
 

University of Bradford eThesis 
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access 
repository. Visit the repository for full metadata or to contact the repository team 

  
© University of Bradford. This work is licenced for reuse under a Creative Commons 

Licence. 

 

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


 

 

TRUST COMPUTATIONAL MODELS FOR 

MOBILE AD HOC NETWORKS  

 

 

 

A.R.M. SHABUT 

 

 

                               PhD 

 

 

         UNIVERSITY OF BRADFORD 

 

 

 

                            2015 



 

 

 

Trust Computational Models for Mobile Ad 

Hoc Networks 

 

Recommendation Based Trustworthiness Evaluation 

using Multidimensional Metrics to Secure Routing 

Protocol in Mobile Ad Hoc Networks 

 

Antesar Ramadan M SHABUT 

 

 

Submitted for the degree of  

Doctor of Philosophy 

 

 

School of Computing 

Faculty of Engineering and Informatics 

University of Bradford 

 

 

 

 

2015 



 

 

i 

 

Abstract 

Antesar Ramadan M SHABUT 

Trust Computational Models for Mobile Ad Hoc Networks 

Recommendation Based Trustworthiness Evaluation using Multidimensional 

Metrics to Secure Routing Protocol in Mobile Ad Hoc Networks 

Keyword: Trust, Reputation, Trust management, Trust Models; Mobile Ad 

Hoc Networks; Recommendation Management, Dishonest Recommendation, 

Multidimensional Trust Metric, Social Trust, QoS Trust.  

 

Distributed systems like e-commerce and e-market places, peer-to-peer 

networks, social networks, and mobile ad hoc networks require cooperation 

among the participating entities to guarantee the formation and sustained 

existence of network services. The reliability of interactions among 

anonymous entities is a significant issue in such environments. The 

distributed entities establish connections to interact with others, which may 

include selfish and misbehaving entities and result in bad experiences. 

Therefore, trustworthiness evaluation using trust management techniques 

has become a significant issue in securing these environments to allow 

entities decide on the reliability and trustworthiness of other entities, besides 

it helps coping with defection problems and stimulating entities to cooperate. 

Recent models on evaluating trustworthiness in distributed systems have 

heavily focused on assessing trustworthiness of entities and isolate 

misbehaviours based on single trust metrics. Less effort has been put on the 

investigation of the subjective nature and differences in the way 

trustworthiness is perceived to produce a composite multidimensional trust 

metrics to overcome the limitation of considering single trust metric. In the 
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light of this context, this thesis concerns the evaluation of entities’ 

trustworthiness by the design and investigation of trust metrics that are 

computed using multiple properties of trust and considering environment.  

Based on the concept of probabilistic theory of trust management technique, 

this thesis models trust systems and designs cooperation techniques to 

evaluate trustworthiness in mobile ad hoc networks (MANETs). A 

recommendation based trust model with multi-parameters filtering algorithm, 

and multidimensional metric based on social and QoS trust model are 

proposed to secure MANETs. Effectiveness of each of these models in 

evaluating trustworthiness and discovering misbehaving nodes prior to 

interactions, as well as their influence on the network performance has been 

investigated. The results of investigating both the trustworthiness evaluation 

and the network performance are promising. 
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Chapter 1 Introduction 

This chapter introduces the work conducted by this thesis in terms of 

explaining the motivation behind the research, aims and objectives. The 

chapter also explores the contributions made by the research work and lists 

the instances of previous publication of the results and outcomes. Further, a 

brief description of the organisation of the thesis is provided to explore the 

content of subsequent chapters. 

1.1 Introduction 

In recent years, there has been tremendous growth in the use of mobile 

wireless networks and in access to various mobile applications and services 

on the Internet. Services such as information sharing, routing and location 

issues have found ways to operate in mobile environments. For these 

reasons, a mobile ad hoc network (MANET) system model is proposed which 

consists of a collection of wireless mobile nodes that are capable of 

communicating with each other in the absence of a fixed network 

infrastructure or centralised administration. MANET is considered to 

represent infrastructureless networking, in which nodes dynamically set up a 

network and establish routing among themselves to build their own network 

when needed [1]. MANETs’ applications are practically emerging as a 

provider of a flexible method to establish communications in situations where 

geographical constraints demand a totally distributed system without fixed 

base stations: for example, for emergency rescue services in events such as 

hurricane and earthquake disasters, and for exchanging critical information 

on the battlefield through networking [2]. However, MANET’s characteristics, 

including frequent changes in network topology due to mobility or 

discontinuous operation of nodes, open wireless medium, and constrained 
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capability, make it vulnerable to security issues in situations where a friendly 

and cooperative environment is not assumed [3]. 

In the context of MANETs, there have been a number of schemes based on 

cryptography to provide solutions in order to secure such networks. 

Cryptography models often seem unrealistic because of their fundamental 

assumption of the trustworthiness of the participating nodes and underlying 

networking system [4]. Researchers have recognised the significance of 

borrowing trust management concepts from the social network analysis 

(SNA) field to improve the performance of the network protocols [5]. This 

move towards social methods in securing MANETs facilitates identification of 

trust attributes of nodes such as level of cooperation, honesty and the 

manner of behaving, to establish and manage trust relationships between 

nodes in a distributed manner. Trust management technique is one of the 

approved mechanisms to improve security in MANETs, and which is utilised 

to deal with misbehaving nodes and stimulate them to cooperate [6]. Relying 

on social properties in modelling trust can offer an attractive security 

mechanism to monitor node behaviour, mitigate attacks, and filter out 

dishonest nodes.    

Trust as a social concept can be defined as the degree of subjective belief 

about the behaviour of a particular entity [7]. Trust in MANETs is the opinion 

held by one node (known as the evaluating node) about another node 

(known as the evaluated node), based upon the node’s past behaviour and 

on recommendations from other nodes  in the network, known as 

recommending nodes. Very much as in the case of the human observation 

process, trust here is based on the accumulation of observations from 

various similar or dissimilar sources, to collect and combine the required 

information to decide on the trustworthiness of a perceived node. Trust is 
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time dependent, meaning that it grows and decays over time.  Therefore, 

MANETs show close similarities to the human behaviour model, as a number 

of nodes which have never interacted before are able to acquaint themselves 

and communicate with each other based on trust developed over a period of 

time [8]. Besides, nodes’ perceptions, motivations, and goals for interactions 

are different, and the presence of a selfishness concept and avoidance of 

being victimised by others are also other aspects showing similarity to human 

behaviour [9]. Consequently, it is vital for a useful trust model to be related to 

human patterns of behaviour, because these patterns can be used to 

increase the model’s quality in terms of deducing the degree of friendship, 

level of honesty, privacy, and the correctness of information derived from 

direct interactions or by recommendations [10]. Despite the fact that 

researchers have different disciplines in operationalising trust [11], the trust 

model is being increasingly adopted as an important concept in designing 

and analysing security problems in distributed systems to guide decision 

making [12]. 

Existing trust management frameworks for MANETs can be categorised into 

two types. The first establishes trust relationships between nodes based on 

direct interactions only [13 , 14]. The second type is based on direct 

observations of the node itself and recommendations provided by other 

nodes in the network [15 , 16]. The use of a recommendation-based trust 

technique can be advantageous to nodes in discovering misbehaving nodes 

prior to interaction, thus avoiding a potential bad experience. Using 

recommendations, nodes in MANETs can make more informed decisions on 

the selection of routing paths even if they have not had any direct interactions 

in the past [15]. Acquaintance can be made with several distant nodes (not 

neighbours)  by sending a single packet to them, and this could help in 
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saving energy [17]. Together with the advantages comes the challenge of 

handling dishonest recommendations in MANETs. A trust model with a multi 

parameter defence scheme to filter out attacks related to dishonest 

recommendations such as bad-mouthing, ballot-stuffing, and collusion for 

mobile ad hoc networks is needed to solve the problem of dishonest 

recommendation. 

Most trust models designed to secure MANETs rely on a single evaluation 

parameter only, such as monitoring cooperation during packet forwarding in 

routing protocols. However, the monitoring only of packet transmission 

between nodes in the network is shown to be unable to represent the 

complexity and subjectivity of trust metrics [18 , 19 , 20 , 21]. Trust models 

that rely only on the experience of packet forwarding in MANETs can only 

identify routes with a certain measure of confidence and may not be secured 

from various attacks, as well as, lacking the consideration of dynamic 

characteristics, and multi-source information of trust [8 , 11]. Multidimensional 

factors such as social information and quality of communications should thus 

be considered while managing trust-based routing in MANETs.  

1.2 Motivation 

Due to the recent applicability and performance of mobile ad hoc networks in 

future paradigms, including vehicular and mesh networks, as well as many 

civilian and military services ranging from emergency rescue services to 

exchanging critical information on the battlefield or even home and personal 

area networking, MANET’s security has been investigated in the literature 

using different techniques. The formation and sustained existence of MANET 

services is mainly based on an individual node’s cooperation in packet 

forwarding. It is indeed a challenge to safeguard MANETs with a lack of 

infrastructure (i.e. pre-existing communication backbone) and central 
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authority (such as base stations or mobile switching centres) to establish and 

facilitate communication in the network against a wide range of attacks. Due 

to these unique characteristics and demands for use, MANETs are 

vulnerable to attacks launched by misbehaving nodes [22]. Trust 

management techniques are put forward as one of the approved 

mechanisms to improve security in MANETs to deal with misbehaving nodes 

and stimulate them to cooperate [6]. 

In recent years, different trust management models have been proposed to 

enhance security in MANETs to enable nodes to evaluate their neighbours 

directly or through recommendations from other nodes in the network. CORE 

[23], Context-Aware Detection [24], CONFIDANT [18], to name a few, are 

mechanisms which support cooperation in ad hoc networks by detecting and 

isolating malicious nodes. Although the proposed models have paid attention 

to the problem of misbehaving nodes, multi-dimensional trust metrics 

including social properties of trust to deal with situations like dishonest 

recommendations are still in their early stages. This is considered a research 

gap in which the focus of such models is directed toward a single parameter 

only in computing trustworthiness. Whether the trust models that have been 

applied consider changing behaviours of the nodes (due to time or mobility) 

based on investigating some social properties or not is the major question 

that remains unaddressed by the literature. Many of the existing models 

seem to be filtering untrustworthy nodes by only considering a packet 

forwarding metric for example in improving the overall performance in the 

network and are not efficient enough in handling other misbehaving nodes 

related to dishonest recommendations. Further, some models omit some 

important evaluation metrics such as quality of service and social properties 

in evaluating nodes’ trustworthiness. By considering this problem, a 
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trustworthiness evaluation mechanism should be effective in encouraging 

cooperation between nodes, enhancing the false negatives and false 

positives in judging the behaviour of nodes by utilising multi- dimensional 

trust attributes.  

This work has been proposed to include multiple parameters to compute the 

trustworthiness of nodes. Its main emphasis is on utilising social properties of 

trust in evaluating trustworthiness and investigating trust relationships 

between nodes. An enhanced trust model with a feedback and 

recommendation system has been proposed by using multiple parameters to 

filter out dishonest recommendations and investigate the similarity in nodes’ 

behaviours. Further, the trust model is developed to include certain social 

and QoS properties of trust to enhance the nodes’ evaluation process when 

interacting with other nodes. Additionally, the proposed models have been 

tested by simulating a network with a wireless mobile ad hoc setting and it 

has been shown that a multiple-parameter metric for computing 

trustworthiness can help enhance network performance in terms of 

throughput, packet drops and energy percentages. Besides, the model can 

enhance the error of evaluating the trustworthiness of other nodes in terms of 

false negative and false positive percentages. 

1.3 Contributions 

This work establishes the use of trust management techniques in distributed 

systems including their unique characteristics and uses MANET as an 

application by modelling interactions and establishing trust among nodes to 

test the validity of the proposed work. Since MANETs are by nature made of 

mobile nodes, this work has been extended to cover and analyse nodes’ 

mobility in all the investigated scenarios.  Both analytical and empirical 

investigations are used to validate the proposed work. The work investigates 
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the state of the art of trust and reputation management in four important 

distributed applications; E-Commerce and E-Market, Peer-to-Peer Networks, 

Social Networks, and Mobile Ad Hoc Networks. Besides this, three well 

known techniques to compute trustworthiness, namely Game Theory, Fuzzy 

Theory and Probability Theory, are investigated in such distrusted 

applications. As a result of the investigation process of the trust concepts, 

models, and techniques in the four mentioned distrusted applications, this 

thesis contributes to the knowledge of trust models in MANET in the following 

areas: 

1. The problem of evaluating and computing trustworthiness is defined by 

exploring the important components that should be combined to work 

together in the proposed trust model. Model parameters and assumptions 

of MANETs’ applications have been comprehensively investigated.  

2. A recommendation based trust monitoring model for securing ad hoc 

routing protocols to include three parameters of nodes past history as 

direct experience, indirect experience, and the ability to judge the others’ 

trustworthiness has been proposed to filter out unfair ratings and isolate 

misbehaving nodes.  

3. A set of parameters related to trust have been considered to enhance the 

feedback mechanisms, propagation and aggregation of recommendations, 

as well as filtering out dishonest recommendations.  

4. Security analysis on the countermeasures relevant to five attacks which 

aim to distort the correctness of the received recommendations has been 

provided.  

5. The implications of various methods in dealing with the data sparsity 

problem in establishing the trust relationship has been investigated to fill in 

the missing values of trust when a MANET has just been established.  
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6. An introduction of the social feature of a friendship based trust model is 

proposed to investigate the degree of friendship and represent trust 

relationships between nodes as human behaviour.  

7. More social properties of trust are considered by proposing a trust model 

which uses multidimensional composition of its trust metric to enhance the 

trustworthiness evaluation of MANET’s nodes, including both social and 

QoS properties of trust.  

8. The model of trust is enhanced by including two different stages of 

evaluation; peer to peer evaluation and path evaluation, when evaluating 

the trustworthiness of other neighbours to decide whether to interact with 

them or not.  

9. Route optimisation has been investigated in order to select the best path 

among the available trustworthy paths by allowing source nodes to 

evaluate the entire path to the destination.  

1.4 Publications 

The work in this thesis has been published and presented at several 

international and local events. A list of publications is provided based on the 

category of the event or publication, to include international conferences, 

journals, and presentations, as follows.  

Conferences 

Shabut, A., Dahal K.P., Awan I., (2012). A Trust-Based Monitoring Model for 

Mobile Ad hoc Networks. Proceedings of International conference on 

Software, Knowledge, Information Management and Applications 

(SKIMA 2012), China, 2012 (Chapter 4).  

Shabut, A., Dahal K.P., Awan I., (2013). Enhancing Dynamic Recommender 

Selection Using Multiple Rules for Trust and Reputation Models in 

MANETs. Proceedings of IEEE International Conference on Tools with 
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Artificial Intelligence (ICTAI) - 2013, Washington DC, 2013 (Chapter 

5). 

Shabut, A., Dahal K.P., Awan I., (2014). Friendship Based Trust Model to 

Secure Routing Protocols in Mobile Ad hoc Networks. Proceedings 

of IEEE International Conference on Future Internet of Things and 

Cloud  (FICloud) - 2014, Barcelona, Spain, 2014 (Chapter 6). 

Journals 

Shabut, A.; Dahal, K.; Bista, S.; Awan, I., Recommendation Based Trust 

Model with an Effective Defence Scheme for MANETs, Mobile 

Computing, IEEE Transactions on , vol.PP, no.99 , pp.1,1. doi: 

10.1109/TMC.2014.2374154 (Chapter 5). 

Tutorials 

Shabut, A., Dahal K.P., Awan I., (2013). A Recommendation-Based Trust 

Model for MANETs to Enhance Dynamic Recommender Selection 

Using Multiple Rules, Seventh International Open Conference HET-

NETs 2013, UK, Ilkely, 2013. 

Shabut, A., Dahal K.P., Awan I., (2013). A Trust-Based Monitoring Model to 

Secure Routing Protocol in MANETs Using Enhanced Trust Metric, 

Seventh International Open Conference HET-NETs 2013, UK, Ilkely, 

2013. 

Presentations 

Shabut, A., Dahal K.P., Trust and Reputation Management in Distributed 

Systems, University of Bradford school of computing, School 

Research seminars (2011). 

Dahal K.P., Shabut, A., Trust Management in Distributed Systems: Defense 

against Misbehaving Players, 8th International Conference on 
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Software, Knowledge, Information Management and Applications 

(SKIMA 2014), 18-20, December 2014, Dhaka, Bangladesh. 

1.5 Thesis Organisation 

This chapter (Chapter 1) introduces the work and explains the motivation 

behind it, and also presents the research contributions. 

Chapter 2 reviews the notion of trust and reputation and surveys a number of 

existing trust models in a variety of applications, to include E-Commerce and 

E-Market, Peer-to-Peer Networks, Social Networks, and Mobile Ad Hoc 

Networks. Several popular techniques to build and compute trustworthiness 

among entities in such environments are also examined. 

Chapter 3 illustrates the problem of trust and reputation, which has been 

considered as the basis of this work. The chapter describes the probabilistic 

trust model utilised, along with its components and parameters. Besides this, 

the adopted research methodology is explored by describing the simulator 

and assumptions used to build trust in MANETs.   

Chapter 4 introduces the proposed trust model that is used to monitor the 

behaviours of nodes in MANETs and establish the trust relationship based on 

the historical experiences and recommendations. The model considers the 

problem of a multidimensional trust metric to compute trustworthiness by 

introducing the concept of opinion trust, which shows how honest a node is 

as a recommender in the trust and reputation system.   

Chapter 5 examines the problem of utilising recommendations in trust and 

reputation models in MANETs, and explores various attacks related to 

dishonest recommendations. Therefore, this chapter introduces the proposed 

recommendation-based trust model with a suitable filtering algorithm to deal 
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with dishonest recommendations through combining three different 

techniques. Further, it presents the problem of data sparsity and lack of 

information in the recommendation filtering algorithms, and introduces the 

proposed effective defence scheme, which utilises a clustering technique to 

dynamically filter out attacks related to dishonest recommendations within a 

certain time based on number of interactions, compatibility of information and 

closeness between the nodes in MANETs.  

Chapter 6 introduces a friendship-based trust management model for 

MANETs to reflect nodes’ behaviour and cope with multiple misbehaving 

attacks. The model utilised the social property of friendship degrees that is 

based on combining two social metrics: honesty and confidence. Besides, 

this chapter develops a proposed trust model with more social properties, 

which utilises a composite multidimensional metric to compute trust by 

combining the social properties of trust with quality of service (QoS) trust 

properties. Social and QoS properties of trust are examined through 

appropriate parameters based on the behaviour and characteristics of the 

nodes in MANETs. 

Chapter 7 summarises the contributions of this thesis and makes some 

recommendations for future work.  
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Chapter 2  Literature Review 

This chapter provides a review of the literature to examine issues of trust and 

reputation system, their existing models, and some of the remarkable 

applications of these models. Firstly, this chapter attempts to understand 

trust and reputation systems by comparing and contrasting concepts of trust 

and reputation from different social and scientific disciplines. Secondly, trust 

linked problems and various solution methods in E-Commerce and E-Market 

places, Peer-to-Peer Networks, Social Networks, and Mobile Ad hoc 

Networks have been reviewed. Thirdly, well-known theories and techniques 

such as game theory, fuzzy theory and probabilistic technique have been 

illustrated, mostly because of the popularity of these concepts in trust and 

reputation management research.  

2.1 Background of Trust and Reputation 

Experience of trust can be plainly recognised in almost every aspect of 

human life, but trust is challenging to define because of its manifestation in 

different forms [25]. However, most of the literature is closely consistent 

about the origin of the concept of trust, which is first derived from social and 

psychological sciences and is inherent in human relationships [7 , 11]. In a 

social context, trustworthiness is evaluated in several ways, for instance 

using the past history of behaviours in previous interactions, word of mouth, 

and reliable third party certification [25 , 26 , 27 , 28]. Trust is a crucial 

concept for society because of its importance in building cooperation among 

entities and for humanity to be able to have meaningful relationships [9 , 11]. 

Trust is a highly complex concept, due to its subjective nature and 

differences in the way in which trustworthiness is perceived [7]. Trust is time-

dependent [8], wherein it grows and decays over time, and further, trust is 

context-dependent [29], wherein it differs based on the given task. For 
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example, A and B may identify different levels of trust in relation to C due to 

their different experiences, and this illustrates the subjective aspect of trust. A 

may also trust B at different levels due to changes over time, illustrating the 

time-dependent aspect. Further, A may trust B as a technical expert but not 

as a car fixer, which illustrates the context-dependent aspect of trust. 

Another aspect of trust is its multi-disciplinary nature, because of its diverse 

applicability as a decision making mechanism in varied disciplines such as 

sociology, economics, philosophy, psychology, organisational management, 

communications and networking [7 , 30 , 31].  Due to the importance of using 

trust for researchers in different disciplines, applications of trust in distributed 

systems such as mobile agents, mobile social networks, peer-to-peer 

networks and mobile ad hoc networks as a security mechanism become 

highly attractive. In such systems, trust has been considered as 

multidimensional based social concept to represent social relationships in 

communication and networking research [32 , 33]. 

Computational trust models are important for large-scale distributed systems 

to reflect the complexity of trust and enhance security, with an aim to 

enabling entities to evaluate their neighbour’s trustworthiness directly or 

through recommendations from other nodes. The design of such models 

requires capturing trust properties such as subjectivity and differences in the 

way in which trustworthiness is perceived. Trust is utilised in such systems to 

conduct several tasks, including coping with defection problems of entities, 

ensuring authentication, securing routing against malicious intent and 

stimulating participants to cooperate. In the existing literature, trust is 

accompanied by the related concept of reputation, which is defined as 

referring to the perception that nodes form about a particular node [9]. Trust 

and reputation can be used interchangeably in most existing research, while 
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differentiation between the concepts is clearly stated in a smaller part of trust 

research [34]. In Human life, reputation is developed by aggregating trust 

information in order to use it in the prediction of others’ actions based on the 

historical behaviours captured through personal interactions or shared 

knowledge with other persons [35]. The reputation concept has widely 

emerged as an important component in electronic markets and online 

communities. For example, eBay, Amazon.com and Yahoo auction use 

reviews and feedback to help their users decide whether to make 

transactions or not based on the available reputational information. 

Reputation has been developed to be used in distributed systems such as 

MANETs to allow nodes to evaluate others’ trustworthiness based on rating 

each other after each transaction [36 , 37]. Duo to the lack of physical 

infrastructure and interpersonal evidence that humans use to determine 

trustworthiness, the reputation system for such distributed environments 

should not depend on a simple rating system similar to the one used in eBay. 

A set of guidelines and design patterns on the success of inferring 

trustworthiness using reputation mechanisms in such environments are 

needed based on the characteristics of the target distributed systems [38].  

Another concept associated with trust is potential risk and how to estimate it. 

Risk is an important characteristic of trust, and emerges due to the 

subjectivity, uncertainty and unpredictability features of the trust concept, and 

from differences in estimating levels of trust.  Consequently, these features 

result in miscalculation of the trustworthiness of an entity and thus increase 

the associated risk even in well-founded trust. Careful estimation of risk is 

closely related to the building of accurate trust relationships among 

participating entities in communities [7].  However, misplaced trust increases 

the chance that the trustworthiness value will be miscalculated in two 
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different ways. First, trustworthiness may be overestimated, and thus the 

chance of being deceived by an evaluated entity increases.  Second, 

underestimation of the trustworthiness value results in a situation where an 

evaluating entity may fail to collaborate with potentially good participating 

entities. Because of the importance of clearly defining the level of risk when 

evaluating trust, risk and trust are two concepts which should be integrated 

as crucial aspects of decision-making [39]. The use of trust with social and 

multidimensional features makes it sensible in risky and uncertain 

environments such as distributed systems. More explorations have been 

made in the forthcoming chapters of the thesis in this line.  

2.2 Definitions of Trust and Reputation 

This section of the thesis explores some notable definitions given to trust in 

the literature. Trust can be defined based on different factors in terms of 

belief, risk, subjective probability, quality of services, transitivity relationship 

and other concepts [40]. 

Trust as belief: according to the Compact Oxford English Dictionary [41], 

trust is defined as “firm belief in the reliability, truth, ability, or strength of 

someone or something”.  This definition provides some context related to 

believing in an entity’s behaviour, skills, knowledge, and competency to 

perform as expected, and yet this definition is not entirely helpful. Another 

definition of trust is as an individual’s belief and willingness to act on the 

basis of the words, actions, and decisions of another. 

Trust as risk: the definition given by Morton Deutsch [42] is widely accepted 

than other definitions, in which he states that “(a) an individual is confronted 

with an ambiguous path, a path that can lead to an event perceived to be 

beneficial or to an event perceived to be harmful; (b) he perceives that the 

occurrence of these events is contingent on the behaviour of another person; 
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and (c) he perceives the strength of a harmful event to be greater than the 

strength of a beneficial event. If he chooses to take an ambiguous path with 

such properties, he makes a trusting choice; else he makes a distrustful 

choice”. An important concept in Deutsch’s definition is the notion of 

vulnerability, the fact that the evaluating entity feels itself exposed to danger. 

Consequently, this leads to the idea of necessarily involving risks and 

uncertainty in the concept of trust and the action itself of trust relies on 

exposure to risks [43]. 

Trust as subjective probability: Gambetta [44] defines trust as “the 

subjective probability by which an individual, A, expects that another 

individual, B, performs a given action on which its welfare depends”. The 

definition of Gambetta uses the term ‘subjective probability’ which represents 

an indication of the existence of different levels of trust as a consequence of 

the evaluating entity’s beliefs and theories about the world and other 

evaluated entities. 

Trust as a transitivity relationship: Jøsang et al. [45] defines the trust 

transitivity relationship as a condition of: if A trusts B who trusts C, then A will 

also trust C based on the assumption that B actually tells A that it trusts C, 

which is called a recommendation, in the case of A and B having the same 

trust scope, which is a specific type(s) of trust assumed in a given trust 

relationship. 

Trust as a composition of multiple attributes: Grandison and Sloman [46] 

define trust as “the firm belief in the competence of an entity to act 

dependably, securely, and reliably within the specified context”. This 

definition regards trust as a composition of several different features: 

reliability, dependability, honesty, truthfulness, security, competence, and 
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timeliness. These attributes might require different consideration based on 

the environment in which trust is being utilised. 

Trust as a QoS aspect: Chang et al. [47] define trust as “the belief that the 

Trusting Agent has in the Trusted Agent’s willingness and capability to deliver 

a quality of service in a given context and in a given Timeslot”. This definition 

deals with trust as a tool to judge on other entities’ trustworthiness and its 

capability to provide the service at a specific level of quality. Besides this, it 

implies the context-specific and timeslot characteristics of trust. 

Trust as a decision: to define trust as a decision Jøsang et al. [25] provide 

the definition of McKnight and Chervany, who see trust as “the extent to 

which one party is willing to depend on something or somebody in a given 

situation with a feeling of relative security, even though negative 

consequences are possible”. 

For the purpose of this research, trust is seen as a combination of multiple 

definitions based on Gambetta [44] and other definitions which are given 

above to be utilised to build on trust models proposed in the work context. 

This thesis defines trust as the subjective probability by which an entity, A, 

expects that another entity, B, is capable of performing a given action at a 

specific level of quality in a given timeslot and within a specified context, 

considering the risks and incentives involved based on A’s views or through 

recommendations provided by C who trusts B at an acceptable level. This 

definition intends to deal with trust as the composition of multiple attributes to 

reflect the trust features of subjectivity, uncertainty, unpredictability which 

were explained in the previous section.    

In the literature, reputation is a related concept to trust, which can be used 

interchangeably but is not to be confused with it. According to Abdel-Rahman 

et al. [28], reputation is defined as “an expectation about an agent’s 
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behaviour based on information about or observations of its past behaviour”. 

The definition implies that an entity’s reputation is considered as a collective 

measure of trustworthiness in the sense of reliability based on its history of 

interactions or recommendation from other community members [25]. 

Reputation is an important concept existing in a community that monitors its 

members using a specific technique to reflect the possibility of positive and 

negative (success or failure) in future interactions. Reputational information is 

a vital tool to help make effective and informed trust decisions. Thus, a 

reputation system needs to be successful in gathering the required 

information to include both personal experience and recommendation by 

other members. 

2.3 Review of Trust and Reputation Management Literature in 

Distributed systems  

Trust management mechanisms have grown as a powerful tool for evaluating 

the trustworthiness of an entity in several distributed systems such as e-

commerce and e-market places, peer-to-peer networks, social networks, and 

mobile ad hoc networks environments [48]. Designing trust and reputation 

models for such applications is an important research topic to help reduce 

risk and guarantee the completion of network activities. Trust management 

models with a flexible and effective design can sustain existing and reliable 

trustworthiness information for the diverse entities in a distributed system, 

besides they can be used to mitigate different attacks related to these 

systems. Table 2-1 shows the attacks related to trust and reputation 

management in distributed systems. Enhancements and new proposals 

continue to grow further and rapidly, considering more subtle problems in 

Trust and Reputation Management field. In this sub-section, different models 
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of trust evaluation and some related issues are presented for each of the 

following applications listed below: 

I. E-Commerce and E-Market  

II. Peer-to-Peer Networks  

III. Social Networks  

IV. Mobile Ad Hoc Networks 

Table 2-1 Attacks Related to Trust Management Models of MANET 

Attacks Description 

Blackhole attack Nodes maliciously drop all the received packets and refuse 

to forward them 

Greyhole attack Nodes maliciously drop some selected packets with different 

percentages. 

Selfish attack Nodes behave badly by dropping packets when their energy 

level is below a certain threshold to conserve their energy 

and be available in the network 

Bad Mouthing attack Nodes propagate unfairly negative ratings of good nodes 

with an ill intent to tarnish their reputation in the network.  

Ballot Stuffing attack Nodes propagate unfairly positive ratings for some poorly 

performing nodes in the network. 

Collusion attack Nodes collude together to achieve a specific attack such as 

bad mouthing or ballot stuffing. 

2.3.1 E-Commerce and E-Market 

This sub-section refers to the literature concerning trust and reputation 

management mechanisms in e-commerce and e-market places. E-commerce 

is defined as a networked information system that provides an infrastructure 

over the Internet to enable buyers and sellers exchange information, 

undertake transactions, and achieve other related activities [49]. E-commerce 

includes Business to Business (B2B), Business to Consumer (B2C) and 

Consumer to Consumer (C2C) implementation of the business environments. 

E-commerce has increasingly grown over time and entered into every corner 

of social life [50]. Trust and reputation management is an essential concern 
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in almost any commerce involving monetary transactions. The issue of trust 

may be even more significant in e-commerce because seller and buyer might 

have never met and trustworthiness is thus vague for each. Insufficient 

information concerning the reputations of the seller and buyer raise the 

problems of uncertainty and mistrust. Such problems might have a negative 

impact on the e-market’s economic competence [37].  

Considerable research has introduced trust and reputation systems in e-

commerce to allow users to be evaluated for each transaction they complete 

[51]. One of the possible solutions is to construct a centralised system, such 

as a credit history agency, in order to deal with users’ reputations. 

Nevertheless, this approach may lack consideration of standards and 

personal preferences [37]. Electronic market places, online auctions and 

shopping sites like eBay, Amazon.com and OnSale Exchange use simple 

online reputation mechanisms to avoid cheat and fraud. eBay allocates 

sellers a rating of 1, 0, or –1 as a value for trustworthiness after involvement 

in an interaction, and a seller’s reputation is computed as the aggregation of 

all the ratings obtained over the past six months, while a new user joining 

eBay is allocated a reputation of 0. The system in Amazon.com is as follows: 

both sellers and buyers are rated after each interaction, and reputation value 

is calculated as the average of all the feedback ratings obtained for the 

duration of the system’s use. A new user to Amazon.com has no reputation 

value. OnSale permits users to rate sellers by submitting textual comments, 

and the overall reputation of a specific seller is made up of the average of all 

the ratings received from his/her customers. Like Amazon.com, newcomers 

joining OnSale have no reputation until someone rates them. However, these 

systems need users to cooperate in clearly providing their opinion regarding 

other users with whom they have interacted. Besides this, users can discard 
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their current identities and obtain new ones to re-enter the market when 

allocated low reputation ratings. To solve the problem of changing identity, 

Amazon.com and eBay apply the notion of pseudonyms in which new joiners 

must register with their important personal information, and consequently the 

reputation system is able to trace their real identities [52]. 

Zacharia et al. propose Sporas [53], which is a reputation mechanism for 

electronic communities. It has a reputation value within the range of (0, 3000) 

and the minimum value 0 is assigned to a newcomer, in which the reputation 

of a current user is always higher than a new one. Sporas accepts only the 

latest rating to help prevent the problem of two users deliberately raising their 

reputation value by repeated interactions. To evaluate a user’s reputation, 

Sporas allocates more weight to the most recent ratings for the reason that 

they are closer to the user’s present behaviour. The Sporas system is similar 

to a credit score evaluation system, where individuals at the beginning of 

their use of the system might have a low credit score, but their credit score 

will be raised as a result of enhancing their performance for a period of time. 

An initial low score does not have influence on the reputation value assigned 

to a user. The main drawback of Sporas is that a new user is assigned the 

lowest potential reputation value, and it takes a long period to increase this.  

Ba and Pavlou [54] propose a feedback mechanism in electronic markets to 

examine the role of trust in the relationship between buyer and seller, the 

effect of positive and negative feedback, and how some risk factors play a 

role in trust formation. Using data from both an online experiment and an 

Internet auction market, they analyse the credibility type of trust. They show 

that credibility trust is a very important predictor of positive economic 

outcomes in online transactions and that trust leads to higher end prices. 

DIRECT [55] is a distributed reputation framework proposed to prevent 
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dishonesty in e-commerce and web-based applications. DIRECT monitors 

and detects malicious attacks committed by dishonest users using statistical 

distribution techniques. To deal with the existing problem of dishonest 

feedback, DIRECT divides feedback into two groups; namely green and red, 

and only keeps the truthful reputation information obtained by the green 

group. This mechanism can reduce the effect of dishonest feedback to the 

minimum level. 

To secure buyers in online marketplaces from cheating sellers, Kerr et al. 

[56] propose Trunits, which is a reputation model that is based on the 

aggregation of trust units. The model forces a seller to have an adequate 

number of trust units before achieving a transaction, which represents a 

score of all of the trust units obtained from all buyers to date. To enter a 

transaction, a seller is required to risk a sufficient quantity of trust units to 

cover the price of the good in sale. After a transaction, if a buyer is happy, 

the seller gains more trust units, but otherwise loses the risked trust units. 

In the previously reviewed literature, users’ trustworthiness is modelled on 

one scalar value: namely feedback rating or reputation, while others consider 

trust and reputation systems from the perspective of fraud. Fraud avoidance 

by automatic fraud detection is where the distinguished classification 

approaches can be applied and can play a very important role in enhancing 

e-market competence. Maranzato et al. [51] focus their research on 

identifying and evaluating features which can show fraud evidence in e-

market reputation systems. They describe procedures which are used to 

extract these features. Their analysis is based on both the features of users 

and the negotiation procedures between buyers and sellers. They study and 

quantify the effect of each feature in normal and fraudulent behaviour in a 

real dataset. The authors believe that such a mechanism (i.e. features set) 
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might be beneficial to any reputation system of online services as a way to 

identify fraud and enforce credibility. 

Simple feedback mechanisms used in e-commerce and e-market places 

such as eBay and Amazon have used to motivate the research of this thesis 

to enhance the feedback propagation, aggregation and computation of 

recommendation’s problems and gabs in MANET. The investigation of risk 

factors and countermeasures of propagations of dishonest feedbacks to 

distort sellers or buyers has utilised to define a dynamic defence scheme to 

solve such problems in MANET.    

2.3.2 Peer-to-Peer Networks 

Peer-to-Peer (P2P) networks are distributed systems without centralised 

control or organisation. The interactions between peers are achieved directly 

and peers are considered both consumers and service providers. Besides 

this, peers frequently interact with anonymous entities whose trustworthiness 

is also anonymous. Such systems require trust management to guarantee 

cooperation and to mitigate the influence of misbehaving peers, such as free 

riding behaviour, in which peers obtain the services from the network but do 

not contribute back to the same degree to the network [57]. 

Peers should have the ability to identify reliable peers for communication in 

order to protect themselves, and this is considered a challenging demand in 

extremely dynamic P2P environments. Therefore, trust management and 

reputation systems have become an essential technique in securing large 

scale peer-to-peer networks. Several trust and reputation systems have been 

proposed to motivate peers to cooperate, incentivise the cooperated peers 

and punish the misbehaving peers. The utilisation of trust and reputation 

systems in P2P systems significantly decreases the number of malicious 

transactions in such networks [58]. These systems target a filtering out of 
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those peers who misbehave by offering trustworthiness values to peers. A 

peer who misbehaves will be considered untrustworthy and consequently 

assigned a bad reputation: for example, a peer with a bad reputation will not 

be chosen to operate as a downloading peer. 

Trust management in pure peer-to-peer networks was first studied by Aberer 

and Despotovic [59], in which lying peers are identified by a complaint-based 

system. Their protocol is based on a decentralised storage method called P-

Grid. The protocol only utilises the negative feedback, and a trustworthy peer 

cannot be differentiated from a newcomer. The evaluation process of trust 

classifies peers on a binary basis as either trustworthy or untrustworthy. A 

binary value would possibly be inadequate in a P2P environment in which all 

peers are untrusted. This approach also suffers from the fact that trust is only 

assessed by referrals from neighbours, and not on the basis of global 

information. 

TrustMe is an anonymous protocol proposed by Singh et al. [60] to maintain 

and access trust rating information in P2P networks. TrustMe utilises a 

random assignment of Trust-Holding Agent peers (THA) and Public Key 

cryptography mechanisms to provide security and prevent loss of anonymity 

in order to resist various attacks. Peers broadcast their global reputation 

about other peers using query messages and broadcast their feedback using 

reports. In the TrustMe protocol, the trust value of a peer is stored by other 

peers and a peer can securely access trust values of other peers. This 

mechanism requires a large number of messages to be produced in the 

network; besides, it may require a long time to broadcast peers’ reports and 

to obtain a global reputation. 

Kamvar et al. propose EigenTrust [36], which is a reputation algorithm used 

to decrease the number of downloads of inauthentic files in a P2P file-sharing 
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network. It assigns a global trust value based on the history of uploads for 

each peer in the network. A distributed and secure method is utilised to 

compute such global trust values using power iteration. In this algorithm, 

peers use these global trust values to select the peers from whom they 

download. Through use of simulations, the authors show that such a 

reputation system can identify malicious peers effectively and isolate them 

from the network even in the case of collusion amongst malicious peers. 

However, the algorithm lacks anonymity for peers due to its use of the IP 

address to identify peers, and places large overheads on network resources 

such as the consumption of large network bandwidth. 

PeerTrust [61] is another reputation system for P2P networks that supports 

the utilisation of an adaptive trust model to quantify and compare the 

trustworthiness of peers. The computation of trustworthiness of a peer is 

based on three fundamental trust parameters and two adaptive factors. 

These parameters are feedback received by a peer from other peers, total 

number of transactions performed by a peer, and the credibility of feedback 

sources. The factors are defined as the transaction context and the 

community context. A general trust metric is defined to combine these 

parameters. PeerTrust adapts to different peers’ behaviour and uses the 

notion of personalised similarities to rate the credibility of peers. It addresses 

the importance of identifying trust parameters and adaptive factors in a 

consistent way. Moreover, the problems of dishonest feedback and lacking of 

incentives are also addressed. A set of experiments is conducted to explore 

the feasibility and benefit of the system. One problem associated with this 

system is that it is not easy to implement in large scale P2P networks. 

Zhou et al. [62] propose a reputation system called PowerTrust which utilises 

a trust overlay network (TON) to model local trust and reveal feedback 
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relationships among peers in large scale P2P networks. By examining over 

10,000 transaction traces in eBay users, the authors discovered the 

importance of a power-law distribution in user feedback, and consequently 

model their system by leveraging the power-law distribution of peer feedback. 

By using a distributed ranking mechanism, PowerTrust dynamically chooses 

power nodes that are the most reputable based on the accumulation of the 

running history of the system. Power nodes are replaced dynamically in 

cases where they are inactive or show unacceptable behaviour, and they 

play an important role in both local and global scoring processes. By means 

of both experimental results and theoretical foundations, the system is 

validated to reveal its scalability in large-scale P2P applications, accuracy, 

robustness against malicious peers, and fast aggregation speed. PowerTrust 

has the disadvantage of lacking the consideration of some attacks like 

selfishness, and collusions of peers. 

FuzzyTrust [63] is a P2P trust system based on fuzzy logic inferences, which 

can be used to handle uncertainty, fuzziness, and scarcity of information in 

peer trust reports. In this system, peer reputation is aggregated with a 

reasonable message overhead. There are two tables for each peer to 

maintain, namely transaction record and local score. A transaction record 

table is used to maintain transaction records with remote peers, and a local 

score table is used to maintain remote peers' evaluated trust scores. The 

system utilises distributed-hash-table (DHT) overlay networks to perform 

rapid and safe reputation propagation amongst peers. The authors compare 

their system with EigenTrust. They show that FuzzyTrust is slightly faster 

than the EigenTrust system and can detect more than 99% of malicious 

peers within four iterations. However, a drawback of the system is that it has 
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no particular techniques to tackle the misbehaviour of peers, such as in 

collusion attacks and free-riding. 

By considering the concept of incentives, Wang et al. [58] propose the VCG-

like reputation reward mechanism in order to motivate peers to honestly 

provide reputation feedback. The mechanism is designed based on a well-

known economic model, and social features of trust networks. It considers 

reputation feedback as a particular sort of information, and that it is not free, 

and that reputation systems should incentivise peers to rate others and 

provide sufficient feedback. The authors classify trust into functional trust and 

referral trust, to consider the subjectivity of trust and reputation concepts. 

They also extend referral trust to include two factors: similarity and 

truthfulness, to efficiently reduce the trust inference error. Similarity is used to 

distinguish the personalised reputation feedback, while truthfulness is 

employed to assess the credibility of reputation feedback. From the entire 

trust network perspective, appropriate measures are proposed; global 

efficiency, local efficiency and cost to distinguish assured social 

characteristics of trust networks. The results of preliminary simulation show 

the benefits of such proposal and the emergence of certain social properties 

in a P2P network. 

In addition to the concept of incentives, a punishment concept is introduced 

by Cascella and Battiti [64]. The authors extend the role of a reputation 

system to more than performing its basic functions of collecting, aggregating 

and disseminating of trust information to motivate peers to behave 

cooperatively and discourage malicious peers. In this context, they 

concentrate on incentives and punishment as two opposite functions which 

cope with both rational and malicious peers. They propose to use a Game 

Theory technique to design a trust economic model for P2P systems.  The 
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authors also evaluate global reputation values for peers that are calculated 

according to first-hand opinions provided by the participants in transactions. 

These opinions are assigned weight on the basis of the credibility of the 

reporting peer and the attached quality value that decreases the impact of an 

opinion in the reputation function. Reputation values are disseminated in a 

distributed fashion by utilising compound trust administrators for each 

individual peer, which formulate the global trust of the peer and provide it to 

other peers upon a request. 

The review of the literature in the domain of P2P networks shows that their 

characteristics of openness, distributed nature, and absence of centralised 

organisation require a robust monitoring technique to ensure the quality of 

services provided by the network. With the advantage of the flexibility of this 

environment, a great challenge is countered when interacting with dishonest 

and uncooperative peers.   Trust and reputation based mechanisms have 

proved to be effective in assessing peers’ trustworthiness and identifying 

malicious peers. Although, such mechanisms are utilised to evaluate 

trustworthiness among peers in order to guarantee cooperation and to 

mitigate the influence of misbehaving peers, they are still unable to handle 

tactful peers.  However, in the context of this research, fully distributed 

models like PeerTrust, EigenTrust, and FuzzyTrust can be utilised to build 

reliable trust models for MANET with some improvements of the way the trust 

is viewed by nodes. As Nodes may interact with stranger entities whose 

trustworthiness is unknown, decentralized schemes, as well as, incentives, 

and punishment concepts have been borrowed from the field of trust in P2P 

systems. Free riding behaviour can also be considered as a problem for 

MANETs in which free-riders use other nodes to forward their own packets 

and refuse to forward packets to others. 
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2.3.3 Social Networks 

The increasing attraction of the web in social networks (such as Facebook 

and MySpace), social media sites (such as YouTube and Flickr), and 

communities of large-scale information sharing (such as Wikipedia and 

Yahoo! Answers) demands construction of an online community platform that 

permits wide access to several diverse types of users [65]. The social 

network is considered as a research area that has a rich history and there is 

great interest in modelling such networks by understanding how efficiently 

people use their social networks and interact with others. The analysis of 

social networks includes the study of social relationships among individuals 

in a society and can be identified as a set of methods that is used to analyse 

social structures and allows the examination of relational characteristics of 

these structures [66]. In the presence of misbehaving participants who 

increasingly aim to exploit perceived social relationships among users and 

the probability of the disseminating of misinformation, lying, and misreporting, 

trust as a social phenomenon has been utilised to secure such networks and 

allow people to decide on the trustworthiness of others in the society.  

The concept of using trust in a social network, which is called Social Trust, 

was introduced by Golbeck [33 , 67 , 68] by highlighting the importance of 

proposing a suitable trust model that is derived from a sociological viewpoint 

to identify the trustworthiness of user generated interactive contents over the 

web and identifying trust as a well-defined descriptor to represent security 

and encryption goals. Social trust is considered for sociable purposes which 

might include friendship degree, honesty, privacy, and social reputation or 

recommendation as a result of involving users in direct or indirect social 

interactions. Golbeck [33] introduces Tidal-trust, which is a trust metric 

proposed for semantic web or friend-of-a-friend networks. Each node is 
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statically assigned a local trust value that is utilised to infer trust levels 

between two nodes which have not directly connected on the social network.  

The inference process of such a trust algorithm is based on the 

recommendations provided by highly trusted nodes and via shorter paths 

which may give more precise information. The problem of the Tidal-trust 

algorithm is that it lacks the ability to dynamically update trust values. 

Besides this, observations based on direct experiences are not considered.   

Maheswaran et al. [69] propose  a gravity-based model for using trust in 

managing activities in social networks. The model uses two stages. For each 

user in the first stage, friendship strengths are computed with the extent of 

the trusted social neighbourhood, while in the second stage, the effective 

trust flow for users not in the social neighbourhood is computed using the 

social neighbourhood. An invocation of a distributed optimisation procedure 

is periodically used by each user on the social network to update the trust 

values on the connections. It is used to update the strengths of the social 

connections of the social neighbourhood.  A simulation is conducted by the 

authors to present results in order to investigate the feasibility of the 

proposed scheme. 

Another social trust model, called STrust, is proposed by Nepal et al. [70] for 

social networks to build trust communities using social capital and 

recommendation system social networks. The model is based on the concept 

of social science and derived using social capital. It splits the interactions in a 

social network into two groups, namely popularity and engagement based 

interactions. Such groups are used to recommend different things in the 

social network and to allow the capture of passive interactions such as 

reading comments without leaving any feedback. The popularity and 

engagement trust values are based on the trustworthiness of a member in 
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the community and are both computed by identifying and deriving metrics 

from the social capital (i.e. interactions). An analysis and potential benefits of 

the proposed model are presented. 

In [71], authors use a trust model to assign trust levels for objects and 

subjects on social networks, to introduce a social access control, called SAC, 

to protect social data. The trust level of an object is identified by the creator, 

while the trust level of a subject is obtained as the average of the trust ratings 

provided by the community. Reading of a data object is controlled using the 

relative trust values of subjects and objects, and besides this, the SAC model 

supports the confidentiality of read-only data objects. Simulation is performed 

using traces from the flickr.com social network to evaluate the performance 

of certain issues in the design of the SAC model. 

The review of utilising trust in social networks to study the social relationships 

among individuals in a society suggests that trust management mechanisms 

can be effective in handling misbehaving participants who aim to exploit 

perceived social relationships among users. Such mechanisms are utilised to 

decrease the probability of the dissemination of misinformation, lying, and 

misreporting. Social trust is identified as a method to analyse and study 

social structures and allow the examination of relational characteristics of 

these structures. As the case of all distributed systems, the study of trust is 

still in an early stage. It is still a challenge and open area in addressing 

various aspects of social trust such as collecting trust information, trust 

evaluation, and trust dissemination in social networks. The review of social 

properties of trust in social networks have led the research of this thesis to 

recognise the significance of borrowing trust management concepts from the 

social network analysis (SNA) field to improve the performance of trust 

models in MANET. This move towards social methods in securing MANETs 
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by defining social trust attributes of nodes such as level of cooperation, 

honesty, and manner of behaving to establish and manage trust relationships 

of nodes.  

2.3.4 Mobile Ad hoc Networks 

A mobile ad hoc network (MANET) is a proposed system model consisting of 

a collection of wireless mobile nodes that are capable of communicating with 

each other in the absence of a fixed network infrastructure or any centralised 

administration. MANET is considered to be infrastructureless networking, in 

which nodes dynamically set up a network and establish routing among 

themselves to build their own network when needed [1]. MANET’s 

characteristics, including frequent changes in network topology due to 

mobility or discontinuous operation of the nodes, open wireless medium, and 

constrained capability, make it vulnerable to security issues if the situation of 

a friendly and cooperative environment is not assumed [3]. Therefore, in 

recent years, different trust and reputation models have been proposed to 

enhance security in MANETs to enable nodes to evaluate their neighbours 

directly or through recommendations from other nodes in the network. In this 

subsection, a literature review of important issues related to evaluating 

trustworthiness in mobile ad hoc networks is presented. 

Michiardi and Molva [23] propose the CORE model, which has a watchdog 

component complemented by a reputation system that distinguishes between 

three types of information; subjective reputation by means of observations, 

indirect reputation by means of positive reports by others, and functional 

reputation by means of task-specific behaviour. The model only accepts 

positive recommendation by others. Consequently, this can lead to 

decreased efficiency of the system because nodes cannot exchange bad 

experiences from the misbehaving ones in the network. Also, CORE cannot 
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be resilient against a ballot-stuffing attack as it leaves ways for misbehaving 

nodes to collude and gain unfair high ratings. 

Context-Aware Detection is the mechanism proposed by Paul and Westhoff 

[24] to relate nodes’ accusations to a unique route discovery process and a 

specific time period. They use for monitoring a combination of un-keyed hash 

verification of routing messages, and misbehaviour detection by making a 

comparison between a cached routing packet and overheard packets, 

thereby detecting tampering from the route request header. This approach 

enables the detection of several types of attack and attacker, and also rejects 

ineffective route information at as early a stage as possible. 

CONFIDANT [18] is a mechanism which supports cooperation in ad hoc 

networks by detecting and isolating malicious nodes using direct 

observations and recommendations. The model uses the personal 

experience mechanism to deal with the problem of dishonest 

recommendation. It applies the deviation test on the received 

recommendations and excludes those deviating above the threshold value. 

The reputation value of a recommending node is updated based on the 

results from the deviation test. The model cannot prevent the dissemination 

of false recommendation and negative recommendation is the only 

information exchanged between nodes [52]. Besides, it uses only single trust 

metric evaluation based on the cooperation of nodes in packet forwarding. 

The model omits some important evaluation metrics such as energy, delay 

and social properties in evaluating nodes’ trust. 

Authors in [72] propose RFSTrust, a trust model based on fuzzy 

recommendation similarity, which is presented to quantify and evaluate the 

trustworthiness of nodes. They use similarity theory to evaluate the 

recommendation relationships between nodes. That is, the higher the degree 
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of similarity between the evaluating node and the recommending node, the 

more consistent is the evaluation between the two nodes. In this model, only 

one type of situation is considered when a selfish node attack is present, and 

the performance of the model is not tested against other attacks related to 

recommendation.  

Soltanali et al. [73], propose a model of trust to encourage cooperation 

between nodes by using direct observation and recommendation. This model 

only accepts the last opinion of a node, which is passed to a reputation 

manager system at the end of each interval. Considering only the last opinion 

is not insightful enough to recognise the fluctuation in a node’s behaviour, as 

in on-off attack [74].   

In an attempt to increase the honesty of utilising recommendations, Li et al. 

[16] include a confidence value in their evaluation by combining two values; 

trust and confidence, into a single value called trustworthiness. They utilise 

the trustworthiness value to put weight on recommendations in which a 

recommending node with a higher trustworthiness value is given more 

weight. Collusion attack in providing false recommendation is not considered 

by this work, and this may cause incorrect evaluation of the received 

recommendations [7].   

Hermes [75] is a recommendation based trust model that uses an additional 

parameter known as an acceptability threshold (in relation to the confidence 

level). The notion of acceptability is used in the computation of 

recommendations to ensure that adequate observations of the behaviour of 

participating node have been obtained. However, the selection of 

acceptability is a trade-off between obtaining a more accurate trustworthiness 

value and the convergence time required to obtain it.  
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A recommendation exchange protocol (REP) is proposed by Pedro et al. [76] 

to allow nodes to send and receive recommendations from neighbouring 

nodes. It introduces the concept of relationship maturity, based on how long 

nodes have known each other. Recommendations forwarded by long term 

associates are weighted higher than those from short term associates. The 

maturity of relationship is evaluated on the basis of a single factor by 

considering only the duration of relationship.  

Yu et al. [77] propose a clustering technique to filter out trustworthy 

recommendations from untrustworthy ones. They follow the majority rule by 

selecting the cluster with the largest number of recommendations as 

trustworthy. The authors tested their model against attacks such as bad 

mouthing and ballot stuffing. However, majority rule could be ineffective, as 

some nodes can collude to perform an attack, and not provide an honest 

judgment about other nodes.  

TRUNCMAN  is a trust based routing mechanism [21] used in order to isolate 

non-cooperative nodes during the path discovery process, to defend against 

many network layer attacks, including blackhole and greyhole attack 

(dropping packets). The proposed protocol is partitioned into two sections: 

the Suspicion Phase, which checks the route request broadcast and 

acknowledgement; and the Detection Phase, which details the detection of a 

non-cooperative node. Isolation and advertisement of the malicious 

behaviour in the network is propagated as social welfare. However, this 

model also evaluates the node’s cooperation only based on packet 

forwarding without considering the dynamic characteristic of MANETs, 

besides quality of paths and social network attributes. 

Cho et al. [78] propose a trust management protocol for group 

communication systems in MANETs. Their composite trust metrics combines 
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the social trust properties of the participating node with QoS trust. In this 

work, they consider honesty and intimacy to represent social trust properties, 

and unselfishness and energy as QoS trust properties. Subjective trust 

evaluation is undertaken, to consider the effect of trust chain length used by 

nodes to build acceptable trust levels. Besides this, objective trust evaluation 

is introduced as global knowledge to validate the subjective trust evaluation.  

Yu et al. also consider the problem of proposing a composite trust metric 

[79]. They present a trust model with multiple decision factors, in which two 

types of trust: security trust and quality trust are incorporated in evaluating 

the trustworthiness of nodes in MANETs. Analytic Hierarchy Process (AHP) 

methodology is used to combine these two types. This work includes 

transmitting trust and energy trust, to evaluate the security trust of nodes, 

while it uses delay trust and delay jitter trust to evaluate the quality of trust. 

This work omits the social network properties in evaluating the 

trustworthiness of nodes in the network.  

2.4 Trust Management Techniques 

This section provides a summary of some known trust management 

techniques which are used to model and compute trust and reputation in 

various applications. In the previous section, an exploration of some 

important trust and reputation management models in E-Commerce, Peer-to-

Peer networks, social networks, and Mobile Ad hoc Networks was given. 

However, most of the proposed approaches, including the above, are 

grounded in closed techniques which aim to allow entities in the community 

to observe each other’s behaviour in order to construct a trust relationship 

representing the degree of trustworthiness one entity can place on another. 

These relationships are useful to help entities decide whether to interact with 

a specific neighbour or not. Trust metrics and their subsequent calculations in 
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most models are mainly based on three techniques, namely, game theory, 

fuzzy theory, and probability theory. Only the probability theory (beta 

probability) technique is used by this thesis to compute trust metrics because 

of its advantage and suitability for MANET’s environment in terms of using 

less resource intensive (for more details on its advantages, the reader is 

referred to section 3.1.2 of chapter 3), while fuzzy, and game theories are in 

the scope of this review because of their importance and applicability. 

2.4.1 Game Theoretic Trust Management Technique 

A game-theoretic trust and reputation technique is applied to study 

cooperation between entities. It represents a powerful tool for modelling 

interactions and the prediction of an entity’s cooperation in future 

transactions with usefulness functions, mathematical analysis, and numerical 

aggregation of past history [29].  

In e-commerce and e-marketplaces, reputation formation has been broadly 

studied using the game theory technique [80]. It allows economists to build 

sophisticated models of individual entities’ reasoning and preferences [81]. 

Ba et al. [82] use a game theoretic approach to propose an economic 

incentive model based on trusted third parties (TTP) to facilitate building trust 

in online environments, and to help reduce online fraud through the use of 

reputation. The model is used to serve the online auction communities and 

addresses both economic and technological aspects of online transactions by 

assigning a digital certificate to each participant. The model uses the 

Prisoners’ Dilemma (PD) game to represent each non-repeated transaction 

(the stage game) and the TTPs to disseminate reputation information for the 

global online auction markets. Li [83] proposes an incentive mechanism 

using game theory, which aims to help buyers identify the sellers’ types and 

to report on the quality of sellers, and consequently encourage sellers to 
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behave cooperatively. Besides, this rebate mechanism gives a chance to 

sellers to leave feedback about consumers’ responses, such as on receiving 

payment.  

While peer-to-peer networks, [84] use game theory to study the interaction of 

strategic and rational peers. They propose a differential service-based 

incentive scheme in order to improve the system’s performance by 

elimination of free riding and increased overall availability. Gupta et al. [85] 

studied peers’ behaviour in peer-to-peer networks based on the game 

theoretic technique in the case of peers that receive services based on their 

reputation. Reputation is used as a mechanism to incentivise peers to share 

resources and provide services to others. Peers’ reputation is calculated as 

the probability of a peer obtaining a service and their reputation is enhanced 

based only on serving others. Game theory is used by selfish peers to 

identify their optimal strategy for contribution level in the system. Besides, it 

provides a perception into the overall nature of peers’ interactions and 

efficiency of the system.  The proposed model is used to minimise the 

problem of free-riding and improve the efficiency of the system.  

The design of an autonomic trust model that forms social network structures 

to incentive cooperation is proposed by Allen et al. [86].  They study a peer-

to-peer data dissemination mechanism which is validated using an Iterated 

Prisoner's Dilemma (IPD) model based simulation. Social network properties 

of trust such as the ability of cooperative peers to prioritise and reciprocate 

inter actions, and consequently protect themselves from being compromised 

by uncooperative nodes is the basis of the proposed model. The similarity of 

interest (cooperation level and preference) between peers to identify pay-offs 

is used. Colombo et al. [87] design a pure trust based application of the IPD 

game in which each individual adjusts its behaviour and priorities based on 
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its direct experiences to construct social structures. The model aims to 

eliminate the effect of selfish behaviour and enhance system utility by 

providing greater levels of cooperation. Their implementation shows that the 

investigated system incentivises more cooperative behaviour over defection.  

Various authors [88 , 89 , 90 , 91] based their trust models on using the game 

theory technique to evaluate nodes’ cooperation in MANETs. Srinivasan et 

al. [88] suggest using a generous TIT-FOR-TAT model that is used by nodes 

to decide whether to accept or reject a relay request. Their work results in 

Nash equilibrium and leads the system towards an optimal operating point. 

Felegyhazi et al. [89] present a game theoretic model to investigate the 

conditions of equilibrium of packet forwarding mechanisms and take network 

topology characteristics of MANET into account based on game theory and 

graph theory. Yu and Liu (2007) suggest a game theoretic framework to 

investigate cooperation stimulation and security. Their results demonstrate 

that, in two-player game forwarding, the sole cheat-proof Nash equilibrium for 

each node is not to assist the opponent more than the opponent has assisted 

him/her. Bista et al in [90 , 92] propose to use the IPD model to examine the 

problem of trustworthiness evaluation by investigating the level of 

cooperation of nodes based on the weight of the feedback source being 

assigned on the basis of past interactions between players. They break 

feedback sources into different types based on acquaintance and dynamic 

computing weight accordingly. They argue that their work can support the 

evolution of cooperativeness in various disciplines compared with models 

which do not categorise feedback sources. 

2.4.2 Fuzzy Trust Management Technique 

Fuzzy logic or fuzzy inference is an important tool that has attracted several 

researchers to employ it in quantifying trust and reputation among nodes 
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because of its capability of quantifying imprecise data or uncertainty in 

measuring the trust and reputation metrics. Fuzzy logic inference rules are 

used to compute trust values, aggregation, and dissemination of trust 

information in communities which effectively handle imprecise linguistic terms 

[25]. The theory of fuzzy logic was first developed by Lotif Zadeh [76] and 

ever since, the fuzzy logic method has been applied in a considerable range 

of research to model uncertainties, vagueness and impreciseness of trust 

concepts, as well as risk analysis for interacting with strangers and decision 

making processes to identify trustworthy entities [93]. 

[94] use fuzzy logic to propose a trust model to evaluate trustworthiness in e-

commerce based on information extracted from a vendor’s website. They 

allow customers to rank trust parameters related to a particular transaction 

based on their own perception and experience. Existence, affiliation, policy 

and fulfilment are four major factors identified by the model to help customers 

decide whether to engage in a transaction or not. Wei et al. [95] utilise the 

theory of Fuzzy Cognitive Time Maps (FCTMs) to model and evaluate trust 

relationships in virtual enterprises. They show how relevant inter-

organisational trust based on the sources and their credibility of trust. The 

model addresses trust related essential factors in such virtual environments 

by examining triple relations of trust including trustor, trustee and their 

surroundings. The model investigates the evolution of trust by considering 

the dynamic nature of trust to dynamically allow the trustor to form an opinion 

about another entity. 

Song et al. [63], propose a FuzzyTrust model based on using fuzzy logic 

inference rules to compute local trust values and to aggregate global 

reputation in peer-to-peer networks. They utilise linguistic terms to handle 

trust and reputation information in order to achieve fast and secure 
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dissemination of reputation values among peers. Following the success of 

using fuzzy techniques of Song et al., in which there was an improvement in 

the ability of peers to handle uncertainty, fuzziness, and incomplete 

information in reports provided by peers, Chen et al. [96] present a fuzzy trust 

model for peer-to-peer networks. The model includes two phases; 

recommendation trust and direct trust. The main focus of the 

recommendation trust phase is on the extraction of the trust link and 

computation of recommendation trust degree using the fuzzy decision-

making method. Various sets based on the fuzzy decision-making method 

are used to obtain a fuzzy trust evaluation metric, while the focus of the direct 

trust phase is mainly on updating the direct trust degree using peers’ 

experience and recommendation. 

[97] propose the utilisation of fuzzy linguistic terms to identify trust for social 

network users and allow users to decide on the trustworthiness of other 

users, who may not directly interact, in a trust graph. The algorithm depends 

on utilising linguistic expressions to represent the imprecise nature of the 

trust concept more than numbers. They show that their algorithm is able to 

provide more precise trust information than other algorithms when deeper 

paths are being searched. Li and Kao [98] propose TREPPS, a 

recommender system based on trust, to evaluate the quality and reliability of 

peer production services by computing trust values of peers in social 

networks. They apply a fuzzy inference system and fuzzy MCDM method to 

support decisions of service choice. By experiment, the authors show that 

their model is able to enhance the quality of peer production services and 

mitigate the overload problem, and besides this, a trust-based social news 

system is built to explore the model’s applicability.  
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Luo et al. [72] present the RFSTrust model based on fuzzy recommendation 

similarly for MANETs to quantify and evaluate the trustworthiness of nodes 

using fuzzy theory and mathematical description of MANETs. Fuzzy logic is 

used to deal with uncertainty and inputs of imprecise data in evaluating trust, 

packet forwarding review, and adjustment of nodes’ credibility. They utilise 

fuzzy relation theory to include five types of recommendation relationships in 

the trust system. The model is tested in the presence of selfish attack and a 

discussion of data sparsity problems is provided. In the case of securing 

routing protocols in MANETs, Xia et al. [99] propose FTDSR, which is a fuzzy 

trusted dynamic source routing protocol built on the basis of the standard 

dynamic source routing protocol (DSR) to secure MANETs. The proposed 

protocol evaluates the credibility of nodes using analytic hierarchy process 

theory and a fuzzy logic rules prediction method. Fuzzy dynamic 

programming theory is used in the trust routing protocol to isolate 

untrustworthy nodes in order to obtain a reliable route delivery.  

2.4.3 Probabilistic Trust Management Technique 

Probabilistic trust and reputation techniques are used to build trust models 

based on probability calculus using advanced statistical methods. Applying 

probability theory provides the advantage of providing simple models with a 

wide range of possible derivation methods [100]. Probability theory can offer 

better performance in comparison with deterministic trust models by 

enhancing security mechanisms and improving the quality of interactions 

[101]. 

Beta distribution and Bayesian inference technique have been heavily used 

by a variety of researchers to model trust and reputation. It deals with trust as 

binary ratings which takes two inputs (positive or negative), and is based on 

computing trust scores by means of statistical updating of beta probability 
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density functions (PDF) [25]. Jøsang et al. [102] propose a beta reputation 

system which is based on using the PDF functions to collect and combine 

feedback related to e-commerce transactions and consequently derive 

reputation ratings for the online agents. The reputation system is based on 

the statistical theory and is simple and flexible to use. Dong et al. [103] also 

use the probability theory to build a trust management model PTME for 

distributed e-commerce. The model is used to establish the trust 

relationships between buyers and sellers in e-commerce applications. The 

reputation of both buyers and sellers is based on direct and indirect 

observations and it is used to protect the e-commerce system from false 

accusation and collusion behaviour. 

In peer-to-peer networks, Wang and Vassileva [104] use a Bayesian network 

to build a trust model based on recommendations exchanged between peers. 

They use the Bayesian networks to provide a flexible technique to present 

differentiated trust and combine different aspects of other peers’ capability. 

Buchegger and Le Boudec [18] propose a fully distributed reputation system 

that can detect and isolate malicious nodes for both peer-to-peer networks 

and mobile ad hoc networks. It is used to cope with dissemination of false 

information by utilising a modified Bayesian approach, which is presented in 

their research. Another distributed reputation mechanism which is based on 

the probability theory is proposed in [105] to detect malicious and unreliable 

peers in peer-to-peer networks. In this model, peers’ experiences of quality of 

service (QoS) is considered as probabilistic ratings in the interval [0, 1] and 

the main focus is on how to aggregate these ratings to decide whether to 

trust other peers or not.  

In social networks, [106] propose SUNNY, which is a trust inference model 

based on an explicit probabilistic interpretation for confidence in social 
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networks. The model utilises a probabilistic sampling technique to estimate 

confidence in the trust information from different sources. Besides, it only 

estimates trust information from highly confidence sources. Liu et al. [107] 

propose the building of complex trust-oriented social network model which is 

based on an inferring trust mechanism using the Bayesian network. The 

model aims to deliver more realistic and accurate trust values that represent 

complex social relationships and recommendation roles in a social domain.  

Trust based probabilistic technique is widely adopted in MANETs. The 

CONFIDANT model proposed by [18] is a distributed trust model for MANETs 

based on using the probability theory in the form of beta functions to compute 

two parameters of trust (i.e. success and failure interactions).   OTMF in 

[108], and Hermes in [75] are proposed models that also use beta functions 

to compute success and failure interactions in packet forwarding as the mean 

value of the function. Besides this, they use the standard deviation to 

compute confidence value and to increase the robustness of the proposed 

models. Feng et al. in [109] use Bayesian inference and Beta distribution 

function to propose a certainty-oriented trust management system for 

MANET to isolate newcomers from misbehaviours and consequently 

certainty-based decisions can be made possible. They use the Beta function 

with its two continuously updated parameters to represent positive and 

negative interactions. Wei et al. in [110] use the probability theory expressed 

in Bayesian inference to derive direct trust values as a type of uncertain 

reasoning when the probability model is possible to be fully defined. They 

use reasoning based on uncertainty adopted from artificial intelligence 

community as a result of the development in the probability theory technique. 

They find that in the context of securing MANETs, these theories are very 

suitable for evaluating trust based on the trust interpretation in their research. 
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Bao et al. in [111] develop a probability model to propose a cluster-based 

hierarchical trust management protocol for securing wireless sensor networks 

in order to effectively mitigate the influence of selfish or malicious nodes. 

They use a novel probability model using a normal distribution, which is 

commonly used for statistical analysis to describe a heterogeneous 

environment that comprises a large number of nodes with different social and 

quality of service behaviours to validated subjective trust against objective 

trust of nodes. 

2.5 Summary and Research Gap 

In this chapter, a literature review related to trust models as applied in e-

commerce and e-market places, peer-to-peer networks, social networks, and 

mobile ad hoc networks was presented. Some techniques that have been 

used in building these models, including game theory, fuzzy theory and 

probability theory approaches, were also described. 

This review revealed that several trust models have been proposed in a wide 

range of domains with different computation techniques, such as 

CONFIDANT, PeerTrust, EigenTrust, PowerTrust, and FuzzyTrust to 

evaluate trustworthiness among entities. These models aim to enhance 

security in such environments by enabling entities to evaluate their 

neighbours directly or through recommendations from other entities in the 

network. However, the discussion conducted in the chapter highlights several 

limitations and gaps of the trust models in their abilities to shield nodes from 

malicious behaviour. Differences in behaviours of entities among time and 

location due to mobility characteristic, the use of all available sources of trust 

information (positive or negative information), false negative and false 

positive problems in evaluating trustworthiness, and dynamic weighting of 

trust parameters and factors are challenges that have not been tackled in the 
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literature. This thesis recognises the problem that most of the models have 

proposed in the literature in which they rely on a single parameter to compute 

trustworthiness. As trust is a very complex concept due to its subjective 

nature and differences in the way trustworthiness is perceived, this has been 

identified as a research gap, and the work in this thesis is conducted to fill 

this gap. This work has been designed to include multiple parameters to 

compute the trustworthiness of entities in MANET. The study underlines the 

importance of social properties in evaluating trustworthiness and uses this in 

investigating the trust relationships between entities and similarity in 

behaviour to help in: 

1. Enhancing the trustworthiness evaluation of nodes in general. 

2. Improving the network performance and quality of services.   
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Chapter 3 Problem Description 

This chapter describes the trust and reputation management problem that 

is the basis for the research work. It illustrates the main concepts 

underlying a probabilistic trust model with rating and evaluation 

mechanisms to solve many problems like nodes’ behaviour and 

recommender systems in the MANETs environment. Based on the 

definition of trust and reputation management problems in this chapter, 

more comprehensive trustworthiness evaluation models are presented in 

the subsequent chapters. Along with the problem model, the methodology 

for the investigations being carried out is also presented here. A network 

simulator with assumptions, data collection methods, and procedures for 

the experiment for each subsequent chapter is shown.  

3.1 The Problem Definition and Model 

This thesis considers the trust and reputation management model that is 

built upon the requirements and dynamic characteristics of mobile ad hoc 

systems. Findings could also be applied to any distributed systems such as 

peer-to-peer systems, social systems and open agent based systems. The 

aim of monitoring nodes’ behaviour and trustworthiness evaluation in 

different distributed systems can be achieved in nearly the same manner 

despite the fact that each of these domains has its own requirements and 

characteristics. Assumptions such as self-policing, dynamic monitoring and 

diversity of information resources such as past history and 

recommendation mean that the underlying model suits many instances in 

such domains. To model the problem of monitoring and evaluating the 

trustworthiness of nodes in MANETs, this thesis considers a 

recommendation based trustworthiness evaluation model using the 
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probability theory technique. The model’s components and assumptions 

are discussed in the subsections which follow. 

3.1.1 Model Components  

The aim of trust and reputation management models in MANETs is heavily 

focused on offering secure ad hoc routing by detecting and isolating 

misbehaving nodes (selfish or malicious) and encouraging collaboration 

among them to improve network throughput such as end-to-end packet 

delivery fraction. Typical trust and reputation management models are 

mainly characterised by the following components:  

a. Evidence Manager: this component is used to collect evidence about the 

behaviour of each node in the network. Evidence may be anything that is 

generated by the node itself (direct observation) or received by others 

(recommendation) to build trust relationships. 

b. Trust and Reputation Manager: this component includes a mathematical 

model to translate evidence into opinion, and then to use this to predict the 

behaviour of nodes in the future interactions. The mathematical model 

would be based on any mechanism such as probability theory, fuzzy logic, 

or bio-inspired model (refer to Chapter 2 for further detail on trust 

computation techniques). 

c. Policy Manager: this component is used to identify the decision rules and 

policies to enable nodes making decisions. Policies are needed for 

example to deal with newcomers who are completely unknown and decide 

whether to ignore or permit any newcomer to become a part of the 

network. Redemption and recommender selection also requires rules and 

policies to enable the node to make effective decisions. 

d. Evaluation Manager: this component allows nodes to evaluate the 

trustworthiness of an interacted node, making interaction decisions, and 
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evaluating nodes based on the interaction outcomes. Evaluation includes 

making a decision to interact with a node and collect evidence based on 

the outcome of the interaction. 

The fundamental architecture of trust models is typically distributed and 

deployed at each node to provide ratings about other nodes in the 

networks to help in making subjective decisions. The important 

components which are combined together to build the basis for the trust 

and reputation models proposed in the next chapters are summarised in 

Figure 3-1.  
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Figure 3-1 Trust and reputation model components. 

3.1.2 Model Parameters 

This thesis makes use of a Bayesian statistical approach similar to that 

used in [25] for computing trust values based on the assumption that they 

follow a beta probability distribution. This thesis uses a beta distribution 
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function in assessing nodes’ trustworthiness for MANETs because of the 

following advantages [112]:  

1. It represents a less resource intensive method to evaluate the 

trustworthiness of a node within two values (𝛼, 𝛽) which is simple to store 

and compute. Therefore, it is suitable for MANET because of the 

constrained resources characteristic. 

2. It forms a way to evaluate accumulated number of experiences a node can 

have during its network activities. The larger the numbers of experiences, 

the more a node is able to evaluate the trustworthiness of interacting 

nodes. 

3. It enables the combination of experiences from different sources of direct 

experiences and recommendations received from others because of the 

addition property of the beta function. 

4. It reflects the dynamic nature of trust, which is dependent on the 

accumulated number of experiences. A node can adjust its evaluation of 

others’ trustworthiness with more experiences being accumulated by 

deriving the beta distribution after each observation has been made.  

5. It captures the uncertainty property of trust because the beta function can 

give only a probabilistic estimation of future trust. Therefore, it is used to 

predict the future behaviour of nodes participating in networks’ activities. 

Beta distribution is estimated by using two parameters (𝛼, 𝛽). These can be 

calculated by accumulating observations of forwarding and dropping packets 

where 𝛼  represents the accumulation of positive observations (forwarded 

packets) and 𝛽  represents the accumulation of negative observations 

(dropped packets). The beta distribution can be defined by gamma function 

[113] as in Eq. (3-1).  
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 𝑓(𝑝|𝛼, 𝛽) =  
(𝛼 + 𝛽)

(𝛼)(𝛽)
 𝑝𝛼−1 (1 − 𝑝)𝛽−1 (3-1) 

where 0 ≤  𝑝 ≤ 1, 𝛼, 𝛽 > 0 with a condition that 𝑝 ≠  0 𝑖𝑓 𝛼 < 1 𝑎𝑛𝑑 𝑝 ≠

1 if β < 1. Gamma function is defined by the integral: (𝑥) =  ∫ 𝑒−𝑡
∞

0
𝑡𝑥−1 𝑑𝑡. 

Nodes in the network observe each other’s behaviour in order to construct 

a trust relationship representing the degree of trustworthiness one node 

(known as an evaluating node) can place on another (known as the 

evaluated node) by evidence collected by the node itself or by other nodes 

(known as recommending nodes). The trust is measured as a real number in 

the range of 0-1, in which 0 denotes that the node is completely 

untrustworthy and 1 denotes that the node is completely trustworthy. These 

relationships are useful to help nodes decide whether to forward packets to 

a specific neighbour or not. The trust value of the problem is computed by 

giving the following information [18 , 108 , 114 , 115 , 116]:  

 Number of positive observations (forwarded packets) 𝛼: it starts with the 

value 1, which is translated into complete uncertainty about the distribution 

of the parameter, which means no positive observation or evidence has 

been collected and would be calculated as   𝛼 = 𝜌 + 1, where 𝜌 represents 

the new positive observation. 

 Number of negative observations (dropping packets) 𝛽: it starts with the 

value 1, which is translated into complete uncertainty about the distribution 

of the parameter, which means no negative observation or evidence has 

been collected, and would be calculated as   𝛽 = 𝑛 + 1 , where 𝑛 

represents the new negative observation. 

 Initial trust value: the trust model computation needs evaluating nodes to 

rate other evaluated nodes to find trustworthy neighbour to assign network 

activities. If nodes has no initial value to put on another node, trust 
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predictions cannot be made and this lead to the appearance of cold-start 

problem (which arises when nodes have no historical trust profile i.e., no 

interactions such as rating). To overcome the cold-start problem due to 

data sparsity, at time  𝑡 = 0, 𝛼 =  𝛽 =  1, which assigns a value of 0.5 to 

the initial trust held by a node about another. 

 Trust value is updated after each positive or negative observation from 

these parameters as the expectation of beta distribution given by 𝛼/(𝛼 +

𝛽).  

 The computed trust value is utilised to detect misbehaving nodes based 

on the condition that 𝑖𝑓 𝛼/(𝛼 +  𝛽) ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then the node is classified 

as misbehaving. 

The rationale of using 𝛼 and 𝛽 to represent a trust value or rating can be 

derived from the following analysis by plotting the beta probability density 

function 𝑓(𝑝|𝛼, 𝛽) for observation of some values of 𝛼 and 𝛽 as presented 

in Figure 3-2. The analysis starts with  𝛼 =  𝛽 = 1 , which makes the 

expectation value equal to 0.5, as shown in Figure 3-2(a). This initial belief 

is translated into complete uncertainty about the distribution of the 

parameter, which means no observations have been collected. The second 

case is when there are 9 observed successful interactions and 89 failed 

interactions, in which  (𝛼, 𝛽) =  (10,90) . As a result of this case, 

Beta( 𝑝, 10,90) can be obtained, as in Figure 3-2(b). From this figure, it is 

observed that 𝑝 converges to 0.1 which is a small constant and this can be 

translated into a node which performs more failed interactions and can be 

classified as untrustworthy. Meanwhile, the third situation, in which  (𝛼, 𝛽) =

 (50,50) , presents the case where the number of observed successful 

interactions is the same as that of observed failed interactions. The result 

is obtained in Figure 3-2(c), where 𝑝 is close to 0.5. In the last case, most 
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observed interactions are successful, in which (𝛼, 𝛽) =  (90,10) is plotted in 

Figure 3-2(d). It gives the result that 𝑝 converges to 0.9 and this means 

that the node performs more successful interactions, and can be classified 

as more trustworthy than others who perform more failed interactions. 

 

Figure 3-2 Typical beta plots for the random variables on the X-axes and Probability density 

on the Y-axes for the: a) (𝜶=1, 𝜷=1); b) (𝜶=10, 𝜷=90); c) (𝜶=50, 𝜷=50); d) (𝜶=90, 𝜷=10). 

3.2 The Research Methodology 

The research problem defined in Section 3.1 concerns collecting trust 

information and evidence by investigating the behaviour of nodes in mobile 

ad hoc networks. It evaluates the trustworthiness of nodes based on 

participating in network activities during the routing protocol activities, 

attacks models, and degree of hostility. In this context, there was a need to 
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have a realistic simulator that would produce a wireless network made up 

of autonomous and mobile nodes in order to evaluate the trustworthiness 

of nodes. Therefore, to conduct the research, NS2 simulator [117] is used. 

The underlying trust components which are described above (refer to 

Section 3.1.1) are added to the simulator to build the proposed models.  

Different components are added in each chapter to solve a specific 

problem. Chapter 4, Sections 4.2 and 4.3 explain in detail the design and 

the implementation of the experimental model. The opinion trust 

component, which evaluates the information received by the 

recommending node, is added. Besides this second chance components 

that evaluate the behaviour of nodes over time and give them another 

chance to contribute in network activities are also modelled. As the 

recommendation information is used in the model proposed in chapter 4, 

there is a need to extend the simulator to add a recommendation 

component and filtering algorithm, which is presented in Chapters 5. 

Further, Chapter 6 extends the simulation model by adding social and QoS 

components to test the influence of social properties on nodes’ evaluation 

of trustworthiness. The configuration settings along with added 

components for each experiment are illustrated in Chapters 5 and 6, where 

the results of the experiments are analysed and conclusions drawn.  

The following subsections give details about the research simulator, 

assumptions, and data collection used in this thesis. 

3.2.1 NS2 Simulator 

NS2 is an open-source discrete event simulator designed to support 

research in computer networking. It involves various modules to help test 

several network components such as packet, node, routing, application 

and transport layer protocol. It is implemented using two types of 
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languages, namely C++ and Otcl. Otcl script is used to manage parameters 

of protocols and C++ is used to implement models and algorithms. 

Although there are several network simulators with different features in 

different aspects, NS2 is the most popular simulator in academic research 

for its advantages of open source and useful library of different network 

components. Compare to commercial simulators like OPNET, NS2 has the 

advantages of being open and consequently individuals or organisations 

can contribute to it with maintenance, finding bugs, and future 

improvement. Besides, NS2 allows researchers to integrate existing codes 

and consequently takes advantage of their validity in previous wireless 

protocols. For these reasons NS2 is chosen to conduct this research. In 

this thesis, an extension has been made to Dynamic Source Routing (DSR) 

protocol [118] of the NS2 simulator to be used as an underlying routing 

protocol that supports MANET’s architecture. DSR routing protocol is 

considered as an ad hoc on-demand protocol which is based on source 

routing technique. In the source routing technique, a sender of a packet 

determines the complete sequence of nodes through which to forward the 

packet and saves the available path in its route caches. The route 

discovery process is initiated when there is no path available from the 

sender of the packet to the destination. It contains two different phases, 

namely route request (RREQ), and route reply (RREP) in order to discover 

the available routes from source to destination. DSR is chosen in this 

thesis to test the trust models for its simplicity, and explicitly in stating 

routes in data packets. Besides, it is easy to launch attacks such as denial 

of service attack. However, the proposed models in this thesis can be 

applicable to any other routing protocols which are specifically designed for 
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mobile ad hoc networks such as Ad Hoc On-Demand Distance Vector 

Protocol (AODV) [119].  

3.2.2 Assumptions 

The proposed trust models in all subsequent chapters are based on 

improving the security of the network layer and do not depend on any 

tamper proof hardware, and there are no cryptography tasks required to 

transmit packets. However, the models can be used in conjunction with 

other security techniques for ad hoc routing such as cryptography or 

access control. The underlying assumptions used in testing the MANETs 

environment are commonly used in most MANETs’ security area of 

research. Besides, these assumptions are critical to test the trust models 

proposed for MANETs, for example forwarding of packets is the most 

important behaviour because only cooperation of nodes can guarantee the 

exist of the network.  Another example is giving a chance of bad behaving 

nodes to become good nodes and participate back in the network which 

may result in enhancing the network performance. The assumptions are 

illustrated as follows. 

Assumption 1: All nodes have a unique ID and they are not able to 

change identity during the simulation time.  

Assumption 2: Nodes are operating in promiscuous mode and they can 

listen to transmitting packets within their transmission range. 

Assumption 3: Links between every two nodes are symmetric and omni-

directional antennas. 

Assumption 4: Correct forwarding of packets is the main behaviour to 

evaluate nodes’ trustworthiness. 

Assumption 5: Trustworthiness of nodes is based on a predefined 

threshold which is adjusted for each model in the subsequent chapters.  
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Assumption 6: Nodes can only monitor the behaviours of their one hop 

neighbours; consequently, they are able to evaluate their trustworthiness. 

Assumption 7: Nodes can evaluate trustworthiness of two or more than 

one hop neighbours by using the monitoring information of other nodes 

which have interacted with them. 

Assumption 8: Nodes can evaluate the future behaviour of each other 

based on past experiences of direct observations and recommendations.  

Assumption 9: Trust among nodes is asymmetric and is not completely 

transitive.   

Assumption 10: All nodes’ behaviours are consistent with different 

percentages of hostility in some modeled attacks.  

Assumption 11: Nodes’ behaviours are independent from each other 

except for some attacks in which attackers collude together to achieve a 

specific attack. 

Assumption 12: Redemption is utilised in order to give misbehaving nodes 

(due to network failure or environmental conditions) another chance to 

enhance their behaviours. 

3.2.3 Mobility Model 

The mobility model used in this thesis is the random way point which is the 

most commonly used model in ad hoc networking research [120]. It is 

feasible and movement could be considered as realistic which is very 

similar to the real world movement [121]. However, the proposed models in 

all subsequent chapters can fit any other type of mobility models like 

RPGM model [122]. 

3.2.4 Attack Model 

The attack model is one of the important components that is utilised to 

represent the attackers’ behaviour, which is modelled and added to the 
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simulator to test the validity of the proposed models. Different attacks are 

used in this thesis to fulfil the requirements of each model described in the 

following chapters. Similarly, nodes behaving badly such as blackhole, 

greyhole, and selfish attackers [22 , 123 , 124] are modelled and used with 

different percentages for all the proposed models in the subsequent 

chapters. For example, to model blackhole attack, nodes intend to 

maliciously drop all the received packets and refuse to forward them, while 

nodes in a greyhole attack also maliciously drop some selected packets 

with different percentages. Table 2-1 in the previous section shows the 

attacks modelled in this thesis to test the validity of the proposed models in 

the subsequent chapters. 

3.2.5 Data Collection 

This subsection provides information about the data collection and data 

sources used in this thesis. However, it is significant for large-scale 

simulation experiments to investigate the method of producing a flexible 

data collection and statistical analysis.  Although NS2 has been considered 

as a leader among a vast number of network simulators [125], data 

collection aspects do not have adequate support and statistical analysis of 

the simulation results is most often performed by the users themselves 

using their local codes, which are not integrated in the simulator [126]. 

However, the only source of data collection in NS2 is represented by trace 

files. They record some important parameters such as generation, queuing, 

forwarding, and dropping of packets. Each line in the file represents 

information of an event related to the packet in terms of size, source and 

destination addresses, TCP/UDP port numbers, and some additional fields. 

In this thesis, a trace file of each simulation is used to analyse the 

proportion of packet loss and throughput. Additional information needed for 
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the research analysis, such as the number of misbehaving nodes and 

social values, is collected during the simulation and saved to text files. An 

AWK  script [127], which is a programming language primarily designed for 

processing structured data records containing text, is written for each file to 

analyse the results. 

3.3 Summary 

An illustration of the problem of trust and reputation, which has been 

considered as the basis of this work is provided. The probabilistic trust 

model utilised in this thesis is described, along with its components and 

parameters. Further, the adopted research methodology is explored. An 

explanation of the simulator, assumptions, mobility model, attack model, 

and the way data is collected which are used to build trust in MANETs is 

provided.    
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Chapter 4 A Recommendation Based Trust 

Monitoring Model for MANETs 

The reliability of delivering packets through multi-hop intermediate nodes is a 

significant issue in mobile ad hoc networks (MANETs). Monitoring based 

trust management has been proposed in the literature as a mechanism to 

filter out misbehaving nodes while searching for a packet delivery route. 

However, the building of a trust model that is designed to secure routing 

based on monitoring nodes' behaviour is vulnerable to the possible scarcity 

and uncertainty of information in the network, such as insufficient experience 

gained by an evaluating node. This chapter investigates the problems of 

building trust relationships between nodes to filter out attacks posed by 

misbehaving nodes while delivering packets in the existing trust models. A 

monitoring based trust model with a capability of utilising any available 

information within a certain time based on multiple sources of information: 

direct experience of a node itself, indirect experiences of other nodes, and 

opinion experience of recommending nodes is proposed in this chapter. The 

model is empirically tested and results are presented based upon a number 

of experiments. The experimental work of this chapter is carried out using an 

NS2 simulator.  

4.1 Introduction 

The trust based monitoring model of evaluating trustworthiness or reliability 

of nodes in MANETs has gained significant interest from researchers 

recently. Nodes tend to defect in the cooperation of packet delivery 

procedure by dropping packets or providing misleading information in order 

to extend their battery life or availability [22]. Recently, several trust and 

reputation management models have been proposed to secure MANETs and 

stimulate nodes to cooperate. However, some deficiencies have been 
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observed which might be trivial but can degrade the efficiency and 

performance of these environments. MANETs are distributed systems with 

unique characteristics; consequently, technical challenges are arising due to 

these characteristics, such as resource-constraints, openness to 

eavesdropping, high vulnerabilities, increased hostile environments, rapid 

topology changes due to node mobility or failure, and the inherent 

unreliability of communications over a wireless medium [75].  

Most of the existing trust management mechanisms do not model trust in 

MANETs based on all these unique characteristics. It is critical in building 

such models in a dynamic environment like MANETs to carefully define the 

concept of trust based on their characteristics [7]. Trust in MANETs can be 

defined as the reliability, timeliness, and integrity of message delivery to a 

node’s intended next-hop [128]. Due to MANETs' unique characteristics, 

nodes’ collaboration in forwarding packets is vulnerable to misbehaving 

nodes. In the absence of proper countermeasures, MANETs’ performance 

can significantly decrease due to selfish nodes, malicious attacks, and 

random failures. To overcome these limitations, a fully decentralised trust 

based monitoring model is proposed where trust scores are collected by the 

trust management system from all MANET participating nodes as ratings. 

The trust management system computes and updates these ratings to build 

trust relationships amongst nodes. The model aims to detect packet drop by 

selfish or malicious nodes, taking into account most of the MANETs’ unique 

characteristics such as constrained resources in terms of time and energy. 

Another aim is to save these limited resources by simplifying or eliminating 

unnecessary computations of the trust values such as helping nodes to 

reduce the energy consumption and increase their lifetime in the network. 

The main contribution of this chapter is the use of any available information in 
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the network to construct the trust relationships between any two nodes that 

would like to interact. An important component is added to the proposed 

model, namely opinion trust that expresses a node’s opinion about how 

honest a node is as a recommender. This value is used in calculating the 

overall trust value of a particular node in addition to direct and indirect trust 

with various different weights. 

4.2 The Trust-Based Monitoring Model 

This subsection outlines the parameters that would be used as a basis to 

measure trust values in a MANET environment. The choice of these 

parameters has been directed by the use of the beta distribution function 

outlined in Chapter 3. A wireless MANET scenario is considered, where a 

node monitors its neighbours for packet forwarding service and chooses a 

trustworthy neighbour in terms of packet forwarding based on a trust value 

assigned by the trust model. The main component of the model is the trust 

management system that is run by each node in the network to maintain a 

trust value for all other nodes with which it has interacted in the past. Each 

node initiates a trust relationship with other nodes based on accumulating the 

successful and failed transactions (positive and negative observations) from 

the monitoring components. After each observation, a trust value of the 

evaluating node is updated regarding the evaluated node. The evaluation 

process is not only based on past experiences: it also has the opportunity to 

share other nodes’ experience by means of recommendations. The trust is 

measured as a continuous valued variable in the range of [0, 1], in which 0 

denotes that the node is completely untrustworthy, 1 denotes that the node is 

completely trustworthy, and 0.5 denotes complete uncertainty. A continuous 

valued variable can effectively represent uncertainty property of trust better 

than a binary variable [7]. The following parameters, listed and detailed 
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below, summarize the characteristics of the Trust Based Monitoring Model in 

the scenario explained above: 

A. Direct Trust 𝑻𝒊𝒋
𝒅𝒊𝒓𝒆𝒄𝒕  

In MANETs, direct trust is obtained when two nodes have already initiated a 

trust relationship and they can immediately interact with each other (at least 

for a specific period of time, when they are within the same range, because 

of nodes’ mobility), without requiring a third-party opinion or recommendation. 

The direct trust value is updated based on whether the previous interactions 

between two nodes have been successful or not. The observation is 

represented by two variables 𝜌 and  𝑛 describing the number of positive and 

negative interactions respectively. The calculation of 𝜌 and 𝑛  would be as 

𝜌 =  𝜌 +  1 when observing normal behaviour (forwarding packets) and 

𝑛 =  𝑛 +  1 when observing misbehaviour (dropping packets) where 𝜌 and 

𝑛  ≥  0 . Then 𝛼𝑖𝑗  which represents the accumulated positive interactions 

between node 𝑖  and 𝑗  is calculated as  𝛼𝑖𝑗  =  𝛼𝑖𝑗  +  𝜌𝑖𝑗 , while 𝛽𝑖𝑗  which 

represents the accumulated negative interactions is calculated as  𝛽𝑖𝑗  =

 𝛽𝑖𝑗  +  𝑛𝑖𝑗. Direct trust value is considered to be accurate and its computation 

invulnerable to dishonest attacks. The calculation is based on the beta-

function by applying the values of 𝛼𝑖𝑗 and 𝛽𝑖𝑗 in Eq. (4-1).  

 𝑇𝑖𝑗
𝑑𝑖𝑟𝑒𝑐𝑡 =

𝛼𝑖𝑗

𝛼𝑖𝑗 + 𝛽𝑖𝑗
 (4-1) 

B. Indirect Trust 𝑻𝒊𝒋
𝒊𝒏𝒅𝒊𝒓𝒆𝒄𝒕  

Indirect trust needs to be considered when two nodes have not established a 

previous trust relationship through exchange of packets or any other form of 

communication. In such cases, the evaluating node does not have sufficient 

experience to judge the trustworthiness of the other node being evaluated. 

Indirect trust is also calculated using the beta-function, similarly to the way in 
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which direct trust was computed earlier. Indirect trust actually comprises the 

direct observations obtained by one node about its neighbours, which can be 

used by another node as second-hand information. Node   𝑘 ’s direct 

observations of node 𝑗  could be indirect or second hand information to 

another node   𝑖  (given that node 𝑖  and 𝑗  have not interacted in the past). 

Therefore, indirect trust value is calculated using (𝛼𝑖𝑗
′ , 𝛽𝑖𝑗

′ ) and updated by 

two variables:  𝜌′ , describing the number of positive interactions, and 𝑛′ , 

describing the number of negative interactions. Further, 𝛼𝑖𝑗
′  and  𝛽𝑖𝑗

′  are 

calculated as 𝛼𝑖𝑗
′  =  𝛼𝑖𝑗

′  +  𝜌𝑖𝑗
′  and 𝛽𝑖𝑗

′  =  𝛽𝑖𝑗
′  +  𝑛𝑖𝑗

′ . If the evaluating node 𝑖 

receives 𝛮  recommendations for the evaluated node 𝑗  denoted by  𝑘 =

 1, 2, … ,𝛮, indirect trust 𝑇𝑖𝑗
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 of node 𝑖 about 𝑗 is calculated according to 

the Eq. (4-2).  

 𝑇𝑖𝑗
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = ∑

𝛼𝑘𝑗
′

𝛼𝑘𝑗
′ + 𝛽𝑘𝑗

′

𝑁

𝑘=1

 (4-2) 

C. Opinion Trust 𝑻𝒊𝒋
𝒐𝒑𝒊𝒏𝒊𝒐𝒏

  

Opinion trust is the trust value that expresses a node’s opinion about how 

honest a node is as a recommender in the trust and reputation system. In 

other words, this information represents whether a node’s recommendations 

are likely to be accepted by the evaluating node and considered as true. In a 

similar way to direct and indirect trust, opinion trust value is also calculated 

based on (𝛼𝑖𝑗
′′ , 𝛽𝑖𝑗

′′) and updated by two variables: 𝜌′′, describing the number 

of positive interactions; and 𝑛′′ , describing the number of negative 

interactions. Further, 𝛼𝑖𝑗
′′  and  𝛽𝑖𝑗

′′  are calculated as 𝛼𝑖𝑗
′′  =  𝛼𝑖𝑗

′′  +  𝜌𝑖𝑗
′′  and 

𝛽𝑖𝑗
′′  =  𝛽𝑖𝑗

′′  +  𝑛𝑖𝑗
′′  . Consider the same scenario expressed above: 𝑘  is a 

recommending node would provide information about evaluated node 𝑗  by 

the evaluating node 𝑖. Opinion trust is updated only when a recommendation 
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is received from node 𝑘.  If the recommendation is accepted, this is 

interpreted as a positive interaction (i.e. 𝜌′′ = 1); otherwise, this is interpreted 

as a negative one (i.e.   𝑛′′ = 1) between the evaluating node 𝑖   and the 

recommender  𝑘 . Opinion trust 𝑇𝑖𝑘
𝑜𝑝𝑖𝑛𝑖𝑜𝑛

 of node 𝑖  about 𝑘  is calculated 

according to Eq. (4-3). 

 𝑇𝑖𝑘
𝑜𝑝𝑖𝑛𝑖𝑜𝑛 =

𝛼𝑖𝑘
′′

𝛼𝑖𝑘
′′ + 𝛽𝑖𝑘

′′
 (4-3) 

D. Deviation Test 𝑫  

Indirect trust information is very important to incorporate in a trust model for 

MANETs because of its advantages in providing information about unknown 

nodes by the evaluating node. However, involving this kind of information can 

leave the model vulnerable to intentionally generated untrustworthy 

recommendations. It is significant to check the honesty of this information to 

mitigate the influence of wrong evaluation by the trust model. Assume that 

the evaluating node 𝑖 would like to calculate the trust value of its neighbour 

node 𝑗 using receiving recommendation provided by recommending node 𝑘. 

Node 𝑖 first checks the opinion trust value of the node 𝑘. If the opinion trust 

value held by node 𝑖 about node 𝑘, which is denoted by 𝑇𝑖𝑘
𝑜𝑝𝑖𝑛𝑖𝑜𝑛

, is more than 

a certain trust threshold 𝑇𝑖𝑘
𝑜𝑝𝑖𝑛𝑖𝑜𝑛   >  𝑂𝑝𝑖𝑛𝑖𝑜𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then the 𝑘 is trusted 

without further tests and indirect trust is updated for node 𝑗. This technique 

permits fast trust convergence, which is vital in MANETs, where nodes have 

limited battery and resources to observe the trust of other nodes. As a result 

of trusted node 𝑘 , node 𝑖  updates the opinion trust value of node 𝑘 

accordingly. If the above test is false, node 𝑖 first performs a deviation test to 

check if the information received from node 𝑘 is compatible with the 

information held by node 𝑗 using |𝑇𝑖𝑗
𝑑𝑖𝑟𝑒𝑐𝑡 − 𝑇𝑘𝑗

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡| ≤ 𝐷 , which indicates the 

deviation threshold. If the above test is positive, then the information provided 
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is regarded as compatible and indirect trust information is used to update 

trust value node 𝑗.  

E. Decay Factor µ 

The influence of past experiences changes over time in a dynamic 

environment. It is thus important for a trust model to consider this change in 

influence. The proposed model incorporates a decay factor (µ) to gradually 

decrease the influence of past experience over time, prior to aggregation with 

new trust values. Forgetting of past experiences is carried out by adjusting 

the time frame of observations while recording the positive or negative 

experience. However, trust decays over time even during inactive periods 

and it is thus important to consider the diminishing impact of trust over time. 

The first situation is when a node observes an additional new positive or 

negative interaction between time 𝑡𝑐 and 𝑡𝑐+1 denoted as 𝜌𝑛𝑒𝑤 and 𝑛𝑛𝑒𝑤 . In 

this case, the updated 𝜌  and 𝑛  should be reduced by the decay factor µ 

before merging them with the new values. Therefore, at time 𝑡𝑐+1, 𝜌 and 𝑛 is 

updated respectively according to the formula in Eq. (4-4). 

 𝜌 = 𝜌𝑜𝑙𝑑 ∗  µ + 𝜌𝑛𝑒𝑤   ,   𝑛 =  𝑛𝑜𝑙𝑑 ∗  µ + 𝑛𝑛𝑒𝑤 (4-4) 

where 0 ≤  µ ≤ 1. The second situation is when there is no observed new 

positive and negative interaction between time 𝑡𝑐 and 𝑡𝑐+1. Then, at time 𝑡𝑐+1, 

𝜌 and 𝑛 are updated respectively as in Eq. (4-5). 

 𝜌 = 𝜌𝑜𝑙𝑑 ∗  µ  ,   𝑛 =  𝑛𝑜𝑙𝑑 ∗  µ        (4-5) 

F. Trust Value  𝑻𝒊𝒋 

For each node in the network, trust value 𝑇𝑖𝑗  is calculated by combining 

direct, indirect and opinion trust values with different weights, denoted by 

𝑤𝑑𝑖𝑟𝑒𝑐𝑡, 𝑤𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 , and 𝑤𝑜𝑝𝑖𝑛𝑖𝑜𝑛 respectively. Trust value 𝑇𝑖𝑗  is computed 

according to Eq. (4-6), 
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 𝑇𝑖𝑗 = 𝑤𝑑𝑖𝑟𝑒𝑐𝑡𝑇𝑖𝑗
𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑤𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑇𝑖𝑗

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑤𝑜𝑝𝑖𝑛𝑖𝑜𝑛𝑇𝑖𝑗
𝑜𝑝𝑖𝑛𝑖𝑜𝑛

 (4-6) 

where  0 ≤ 𝑤𝑑𝑖𝑟𝑒𝑐𝑡 ≤ 1, 0 ≤ 𝑤𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 ≤ 1, 0 ≤ 𝑤𝑜𝑝𝑖𝑛𝑖𝑜𝑛 ≤ 1, 𝑎𝑛𝑑   𝑤𝑑𝑖𝑟𝑒𝑐𝑡 +

 𝑤𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡  +  𝑤𝑜𝑝𝑖𝑛𝑖𝑜𝑛 = 1. Different weights are incorporated in the proposed 

model because of their significant impact on diminishing the possibility of 

wrong trustworthiness evaluation of trust information provided by nodes.  In 

the proposed model, higher weight is usually given to direct information, as it 

is less prone to dishonest evaluation. It is fixed per each simulation and 

manually changed when needed. However, MANETs’ characteristics such as 

mobility and frequent change in topology make it difficult to completely trust 

the source of information, even if it is the node’s self-assessment. Therefore, 

the weighting problem is considered in subsequent chapters and dynamically 

calculated based on the quantity and quality of interactions observed by 

evaluating nodes. 

G. Example of Calculating Trust. 

Assume that the evaluating node 𝑖 would like to calculate the trust value of its 

neighbour node 𝑗  using direct trust and indirect trust (recommendation 

provided by recommending node 𝑘 ). node 𝑖  has observed 89 positive 

interactions 𝛼 = 90  and 9 negative interactions 𝛽 = 10 at time 𝑡. Therefore, 

the direct trust is calculated using Eq. (4-1). 

𝑇𝑖𝑗
𝑑𝑖𝑟𝑒𝑐𝑡 =

𝛼𝑖𝑗

𝛼𝑖𝑗 + 𝛽𝑖𝑗
= 

90

90 +  10
= 0.90  

Indirect trust is calculated based on the sum of received recommendation 

in the form of ratings (𝛼, 𝛽) . Assume node 𝑖  receives recommendations 

from node 𝑘1 = (80,20) , 𝑘2 = (100,15), 𝑘3 = (89,10) , and 𝑘4 = (7,79) . 

Based on the received recommendation node 𝑖 will perform the deviation test 

and accept only the recommendations from nodes  𝑘1, 𝑘2,  and 𝑘3  and 
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exclude the recommendation received from node 𝑘4 . Therefore, indirect 

trust is calculated according to Eq. (4-2). 

𝑇𝑖𝑗
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = ∑

𝛼𝑘𝑗
′

𝛼𝑘𝑗
′ + 𝛽𝑘𝑗

′

𝑁

𝑘=1

= 
80 + 100 + 89

(80 + 100 + 89) + (20 + 15 + 10)
=  0.86 

Opinion trust is calculated based on the positive and negative interactions of 

node 𝑗 held by node 𝑖 as a result of being honest recommender. Assume that 

node 𝑖  has observed 49 positive interactions 𝛼 = 50   and 2 negative 

interactions 𝛽 = 3 at time 𝑡. Therefore, the opinion trust is calculated using 

Eq. (4-3). 

𝑇𝑖𝑘
𝑜𝑝𝑖𝑛𝑖𝑜𝑛 =

𝛼𝑖𝑘
′′

𝛼𝑖𝑘
′′ + 𝛽𝑖𝑘

′′
= 

50

50 +  3
= 0.94 

The overall trust now is calculated using Eq. (4-6) with a weight of 50%, 40%, 

and 10% is given to direct, indirect, and opinion trust values respectively. 

𝑇𝑖𝑗 = 𝑤𝑑𝑖𝑟𝑒𝑐𝑡𝑇𝑖𝑗
𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑤𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑇𝑖𝑗

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑤𝑜𝑝𝑖𝑛𝑖𝑜𝑛𝑇𝑖𝑗
𝑜𝑝𝑖𝑛𝑖𝑜𝑛

 

𝑇𝑖𝑗 =  0.50 ∗ 0.90 +  0.40 ∗ 0.86 +  0.1 ∗ 0.94 = 0.83 

4.3 Simulation and Analysis 

An experiment to test the components and functionality of the trust model is 

conducted. A wireless MANET environment with two types of nodes which 

act as intermediate nodes is simulated. The first type of node comprises 

good nodes which behave normally in the service of forwarding packets, 

while the other type behaves badly by dropping all or some packets 

(blackhole and greyhole attack). The main aim of the experiment is to 

consider the contribution of the model in detecting and avoiding the bad 

nodes and consequently enhancing network performance in terms of 

throughput and packet loss. 
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4.3.1 Experimental Setting 

The simulation is conducted by the NS2 simulator. In a network with 50 

random placed nodes in an area of 700×700, several nodes are randomly 

selected as misbehaving by dropping data packets and this attack is 

simulated. There are 15 source-destination pairs and each source transmits 

2 packets per second with a Constant Bit Rate (CBR). The packet size is 512 

bytes and the simulation time is 900s. Table 4-1 shows the parameters used 

in configuring the network for this experiment.  

Table 4-1 Network configuration 

Parameter Value Parameter Value 

Nodes 50 Application CBR 

Area 700 X 700 m Packet size 512 B 

Speed 10 m/s Simulation time 900 s 

Radio Range 250 m Opinion_threshold 0.6 

Movement Random waypoint Trust_threshold 0.3 

Routing Protocol DSR Publication timer 10 s 

MAC 802.11 Decay timer  10 s 

Transmitting capacity 2 Kbps, 4 Kbps Deviation threshold 𝑫 0.5 

4.3.2 Experimental Results 

In this section, results and analysis on the computation of three components 

of the trust model, namely the direct trust, indirect trust, and opinion trust 

values, are presented. A discussion of the values and their relationship to the 

overall trustworthiness value is also provided.  The simulation results are 

shown in Figures 4-1 to 4-3. The ability of the model to allow a node to 

classify other nodes in the network as bad and good nodes and successfully 

judge their trustworthiness in a short time is also considered in figure 4-4 and 

4-5. The model extends the standard DSR routing protocol with the trust 

model. Therefore, comparisons between the standard DSR and DSR with 

trust model performance on both throughput and packet loss are also 

presented in Figures 4-6 and 4-7. 
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To produce the results, a highly connected node which has a great number of 

neighbours in the network is picked at random and its interactions and trust 

relationships with other nodes is analysed. Because of the mobility issue in 

MANETs, a single node’s data is used in the analysis to confine the results.  

Firstly, an analysis of the impact of the three components on the overall 

trustworthiness of a good node (node 4 in this case) is considered by looking 

at the values of direct, indirect, and opinion trust values over the time of the 

simulation. A weight of 50%, 40%, and 10% is given to these values 

respectively which are identified by practice as the best weights to increase 

the ability of nodes to assess trustworthiness of other neighbours in the 

network. A value of 0.5 is given as a starting trust value for all nodes in the 

network. It is obvious from the comparable results in Figure 4-1 and Figure 4-

2 that the direct trust values and indirect trust values are consistent. This is 

because of the fact that the proposed model only accepts recommendations 

which do not deviate too much from the direct trust being held by the 

evaluating node and used to update the indirect trust values. Meanwhile, in 

Figure 4-3, opinion trust starts at a value of 0.5 when the node provides 

recommendations, and this increases gradually whenever the node provides 

honest recommendations, and its value then differs from the overall 

trustworthiness in the early time of simulation. Its value increases to nearly 

the same value as trustworthiness in the second half of the simulation time.   
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Figure 4-1 The impact of direct trust component in the trustworthiness computation of node 4 
by other nodes in the network 

 

Figure 4-2 The impact of indirect trust component in the trustworthiness computation of node 
4 by other nodes in the network 
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Figure 4-3 The impact of opinion trust component in the trustworthiness computation of node 
4 by other nodes in the network 

In Figures 4-4 and 4-5, an important evaluation metric is also examined to 

look more closely at whether the nodes are correctly classified as good and 

bad nodes. The classification of nodes should happen quickly in the early 

phase of the simulation as nodes are forced to make early decisions about 

other nodes’ trustworthiness. Figure 4-3 shows the trustworthiness of node 4 

by other nodes at different numbers of interactions which starts from 0 to 100 

interactions in the presence of 40% bad nodes. It is obvious that nodes are 

able to judge the others’ trustworthiness by gaining more experience over 

time (i.e. increasing the number of interactions). In the early stages, once 

there is no enough experience, good and bad nodes are intermixed and there 

is no clear separation between them as the bad nodes have trust values 

more than the trust threshold.  The classification of nodes is improved by an 

increase in the number of interactions. Good nodes move towards the upper 

right corner in which the trust value converges to 1, while the bad nodes 

move towards the upper left corner in which the trust value converges to 0.   
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Figure 4-4 The impact of experience (number of interactions) in the classification of other 
nodes by node 4 in the present of 40% bad nodes 

Figure 4-5 shows the classification of nodes by two nodes: 4 and 9. It shows 

that the percentage of nodes classified by both nodes 4 and 9 increases with 

the time of the simulation and is above 60% by the end of simulation. This 

percentage depends on the number of bad nodes and the degree of 

connectivity (neighbours). However, the proposed model is able to allow 

nodes to successfully classify others even when 40% of nodes are behaving 

badly.         

 

Figure 4-5 Percentages of the nodes classified by node 4 and node 9 of other nodes in the 
presence of 40% bad nodes 
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Another evaluation metric is to consider the adaptation of the proposed 

model in routing protocols such as DSR or AODV and check its applicability 

and impact on the network performance, as shown in Figures 4-6 and 4-7.  

Figure 4-6 displays on the x-axis the number of misbehaving nodes, ranging 

from 0, which means all nodes are behaving normally, to 20 misbehaving 

nodes. The y-axis shows the percentage of the network throughput of both 

standard and trusted DSR. The figure shows that the throughput for the 

proposed trust mechanism gradually drops as the number of misbehaving 

nodes increases but it remains at nearly 60%. Meanwhile, standard DSR falls 

below 50% at the same time and same number of misbehaving nodes.  

Figure 4-7 displays the percentage of the packet loss of both standard and 

trusted DSR, with the same percentage of misbehaving nodes, which ranges 

from 0 to 20 misbehaving nodes. It shows an improvement in the ratio of 

packet loss over the standard DSR in all the cases considered. 

 

 

 Figure 4-6 Network throughput  
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Figure 4-7 Packet loss 

 

4.4 Summary 

In this chapter, a trust model was built to monitor misbehaving nodes in ad 

hoc routing protocol, their harmful influence was mitigated and they were 

avoided by nodes in selecting a reliable routing path. Trust evidence, 

including direct trust, indirect trust and opinion trust are evaluated. All the 

available information needed for calculating trustworthiness is gathered and 

used as appropriate. The model is totally decentralised and depends on the 
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to recent experiences. The node can use its own evidence (direct trust) or 
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trust). These forms of evidence are used with appropriate weighting to reflect 

the fact that direct evidence is more valuable than other evidence, which may 

be subject to dishonest recommendations. A deviation test was used to deal 
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second chance for misbehaving nodes which are isolated from the network is 

given to deal with the problem of false evaluation due to insufficient 

experience to determine the honesty of a node. The problem of short-term 

experience is solved in the next chapters by using the confidence value, 

which indicates that the node has sufficient experience to determine the 

honesty of other nodes.  
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Chapter 5 Recommendation Based Trust Model with 

an Effective Defence Scheme 

This chapter proposes a recommendation based trust model that adopts 

recommendations by other nodes in the network which is a challenging 

problem due to the risk of dishonest recommendations like bad-mouthing, 

ballot-stuffing, and collusion. This chapter investigates the problems of 

attacks posed by misbehaving nodes while propagating recommendations in 

the existing trust models. It proposes two methods to tackle this problem. 

First, a dynamic recommender selection, which utilises three different rules: 

(i) majority rule based; (ii) personal experience rule based; and (iii) service 

reputation rule based. Second, a robust and effective defence scheme to 

select the recommending node based on three factors: (i) number of 

interactions with the evaluated node; (ii) unity of view with the evaluating 

node; and (iii) closeness to the evaluating node. Clustering technique is 

adopted in both methods to dynamically filter out recommendations between 

certain timeframe.  

5.1 Introduction 

Recommendation based trust management has been proposed in the 

literature as a route security mechanism to establish trust between nodes 

and filter out the misbehaving nodes [15 , 129]. Prior to interaction, the use of 

recommendation based trust technique can help nodes in discovering 

misbehaving nodes, consequently avoiding a potential bad experience. 

Nodes in MANETs can make more informed decisions on the selection of 

routing paths using recommendations by sending a single packet to them, 

and consequently use less resources and could help in saving energy [17].  

Together with the advantages comes the challenge of handling dishonest 

recommendations in MANETs. A cold-start problem due to data sparsity, 
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which arises when nodes have no historical trust profile results in a particular 

node might not be well informed to make an assessment of trustworthiness of 

another node. In such cases, the evaluating node solicits recommendations 

from the evaluated node's neighbours (acquaintances) with whom it has a 

history of interaction. However, to maximise the gain of individuals and their 

acquaintances, nodes could resort to dishonest behaviours through attacks 

such as ballot stuffing, bad-mouthing and collusion. Such attacks could 

eventually lead to trust framework malfunction [123]. Solutions proposed to 

tackle these problems are limited and not adequately effective [10 , 15 , 17 , 

114].  

One of the approaches [10] judges the honesty of the recommending node 

by considering the majority opinion between recommendations and excluding 

any recommendation out of the majority. In such case, filtering out dishonest 

recommending nodes becomes a serious problem when recommending 

nodes collude with each other to accomplish a malicious goal. Another 

approach is the service reputation [114] by referring to their trust values in 

which a recommending node with a high trust value is preferred and seen as 

a trustworthy one. However, a node can be trustworthy in terms of packet 

forwarding but could be a bad node as a recommending node. An experience 

based approach [15] is also used to filter out dishonest recommending nodes 

whose opinions are considered as incompatible with the opinions of the 

evaluating node. This approach could be unfruitful when the evaluating node 

has no prior experience with the evaluated node. These limitations may result 

in a confusing and misleading trust model in judging the nodes’ 

trustworthiness.   

The main contribution of this chapter is the proposal of a recommendation 

based trust model with a defence scheme, which utilises clustering 
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techniques to dynamically filter out attacks related to dishonest 

recommendations between certain timeframes based on two ways. First, the 

consideration of all three types of rules described above to come with an 

integrated measure to address the problem of dishonest recommendations: 

the majority rule to ensure the consistency of recommendations among time 

and location, the personal experience based rule to ensure the consistency 

of the received recommendation with the information held by the evaluating 

node, and the service reputation based rule to ensure the honesty of 

recommender by the services provided over time. Second, an effective 

defence scheme is proposed using three parameters to compute the 

trustworthiness of recommenders: number of interactions (using confidence 

value), compatibility of information with the evaluated node (through deviation 

test), and closeness between the nodes. The defence scheme underlines the 

importance of social properties in evaluating trustworthiness and uses it in 

investigating the relation between closeness of nodes and similarity in 

behaviour.  The use of proof of time and location missing in the current 

literature is considered by the proposed model. False negative and false 

positive problems in evaluating the recommendation’s trustworthiness and 

their impact on the network performance are thoroughly investigated. 

Different nodes are chosen in the evaluation procedure to test the 

performance of the filtering algorithm against various mobile topologies and 

neighbourhoods.   

5.2 Attacks Related to Recommendation Management in Trust and 

Reputation Frameworks 

It is indeed a challenge to safe guard a network against a wide range of 

attacks. Recent focus of research in this area has been on the problems 

associated with misbehaving nodes in the context of packet forwarding, like 
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blackhole or wormhole attack [130]. For quality assurance, it is important that 

trust management frameworks be resilient to attacks [16]. Although several 

researchers have put considerable effort to protect the propagation and 

aggregation of recommendations in a trust model, research is still in its early 

stages [74]. The following attacks, namely, bad mouthing attack, ballot 

stuffing attack, selective misbehaviour attack, intelligent behaviour attack, 

time-dependent attack and location-dependent attack (see Figure 5-1 for the 

classification of attacks), are targeted at the propagation and aggregation of 

recommendation [16 , 74 , 131] Location-dependent attack is used for the 

first time in this thesis. The attack behaviours are summarised below:  

I. Bad Mouthing Attack (BMA). In this type of attack, conspiring nodes 

propagate unfairly negative ratings of good nodes with an ill intent to 

tarnish their reputation in the network. Such collusive behaviour may lead 

to the blocking of valid paths in the network by confusing the trust and 

reputation management mechanism.  

II. Ballot Stuffing Attack (BSA). Propagation of unfairly positive ratings for 

some poorly performing nodes by collusive nodes in the network lead to 

ballot stuffing attack. The intention of collusive nodes is to mislead the 

trust mechanism and cause it to malfunction in accurately reporting the 

trustworthiness of the assessed node. 

III. Selective Misbehaviour Attack (SMA). This attack victimises some trusted 

nodes by propagating false ratings for them, while at the same time acting 

normal to other nodes. This type of behaviour can be very difficult to detect 

for the trust mechanism. 

IV. Intelligent Behaviour Attack (IBA). This attack selectively provides 

recommendation with high or low ratings according to the trust threshold. 
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This kind of attack can cause malfunction to the trust framework by 

dynamically responding to the trust threshold and behaving based on it.  

V. Time-dependent Attack (TDA). This attack makes participating nodes 

change their behaviour by time. Nodes can behave normally for a period of 

time and can misbehave by providing unfair ratings at other times. This 

attack also has its roots in the subjective property of trust.   

VI. Location-dependent Attack (LDA). This attack exploits mobility property of 

MANETs, where a node behaves differently according to its location. This 

attack originates from the subjective property of trust where behaviours at 

one location cannot affect evaluating trustworthiness of nodes at another 

location.  

 

Figure 5-1 Attacks Related to Misbehaviour Problems in Recommendation Management of 
Trust and Reputation Frameworks 

The summarised attacks belong to two categories: false rating (BMA, BSA, 

and SMA), and inconsistent rating based on the trust threshold, time, or 

location (IBA, TDA, and LDA). Some of the countermeasures illustrated 

below can be used for both categories or being specifically designed for one 

category. For example, [23] proposes the use of only positive 
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recommendations, while [18]  uses only negative recommendations and this 

can countermeasure attacks like ballot stuffing and bad mouthing. This kind 

of defence can be harmful to trust information because nodes cannot report 

their complete experiences. Statistical methods like Bayesian theory to 

accurately compute the correctness of recommendations can be a robust 

solution to both categories [131]. Proof of sufficient interactions [75], and 

specifying a certain threshold of negative and positive recommendation, 

besides, the majority opinion technique [77] could also be used to mitigate 

the effect of false and inconsistent rating.  Comparison between a 

recommendation list and proof of time and location of the recommendation 

provider is also a promising solution to time and location-dependent attacks. 

The method of comparing time and location is considered for the first time in 

the proposed algorithm. 

What follows from the above discussion is that the recommending nodes' 

trustworthiness cannot be assessed by just a single scheme. It should be 

supported by using many behaviour and social properties (such as, the 

closeness between nodes, and proof of time and location) which are missed 

in the literature. In order to improve accuracy and robustness of the trust 

model, the influence of the untrustworthy recommendations should be 

mitigated to overcome the problem of false negative and false positive. 

5.3 The Recommendation-Based Trust Model 

This subsection describes the recommendation-based trust management 

model that is utilised to secure the routing protocol between source and 

destination nodes based on the trust value of each node in the path. The 

model considers the problem of the attacks discussed earlier due to some 

misbehaving nodes in MANETs. The model uses the Bayesian statistical 

approach similar to that used in chapter 3 and 4 for computing trust values 
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based on the assumption that they follow a beta probability distribution by 

using two parameters  (𝛼, 𝛽) . They can be calculated by accumulating 

observations of forwarding and dropping packets where 𝛼  represents the 

accumulation of positive observations (forwarded packets) and 𝛽 represents 

the accumulation of negative observations (dropped packets). We model two 

types of attacks related to the dishonest recommendation problem, which are 

bad-mouthing and ballot-stuffing to test the model functionality. The model 

has three components deployed to evaluate trust as in Figure 5-2.  

  

Figure 5-2 Recommendation trust model components 

A) Trust Computation Component  

The computation component uses direct as well as indirect (second hand) 

trust information. It obtains direct trust value from two nodes that have 

already initiated a trust relationship. The proposed model incorporates a 

decay factor (µ) to gradually decrease the influence of past experience over 

time, prior to the aggregation with new trust values. The trust computation 

component needs to consider indirect trust when two nodes have not 

established a previous trust relationship through exchange of packets or any 

other form of communication. In such cases, the evaluating node does not 
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have enough experience to judge the trustworthiness of the other node being 

evaluated. Indirect trust is also calculated using the beta-function, similarly as 

in chapter 4. While indirect trust information is important to incorporate in a 

trust model for MANETs, involving this kind of information can be vulnerable 

to intentionally generated dishonest recommendations. For each node in the 

network, overall trust value 𝑇𝑖𝑗  is calculated by combining both direct and 

indirect trust values with different weights. 

B. Recommendation Manager Component 

The recommendation manager component in the proposed model requests 

and gathers recommendations for a node from a list of recommending nodes. 

It works as an intermediate component between indirect trust computation and 

cluster manager components.  It helps in detecting and eliminating false 

recommendations. The recommendation manager has three important roles: 

(1) send recommendation request to the evaluating node’s neighbours; (2) 

collect received recommendation and send it to the cluster manger which runs 

the filtering procedure; (3) receive the filtered recommendation and send it 

back to the trust computation component. The recommendation manager 

requests and gathers a recommendation list for an evaluating node 𝑖 about 

node 𝑗 from a list of recommending nodes {𝑘1, 𝑘2, 𝑘3, … . , 𝑘𝑁} between time 𝑡𝑖 

and 𝑡𝑖+1and send it to the cluster manager to run the filtering algorithm. After 

filtering, it receives the trustworthy clusters as a list of honest 

recommendations denoted as {𝑘1
𝑇𝑟, 𝑘2

𝑇𝑟 , 𝑘3
𝑇𝑟 , … , 𝑘𝛮

𝑇𝑟}. The final task is to send 

the trustworthy cluster 𝐶𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦  to the requesting node. Algorithm 5-1 

illustrates the recommendation manager algorithm. 

Algorithm 5-1: Recommendation Manager Algorithm 

1. For each recommendation request Do 
2.   Send request to neighbours 
3.   Collect received recommendation 

4.   Construct 𝐿 = {𝑘1, 𝑘2, 𝑘3, … , 𝑘𝛮} 
5.   Send 𝐿 to the cluster manager for processing 
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6.   Receive trustworthy cluster 𝐶𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 = {𝑘1
𝑇𝑟 , 𝑘2

𝑇𝑟 , 𝑘3
𝑇𝑟 , … , 𝑘𝛮

𝑇𝑟} 
7.   Send 𝐶𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 to the requested node 
8. End For 

C. Cluster Manager Component 

The proposed trust model uses a clustering technique in order to maximise 

the consistency of receiving recommendations. For example, 

recommendations from a misbehaving node can have a range of multiple 

different ratings for the evaluated node. These ratings may be inconsistent in 

which they can differ from each other in a short period of time, a malicious act 

of the misbehaving node to confuse the trust model. Dynamic clustering of the 

recommendations over a period of time can filter out deviated ratings from the 

list of recommendations, thus decreasing the influence of false estimations in 

computing a trust value.  

Cluster manager receives a list of recommendations from the 

recommendation manager and processes it through a clustering technique. 

The clustering algorithm is performed by the evaluating node on all the 

reports from the recommendation list which is denoted 

by 𝐿 =  {𝑘1, 𝑘2, 𝑘3, … . , 𝑘𝑁}. The k-means clustering technique similar to [77] is 

applied on weighted trust values provided by recommenders which are 

considered as data for the clustering operation. The clustering approach 

divides the trust values from the recommenders into a predefined number of 

clusters denoted as 𝐾. Each trust value is initially considered as a cluster, 

and then two clusters with the shortest Euclidean distance are merged 

together to produce a new cluster. The clustering process is repeated by 

merging two clusters from the previous iteration with the shortest Euclidean 

distance to produce another cluster until the predefined number of clusters 𝐾 

is reached.  
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It is difficult to decide on selecting an optimal clustering algorithm to cluster a 

set of received recommendations based on a specific timeframe. However, k-

means technique is selected because it is a very common used algorithm and 

well defined for euclidean distance which is the main function used to cluster 

recommendations. It satisfies the requirements for MANET environment in 

terms of the following features. 

 Scalability: the algorithm is scalable to different numbers of clusters 

specified dynamically by the cluster manager when the evaluating node 

receives a list of recommendations. The algorithm shows good results in 

both cases of small number of recommendations and big number of 

recommendations in the later time of the network simulation or when 

most of nodes are active in providing recommendations. 

 Diversity: the algorithm is capable to deal with different criterion and 

characteristics expressed in the different rules that combined together to 

cluster recommendations. 

 Runtime: k-means is classified as Flat clustering algorithm which is 

usually more efficient run-time than the hierarchical clustering algorithm 

which may be slow because of making several decisions of merging or 

splitting clusters. 

 Complexity: k-means usually characterised by low memory usage feature 

than other clustering algorithms such as hierarchal clustering algorithm. 

Complexities of calculations as well as memory requirements for the k-

means are efficiently reduced by using the dynamic selection of the 

number of recommendations based on a period of time. 

5.4 Dynamic Selection of Recommender Using Three Rules  

In this proposed algorithm, nodes are clustered based on three values, 

namely, majority rule, personal experience rule, and service reputation rule. 
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These rules are combined and used to cluster recommendations from a list of 

recommenders in order to filter out dishonest recommendations. 

5.4.1 Component of the Dynamic Selection of Recommender Using 

Three Rules Filtering Algorithm  

The computation, recommendation, and cluster manager components work 

as outlined in section 5-3 of this chapter. Recommendation manger follows 

the same roles in algorithm 5-1 above. The following subsections will explain 

these values and give an overview of the clustering process and its algorithm.   

A. Majority Rule 

In the majority rule based technique, the trust and reputation schemes 

compute the majority opinion across all recommendations and classify those 

recommendations that deviate too much from the majority opinion as 

untrustworthy, and consequently exclude them from calculation.  

B. Personal Experience Rule 

The personal experience based technique aims to filter out any 

recommendation that is considered as incompatible with the opinion of the 

evaluating node. This filtering algorithm applies the deviation test to the 

receiving recommendations and excluding any that deviate too much from the 

opinion held by the evaluating nodes using a deviation threshold.  

C. Service Reputation Rule 

The service reputation based technique assumes that there is a consistency 

between the trustworthiness of a node as a service provider and a 

recommender. The evaluating node gives more weight to recommendations 

received from highly reputed nodes for service providing and treats them as 

trustworthy recommenders. 

D. Cluster Procedure 
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The cluster procedure follows the same roles illustrated in the previous 

section. It consists of two levels of iterations. This first level iteration 

technique aims to merge trust value with the closest similarity. At the second 

level, the clustering process continues merging recommendations by 

calculating the average of the deviation value 𝑑𝑖𝑘
𝐴𝑣𝑔

 of the cluster's members. 

Then it merges any two clusters with the deviation average less than the 

deviation threshold 𝐷. The second level process aims to merge clusters with 

the closest deviation value compatible with the evaluating node  𝑖 . The 

proposed cluster process works as shown in Algorithm 5-2 to filter out 

dishonest recommendations and send out trustworthy cluster to the 

evaluating node. 

Algorithm 5-2: Cluster Manager Algorithm for the Dynamic Selection of 
Recommender Using Three Rules 

1.   For each recommendation list 𝐿 Do 
2.      For each rating vector in the list (𝛼𝑟 , 𝛽𝑟) Do   

3.         Calculate trust value for the recommender as 𝑇𝑘𝑗
𝑟 = 

𝛼𝑘𝑗
𝑟

𝛼𝑘𝑗
𝑟 + 𝛽𝑘𝑗

𝑟  

4.         Calculate deviation value as 𝑑𝑖𝑘 = |𝑇𝑖𝑗
𝑑 − 𝑇𝑘𝑗

𝑟 | 

5.        Weight 𝑇𝑘𝑗 
𝑟 𝑎𝑠 𝑇𝑊𝑘𝑗 

𝑟 =  𝑇𝑘𝑗
𝑟 ∗  𝑤𝑘𝑗 based on 𝑑𝑖𝑘 value 

6.      End For 
7.      Initialize each vector as a unique cluster 
8.      Repeat  
9.        For each vector Do 
10.           Merge two clusters with the shortest Euclidean distance 
11.        End For 

12.    Until number of clusters = 𝐾  
13.    For each cluster 𝐶𝑖  appeared in the previous iteration Do 

14.       Calculate the average of  the deviation value 𝑑𝑖𝑘
𝐴𝑣𝑔

 

15.          If (𝑑𝑖𝑘
𝐴𝑣𝑔

 ≤   𝐷) Then 

16.             Merge 𝐶𝑖 and  𝐶𝑖+1 
17.          End If 
18.    End For 
19.    Apply the majority rule 

20.    Select trustworthy cluster with the highest 𝑇𝑊𝑘𝑗 
𝑟  

21.       Return trustworthy cluster 𝐶𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 
22.    End For  

5.4.2 Experimental Setting 

Experiment in this section is conducted to test the validity and the importance 

of the dynamic selection based on three rules filtering algorithm used to 
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mitigate the influence of dishonest recommendation. A wireless MANET 

environment in the present of false rating information which is propagated in 

the network using bad-mouthing and ballot-stuffing attacks is simulated. This 

experiment mainly aims to consider the contribution of the model in safely 

incorporate recommendation and enhance the dynamic selection of 

recommender in terms of the evaluation of trustworthiness of bad and good 

recommenders in the present of attacks. This experiment extends the 

simulation by adding the required components to NS2 simulator in order to 

filter out dishonest recommendation. This integrated simulator is used to test 

the ability of the algorithm to reach a reasonable level of trust among 

unacquainted network nodes. As in Table 4-1 in section 4.3, a network with 

50 randomly placed nodes is simulated in an area of 700X1000m. Several 

nodes were randomly selected to provide false rating information in bad-

mouthing and ballot-stuffing attacks. The maximum bad-mouthing and ballot-

stuffing attack percentage used in the simulation scenario is 50% 

misbehaving nodes. We use the optimistic scheme in choosing the trust 

threshold value at 0.4 in which all nodes are initially expected to be trusted 

and normally behaving. Table 5-1 shows the parameters used in the network 

configuration for the experiment. Results in this experiment are based on 

multiple runs and we notice negligible variation.   

Table 5-1 Network configuration 

Parameter  Value Parameter Value 

Nodes 50 Transmitting capacity 2 Kbps 

Area 700 m X 1000 m Application CBR 

Speed 20 m/s Packet size 512 B 

Radio Range 250 m Simulation time 500 s 

Movement Random waypoint model Trust threshold 0.4 

Routing Protocol DSR Publication timer 30 s 

MAC 802.11 Fading timer 𝛍 10 s 

Source-destination pairs 15 Deviation threshold 𝑫 0.5 
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5.4.3 Experimental Results 

As discussed earlier, there are several types of attacks which distort 

recommendations exchanged by nodes of trust models in the network. This 

work considers the proposed model under bad-mouthing, ballot-stuffing 

attacks, and collusion attack. These attacks are appropriate to test the 

performance of the model to show its ability to mitigate the influence of 

dishonest recommendations. The model investigates the average of the trust 

level held by other nodes in the network of a good node (node 10 in this 

case) and a bad node (node 1 in this case). The simulation is conducted 

several times with the filtering algorithm enabled and disabled against bad-

mouthing and ballot-stuffing attacker nodes that range from 0% (no attacker 

nodes) to 50% (half of the nodes are attackers). The comparison of the 

calculated trust value with and without the filtering algorithm in the presence 

of varied attack percentages is considered against the expected trust value. 

The expected trust value is calculated based on conducting simulations 

under normal behaviour of the nodes in the network (the simulations’ ground 

truth). The results collected from the conducted simulation are plotted in 

Figures 5-3 and 5-4. 

 

Figure 5-3 Good-node: 10's trust value in the presence of a bad-mouthing attack 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0% 10% 20% 30% 40% 50%

N
o

d
e
 1

0
's

 T
r
u

st
 V

a
lu

e
 

Bad-mouthing Attack Percentage 

No Filtering

With Filtering

Expected Value



 

 

93 

 

 

 

Figure 5-4 Bad-node: 1's trust value in the presence of ballot-stuffing attack 

The x-axis in figure 5-3 represents the percentage of bad-mouthing attacker 

nodes, and this ranges from 0% to 50% attacker nodes.  The y-axis shows 

the average of the trust value of a good node (node 10) by other nodes which 

have interacted with it. From this figure, it can be seen that the increased 

percentage of attackers distorts the value of the trust value of node 10 held 

by other nodes in the network when there is no filtering algorithm 

incorporated. By increasing the number of dishonest recommenders, more 

untrustworthy ratings are propagated in the recommendations provided by 

neighbour nodes. Meanwhile, the proposed filtering algorithm is able to keep 

the trust value close to the expected level even if half of the nodes in the 

network are regarded as bad-mouthing attackers. 

The effects of the ballot-stuffing attack are shown in Figure 5-7. The x-axis 

represents the percentage of nodes act as ballot-stuffing attackers, which 

also varies between 0 and 50%. The y-axis shows the value of trust 

calculated for a bad node (node 1) when the dishonest recommenders are 

absent, which represents the expected value of the system; when the filtering 

algorithm is working; and when the filtering algorithm is not working. From the 

figure, it is observed that attacker nodes propagate more dishonest 

information in their recommendations in order to mislead nodes in the 
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network in their assessment of node 1.  Consequently, this can mislead the 

decision made by other nodes to trust it to more than 90% when the 

attackers increase to 50%, instead of deciding not to trust this bad node. At 

the same time, the proposed model, which is equipped with a filtering 

algorithm that aims to filter out dishonest recommendations, may be more 

capable of mitigating the influence of dishonest recommenders. 

5.5 The Effective Defence Scheme 

In previous subsections, a filtering algorithm to filter out recommendation is 

proposed based on the combination of the majority opinion, personal 

experience, and quality of service approaches. The algorithm enhances the 

selection procedure of the recommending nodes and keeps the evaluation 

near to ground truth value. However, this algorithm needs to be reconsidering 

based on the MANETs characteristics like level of experience, scarcity of 

knowledge, data sparsity, and how close the recommender to the evaluating 

node. The algorithm can give good results when the percentage of attacks is 

50% or less, while the algorithm is not able to correctly filter untrustworthy 

recommendations when the attacks increase more than 50%. From this point 

there was a need to build a capable defence scheme to overcome these 

limitations. Therefore, this section proposes a robust and effective defence 

scheme to filter out attacks discussed in section 5.2 of this chapter to select 

the recommending node based on three factors: number of interactions with 

the evaluated node, unity of view with the evaluating, and closeness to the 

evaluating node.  

5.5.1 Components of the Defence Scheme 

The proposed defence scheme takes into consideration the dynamic 

characteristics of MANETs that change over time. The honesty of 

recommending nodes is evaluated over a period of time to mitigate the 
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influence of bad behaviour of the same node over time. Figure 5-5 shows the 

dynamic topology of MANETs. Consider that, a node 𝑖  wants to evaluate 

another node 𝑗  by requesting recommendations from its neighbours. The 

evaluating node 𝑖  receives a list of recommending nodes referred 

as {𝑘1, 𝑘2, 𝑘3, … , 𝑘𝛮}. At time 𝑡𝑐 (refer Figure 5-5(a)), the location and number 

of recommending nodes differ from the recommending nodes at time 𝑡𝑐+1 as 

shown in Figure 5-5(b).  

 

Figure 5-5 Recommendation by time 

With the increase of mobile nodes and resources in MANETs, the difference 

in rating scale between different nodes becomes an issue which has led to a 

data sparsity problem. Data sparsity in a recommendation-based trust model 

occurs in a situation of lacking or insufficient interaction experience in the 

early time of establishing the network, or when most of the nodes are inactive 

in recommendation.  It is considered as one of the main challenges for the 

high quality of recommendation in trust research field for MANETs. Several 

solutions have been proposed to overcome the problem of data sparsity in 

MANETs. This can be categorised as: a) methods that utilise similarity 

metrics to enhance the selection of recommendations from similar 

neighbours [72 , 132], b) methods that implement aggregation techniques to 
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integrate the ratings given by all the neighbours [132], and c) methods using 

data imputation to improve the selection of missing or insufficient ratings of 

neighbours [133]. To overcome this problem, the proposed scheme uses a 

clustering technique similar to [77] to impute ratings and reduce the sparsity. 

Besides, it can improve the consistency of received recommendations of the 

filtering algorithm. For example, recommendations from a misbehaving node 

can have a range of multiple different ratings for the evaluated node. These 

ratings may be inconsistent in which they can differ from each other in a short 

period of time, a malicious act of the misbehaving node to confuse the trust 

model. 

In this subsection, an analysis of the functionalities of the defence scheme 

that includes three components: computation, recommendation and cluster 

manager is illustrated which work as outlined in previous sections. It explains 

the three factors used in the algorithm and gives an overview of the 

clustering process and its algorithm.   

A) Confidence Value 𝑽𝒊𝒋
𝒄𝒐𝒏𝒇

 

The notion of confidence was introduced in [134] where confidence value and 

trust value are  combined together to derive a single trustworthiness value of 

a node. Following that, trust models in [16 , 75 , 135] have also considered 

the confidence value as a desired parameter to achieve a single trust value 

to represent the trustworthiness of nodes. Confidence value can be used to 

solve the problem of short-term and long-term observations. That is, nodes 

may have the same level of trust with different number of observations. For 

example, the trust value of a node at the initial time with 𝛼 =  𝛽 = 1 is 0.5, 

and after a sequence of positive and negative interactions in which 𝛼 =  𝛽 = 

50, the node has the same trust value of 0.5 about the evaluated node (see 

Table 5-2 for more information). Confidence value starts from 0 in case of no 
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observations between nodes and increases gradually with the number of 

recorded observations. Relying only on the trust value can raise the problem 

of short-term and long-term observations. Nodes in the network can have 

nearly the same level of trust though they may have different levels of 

observations. Consequently, this can lead to wrong estimation in judging the 

ability of nodes to be honest recommending node.  

The proposed filtering algorithm clusters recommending nodes based on the 

level of confidence for two reasons. Firstly, the nodes with higher confidence 

value (those having sufficient interactions with evaluated node) are desirable 

because the higher number of interactions will offer rich information that 

would help in choosing better recommending nodes. Secondly, the 

recommending nodes with very high trust value in the early rounds in the 

network (when there are no enough interactions) are more likely to be 

attackers. Consequently, it may lead to exclusion of dishonest nodes from 

the recommendations list in early stages. The confidence value is computed 

as the variance of the beta distribution with some modifications as in [16] and 

[75]. Nodes use the confidence value to make a correct decision about the 

trustworthiness of recommending nodes taking into account the number of 

observations accumulated by each node. Suppose that 𝑖  is an evaluating 

node that received recommendations from a recommending node 𝑘  about 

the trustworthiness of an evaluated node 𝑗 , 𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

 value refers to the 

confidence of node  𝑖  in the experience of the recommending node 𝑘  with 

evaluated node 𝑗 at time 𝑡 and is calculated as in Eq. (5-1). 

 

𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

=  1 − √12𝜎𝑘𝑗 

𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

= 1 − √
12 𝛼𝑘𝑗𝛽𝑘𝑗

(𝛼𝑘𝑗 + 𝛽𝑘𝑗)
2
(𝛼𝑘𝑗 + 𝛽𝑘𝑗 + 1)

 
(5-1) 



 

 

98 

 

 

where  𝜎𝑘𝑗  is the beta distribution variance between 𝑘 and 𝑗, 𝛼𝑘𝑗  and 𝛽𝑘𝑗  is 

the accumulated positive and negative interactions between 𝑘  and 𝑗 . 

1 − √12  is the normalisation constant to ensure that the value of confidence 

belongs to the interval between [0, 1], for more details, the reader is referred 

to [136]. 

Using this formula the value of confidence falls between the interval of [0, 1], 

where 0 means that no previous interactions are recorded between the 

recommending and evaluated node while 1 means complete confidence in 

trustworthiness of the evaluated node. The rational of using and computing 

the confidence value is shown in Figure 5-6. We compare the confidence 

value computed using the proposed method with that in [116] (we call it 

TMUC for short), which computes the confidence value using only the 

standard deviation.  The proposed computation method of confidence value 

can effectively reflect the knowledge held by nodes based on the number of 

interactions better than the calculation in TMUC. For example, when 

𝛼 =  𝛽 = 1 which means there is no previous interaction between two nodes, 

the proposed method of computing confidence value is 0 while in TMUC, it is 

nearly 0.91 which is a high value close to 1. Starting with high confidence 

value in case of no interactions can confuse the trust mechanism and prevent 

it from making good judgment about behaviour of the evaluated node. Table 

5-2 shows the values of positive and negative interactions and the 

confidence value for each level of interaction for both the proposed model 

and the work in TMUC. Figure 5-6 explains the relationship between 

interactions and the level of confidence when the trust levels are the same.  
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Table 5-2 Levels of confidence for the proposed model and TMUC model with the same trust 
levels 

From Figure 5-6, it can be seen that the proposed method of computing 

confidence offers a better range for the confidence value as compared to that 

by TMUC. This variation reflects better accumulated interactions when the 

trust values (refer Table 5-2) are same. When there are no interactions, 

confidence value from the proposed model is 0 and it progresses with the 

increasing number of interactions. Whereas with TMUC, the confidence value 

is already at 0.91 in case of no interactions and thus is nearly at saturation 

level when number of interactions more than 19.  

 

Figure 5-6 Relationships between Interactions and Confidence for the proposed model and 
TMUC model 
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Number of Interactions 

The Proposed Model

TMUC Model

𝛂 𝛃  (successful 
interaction) 

 (failed 
interaction) 

Trust value Confidence value 
(proposed model) 

Confidence value 
(TMUC model) 

1 1 0 0 0.5 0 0.916666667 

5 2 4 1 0.714285714 0.446716665 0.974489796 

10 4 9 3 0.714285714 0.595938982 0.986394558 

15 6 14 5 0.714285714 0.666357595 0.990723562 

20 8 19 7 0.714285714 0.709401356 0.992962702 

25 10 24 9 0.714285714 0.739179735 0.994331066 

30 12 29 11 0.714285714 0.761351694 0.995253916 

35 14 34 13 0.714285714 0.778686666 0.995918367 

40 16 39 15 0.714285714 0.792721071 0.996419620 

45 18 44 17 0.714285714 0.804384801 0.996811224 

50 20 49 19 0.714285714 0.814277976 0.997125611 
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B) Deviation Value 𝑽𝒊𝒋
𝒅𝒆𝒗 

Deviation value represents to what extent the received recommendation is 

compatible with the personal experience of evaluating node. This value has 

been used by the means of the deviation test in [18] to ensure the unity of 

view with the receiving node. Each node compares received 

recommendation with its own firsthand information and accepts only those 

not deviating too much from self-observations. In the proposed model the 

deviation value is used as an additional parameter in the clustering algorithm 

to filter out any recommendations deviating beyond a predefined deviation 

threshold. A problem that could arise here is when the evaluating node lacks 

historical information for interactions with the evaluated node, thus not 

providing a base value for comparison. In order to overcome this problem, 

the proposed method compares the confidence level of the evaluating node 

with that of the recommending node. The confidence value is calculated 

using Eq. (5-1). The deviation test is only applied if both nodes have similar 

level of confidence.  Assume that there are three nodes (𝑖, 𝑗 and 𝑘), and 

node 𝑖  attempts to calculate the trust value of its neighbour node 𝑗  using 

recommendation provided by node 𝑘. In this scenario, node 𝑖 first compares 

its confidence level which denoted as 𝐶𝑜𝑛𝑓_𝐿𝑒𝑣𝑒𝑙  with the recommending 

node as in Eq. (5-2). If the confidence difference is less than a threshold 

value denoted as 𝐶𝑜𝑛𝑓_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then node 𝑖 calculates the deviation value 

as a difference between the receiving recommendation and direct 

observations of the evaluated node as held by the evaluating node as in Eq. 

(5-3). The resulting value is compared to a predefined deviation threshold 

𝑑𝑑𝑒𝑣  and we exclude any recommendations that differ widely from the 

evaluating node’s own information.  
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 𝐶𝑜𝑛𝑓_𝐿𝑒𝑣𝑒𝑙 =  |𝐶𝑉𝑖𝑗 − 𝐶𝑉𝑘𝑗| ≤ 𝐶𝑜𝑛𝑓_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (5-2) 

where 𝐶𝑉𝑖𝑗  is the confidence value of 𝑖 about 𝑗, and 𝐶𝑉𝑘𝑗  is the confidence 

value of 𝑘  about 𝑗 . If the Eq. (5-2) is successful, deviation value 𝑉𝑖𝑗
𝑑𝑒𝑣  is 

calculated as follows: 

 𝑉𝑖𝑗
𝑑𝑒𝑣 = |𝑇𝑖𝑗

𝑑 − 𝑇𝑘𝑗
𝑟 | ≤ 𝑑𝑑𝑒𝑣 (5-3) 

where 𝑇𝑖𝑗
𝑑  is the direct trust value of 𝑖 about 𝑗, and 𝑇𝑘𝑗

𝑟  is the received trust 

value of 𝑘 about 𝑗. 

C) Closeness Centrality Value 𝑽𝒊𝒋
𝒄𝒍𝒐𝒔𝒆 

Trust is a social concept and it is thus possible to apply the perceptions of 

social life in trust computation and recommendation propagation. An 

interesting direction of trust research in MANETs is to utilise social 

relationships in evaluating trust among nodes in a group setting by employing 

the concept of social structures [7]. The proposed model uses the concept of 

closeness centrality between the evaluating nodes and the recommending 

node from the social trust.  Closeness centrality [137] measures the distance 

between the evaluated node and the recommending node in terms of  

physical distance, number of hops, or delays. In the proposed model 

closeness centrality is a measure of the distance between the evaluating 

node and the recommending node. The use of the closeness centrality 

enhances the filtering algorithm as close nodes are likely to possess same 

nature and counter nearly same environmental and operational conditions 

over a period of time in the network. Furthermore, close friends may have 

more interactions in the time of friendship. Consequently, trust values for the 

close neighbours converge to nearly same level. This may help in 

recognising the untrustworthy recommending node whose recommendation 
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is much different from the close recommending nodes. Closeness value 

𝑉𝑖𝑗
𝑐𝑙𝑜𝑠𝑒 refers to the degree of node 𝑖’s closeness to a recommending node 𝑘 

at time 𝑡 and is calculated by Eq. (5-4). 

 𝑉𝑖𝑗
𝑐𝑙𝑜𝑠𝑒 = √(𝑥𝑖

𝑙𝑜𝑐 − 𝑥𝑘
𝑙𝑜𝑐)2 + (𝑦𝑖

𝑙𝑜𝑐 − 𝑦𝑘
𝑙𝑜𝑐)2   ≤  𝑑𝑑𝑖𝑠 (5-4) 

where (𝑥𝑖
𝑙𝑜𝑐, 𝑦𝑖

𝑙𝑜𝑐), (𝑥𝑘
𝑙𝑜𝑐, 𝑦𝑘

𝑙𝑜𝑐) are the positions of node 𝑖 and node 𝑘 at time 𝑡 

and 𝑑𝑑𝑖𝑠 is a predefined distance threshold between node 𝑖 and node 𝑘 which 

should be less than the transmission range. 

D) Cluster Procedure 

The cluster manager in the proposed model receives a list of 

recommendations from the recommendation manager and processes it using 

a clustering technique same as outlined in section 5.3. The clustering 

algorithm is run by the evaluating node on all the recommendations in the 

list  𝐿 = {𝑘1, 𝑘2, 𝑘3, … , 𝑘𝑛} . A vector of three values (𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

, 𝑉𝑖𝑗
𝑑𝑒𝑣, 𝑉𝑖𝑗

𝑐𝑙𝑜𝑠𝑒 ) is 

provided by a recommending node for the clustering operation. The 

clustering algorithm divides the vectors from the recommending nodes into a 

predefined number of clusters denoted as 𝐾 . Initially each vector is 

considered as a cluster, and then two clusters with the shortest Euclidean 

distance are merged together to produce a new cluster. The clustering 

process is repeated by merging two clusters from the previous iteration until 

the predefined number of clusters 𝐾  is reached. The first step of the 

clustering process aims to merge vectors with the closest similarity. In the 

second step, it selects the trustworthy clusters if all the recommending nodes 

in a specified cluster satisfy the following rules: 
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𝐶𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 =

{
 

    𝑅𝑖𝑗
𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑡ℎ𝑦

 𝑖𝑓 (𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

≥  𝑑𝑚𝑖𝑛
𝑐𝑜𝑛𝑓

) 𝑎𝑛𝑑 (𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

≤  𝑑𝑚𝑎𝑥
𝑐𝑜𝑛𝑓

)

                        𝑖𝑓   (𝑉𝑖𝑗
𝑑𝑒𝑣  ≤   𝑑𝑑𝑒𝑣) 𝑎𝑛𝑑 (𝑉𝑖𝑗

𝑐𝑙𝑜𝑠𝑒 ≤ 𝑑𝑑𝑖𝑠) 

𝑅𝑖𝑗
𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦

                                                  𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

 

where  𝑅𝑖𝑗
𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑡ℎ𝑦

 is the trustworthy recommendation,  𝑅𝑖𝑗
𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦

 is the 

untrustworthy recommendation,  𝑑𝑚𝑖𝑛
𝑐𝑜𝑛𝑓

 is the minmum confidence threshold, 

 𝑑𝑚𝑎𝑥
𝑐𝑜𝑛𝑓

 is the maximum confidence threshold. 

The next step is to apply majority rule to select the cluster with largest 

number of members. In the final step, trustworthy clusters are returned to the 

recommendation manager and to the evaluating node to update its indirect 

trust of the evaluated node. The proposed cluster process in the defence 

scheme works as shown in Algorithm 5-3. 

Algorithm 5-3: Cluster Manager Algorithm for the Defence 
Scheme 

1.   For each recommendation list 𝐿 Do 

2.      For each rating vector in the list (𝛼𝑟 , 𝛽𝑟) Do   

3.         Calculate confidence value 𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

 as in Equ. 7 

4.         Calculate deviation value 𝑉𝑖𝑗
𝑑𝑒𝑣 as in Equ. 8, 9 

5.         Calculate closeness value 𝑉𝑖𝑗
𝑐𝑙𝑜𝑠𝑒 as in Equ. 10 

6.         Construct data vector as (𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

, 𝑉𝑖𝑗
𝑑𝑒𝑣 , 𝑉𝑖𝑗

𝑐𝑙𝑜𝑠𝑒)   

7.      End For 
8.      Initialize each vector as a unique cluster 
9.      Repeat  
10.        For each vector Do 
11.           Merge two clusters with the shortest Euclidean distance 
12.        End For 
13.    Until number of clusters = 𝐾  
14.    For each cluster that appeared in the previous iteration Do 

15.       If (𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

≥  𝑑𝑚𝑖𝑛
𝑐𝑜𝑛𝑓

) and (𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

≤  𝑑𝑚𝑎𝑥
𝑐𝑜𝑛𝑓

) Then 

16.          If (𝑉𝑖𝑗
𝑑𝑒𝑣  ≤   𝑑𝑑𝑒𝑣) and (𝑉𝑖𝑗

𝑐𝑙𝑜𝑠𝑒 ≤ 𝑑𝑑𝑖𝑠) Then 

17.             Select trustworthy cluster 
18.          End If 
19.       End If      
20.    End For 
21.    For each chosen trustworthy cluster Do 
22.       Apply the majority rule 

23.       Return trustworthy cluster 𝐶𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 
24.    End For  
25.  End For 
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5.5.2 Experimental Setting 

The validity of the proposed defence scheme to mitigate the influence of 

dishonest recommendation is tested using an extensive experiment. A 

wireless MANET environment in the present of false rating information which 

is propagated in the network using bad-mouthing and ballot-stuffing attacks 

besides to the collusion attack is simulated. Further, a comparative study with 

the maturity model [76] proposed in the literature is conducted. As in 

subsection 5.4.2, the proposed trust model components are added to the 

simulator to conduct the experiment. A network with 50 mobile nodes is 

simulated and up to 80% misbehaving nodes are used to test the attacks. 

Table 5-3 shows the parameters used in configuring the network for the 

experiment. Bad-mouthing and ballot-stuffing attacks with additional 

permission to collude in both attacks are used in order to evaluate the 

defence scheme against dishonest recommendation. Number of dishonest 

nodes range from 0% to 80% and the dishonest recommendations provided 

deviate 50% from the honest recommendations. Badly behaving nodes 

(selfish nodes) counting to 20% always existed in the network and were 

responsible for collusion and jamming. Results from the experiment are 

based on multiple runs and a negligible variation is noticed. 

Table 5-3 Network configuration 

Parameter Value Parameter Value 

Nodes 50 Packet size 512 B 

Area 700 m X 700 m Simulation time 500 s 

Speed 10 m/s Trust threshold 0.4 

Radio Range 250 m Publication timer 30 s 

Movement Random waypoint model Fading timer 𝛍 10 s 
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Parameter Value Parameter Value 

Routing Protocol DSR Deviation threshold  0.5 

MAC 802.11 Conf_Threshold 0.4 

Source-destination pairs 15 𝒅𝒎𝒊𝒏
𝒄𝒐𝒏𝒇

 0.5 

Transmitting capacity 2 Kbps 𝒅𝒎𝒂𝒙
𝒄𝒐𝒏𝒇

 0.9 

Application CBR 𝒅𝒅𝒊𝒔 200 m 

5.5.3 Performance Evaluation  

The flow of the simulation is as follows. The performance of the entire 

network is represented by two parameters: Network throughput and packet 

loss in the presence of bad-mouthing, ballot-stuffing and selfish nodes. The 

trust value of a good node (not misbehaving) is evaluated against bad-

mouthing attack to see the influence of such attack with and without 

incorporating the proposed defence scheme. The trust value of a bad node 

(misbehaving) is also evaluated against ballot-stuffing attack to see how such 

attackers can distort the trust value of this node.  The performance of the 

proposed model in terms of recognised dishonest recommendations, false 

negative and false positive in the presence of bad-mouthing attacks with and 

without the defence scheme is examined. Similar experiment is conducted for 

ballot-stuffing attack. Finally, a comparative study is conducted with the 

maturity model [76] proposed in the literature.      

Figure 5-7 demonstrates the effect of the dishonest recommendations on two 

performance metrics; throughput and packet loss for the whole network. The 

y-axis in Figure 5-7(a) shows the percentage of throughput, both with and 

without the defence scheme, in the presence of dishonest recommending 

nodes varying from 0% to 80% of the total population of nodes. It is observed 

that the network throughput without a defence falls from nearly 80% when the 

dishonest recommending nodes are not present to nearly 30% when 

population of the dishonest ones increases to 80%. Slight decrease and then 
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increase is noticed in the throughput (Figure 5-7(a)) for the network with 

defence when the percentage of dishonest recommendation nodes increases 

from 40% to 80%. This may be due to the fact that the throughput not only 

depends on the number of misbehaving nodes but also affected with the 

degree of connectivity (number of neighbours) and the ability of nodes to 

classify their neighbours as well as time required to achieve the classification 

which are different in each simulation due to network topology and mobility. 

However, the proposed defence mechanism was able to keep the value of 

throughput at nearly 80% even in case of higher population of the dishonest 

nodes. This is translated into that the defence scheme is able to mitigate the 

negative effect of dishonest recommendation on the throughput performance. 

The impact of dishonest nodes on packet loss is shown in the Figure 5-7(b). 

The percentage of packet loss rises with increasing the percentage of 

dishonest nodes from 20% to over 60% when no defence incorporated in the 

network. While only 20% packet loss can be maintained using the proposed 

defence scheme in the presence of dishonest recommending node that vary 

from 0% to 80% of the nodes in the network. Similarly, the percentage of 

packet loss decreases slightly when the percentage of dishonest 

recommendation nodes increases from 70% to 80% for the same reasons as 

discussed in the analysis of Figure 5-7(a). It can be seen from the above 

analysis that dishonest recommendations can significantly impact on the 

throughput and packet loss metrics by confusing the trust model. The 

proposed technique can keep those metrics at an acceptable level even 

when the population of dishonest nodes is high. 
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Figure 5-7 Network performance in the Presence of Dishonest Recommending nodes for a) 
Network Throughput; b) Network Packet Loss 

Figure 5-8 demonstrates the average of the indirect trust held by other nodes 

in the network for a good node (node 12 in this case) and a bad node (node 4 

in this case). The x-axis in Figure 5-8(a) displays the range for the population 

of bad-mouthing nodes from 0% to 80%.The y-axis shows the average of the 

indirect trust value for a good node (node 12 in this case) as held by all the 

nodes that have interacted with it in the past. A comparison has been made 

between three different parameters as follows. First, the indirect trust value 

when there are no dishonest nodes, called expected value. Second, the 

indirect trust value when dishonest nodes are present and the defence 

scheme is working, with defence. Third, the indirect trust value when the 

dishonest nodes are present and the defence technique is not working, no 

defence. It can be seen that with increasing population of badmouthing 

attackers, the average trust value of node 12 declines in case of no defence, 

whereas, the trust value remains the same as the expected value in case of 

with defence. 

The effects of ballot-stuffing attack are shown in Figure 5-8(b). In the x-axis is 

the percentage of ballot-stuffing attack that varies between 0% to 80% and y-

axis shows the values for the indirect trust compared against the same three 

(a) Network throughput (b) Network Packet Loss 
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parameter i.e. expected value, with defence and no defence cases. From the 

figure, it can be seen that the attacking nodes have propagated unfairly 

positive rating for the dishonest node (node 4) thereby raising its trust value 

to above 0.9 while the attacker population was 80%. The results here show 

that the defence algorithm is capable of mitigating the influence of dishonest 

nodes by filtering out unfair ratings. 

 

Figure 5-8 Trust evaluation for a) Good-node 12's trust value in the presence of bad-
mouthing attack; b) Bad-node 4's trust value in the presence of ballot-stuffing attack 

To test the proposed defence scheme further, we define three additional 

metrics: (a) recognised proportion, representing the number of dishonest 

recommendations identified by node 𝑖 , (b) false negative proportion, 

indicating the number of dishonest recommendations identified as honest by 

node 𝑖 , (c) false positive proportion, indicating the number of honest 

recommendations identified as dishonest by node 𝑖. Figure 5-9 and 6-6 show 

the results for these three metrics in the presence of bad-mouthing and 

ballot-stuffing attack. The x-axis in Figure 5-9(a) shows the percentage of 

bad-mouthing attack while y-axis shows the proportion of the recognised 

dishonest recommendation, false negative and false positive with the 

defence scheme in action. It can be observed that the defence algorithm can 

effectively mitigate the dishonest recommendation propagated by the bad-

mouthing attackers regarding the recognition and false negative metrics. 

(a) Good-Node 12's Trust Value (b) Bad-Node 4's Trust Value 
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While it keeps the false positive proportion at a very low level (about 2%) 

when the attack percentage is more than 50%. Figure 5-9 (b) shows the case 

when the defence scheme is not in action. It can be seen that the proportion 

of recognised dishonest recommendation drops to less than 10% when the 

percentage of dishonest nodes increase to 80% and consequently the  

proportion of false negative increases with the increase in dishonest 

recommending nodes. As the defence scheme is not in action here, it 

accepts all the recommendations propagated in the network and updates the 

indirect trust value based on these recommendations. Therefore, the 

proportion of false positive remains at zero (Figure 5-9(b)).  

 

Figure 5-9 Recognised, false Negative and false positive proportion in the presence of bad-
mouthing attack for a) With defence; b) Without defence 

Figure 5-10(a) shows results for ballot-stuffing attack. The proposed defence 

scheme is seen to be identifying dishonest recommendations and eliminating 

false negative effectively. The proportion of false positive is maintained at a 

reasonable level. The effect of dishonest recommendation in Figure 5-10(b) 

is obvious. When there is no defence incorporated the proportion of 

recognition drops from about 0.9 to nearly 0.1 with variation of the ballot-

stuffing attackers from 0.1 to 0.8. The false negative proportion also 

increases to nearly 0.9 with the increasing percentage of the dishonest 

recommending nodes.  

(a) With Defence (b) Without Defence 
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Figure 5-10 Recognised, false negative, and false positive proportion in the presence of 

ballot-stuffing attack for a) With defence; b) Without defence 

Furthermore, the proposed defence scheme is examined to observe the 

effect of each criterion (recognised proportion, false negative proportion, and 

false positive proportion) in clustering recommendations. The experiments 

are conducted over a range of various attack percentage. The different 

attacks considered are bad-mouthing, ballot-stuffing, and collusion. The 

results are shown in Figure 5-11. First, the effect of the confidence value is 

tested by disabling it in the defence scheme and allowing the deviation and 

closeness value to work. It is obvious from Figure 5-11(a), that the defense 

scheme’s performance is decreased in terms of recognised and false 

negative proportion of dishonest recommendation. The defense scheme is 

seen to be ineffective in recognising almost none of the dishonest 

recommendations propagated in the network by bad-mouthing, ballot-

stuffing, and colluding attackers. On top, a number of false negative 

recommendations showed capable in penetrating the defense algorithm. The 

number of recognised proportion dropped with increase in the proportion of 

attack; from nearly 90% when just 10% of recommenders provide dishonest 

recommendations to nearly 50% when the dishonest recommenders reached 

80%. On the other hand, false negative proportion increases with rise in the 

(a) With Defence (b) Without Defence 
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number of dishonest recommenders from very small proportion nearly 5% to 

nearly 40% at 80% of attack percentage. Interestingly, the number of false 

positive proportion is stable at 0% which means no honest recommenders 

were treated as dishonest. The reason being that the confidence value 

doesn’t allow nodes without enough experiences to provide recommendation 

and this can result in treating some honest recommenders as dishonest. It 

can thus be concluded that the confidence value factor enhances the 

performance of the defense scheme by eliminating dishonest 

recommendations (even though it could result in a small proportion of false 

positive). In second experiment, the deviation value is disabled in the 

clustering algorithm to understand its importance in the defense scheme. 

Figure 5-11(b) shows that the performance of the defense scheme is reduced 

due to introduction of some false positive proportion in the case of disabling 

the deviation value. The proportion of false positive, which treats good nodes 

as dishonest increased with rise in the number of dishonest 

recommendations propagated by attackers from nearly 2% at just 10% of 

attackers to more than 20% when almost the majority of propagated 

recommendations are dishonest. While disabling the deviation value has no 

effect on the performance of the recognised proportion of dishonest 

recommendations, as well as, the false negative proportion. It can be found 

that despite the small effect of the deviation value on the whole performance 

of the defense scheme, it is proposed to work with strong relation with the 

confidence value which is used to correct its values in the case of cold-start 

when insufficient experience exists to perform the deviation value. The third 

step in this experiment is to test the effect of the closeness value which is 

shown in Figure 5-11(c). It is obvious that disabling the closeness value has 

a strong impact on the three performance metrics of recognised, false 
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negative and false positive proportions. A great negative effect is on the 

proportion of recognised dishonest recommendations which fall to nearly 

more than 40% when most nodes provide dishonest recommendations. 

Similarly, the ability of the defense scheme in preventing the false negative 

decreases in which the number of false negative increases to more than 40% 

when 80% of attackers are existed. Besides, absence of the closeness value 

can introduce a number of false positive which increases to nearly 10% when 

dishonest recommendation providers are nearly 80%.   

 

Figure 5-11 The effect of the three values in the clustering algorithm on the performance of 

defense scheme regarding recognised, false negative, and false positive proportion in the 

presence of bad-mouthing, ballot-stuffing, and collusion  attacks for a) Disabling confidence 

value; b) Disabling deviation value; Disabling closeness value 

A conclusion can be drawn is that the three proposed values have a great 

positive impact on the performance of the defence scheme despite the fact 

that one has more effect than another. Besides, the proposed values of the 

defense scheme are strongly correlated to work together in order to 

effectively prevent the influence of dishonest recommendations in the 

proposed trust models.          

(a) Disabling Confidence Value (b) Disabling Deviation Value (c) Disabling Closeness Value 
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Finally, the performance of the proposed model is compared with the maturity 

model proposed in [76] in terms of two metrics: trust level error (TLE) which 

represents the proportion of error in evaluating the trust level of a node 𝑖 

(node 8 in this case); and trust level evaluation of a good node (node 1 in this 

case) by another node 𝑗  in the network. We follow the same network 

configuration and node selection which is provided in the maturity model ( 

see [76] for details) to conduct this experiment. In this configuration, a high 

speed network is presented with high node mobility, which is different from 

our first configuration. This configuration of the test network allows us to 

show the effectiveness of the proposed scheme.  Figure 5-12 shows the 

results of this experiment. Figure 5-12(a) displays the trust level error over 

the simulation time. It can be seen that the proposed model can keep the 

TLE smaller than the error reported by the maturity model. The TLE in case 

of the proposed model is stable for the entire time of evaluation and 

converges to very small value nearly 0.01 towards the later phase. While for 

the maturity model, the TLE value is high initially (0.35) as compared to that 

of the proposed model and this only converged to 0.1 towards the end (time 

unit 3000). Figure 5-12(b) shows the effectiveness of the proposed defence 

scheme in evaluating the trust value of a good node (node 1) from the 

network. It considers the following scenarios: the expected trust value when 

there is no dishonest recommendation (TLNDR), and the same when there is 

35% dishonest recommendation (TL35DR) both for the proposed model and 

the maturity model.  The results show that the proposed model with the 

defence scheme can manage to avoid the dishonest recommendation and 

keep the trust value of node 1 near to the expected value and slightly higher 

than the results of the maturity model. 
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Figure 5-12  Comparative study with maturity model for a) Trust level error; and b) Good-

node 1’ trust level 

5.5.4 Cost of the Defence Scheme  

Mobile ad-hoc networks are characterised by constrained resources in terms 

of communication, memory usage and computational complexity 

requirements. Any proposed model or defence scheme must reflect the 

trade-offs between accuracy of trustworthiness and network performance. As 

gathering and propagating trust information among distributed node can 

consume more resources of energy and time, it can enhance the decision 

making. Dynamic and highly mobile networks which suffer from several 

points of failure require techniques to enhance the decision making on nodes 

trustworthiness. However, the proposed defence scheme is lightweight in 

several aspects. In terms of communication, the proposed model is suitable 

for MANETs because only recommendation request and reply packets are 

used to send and receive a list of recommendations.  The packets of 

recommendations are exchanged between a single source of information 

which is represented in the recommendation manager to and from the 

evaluating node and the recommending nodes.  The data size and length is 

very small as every recommending node provides just three parameters of 
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accumulated positive and negative observations and its current position. The 

communication is also enhanced by an on-demand scheme in which a 

recommendation is requested whenever needed. Therefore, the defence 

scheme is conducted without network flooding and acquisition delay. The 

defence scheme is characterised with the advantage of a role-based 

management scheme for filtering dishonest recommendations in which three 

different components are interoperated to accomplish the task. The use of 

clustering in distributed networks can facilitate the data aggregation and 

reduce the computational power by each node to evaluate the 

trustworthiness of other nodes. One of the costs put on the proposed defence 

is the complexity that can be countered in maintaining the cluster and 

selecting the most trustworthy cluster. Another cost is the memory 

consumption in which the defence scheme consumes more memory to store 

recommendation for a period of time for conducting the filtering algorithm by 

the recommendation and clustering managers which is run by the evaluating 

node but no memory consumption on the side of the evaluated node. An 

additional cost is the time consumption which is more than the traditional 

defence which uses single recommender information to update the 

trustworthiness of the evaluated node. These costs can be reduced in the 

proposed defence scheme by using only the very last recommendations to 

be including in the clustering filtering computation. Dynamic selection of the 

number of recommendations based on a period of time can have many 

advantages, (1) reduce complexity and memory usage, (2) exclude any old 

recommendation from the calculation, (3) reduce the time that is used to 

select the trustworthy cluster.    
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5.6 Summary 

A recommendation based trust model for MANETs is built to investigate the 

influence of attacks related to recommendations using two filtering 

algorithms. The use of recommendation can efficiently allow nodes to 

acquaint with each other without previous interactions but it exposes nodes 

to dishonest and unfair recommendation. Therefore, a dynamic 

recommender selection algorithm based on three rules is used to filter out 

dishonest recommendations. The algorithm utilises the clustering technique 

accompanied with a deviation detection to filter out unfair recommendations 

exchanged by nodes in the network. The proposed algorithm has been tested 

by simulation against both bad-mouthing and ballot-stuffing attacks. The 

results of the simulation indicate that the model can safely incorporate honest 

recommendations received by recommenders and eliminate untrustworthy 

ones at a small number of dishonest recommenders which do not exceed 

50%. 

The recommendation based trust model is further enhanced with an effective 

defence scheme which is developed and analysed to filter attacks related to 

dishonest recommendation and consider characteristics of MANET. The 

proposed defence scheme also utilised the clustering technique to filter out 

unfair recommendations exchanged by nodes in the network based on three 

values: (a) the level of confidence held by a node about others, (b) deviation 

threshold which ensures the unity of views between evaluating node and the 

evaluated node, and (c) closeness centrality value to ensure that 

recommending node is a close friend to the evaluating node for a period of 

time. The proposed defence scheme is tested by extensive simulation in 

terms of throughput and packet loss, against both bad-mouthing and ballot-

stuffing attacks, and also compared with other proposal. The simulation 
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results indicated that the proposed defence scheme can safely incorporate 

correct indirect trust evidences received by recommendations and eliminate 

untrustworthy ones. Moreover, it reduced the effect of false negative and 

false positive problems in selecting recommending nodes. The use of social 

property of trust to ensure that nodes are close friends in MANET, as well as, 

a quality of service property to select recommender which is proposed in this 

chapter are promising. Therefore, in the next chapter, a proposal to utilising 

more important social and QoS properties of trust is developed and designed 

to enhance the trustworthiness evaluation of nodes in the network.  
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Chapter 6 A Recommendation Based Model Using 

Multidimensional Trust Metric: Social Trust and QoS 

Trust 

In this Chapter, social feature of a friendship based trust management model 

for MANETs is introduced, to secure the routing protocol between source and 

destination nodes based on the degree of friendship of each node in the 

path. Further, this chapter proposes a cognitive trust model with a composite 

multidimensional trust metric by combining the social properties of trust with 

quality of service (QoS) trust properties. It considers the wider use of social 

trust properties to represent the complexity of human behaviour in MANETs. 

It investigates the impact of embedding social properties of trust on network 

performance measures. Peer to peer evaluation and path evaluation are 

considered to allow nodes evaluate another nodes’ behaviour and optimise 

their decisions regarding the trustworthiness of path selection. 

6.1 Introduction  

Trust is a social concept which can be used by nodes to evaluate the 

behaviour of other neighbours to decide on whether to assign them network 

activities or not based upon observations from past behaviour and 

recommendations from other nodes in the network. Very much as in the case 

of the human observation process, trust here is based on the accumulation of 

observations from various similar or dissimilar sources, to collect and 

combine the required information to decide on the trustworthiness of a 

perceived entity. MANETs show close similarities to the human behaviour 

model in the case of a number of nodes which have never interacted before 

are able to acquaint themselves and communicate with each other. Besides, 

nodes’ perceptions, motivations, and goals for interactions are different, 
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besides, the presence of a selfishness concept, bad mouthing and ballot 

stuffing are other aspects showing similarity to human behaviour. 

Consequently, it is vital for a useful trust model to be related to human 

patterns of behaviour, because these patterns can be used to increase the 

model’s quality in terms of deducing the degree of friendship, level of 

honesty, privacy, and the correctness of information derived from direct 

interactions or by recommendations. Moreover, combining all these metrics 

to produce multidimensional trust evaluation metric can enhance the 

performance of the evaluation and consequently enhance the performance of 

the network. 

The main contributions of this chapter are in overcoming the limitations of 

existing trust models in two ways. Firstly, it introduces the social feature of a 

friendship based trust management model for securing MANETs. The model 

defines two distinguished metrics to measure friendship behaviour, namely 

honesty and confidence. Honesty is used to measure the negative and 

positive behaviour of nodes and whether to cooperate or defect, while 

confidence measures the ability of nodes to provide correct information in 

estimating other nodes’ trustworthiness. These two metrics are used to 

measure behaviours and how these behaviours can change over time to 

affect the type of friendship degree dynamically. 

Secondly, it proposes a model with a multidimensional composition for its 

trust metric. In MANETs, trustworthiness evaluation demands 

multidimensional properties which show human behaviour as well as QoS. 

Therefore, a multidimensional trust model that is based on representing trust 

relationships between nodes as human behaviour by considering social 

properties and QoS is proposed. This model can be used to enhance the 

efficiency of the system and improve the trust evaluation metric accuracy. 
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Further, the model uses two different stages of evaluation; peer to peer 

evaluation and path evaluation. A node in MANETs can evaluate the 

trustworthiness of its neighbour to decide whether to interact with it or not. 

However, the ability of the node not only to evaluate the whole path from 

source to destination, but also to evaluate the entirety of available paths, is 

very important to optimise routing and select the best path among those 

available. At the peer to peer level, social and QoS properties are 

considered, while at the path level, a minimum trust combination is used to 

choose a path with a small number of hubs and where each intermediate 

node on the path has a minimum acceptable trust value. This two-stage 

evaluation should enhance the accuracy of the model and have a positive 

impact on improving network performance. 

6.2 A Friendship-Based Trust Management Model 

A friendship-based trust management model to secure the routing protocol 

between source and destination nodes based on the degree of friendship of 

each node in the path is proposed. The model considers the issue of using 

social properties of trust to reflect the nodes’ behaviour and study their 

dynamic properties of the friendship degrees in MANETs.  

6.2.1 Friendship Degree Relationships  

Relationships between nodes can be differentiated based on the degrees of 

friendships evaluated by the evaluating node. The proposed model uses the 

concept of dividing the relationships between nodes into different categories 

and permits the relationships to develop or change dynamically over time 

based on the confidence (level of experience) and honesty (positive and 

negative behaviour) of nodes in the previous interactions between the 

evaluating and the evaluated node. The categories of the friendship degrees 

𝑇𝑖𝑗
𝐹𝑟𝑖𝑒𝑛𝑑𝑠ℎ𝑖𝑝

 are divided as follows: 
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 Stranger STRANGER: a stranger node has no previous interaction with 

the evaluating node.  

 Acquaintance ACQUAIN: a node that has few interactions with the 

evaluating node and it is difficult to decide whether this node is a friend 

or a misbehaving node. 

 Friend FRIEND: a friend node has enough interactions with the 

evaluating node and the honesty value of this node is high.  

 Misbehave MISBEHAVE: a node which has enough interactions with the 

evaluating node and its honesty value is low.  

 Redeemed REDEMP: a node that changes its behaviour from non-

cooperative to become fully cooperative in network activities. 

A node in MANETs may adjust its behaviour dynamically according to its own 

operational state and environmental conditions. Malicious nodes can be 

redeemed as good nodes based on trust evaluation performed in every trust 

update interval  𝑡 . We model these behaviours by allowing the evaluating 

node to dynamically investigate the relationship with the node under 

evaluation and update it according to a new observation. For example, 

MISBEHAVE indicates that the node is misbehaving by being bad at 

providing services in terms of packet forwarding or as a recommender. When 

the behaviour of the node changes, the relationship between it and other 

nodes can be updated as REDEMP, which means that the evaluated node 

may behave well in the next interaction. This degree of friendship is used as 

a constraint to help nodes decide whether to interact with other nodes or not. 

For example, in the case of redemption, when a node put as REDEMP 

cannot be trusted as a node which behaves well all the time in the network. 
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Friendship degree is based on two metrics: Honesty and Confidence, and 

computed as follows. 

6.2.2 Friendship Degree Components 

A) Honesty 𝑻𝒊𝒋
𝑯𝒐𝒏𝒆𝒔𝒕𝒚

 

Honesty is a social property that is used to evaluate the behaviour of nodes 

to act as a favour for themselves or the communities they are parts of [138]. 

It is considered by a number of researchers as an indicator of positive or 

negative behaviour [78 , 79 , 139]. In the proposed model, the honesty metric 

is utilised differently by combining it with confidence to construct friendship 

relationships between nodes. It evaluates the degree of honesty of the 

evaluating node 𝑖 about the evaluated node 𝑗 based on the direct observation 

or recommendation collected by other nodes in the network. It is the measure 

of positive and negative interactions (i.e. forwarding and dropping packets). 

The value of 𝑇𝑖𝑗
𝐻𝑜𝑛𝑒𝑠𝑡𝑦

 is computed by using the number of positive 

interactions 𝛼𝑖𝑗 between node 𝑖 and 𝑗 over the maximum number of positive 

and negative interactions 𝛼𝑖𝑗 + 𝛽𝑖𝑗. The initial value of 𝑇𝑖𝑗
𝐻𝑜𝑛𝑒𝑠𝑡𝑦

 is 0.5 at time 

𝑡  = 0, which means that node 𝑗  is a stranger to node 𝑖  and no previous 

interaction has been observed. The 𝑇𝑖𝑗
𝐻𝑜𝑛𝑒𝑠𝑡𝑦

 value develops over time and its 

value belongs to the interval [0, 1]. Positive interactions increase the value of 

𝑇𝑖𝑗
𝐻𝑜𝑛𝑒𝑠𝑡𝑦

 while the negative interactions can lead to a decrease in its value. 

The value of  𝛼𝑖𝑗 and 𝛽𝑖𝑗 would be updated when observing new positive or 

negative interactions. The previous interactions are decreased to reduce the 

influence of old values using the decay factor as in subsection 4.2. In this 

model, 𝑇𝑖𝑗
𝐻𝑜𝑛𝑒𝑠𝑡𝑦

 is computed by using the expectation of beta function as in 

Eq. (6-1). 
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 𝑇𝑖𝑗
𝐻𝑜𝑛𝑒𝑠𝑡𝑦

=
𝛼𝑖𝑗

𝛼𝑖𝑗 + 𝛽𝑖𝑗
 (6-1) 

B) Confidence  𝑻𝒊𝒋
𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆

 

Confidence is a social property that is used to indicate how strong a tie is 

between two interacting nodes. It is utilised as a measure that indicates how 

frequently nodes interact with one another and to evaluate how strong the 

relationships are between interacting nodes. In the proposed model, 

confidence is used to measure the level of experience one node can gain 

about another as a result of a sequence of interactions. It evaluates the 

number of interactions between two nodes. A high number of interactions can 

be translated into the idea that the evaluating node has a strong relationship 

with the evaluated node. Consequently, it improves the ability of the 

evaluating node to judge the trustworthiness of the node under evaluation. In 

the model presented here, the value of  𝑇𝑖𝑗
𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆

 is a variance value of all 

past experiences between two interacting nodes. Assume that node 𝑖 has 

observed a sequence of positive and negative interactions at time 𝑡 ; the 

 𝑇𝑖𝑗
𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆

 value is measured by using the beta standard deviation 𝜎 as in 

Eq. (6-2). Beta standard deviation equation is redefined to normalise its 

values on the interval [0, 1] using the constant 1 −  √12.  

 

 𝑇𝑖𝑗
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

 =  1 − √12𝜎𝑖𝑗 

 𝑇𝑖𝑗
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

 = 1 − √
12 𝛼𝑖𝑗𝛽𝑖𝑗

(𝛼𝑖𝑗 + 𝛽𝑖𝑗)
2
(𝛼𝑖𝑗 + 𝛽𝑖𝑗 + 1)

 
(6-2) 

where 𝛼𝑖𝑗 and 𝛽𝑖𝑗  represent the positive and negative interactions observed 

by node 𝑖 about node 𝑗. The value of  𝑇𝑖𝑗
𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆

 belongs to the interval [0, 1]. 

At time 𝑡 = 0, when there is no observation or evidence between evaluating 

and evaluated node, the value of  𝑇𝑖𝑗
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

 is 0.  This means that node 𝑖 is 
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not able to judge the honesty of node 𝑗 even if its honesty value is more than 

a trust threshold. The value of  𝑇𝑖𝑗
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

 develops over time by increasing 

the number of positive or negative interactions. The updated value of  𝛼𝑖𝑗 and 

𝛽𝑖𝑗 would be calculated when observing positive or negative interactions and 

decreased by time to reduce the effect of old experience.  

Friendship degrees 𝑇𝑖𝑗
𝐹𝑟𝑖𝑒𝑛𝑑𝑠ℎ𝑖𝑝 between evaluating and evaluated nodes are 

used to compute the overall trust of nodes. The predefined thresholds used in 

this model to classify nodes which are shown in Table 6-1 are identified by 

practice as the best values to increase the ability of nodes to assess 

trustworthiness of other neighbours in the network. For example, the 

MISBEHAVE threshold of 0.4 ensures that nodes are quickly detected as 

misbehaving nodes after performing a reasonable number of bad interactions. 

Table 6-1 shows the degrees of friendships based on the values of honesty 

and confidence. 

Table 6-1 Friendship degree values between the evaluating and the evaluated node 

Friendship degree 

𝑻𝒊𝒋
𝑭𝒓𝒊𝒆𝒏𝒅𝒔𝒉𝒊𝒑

 

Honesty 

  𝑻𝒊𝒋
𝑯𝒐𝒏𝒆𝒔𝒕𝒚

 

Confidence 

 𝑻𝒊𝒋
𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆

 

STRANGER 𝑇𝑖𝑗
𝐻𝑜𝑛𝑒𝑠𝑡𝑦

=  0.5 𝑇𝑖𝑗
𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆

=  0 

ACQUAIN 𝑇𝑖𝑗
𝐻𝑜𝑛𝑒𝑠𝑡𝑦

≥ 0.5 0 < 𝑇𝑖𝑗
𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆

< 0.5 

FRIEND 𝑇𝑖𝑗
𝐻𝑜𝑛𝑒𝑠𝑡𝑦

≥ 0.5 0.5 ≤ 𝑇𝑖𝑗
𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆

≤ 1 

MISBEHAVE 𝑇𝑖𝑗
𝐻𝑜𝑛𝑒𝑠𝑡𝑦

< 0.4 0.5 ≤ 𝑇𝑖𝑗
𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆

≤ 1 

REDEMP 𝑇𝑖𝑗
𝐻𝑜𝑛𝑒𝑠𝑡𝑦

≥ 0.4 0.5 ≤ 𝑇𝑖𝑗
𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆

≤ 1 

Table 6-2 shows the decision making by the evaluating node about whether to 

interact with the evaluated node or not. The decision depends on the 

aggregated direct and indirect friendship degree of the evaluated node. 
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Table 6-2 Friendship degree values and decision of interaction 

Friendship degree 

𝑻𝒊𝒋
𝑭𝒓𝒊𝒆𝒏𝒅𝒔𝒉𝒊𝒑

 

Decision of interaction 

STRANGER 

1. Evaluating node cannot directly interact. 

2. Evaluating node gives more weight to indirect 

information. 

3. If the overall trust is still stranger, evaluating node 

should look for another neighbour. 

ACQUAIN 

1. Evaluating node cannot directly interact. 

2. Evaluating node gives more weight to indirect 

information. 

3. Based on the overall trust value, the evaluating node 

can choose to interact with it or decide to look for 

another neighbour. 

FRIEND 

1. Evaluating node can directly interact. 

2. Evaluating node gives more weight to direct 

information. 

3. Consequently, it avoids any dishonest 

recommendation from other nodes. 

MISBEHAVE 

1. Evaluating node cannot directly interact. 

2. Evaluating node gives more weight to direct 

information. 

3. Consequently, it avoids any dishonest 

recommendation from other nodes. 

REDEMP 

1. Evaluating node can directly interact or choose to 

look for another neighbour. 

2. Evaluating node gives more weight to direct 

information. 

3. Consequently, avoid any dishonest recommendation 

from other nodes. 

For each node in the network, trust value 𝑇𝑖𝑗 is calculated by combining both 

direct and indirect friendship degree values with different weights denoted by 

𝑤𝐷 and  𝑤𝐼 respectively.  𝑇𝑖𝑗 is computed according to Eq. (6-3). 

 𝑇𝑖𝑗 = 𝑤𝐷 ∗  𝑇𝐷𝑖𝑗
𝐹𝑟𝑖𝑒𝑛𝑑𝑠ℎ𝑖𝑝 + 𝑤𝐼 ∗  𝑇𝐼𝑖𝑗

𝐹𝑟𝑖𝑒𝑛𝑑𝑠ℎ𝑖𝑝
 (6-3) 
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where 𝑇𝐷𝑖𝑗
𝐹𝑟𝑖𝑒𝑛𝑑𝑠ℎ𝑖𝑝

 is the direct evaluation of friendship degree by the node 

itself, and 𝑇𝐼𝑖𝑗
𝐹𝑟𝑖𝑒𝑛𝑑𝑠ℎ𝑖𝑝

 is the indirect information collected by 

recommendations by other nodes in the network. Meanwhile, 𝑤𝐷 and 𝑤𝐼 are 

different weights for direct and indirect information and adjusted dynamically 

according to Table 6-2. 

6.2.3 Experimental Setting 

The friendship degree components are added to the simulator to test the 

validity of the model. A network with 50 randomly placed nodes in an area of 

700×1000 square meters is simulated. Several nodes were randomly 

selected to be misbehaving by dropping packets by two rates: 50% and 80% 

of the packets transmitted in the network. Table 6-3 shows the parameters 

used in configuring the network for the experiment. Selfish attack with 

different percentages of dropping rates and additional permission to collude 

were used in order to evaluate the proposed model. Badly behaving nodes 

(selfish nodes) amounting to up to 50% always existed in the network and 

were responsible for collusion and jamming. Bad-mouthing and ballot-stuffing 

attacks which relate to dishonest recommendation problem by falsely 

degrade or promote trust value for a particular node also existed at 20% for 

each type.  Results from the experiment are based on multiple runs, and 

negligible variation is noticed. 

Table 6-3 Network configuration 

Parameter Value 

Nodes 50 

Area 700 m X 1000 m 

Speed 10 m/s 

Radio Range 250 m 

Movement Random waypoint model 

Routing Protocol DSR 

MAC 802.11 
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Parameter Value 

Source-destination pairs 15 

Transmitting capacity 2 Kbps 

Application CBR 

Packet size 512 B 

Simulation time 500 s 

𝐓𝐫𝐮𝐬𝐭 𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 0.4 

Fading timer 𝛍 10 s 

Deviation threshold  0.5 

6.2.4 Experimental Evaluation 

The model first investigates the metrics of friendship degrees: honesty and 

confidence based on the number of interactions and how these values 

develop over time. Figure 6-1 shows the value of honesty and confidence and 

their values at different numbers of interactions. It is obvious that these two 

values develop by increasing the number of interactions. These two values 

are combined together to produce the friendship degree between two nodes. 

From the figure it can be seen that in the early stages of the simulation when 

there are not sufficient interactions, the difference between the values for 

honesty and confidence is large and this is interpreted as showing that nodes 

are strangers or just becoming acquainted. Later, by increasing the number of 

interactions, the values of both metrics become closer and this can be 

translated as showing that nodes friendship degrees change to become either 

friends or malicious. Consequently, nodes are now able to make correct 

decisions about whether to interact with other nodes or not.     

Another evaluation metric is the testing of the dynamic development of 

friendship degrees over the time of the simulation, and this is shown in Figure 

6-2. The figure shows the percentage of friendship degrees of node 7 for all 

the nodes interacted with during the time of simulation. From the figure, it can 

be seen that in the early stages of the simulation, most friendship degrees are 

either stranger or acquaintance, with percentages of more than 80% after 100 
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seconds, while friend and malicious degrees are very small, at less than 10% 

of the relationships. However, by increasing the time of simulation, the nodes 

are able to define the friendship degrees of most the nodes with as friends or 

malicious and this increases to nearly 60% of all the relationships between 

node 7 and other nodes with which it has interacted by the end of simulation. 

Meanwhile, the percentage of strangers and acquaintances are decreased 

over time to less than 40% of the relationships at the end of the simulation. 

 

Figure 6-1 Friendship-based trust model metrics and their values at different numbers of 
interactions 

 

Figure 6-2 The developments of friendship degrees over time in the presence of 20% 
misbehaving nodes  

Another evaluation metric is based on considering the adaptation of the 

proposed model in routing protocols such as DSR or AODV and checking its 

applicability and impact on the network performance, as shown in Figure 6-3 
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and 6-4.  Figure 6-3 displays on the x-axis the number of misbehaving nodes, 

ranging from 10%, which means majority of nodes are behaving normally, to 

50% misbehaving nodes, which means that half of the nodes conduct attacks. 

The y-axis shows the percentage of the network throughput of both standard 

DSR and friendship-based DSR that adopts the trust model to reflect the 

behaviour of nodes. The figure shows that the throughput for the proposed 

trust model gradually drops as the number of misbehaving nodes increases, 

but it remains at an acceptable level, at nearly 12,000, when the percentage 

of misbehaving nodes increases to 50%. Meanwhile, standard DSR 

throughput is less than the proposed model and falls to just under 7,000 when 

the percentage of misbehaving nodes reaches the maximum level of attacks.  

 

Figure 6-3 Network performance in the presence of misbehaving nodes for network 
throughput metric 

Figure 6-4 displays the percentage of packet loss of both standard and 

friendship-based DSR with the same percentage of misbehaving nodes, 

which ranges from 10% to 50% misbehaving nodes. It shows an improvement 

in the ratio of packet loss for friendship-based DSR over the standard DSR in 

all the considered cases. The percentage of packet loss of the friendship-

based DSR is increased to just fewer than 40% when half of the nodes try to 

reduce the efficiency of the network and the trust model.  In comparison, the 
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standard DSR without the adaptation of the proposed model increases to 60% 

loss of the forwarded packets.  

 

Figure 6-4 Network performance in the presence of misbehaving nodes for network packet 
loss metric 

6.3 A Trust Model Based Composite Metric 

As in previous chapters, the proposed model categorises nodes into three 

types: evaluating node, evaluated node, and recommending node. As the 

name suggests, any node 𝑖  assessing the trustworthiness of another 

neighbouring node 𝑗  is an evaluating node. Node 𝑗  in this case is the 

evaluated node. The evaluating node assesses the trustworthiness of 

another neighbouring node by considering its own experience or 

recommendations for the evaluated node from a set of other 

nodes {𝑘1, 𝑘2, 𝑘3, … , 𝑘𝛮} in the network. These nodes, in this case, are the 

recommending nodes. The basic architecture of the proposed trust 

evaluation model is given in Figure 6-5. Mainly, the model is used to secure 

the routing protocol between the source and destination nodes based on 

peer evaluation and path evaluation.  
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Figure 6-5 The proposed model components 

In peer evaluation, nodes in the network observe each other’s behaviour in 

order to build a trust relationship which reflects the trust that one node can 

place in another. The trust relationship is valuable in helping nodes decide 

whether or not to forward packets to their neighbour. On the other hand, path 

evaluation evaluates all the available paths to the destination in terms of 

number of hubs (closeness centrality) and trustworthiness of each node in 

between.  Peer evaluation in terms of both direct and indirect trust is 

computed by aggregating multidimensional factors; social trust and QoS 

trust.  Three factors of the social trust component include; frequency, honesty 

and intimacy. The energy factor of the QoS trust component is used to 
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compute the peer evaluation. Meanwhile, minimum and closeness factors are 

used to compute path evaluation by allowing source nodes to evaluate the 

available paths based on the minimum trust value of intermediate nodes 

above a trust threshold, and smallest hop count in those paths which meet 

the trust requirement.  

Assuming that 𝑖  is an evaluating node and 𝑗  the evaluated node, the 

trustworthiness of node 𝑗 to node 𝑖 is calculated by combining four factors, 

including: a) the frequency factor 𝐹𝑓𝑖𝑗 which is used to measure the level of 

experience between node 𝑖 and 𝑗. This reflects the problem of misinformation 

based on short and long term observations. b) The honesty factor 𝐻𝑓𝑖𝑗 which 

is utilised to measure whether a node is selfish/malicious or not. c) The 

intimacy factor 𝐼𝑓𝑖𝑗 which is used to measure the level of experience in terms 

of time. This reflects the level of experience of node 𝑗  with node 𝑖  in 

comparison with other nodes have previously interacted with node 𝑖. d) The 

energy factor 𝐸𝑓𝑖𝑗 which is used to measure whether a node is capable of 

performing the intended task or not.  The energy factor is considered 

because of its scarcity and importance in MANETs. Therefore, the 

trustworthiness between node 𝑖 and 𝑗 can be determined by Eq. (6-4). 

 

𝑇𝑖𝑗
𝑑𝑖𝑟𝑒𝑐𝑡 =  𝐹𝑓𝑖𝑗

𝑑𝑖𝑟𝑒𝑐𝑡+ 𝐻𝑓𝑖𝑗
𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐼𝑓𝑖𝑗

𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐸𝑓𝑖𝑗
𝑑𝑖𝑟𝑒𝑐𝑡   , 

𝑇𝑖𝑗
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 =  𝐹𝑓𝑖𝑗

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡+ 𝐻𝑓𝑖𝑗
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐼𝑓𝑖𝑗

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐸𝑓𝑖𝑗
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 

(6-4) 
 

For each node in the network, trust value 𝑇𝑖𝑗 is calculated by combining both 

direct and indirect trust values with different weights denoted by 

𝑤𝑑𝑖𝑟𝑒𝑐𝑡 and  𝑤𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 respectively and 𝑤𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑤𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = 1.  𝑇𝑖𝑗 is computed 

according to Eq. (6-5). 
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  𝑇𝑖𝑗 = 𝑤𝑑𝑖𝑟𝑒𝑐𝑡 ∗  𝑇𝑖𝑗
𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑤𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 ∗  𝑇𝑖𝑗

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 (6-5) 

6.4 Multidimensional Trust Factors and Evaluation 

6.4.1 Peer to Peer Trust Evaluation 

This subsection describes how peer-to-peer trust evaluation is conducted 

between the evaluating node and the evaluated node. If the evaluating node 

𝑖 intends to evaluate the trustworthiness of the evaluated node 𝑗, node 𝑖 will 

consider four components of trust as follows: 

A) Frequency-based social trust factor 𝑭𝒇𝒊𝒋 

Frequency is a social property which is used to indicate to how strong a tie is 

between two interacting nodes. It is defined as follows: the more frequently 

nodes interact with one another, the stronger their opinions of friendship 

[137]. The frequency factor has been used by several research studies to 

indicate the tie strength in routing protocols in distributed networks such as 

mobile ad hoc networks (MANETs) and mobile social networks (MSNs) [140 , 

141 , 142]. In the proposed model, the frequency social trust factor measures 

the level of experience which one node can gain about another as a result of 

a sequence of interactions. This is done by evaluating the number of 

interactions between two nodes. A high number of interactions can be 

translated as meaning that the evaluating node has a strong relationship with 

the evaluated node. Consequently, it improves the ability of the evaluating 

node to judge the trustworthiness of the node under evaluation. In the model 

presented here, the value of 𝐹𝑓𝑖𝑗 is a variance value of all past experiences 

between two interacting nodes. Assuming that node 𝑖  has observed a 

sequence of positive and negative interactions at time 𝑡 ; the 𝐹𝑓𝑖𝑗  value is 

measured by using the beta standard deviation 𝜎 as in Eq. (6-6). 
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𝐹𝑓𝑖𝑗  =  1 − √12𝜎𝑖𝑗 

𝐹𝑓𝑖𝑗  = 1 − √
12 𝛼𝑖𝑗𝛽𝑖𝑗

(𝛼𝑖𝑗 + 𝛽𝑖𝑗)
2
(𝛼𝑖𝑗 + 𝛽𝑖𝑗 + 1)

        

(6-6) 

 

where 𝛼𝑖𝑗 and 𝛽𝑖𝑗  represent the positive and negative interactions observed 

by node 𝑖 about node 𝑗. The value of 𝐹𝑓𝑖𝑗  belongs to the interval between 

[0,1]. At time 𝑡 = 0 , the value of 𝛼𝑖𝑗  and 𝛽𝑖𝑗  is 1, which means that no 

observation or evidence has been collected. Thus, the value of 𝐹𝑓𝑖𝑗 is 0 and 

develops over time by increasing the number of interactions. The updated 

value of  𝛼𝑖𝑗 and 𝛽𝑖𝑗 would be calculated as 𝛼𝑖𝑗  = 𝜌 + 1 and 𝛽𝑖𝑗 = 𝑛+ 1, where 

𝜌 and  𝑛  represent the positive and negative collected observations 

respectively, and  𝜌 and 𝑛 ≥ 0. The previous interactions are decreased to 

reduce the influence of their old values as in subsection 3.2. As an example, 

assuming that node 𝑖  has interacted with node 𝑗  at different time stamps 

{𝑡0, 𝑡12, 𝑡2, … , 𝑡10} and that the number of interactions is between 0 and 68, the 

value of  𝐹𝑓𝑖𝑗 is shown in Table 6-4.  

Table 6-4 Frequency-based social trust factor and its possible values at different interactions 

 

 

 

 

 

B) Honesty-based social trust factor 𝑯𝒇𝒊𝒋 

Time 

stamp 𝒕 
Number of 

interactions 

Frequency factor 

𝑭𝒇𝒊𝒋 

𝑡0 0 0 

𝑡1 5 0.446716665 

𝑡2 12 0.595938982 

𝑡3 19 0.666357595 

𝑡4 26 0.709401356 

𝑡5 33 0.739179735 

𝑡6 40 0.761351694 

𝑡7 47 0.778686666 

𝑡8 54 0.792721071 

𝑡9 61 0.804384801 

𝑡10 68 0.814277976 
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Negative and positive behaviours of nodes are indicators of the honesty of 

nodes in detecting irregular behaviour such as selfishness or malicious 

attacks. Honesty is a social property which is defined as the way in which 

nodes behave in terms of acting to favour themselves or the communities of 

which they are a part[138]. This is considered by a number of researcher as 

an indicator of positive or negative behaviour (as in [78 , 79 , 139]. Honesty is 

an important social trust factor in the proposed model and refers to the 

degree of honesty of the evaluating node 𝑖 about the evaluated node 𝑗 based 

on the direct observation or recommendation collected by other nodes in the 

network. It is a measure of successful or failed interactions (i.e. forwarding 

and dropping packets). The value of 𝐻𝑓𝑖𝑗 is computed by using the number of 

successful interactions 𝛼𝑖𝑗 between node 𝑖 and 𝑗 over the maximum number 

of successful and failed interactions 𝛼𝑖𝑗 + 𝛽𝑖𝑗. The initial value of 𝐻𝑓𝑖𝑗 is 0.5 

at time 𝑡  = 0, which means that node 𝑗  is a stranger to node 𝑖  and no 

previous interaction has been observed. The 𝐻𝑓𝑖𝑗 value develops over time 

also, and its value is between 0 and 1. Positive interactions increase the 

value of 𝐻𝑓𝑖𝑗, while negative interactions can lead to a decrease in its value. 

The value of  𝛼𝑖𝑗 and 𝛽𝑖𝑗 would be updated when observing new positive or 

negative interactions. The previous interactions are decreased to reduce the 

influence of their old values as in subsection 3.2. In this model, 𝐻𝑓𝑖𝑗  is 

computed by using the expectation of beta function as in Eq. (6-7). 

 𝐻𝑓𝑖𝑗 =
𝛼𝑖𝑗

𝛼𝑖𝑗 + 𝛽𝑖𝑗
          (6-7) 

Table 6-5 gives an example to show the influence of positive and negative 

observations on the value of  𝐻𝑓𝑖𝑗 . Assume that node 𝑖  has observed a 

sequence of interactions with node 𝑗 and is now in a position to judge the 
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honesty factor of node 𝑗. From the table, it can be seen that honesty is a very 

important factor in evaluating the trustworthiness of nodes because of its 

ability to reflect the behaviours of nodes, whether intending to behave badly 

or well. 

Table 6-5 Honesty-based social trust factor and its possible values at different positive and 
negative interactions 

Positive 

interaction 𝜶𝒊𝒋 
Negative 

interaction 𝜷𝒊𝒋 
Honesty 

factor 𝑯𝒇𝒊𝒋 

1 1 0.5 

5 1 0.833333333 

5 3 0.625 

8 3 0.727272727 

15 3 0.833333333 

15 10 0.6 

20 10 0.666666667 

25 20 0.555555556 

40 20 0.666666667 

80 20 0.8 

C) Intimacy-based social trust factor 𝑰𝒇𝒊𝒋 

In a social network, a node for whom a great deal of time has been spent 

connected to another node can refer to a strong relationship between the 

two. This factor is involved in several models, such as those of [78 , 137 , 

142]. However, this factor is not always clearly defined, and its computation 

differs from model to another. In the proposed model, the 𝐼𝑓𝑖𝑗  factor is a 

measure of the level of interaction experiences in terms of time. It indicates 

the duration of time which the evaluating node has spent connected to an 

evaluated node compared to other connected neighbours in the network. 𝐼𝑓𝑖𝑗 

is therefore defined as a measure of how much time node 𝑖  has been 

connected to node 𝑗 compared with others. It is computed by the number of 

interactions between nodes 𝑖 and 𝑗 over the maximum number of interactions 

between node 𝑖 and any neighbouring node over the time period, according 

to Eq. (6-8). 
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𝐼𝑓𝑖𝑗 = {

0.5, 𝑑 = 𝐷
𝑑

𝐷
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6-8) 

where 𝑑 = 𝛼𝑖𝑗 + 𝛽𝑖𝑗 , which is the accumulated positive and negative 

interactions between node 𝑖 and 𝑗 and 𝐷 = ∑ 𝛼𝑖𝑘 + 𝛽𝑖𝑘
𝑛
𝑘=1 , which represents 

the accumulation of interactions between node 𝑖 and any other node which 

has been interacted with across all encountered nodes. The value of the 

intimacy factor is between the interval [0,1] and it is 0.5 when node 𝑗 is the 

only node which has interacted with node 𝑖  at time 𝑡 , and increases or 

decreases according to the number of interactions between node 𝑖 and 𝑗 and 

other encountered nodes. Table 6-6 gives an example of the intimacy factor 

and how its value changes according to the number of interactions between 

the evaluating node and other encountered nodes.  

Table 6-6 Intimacy-based social trust factor and its possible values at different interactions 
between 𝒊 and 𝒋 and other encountered nodes 

Number of 
interactions 

between 𝒊 and 𝒋 

Number of interactions 
between 𝐢 and other 
encountered nodes 

Intimacy factor 
𝑰𝒇𝒊𝒋 

2 2 0.5 

5 7 0.714285714 

10 17 0.588235294 

20 44 0.454545455 

38 60 0.633333333 

50 100 0.5 

50 280 0.178571429 

51 400 0.1275 

80 550 0.145454545 

90 720 0.125 

D) Energy-based QoS trust factor 𝑬𝒇𝒊𝒋 

Energy is a critical QoS factor of trust. It is considered in this model because 

of its scarcity in the MANETs environment. All nodes are energy-constrained 

and the lifetime of each node depends on its energy consumption. In 
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conventional trust models, nodes tend to choose neighbours with the highest 

trustworthiness without giving concern to the energy factor, and this can lead 

to causing trustworthy nodes to die quickly and consequently be lost from the 

network. Therefore, considering the energy factor can help trustworthiness 

evaluation in two ways. Firstly, it can keep good nodes alive for more time as 

the evaluation depends not only on the trust value. Secondly, watching 

nodes’ level of energy can help in detecting selfish and malicious behaviour 

in which selfish nodes will continue to have high levels of energy, while 

malicious nodes will spend more energy in performing attacks. In the 

proposed model, the 𝐸𝑓𝑖𝑗 factor indicates the remaining energy level of the 

node after each trust update interval 𝑡 performed by the evaluating node 𝑖 

about the evaluated node 𝑗. The energy factor is calculated as in Eq. (6-9). 

 
  𝐸𝑖𝑗

𝑅𝑒𝑚𝑎𝑖𝑛 =  𝐸𝑖𝑗
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 −  𝐸𝑖𝑗

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 

𝐸𝑓𝑖𝑗 = 
𝐸𝑖𝑗
𝑅𝑒𝑚𝑎𝑖𝑛

𝐸𝑖𝑗
𝐼𝑛𝑖𝑡𝑖𝑎𝑙

 
(6-9) 

where 𝐸𝑖𝑗
𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑  is the level of energy consumed by node 𝑗 in performing 

interactions, 𝐸𝑖𝑗
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 is the previous current energy of node 𝑗, 𝐸𝑖𝑗

𝑅𝑒𝑚𝑎𝑖𝑛 is the 

remaining level of energy of node 𝑗, and 𝐸𝑖𝑗
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 is the initial level of energy of 

node 𝑗 to start with. Energy is initially at the same level for all nodes in the 

network. Receiving and transmitting packets are the only types of 

communications which are considered for energy consumption. Over time, 

the level of energy is adjusted based on each node’s interactions. The value 

of the energy factor is defined in the interval [0, 1]. It starts at 1, which refers 

to a situation where nodes have a full battery, and gradually decreases over 

time as nodes involve themselves in more communications. Nodes continue 

to be effective in performing interactions so long as the energy factor is not 
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reduced to a particular threshold  𝐸𝑖𝑗
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . However, the relationship 

between energy factor and level of energy consumed is governed by linear 

relationships, as shown in Figure 6-6. 

 

Figure 6-6 The relationship between energy factor and consumed energy  

6.4.2 Path Trust Evaluation 

The path evaluation process is achieved by the source node based on a 

selection technique to guarantee choice of the shortest path which meets the 

security requirements of QoS and social trust. The path selection technique 

must determine paths that fulfil specified requirements and constraints. 

Employed metrics for the path selection technique are based on the values of 

these metrics for the intermediate nodes on the whole path. The value of 

path trust evaluated by the source node should not exceed the trust value of 

the intermediate nodes. Therefore, this model proposes the use of two 

composite metrics as a path selection method to evaluate the path between 

source and destination, as follows. 

A) Minimum-based trust factor 𝑴𝒇𝒔𝒅  

In MANETs, if there are a number of available paths from source to 

destination, a source node 𝑠 evaluates those paths which meet the required 

trust value by considering the minimum trust value of intermediate nodes that 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

En
e

rg
y 

Fa
ct

o
r 

Percentage of Energy Consumed 

Energy Factor



 

 

140 

 

 

is above a trust threshold as an overall evaluation value. At time  𝑡 , the 

minimum trust factor 𝑀𝑓𝑠𝑑  of a path 𝑃 is computed by taking the minimum 

trust value of the intermediate nodes as an overall trust value of the path as 

in Eq. (6-10).  

 𝑀𝑓𝑠𝑑 =  𝑀𝑖𝑛(𝑇𝑖𝑗(𝑡)|𝑖, 𝑗 

∈  𝑃 𝑎𝑛𝑑 𝑗 𝑖𝑠 𝑛𝑒𝑥𝑡 ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑜𝑓 𝑖) 
(6-10) 

 

 

 

Figure 6-7 Minimum-based trust factor computation 

As shown in Figure 6-7, at time 𝑡, node 𝐴 is the source node that evaluates 

the possible paths to the destination 𝐹. Although there are five possible paths 

to the destination, 𝑀𝑓𝑠𝑑  of the path (𝐴 → 𝐵 → 𝐷 → 𝐹)  with trust value of 

intermediate nodes 𝐵, 𝐷 = (0.90,0.70)  is 0.90, which is the most trustworthy 

path from source to destination. The minimum based trust factor has an 

advantage in computing path trust because of its ability not to increase the 

trust path more than the smallest acceptable trust value of the intermediate 

node. Some research papers use the continued product of node trust values 

in the path, as in [143]. However, while this method does not increase trust 

more than the trust values of intermediate nodes, it is unable to give the 

correct path trust that reflects the actual trustworthiness of the intermediate 

nodes. For example, Table 6-7 shows the available paths from node 𝐴 to 𝐹 

and their trust values and path trust using two methods; the minimum method 

and the product method. The path trust using the product in path numbers 2 

and 5 is 0.38 and 0.36 respectively. These values are less than the trust 
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threshold and these two paths are considered untrustworthy. However, this 

does not reflect the truth, in which intermediate nodes on both paths are 

considered to be trustworthy and should not be excluded from the selection. 

Meanwhile, our method gives a minimum value to consider path trust of 0.5, 

which is considered a trustworthy path because this value is more than the 

trust threshold.   

Table 6-7 Comparison of the minimum-based trust factor and product method in calculating 
path trust for all available paths from source to destination 

Path 

number 

Path from 𝒔 to 𝒅 

Node 𝑨 → 𝑭 
Trust value 

Minimum 

method 

Product 

method 

1 A → B → D → F (0.90,0.70) 0.70 0.63 

2 A → C → E → F (0.75,0.50) 0.50 0.38 

3 A → C → D → F (0.75,0.30) 0.30 0.23 

4 A → B → C → D → F (0.90,0.80,0.30) 0.30 0.22 

5 A → B → C → E → F (0.90,0.80,0.50) 0.50 0.36 

B) Closeness centrality-based social trust factor 𝑪𝒇𝒔𝒅  

Closeness centrality is the metric used by social networks [137 , 138] to 

describe the efficiency of information propagation from source node 𝑠 to the 

destination 𝑑. 𝐶𝑓𝑠𝑑 can be defined as a measure of the distance between 𝑠 

and 𝑑  in terms of physical distance, number of hops, or delays. In the 

proposed model, closeness centrality is considered as a measure of number 

of hops between node 𝑠 and node 𝑑. 𝐶𝑓𝑠𝑑 is calculated as the inverse of the 

sum of the distances between node 𝑠 and node 𝑑  in the network. The 

distance is measured by the number of hops between the source and 

destination node and this can be calculated as in Eq. (6-11). 

 
𝐶𝑖𝑗 = 

1

∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠, 𝑑)𝑑≠1
 (6-11) 

Source node 𝑠  selects the route with the largest 𝐶𝑖𝑗 which indicates the 

smallest hop count in the paths that meet the trust requirement. If paths that 
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meet the required minimum trust value have an equal hop count, the source 

node s chooses the path with the maximum path trust as the most trustworthy 

path. Considering the previous example presented in Table 6-7, node 𝑠 will 

consider only paths 1, 2, and 5, as their path trust is more than the trust 

threshold in the first evaluation. In the second evaluation, node 𝑠 will consider 

paths 1 and 2 because they are two hops’ distance from the destination 𝑑 

and then node 𝑠 will select path 1, as its minimum trust factor is 0.7 which is 

more than the trust of path 2, as the most trustworthy path. 

6.5 Simulation and Analysis 

The proposed trust model based composite metric is tested through extensive 

simulation in terms of throughput, packet loss, and energy consumption 

against badly-behaving nodes (selfish, blackhole and greyhole attacks). It is 

compared with another proposal available in the literature to show its 

capability in evaluating trustworthiness. The relation of social and QoS trust 

values to the number of successful interactions between evaluating nodes 

and evaluated nodes is also considered.  

6.5.1 Experimental Setting 

The setting used for this experiment is the same as in Table 6-3 in section 

6.2.3. The social and QoS trust model components are added to the simulator 

to test the validity of the model. Several nodes were randomly selected to be 

misbehaving by dropping packets by two rates: 50% and 80% of the packets 

transmitted in the network. Selfish attack with different percentages of 

dropping rates and additional permission to collude were used in order to 

evaluate the proposed composite trust evaluation metric. Badly behaving 

nodes (selfish nodes) amounting to up to 50% always existed in the network 

and were responsible for collusion and jamming. Bad-mouthing and ballot-

stuffing attacks which relate to dishonest recommendation problem by falsely 
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degrade or promote trust value for a particular node also existed at 20% for 

each type.  Results from the experiment are based on multiple runs, and 

negligible variation is noticed. 

6.5.2 Performance Evaluation  

The flow of the simulation is as follows. The performance of the entire 

network is represented by three parameters; Network throughput, Packet 

loss, and Energy consumption in the presence of misbehaving nodes (selfish, 

bad-mouthing, and ballot-stuffing nodes in this case). In order to check the 

effectiveness of the proposed model, the performance of the network is 

tested in three cases: first, for the standard DSR routing protocol which does 

not consider trust relationships between participating nodes; second, for the 

trusted DSR routing protocol which only considers trust relationships 

between nodes in terms of forwarding packets; and finally, for the proposed 

trust model which combines both social trust and QoS trust to evaluate 

nodes’ trustworthiness. Trust level evaluation of good, moderate, and bad 

nodes by other nodes in the network for both trusted DSR and social Trusted 

DSR in the presence of attacks is tested. A comparative study with service-

based multidimensional trust model proposed in [79] was conducted. 

 
(a) Network throughput 
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Figure 6-8 Network performance in the presence of misbehaving nodes for the social trusted 

DSR, trusted DSR, and standard DSR routing protocol for (a) Network throughput, (b) 

Packet loss, (c) Energy consumption 

Figure 6-8 demonstrates the effect of misbehaving nodes on network 

performance metrics in terms of throughput, packet loss and energy. Figure 

6-8(a) shows the performance of the throughput in the presence of 

misbehaving nodes. The y-axis shows the percentage of throughput for the 

standard DSR, trusted DSR and social trusted DSR, in the presence of 

misbehaving nodes varying from 10% to 50% of the population. It is observed 
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that the network throughput for the social trusted DSR routing protocol 

outperforms both the trusted DSR and the standard DSR. In the trusted DSR, 

the network throughput is higher than the standard DSR but is still less than 

the proposed model with social and QoS capability. However, the proposed 

model was able to maintain the value of throughput as higher than the other 

protocols in all cases of higher population of the misbehaving nodes because 

of its ability to enhance the trustworthiness evaluation of nodes in selecting 

honest neighbours, and consequently, enhance the network throughput. The 

impact of misbehaving nodes on packet loss is shown in Figure 6-8(b). The 

percentage of packet loss rises with an increase in the percentage of 

misbehaving nodes, from nearly 10% when there are only 10% misbehaving 

nodes in the network, to less than 40% when the percentage of misbehaving 

nodes increases to half of the total population. Meanwhile, for the trusted 

DSR, the packet loss percentage increases to nearly 50% and for the 

standard DSR it increases to nearly 60% when there are 50% misbehaving 

nodes present in the network. It can be seen from the above analysis that the 

social trusted DSR can outperform the other two protocols in terms of the 

packet loss metric by considering more social attributes of trust and QoS 

trust. Figure 6-8(c) shows the impact of misbehaving nodes on energy 

consumption. The energy consumed per byte is shown on the y-axis in the 

presence of misbehaving nodes. From the figure, it is obvious that the energy 

consumption percentage in the Social Trusted DSR is less than both the 

Trusted DSR and the Standard DSR routing protocol as it is able to reduce 

the number of dropped packets than both protocols. It is also observable that 

the energy level in the Trusted DSR is slightly different from the proposed 

protocol: especially when the percentage of misbehaving nodes is less than 

30%.  Moreover, the energy performance of the proposed model is far better 
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than the pure DSR when there are no trust relationships adopted between 

nodes. Therefore, from the network performance analysis above, it can be 

concluded that the proposed model can keep the network performance 

metrics of throughput, packet loss, and energy consumption at an acceptable 

level even when the percentage of misbehaving nodes is half of the total 

population. 
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Figure 6-9 Trust evaluation of a node by all nodes in the presence of 20% black hole attack, 

20% bad-mouthing attack, 20% ballot-stuffing attack for (a) Good Node, (b) Moderate Node, 

(c) Bad Node 

Figure 6-9 demonstrates the trustworthiness evaluation of good, moderate, 

and bad nodes by other nodes in the existence of selfish, bad-mouthing, and 

ballot stuffing attacks. Figure 6-9(a) shows the trust level of a good node 

which has a high trust value after a sufficient number of successful 

interactions with nodes in the network. It is obvious that in the trusted DSR, 

which only uses packet forwarding for evaluation, the trust value of node 30 

is higher than its trust value as given by the social trusted DSR, because 

STDSR evaluates the node’s trustworthiness based on energy, duration of 

interactions, and number of interactions. The proposed model could be used 

to reflect the dynamic characteristic of MANETs and solve the problem of 

being able to conduct the assigned service in terms of both high reputation 

and resources available. Figure 6-9(b) shows the same behaviour as in 

Figure 6-9(a) for both models in evaluating a moderate node whose trust 

value is moderate after sufficient interactions with other nodes. As can be 

seen, the trust value of the STDSR is less than the TDSR in all cases. Figure 

6-9(c) shows the trust evaluation of a bad node (node 13 in this case). It is 

(c) Bad Node (node 13) 
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clear that the trust value of the node is very low because of its bad behaviour 

as a packet forwarder and as a recommender. However, STDSR maintains 

this value at a lower level than the evaluation of the TDSR because this kind 

of node needs to use its energy resources to conduct such attacks, and also 

intimacy could be very small as a result of avoiding interactions with such 

nodes by other nodes in the network. Consequently, nodes can circumvent 

bad experience before interacting with bad nodes. 

          

Figure 6-10 Social and QoS trust values in relation to the number of successful interaction 

between evaluating node and evaluated node for (a) Social trust values; (b) QoS trust value 

Figure 6-10 shows the value of the social trust and QoS trust components 

used to produce the composite trust metric in relation to the number of 

interactions. Figure 6-10(a) demonstrates the value of social components; 

frequency, honesty and intimacy. It is seen that these values are changed by 

increasing the number of interactions, in which frequency starts with the 

value 0 when there is no interaction between the two nodes, and rises by 

increasing the number of interactions. Honesty increases as the number of 

successful interactions increases. Intimacy fluctuates according to the 

number of interactions between the evaluated node and with the other nodes 

which have had interactions with the evaluating node. In contrast, Figure 6-
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10(b) shows that the estimated energy value of the evaluated node 

decreases as it becomes involved in more interactions with other nodes in 

the network. Consequently, the evaluation of the components used to 

calculate trust shows that the proposed model is able to effectively consider 

the dynamic characteristics of MANETs by using social and QoS trust.  

          

 

Figure 6-11 Comparative study with service-based multidimensional trust for  (a) Nodes’ 

performance with increasing time of simulation; and (b) Nodes’ performance with increasing 

number of bad nodes 

Finally, the performance of the proposed model is compared with a 

multidimensional model which uses multiple decision factors of security trust 

and quality trust as proposed in [79], and which considers no social network 

properties of trust.  The comparison is conducted in terms of a perfect 

transmitted packets metric, which represents the proportion of successfully 

transmitted packets via trustworthy paths in which all intermediate nodes in 

the selected paths meet the minimum requirements for all the composite 

factors. We follow the same network configuration and node selection which 

is provided in the service-based multidimensional trust model (see [79] for 

details) to conduct this experiment. Figure 6-11 shows the results of the 
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experiment. Figure 6-11(a) displays the packets transmitted successfully over 

the simulation time in the presence of 30% bad nodes. It can be seen that the 

proposed model can achieve a number of transmitted packets which is 

greater than the number reported by the service-based model. The number 

of transmitted packets in case of the proposed model is increased 

dramatically for the entire time of evaluation and converges to nearly more 

than 3000 packets towards the later phase. In comparison, for the service-

based model, the number of transmitted packets value is low initially, at half 

of the packets transmitted by the proposed model and this only converges to 

nearly 300 packets towards the end of the simulation. Figure 6-11(b) shows 

the effectiveness of the proposed social and QoS model in transmitting 

packets successfully with the existence of bad nodes which drop packets 

intentionally. In the case of the proposed model, the number of transmitted 

packets decreases when the number of bad nodes increases in the network, 

and decreases to just over 2500 packets towards 40% bad nodes. 

Meanwhile, for the service-based model, the number of transmitted packets 

is very low over all percentages of bad nodes and stands at less than 10 

packets at 40% of bad nodes. The results show that the proposed model with 

social and QoS capability can enhance the performance of the network over 

both the traditional models and multidimensional models which give no 

consideration to the social properties of nodes in MANETs. 

6.6 Summary 

A friendship-based trust management model for MANETs is proposed to 

reflect nodes’ behaviour and cope with multiple misbehaving attacks. The 

model utilises the social property of friendship degrees that is based on 

combining two social metrics: honesty and confidence. Dynamic 

developments of friendships over time are considered to represent the 



 

 

151 

 

 

behaviour of nodes in a human manner. The proposed model has been tested 

by simulation against different types of attacks such as blackhole, greyhole, 

bad-mouthing, and ballot-stuffing attacks. The results of the simulation 

indicate that the proposed model can accurately evaluate the behaviour of 

nodes as in human patterns. Further, a composite metric based on social 

properties and QoS factors is developed and analysed to secure routing 

protocols in the MANET.  The use of single trust metric based approaches 

cannot reflect the behaviour of nodes, and exposes them to inaccurate 

evaluation of other nodes’ trustworthiness. Therefore, the proposed 

multidimensional trust model utilises multiple factors which depend on more 

social and QoS properties to represent the behaviour of nodes in a human 

manner and reflect the complexity of trust. The model evaluates nodes’ 

trustworthiness at two levels to provide more accurate decisions, including 

both peer to peer evaluation and path evaluation techniques. The proposed 

model has been tested through extensive simulation and also compared with 

another. The simulation results indicate that the proposed model can enhance 

the evaluation of nodes’ trustworthiness by considering multiple factors 

instead of depending on a single factor. Moreover, the model enhances the 

performance of the network and reduces the effect of bad nodes.  
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Chapter 7 Conclusion and Future Work  

Conclusions of the thesis are provided in this chapter by illustrating a 

summary of the accomplishments. Some suggestions of future work in this 

area are also presented. 

7.1 Conclusions  

 This thesis proposes to use the concept of trust and reputation as a security 

mechanism to secure routing protocols in MANET. It explored the definitions 

of these concepts available in the literature, and defines trust based on the 

combination of multiple definitions suit the thesis context. An overview of the 

state of the art of trust and reputation management in four important 

applications; E-Commerce and E-Market, Peer-to-Peer Networks, Social 

Networks, and Mobile Ad Hoc Networks were presented. Besides this, three 

well known techniques to compute trustworthiness in distributed systems, 

namely Game Theory, Fuzzy Theory and Probability Theory, were 

investigated in the four mentioned applications. Through the review of the 

literature, the problem of evaluating and computing trustworthiness in 

MANET application was identified in Chapter 3, which presented the problem 

definition and the important components that should be combined to work 

together in the proposed trust model. 

A trust metric model was developed to monitor misbehaving nodes in ad hoc 

routing protocol, their harmful influence was mitigated and they were avoided 

by nodes in selecting a reliable routing path. This model presented in 

Chapter 4 and uses multiple trust evidence, including direct trust, indirect 

trust and opinion trust to evaluate nodes’ trustworthiness. The model is 

believed to be simple and comprehensive in the way all the available 

information needed for calculating trustworthiness is gathered and used as 

appropriate. The model is totally decentralised and depends on the nodes’ 
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experience gained in previous interactions, giving greater importance to 

recent experiences. Further, it has the ability to give another chance to 

misbehaving nodes to recover their trustworthiness values and come again to 

the network. The node can use its own evidence (direct trust) or can use 

external evidence or recommendations by other nodes (indirect trust). A 

simple method was used to deal with dishonest recommending nodes and 

this was sufficient, as no attacks related to providing dishonest 

recommendations are considered.  

To enhance the proposed model, there was a need to extensively investigate 

the problem of dishonest recommendations. Chapter 5 presented a design of 

effective solutions to this problem. It provided security analysis on the 

countermeasures relevant to five attacks which aim to distort the correctness 

of the received recommendations. A recommendation based trust model with 

an enhanced dynamic recommender selection is developed and analysed to 

filter attacks related to dishonest recommendations exchanged by nodes in 

the MANET. The model is strengthened by incorporating a combination of 

three rules used to filter out recommendations. These are the majority 

opinion, personal experience, and quality of service approaches. Each of 

these rules inherent drawbacks when singly been applied in filtering 

recommendations in MANETs. The combination of them is believed to 

enhance the selection procedure and keep the trustworthiness evaluation 

near to ground truth value. The filtering algorithm is advantageous in 

enhancing the selection of recommending nodes in the way it considers 

multiple MANETs’ characteristics including level of experience, scarcity of 

knowledge (i.e. data sparsity problem), and how close the recommender to 

the evaluating node.  
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As the research continues, some other characteristics of MANETs need to be 

investigated such as time and location of recommending nodes. Therefore, 

chapter 5 presented another filtering algorithm, namely, an effective defence 

scheme, which utilises the clustering technique to filter out unfair 

recommendations exchanged by nodes in the network based on three 

values: (a) the level of confidence held by a node about others, (b) deviation 

threshold which ensures the unity of views between evaluating node and the 

evaluated node, and (c) closeness centrality value to ensure that 

recommending node is a close friend to the evaluating node for a period of 

time. The proposed defence scheme is proven to be capable to safely 

incorporate correct indirect trust evidences received by recommendations 

and eliminate untrustworthy ones. It reduces the effect of false negative and 

false positive problems in selecting recommending nodes. Moreover, the 

accompanied costs with the proposed defence scheme were investigated.  

These costs can be reduced by using only the very last recommendations to 

be including in the clustering filtering computation. Dynamic selection of the 

number of recommendations based on a period of time can have many 

advantages, (1) reduce complexity and memory usage, (2) exclude any old 

recommendation from the calculation, (3) reduce the time that is used to 

select the trustworthy cluster.  

In chapter 6, a friendship-based trust management model for MANETs was 

proposed to reflect nodes’ behaviour and cope with multiple misbehaving 

attacks. The model utilised the social property of friendship degrees that is 

based on combining two social metrics: honesty and confidence. The model 

is effective in the way dynamic developments of friendships over time were 

considered to represent the behaviour of nodes in a human manner. 

Moreover, direct and indirect relationships and the effect of dishonest 
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information were also considered to help nodes make accurate decisions 

about the trust relationships with other nodes.  The results of the simulation 

indicated that the proposed model accurately evaluated the behaviour of 

nodes as in human patterns, and made correct decisions whether to interact 

with others or not. Chapter 6 further enhanced the trustworthiness evaluation 

of nodes by proposing a composite multidimensional trust model with more 

social properties and QoS factors to secure routing protocols in the MANET 

than the friendship based model.  The proposed model is recognised as an 

applicable model for future MANETs, in which it utilises multiple factors that 

depends on social and QoS properties of trust to represent the behaviour of 

nodes in a human manner and reflect the trust complexity. The use of two 

levels of evaluation includes peer to peer evaluation and path evaluation 

techniques provided more accurate decisions than the single evaluation 

metrics. Considering multiple factors instead of depending on a single factor 

enhanced the evaluation of nodes trustworthiness and this was believed in 

the way the model enhanced the performance of the network and reduced 

the effect of bad nodes.  

A general conclusion that can be drawn from the results of this research is 

that the behaviour of nodes can be reflected using appropriate 

recommendation based trust and reputation models in MANETs. Such 

models can enhance the cooperation of nodes and cope with multiple 

misbehaving attacks. Nodes can learn to be able to select their honest 

neighbours and avoid dishonest nodes based on multidimensional 

parameters that can be derived from the social and QoS trust during the 

period of interactions. Social properties of trust can be applied to MANETs to 

enhance the security level of nodes and help them improve the capability of 

evaluating others’ trustworthiness similarity to human behaviour. The use of 
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proof of time and location is a promising technique that can be utilised in 

MANETs’ applications which are increasing in future network paradigms 

including vehicular and robotic ad hoc networks. The proposed techniques 

enhanced the performance of the network throughput, packet loss, and 

energy to nearly more than 10% in most the proposed models than the 

standard settings. False negative and false positive problems in evaluating 

trustworthiness of nodes are significantly improved. The capability of nodes 

to survive from being vulnerable to intentionally generated dishonest trust 

information is also enhanced.  

7.2 Future work  

In this section, a number of suggestions for the future work are given for the 

continuation of the work presented in this thesis. 

1. In the proposed models, a set of social and QoS properties of trust used to 

model the behaviour of nodes in MANETs. These models can be extended 

by using more social and QoS properties to detect any malicious or bad 

behaving like newly joined nodes or changing identities. Dealing with such 

attacks is still an open and challenging problem of trust models. A 

comprehensive study of the  effect of social and QoS trust on the 

trustworthiness evaluation process, and which properties has more 

importance on the nodes decision is also missing in the trust research. In 

addition, dynamic weightings and giving different importance to the 

different factors at different times of nodes’ neighborhoods is still an open 

problem needs to be considered in future. 

2. Mobile ad-hoc networks are characterised by constrained resources in 

terms of communication, memory usage and computational complexity 

requirements. Besides, such environments suffer from several points of 

failure which require techniques to enhance the decision making on nodes 
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trustworthiness. A research to extensively investigate the trade-offs 

between accuracy of trustworthiness and network performance is desired. 

Lightweight techniques in gathering and aggregating trust information from 

different sources can be considered as an important future direction of 

trust management in MANET. 

3. In regard to the recommendation filtering scheme, the proposed filtering 

technique takes into consideration the dynamic characteristics of MANETs 

that change over time in which the honesty of recommending nodes is 

evaluated over a period of time to mitigate the influence of bad behaviour 

of the same node over time. Due to mobility, the location and number of 

recommending nodes change over time. Therefore, the proposed defence 

scheme can be extended by weighting recommendations based on time 

and location to mitigate the influence of location and time dependent 

attacks.  

4. Marti et al. [19] first introduce the redemption of nodes in case of a node is 

wrongly identified as a misbehaving node by the trust system. Offering a 

second chance service for such nodes or even nodes that misbehave 

intentionally or by forcing the conditional environment can be considered 

as one future direction to study the redemption friendship of nodes. 

Incorporating suitable rules to study the self-redemption property of nodes 

can be used to allow nodes to change their malicious intensions and show 

good behaviours. Further, identifying and dealing with nodes that may 

exploit the redemption service to make the system unstable.      

5. Although, several trust models to secure routing algorithms in MANETs 

have been proposed to evaluate node’s trustworthiness by monitoring the 

transmission behavior in case of malicious intentions or node capability, a 

comprehensive dynamic route optimisation selection algorithm is still open 
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and challenging problem in trust evaluation. Finding dynamic optimisation 

rules to efficiently select routes in MANETs is difficult because of MANETs’ 

unique characteristics of mobility and scarcity of resources. Suitable 

methods like fuzzy logic or ant colony can be used to allow nodes choose 

the most trustworthy routes (i.e. optimised path) between source and 

destination. 
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