756 research outputs found

    A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors

    Get PDF
    Measurement of the ground reaction forces (GRF) during walking is typically limited to laboratory settings, and only short observations using wearable pressure insoles have been reported so far. In this study, a new proxy measurement method is proposed to estimate the vertical component of the GRF (vGRF) from wearable accelerometer signals. The accelerations are used as the proxy variable. An orthogonal forward regression algorithm (OFR) is employed to identify the dynamic relationships between the proxy variables and the measured vGRF using pressure-sensing insoles. The obtained model, which represents the connection between the proxy variable and the vGRF, is then used to predict the latter. The results have been validated using pressure insoles data collected from nine healthy individuals under two outdoor walking tasks in non-laboratory settings. The results show that the vGRFs can be reconstructed with high accuracy (with an average prediction error of less than 5.0%) using only one wearable sensor mounted at the waist (L5, fifth lumbar vertebra). Proxy measures with different sensor positions are also discussed. Results show that the waist acceleration-based proxy measurement is more stable with less inter-task and inter-subject variability than the proxy measures based on forehead level accelerations. The proposed proxy measure provides a promising low-cost method for monitoring ground reaction forces in real-life settings and introduces a novel generic approach for replacing the direct determination of difficult to measure variables in many applications

    Indirect Estimation of Vertical Ground Reaction Force from a Body-Mounted INS/GPS Using Machine Learning

    Get PDF
    Vertical ground reaction force(vGRF)can be measured by forceplates or instrumented treadmills, but their application is limited to indoor environments. Insoles remove this restriction but suffer from low durability (several hundred hours). Therefore, interest in the indirect estimation of vGRF using inertial measurement units and machine learning techniques has increased. This paper presents a methodology for indirectly estimating vGRF and other features used in gait analysis from measurements of a wearable GPS-aided inertial navigation system (INS/GPS) device. A set of 27 features was extracted from the INS/GPS data. Feature analysis showed that six of these features suffice to provide precise estimates of 11 different gait parameters. Bagged ensembles of regression trees were then trained and used for predicting gait parameters for a dataset from the test subject from whom the training data were collected and for a dataset from a subject for whom no training data were available. The prediction accuracies for the latter were significantly worse than for the first subject but still sufficiently good. K-nearest neighbor (KNN) and long short-term memory (LSTM) neural networks were then used for predicting vGRF and ground contact times. The KNN yielded a lower normalized root mean square error than the neural network for vGRF predictions but cannot detect new patterns in force curves.publishedVersionPeer reviewe

    Wearable Sensors and Machine Learning based Human Movement Analysis – Applications in Sports and Medicine

    Get PDF
    Die Analyse menschlicher Bewegung außerhalb des Labors unter realen Bedingungen ist in den letzten Jahren sowohl in sportlichen als auch in medizinischen Anwendungen zunehmend bedeutender geworden. Mobile Sensoren, welche am Körper getragen werden, haben sich in diesem Zusammenhang als wertvolle Messinstrumente etabliert. Auf Grund des Umfangs, der Komplexität, der Heterogenität und der Störanfälligkeit der Daten werden vielseitige Analysemethoden eingesetzt, um die Daten zu verarbeiten und auszuwerten. Zudem sind häufig Modellierungsansätze notwendig, da die gemessenen Größen nicht auf direktem Weg aussagekräftige biomechanische Variablen liefern. Seit wenigen Jahren haben sich hierfür Methoden des maschinellen Lernens als vielversprechende Instrumente zur Ermittlung von Zielvariablen, wie beispielsweise der Gelenkwinkel, herausgestellt. Aktuell befindet sich die Forschung an der Schnittstelle aus Biomechanik, mobiler Sensoren und maschinellem Lernen noch am Anfang. Der Bereich birgt grundsätzlich ein erhebliches Potenzial, um einerseits das Spektrum an mobilen Anwendungen im Sport, insbesondere in Sportarten mit komplexen Bewegungsanforderungen, wie beispielsweise dem Eishockey, zu erweitern. Andererseits können Methoden des maschinellen Lernens zur Abschätzung von Belastungen auf Körperstrukturen mittels mobiler Sensordaten genutzt werden. Vor allem die Anwendung mobiler Sensoren in Kombination mit Prädiktionsmodellen zur Ermittlung der Kniegelenkbelastung, wie beispielsweise der Gelenkmomente, wurde bisher nur unzureichend erforscht. Gleichwohl kommt der mobilen Erfassung von Gelenkbelastungen in der Diagnostik und Rehabilitation von Verletzungen sowie Muskel-Skelett-Erkrankungen eine zentrale Bedeutung zu. Das übergeordnete Ziel dieser Dissertation ist es, festzustellen inwieweit tragbare Sensoren und Verfahren des maschinellen Lernens zur Quantifizierung sportlicher Bewegungsmerkmale sowie zur Ermittlung der Belastung von Körperstrukturen bei der Ausführung von Alltags- und Sportbewegungen eingesetzt werden können. Die Dissertation basiert auf vier Studien, welche in internationalen Fachzeitschriften mit Peer-Review-Prozess erschienen sind. Die ersten beiden Studien konzentrieren sich zum einen auf die automatisierte Erkennung von zeitlichen Events und zum anderen auf die mobile Leistungsanalyse während des Schlittschuhlaufens im Eishockey. Die beiden weiteren Studien präsentieren jeweils einen neuartigen Ansatz zur Schätzung von Belastungen im Kniegelenk mittels künstlich neuronalen Netzen. Zwei mobile Sensoren, welche in eine Kniebandage integriert sind, dienen hierbei als Datenbasis zur Ermittlung von Kniegelenkskräften während unterschiedlicher Sportbewegungen sowie von Kniegelenksmomenten während verschiedener Lokomotionsaufgaben. Studie I zeigt eine präzise, effiziente und einfache Methode zur zeitlichen Analyse des Schlittschuhlaufens im Eishockey mittels einem am Schlittschuh befestigten Beschleunigungssensor. Die Validierung des neuartigen Ansatzes erfolgt anhand synchroner Messungen des plantaren Fußdrucks. Der mittlere Unterschied zwischen den beiden Erfassungsmethoden liegt sowohl für die Standphasendauer als auch der Gangzyklusdauer unter einer Millisekunde. Studie II zeigt das Potenzial von Beschleunigungssensoren zur Technik- und Leistungsanalyse des Schlittschuhlaufens im Eishockey. Die Ergebnisse zeigen für die Standphasendauer und Schrittintensität sowohl Unterschiede zwischen beschleunigenden Schritten und Schritten bei konstanter Geschwindigkeit als auch zwischen Teilnehmern unterschiedlichen Leistungsniveaus. Eine Korrelationsanalyse offenbart, insbesondere für die Schrittintensität, einen starken Zusammenhang mit der sportlichen Leistung des Schlittschuhlaufens im Sinne einer verkürzten Sprintzeit. Studie III präsentiert ein tragbares System zur Erfassung von Belastungen im Kniegelenk bei verschiedenen sportlichen Bewegungen auf Basis zweier mobiler Sensoren. Im Speziellen werden unterschiedliche lineare Bewegungen, Richtungswechsel und Sprünge betrachtet. Die mittels künstlich neuronalem Netz ermittelten dreidimensionalen Kniegelenkskräfte zeigen, mit Ausnahme der mediolateralen Kraftkomponente, für die meisten analysierten Bewegungen eine gute Übereinstimmung mit invers-dynamisch berechneten Referenzdaten. Die abschließende Studie IV stellt eine Erweiterung des in Studie III entwickelten tragbaren Systems zur Ermittlung von Belastungen im Kniegelenk dar. Die ambulante Beurteilung der Gelenkbelastung bei Kniearthrose steht hierbei im Fokus. Die entwickelten Prädiktionsmodelle zeigen für das Knieflexionsmoment eine gute Übereinstimmung mit invers-dynamisch berechneten Referenzdaten für den Großteil der analysierten Bewegungen. Demgegenüber ist bei der Ermittlung des Knieadduktionsmoments mittels künstlichen neuronalen Netzen Vorsicht geboten. Je nach Bewegung, kommt es zu einer schwachen bis starken Übereinstimmung zwischen der mittels Prädiktionsmodell bestimmten Belastung und dem Referenzwert. Zusammenfassend tragen die Ergebnisse von Studie I und Studie II zur sportartspezifischen Leistungsanalyse im Eishockey bei. Zukünftig können sowohl die Trainingsqualität als auch die gezielte Verbesserung sportlicher Leistung durch den Einsatz von am Körper getragener Sensoren in hohem Maße profitieren. Die methodischen Neuerungen und Erkenntnisse aus Studie III und Studie IV ebnen den Weg für die Entwicklung neuartiger Technologien im Gesundheitsbereich. Mit Blick in die Zukunft können mobile Sensoren zur intelligenten Analyse menschlicher Bewegungen sinnvoll eingesetzt werden. Die vorliegende Dissertation zeigt, dass die mobile Bewegungsanalyse zur Erleichterung der sportartspezifischen Leistungsdiagnostik unter Feldbedingungen beiträgt. Zudem zeigt die Arbeit, dass die mobile Bewegungsanalyse einen wichtigen Beitrag zur Verbesserung der Gesundheitsdiagnostik und Rehabilitation nach akuten Verletzungen oder bei chronischen muskuloskelettalen Erkrankungen leistet

    Centre of pressure estimation during walking using only inertial-measurement units and end-to-end statistical modelling

    Full text link
    Estimation of the centre of pressure (COP) is an important part of the gait analysis, for example, when evaluating the functional capacity of individuals affected by motor impairment. Inertial measurement units (IMUs) and force sensors are commonly used to measure gait characteristic of healthy and impaired subjects. We present a methodology for estimating the COP solely from raw gyroscope, accelerometer, and magnetometer data from IMUs using statistical modelling. We demonstrate the viability of the method using an example of two models: a linear model and a non-linear Long-Short-Term Memory (LSTM) neural network model. Models were trained on the COP ground truth data measured using an instrumented treadmill and achieved the average intra-subject root mean square (RMS) error between estimated and ground truth COP of 12.3mm and the average inter-subject RMS error of 23.7mm which is comparable or better than similar studies so far. We show that the calibration procedure in the instrumented treadmill can be as short as a couple of minutes without the decrease in our model performance. We also show that the magnetic component of the recorded IMU signal, which is most sensitive to environmental changes, can be safely dropped without a significant decrease in model performance. Finally, we show that the number of IMUs can be reduced to five without deterioration in the model performance.Comment: 21 page

    Moving On:Measuring Movement Remotely after Stroke

    Get PDF
    Most persons with stroke suffer from motor impairment, which restricts mobility on one side, and affects their independence in daily life activities. Measuring recovery is needed to develop individualized therapies. However, commonly used clinical outcomes suffer from low resolution and subjectivity. Therefore, objective biomechanical metrics should be identified to measure movement quality. However, non-portable laboratory setups are required in order to measure these metrics accurately. Alternatively, minimal wearable systems can be developed to simplify measurements performed at clinic or home to monitor recovery. Thus, the goal of the thesis was ‘To identify metrics that reflect movement quality of upper and lower extremities after stroke and develop wearable minimal systems for tracking the proposed metrics’. Section Upper Extremity First, we systematically reviewed literature ( Chapter II ) to identify metrics used to measure reaching recovery longitudinally post-stroke. Although several metrics were found, it was not clear how they differentiated recovery from compensation strategies. Future studies must address this gap in order to optimize stroke therapy. Next, we assessed a ‘valid’ measure for smoothness of upper paretic limb reaching ( Chapter III ), as this was commonly used to measure movement quality. After a systematic review and simulation analyses, we found that reaching smoothness is best measured using spectral arc length. The studies in this section offer us a better understanding of movement recovery in the upper extremity post-stroke. Section Lower Extremity Although metrics that reflect gait recovery are yet to be identified, in this section we focused on developing minimal solutions to measure gait quality. First, we showed the feasibility of 1D pressure insoles as a lightweight alternative for measuring 3D Ground Reaction Forces (GRF) ( Chapter IV ). In the following chapters, we developed a minimal system; the Portable Gait Lab (PGL) using only three Inertial Measurement Units (IMUs) (one per foot and one on the pelvis). We explored the Centroidal Moment Pivot (CMP) point ( Chapter V ) as a biomechanical constraint that can help with the reduction in sensors. Then, we showed the feasibility of the PGL to track 3D GRF ( Chapters VI-VII ) and relative foot and CoM kinematics ( Chapter VIII-IX ) during variable overground walking by healthy participants. Finally, we performed a limited validation study in persons with chronic stroke ( Chapter X ). This thesis offers knowledge and tools which can help clinicians and researchers understand movement quality and thereby develop individualized therapies post-stroke

    Quantifying the Effects of Knee Joint Biomechanics on Acoustical Emissions

    Get PDF
    The knee is one of the most injured body parts, causing 18 million patients to be seen in clinics every year. Because the knee is a weight-bearing joint, it is prone to pathologies such as osteoarthritis and ligamentous injuries. Existing technologies for monitoring knee health can provide accurate assessment and diagnosis for acute injuries. However, they are mainly confined to clinical or laboratory settings only, time-consuming, expensive, and not well-suited for longitudinal monitoring. Developing a novel technology for joint health assessment beyond the clinic can further provide insights on the rehabilitation process and quantitative usage of the knee joint. To better understand the underlying properties and fundamentals of joint sounds, this research will investigate the relationship between the changes in the knee joint structure (i.e. structural damage and joint contact force) and the JAEs while developing novel techniques for analyzing these sounds. We envision that the possibility of quantifying joint structure and joint load usage from these acoustic sensors would advance the potential of JAE as the next biomarker of joint health that can be captured with wearable technology. First, we developed a novel processing technique for JAEs that quantify on the structural change of the knee from injured athletes and human lower-limb cadaver models. Second, we quantified whether JAEs can detect the increase in the mechanical stress on the knee joint using an unsupervised graph mining algorithm. Lastly, we quantified the directional bias of the load distribution between medial and lateral compartment using JAEs. Understanding and monitoring the quantitative usage of knee loads in daily activities can broaden the implications for longitudinal joint health monitoring.Ph.D

    Foot Pressure Wearable Sensors for Freezing of Gait Detection in Parkinson’s Disease

    Get PDF
    Freezing of Gait (FoG) is a common symptom in Parkinson's Disease (PD) occurring with significant variability and severity and is associated with increased risk of falls. FoG detection in everyday life is not trivial, particularly in patients manifesting the symptom only in specific conditions. Various wearable devices have been proposed to detect PD symptoms, primarily based on inertial sensors. We here report the results of the validation of a novel system based on a pair of pressure insoles equipped with a 3D accelerometer to detect FoG episodes. Twenty PD patients attended a motor assessment protocol organized into eight multiple video recorded sessions, both in clinical and ecological settings and both in the ON and OFF state. We compared the FoG episodes detected using the processed data gathered from the insoles with those tagged by a clinician on video recordings. The algorithm correctly detected 90% of the episodes. The false positive rate was 6% and the false negative rate 4%. The algorithm reliably detects freezing of gait in clinical settings while performing ecological tasks. This result is promising for freezing of gait detection in everyday life via wearable instrumented insoles that can be integrated into a more complex system for comprehensive motor symptom monitoring in PD

    Generalisable FPCA-based Models for Predicting Peak Power in Vertical Jumping using Accelerometer Data

    Get PDF
    Peak power in the countermovement jump is correlated with various measures of sports performance and can be used to monitor athlete training. The gold standard method for determining peak power uses force platforms, but they are unsuitable for field-based testing favoured by practitioners. Alternatives include predicting peak power from jump flight times, or using Newtonian methods based on body-worn inertial sensor data, but so far neither has yielded sufficiently accurate estimates. This thesis aims to develop a generalisable model for predicting peak power based on Functional Principal Component Analysis applied to body-worn accelerometer data. Data was collected from 69 male and female adults, engaged in sports at recreational, club or national levels. They performed up to 16 countermovement jumps each, with and without arm swing, 696 jumps in total. Peak power criterion measures were obtained from force platforms, and characteristic features from accelerometer data were extracted from four sensors attached to the lower back, upper back and both shanks. The best machine learning algorithm, jump type and sensor anatomical location were determined in this context. The investigation considered signal representation (resultant, triaxial or a suitable transform), preprocessing (smoothing, time window and curve registration), feature selection and data augmentation (signal rotations and SMOTER). A novel procedure optimised the model parameters based on Particle Swarm applied to a surrogate Gaussian Process model. Model selection and evaluation were based on nested cross validation (Monte Carlo design). The final optimal model had an RMSE of 2.5 W·kg-1, which compares favourably to earlier research (4.9 ± 1.7 W·kg-1 for flight-time formulae and 10.7 ± 6.3 W·kg-1 for Newtonian sensor-based methods). Whilst this is not yet sufficiently accurate for applied practice, this thesis has developed and comprehensively evaluated new techniques, which will be valuable to future biomechanical applications
    corecore