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Joint moment measurements represent an objective biomechanical parameter of knee

joint load in knee osteoarthritis (KOA). Wearable sensors in combination with machine

learning techniques may provide solutions to develop assistive devices in KOA patients

to improve disease treatment and to minimize risk of non-functional overreaching (e.g.,

pain). The purpose of this study was to develop an artificial neural network (ANN)

that estimates external knee flexion moments (KFM) and external knee adduction

moments (KAM) during various locomotion tasks, based on data obtained by two

wearable sensors. Thirteen participants were instrumentedwith two inertial measurement

units (IMUs) located on the right thigh and shank. Participants performed six different

locomotion tasks consisting of linear motions and motions with a change of direction,

while IMU signals as well as full body kinematics and ground reaction forces were

synchronously recorded. KFM and KAMwere determined using a full body biomechanical

model. An ANN was trained to estimate the KFM and KAM time series using the

IMU signals as input. Evaluation of the ANN was done using a leave-one-subject-out

cross-validation. Concordance of the ANN-estimated KFM and reference data was

categorized for five tasks (walking straight, 90◦ walking turn, moderate running, 90◦

running turn and 45◦ cutting maneuver) as strong (r ≥ 0.69, rRMSE ≤ 23.1) and as

moderate for fast running (r = 0.65 ± 0.43, rRMSE = 25.5 ± 7.0%). For all locomotion

tasks, KAM yielded a lower concordance in comparison to the KFM, ranging from weak

(r ≤ 0.21, rRMSE≥ 33.8%) in cutting and fast running to strong (r = 0.71± 0.26, rRMSE

= 22.3 ± 8.3%) for walking straight. Smallest mean difference of classical discrete load

metrics was seen for KFM impulse, 10.6± 47.0%. The results demonstrate the feasibility

of using only two IMUs to estimate KFM and KAM to a limited extent. This methodological

step facilitates further work that should aim to improve the estimation accuracy to

provide valuable biofeedback systems for KOA patients. Greater accuracy of effective

implementation could be achieved by a participant- or task-specific ANN modeling.
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INTRODUCTION

Medio-tibiofemoral knee osteoarthritis (KOA) is a major cause
of disability in elderly people (Hurley et al., 1997) and accounts
for high socio-economic burden in industrial countries (Neogi
et al., 2009; Reeves and Bowling, 2011; Ferreira et al., 2015).
Symptoms known as knee pain, functional impairment and a loss
of mobility, can lead to physical and psychological disability and
reduced quality of life (Bennell et al., 2011; Richards et al., 2017).

Mechanical factors, particularly the knee joint load have
shown to profoundly influence the severity and progression of
KOA (Sharma et al., 1998; Andriacchi and Muendermann, 2006;
Foroughi et al., 2009; Bennell et al., 2011; Reeves and Bowling,
2011). A widely used surrogate measure of the compressive
load of the medial compartment is the external knee adduction
moment (KAM) (Sharma et al., 1998; Bennell et al., 2011; Reeves
and Bowling, 2011; Ferreira et al., 2015). Moreover, the knee
flexionmoment (KFM) has been highlighted as a critical measure
to assess the loading of the medial compartment (Walter et al.,
2010; Ferreira et al., 2015; Cheung et al., 2018) as well as
to quantify the progression of patellofemoral cartilage damage
(Teng et al., 2015; Crossley et al., 2016).

Beside other non-pharmacological conservative treatments
(e.g., bracing or footwear interventions) (Sarzi-Puttini et al.,
2005; Reeves and Bowling, 2011), gait modification approaches
by gait retraining therapies (e.g., modifying the foot progression
angle) have shown to be effective to reduce the KAM during
walking and to improve the symptoms of patients (Barrios et al.,
2010; Cheung et al., 2018; Karatsidis et al., 2018). Richards et al.
(2017) stated in their systematic review that a strong potential
exists for the development of biofeedback systems for reducing
KAM and pain and for improving knee joint function in KOA
patients. The development of assistive devices (e.g., a smart
knee sleeve to monitor the knee load in combination with a
smartphone-based user feedback system) could help to provide
effective disease-enhancing interventions to slow down the loss
of cartilage volume (Shull et al., 2014). Additionally, as exercise
is a key component of the KOA management (Bennell et al.,
2011; Ferreira et al., 2015; Richards et al., 2017), assistive devices
could be beneficial in supporting therapeutical exercise. However,
most of the current studies with respect to the assessment
of knee joint loading were conducted in a laboratory setting
using motion capture and force plate measurements (Barrios
et al., 2010; Richards et al., 2017; Cheung et al., 2018). The
major shortcoming of such laboratory-based methods is that
they cannot be completely included into a patients’ habitual
environment (Muro-de-la-Herran et al., 2014; Shull et al., 2014).

As a consequence, alternative measurement technologies have
been provided progressive advances over the past years (Muro-
de-la-Herran et al., 2014; Wong et al., 2015). One of the first
studies toward a wearable measurement tool was done by van
den Noort et al. (2011). The authors tested the effect of an
instrumented force shoe in combination with an optoelectronic
marker system on target variables (e.g., KAM) in 20 KOA
patients. Therein, the authors stated the necessity of additional
measurement equipment (e.g., inertial sensors) to obtain joint
positions and orientations as a complement to ground reaction

force (GRF) measurements in order to calculate the KAM.
Karatsidis et al. (2016) compared GRF estimation accuracies of
a full-body inertial motion capture and optical motion capture
system due to the importance of the GRF measures as input in
biomechanical analysis to estimate joint kinetics. Their results
showed comparable results between the two systems. Therefore,
the authors concluded that the inertial sensor-based system has
a high potential in monitoring critical biomechanical parameters
in habitual conditions. Yang andMao (2015) postulated amethod
for evaluating the intersegmental forces and moments acting
on the lower limbs during walking solely based on posture
data obtained from seven inertial sensors placed on the lower
limbs and trunk in combination with a 3D analytical model.
In 2018 Karatsidis et al. proposed and evaluated a wearable
visual feedback system for gait retraining using inertial sensing
with seven inertial measurement units (IMUs) and augmented
reality technologies. The foot progression angle was used for
visual feedback and was tracked by the wearable system with a
root mean square error of 2.4◦, compared to an optical motion
capture system. Knee joint kinetics were not analyzed in this
study. A further approach of a mobile assessment of knee joint
biomechanics in natural environment was recently provided by
Konrath et al. (2019). The authors estimated the KAM and the
tibio-femoral joint contact force during activities of daily living
by means of combining musculoskeletal modeling with inertial
motion capture (17 IMUs). The results showed comparable
estimation accuracies for the IMU-based approach compared to
the same musculoskeletal model using optical motion capture
and force plate measurements.

The majority of applied methods require modeling of the
musculoskeletal system to a certain degree, with mandatory
embedded subject-specific anthropometric data (e.g., mass,
dimensions, and center of mass of the body segments). However,
such modeling processes inevitably introduce inaccuracies (van
den Noort et al., 2013; Faber et al., 2016; Ancillao et al., 2018).
In contrast, machine learning-based approaches do not need an
a priori knowledge of the model as they build up their model by
using training data (Sivakumar et al., 2016; Ancillao et al., 2018;
Halilaj et al., 2018). Accurate predictions for new data can be
made by learning the relationship between a set of independent
variables (e.g., IMU signals) and one ormore dependent variables
(e.g., KAM) (Lin et al., 2016; Halilaj et al., 2018). Several
studies have shown that machine learning techniques, such as
artificial neural networks (ANN), are powerful tools to deduce
biomechanical variables based on measured accelerations or
angular velocities of body segments (Leporace et al., 2015; Guo
et al., 2017; Ancillao et al., 2018; Wouda et al., 2018; Stetter
et al., 2019). The study by Wouda et al. (2018) used an ANN
approach to estimate vertical GRFs and sagittal knee kinematics
during running, based on three inertial sensors placed at the
lower legs and the pelvis. The estimated force-time profiles
and flexion/extension profiles showed high agreement with the
optical and GRF reference measure. In a recent study we
presented an ANN approach to estimate knee joint forces in sport
movements (Stetter et al., 2019). Good agreement between ANN-
estimated outcomes and inverse dynamics-calculated vertical and
anterior-posterior knee joint forces were shown, which highlights
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the feasibility of an ANN approach to estimate internal loadings
on the knee joint structures.

Although the above described studies have estimated joint
kinematics and kinetics during locomotion, no study has directly
estimated biomechanical surrogate measures for knee joint load
in KOA using an ambulatory minimal body-worn sensor setup
so far. Therefore, the purpose of this study was to develop an
ANN that estimates KFM and KAM during various locomotion
tasks based on data obtained by two wearable sensors integrated
in a knee sleeve. The findings of this study could help to (1)
overcome current restrictions in the mobile assessment of knee
joint loading in KOA patients and (2) open new possibilities
in diagnosing the patients’ habitual life, which could help to
improve disease treatment strategies and minimizing the risk of
non-functional overreaching (e.g., pain).

MATERIALS AND METHODS

Participants
The current study used data from the sample presented in
Stetter et al. (2019) and forms a secondary dataset analysis.
The sample consisted of 13 healthy males (age, 26.1 ± 2.9
years; height, 178.7 ± 5.5 cm; body mass, 78.4 ± 5.9 kg). All
participants exhibited bowlegs (minimum inter-knee distance
of 0.05m), which mimics the common varus malalignment of
medial KOA patients (Bennell et al., 2011). All participants gave
written informed consent in accordance with the Declaration of
Helsinki. The study was approved by the ethics committee of the
Karlsruhe Institute of Technology.

Experimental Protocol
Measurements were performed at the BioMotion Center,
Institute of Sports and Sports Science, Karlsruhe Institute
of Technology, Karlsruhe, Germany. Two identical custom-
built 6DOF IMUs (1,500Hz, ±8 g accelerometer, ±2,000◦/s
gyroscope) were attached to each participant’s right leg while
they performed six different locomotion tasks at self-selected
speed: walking straight, 90◦ walking turn, moderate running,
fast running, 90◦ running turn and 45◦ cutting maneuver.
Participants were instructed to perform the 90◦ turns in clockwise
direction. A detailed description of the right orientated cutting
maneuver (named as v-cut) is described by Neptune et al. (1999).
Participants were instructed to perform at least three successful
trials of each task. A trial was considered successful when the
right foot landed cleanly within the boundaries of a force plate.
The IMUs were positioned in two patch pockets at the upper and
lower frontal end of a customized knee sleeve (Figure 1). This
positioning was chosen in order to capture IMU signals closely
related to knee kinematics and dynamics, as the recent study by
Matijevich et al. (2019) has highlighted that a targeted approach
is necessary to obtain structure-specific loading.

Full body kinematics and GRFs (1,000Hz, AMTI Inc.,
Watertown, MA) were collected synchronously using a marker-
based motion capture system (11 MX-13 cameras, 200Hz,
Vicon, Oxford, UK) in order to perform biomechanical
modeling. A total of 42 spherical reflective markers were
placed on the participants’ body segments in accordance to
the ALASKA Dynamicus protocol (ALASKA, INSYS GmbH,

FIGURE 1 | A participant wearing the knee sleeve on the right leg. The two

inertial measurement units were placed in the patch pockets at the upper and

lower frontal end of the knee sleeve.

Germany) (Härtel and Hermsdorf, 2006; Willwacher et al.,
2017). Prior to the attachment of the data collection equipment,
standardized anthropometric measurements were exhibited.
The measurements consisted of a total of 22 length, width
and circumference measures of the body segments. Prior to
performing trials, a static calibration trial was recorded for each
participant in a natural upright posture.

Biomechanical Model
The 3D marker coordinates and GRF data were reconstructed
and filtered with a 15Hz low-pass filter (zero-phase Butterworth
4th order) (Kristianslund et al., 2012). Inverse dynamics
modeling was performed using the full-body Dynamicus 9
model (Härtel and Hermsdorf, 2006; Willwacher et al., 2017).
Each participant was individually scaled to the generic linked-
segment model using the measured anthropometrics and the
static calibration trial (Whittlesey and Robertson, 2014). In a
next step, the marker trajectories and GRFs acquired from
the dynamic trials were used to determine the knee flexion
moment (KFM) and the knee adduction moment (KAM). A 20N
threshold of the vertical GRF was used to extract the stance phase
for each locomotion movement (Milner and Paquette, 2015).
KFM and KAM time series were time-normalized to 100 time
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steps representing 0–100% of the stance phase. Joint moment
amplitudes were normalized to body weight and expressed as
external moments.

Machine Learning Model
ANN modeling was set up with the Neural Network Toolbox
in MATLAB R2019a (The MathWorks, USA). The IMU signals
were low-pass filtered (zero-phase Butterworth 4th order filter;
cut-off frequency of 15Hz) and each trial was cropped to contain
data for the same phase as the biomechanical data. An IMU
signal matrix (rows: 13 participants × three trials × six tasks ×
100 time steps; columns: two locations × six spatial dimensions)
and a biomechanical data matrix (rows: 13 participants × three
trials × six tasks × 100 time steps; columns: two variables)
were created by vertically concatenating the IMU signals and
KFM and KAM time series of all trials, respectively. An ANN
was trained to model the association between the IMU signals
and the KFM and KAM time series. The IMU signal matrix
served as input and the biomechanical data matrix served as
output (target). As a consequence, the ANN had 12 and two
variables (i.e., nodes) in its input and output layer, respectively.
The ANN architecture was inspired by previous work (Favre
et al., 2012; Wouda et al., 2018) and had two hidden layers
with 100 and 20 neurons, which were connected to the input
and output nodes. The hidden layers and the output layer
consisted of hyperbolic tangent sigmoid transfer functions and
a linear transfer function, respectively. Initialization of the ANN
was done using the Nguyen-Widrow initialization function. The
ANN was trained for 1,000 iterations with Levenberg-Marquardt
back-propagated error correction (Watson and Moré, 1978) and
training was stopped if the gradient did not decrease for six
consecutive epochs or if the gradient was smaller than 1 × 10−6.
Evaluation of the ANN was done using a leave-one-subject-
out cross-validation (Halilaj et al., 2018). The cross-validation
involved training the ANN with all trials from 12 participants
(i.e., the training set) and then testing with the trials from the
remaining participant (i.e., the test set). As cross-dependencies
between the input and output in a combined estimation model
for KFM and KAM may affect the estimation accuracy (Wouda
et al., 2018), independent models for KFM and KAM were also
build. Independent models were trained and evaluated in the
same manner as the combined model, beside the fact that only
one variable was chosen in its output layer.

Statistical Analysis
According to previous studies, for eachmovement, the agreement
between the ANN-estimated outcomes (KFM∗ and KAM∗)
and the inverse dynamics-calculated data (KFM and KAM)
was derived from Pearson’s correlation coefficients, which were
categorized as weak (r ≤ 0.35), moderate (0.35 < r ≤ 0.67),
strong (0.67 < r ≤ 0.90) and excellent (r > 0.90) (Taylor, 1990;
Fluit et al., 2014; Karatsidis et al., 2016). Additionally, the Root
Mean Squared Error (RMSE) and relative Root Mean Squared
Error (rRMSE) were determined to assess the accuracy of the
ANN estimations (Ren et al., 2008). The rRMSE facilitates the
comparison between the different locomotion tasks with different
moment amplitudes. The averages and standard deviations were
calculated for r, RMSE and rRMSE from the 13 cross-validation

subsets. Average r values across participants were computed
using Fisher’s z transformation (Corey et al., 1998). Mean r values
were expressed in the original range from−1 to 1 by reversing the
transformation. Furthermore, peak KFM∗ and KFM∗ impulse as
well as peak KAM and KAM impulse were evaluated as classical
discrete load metrics (Bennell et al., 2011; Teng et al., 2015).
Impulse represents the area under the corresponding moment-
time curve. Percent differences (%Diff) between ANN-estimated
and inverse dynamics-calculated peak and impulse metrics were
used to provide a pragmatic interpretation.

RESULTS

Estimated Continuous Outcomes
The ANN-estimated KFM∗ and KAM∗ time series of the whole
stance phase are illustrated in Figures 2, 3, respectively, with the
measured references used for comparison. An overview of the
estimated accuracy for all movements is presented in Table 1.

For the different locomotion tasks, the ANN-estimated time
series revealed moderate to strong correlations for the KFM∗

and weak to strong correlations for the KAM∗. The highest
correlation for KFM∗ and KAM∗ was observed for moderate
running (r = 0.85 ± 0.43; mean ± standard deviation) and for
walking straight (0.71 ± 0.26), respectively. For all locomotion
tasks, the RMSE for KFM∗ was between 0.26 ± 0.09 and 1.13 ±

0.46 Nm/kg, whereas for KAM∗, that was between 0.18 ± 0.06
and 0.92± 0.54 Nm/kg. The rRMSE for the different locomotion
tasks ranged between 17.2± 3.1% (walking 90◦ turn) and 25.5±
7.0% (fast running) for KFM∗ and between 22.3± 8.3% (walking
straight) and 37.2± 7.8% (cutting maneuver) for KAM∗.

Discrete Load Metrics
The inverse dynamics-calculated and ANN-estimated discrete
load metrics (peak moments and moment integrals) are shown
in Table 2. Table 3 presents the %Diff results for each of the
performed locomotion tasks. The 90◦ walking turn showed the
smallest %Diff (6.7 ± 31.3%) for the ANN-estimated KFM
impulse in comparison to the reference values. In contrast, %Diff
of KAM impulse were higher with a minimum value of 42.7
± 108.9% for moderate running. The smallest %Diff for the
estimation of peak KFM and KAM was 24.7 ± 33.0% (moderate
running) and 39.1 ± 101.0% (walking straight), respectively.
Across all locomotion tasks, mean differences of peak moments
and moment integrals were lower for the KFM∗ in comparison
to the KAM∗ (40.4± 56.5 vs. 130.3± 157.3% and 10.6± 47.0 vs.
161.4± 252.8%, respectively).

Model Comparison
The changes in estimation accuracy due to independent model
building for KFM and KAM for each of the analyzed locomotion
tasks is presented in Table 4. Independent model building
resulted in a lower r value for both KFM andKAM in themajority
(five out of six) of the analyzed locomotion tasks in comparison
to the combined estimation model. Across all locomotion tasks,
mean RMSE and mean rRMSE increased for KFM∗ (RMSE =

0.15, rRMSE = 1.18) and KAM∗ (mean RMSE = 0.13, rRMSE =

0.26) due to independent model building.
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FIGURE 2 | Mean (and standard error) of the estimated knee flexion moments (blue) for the six analyzed locomotion tasks compared to their respective inverse

dynamics-calculated values (black). Positive values indicate external flexion moments and negative values indicate external extension moments.

DISCUSSION

This study was aimed to develop and train an ANN model
to estimate KFM and KAM during various locomotion
tasks based on data obtained by two wearable sensors.
The mobile assessment of knee joint loading enlarges the
scope of diagnostic methods and disease management
of KOA, which could help to improve disease treatment
strategies and minimizing the risk of non-functional
overreaching (e.g., pain).

The results of the study show a higher estimation accuracy
of the KFM compared to the KAM over most locomotion task.
However, estimation accuracy highly varied between tasks for
both the KFM and the KAM, especially with increasing intensity
and movement velocity. Apart from walking straight, for all
locomotion tasks, a distinct reduced level of agreement was found
between the ANN-estimated outcomes and reference data for the
KAM (mean r = 0.39 ± 0.32, mean rRMSE = 29.9% ± 8.1%) in
comparison to the KFM (mean r = 0.74 ± 0.36, mean rRMSE
= 20.8% ± 5.7%). Discrete load metrics highlighted lower %Diff
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FIGURE 3 | Mean (and standard error) of the estimated knee adduction moments (blue) for the six analyzed locomotion tasks compared to their respective inverse

dynamics-calculated values (black). Positive values indicate external adduction moments and negative values indicate external abduction moments.

of KFM impulses in comparison to KFM peaks in all locomotion
tasks, whereas %Diff of KAM impulses were lower compared to
KAM peaks only in three out of the six locomotion tasks.

Estimation Accuracy Across Different
Locomotion Tasks
In general, when comparing the estimation accuracy across the
different locomotion tasks, predictive power was always better
and %Diff was always less for KFM than for KAM. On average,

strong correlations (r = 0.74) and rRMSE of 20.8% for KFM and
moderate correlations (r = 0.39) with rRMSE of 29.9% for KAM
were found. Nonetheless, distinct differences between KFM and
KAM estimation values were evident across the locomotion tasks.

For KFM, highest correlations with the inverse dynamics
calculations were found for moderate running (r = 0.85), which
is reinforced by lowest %Diff for both the peak and impulse
of the KFM. The lowest correlations and largest rRMSE were
found for fast running (r = 0.65; rRMSE= 25.5%). Nevertheless,
%Diff for KFM peaks and impulses during fast running were
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TABLE 1 | Accuracy (r, Pearson’s correlation coefficient; RMSE, root-mean-squared error; rRMSE, relative root-mean-squared error) of the estimated continuous

outcomes [knee flexion moment (KFM*), and knee adduction moment (KAM*)].

Locomotion task KFM* KAM*

r RMSE (Nm/kg) rRMSE (%) r RMSE (Nm/kg) rRMSE (%)

Walking straight 0.72 ± 0.32 0.26 ± 0.09 18.4 ± 5.3 0.71 ± 0.26 0.18 ± 0.06 22.3 ± 8.3

90◦ walking turn 0.69 ± 0.31 0.32 ± 0.10 17.2 ± 3.1 0.56 ± 0.33 0.29 ± 0.10 23.9 ± 6.4

Moderate running 0.85 ± 0.43 0.58 ± 0.20 19.7 ± 7.9 0.40 ± 0.35 0.37 ± 0.14 34.4 ± 13.5

Fast running 0.65 ± 0.43 1.13 ± 0.46 25.5 ± 7.0 0.21 ± 0.47 0.80 ± 0.46 33.8 ± 8.5

90◦ running turn 0.79 ± 0.28 0.77 ± 0.20 20.8 ± 4.5 0.51 ± 0.22 0.62 ± 0.19 27.9 ± 3.9

45◦ cutting maneuver 0.73 ± 0.41 1.05 ± 0.41 23.1 ± 6.5 −0.05 ± 0.30 0.92 ± 0.54 37.2 ± 7.8

Mean 0.74 ± 0.36 0.67 ± 0.24 20.8 ± 5.7 0.39 ± 0.32 0.53 ± 0.25 29.9 ± 8.1

Data are presented as mean ± standard deviations. Mean r and r standard deviation were computed using Fisher’s z transformation.

TABLE 2 | Inverse dynamics-calculated (KFM and KAM) and ANN-estimated (KFM* and KAM*) discrete load metrics (peak and impulse).

Locomotion task KFM KAM KFM* KAM*

Peak Impulse Peak Impulse Peak Impulse Peak Impulse

(Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg)

Walking straight 0.67 ± 0.13 45.72 ± 14.52 0.54 ± 0.15 69.16 ± 26.03 0.91 ± 0.30 52.31 ± 24.83 0.65 ± 0.18 64.23 ± 13.76

90◦ walking turn 1.02 ± 0.38 71.79 ± 36.05 0.57 ± 0.18 44.65 ± 21.96 1.55 ± 1.19 70.12 ± 31.23 0.90 ± 0.44 52.06 ± 17.00

Moderate running 2.03 ± 0.34 193.05 ± 58.08 0.52 ± 0.16 43.48 ± 21.81 2.57 ± 0.92 197.00 ± 90.16 0.84 ± 0.39 56.35 ± 50.26

Fast running 2.49 ± 0.35 246.20 ± 71.51 0.77 ± 0.20 51.35 ± 27.01 3.44 ± 1.92 259.80 ± 118.59 1.72 ± 0.99 91.98 ± 62.78

90◦ running turn 2.20 ± 0.40 240.28 ± 83.01 0.60 ± 0.17 20.80 ± 6.56 3.12 ± 0.88 253.13 ± 91.06 1.45 ± 0.73 61.94 ± 31.19

45◦ cutting maneuver 2.52 ± 0.50 284.58 ± 85.73 0.61 ± 0.23 43.97 ± 35.24 3.50 ± 1.29 310.16 ± 144.96 2.11 ± 1.38 120.90 ± 110.35

Mean 1.82 ± 0.79 180.27 ± 98.86 0.60 ± 0.09 45.57 ± 15.56 2.52 ± 1.07 190.42 ± 106.46 1.28 ± 0.57 74.58 ± 26.66

Data are presented as mean ± standard deviations; KFM, knee flexion moment; KAM, knee adduction moment.

TABLE 3 | Percent differences (%Diff ) of discrete load metrics (peak and impulse).

Locomotion task KFM KAM

Peak Impulse Peak Impulse

%Diff %Diff %Diff %Diff

Walking straight 44.3 ± 70.8 27.4 ± 83.9 39.1 ± 101.0 62.0 ± 253.1

90◦ walking turn 47.1 ± 60.6 6.7 ± 31.3 82.4 ± 110.5 69.3 ± 127.5

Moderate running 24.7 ± 33.0 0.65 ± 37.2 68.7 ± 94.5 42.7 ± 108.9

Fast running 37.2 ± 68.7 6.8 ± 40.7 123.5 ± 124.1 94.2 ± 145.3

90◦ running turn 44.9 ± 45.2 12.1 ± 46.5 159.8 ± 157.1 230.0 ± 179.9

45◦ cutting maneuver 44.1 ± 60.7 10.0 ± 42.6 308.2 ± 356.5 470.0 ± 702.0

Mean 40.4 ± 56.5 10.6 ± 47.0 130.3 ± 157.3 161.4 ± 252.8

Data are presented as mean ± standard deviations; KFM, knee flexion moment; KAM,

knee adduction moment.

lower than for most of the other locomotion tasks, except for
moderate running. Interestingly, the largest %Diff was found for
walking straight, while %Diff of moment integrals were in general
lower compared to %Diff of peak moments. These findings
indicate that our ANN-configuration is more appropriate for
estimating knee joint loading over the stance phase than for
estimating the peak moment of the stance phase. In particular,

TABLE 4 | Increase (+) or decrease (–) in estimation accuracy (r, Pearson’s

correlation coefficient; RMSE, root-mean-squared error; rRMSE, relative

root-mean-squared error) due to independent model building in comparison to the

combined model.

Locomotion

task

KFM* KAM*

r RMSE

(Nm/kg)

rRMSE

(%)

r RMSE

(Nm/kg)

rRMSE

(%)

Walking straight 0.03 0.00 0.50 −0.20 0.05 2.64

90◦ walking turn −0.02 0.03 1.56 −0.08 0.07 0.09

Moderate running −0.02 0.18 1.31 −0.10 0.09 −1.58

Fast running −0.03 0.15 0.90 −0.04 0.20 1.87

90◦ running turn −0.08 0.11 0.85 −0.14 0.16 −0.87

45◦ cutting

maneuver

−0.07 0.44 1.94 0.26 0.22 −0.57

Mean −0.03 0.15 1.18 −0.05 0.13 0.26

KFM*, knee flexion moment; KAM*, knee adduction moment.

during walking straight, the low knee flexion moment peaks and
impulses might account for the strong correlations but large
%Diff. Albeit, for KFM generally high agreement was found
for ANN-estimated outcomes, with a reduced performance for
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the high intensity movements running and cutting maneuvers.
In contrast, in these movements lower %Diff occurred to the
lower-intensity movements.

For the estimation of KAM, overall weak to strong correlations
were found for the analyzed movements. Estimation accuracy
was highest in walking straight (r = 0.71, rRMSE = 22.3%).
Mediocre correlations were found in moderate running as well as
90◦ walking/running turns (0.40≤ r ≤ 0.56), and low or negative
correlations in fast running and 45◦ cutting maneuvers (−0.05
≤ r ≤ 0.21). With regard to rRMSE, alterations of locomotion
speed (walking to running) and direction (turning and cutting)
led to slight reductions in accuracy of the ANN estimations.
Concomitant, large increases in %Diff along with high variability
were detected in fast running, 90◦ running turns and 45◦ cutting
maneuvers (KAM impulse: 94.2, 230.0, and 470.0%, respectively).
A potential reason for the less estimation accuracy and larger
differences for movements with increased velocity and changes
of direction might be the higher variation in the execution of
these movements, while locomotor tasks such as walking or
moderate running are performed automatically with repeatable
characteristics (Schmidt and Lee, 2011). Similarly, variability
in estimation accuracy was also shown by Fluit et al. (2014),
evaluating a prediction model for GRFs and moments during
various activities of daily living by means of 3D full-body motion.

However, a generalization of the estimation accuracies cannot
be deduced, as a reduced estimation accuracy in continuous
outcomes does not necessarily result in an inaccurate estimation
of discrete variables, as it was seen in the KFM during fast
running. Similarly, good agreement in continuous outcomes does
not implicate accurate estimation of discrete load metrics, as seen
in 90◦ running turn. Furthermore, it must be noted that most
KFM and KAM show high standard deviations, which indicates a
wide dispersion across participants. Nonetheless, %Diff of KFM
were entirely lower in the impulses compared to the peak values.
In contrast, %Diff of KAM impulse were lower compared to
the peak values only in three out of the six locomotion tasks
(90◦ walking turn, moderate and fast running). Summarized,
KAM estimations were less accurate both for continuous and
for discrete outcomes compared to KFM and should therefore
be treated with caution. The more pronounced characteristic
changes in the KAM time series between locomotion tasks in
comparison to the KFM time series are a potential reason for the
reduced estimation accuracy in KAM (see Figures 2, 3).

Furthermore, with respect to the comparison of a combined
estimation model for KFM and KAM and independent models
for KFM and KAM, the results show that an independent model
building leads to slightly decreased estimation accuracy of the
KFM and amore pronounced decrease of the KAM, concomitant
with increased RMSE and rRMSE in the investigated locomotion
tasks. Hence, if only one variable was chosen as an output,
decreased performance for the model was observed, indicating
that cross-dependencies between input and output in the
combined estimation model clearly affected the estimation
accuracy. Overall, the combined estimation model for KFM and
KAM presented a fair estimation accuracy, especially, in the
low-intensity movements.

Comparison of Different Wearable
Measurement Systems
A novel machine learning based method was developed and
applied in this study to estimate KFM and KAM based
on data obtained by two wearable sensors integrated in a
knee sleeve. Various approaches have experienced progressive
advances to assess the mechanical loading of KOA patients in
their habitual environment over the past years. The majority of
the approaches were based on analytical biomechanical models,
which typically determine joint moments by means of the inverse
dynamics calculations. As a consequence, GRF measurements
and kinematic data are necessary to perform such analysis
(Whittlesey and Robertson, 2014).

Van den Noort et al. presented in 2011 an instrumented
force shoe as an alternative to force plate measurements.
Subsequently, an ambulatory measurement system, consisting
of the instrumented force shoe and an inertial measurement
system combined with a linked-segment model, was used to
compare KAM measures with a laboratory based system in
KOA patients (van den Noort et al., 2013). Limited accuracy
was shown and the authors concluded that a more advanced
calibrated linked-segment model should be investigated (van den
Noort et al., 2013). As an alternative to a direct measurement
of GRF, Karatsidis et al. (2016) estimated GRF by means of a
full-body inertial motion capture system during walking. Their
results showed for the comparison with an optical motion
capture system higher r values (range 0.82–0.99 and 0.76–0.99
for the inertial and optical motion capture systems, respectively)
and lower rRMSE values (range from 5 to 15% for both
systems) compared to the KFM and KAM estimations present
in this study. More recent studies from Dorschky et al. (2019)
and Konrath et al. (2019) used inertial motion capturing and
musculoskeletal modeling to estimate biomechanical variables,
such as joint kinematics and kinetics without GRF data. Dorschky
et al. (2019) presented high correlations for sagittal plain
kinematics (r > 0.93) and kinetics (r > 0.90) in gait and
running. In accordance, Konrath et al. (2019) estimated the

KAM and the tibio-femoral joint contact force during daily living
activities (e.g., stair walking) with moderate to strong correlation
coefficients. However, such approaches using inertial sensor data

and musculoskeletal models require more IMUs (seven IMUs

in Dorschky et al., 2019 and 17 IMUs in Konrath et al., 2019)
compared to this study’s approach.

Parallel to the analytical model development, an increasing

number of machine learning approaches have been explored to

simplify data acquisition and modeling strategies to estimate

target variables, such as the KAM (Liu et al., 2009; Favre et al.,
2012; Wouda et al., 2018). ANN modeling does not require

modeling of the musculoskeletal system, as the relationship

between the input IMU signals and the target variables is build

up during the training process of the model (Halilaj et al., 2018;
Wouda et al., 2018). However, ground truth reference data,

such as the inverse dynamics-calculated KFMs and KAMs, are

required during the supervised learning process of the model.

Providing a large amount of known output data is essential
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to establish a robust model (Sivakumar et al., 2016; Halilaj
et al., 2018). Wouda et al. (2018) used similar ANN modeling
to the one used in this study for estimating vertical GRF and
sagittal knee kinematics during running. The estimated vertical
GRF profiles of their non-personalized ANN developed by eight
participants showed a higher correlation (r > 0.90) to the
actual force time series. The slightly reduced estimation accuracy
in the current study (r < 0.85) may depend on the variety
of locomotion tasks included in the model building. A more
locomotion task-specific modeling may lead to an increased
estimation accuracy for individual tasks, but has the disadvantage
that each task must be modeled by itself (Wouda et al., 2018).
In consequence, the combination with an activity recognition
approach could help to select individual estimation models in
practical applications.

Limitations
Certain limitations of this study need to be considered when
interpreting the results. One consideration worth noting is
that the estimation accuracy depends on the neural network
architecture. The ANN was built on previous work (Favre
et al., 2012; Wouda et al., 2018), which highlighted that such
configuration is capable of mapping non-linearity between input
and output; however, other model specifications may result in
an improved estimation accuracy. The ANN was trained with
data from multiple participants as well as various locomotion
tasks, which should rather lead to a less participant- and
task-specific but a more generic model. As a consequence,
this approach rather yields a decreased performance due to
a lack of individualization, but has the advantage that not
every new user needs to perform a training phase (Favre et al.,
2012; Wouda et al., 2018). Further research is necessary to
assess if a single participant learning approach increases the
estimation accuracy. Another limitation is that we included a
homogeneous group of participants consisting of only males
without any musculoskeletal disorders and the translation of
the results to the target group of KOA patients remains
speculative. Nonetheless, future clinical studies may benefit from
the use of the method developed in this study, especially in
low-intensity movements (Richards et al., 2017). Beyond, the
sample size was rather small, including 13 participants. Similar
investigations included comparable numbers of participants
(e.g., sample of eight participants in Wouda et al., 2018
or sample of 17 participants in Leporace et al., 2015). The
small sample size potentially limits the outcome, as the
robustness of the relationship between the input and output
variables of the ANN depends on the amount of training data
(Sivakumar et al., 2016; Ancillao et al., 2018; Halilaj et al.,
2018). Finally, it cannot be fully ensured that the fixation
technique excluded any oscillations or misalignment of the
IMUs, even though the exact fit of the sleeve and the sensors
was repetitively checked. However, the wearable sensors were
integrated in a knee sleeve on purpose to mimic natural
effects and to capture IMU signals closely related to the joint
under investigation.

CONCLUSION

This study demonstrated the potential of estimating KFM and
KAM for various locomotion tasks using a minimal body-
worn sensor setup consisting of two IMUs integrated in a knee
sleeve. The agreement between the ANN-estimated outcomes
and inverse dynamics-calculated data was strong for the majority
of analyzed locomotion tasks in the KFM and moderate in
the KAM. Overall, higher estimation accuracies were seen for
the KFM in comparison to the KAM across all locomotion
tasks. The accuracy limitations especially of KAM estimation
makes prediction of knee joint loading challenging. In order to
reach an acceptable level of accuracy related to critical changes
due to KOA, typically characterized by relatively small kinetic
differences, a participant- or task-specific modeling could be
helpful. This has important implications for the development of
wearable devices as well as for scientific research on KOA. The
highest estimation accuracy for both KFM and KAM of walking
straight matches the main characteristic of KOA therapy and
treatment by low-intensity movements (e.g., walking). Looking
ahead, wearable technology could serve as a rehabilitation aid for
patients with KOA leading to an improved load management,
which could result in a slower progression.
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