n ∈ V if
every path from the entry node to n must go through d. Any loop in G has a
loop header node that dominates all other nodes in the loop as well as a back
edge from a node back to the loop header. Therefore, loops can be identified by
identifying back edges in G: first I built a structure known as a dominator tree
where there exists a directed edge between nodes a ∈ V and b ∈ V if and only if
a is the immediate dominator of b (i.e., the closest dominator in G), and then I
added all the missing edges that were originally contained in E. A loop exists if
any of such edges goes from a node to one of its dominators. An example is shown
in Figure 4.3, where the back edge from B3 to B2 indicates the presence of a loop.
Once I knew the set of blocks that belong to the loop, I counted the number of
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Figure 4.2. Example of Basic Blocks Analysis: Test.java shows the standard
Java code, Test.class hows the java byte code and Test.bb shows the basic
blocks extracted from Test.class

iterations for each method call and determined the path followed within the
control flow at each iteration. The corresponding energy footprint can then be
determined based on the power traces. This approach arguably offers a much
more detailed view compared to previous approaches because it accounts for the
control flow variations that may occur across different runs due to different usage
patterns that translate into different energy consumption profiles.

Visualization The Visualization toolkit, provided with the tool, provides an easy
and simple way to navigate through classes and explore their details (i.e. control
flow on basic blocks or calls per method). Another interface allows users to load
and parse the traces collected during real time experiments, furthermore those
traces can be visualized in the GUI (in the form of statistics) or are managed by
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Figure 4.3. Example of Dominator Analysis and Loop catching that uses the
structures showed in Figure 4.2 as starting point

exporting them managed with external tools (i.e. Matlab).
With the help of that tool the area of the experiment concerning the offload-

ing strategie can be isolated. Thus if the device status are the same for both
experiment they can be successfully compared.

4.2.3 Limitations

It is almost impossible to measure the behaviour of a piece of software without
affecting its performance. The main goal of this section is to show how much
POEM affects the behaviour of an Android application using a set of simple ex-
amples.

I want to point out that those are not connected to the benchmark problems
used to evaluate ARC. This section only provides an insight about the limitation
of the proposed method with the usage of a set of simple (thus easy to analyse)
problems.

I proceeded by using a well known sorting algorithm, namely Shell Sort,
whose computational complexity is a function of the input size O(n log n). I
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implemented the algorithm in a simple Android application that ran on random
generated array with constantly increasing dimension. Increasing the array di-
mension increases the computational time and thus also the number of records
to be extracted by POEM.

Figures 4.4a-4.4d shows the experimental results. I considered a baseline
scenario where the application is run without any modifications and a modified
scenario where POEM is employed and uses two dimensions of cost: runtime
and energy consumption. Figure 4.4a and 4.4c show, respectively, the runtime
and the energy consumption in the baseline scenario while Figure 4.4b and 4.4d
shows, respectively, the run time and the energy consumption when POEM is
used. Runtime and energy consumption are plotted as a function of the input
size for an individual method call, which serves as a proxy for complexity. I ob-
served that using POEM results increased both runtime and energy consumption
of about four orders of magnitude; this happens because each time a basic block
or a method is run POEM needs to access the file system for logging purposes,
resulting in a deterministic logging cost (in terms of either runtime or energy
consumption) CL. The extra runtime and extra energy consumption represents
the cost of gaining major insight into the operation of an application and does
not affect comparisons among methods. If I let CBi

be the cost of running basic
block Bi (again, in terms of either runtime or energy consumption), then the cost
of the baseline scenario is equal to

∑N
i=1 CBi

and the cost of running POEM on
top of the baseline scenario is given by

∑N
i=1 CBi

+NCi, where N denotes the total
number of basic blocks; therefore, the extra cost of running POEM can be sub-
tracted away and does not affect comparisons among methods (in fact, Figures
4.4a-Figures 4.4c and Figures 4.4b-Figures 4.4d exhibit comparable trends).

4.2.4 Examples of Usage

In order to show the possibile usage of POEM I follow the approach of Hao et al.
[2012] and build a custom-made application that implements three simple prob-
lems, namely:

• B1: 10x10 matrix multiplication

• B2: 10MB file writing on the internal memory

• B3: MD5 hashing over a 10 byte string repeated 20 times

To ensure I have a complete understanding of the application and its methods,
I used a custom-made application as opposed to a commercial application. The
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Figure 4.4. Experimental results on Shell Sort example.

three simple problems, were coded in my custom-made application containing
17 classes (3 of which are the test cases, 1 implements the Main class that calls
the test, and the others are Android support classes), and 23 methods. I ran each
problem 100 times.

After, I extracted the internal method characteristics using basic block anal-
ysis. The results are shown in Table 4.1. I immediately saw that the most com-
putationally intensive problems, is B1 with 7 loops, 12 blocks, and 10 branches.
I would like to point out that the 7 loops are not directly part of the algorithm,
but some of them are needed to randomly generate two matrices.

The costs in terms of runtime and energy consumption are shown in Figure
4.5. I observe that B2 consumes more time and energy compared to others,
which can be explained by looking at its I/O operation. Though B2 has only 2
loops, it accesses the I/O as many as 6 times. I also observe that B1 requires more
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Global B1 B2 B3
block 292 12 4 4
branch 21 10 1 1
loop 10 7 2 3
calls 5 0 0 0

Table 4.1. Internal method characteristics retrieved with the basic block anal-
ysis

energy than B3 due to its extra CPU usage. I also observe that that all confidence
intervals are relatively narrow for B1 and B3 and wider for B2, which suggests
extra system activity triggered by B2’s buffered writes.

4.2.5 Impact of system states

It is very difficult to compare different software entities due to the many vari-
ables at play. For instance, different hardware states result in different energy
footprints (i.e. reducing the screen light dramatically decreases the power con-
sumption). As noted earlier, the solution consists in logging the system status
(i.e. screen lighting) in order to differentiate among different methods or block
calls. A problem that is not addressed with standard logging techniques is the
presence of energy tails due to unclean state transitions, which depend on the
internal characteristics of smartphones.

The presence of such tails may affect the estimation of the energy usage of
whatever task happens to overlap with energy tails. Currently, I address this
problem by disallowing comparisons in two cases: If one of the blocks to be
compared is run immediately after any hardware component has changed status,
and if the one of the blocks to be compared is run in a different hardware state
than the other block (i.e. with different screen lighting). Residual errors may
persist because I cannot expect to capture every possible event that may take
place. I therefore suggest multiple test runs to isolate out outliers and ensure
consistency.

4.3 Accurate Environment Emulation

The dynamic nature of the AnyRun environment requires novel solutions to per-
form accurate and exhaustive experimentation. Since performance is the key
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Figure 4.5. Costs in terms of runtime and energy consumption observed during
the runs of our three simple problems,

element to be studied, performing the study via simulations is not accurate, due
to the difficulty in identifying all the variables involved when executing a piece
of application in a modern device. To overcome this limitation I propose us-
ing DroidLab, a different approach based on emulation. Droidlab is a testbed
for smart devices that has been created to offer the flexibility of a simulation,
as well as accuracy of the execution in a real environment. This section deeply
explains its architecture and its usage in the context of AnyRun testing.

4.3.1 Related Work

Testbed solutions have been widely adopted in Wireless Sensor Networks (WSN)
domain. The main goal of a testbed is to provide easy access to a large number of
devices deployed in a real scenario where researchers can run their experiments
and easily collect their results. A pioneer in that domain is Harvard’s Motelab
testbed built by Werner-Allen et al. [2005]. At its peak in the second part of
the past decade, Motelab provided access to hundreds of sensor nodes (motes)
deployed over three floors in an office building. Motes are managed and accessed
through a web interface where researchers are allowed to deploy their software
and plan the time of their experiments; data is collected into a MySQL server
that receives all the motes data from the backchannel. Many other WSN testbeds
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have also been set up (i.e. Zurich ETH FlockLab by Beutel et al. [2009]), but all
of them share the same basic principle: providing remote access to devices and
letting users set up their own experiments.

As previously mentioned, opportunistic technologies are based on human mo-
bility, an element that is totally missing on WSN-based testbeds. LiveLab by Shep-
ard et al. [2011] uses real devices carried around by real people to offer access
at a real environment. LiveLab is the best possible solution to test OC applica-
tions, however, setting up the experiment is harder compared to Motelab, due to
the participation of real people that could potentially lead to issues with privacy
laws.

Hardware and network emulation in testbeds has been adopted in MovIt from
Giordano et al. [2012] from . where a fully working testbed able to emulate
mobility patterns into real devices was built. MovIt works into a set of virtual-
ized operating systems connected through a controller interface that defines the
connection pattern between them. In the real implementation, the packets have
been filtered trough the MovIT controller, which shapes dynamically the network
taking the parameters from SUMO (Urban Mobility Simulator) from Krajzewicz
et al. [2002]
I plan to propose a completely different approach. I built a smartphone-based
testbed following the Motelab architectural style and I followed MovIt in the
way that it emulates the contacts among devices. Users are allowed to setup
the testbed with their own applications and contact traces, as well as have ac-
cess to a set of real devices where they can monitor the software and protocol
performances into emulated scenarios.

4.3.2 Architecture

Droidlab Ferrari et al. [2013] is a custom, scalable Android Emulation Testbed
that enables protocol testing with real hardware under realistic conditions with
connectivity patterns dictated by contact traces. In DroidLab, contact patterns
are managed in a central server that periodically forwards the new pattern to
the connected devices. Connections in the devices are filtered with iptables 4, a
user-space application that permits to configure the Linux Kernel firewall (usually
implement in the kernel as a Netfilter module). Iptables is currently offered in
the majority of the GNU/Linux distributions including Google’s Android.

A global picture of the testbed is Architecture is showed in Figure 4.6 that
contains the following key components:

4http://www.netfilter.org
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Figure 4.6. DroidLab Architecture

Time Deamon:

The goal of the time-deamon is to process the mobility traces that are part of the
experiment’s input, determine how many devices are involved and connect them
to the predefined trace. Periodically, the deamon sets the devices connections by
looking at the trace and informs all devices by sending messages through the USB
back-channel. The update-time is a parameter that must be set in the contacts
file.

APK Manager

This application manages the Android Applications packages allowing their dy-
namic deploying in the connected devices. Applications are stored and managed
by the APK Manager, which keeps track of their location and dynamically uploads
them to all the Android devices when the related experiment starts and removes
them after the experiment ends.
The APK Manager is responsible to keep the Smartphones clean after each exe-
cution and constantly checks whether the application has crashed, in which case
it removes the application from the phone and sends an alert to the user who is
responsible for the experiment.
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Logger Manager

Logger manager starts a communication with all the Smartphones every time an
experiment is started and puts all the logged-data into a MySQL database. In
case there is no log-data coming out from a smartphone the user is notified.

Device Manager This component has the primary goal to manage the con-
nection between multiple devices using Netfilter as the main tool following the
traces the experimenter has uploaded

4.3.3 Droidlab in AnyRun

DroidLab is the key tool to perform dynamic and exhaustive emulation in AnyRun
domain. Hence, to make it work with POEM a change is needed. POEM re-
quires that the device currently under examination is not connected to the USB
backchannel, instead it logs everything internally. This is necessary because the
USB injects energy into the device, making the POEM’s measurements totally
useless.

4.4 Conclusions

In this chapter, a complete solution to test AnyRun-based applications has been
presented. The solution is composed of two main components; the first, POEM
that allows researchers to have fine-grained power measurement on their ap-
plication and the second, Droidlab, that allows to emulated a realistic network
scenario with multiple and heterogeneous devices.

The key advantage of the proposed solution is that it allows testing AnyRun-
based application on real devices. This is fundamental because in the AnyRun
domain the solution is effective only if it has performance improvements. It is
widely understood that this is very difficult to prove without measuring it directly
on the device.

The testing environment will be used in the next Chapter to deeply investigate
ARC performances in the considered domain using three benchmarks. ARC will
also be compared to state of the art solutions in order to gain more insight into
its behavior.



Chapter 5

Evaluation

5.1 Introduction

As previously introduced the anyrun computing paradigm allows to perform the
offloading of computation into a set of heterogeneous devices that may be located
in different positions (i.e. in the closest proximity or into a remote datacenter).
Basically, there are two main scenarios that I am interested in studying:

• Cloud-Based Scenario: In this case, the device accesses the service on a
high-performance device through WANs communication. The key chal-
lenges in this scenario are mainly connected to WANs communication that
may add a significant delay (even infinite) on the offloading that may lead
to a failures.

• Cloudlet - Opportunistic Scenario: in this case, the device is located in the
proximity and it is accessed through LAN communication mechanisms. The
key challenges there are mainly dictated by the Users mobility that makes
the connection between the hosts very unstable. A second challenge is
the heterogeneity of the devices, their internal characteristics affect the
performance of the offloading.

This chapter shows the empirical investigation I have performed for both sce-
narios. At first, the benchmark problem used to perform the evaluation are pre-
sented and compared. Then, thanks to the testing environment described in the
previous chapter, I presents the setup and the results of the evaluation.

Before concluding the chapter, I will present the evaluation of the perfor-
mances for the ARC extension for CodeMobility.

The key goal of this section is to quantify the cost of moving the code in con-
junction to the data needed for the computational offloading process. The main
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outcome of this analysis is to determine if and in which circumstances moving
the code can be used. More specifically, it is important do determine if the impact
of code mobility on the offloading process can be tolerated.

The chapter concludes by highlighting the key findings that I have observed
during the process.

5.2 ARC Evaluation Benchmarks

To investigate ARC’s performances I selected three benchmark problems. They
are well known problems from the literature and used into a wide variety of
applications. They are:

• The Ant Colony Optimization (ACO) by Dorigo et al. [1996]. algorithm is
a an artificial intelligence technique based on the pheromone-laying, food-
searching behavior of ants. ACO algorithms have been applied to a wide
range of combinatorial optimization problems and have also been used
to find near-optimal solutions to the travelling salesman problem (TSP). I
choose a TSP problem with 52 cities that is computationally intensive but
it is very light in sending data.

• Face Recognition (FR): we use the eigenfaces approach proposed by Turk et.
al by Turk and Pentland [1991]. The widely adopted eigenfaces approach
can recognize a face in a user-provided image by comparing features from
an existing database of faces. The eigenfaces approach works in an unsu-
pervised manner to learn and recognize new faces. This benchmark is the
heaviest in both computation and data exchanged between hosts.

• Character Recognition (CR): we use a pre trained Kohonen Neural Network
by Kohonen [1990] trained with 32 pre-parsed sets of printed characters
and then use the neural network to identify 1000 randomly chosen char-
acters within the aforementioned sets. This case try to stay in another
extreme where the comunication problem is light compared to the cost of
transmission.

The benchmarks selection has been made to emulate the problems that are
usually connected with Computation Offloading. The ACO benchmark requires
the least amount of transmission costs compared to the others but it has the high-
est computational needs. Face Recognition has the highest transmission cost be-
cause it has to share a set of images but it can be compared to Character Recogni-
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tion in term of computation. At the end, Character recognition is the benchmark
that requires fewer resources in both the considered dimensions.

5.3 Cloud-Based Scenario

Two main physical actors play a role in this scenario:

• Amazon Elastic Compute Platform EC2 as a state of the art solution for cloud:
EC2 is the central part of the Amazon.com’s cloud computing platform also
know as Amazon Web Services. It allows its users to rent a virtual computer
where they can run their own applications. A user can launch/ and termi-
nate as many virtual instances as she needs and at the end it pays only
for the hours they have been working. Another feature of EC2 is the geo-
graphical distribution where the instance can be started and executed in a
set of predefined locations (i.e. EU or USA). On EC2 I have used a Ubuntu
Virtual Machine in a standard EC2 setting with a single Intel Xeon CPU and
0.5GB of RAM Memory.

• Google Galaxy Nexus smartphone equipped with a 1.2 GHz ARM Cortex
CPU, 1 GB of RAM, running Android 4.2 Jelly Bean.

The key goal of the following section is to study the behaviour ARC in case
the Cloud is used as offloading candidate. To this extent I proceed as follow: at
first I execute the program locally on the mobile device, the key idea here is to
have a common baseline. After, I run the benchmarks with ARC and access to
EC2. The Cloud is accessed by using three type of WAN connections:

• 3G: indicates the third generation of mobile telephony standard it has been
introduced in 1998 and has experienced several evolutions. The current
standard in Switzerland is named HSDBa that has as maximum data rate
14.4 Mbps.

• 4G: it indicates the fourth generation of Mobile Telephony standard, it has
been introduced in 2006 and it increases by more than one order of mag-
nitude the data rate of the 3G standard, with theoretical maximum speed
up to 100Mbps.

• LAN this is the case when the mobile device is connected to the local LAN
via WiF and exit to the internet with high-speed connectivity, in this sce-
nario I used the SUPSI’s WAN access which is done via fiber optics reaching
a data rate up to 1Gbps.
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ACO FR CR
Local 5 15 30
3G 10 20 32
4G 20 36 50
Wired. 20 50 52
TOT 75 121 164

Table 5.1. Number of Experiments per Benchmark in the Cloud-based Scenario

Parameter Definition
Local Executing the benchmark in the current device (Seeker)
3G Executing the benchmark it the EC2 Cloud via 3G WAN connectivity
4G Executing the benchmark it the EC2 Cloud via 4G WAN connectivity
LAN Executing the benchmark it the EC2 Cloud via HighSpeed wired connectivity

Table 5.2. Parameters Definitions.

In the remainder of this section, I show the results of the experiments. To
carefully evaluate each possible scenario I’ve executed up to 15 hours of con-
tinuos runtime (1 hour per experiment), the overall number of experiments is
illustrated in Table 5.1.

The figures 5.1, 5.2, and 5.3 illustrate the main outcomes of the experiments
performed for each considered WAN access standard. Table 5.2 shows the def-
inition of the parameters used in the figures; each illustrates the distribution of
the energy consumption of a single method call and highlights the mean as well
as the 95% confidence intervals.
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Figure 5.1. Energy consumption of the ACO benchmark in the four WANs
Technologies.

As expected the benchmark with the biggest reduction compared to local ex-
ecution is the ACO benchmark. The key reason is the small amount of data ex-
change (only a data structure containing a 52x52 matrix is shared) and in its high
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Figure 5.2. Energy consumptions of the FR benchmark in the four WANs
Technologies.
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Figure 5.3. Energy consumptions of the CR benchmark in the four WANs
Technologies..

demanding computational needs. The aforementioned properties (high compu-
tational demand and low data exchange) make the ACO the perfect candidate
for WAN-based offloading. But, even in this scenario, the 3G network latencies
add a significant cost almost double the cost of 4G and LAN connectivity. Also, in
this case, there are no differences between 4G and High-speed LAN connectivity.
In the last WANS technologies (4G and Fiber Optic) in both the latency times are
fast enough and the cost is mainly dictated by the computation time.

On the other hand, both CR and FR benchmarks provide practically zero gain
when the 3G WANs access is used but they provide interesting results with other
two WAN access technologies. The explanation is in the benchmark transmission
costs that are significant compared to ACO, consequently, the 3G WANs access
does not offer enough speed to be effective but when 4G and LAN technologies
are used they let the two benchmarks improve their energy footprint, but the
improvement is not so sensible compared to ACO because, as said before, ACO
is the benchmark that requires more computation compare do transmission cost.

It is important to mention here that the results of this section empirically
demonstrate that the main outcome of the analysis presented by Cuervo et al.
[2010] is still valid. In fact, Cuervo et al. reconsider the usage of 3G for of-
floading and move to cloudlet approach due to the prohibitive latency times in
that domain. This work extends the mentioned analysis by: at first considering
multiple WANs access technologies and second by proving the results empirically
with a computation offloading framework.
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Parameter Values
Solutions Compared ARC, MAUI
Benchmark Problem Ant Colony Optimization, Facial Recognition, and Character Recognition
Network Typologies Local, Fully Connected, Dynamically
Number of Devices Single device, and Multiple Devices

Table 5.3. Emulation variables.

Exp. Scenario Mean Time [s] Median Time [s] Mean ED [Wh] Median ED [Wh]

Local 110.2 111.8 1.04 1.04

ARC Full 11.4 11.2 0.08 0.08
Dynamic 20.0 11.0 0.18 0.08
Dyn. MD 19.7 11.5 0.08 0.08

MAUI Full 11.3 11.1 0.10 0.10
Dynamic 103.5 104.8 1.04 1.04

Table 5.4. ACO Results Table (MD stands for Multiple Devices and ED stands
for Energy Drain)

In conclusion, the key finding from this experimentation phase is that the
cloud solves computational offloading problem very efficiently. However, in some
circumstances (that strongly depends on the amount of data exchange and on the
WAN access technology), the cost to use the Cloud is too prohibitive and this may
cause failures in offloading or a sensibile reduction of the benefits.

The question to answer at this point is: is it possibile to use resources located
in the proximity and accessed opportunistically to overcome the limitation posed
by Cloud? The next section will answer the question.

5.4 Opportunistic / Cloudlet Scenario

In this scenario, I tested ARC against MAUI1 in three experiments (plus one that
consisted in executing the benchmark the local device) that covers all the pos-
sible alternative use-cases in opportunistic domain. Two of them only use a
single high-end device (the MacBook Pro) to carry out a fair comparison with

1I used my own Android implementation of MAUI
, available at http://code.google.com/p/maui-android.
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Figure 5.4. ACO energy consumption and runtime. MD stands for Multiple
Devices.

MAUI, which is designed to work with a single piece of hardware located nearby
(Cloudlet). The last one is designed to illustrate the benefits on using multiple
devices, thus it will be performed only with ARC.

The experiments are:

• local execution: all benchmarks are run on the Nexus2 smartphone to ac-
quire a performance baseline;

• fixed network typology with a single high-end device (labelled as Full): all
benchmarks are run with full connectivity;

• dynamic network typology with a single high-end-device (labelled as Dy-
namic): all benchmarks are run with an emulated dynamic network typol-
ogy;

• dynamic network typology with multiple and heterogeneous devices (la-
belled as Dynamic with multiple devices): same as above, but with an
augmented testbed.

2https://www.google.com/intl/us/nexus/
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Figure 5.5. ACO Dynamic: runtime distribution with ARC and MAUI.
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Figure 5.6. Battery usage (as a proxy for energy consumption) over time in a
sample ARC run.
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Figure 5.7. Mean runtime as connectivity conditions fluctuate in a sample ARC
run.

The centerpiece of the experiment setup is the Google Galaxy Nexus smart-
phone equipped with a 1.2 GHz ARM Cortex CPU, 1 GB of RAM, running Android
4.2 Jelly Bean. Our testbed also features an Apple MacBook Pro laptop with an
Intel iCore 7 CPU, 4 GB of RAM, running Mac OS X Lion (10.7.5). The setup
also includes two extra Galaxy Nexus smartphones and a Samsung Galaxy Tablet
2 equipped with 1GHz dual core Processor, 1GB of RAM, running Android 4.0
(Ice Cream Sandwich). I collected data regarding the various runs of the bench-
marks and stored it on the smartphone’s SD card; runtime measurements are
based on the internal clock. The dynamic scenarios are based on the Cambridge
iMote data traces by Scott et al. [2006b] available on the Crawdad (cra [2013])
archive offered by Dartmouth college. The iMote traces contains the data col-
lected from 70 users during INFOCOM 2006, where users were asked to carry a
set of Bluetooth-based devices that periodically scanned the users? neighbours.
I subsample the dataset choosing five devices and reduced the sampling ratio
(from 5 minutes to 2 minutes) to generate a more dynamic typology.

In the remainder of this section, I explain the results of the experiments and
to carefully evaluate each possible scenario I’ve executed up to 80 hours of con-
tinuous runtime (up to 7 hours per experiment). The the overall number of
experiments is illustrated in Table 5.5.
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ACO FR CR
Local 250 19400 1680
Full Maui 1260 126000 12600
Full ARC 1270 126000 12600
Dyn. MAUI 900 84000 6300
Dyn. ARC 280 23000 1940
MD ARC 1400 250000 21000
TOT 5360 621’00 54’440

Table 5.5. Number of Experiments per Benchmark in the Opportunistic Sce-
nario

ACO Benchmark

For each experiment I ran both ARC and MAUI over a complete battery cycle
(ranging from 4 up to 7 hours). Figure 5.4 illustrates the distribution of the en-
ergy consumption and runtime of a single method and highlights the mean as
well as the 95% confidence intervals, while Table 5.4 offers a comparison of the
mean and median. With a fully connected typology, there is only a small set of
differences that are probably due to system or network vagaries, as observed by
Mytkowicz et al. [2009]. Both mean and median values are comparable and the
distribution of the runtime values and the energy consumption values are there-
fore very narrow. Key differences between MAUI and ARC emerge in the dynamic
connectivity scenario, where ARC’s ability to better manage challenging typolo-
gies becomes clear. In the presence of dynamic connectivity, ARC outperforms
MAUI in both dimensions of interest by up to a factor of 10. With dynamic con-
nectivity, MAUI adapts its offloading strategy based on network latency. In our
emulated network, latencies are subject to wide scale changes ranging from mil-
liseconds to minutes. MAUI maintains a moving average of the network latency,
sampling it each time offloading is performed and at regular intervals (every
minute) if there is no offloading. MAUI uses past method execution statistics
to make offloading decisions; if it decides to offload and the network connec-
tivity breaks down, MAUI eventually reverts on local execution upon reaching a
timeout determined on the basis of past method execution statistics; such statis-
tics are updated to reflect the penalty of having tried to offload in unfavorable
circumstances, and even if network connectivity is restored, decisions remain
strongly biased toward local execution, thus resulting in extended runtimes and
increased energy consumption. This leads to the behavior illustrated in Figure
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Figure 5.8. Character Recognition: energy consumption and runtime. MD
stands for Multiple Devices.

5.5, which shows the distribution of the runtime for both ARC and MAUI with
dynamic connectivity. With ARC, I observed a bimodal distribution reflecting its
ability to quickly adapt to changing connectivity conditions: local runs (responsi-
ble for the higher mode) are only performed when no other options are available
due to the lack of connectivity, while offloading to the laptop is performed when-
ever possible. On the other hand, once MAUI reverts to local execution, it sticks
with it independently of the connectivity conditions.

When ARC is run over multiple devices (5.4), the Galaxy Nexus 3 smart-
phones lead to timeouts (as the CPU load and the battery level of all our Galaxy
Nexus 3 smartphones is roughly the same, the actual runtime is roughly equal to
the local runtime, but it is augmented by the round-trip time for communication).
Therefore, ARC correctly chooses to leverage the behavior of the higher-end de-
vices in the testbed, namely the MacBook Pro laptop and the Samsung Galaxy
Tab 2 tablet. (In practice, ARC might choose to offload to smartphones identi-
cal to the initiator in case to extend its lifetime.) When both the laptop and the
tablet are reachable, the laptop is preferred; the tablet is only picked when the
laptop is unavailable. This leads to the behavior illustrated in Figure 5.4: ARC
with multiple devices behaves similarly to ARC with dynamic connectivity; the
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Figure 5.9. Facial Recognition: energy consumption and runtime. MD stands
for Multiple Devices.

extra data points that lie roughly in the middle of the distribution range and are
only present in the Multiple Device results correspond to jobs offloaded to the
tablet.

Figure 5.6 illustrates the battery drain over a sample ARC run that covers
a whole battery cycle. ARC and MAUI behave similarly with fixed connectivity
(offloading results in a 110% extension of the battery lifetime compared to local
execution). With dynamic conditions, ARC’s battery lifetime gain is much more
significant than MAUI’s, resulting a battery lifetime extension of about 62% com-
pared to MAUI and as much 71% with multiple devices; in such conditions, MAUI
only achieves a modest 13% gain compared to local execution.

Figure 5.7 shows a sample ARC run with dynamic connectivity and illustrates
(Boolean) connectivity (in red) and the moving average of ARC’sruntime (com-
puted over a 2 minute time window that matches the contact duration if the trace
fed to the testbed for this run). It is clear that ARC takes fulla dvantage of all the
available connectivity opportunities.
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Character Recognition and Facial Recognition

Figure 5.8 shows the results for the character recognition benchmark in the di-
mensions of interest. Similarly to the ACO benchmark, both ARC and MAUI
results in a significant offloading gain with fixed connectivity and ARC outper-
forming MAUI with dynamic connectivity. The results with multiple devices are
also fairly close to the ones from the ACO benchmark. Figure 5.9 shows the
results for the facial recognition benchmark in the dimensions of interest. Due
to the nature of this benchmark, the results have a significantly wider statistical
distribution. Each image is loaded and parsed, resulting in a large number of I/O
operations that affect virtual memory management, leading in numerous calls to
the Garbage Collector that create extra work, affecting both the runtime and the
battery usage.

The key insight from these two benchmarks is that ARC is able to adapt to a
different kind of algorithm that has different spatial and temporal needs in terms
of computation. In fact, FR has higher communication costs compared to ACO,
but a comparable computational cost. In CR, instead, communication costs as
well as computational costs are lower compared to FR.

5.5 CodeMobility Evaluation

The goal of this section is to evaluate the ARC extension for Code Mobility. Specif-
ically, the goal of this section is to quantify the cost of moving the code in conjunc-
tion to the data needed for the computational offloading process determining if
and in which circumstances moving the code can be used.

Due to its peculiarities the CodeMobility extension for ARC can be evaluated
separately. With respect to the first senario (Cloud) CodeMobility is totale use-
less because it is reasonably presume that the cloud already owns the code or
it can easily access it on the application store or any other file sharing system.
From Opportunistic perspective Code Mobility it is important because without
any central authority it is unthinkable that a given provider already owns the
code but this activity is performed only the first time a given seeker offload to
a given provider and only in case the last one do not owns the code. Thus, the
evaluation focus on quantifying the overhead for each given code and at end
concludes by a reasoning over the overall offloading process.

To evaluate the code Mobility inside ARC I used three devices; they are:

• Google Galaxy Nexus smartphone3: equipped with a 1.2 GHz ARM Cortex
3https://www.google.com/intl/us/nexus/
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(a) Energy consumptions of the ACO
benchmark
in the four scenarios.
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(b) Energy consumptions of the FR bench-
mark
in the four scenarios.

CPU, 1 GB of RAM, running Android 4.3 Jelly Bean.

• Apple MacBook Air laptop: with an Intel iCore i7 CPU, 7 GB of RAM, run-
ning Mac OS X El Capitan (10.11.3).

• Samsung Galaxy Tablet 3: equipped with 1.2GHz dual core Processor, 1GB
of RAM, running Android 5.1 (Lollipop)

All the measurement are taken with the maximum screen brightness setting
so its overhead can be easily filtered out.

I run ARC with and without the code extension to compare the extra costs
generated in this process.

The first action consists in extracting the DEX and JAR files from all the three
benchmarks; the resulting files are illustrated in Table 5.6.

The fact that the JavaVM and the Dalvik/ART VM use a different set of in-
structions is clearly visible in the table. In both ACO and CharacterRecognition



87 5.5 CodeMobility Evaluation

OCR Jar
0

10

20

30

40

50

E
n
e
rg

y
 [
m

J
]

OCR Dex
0

10

20

30

40

50

E
n
e
rg

y
 [
m

J
]

OCR PC
0

10

20

30

40

50

E
n
e
rg

y
 [
m

J
]/
1
0

OCR TAB
0

10

20

30

40

50

E
n
e
rg

y
 [
m

J
]

Figure 5.11. Energy consumptions of the OCR benchmark
in the four scenarios.
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File Size [ KB]
ACO.jar 8.05
ACO.dex 9.09
FaceRecognition.jar 868.77
FaceRecognition.dex 700.80
CharacterRecognition.jar 16.31
CharacterRecognition.dex 18.74

Table 5.6. Files generated in the framework and their size.

benchmark the JAR file is lighter compared to the DEX file but in FaceRecogni-
tion I experience exactly the opposite situation. The reason lies in the fact that
FaceRecognition uses the Colt math library4 that employs a large set of primitive
instructions that are slightly more optimized in the Dalvik/ART virtual machine.

I evaluate the systems at runtime inside the Galaxy Nexus phone. The key
performance metric is the extra cost of sending the code.

For each benchmark I performed four distinct experiments:

• Offloading with the JAR file to the laptop (JAR)

• Offloading the DEX file to the tablet (DEX)

• Offloading to the laptop without the overhead given by the JAR (PC)

• Offloading to the tablet without the overhead given by the DEX (TAB)

The results for the ACO benchmark (are illustrated in Figure 5.10a; in this
case I the overhead of the inclusion of extra files into the offloading request
is rather negligible due to the computational-intensive nature of the ACO. The
results of the FR benchmark are presented in Figure 5.10b in this case the cost of
sending the DEX and JAR file impacts the overall cost of the offloading with up to
10 mJ in the JAR to laptop case. This is because the weight of the JAR file is more
significant compared to the other scenarios while the computational intensity of
FR is relatively lower. The results of the last benchmark (OCR) are presented in
Figure 5.11; this benchmark is not very much computational intensive and, even
if the code size is quite small, transferring it has a sizable impact on the overall
process.

In conclusion, I can argue that the overhead of code mobility is generally
negligible in the context of the offloading process. Thus, this solution can be

4https://dst.lbl.gov/ACSSoftware/colt/
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adopted to extend the device reachability of ARC thanks to a more dynamic and
rich framework.

5.6 Conclusions

This section has illustrated the evaluation of the ARC framework for two key
scenarios. The first is the cloud-based scenario where ARC is executed in con-
junction with cloud-based platform and the second case is in my local testbed
with a set of heterogeneous devices. We see in both cases that ARC is able to
manage and decide whether is the case to offload or not into the proposed re-
mote device.

The first set of experiments demonstrated that relying on cloud for offloading
is beneficial but also poses a set of limitations (as previously demonstrated by
Cuervo et al. [2010]; basically problems with high transmission costs but low
computational needs are less favorable to have gain when executed on distant
cloud to to WANS latency times.

The second set of experiments compare ARC with MAUI (Cuervo et al. [2010]).
Overall, in all the experiments I observe that ARC and MAUI offer comparable
performances with stable connectivity and that ARC significantly outperforms
MAUI with dynamic connectivity by up to a factor of 10 in the dimensions of
interest.

Within the experiment I have observed several outlier values most likely due
to system activity (Mytkowicz et al. [2009]). If multiple higher-end devices are
available, ARC naturally benefits from a performance improvement. I also expect
that ARC’s performance would further improve as the number of higher-end de-
vices increases.

The last experiment in the chapter illustrates the evaluation of the ARC ex-
tension about the code mobility showing that it has a very small impact in the
offloading process with the considered benchmark problem. Thus, with the pro-
posed benchmark this solution can be adopted without affecting the overall sys-
tem performances. However, currently code mobility add a set of security treats;
malicious hosts may use this technique to gain sensible information from the de-
vice by sending their costum code. This risk is even more exacerbated due to the
fact that root access is required on the seeker side. A sandboxing mechanism is
provided in ARC specifically to mitigated this risk.

In this section I have also evaluated ARC, by performing computational of-
floading to any resource-rich device willing to lend assistance, ARC is advanta-
geous compared to local execution with respect to a rich array of performance
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dimensions. The device may be located in proximity and accessed opportunisti-
cally or via local infrastructure (i.e. cloudlet domain) or via WANs, in case it is
located in a distant cloud.

The key lesson learned is that ARC is able to leverage complex and dynamic
network conditions and choose the best provider for its computational offloading
needs. It is important to mention that ARC behaves selfishly., Is a key element
that is needed due to the partial and incomplete view of the network.

In fact, a possible solution to avoid the selfish behaviour needs a complete
view of the network (moving to a NP-Hard combinatorial problem) that it can
only be maintained with a centralized infrastructure. This is not the case in an
opportunistic enviroment. Alternative solutions may be based on incentives in
several forms; for instance a given industry may offer offloading as a service
and place a set of several machines in proximity that offer this service and are
accessed opportunistically via ARC. The reward in this case will be based on the
common form (e.g. advertisement).

The privacy and security solutions presented in this thesis will be further im-
proved in our forthcoming investigation in the CHIST-ERA UPRiSE-IoT 5 project.

5http://uprise-iot.supsi.ch



Chapter 6

Conclusion and Outlook

In the dissertation I have proposed a novel paradigm for computation offloading
named anyrun computing, whose goal is to use any piece of higher-end hardware
(locally or remotely accessible) for offloading a portion of the application.

Several contributions have been provided in this dissertation; the first is the
definition of a set of use cases where anyrun computing may be beneficial. Then,
I provided the analytical definition of the AnyRun Computing paradigm. Later
in the dissertation, I introduced the software solution I built to approach the
problem. I illustrated the environment created to investigate its behavior and I
concluded with a detailed evaluation of the software solution.

Basically, the dissertation offered a complete overview from both an analyt-
ical and technical point of view for the AnyRun Computing paradigm clearly
illustrating its advantages and its limitations.

6.1 Summary of the main contribution

The dissertation has provided four fundamental contributions that are:

6.1.1 AnyRun Computing Fundamentals

Cloud computing is very efficient but there are situations where it may not be
able to satisfy the requests of its users efficiently. A set of examples are illustrated
in Table 6.1.

The limitations due to latency times have been investigated by Cuervo et al.
[2010]. In the dissertation I performed a set of similar experiments to measure
the cost of offloading into the cloud. The key result is that the latency limitation

91
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Use case Performances

Latency times: The bigger the payload, the worst the cloud-based
solution performs.

Roaming: Those costs make the offloading process prohibitive
for the majority of users.

Mobile Plan Costs Mobile plans pose a set limitations on the amount of WAN
free-data usage.

Network Unreachable the morphology of the terrain or the building architectural
characteristics may block access to mobile WANs.

Table 6.1. Scenarios where Cloud-based solutions are not efficient.

experienced in Cuervo’s experiments is still valid nowadays with modern WANs
technology.

The previously mentioned limitations only apply to the cloud. cloudlets de-
vices are no longer restricted to WANs technologies limitations because the hard-
ware is located in the closest proximity. However, the Cloudlet approach has a
huge limitation due to the fact that hardware must be pre-deployed and known
a priori. For this reason the cost to give full Cloudlet coverage is definitely pro-
hibitive.

6.1.2 Analytical Definition of the AnyRun Computing paradigm

To approach the challenges illustrated in the use cases presented previously, The
solution in the form of a novel- computing paradigm is AnyRun computing and
described as follows:

Rather than assuming the existence of a dedicated piece of higher-end hardware
and being rigidly tied to it, AnyRun may elect to use any piece of hardware (acces-
sible locally or remotely) that can do the job better (in terms of impact on the local
energy footprint).

With AnyRun Computing I removed the boundaries that tie the solution to
an infrastructure by adding locally available devices to augment the chances to
succeed in offloading.

To achieve the goals of the dissertation it is fundamental to have a clear view
of all the steps that take part in the offloading process. To this extent, I firstly
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provided a categorization of such activities combined with their interactions and
assessed the impact on the system.

A simplified view is: the process starts in the host that is interested in of-
floading a portion of its application (Seeker), at the beginning it has to select the
best remote host to satisfy its request (Provider). When the provider has been
selected the Seeker forwards the data and eventually the code that must be exe-
cuted and goes to sleep. It will be waked up from the selected provider when it
forwards the results of the offloading or eventually, it will be waked up by a timer
indicating that the process takes too long to return the results thus the execution
is recovered locally.

Afterwards, an analytical formulation of the AnyRun computing problem where
the key costs is provided.

it has been shown that the problem is a combinatorial optimization problem
that is notoriously know to be NP-Hard and, due to the absence of a centralized
view, traditional solution cannot be used.

I proposed a solution based on the NaïveBayes inference model to select that
it has been adapted to select the best device on which to forward the offloading
of computation; in this sense, offloading is considered advantageous when there
is a reduction of the energy footprint of the smart device.

6.1.3 The ARC Framework

To empirically evaluate the solution I propose for the anyrun computing paradigm,
I have developed the ARC framework. This is a novel framework whose objec-
tive is to decide whether to offload or not to any resource-rich device willing to
lend assistance is advantageous compared to local execution with respect to a
rich array of performance dimensions.

The system is built on top of the SCAMPI opportunistic computing framework
(Conti et al. [2010a]; Pitkänen et al. [2012] )developed within the FP7 EC project
SCAMPI (Service Platform for Socially Aware Mobile and Pervasive Computing)1

and it comprises two key entities:

• ARC Seeker: is the device that is in needed to offload the computation, and
it generates the offloading request.

• ARC Provider: is a device that is willing to accept to take care of the Seeker’s
computation (that can be either Cloud, Cloudlet, or any other device in the
proximity).

1http://www.ict-scampi.eu/
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The core of my solution is the Inference Model which receives a rich set of
information about the available remote devices from SCAMPI and employs the
information to profile a given device, in other words, it decides whether offload-
ing is advantageous compared to local execution, i.e. whether it can reduce the
local footprint compared to local execution in the dimensions of interest (CPU
and RAM usage, execution time, and energy consumption). The output of the In-
ference Engine (that implements the proposed solution to select the best remote-
host) is an empirical estimate of the probability that offloading is advantageous.
The dynamic and distributed nature of ARC also poses other challenges. In the
dissertation I propose a solution to physically move a set of instructions between
the devices. This is needed because it is assumed that the Provider already owns
the right set of instructions to process the data received and during the offloading
it is simply impractical due to memory limitations. In fact, there is no limits of the
number of applications and consequently to the line of code that can be remotely-
execute in AnyRun domain. This new feature increases the device-reachability
of ARC but it also increments the security threats. For this reason, in the disser-
tation I provided a preliminary solution that addresses the security challenges in
AnyRun domain composed by:

• A dynamic authentication mechanism that uses traditional solutions in case
the framework selects to use a device located behind an infrastructure (i.e.
Cloud/Cloudlet) but it uses a pin-based authentication in case the device
is located in the proximity.

• A Sanboxing functionality to blocks undesired access on the provider side,
in essence the framework isolates and block the calls that access local in-
formation.

The security solution right now is only partial and needs further studies that
will be provided in the Uprise-IoT project 2.

6.1.4 Detailed Evaluation of ARC

To empirically evaluate ARC I presented a set of experimental results on cloud,
cloudlet, and Opportunistic domain. In Cloud I used the state of the art in cloud
solutions over a set of significant benchmark problems and with three WANs
access technologies (i.e. 3G, 4G, and high speed WAN). The main outcome is
that the cloud is an appealing solution for a wide variety of problems, but there
is a set of circumstances where the cloud performs poorly (as discussed before).

2http://uprise-iot.supsi.ch
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Moreover, in the evaluation I showed the main limitation (in terms of latency)
in adopting a cloud-based approach that is strictly connected to the difference
between computation and transmission costs. This essentially confirms the re-
sults that Cuervo et. al. provided more by Cuervo et al. [2010] more than 4
years ago.

The second part of the evaluation is done in opportunistic/cloudlet scenarios
where I used my custom-made testbed to compare ARC and MAUI (Cuervo et al.
[2010]), the state of the art in computation offloading. To this extent, I have
performed two distinct set of experiments: the first with a cloudlet environment
and the second with an opportunistic environment. The key outcome is that ARC
matches the performances of MAUI in cloudlet environment, but it outperforms
MAUI by roughly 50% to 60% in opportunistic domain.

6.2 Future Directions

The work presented in the dissertation extends the state of art in opportunis-
tic computing and computational offloading strategies and unifies them with an
efficient inference mechanism to select the best host in such dynamic domain.
The work in the dissertation also extends the state of the art in power measure-
ment proposing a portable power monitor and on privacy preserving mechanisms
proposing a tool to automatically build a layer between the applications and the
sensitive information accessible on the smart device.

Other possible impacts can be identified and foreseen in the paradigms pre-
sented in Section 2 , more specifically:

• Internet of things and fog computing: computational offloading and privacy-
preserving mechanisms are fundamental in the domain of IoT and fog com-
puting. This kinds of devices are usually very small and powered by an in-
ternal battery. Thus, computational offloading solutions may be very use-
ful to reduce their energy footprint. On the other hand, privacy preserving
mechanisms are fundamental because sensitive and personal information
may be interfered even from unexpected devices.

• Elastic computing: in this domain, the system adapts its resources depend-
ing on its current load. Traditionally this is done by moving and allocating
virtual machine instances, due to the dynamic nature of the system and
difficulty in estimating future request rate, the algorithm presented in ARC
can be a good candidate to perform such kind of inferences.
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• Public resource Computing: the solution presented in the dissertation may
be beneficial in this domain thanks to the work on code mobility.

Currently, the results of the dissertation have been successfully applied in
several applications:

• The Project CHIST-ERA UPRISE-IoT 3 has been started specifically to study
the security and privacy issues that arise in smart and dynamic domains.
The bottom layer of the solution is the sandboxing solution (mockingbird)
proposed in the dissertation. The key goal of the project is to increase
security at different levels in both IoT and smart devices with a strong focus
on applied cryptography. Authentication solutions in distributed domains
will be part of the solution and investigated as well.

• The Power Monitor Solution (POEM) presented as part of the testing en-
vironment (Section 4) has been used in several circumstances. It has been
the tool used in the CHIST-ERA Macaco Project 4 as the solution to measure
and compare the cost of reading the data sources in order to have a clear
picture of the impact that the software produced in the project has on the
user’s device. The solution has also been used from Vanini et al. [2016] as a
measurement tool to compare different solutions in the activity recognition
domain.

From the work presented I also envision a set of application scenarios that
may be a good exploitation strategy in the future, they are:

• Home Scenario: ARC may be beneficial to reduce the use of GPUs in virtual
reality applications. Currently, virtual reality has become a key feature for
all the smartphones, but it heavily impacts the local GPUs and consequently
the energy footprint of the device. The key characteristic of this computa-
tion is the enormous amount of information processed and the strict time
constraints (one frame one for eye usually per time frame-rate). With ARC
will it be possible to offload part of the GPU into a connected device (i.e.
your computer) to have significant improvements in the devices? lifetime
and having better and more realistic images due to the access to powerful
hardware resource. This problem is hardly approachable by cloud solutions
due to the amount of data exchanged, and for this reason, the solutions
currently proposed by the academic community use the cloudlet approach.

3http:/urpise-iot.supsi.chj
4http://macaco.inria.fr/
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• Cafeteria Scenario: assume that a cafeteria is interested in acquiring more
customers, and decide to implement a new service that allows the users to
play their favorite games faster on their mobile devices without depleting
the battery. This service may be implemented with means of ARC.

• Public Transportation Scenario: nowadays most public transportation like
trains or even airplanes offer on-board WiFi to their customers. It is known
that the WAN connectivity when traveling is very unstable or even not ac-
cessible. I envision a solution where each transportation method carries a
cloudlet-like device that performs the computation when it receives the re-
quest via ARC. The device may also use ARC to forward the requests to the
cloud when the WANs connectivity is favorable (and use ARC to perform
dynamically the evaluation).

The key aspects that I am interested in investigating further are security and
privacy (thanks to the CHIST-ERA Uprise-IoT project mentioned before). I am
interested in performing an empirical evaluation in a real application (i.e. virtual
reality use-case illustrated before). Another aspect I am interested in is to include
the costs of accessing the WAN in the AnyRun equation. This extension will
allow the users to better define their preferences in the solution to adopt for
their offloading needs.

6.3 List of Publications

6.3.1 Peer-reviewed Articles

1. Ferrari, Alan, Vanni Galli, Daniele Puccinelli, and Silvia Giordano, . "On the
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Application." Accepted for publication, World of Wireless, Mobile and Mul-
timedia Networks (WoWMoM), 2017 IEEE 18th International Symposium
on A. IEEE, 2017.
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footprint with anyrun computing." Computer Communications 81 (2016):
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