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Summary

In recent years, human movement analysis in real-life settings outside the labo-

ratory has experienced increasing attention in sports and medical applications.

At the same time, wearable sensors have been evolved as valuable tools. This has

allowed to acquire large-scale human movement data that are typically complex,

heterogeneous, and noisy. In this context, modeling approaches are required, as

the measured quantities often do not directly reflect meaningful biomechanical

variables. More recently, machine learning methods have emerged as promising

modeling tools that exploit unstructured data for estimating relevant target va-

riables, such as joint kinematics and dynamics.

Although research in this field is still in its initial phase, there is a great potenti-

al not only to enlarge the range of numerous applications in sports but also to

obtain biomechanical measures used to infer the load on body structures, such

as joint forces. This applies in particular to unique sports such as ice hockey ska-

ting. Furthermore, little research has been conducted with respect to the direct

estimation of biomechanical surrogate measures for knee joint load (i.e., joint

dynamics) using wearable technology. This is of paramount importance, as am-

bulatory joint load assessment can improve health diagnostics and rehabilitation

of injuries as well as musculoskeletal diseases.

The overall aim of this thesis is to assess how, and to what extent, wearable

sensors and machine learning techniques can biomechanically quantify sports

performance and the load on body structures during the execution of everyday

and sport movements.

This thesis is based on four studies that are published in international peer-

reviewed journals. The first two studies focus on the automated event detecti-

on and mobile performance analysis during ice hockey skating. The other two

studies present the outcome of an artificial neural network (ANN) approach to

estimate knee joint forces during sport movements and for the ambulatory as-

sessment of joint loading in knee osteoarthritis using wearable sensors.

Study I provides a precise, efficient, and simple way to perform temporal analy-
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ses in ice hockey skating by means of a skate-mounted accelerometer. Validation

of this novel approach is performed based on plantar pressure data. Accuracies

of both data acquisition methods vary in less than one millisecond for contact

and stride time.

Study II highlights the potential of accelerometers for assessing skating techni-

que elements as well as elements characterizing the propulsive power of skating

strides. Discriminating effects across skill levels and sprint phases are shown for

contact time and stride propulsion. The highest strength of association with the

sprint performance is shown for stride propulsion.

In study III, an ANN is trained to estimate three-dimensional knee joint forces

based on two wearable sensors integrated in a knee sleeve. The examination is

performed across a variety of movements, including linear motions, changes of

direction, and jumps. The ANN-estimated knee joint forces show good agree-

ment with inverse dynamics-calculated reference data for most of the investiga-

ted movements, except for the medio-lateral force component.

Finally, in study IV, the developed approach for an ambulatory assessment of

joint loading in knee osteoarthritis displays a strong agreement between the

ANN-estimated knee flexion moments and reference data for the majority of ana-

lyzed locomotion tasks. The ANN-estimated knee adduction moment shows a

lower conformity in comparison to the knee flexion moment, ranging from weak

in cutting and fast running to strong for walking straight. As a consequence, cau-

tious interpretation is required with respect to the ANN-based estimation of the

knee joint loading by way of the ambulatory minimal body-worn sensor setup.

The findings of study I and study II help to overcome limitations in the assess-

ment of ice hockey skating and open new possibilities for in-field performance

diagnosis. Thus, the training quality and player development can substantially

benefit from wearable performance sensors. Since estimating meaningful biome-

chanical quantities from wearable sensor data is not a trivial task, the methodo-

logical steps and findings of study III and study IV pave the way for the deve-

lopment of novel health technologies. Looking ahead, wearable sensors could

serve as a smart monitoring device for human movement analysis in real-world

settings.

Ultimately, wearable human movement analysis can facilitate sports performan-

ce diagnosis, improve health diagnostics and rehabilitation of injuries as well as

musculoskeletal diseases.
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Zusammenfassung

Die Analyse menschlicher Bewegung außerhalb des Labors unter realen Bedin-

gungen ist in den letzten Jahren sowohl in sportlichen als auch in medizinischen

Anwendungen zunehmend bedeutender geworden. Mobile Sensoren, welche

am Körper getragen werden, haben sich in diesem Zusammenhang als wert-

volle Messinstrumente etabliert. Auf Grund des Umfangs, der Komplexität, der

Heterogenität und der Störanfälligkeit der Daten werden vielseitige Analyseme-

thoden eingesetzt, um die Daten zu verarbeiten und auszuwerten. Zudem sind

häufig Modellierungsansätze notwendig, da die gemessenen Größen nicht auf

direktem Weg aussagekräftige biomechanische Variablen liefern. Seit wenigen

Jahren haben sich hierfür Methoden des maschinellen Lernens als vielverspre-

chende Instrumente zur Ermittlung von Zielvariablen, wie beispielsweise der

Gelenkwinkel, herausgestellt.

Aktuell befindet sich die Forschung an der Schnittstelle aus Biomechanik, mo-

biler Sensoren und maschinellem Lernen noch am Anfang. Der Bereich birgt

grundsätzlich ein erhebliches Potenzial, um einerseits das Spektrum an mobilen

Anwendungen im Sport, insbesondere in Sportarten mit komplexen Bewegungs-

anforderungen, wie beispielsweise dem Eishockey, zu erweitern. Andererseits

können Methoden des maschinellen Lernens zur Abschätzung von Belastungen

auf Körperstrukturen mittels mobiler Sensordaten genutzt werden. Vor allem

die Anwendung mobiler Sensoren in Kombination mit Prädiktionsmodellen zur

Ermittlung der Kniegelenkbelastung, wie beispielsweise der Gelenkmomente,

wurde bisher nur unzureichend erforscht. Gleichwohl kommt der mobilen Er-

fassung von Gelenkbelastungen in der Diagnostik und Rehabilitation von Ver-

letzungen sowie Muskel-Skelett-Erkrankungen eine zentrale Bedeutung zu.

Das übergeordnete Ziel dieser Dissertation ist es, festzustellen inwieweit tragba-

re Sensoren und Verfahren des maschinellen Lernens zur Quantifizierung sport-

licher Bewegungsmerkmale sowie zur Ermittlung der Belastung von Körper-

strukturen bei der Ausführung von Alltags- und Sportbewegungen eingesetzt

werden können.
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Die Dissertation basiert auf vier Studien, welche in internationalen Fachzeit-

schriften mit Peer-Review-Prozess erschienen sind. Die ersten beiden Studien

konzentrieren sich zum einen auf die automatisierte Erkennung von zeitlichen

Events und zum anderen auf die mobile Leistungsanalyse während des Schlitt-

schuhlaufens im Eishockey. Die beiden weiteren Studien präsentieren jeweils

einen neuartigen Ansatz zur Schätzung von Belastungen im Kniegelenk mittels

künstlich neuronalen Netzen. Zwei mobile Sensoren, welche in eine Kniebanda-

ge integriert sind, dienen hierbei als Datenbasis zur Ermittlung von Kniegelenks-

kräften während unterschiedlicher Sportbewegungen sowie von Kniegelenksmo-

menten während verschiedener Lokomotionsaufgaben.

Studie I zeigt eine präzise, effiziente und einfache Methode zur zeitlichen Ana-

lyse des Schlittschuhlaufens im Eishockey mittels einem am Schlittschuh befes-

tigten Beschleunigungssensor. Die Validierung des neuartigen Ansatzes erfolgt

anhand synchroner Messungen des plantaren Fußdrucks. Der mittlere Unter-

schied zwischen den beiden Erfassungsmethoden liegt sowohl für die Standpha-

sendauer als auch der Gangzyklusdauer unter einer Millisekunde.

Studie II zeigt das Potenzial von Beschleunigungssensoren zur Technik- und

Leistungsanalyse des Schlittschuhlaufens im Eishockey. Die Ergebnisse zeigen

für die Standphasendauer und Schrittintensität sowohl Unterschiede zwischen

beschleunigenden Schritten und Schritten bei konstanter Geschwindigkeit als

auch zwischen Teilnehmern unterschiedlichen Leistungsniveaus. Eine Korrela-

tionsanalyse offenbart, insbesondere für die Schrittintensität, einen starken Zu-

sammenhang mit der sportlichen Leistung des Schlittschuhlaufens im Sinne ei-

ner verkürzten Sprintzeit.

Studie III präsentiert ein tragbares System zur Erfassung von Belastungen im

Kniegelenk bei verschiedenen sportlichen Bewegungen auf Basis zweier mobi-

ler Sensoren. Im Speziellen werden unterschiedliche lineare Bewegungen, Rich-

tungswechsel und Sprünge betrachtet. Die mittels künstlich neuronalem Netz

ermittelten dreidimensionalen Kniegelenkskräfte zeigen, mit Ausnahme der me-

diolateralen Kraftkomponente, für die meisten analysierten Bewegungen eine

gute Übereinstimmung mit invers-dynamisch berechneten Referenzdaten.

Die abschließende Studie IV stellt eine Erweiterung des in Studie III entwickel-

ten tragbaren Systems zur Ermittlung von Belastungen im Kniegelenk dar. Die

ambulante Beurteilung der Gelenkbelastung bei Kniearthrose steht hierbei im

Fokus. Die entwickelten Prädiktionsmodelle zeigen für das Knieflexionsmoment
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eine gute Übereinstimmung mit invers-dynamisch berechneten Referenzdaten

für den Großteil der analysierten Bewegungen. Demgegenüber ist bei der Er-

mittlung des Knieadduktionsmoments mittels künstlichen neuronalen Netzen

Vorsicht geboten. Je nach Bewegung, kommt es zu einer schwachen bis star-

ken Übereinstimmung zwischen der mittels Prädiktionsmodell bestimmten Be-

lastung und dem Referenzwert.

Zusammenfassend tragen die Ergebnisse von Studie I und Studie II zur sport-

artspezifischen Leistungsanalyse im Eishockey bei. Zukünftig können sowohl

die Trainingsqualität als auch die gezielte Verbesserung sportlicher Leistung

durch den Einsatz von am Körper getragener Sensoren in hohem Maße profitie-

ren. Die methodischen Neuerungen und Erkenntnisse aus Studie III und Studie

IV ebnen den Weg für die Entwicklung neuartiger Technologien im Gesund-

heitsbereich. Mit Blick in die Zukunft können mobile Sensoren zur intelligenten

Analyse menschlicher Bewegungen sinnvoll eingesetzt werden.

Die vorliegende Dissertation zeigt, dass die mobile Bewegungsanalyse zur Er-

leichterung der sportartspezifischen Leistungsdiagnostik unter Feldbedingun-

gen beiträgt. Zudem zeigt die Arbeit, dass die mobile Bewegungsanalyse einen

wichtigen Beitrag zur Verbesserung der Gesundheitsdiagnostik und Rehabilita-

tion nach akuten Verletzungen oder bei chronischen muskuloskelettalen Erkran-

kungen leistet.
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1 Introduction

1.1 Motivation

Movement is an important aspect of human life, which basically enables us to in-

teract with the world. Therefore, the analysis of movement is an interesting and

active area in sports and medicine research, as it can help people to perform

their everyday activities and sports in an adequate manner. The acquisition

of objective biomechanical measures related to human movement by integrating

wearable sensors (e.g., accelerometers) in sports equipment (e.g., shoes), orthope-

dic aids (e.g., knee sleeves), as well as fixed to the body has become increasingly

popular during the last decades. Such mobile movement analyses open a broad

range of applications in sports and medicine. Adequate use can aid in minimiz-

ing the risk of injuries (Verheul et al., 2020; Adesida et al., 2019), in decelerating

the progression of diseases like osteoarthritis (Díaz et al., 2020; Richards et al.,

2017), and in improving sports performance (Camomilla et al., 2018).

In spite of increasing research efforts, many fields of application, and techniques

to extract meaningful information from acquired signals have not yet gained

considerable attention. In particular, sports with unique conditions, such as ice

hockey, have received little consideration. However, wearable systems could

serve as a coaching and monitoring tool to support ice hockey players in their

training and to capture athletes’ progress (Buckeridge et al., 2015; Adesida et al.,

2019). Furthermore, the estimation of biomechanical variables used to infer the

load on body structures by means of wearable sensors has not yet been fully es-

tablished, primarily due to the difficulty in assessing external forces (Camomilla

et al., 2018; Shull et al., 2014). In this context, machine learning techniques

such as Artificial Neural Networks (ANNs) can help to model the association

between captured sensor signals and the biomechanical target measures, for ex-

ample knee moments (Gurchiek et al., 2019; Halilaj et al., 2018).

To that end, this thesis investigates the feasibility of using wearable sensors and

machine learning techniques to obtain meaningful biomechanical information

in sport and medical applications. More precisely, temporal, performance, and
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internal load related quantities are specifically considered in ice hockey skating

as well as during various everyday and sport movements.

1.2 Outline of the thesis

The current thesis consists of six chapters. In this first chapter (chapter 1), theo-

retical and methodological fundamentals as well as the current state of research

in the scientific area are presented. Additionally, the aims and the scope of the

present thesis are introduced. Each of the four subsequent chapters (chapter 2,

chapter 3, chapter 4 and chapter 5) represent an individual study considering an

unresolved research issue in the field. The first two studies focus on applications

in sports, while the latter two are more applicable in medicine. Each study has

been published in an international peer-reviewed journal:

• Chapter 2: Study I – Automated gait event detection during ice hockey

skating

Stetter, B. J., Buckeridge, E., von Tscharner, V., Nigg, S. R. & Nigg, B. M.

(2016). A novel approach to determine strides, ice contact, and swing

phases during ice hockey skating using a single accelerometer. Journal of

Applied Biomechanics, 32(1), 101–106.

• Chapter 3: Study II – Mobile ice hockey skating performance analysis

Stetter, B. J., Buckeridge, E., Nigg, S. R., Sell, S. & Stein, T. (2019a). Towards

a wearable monitoring tool for in-field ice hockey skating performance

analysis. European Journal of Sport Science, 19(7), 893–901.

• Chapter 4: Study III – Estimation of knee joint forces in sport movements

Stetter, B. J., Ringhof, S., Krafft, F. C., Sell, S. & Stein, T. (2019b). Estima-

tion of knee joint forces in sport movements using wearable sensors and

machine learning. Sensors, 10(8), 7772–7788.

• Chapter 5: Study IV – Estimation of joint loading in knee osteoarthritis

Stetter, B. J., Krafft, F. C., Ringhof, S., Stein, T. & Sell, S. (2020). A machine

learning and wearable sensor based approach to estimate external knee

flexion and adduction moments during various locomotion tasks. Frontiers

in Bioengineering and Biotechnology, 8, 9.

Finally, chapter 6 summarizes the main findings and gives an overall discussion

of the presented research articles, provides implications and recommendations

for future research and ends with a general conclusion.
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1 Introduction

1.3 Human movement analysis

Human movement analysis aims at gathering quantitative information about

the mechanics during the execution of a motor task (Cappozzo et al., 2005) and

has a long history, dating back to when the ancient Greeks (500-300 BC) de-

picted human movement (Andriacchi & Alexander, 2000; Nigg & Herzog, 2007).

During this period, scientists developed basic abilities (i.a. mathematics, me-

chanics and medicine) to better describe movement and to develop underly-

ing theories (Nigg & Herzog, 2007). Later on, during the scientific revolution,

Newton’s laws were established, which provided the impetus for the study of

human movement and the tools to understand it (Nigg & Herzog, 2007). Ex-

perimentation became more and more an accepted approach to study human

movement, and pioneers such as Jules Marey and Edweard Muybridge devel-

oped measuring methods to quantify kinematics and dynamics of movement.

In the 1880s, Jules Marey and Edweard Muybridge became the first to use a

sequential photograph method for quantifying patterns of animal locomotion

and human movement (Andriacchi & Alexander, 2000; Nigg & Herzog, 2007).

Photographs were soon replaced by motion film, and ever since, video analysis

has prevailed to analyze human movement. Based on improvements in com-

puting, three-dimensional (3D) studies have become increasingly common in

biomechanics, and the whole process has become much quicker and more con-

venient (Whittle, 1996; Andriacchi & Alexander, 2000; Cappozzo et al., 2005).

Therefore, multi-camera motion capture systems have become standard tools

to study movement kinematics. In addition, external forces are measured us-

ing dynamometers, such as force plates, whereas electrical activity of muscles

is recorded through electromyography (Nigg & Herzog, 2007; Cappozzo et al.,

2005). Nowadays, biomechanical and musculoskeletal modeling are playing an

important role in generating information that cannot be directly observed (e.g.,

load on internal body structures) (Andriacchi & Alexander, 2000; Umberger &

Caldwell, 2014). What is more, most movement analyses involve the use of in-

verse dynamics to obtain joint moments and powers by using the motion of

body segments (from a kinematic system), and ground reaction force (from a

force plate) as input data (Whittlesey & Robertson, 2014; Whittle, 1996). Individ-

uals are modeled as a linked-segment model based on anthropometric measures

and captured data.

Through human movement analysis, temporal events and phases can be ad-
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equately identified, kinematic and dynamic quantities as well as myoelectric

changes associated with movement can be determined (Medved, 2001; Nigg

& Herzog, 2007). As a result, such analyses have contributed to the advance-

ment of fundamental knowledge, and have been conducted in various applied

fields ranging from military applications to health care (Andriacchi & Alexan-

der, 2000). Human movement analysis has been employed in sports, as well

as in rehabilitation and treatment of injuries and diseases of the musculoskele-

tal system (Tao et al., 2012). For example, in sports, the biomechanical data

gained, yield important insights into human movements and techniques, and

consequently deliver useful information to improve training and to achieve per-

formance enhancement (Bartlett, 2007; Buckeridge et al., 2015). In rehabilitation

and treatment of injuries and diseases, human movement analysis is used to re-

veal deficits in patients, to monitor the healing progress (Krafft et al., 2017), or to

evaluate the functionality of orthopedic devices (e.g., knee brace) (Maleki et al.,

2016; Shaw et al., 2018), respectively. Additionally, human movement analysis

can particularly improve medical diagnostics and provide treatment support.

Studies highlighted that the management of patients and orthopedic decision

making can benefit from movement analysis; i.e. in neuromuscular disorders

such as cerebral palsy (Molenaers et al., 2006; Lofterod et al., 2007), or chronic

disease such as knee osteoarthritis (Bennell et al., 2011; Reeves & Bowling, 2011;

Ferreira et al., 2015).

However, standard human movement analysis based on a multi-camera motion

capture system and force plates requires a specialized locomotion laboratory

and has limitations in field settings (Ancillao et al., 2018; Tao et al., 2012). As

a consequence, the estimation of biomechanical measures using alternative tech-

nologies such as wearable sensors have been enjoying great popularity (Godfrey

et al., 2008).

1.4 Wearable sensor technology and applications

Advances in sensor technology as well as the low-cost production of Micro-

Electro-Mechanical Systems (MEMS) technology have made the manufacture

of highly miniaturized accelerometers, gyroscopes and magnetometers possi-

ble (Aroganam et al., 2019; Camomilla et al., 2018). Accelerometers, gyroscopes

and magnetometers quantify the sum of gravitational and inertial linear acceler-

ations, angular velocities, and magnetic forces in relation to the Earth’s magnetic
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field – along and about their sensing axes, respectively (Aroganam et al., 2019;

Camomilla et al., 2018). Depending on the configuration of the sensor, it records

one of the aforementioned physical quantities in one, two or three directions.

Accelerometers and gyroscopes are often combined in an Inertial Measurement

Unit (IMU), where the term inertial is used because both sensors exploit the prin-

ciple of inertia to provide either angular velocities or accelerations (Camomilla

et al., 2018). Especially when 3D information is required, accelerometers and gy-

roscopes are combined with magnetometers to form the measuring unit, which

is known by the acronym MIMU (Magnetic and Inertial Measurement Unit)

(Camomilla et al., 2018). Applications of IMUs are found in diverse areas such

as vehicles, robotics, shock and vibration testing, as well as position and velocity

sensing. In human movement analyses using wearable sensors, IMUs are worn

or attached to various parts of the body (e.g., waist). This approach was first sug-

gested in the 1970s, but it has increasingly established itself during the last ten to

twenty years (Godfrey et al., 2008). One of the benefits of wearable inertial sen-

sors is their small dimension. They do not limit data collection to a laboratory

environment, and they are relatively cheap compared to other more commonly

used movement analysis equipment such as motion capture systems (Iosa et al.,

2016; Kavanagh & Menz, 2008).

The output of a body mounted IMU is composed of a component of interest

(e.g., acceleration caused by movement), a static component (e.g., gravity), and a

certain amount of noise caused by biological and environmental influences (Ka-

vanagh & Menz, 2008). Using an accelerometer, Godfrey et al. (2008) highlighted

four factors that influence its output: first, position at which it is placed; second,

its orientation; third, the posture of the subject; and fourth, the activity being

performed by the subject. Following Kavanagh & Menz (2008) the measuring

procedure from a body attached IMU can be described as follows. Physical quan-

tities are measured in a local coordinate system of the IMU. This coordinate sys-

tem will continually move during movement of the subject. As a consequence,

for example, an accelerometer will indiscriminately detect rotational and trans-

lational accelerations to the extent that tangential or linear acceleration vectors

of a moving body segment align with the device’s sensing axes (Kavanagh &

Menz, 2008).

The location at which an IMU is placed on the body is an important consider-

ation. The IMU is normally attached to the part of the body whose movement
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is being studied (Godfrey et al., 2008). Examples are the activity trackers that

can be worn as bracelets, which have been proven to track and identify the most

common daily activities as well as exercise levels (Ancillao et al., 2018; Rowlands

et al., 2017). Different biomechanical parameters (temporal, kinematic and dy-

namic) can be estimated based on the detection of features in the measured

signals, or on more sophisticated processing techniques (e.g., Kalman filter),

which, for example, enable the combination of information from two or more

sensors (Camomilla et al., 2018). In many cases, it is necessary to use multiple

IMUs to assess biomechanical variables like joint kinematics (Faisal et al., 2019).

The number of body segments to be analyzed usually dictates the number of sen-

sors required (Sivakumar et al., 2016). Orientation of human body segments can

be measured by placing IMUs on different segments (Luinge & Veltink, 2005).

Consequently, IMU-based joint angle measurements for gait analysis have been

proposed and delivered good accuracy (Karatsidis et al., 2017). For example,

root mean square errors of the knee flexion/extension angles less than 1° when

validating against an optical motion capture system (Seel et al., 2014). The algo-

rithms employed to obtain joint angles typically scale a biomechanical model to

the body dimensions of a subject.

As IMUs only enable the direct determination of kinematic data, the estimation

of ground reaction forces (Karatsidis et al., 2017; Wouda et al., 2018) and joint

dynamics (Konrath et al., 2019; Dorschky et al., 2019) from these data have re-

cently gained importance. Several models and methods have been developed

in the last few years as estimating dynamic quantities from kinematic data is

not an easy task (Gurchiek et al., 2019; Ancillao et al., 2018). The majority of

applied methods require, to a certain degree, the modeling of the musculoskele-

tal system, with mandatory embedded subject-specific anthropometric data (e.g.,

mass, dimensions and center of mass of the body segments) (Konrath et al., 2019;

Dorschky et al., 2019). An alternative approach is the use of machine learning

algorithms (see section 1.5).

Meanwhile, wearable sensors have been widely accepted as useful and prac-

tical sensors in the field of human movement analysis for sport performance

diagnosis (Adesida et al., 2019; Camomilla et al., 2018), as well as in the field

of clinical human movement analysis (Díaz et al., 2020; Faisal et al., 2019; Iosa

et al., 2016; Kavanagh & Menz, 2008). These sensors have allowed the assess-

ment of temporal, kinematic, and dynamic parameters of various everyday and
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sport movements. Measuring movement outdoors created opportunities in team

sports (e.g., rugby and soccer), individual sports (e.g., tennis and boxing), cycli-

cal sports (e.g., running and swimming) as well as winter and other outdoor

sports (e.g., cross-country skiing and skateboarding) (Camomilla et al., 2018).

The primary focus in the fields of sport has been technique analysis (55.5%),

followed by match analysis (20.7%), and capacity assessment (17.3%), with few

investigations dealing with activity classification (6.5%) (Camomilla et al., 2018).

Additionally, different wearable sensor-based methods have been developed to

support and standardize researchers’ and clinicians’ decisions with respect to

movement abnormalities or identifying changes due to orthopedic or physio-

therapeutic interventions (Gurchiek et al., 2019; Horst et al., 2019). Gait anal-

ysis using wearable sensors has become increasingly established (Tao et al.,

2012). In orthopedics and rehabilitation, wearable sensor systems have been

developed to monitor the patient healing progress (Horak et al., 2015; Calliess

et al., 2014; Patel et al., 2012). Additionally, systems to mobile assess knee joint

biomechanics (Konrath et al., 2019), wearable visual feedback system for gait

retraining (Karatsidis et al., 2018), as well as physical activity monitors (Verlaan

et al., 2015) have been suggested for the assessment, treatment and monitoring

of patients with Knee Osteoarthritis (KOA). In health diagnostics, ambulatory

monitoring methods for applications to neurological disorders that cause gait

and balance problems like Stroke, Alzheimer’s disease and Parkinson’s disease,

have also been developed (Díaz et al., 2020; Buchman et al., 2014).

1.5 Machine learning in human movement analysis

Machine learning describes the study of how computer algorithms (i.e., ma-

chines) can learn complex relationships or patterns from empirical data by creat-

ing models linking a large number of input data to some target variable of inter-

est (Cabitza et al., 2018; Obermeyer & Emanuel, 2016; Wang & Summers, 2012).

Research in machine learning is one of the fastest growing fields in computer

science (Alpaydin, 2020). At the same time, a remarkable expansion of learning

algorithms into various fields of science, from astronomy to medicine and every-

day life, has occurred (Alpaydin, 2020). For instance, machine-learning systems

are used to identify objects in images, transcribe speech into text, or identify the

uniqueness of individual gait patterns (Alpaydin, 2020; Horst et al., 2019). Espe-

cially the fast growing amounts of data in physical, chemical, biological and so-
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cial systems as well as a largely increased computational power have accelerated

the development of machine learning applications (Ferber et al., 2016; Alpaydin,

2020). In human movement analysis, laboratory-based experiments and wear-

able sensors offer biomechanists a wealth of data on healthy and pathological

movement (Phinyomark et al., 2018; Halilaj et al., 2018). Consequently, machine

learning techniques have started to complement traditional statistical tools to

exploit the power of these data and make research more efficient (Halilaj et al.,

2018; Phinyomark et al., 2018; Ferber et al., 2016; Schöllhorn, 2004).

Machine learning algorithms generally build a mathematical model based on

a set of randomly chosen examples (training data) (Gupta & Sedamkar, 2020;

Alpaydin, 2020). In this context, there are mainly two machine learning cate-

gories, namely supervised and unsupervised learning (Guleria & Sood, 2020;

Phinyomark et al., 2018). An illustration of machine learning categories and

corresponding algorithms is presented in Figure 1.1. On the one hand, in su-

pervised learning, the training data is labeled and the response variable reflects

discrete/qualitative data for classification tasks or continuous/quantitative data

for regression tasks (Gupta & Sedamkar, 2020). Supervised learning has been

the most popular machine learning approach in the medical sciences (Cabitza

et al., 2018). On the other hand, when target classes/variables are not available,

the machine learning models are built based on regularities in the input data

using so-called unsupervised learning methods (Alpaydin, 2020). Within this

approach, the algorithms themselves have to find underlying structures (e.g.,

groups) in the data (Gupta & Sedamkar, 2020). Clustering is one of the most

widely used unsupervised learning method (Alpaydin, 2020; Halilaj et al., 2018).

Machine learning has shown great promise in providing solutions for classifica-

MACHINE LEARNING

SUPERVISED LEARNING UNSUPERVISED LEARNING

CLASSIFICATION

E.g., Support Vector 

Machine

REGRESSION

E.g., Linear Regression

CLUSTERING

E.g., K-Means

Figure 1.1: Main machine learning categories and exemplary algorithms (Gule-
ria & Sood, 2020; Alpaydin, 2020; Rebala et al., 2019).
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tion, regression and clustering tasks in biomechanical and health care applica-

tions (Halilaj et al., 2018; Cabitza et al., 2018; Ferber et al., 2016). One the one

hand, classification and regression are typically used for predictive analyses in

order to assign data into discrete categories (classification) or to predict numeric

or continuous outcome values (regression) (Guleria & Sood, 2020; Halilaj et al.,

2018). For instance, Christian et al. (2016) used a support vector machine for a

computer aided analysis of gait patterns in patients with acute anterior cruciate

ligament injury. Similarly, Matić et al. (2016) used a regression approach to ob-

tain a model of useful indicators of anterior cruciate ligament deficiencies. On

the other hand, the goal of clustering is to group elements that are close to each

other (Rebala et al., 2019). This type of analysis is closely related to data min-

ing, which aims to discover patterns in large databases (Alpaydin, 2020). The

identification of sub-populations that exhibit different types of gait characteris-

tics (Hörzer et al., 2015) or pathological gait pattern (Böhm et al., 2019; Rozumal-

ski & Schwartz, 2009) is an example for clustering tasks. The systematic review

by Halilaj et al. (2018) revealed that the majority of machine learning methods in

human movement biomechanics are used for predictive tasks – mainly classifi-

cation (80.6%) and regression (11.6%) – while a few focused on clustering (7.8%).

Support vector machines, regression models and ANNs are the most used algo-

rithms for predictive modeling, whereas the k-means method is most used for

clustering (Halilaj et al., 2018).

One frequently applied machine learning-based method in human movement

analysis are ANNs. ANNs can be described as analytical structures, which

mimic the biological nervous system, particularly the human brain (Sivakumar

et al., 2016; Nayak et al., 2001). The connection between an input and output

layer by means of one or more processing layers –known as hidden layers– is

characteristic for ANNs. Each layer is composed of simple processing units,

which are named as ’nodes’ or ’artificial neurons’, by analogy with the biological

neurons (Schöllhorn, 2004). The nodes are linked to each other and the weight

level of a connection represent the strength of the specific connection (Sivakumar

et al., 2016). During a learning phase, using a set of data that contains both in-

puts (e.g., IMU signals) and ground truth outputs (e.g., Knee Joint Forces (KJFs)),

the weights of nodes are iteratively adjusted to learn the relationship from the

provided examples (Sivakumar et al., 2016; LeCun et al., 2015; Schöllhorn, 2004;

Nayak et al., 2001). Predictions for new data can be made by way of the learned
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Figure 1.2: Abstract model of an Artificial Neural Network (ANN) using wear-
able sensor data as input (i1 to i12, illustrated in green) in order to estimate
three-dimensional knee joint forces as the biomechanical output (o1 to o3, illus-
trated in red). The ANN shows two hidden layers (lightgrey boxes), one with
250 (n1 to n250) and one with 100 neurons (n1 to n100), which are connected to the
input and output nodes. The circles represent the nodes of the ANN. Weights
of the nodes (bows) are calculated during the learning phase of the ANN.

functions of a trained model. Consequently, ANNs offer a general framework

and a very powerful tool for representing non-linear mappings form several in-

put variables to several output variables (Bishop, 1995). An exemplary ANN

architecture is shown in Figure 1.2.

Since the turn of the century, an increasing number of ANN approaches have

been explored to extract insights from large, complex, heterogeneous, and noisy

biomechanical datasets (Schöllhorn, 2004; Halilaj et al., 2018). For example, Kacz-

marczyk et al. (2009) used an ANN on lower limb joint kinematics for classifying

the gait patterns of post-stroke patients into groups in order to allow for a more

effective treatment with appropriately targeted interventions. As another ex-

ample, Favre et al. (2012) designed an ANN using inputs from ground reaction

forces and anthropometric measurements to successfully predict knee adduction

moments during walking. Moreover, there are many studies highlighting the us-

ability of ANNs to estimate biomechanical load and performance metrics trough

kinematic data from optical motion analysis systems (Ancillao et al., 2018; Kipp

et al., 2018; Oh et al., 2013; Favre et al., 2012; Hahn & O’Keefe, 2008).

Parallel to the development of estimation models using established biomechan-

ical measurements, an increasing number of wearable sensor-based approaches

have been explored (Díaz et al., 2020; Gurchiek et al., 2019; Ancillao et al., 2018;

Wouda et al., 2018). These approaches aiming to simplify data acquisition and

modeling strategies for estimating target variables such as Ground Reaction
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Forces (GRFs) (Díaz et al., 2020; Gurchiek et al., 2019; Ancillao et al., 2018; Wouda

et al., 2018). Leporace et al. (2015) did one of the first studies combining wear-

able sensors and ANNs. They compared different ANNs to estimate 3D GRFs

while walking based on data obtained from a 3D accelerometer attached to the

distal and anterior part of the shank. In a later study, Wouda et al. (2018) used

an ANN approach to estimate vertical GRFs and sagittal knee kinematics dur-

ing running, based on three inertial sensors placed at the lower legs and the

pelvis. The estimated force-time profiles and flexion/extension profiles showed

high agreement with the optical and GRF reference measure. Gurchiek et al.

(2019) identified in their recent review on estimating biomechanical time-series

with wearable sensors, 23 studies estimating joint kinematics, 16 joint dynamics,

seven segment dynamics, and five segment kinematics, respectively. ANNs were

the most popular method. While joint contact forces, individual muscle forces,

or muscle kinematics have not been estimated so far according to Gurchiek et al.

(2019). Most studies focused on joint/segment biomechanics in the sagittal plane

(87%), followed by the frontal plane (46%), and transverse plane (33%). Among

the studies investigated by Gurchiek et al. (2019) the wrist joint received most

attention, followed by the knee, the elbow, the ankle, the shoulder, and the hip.

Overall, research at the intersection of wearable sensors, machine learning and

biomechanics is still in a very early stage. Notwithstanding, there is enormous

potential for positively influencing human movement research. In this process,

machine learning techniques may support the development of wearable technol-

ogy for quantifying sports performance and assessing loads on body structures,

which play an important role in rehabilitation and health diagnostics of sports

injuries as well as musculoskeletal diseases (Díaz et al., 2020; Verheul et al., 2020;

Gurchiek et al., 2019; Halilaj et al., 2018).

1.6 Aims and scope of this thesis

This thesis aims to investigate the feasibility of using wearable sensors and ma-

chine learning techniques to obtain meaningful biomechanical measures with

respect to sports performance and the load on body structures. Special consid-

eration is given to unique movements such as ice hockey skating, as well as to

the assessment of the load on body structures during the execution of everyday

and sport movements using machine learning techniques.
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Accordingly, this thesis is subdivided into four studies:

I. Automated gait event detection during ice hockey skating.

II. Mobile ice hockey skating performance analysis.

III. Estimation of knee joint forces in sport movements.

IV. Estimation of joint loading in knee osteoarthritis.

with the following specific aims:

I. to determine the agreement between a novel accelerometer-based approach

for an automated identification of strides, contact phase, and swing phase

during forward skating in ice hockey and an accepted method.

II. to investigate the feasibility of using body worn accelerometers to iden-

tify previous highlighted performance related biomechanical changes in

forward ice hockey skating.

III. to develop an ANN that estimates net knee joint forces during sport move-

ments, based on data obtained by wearable sensors integrated in a knee

sleeve.

IV. to develop an ANN that estimates knee flexion moment and knee adduc-

tion moment during various locomotion tasks, based on data obtained by

two wearable sensors integrated in a knee sleeve.

The subsequent chapter 2 to chapter 5 comprise four research articles that each

reflects one of those studies. Chapters 2 and 3 encompass studies that examined

ice hockey skating, while chapters 4 and 5 focused on assessing load on knee

joint structures in various everyday and sport movements. All studies have

been published in international peer-reviewed scientific journals between 2016

and 2020.
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2 Study I – Automated gait event detection during ice hockey skating

2.1 Abstract

This study presents a new approach for automated identification of ice hockey

skating strides and a method to detect ice contact and swing phases of individ-

ual strides by quantifying vibrations in 3D acceleration data during the blade-

ice interaction. The strides of a 30-m forward sprinting task, performed by 6 ice

hockey players, were evaluated using a 3D accelerometer fixed to a hockey skate.

Synchronized plantar pressure data were recorded as reference data. To deter-

mine the accuracy of the new method on a range of forward stride patterns for

temporal skating events, estimated contact times and stride times for a sequence

of 5 consecutive strides was validated. Bland-Altman limits of agreement (95%)

between accelerometer and plantar pressure derived data were less than 0.019

s. Mean differences between the 2 capture methods were shown to be less than

1 ms for contact and stride time. These results demonstrate the validity of the

novel approach to determine strides, ice contact, and swing phases during ice

hockey skating. This technology is accurate, simple, effective, and allows for

in-field ice hockey testing.

2.2 Introduction

Small sensors that can be attached to the body or to sport equipment have be-

come increasingly popular and important for biomechanical assessments and

activity monitoring in the field of sport science (Boyd et al., 2013; Dadashi et al.,

2012; Mihalik et al., 2012). The advantage of measuring data in a realistic envi-

ronment is that the athlete is less inhibited or disturbed to perform their natural

movement pattern. Furthermore, due to the small size of these sensors they

can be used in unique environments like an ice rink, where commonly used

gait analysis instruments cannot be used (Bergamini et al., 2012; Mariani et al.,

2010). As a result, accelerometers may help to achieve a better understanding of

biomechanics during ice hockey skating on an ice rink, and may extend the anal-

ysis capability of skating-specific movements. So far, only limited information

about the biomechanics of ice hockey skating is available, which is most likely

due to the difficulty of collecting biomechanical data on ice (Upjohn et al., 2008).

Thereby, an accurate and efficient detection of temporal events, such as initial

contact and blade-off, is essential to study temporal skating parameters, or to

quantify other biomechanical variables.

An important consideration when using accelerometers for analyzing human
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movement is the location at which an accelerometer is placed. In this context,

the part of the body whose movement is being studied and the wearability for

the user dictates the accelerometer placement (Yang & Hsu, 2010; Godfrey et al.,

2008). Accelerations are measured in the coordinate system of the accelerome-

ter. This coordinate system will continually move during movement. Therefore,

translational and rotational accelerations of a moving body segment will be de-

tected to the extent of the alignment of these vectors with the sensing axis of the

accelerometer (Kavanagh & Menz, 2008; Elble, 2005). During this process, signal

patterns are generated which can be used to extract pertinent features to derive

the targeted measures. Previous research in walking has shown that accelerom-

eters, and their expansion to inertial sensors (i.e., accelerometers combined with

gyroscope and magnetometer) attached to the lower extremities can significantly

reflect gait-related features during locomotion (Mariani et al., 2010; Rampp et al.,

2015; Aminian et al., 1999). There is evidence that accelerometers can be used

instead of foot switches, which are often attached beneath the heel and beneath

the big toe to monitor heel strike and toe off, for quantifying spatiotemporal

gait characteristics (Kavanagh & Menz, 2008). Furthermore, research in run-

ning has shown that inertial sensors can effectively be used to identify timing

events during sporting activities (Bergamini et al., 2012; Lee et al., 2010; Auvinet

et al., 2002). The level of agreement between mobile sensors and high speed

cameras (Bergamini et al., 2012; Lee et al., 2010; Auvinet et al., 2002) or force

plates (Bergamini et al., 2012) is high (95% limits of agreement less than 0.025 s)

across a range of running velocities.

In ice hockey research, video analysis (Auvinet et al., 2002), pressure measure-

ment (Lafontaine, 2007), and force transducer systems (Stidwill et al., 2010) have

been used to estimate temporal characteristics. However, these instruments are

either limited in terms of the capture volume or require a special instrumenta-

tion and a long postprocessing time. Therefore, as an alternative technology,

accelerometers have the potential to simplify the analysis of ice hockey skating

in a field setting.

The purpose of this study was to determine the agreement between a novel ac-

celerometer-based approach for an automated identification of strides, contact

phase, and swing phase during forward skating in ice hockey and an accepted

method. Data provided by the accelerometer were simultaneously recorded with

plantar pressure data within the skate and compared with the total plantar force.
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2.3 Materials and methods

2.3.1 Participants and data acquisition

A group of six ice hockey players (age 29.8 ± 7.3 years, mass 84.2 ± 13.5 kg,

height 174.3 ± 6.8 cm) participated in the study, after they signed an informed

consent form in accordance with the University of Calgary’s Conjoint Health

Research Ethics Board. All players were free from recent injuries or other lim-

iting conditions, which would affect their performance. Tests were carried out

at an indoor ice rink at the Olympic Oval Calgary. Participants were instructed

to perform five maximum effort 30 m forward skating sprints. The total sprint

time was measured with light gates (Brower Timing Systems, Draper, UT, USA)

and ranged from 4.11 s for the fastest trial to 5.18 s for the slowest trial, across all

participants. Participants started in a standing position with their knees slightly

flexed and both their feet parallel to the starting line. All skates were sharpened

to a .5-in (1.3-cm) radius of hollow before data collection.

Each participant’s right skate was equipped with a 3D accelerometer (Analog

Devices Inc., Norwood, USA) at the center of the chassis (Figure 2.1). Care was

paid to the fixation of the accelerometer in order to limit its oscillations relative

to the skate chassis as well as to a consistent alignment of the sensitive axes

of the accelerometer with the local coordinates of the skate (anterior-posterior,

medio-lateral, and vertical). A solid contact between the flat surface of the ac-

celerometer housing and the nearly flat surface of the chassis was ensured by se-

curely placing cloth-based self-adhesive tape over the accelerometer and chassis.

This procedure was performed always by the same investigator in order to keep

potential movement artifacts of the sensor low and avoid variability in the fixa-

tion. The measuring range of the accelerometers was ±35 g with a sampling rate

of 2400 Hz. We chose such a large measuring range and high sampling rate in

order to cover a wide range of signal characteristics, and did not wanted to limit

ourselves by missing useful information. In addition, synchronized skate pres-

sure data were recorded with an insole pressure measurement system (Pedar-X,

novel GmbH, Munich, Germany) with a sampling rate of 90 Hz. Pressure val-

ues were zeroed with the foot inside the skate, laces tied, and foot lifted off

the ground. Synchronization was achieved by using a low/high-level analogous

signal. A rising edge was initiated at the start of the plantar pressure system

data acquisition, and sent to the data logger of the accelerometer. Participants

wore a backpack, which contained two data logger boxes, an analog-to-digital
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Figure 2.1: The 3D accelerometer firmly fixed with tape on the center of the
skate chassis (black oval).

converter, and a tablet (Acer Iconia W 510, Acer Inc., Taipei, Republic of China).

This system was remotely controlled for data acquisition from the side of the ice

rink.

2.3.2 Data processing and method development

Signal processing and software routines were developed in-house using

MATLABTM (R2012b, MathWorks, Inc., Natick, MA). Data obtained from the 3D

accelerometer were converted into units of gravity (g) by calibrating the voltage

outputs for each of the sensitive axis through a 2-point linear calibration with

and against the direction of gravity. Baseline correction was done by subtracting

the mean value of a neutral standing trial (10 s) in each axis. There were 2 main

features of the signal processing algorithm: (1) development of a tool to identify

individual forward skating strides and (2) development of a tool to determine

contact and swing phase of a single stride. The stride time was defined as initial

contact to initial contact of the same foot, the contact phase as initial contact to

blade-off, and swing phase as blade-off to initial contact of one foot.

Stride detection

Skating strides are characterized by a generic signal pattern (Figure 2.2). A 2 Hz

wavelet low-pass filter (von Tscharner, 2000) was applied to the vertical acceler-

ation signal to obtain the low frequency acceleration that represents the stride

movement without the vibrations caused by the ice contact. The peaks of the

low frequency acceleration were used for an automated extraction of strides

from the entire recorded sequence. However, the low frequency acceleration
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Figure 2.2: Raw vertical acceleration signal (gray) taken from 1 representative
trial over the entire skating sequence. A 2 Hz wavelet low-pass filter (black)
was applied to represent individual strides. This low frequency component of
the signal exhibits high amplitudes when the skater lifts and lowers his foot to
perform a stride. As a result, individual strides during the sprint are character-
ized by local maxima in the low frequency acceleration signal. Start pos = start
position.

had an insufficient time resolution to detect the on ice period.

Determination of initial contact and blade-off

To extract temporal stride parameters from accelerometer signals, a novel method

was developed. The fundamental approach behind this method was based on

the observation that the acceleration signal during ice contact showed high-

frequency vibrations. A wavelet-based approach was used to filter the raw

signal (150 Hz low-pass) (Figure 2.3a). Subsequently, the squared difference,

d(s, a) = (r(s, a)− f (s, a))2, between the low-pass filtered signal f (s, a) and raw

signal r(s, a) was calculated for each sample (s) in each axis (a). If the squared

difference exceeded a predetermined threshold (0.03 voltage2) in 1 of the 3 di-

rections, the value in a new binary signal was set to high level (1) (Figure 2.3b).

The point in time of the previously identified peak of the stride detection, which

was consistently located within the first third of the swing phase, was used as

the initial start point for searching initial contact and blade-off. To detect the be-

ginning (ICacc) of a high-frequency section in the binary signal, a threshold of 10

high-level samples within a forward moving window (of length 30 samples) had

to be reached (Figure 2.3b–c). The first high-level signal within this window was

selected as ICacc. The detection of the end (BOacc) of a high-frequency section in
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the binary signal was performed in two steps. First, a potential blade-off frame

was identified, and assigned to the first high-level signal within a 10 samples

backward moving window when more than 5 high-level samples were detected.

Second, if 100 of the 200 subsequent samples in positive direction were low-

level samples, potential blade-off was considered as the real blade-off (BOacc)

(Figure 2.3b–c). This means that the method detects BOacc from stride N and the

initial contact from stride N + 1. The most appropriate thresholds and window

lengths were experimentally determined during the development phase of the

method. Subsequently, these values were kept constant across all participants

so that the stride detection algorithm could be an automated process that can

identify Initial Contact (IC) and Blade-Off (BO) of all potential new participants.

2.3.3 Data extraction and analysis

Each recorded trial consisted of a minimum of 7 full strides. The stride detec-

tion tool was used to extract a 5-stride analysis sequence from the second to the

sixth stride. To determine the validity of the new algorithms, estimated Contact

Times (C̃T = BOacc − ICacc) and Stride Times (S̃T = ICn+1 − ICn) were com-

pared with those times obtained from the insole pressure measurement system

(CT, ST). Therefore, plantar pressure data were up sampled to 2400 Hz using

a linear interpolation function to match the sampling rate of the accelerometer.

The total plantar force (Figure 2.3d) for the whole insole was calculated by sum-

ming up the converted pressure values at each cell (Pa) to force (N) based on

the area of the cell, and was used to define the reference timing events (ICref and

BOref). In addition, the first derivative of the total plantar force was extracted

(Figure 2.3e). ICref was manually defined for each stride by selecting the peak in

the first derivative, which occurs at an increasing slope of the total plantar force

(Figure 2.3e). Similarly, the peak in the first derivative of the decreasing slope

during blade-off was selected as BOref (Figure 2.3e).

Validation of the estimated contact times and stride times was performed by

evaluating the absolute differences (∆CT(acc, re f ), ∆ST(acc, re f )) between the 2

methods by means of Bland-Altman plots (Bland & Altman, 2007) as well as by

calculating the normalized Pairwise Variability Index for contact time (nPVICT)

and stride time (nPVIST) as described by Dadashi et al. (2012). Limits of Agree-

ment (95% LoA) for contact times and stride times were specified. Repeated-
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Figure 2.3: Main data processing steps to separate between contact and swing
phase by using the 3D accelerometer signals (a-c) as well as the initial contact
and blade-off definition for the reference system (d, e). Data are shown for 1
stride ± 50 milliseconds of a randomly selected participant, with reference to
a randomly chosen stride between the second and sixth sprinting stride. (a)
Filtered vertical acceleration signal (black) with a 150 Hz lowpass filter. (b) Cal-
culated binary signal (black) by quantifying the amplitude differences between
the raw and filtered signal. (c) Determination of contact (gray areas) and swing
phase by using the beginning (ICacc) and end (BOacc) of high-frequency vibration
sections in the acceleration signals. (d) Identified timing events of the total plan-
tar force data by using the peaks in the first derivative of the total plantar force.
(e) Symbol (o) indicates reference initial contact (ICref) and blade-off (BOref). The
vertical arrows point to the corresponding events in the total plantar force.
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measures ANOVA on ∆CT(acc, re f ) and ∆ST(acc, re f ) were performed to deter-

mine whether the accuracy of the method varies across strides (P < .05).

2.4 Results

Accelerometer-derived contact and stride times for 5 consecutive strides (a),

as well as the reference contact and stride times derived from the total plan-

tar force measures (b), are shown for a representative trial in Figure 2.4. The

mean of the estimated contact times for all analyzed strides was 0.324 seconds

(SD = 0.032 s), and the mean of the estimated stride times was 0.554 seconds

(SD = 0.042 s). Bland-Altman plots indicated agreement between the refer-

ence and accelerometer-derived contact times and stride times (Figure 2.5). The

2 systems differed by 2.0% (nPVICT) for the contact time determination and by

1.0% (nPVIST) for the stride time determination. ∆CT(acc, re f ) and ∆ST(acc, re f )

were not statistically different across the 5 consecutive strides (P = .587 and

P = .647, respectively). Difference between the duration measures ranged be-

tween –0.0187 seconds and 0.0185 seconds (95% LoA) and between –0.0168 sec-

onds and 0.0152 seconds for contact time and stride time, respectively. The 95%

LoA were close to the temporal resolution of the reference system (0.011 s). The

low biases (contact time: –0.000093 s, stride time: –0.000827 s) indicated that the

accelerometer system does not tend to determine constantly longer contact or

stride times compared with the reference system.
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Figure 2.4: Accelerometer-derived contact (gray areas) and stride times (arrows)
for 5 consecutive strides ± 50 milliseconds (a), as well as the reference contact
and stride times derived from the total plantar force measures (b).
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Figure 2.5: Bland-Altman plots indicating agreement between (a) contact times
(CT) and (b) stride times (ST) of the reference system (CT, ST) and those esti-
mated with an accelerometer (C̃T, S̃T). Mean difference (solid lines) and Limits
of Agreement (95% LoA) (dashed lines) are presented.

2.5 Discussion

The precise identification of timing events during ice hockey skating is invalu-

able for the analysis of ice hockey skating biomechanics. This paper investigated

the use of a single skate mounted 3D accelerometer for an automated detection

of temporal events during forward ice hockey skating. The use of a low-pass

filter enabled individual strides within a sequence to be consistently identified.

Furthermore, we have proposed a new algorithm based on the quantification

of vibrations to detect initial contact time and blade-off time from 3D acceler-

ation signals. The phenomenon of extremely distinct high- and low-frequency

sequences of the raw accelerometer signal correlates strongly with the ice contact

and the swing phase of a skating stride, respectively. Vibrations occur during

ice contact as a result of the interaction between the skate and the ice surface. In

contrast to the contact phase, there are no additional external forces acting on

the skate during the swing phase. Thus, the accelerometer detects only acceler-

ations caused by movement, which contain lower frequencies.

To ensure that the vibration sequences adequately reflect the ice contact phase, a

validation against a force measuring system was implemented. That is, 95% LoA

for the data were less than ± 0.022 seconds (2 frames at 90 Hz for the reference

system), coupled with small biases (< 1 ms), demonstrating a high conformity

between the 2 methods. This result, as well as low nPVI values, shows that

the difference in variability assessment of contact and stride time between the
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2 systems is less than 2.0% and confirms the validity of the new method. A

few outliers above and below the 95% LoA boarders were observed. Factors

such as atypical skating stride patterns with an additional short ice contact af-

ter the actual blade-off or an uncertainty in the shape of the total plantar force

curve could lead to such outliers. It is clear that the values of the thresholds

for determining initial contact and blade-off can modify the results. The level of

agreement in this study is comparable with other methods used to identify gait

events during running (Bergamini et al., 2012; Lee et al., 2010). They showed

similar 95% LoA (< 0.025 s) validated against a force plate and video camera as

the gold standard. The difference (biases < 1 ms) between the accelerometer and

plantar pressure system is comparable to other studies, which validated an iner-

tial sensor approach with a standard method for walking (Salarian et al., 2004)

or running (Lee et al., 2010).

The accelerometer placement in the center of the chassis was deliberately chosen

to detect the majority of vibrations during the contact between the ice and the

metal blade of the skate. This is effective in hockey skating as the movement pat-

tern of the foot during a skating stride does not consist of a distinct heel or toe

contact. Such foot strike patterns may require another location for an accurate

detection of initial contact and blade-off.

The methodology developed in this paper appears to be valid for a wide range of

forward stride patterns. The analyzed sequence, which ranged from the second

to the sixth stride, included the transition for the accelerative phase to skating

at a constant velocity. Lafontaine (2007) stated that as a skater raises speed, the

skating motion changes. In addition, Stidwill et al. (2010) found differences in

step mechanics. The force-time curves for the first 3 strides showed single force

peaks, and were different from subsequent strides that showed double force

peaks. Figure 4b depicts strides 2 to 6, and shows the same pattern where you

see a single to double peak transition. This is reflective of the running to a

gliding transition that has been previously described (Lafontaine, 2007; Stidwill

et al., 2010). Therefore, despite notable differences in the stride pattern across

progressive strides, no significant difference in the accuracy of the new method

was found between strides.

Since the reference times were measured with a much lower sampling frequency,

the data were interpolated to match the sampling frequency of the accelerometer.

This is a potential limitation of the study. The pressure measurement system was
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chosen as a mobile reference, in spite of its maximum sampling rate of 90 Hz,

in order to avoid the drawback of video systems that the accuracy reduces by

using a wide field of view to cover the distance of multiple strides (Lafontaine,

2007). However, the measured contact and stride times for consecutive strides

in this study is supported by those times found by Stidwill et al. (2010). Due

to the limitation of the mismatched sampling frequency, a validation of single

strides against a high-speed video could provide greater confidence that the

accelerometer-derived characteristics are accurate.

Overall, the novel method is able to define a skating stride as well as the con-

tact and swing phase of a skating stride with a much higher sampling rate

(2400 Hz) compared with previously used measurement systems (video cam-

eras: 60–200 Hz (Upjohn et al., 2008; Lafontaine, 2007), strain gauges: 100 Hz

(Stidwill et al., 2010)). However, sufficient high-frequency vibrations during the

blade to ice contact could potentially be gathered with a lower sampling rate,

and still provide accurate stride timing characteristics. The degree to which this

sampling rate can be reduced, if necessary for practical reasons, without losing

pertinent information to make the method operable must be determined in the

future. The use of these novel algorithms to calculate timing events during ice

hockey skating based on acceleration signals is beneficial to researchers in terms

of ease of use and on-ice equipment limitations. From the perspective of a player

and/or coach, this tool allows for measurements of important timing character-

istics during skating on ice, thus lending itself as a future digital coaching tool.

Accelerometers can potentially substitute for more cumbersome systems, such

as instrumented insoles or a motion capture system, in terms of quantifying ac-

curate stride characteristics. To extend the application of the proposed methods,

other movements fundamental to ice hockey skating, such as turning and back-

ward skating, must be addressed. In addition, the application in other skating

disciplines like figure skating or speed skating could be taken into account.

2.6 Conclusion

The novel approach presented in this study provides the potential for an ac-

curate and capable means for in-field ice hockey testing estimation of contact

and stride times for forward skating based on acceleration signals. Changes in

the forward stride pattern throughout the phase from acceleration to skating

at a constant velocity did not influence the level of agreement between the pro-
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posed accelerometer approach and times determined by plantar force data. This

mobile analysis system provides accurate timing characteristics during forward

skating and has potential to be used as a digital coaching tool.
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3.1 Abstract

The capturing of movements by means of wearable sensors has become increas-

ingly popular in order to obtain sport performance measures during training or

competition. The purpose of the current study was to investigate the feasibil-

ity of using body worn accelerometers to identify previous highlighted perfor-

mance related biomechanical changes in terms of substantial differences across

skill levels and skating phases. Twenty-two ice hockey players of different cal-

iber were equipped with two 3D accelerometers, located on the skate and the

waist, as they performed 30 m forward skating sprints on an ice rink. Two

measures of the temporal stride characteristics (contact time and stride time)

and one measure of the propulsive power (stride propulsion) of a skating stride

were calculated and checked for discriminating effects across (i) skill levels and

(ii) sprint phases as well as for their (iii) strength of association with the sprint

performance (total sprint time). High caliber players showed an increased stride

propulsion (+22%, P < 0.05) and shorter contact time (−5%, P < 0.05). All three

analysed variables highlighted substantial biomechanical differences between

the accelerative and constant velocity phases (P < 0.05). Stride propulsion of ac-

celeration strides primarily correlated to total sprint time (r = −0.57, P < 0.05).

The results demonstrate the potential of accelerometers to assess skating tech-

nique elements such as contact time or elements characterizing the propulsive

power such as center of mass acceleration, to gauge skating performance. Thus,

the findings of this study might contribute to establishing wearable sensors for

in-field ice hockey skating performance analysis.

3.2 Introduction

Ice hockey is a fast-paced sport which requires excellent physical conditioning

as well as accuracy and control of technical skills such as skating (Upjohn et al.,

2008). Highly developed skating skills are crucial to a player’s overall suc-

cess (Renaud et al., 2017). Players with the ability to start quickly and skate

at a high speed, are more likely to win puck possession or outmaneuver their

opponents. Instantaneous leg power is required to apply an appropriately large

impulse to the body’s center of mass, to achieve maximum speed in a short

time (Farlinger et al., 2007; Pearsall et al., 2000).

Traditionally, biomechanical performance analysis of ice hockey skating is ei-

ther done in a laboratory environment using skating treadmills (Upjohn et al.,
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2008) and synthetic ice surfaces (Stidwill et al., 2010) or with extensive measure-

ment equipment on an ice rink (Buckeridge et al., 2015; Renaud et al., 2017).

These approaches are typically highly standardized and allow a precise and un-

obtrusive measurement of multiple performance variables, which yield insight

to human movements and techniques (Schmidt et al., 2017). The biomechanical

data gained, deliver useful information to improve training and to achieve per-

formance enhancement (Buckeridge et al., 2015; Renaud et al., 2017).

Within the last two decades, advances in the microelectromechanical sensor

(MEMS) have opened the capability to evaluate sport-specific movements un-

der field-based conditions. The integration of such sensors (e.g. accelerometers

or gyroscopes) in sports equipment (e.g. shoes) or fixed to the athlete, allows

the integration of biomechanical measurement methods during training or com-

petition (Camomilla et al., 2018). These devices are commonly referred to as

wearable sensors (Chambers et al., 2015). The field-based analysis opens oppor-

tunities to capture data in realistic settings (in training or competition) and to get

a (nearly) real-time monitoring to better measure the effects of training or game

performance (Neville et al., 2010; Schmidt et al., 2017). In the meantime, the

capturing of sport-specific movements under field-based conditions has become

a high priority and has become more and more common, which is reflected in

the development of wearable systems for a wide range of sports (Camomilla

et al., 2018; Chambers et al., 2015). This expansion is reflected in the fast grow-

ing number of related studies. In 2015 Chambers et al. identified 28 studies

addressing the use of microsensors within individual (e.g. tennis and golf) and

team sports (e.g. baseball and rugby). Whereas in a recent review, Camomilla

et al. (2018) identified over 300 related studies in the field of wearable sensors

for sports performance evaluation. Specifically, for locomotion tasks such as

running, wearable sensors show valid and reliable results for the analysis of

biomechanical parameters (Lee et al., 2010; Purcell et al., 2005; Strohrmann et al.,

2012). Moreover, research in ice hockey skating related areas, such as speed skat-

ing and cross-country skiing, has proven that wearable sensors are a feasible tool

for the measurement of biomechanical skating variables (e.g. center of mass dis-

placement and lean angle of the skate) as well as for the distinction between

different skating techniques (Myklebust et al., 2014, 2015; van der Kruk et al.,

2016). Wearable sensors could be used to provide feedback on performance

related variables without influencing the natural skating pattern, in order to im-
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prove training and to achieve performance enhancement (Cox et al., 1995).

Previous research in forward skating biomechanics has highlighted substantial

differences at various levels (e.g. temporal, kinematic and kinetic) with respect

to the skating phase (Buckeridge et al., 2015; De Koning et al., 1995; Stidwill

et al., 2009) and in relation to a skater’s skill level (Buckeridge et al., 2015; Re-

naud et al., 2017; Upjohn et al., 2008).

Differences between fundamental phases (accelerative and steady- state) of ice

hockey skating show how skating technique changes in accordance with in-

creased skating speed (Buckeridge et al., 2015; Stidwill et al., 2009). As previ-

ously shown for speed skating (De Koning et al., 1995) athletes change from

a running-like technique at the initial push offs to a gliding technique during

steady-state skating (Buckeridge et al., 2015). An increased propulsive demand

for the running-like motion compared to a gliding motion is underlined by a

larger plantar push-off force and greater muscle activity of the gastrocnemius

during the initial sprint phase (Buckeridge et al., 2015). In addition, Stidwill

et al. (2009) descriptively reported difference in temporal characteristics. Contact

times for running-like strides (0.31 s) were notably shorter than for steady-state

strides (0.38 s).

The identification of biomechanical differences between elite and recreational

hockey players has been used to improve the understanding for the relationship

between skating biomechanics and performance (Buckeridge et al., 2015; Renaud

et al., 2017; Upjohn et al., 2008). A few previous studies have compared lower

limb joint kinematics (Buckeridge et al., 2015; Renaud et al., 2017; Upjohn et al.,

2008), body Center of Mass (CoM) movement (Renaud et al., 2017), plantar force

application (Buckeridge et al., 2015) and muscle activation pattern (Buckeridge

et al., 2015) between high and low caliber ice hockey players. Renaud et al.

(2017) have shown differences in CoM accelerations between caliber, and the au-

thors emphasized the use of CoM variables to assess skating performance. In or-

der to yield important insight into skating performance, accelerometer-derived

variables should be able to reveal substantial biomechanical differences with re-

spect to the skating phases and skill level of the players. In the long term, the

assessment and monitoring of specific stride variables (e.g. CoM acceleration)

could allow coaches to gauge the impact of training (Camomilla et al., 2018) or

even neuromuscular fatigue (Buchheit et al., 2015).

The purpose of the current study was to investigate the feasibility of using
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body worn accelerometers to identify previous highlighted performance related

biomechanical changes in forward skating. It was hypothesized that

accelerometer-derived variables show discriminating effects across (i) skill lev-

els and (ii) sprint phases; and that (iii) the strength of association between the

derived variables and skating performance is high. The findings of this study

could help to overcome current restrictions in the performance assessment of ice

hockey skating and open new possibilities for in-field diagnosis.

3.3 Materials and methods

3.3.1 Participants

Twenty-two male hockey players (age 32.1 years ± 7.7, height 178.7 ± 5.7 cm,

body mass 86.7 ± 10.5 kg) participated in this study. To represent a range of

different calibers, members of the University of Calgary men’s ice hockey team

and recreational players from local hockey teams were recruited as participants.

All participants were free from injury at the time of participation. The study

was approved by the University of Calgary’s Conjoint Health Research Ethics

Board. All participants were informed of the experimental procedures and gave

informed written consent prior to the test. All participants’ skates were sharp-

ened to the same hollow prior to data collection. Tests were subsequently carried

out at an indoor ice rink.

3.3.2 Protocol

After fitting the participants with the data collection gear, participants were pro-

vided with a 5 min warm-up and familiarization period. Participants were then

instructed to perform fifteen maximum effort 30 m forward skating sprints. The

Total Sprint Time (TST) was measured with timing light gates (Brower Timing

Systems, Draper, UT, USA). Participants started in a standing position with their

knees slightly flexed and both their feet parallel to the starting line. They were

told not to perform a crossover start and they were instructed to accelerate as

fast as possible, and skate the 30 m distance with maximal effort.

3.3.3 Instrumentation

Two three-dimensional (3D) accelerometers (combination of ADXL78 and

ADXL278, Analog Devices, Inc., Norwood, MA, USA) were used in this study.

The measuring range of the accelerometers was ±35 g with a sampling rate
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3D accelerometer

Figure 3.1: Placement of accelerometers used in the study. Cloth-based self-
adhesive tape was used to attach the accelerometers.

of 2400 Hz. Accelerometer positions were the center of the right skate chassis

and the lower back at the level of the fifth lumbar vertebrae (Figure 3.1). The

accelerometers were firmly fixed with cloth-based self-adhesive tape in order

to restrict the accelerometers from movement with respect to the skate or back.

Care was paid to the fixation of the accelerometers in order to limit its oscilla-

tions, as well as to consistently align axes of the accelerometers with the local

coordinates of the skate and back. The mounting was performed always by

the same investigator, in order to keep potential movement artifacts of the sen-

sors low and avoid variability in the fixation. A data acquisition box (Biovision,

Wehrheim, Germany), and a tablet (Acer Iconia W510, Acer Inc., Taipeh, Repub-

lic of China) were placed in a backpack for data recording. Participants gave

subjective feedback that they felt no constraints due to the instrumentation. An

external laptop, wirelessly connected to the tablet was used to control data ac-

quisition. In addition to the measurement devices, participants wore a helmet,

and gloves for safety, and carried a stick to mimic a hockey setting.

3.3.4 Performance groups

K-means clustering was applied to the performance outcome of the skating task

(i.e. TST) in order to isolate the high caliber players from the low caliber players.

This technique is a powerful tool to organize subjects into characteristic groups

without predefining the number of members of each group or setting an artificial

threshold for the separation (Figueiredo et al., 2016; Hörzer et al., 2015). The

three fastest sprint trials were identified for each player. Subsequently, the three

shortest TSTs of each player were input to a k-means clustering algorithm, with

k pre-defined as two. Table 3.1 shows the group characteristics for the identified
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Table 3.1: Group characteristics.

Overall High Caliber Low Caliber P

Participants [n] 22 9 13

Age [yrs] 31.6 ± 7.4 26.3 ± 5.8 35.2 ± 6.3 0.003*

Body height [m] 1.79 ± 0.06 1.80 ± 0.05 1.78 ± 0.06 0.424

Body mass [kg] 87.1 ± 10.5 87.7 ± 7.5 86.8 ± 12.5 0.849

Total sprint time [s] 4.57 ± 0.21 4.35 ± 0.09 4.73 ± 0.10 <0.001*

Values are mean ± SD. P values as revealed by independent t-tests (P < 0.05):
*statistically significant.

performance groups. The identified groups corresponded well with the players’

performance level.

3.3.5 Data analysis

Signal processing and data analysis were performed in MATLABTM R2017b, (The

MathWorks Inc. Natick, MA, USA). The accelerometers were manually cali-

brated with a two-point calibration for all three orthogonal axes (Kavanagh &

Menz, 2008). This was done to convert the raw accelerometer signal from milli-

volts (mV) to gravity units (g).

Contact time and stride time

The approach presented by Stetter et al. (2016) for stride identification, ice con-

tact and swing phase determination based on a 3D accelerometer on the skate

was applied to extract valid timing characteristics. The Contact Time (CT) was

calculated over the period of contact with the skate and the ice. The Stride

Time (ST) was calculated from initial contact to subsequent ice contact of the

same skate.

Stride propulsion

The 3D acceleration signal of the lower back accelerometer was low pass filtered

(6 Hz, wavelet filter) (Camomilla et al., 2018) and used to quantify the propulsive

power of skating strides. For each of the three axes of the accelerometer, a 0.5 Hz

low pass filtered signal (wavelet filter) were subtracted (Wixted et al., 2007) from

the original signal, to remove the static acceleration component from the signals.

The remaining signals were used to estimate the propulsion power during a

stride. A stride specific value was obtained by calculating summed acceleration

magnitudes of the three axes, normalized to the stride duration, and defined as
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Stride Propulsion (SP) (equation 3.1).

SP =
1

ST

( ∫ ST

0
|x(t)|dt +

∫ ST

0
|y(t)|dt +

∫ ST

0
|z(t)|dt

)
(3.1)

x(t), y(t), and z(t) refer to the components of the x-, y-, and z- axis samples and

ST represents the stride time.

All biomechanical variables were calculated for the second and sixth strides of

the same three trials as used for the identification of the performance groups.

These strides were selected, as they represent the accelerative and steady-state

phases of forward skating (Pearsall et al., 2001), and were derived from the skate

mounted accelerometer.

3.3.6 Statistics

Group means and standard deviations of all variables were computed. Two-way

mixed model analyses of variance (ANOVAs) with between-subject factor of

player caliber (high/low) and within-subject factor of stride type (acceleration/

steady-state) were used to perform statistical comparisons of the biomechanical

variables (CT, ST, SP). Additionally, Pearson’s correlations were calculated to

examine associations between the biomechanical variables (CT, ST, SP) and the

performance variable (TST). The size of the correlation coefficient r was indi-

cated as follows: small correlations by 0.10 < r < 0.30, medium correlations by

0.30 < r < 0.50 and large correlations by r > 0.50 (Cohen, 1988). The level of

statistical significance was set at P < 0.05. Statistical tests were carried out with

IBM SPSS Statistics (Version 25.0, SPSS Inc., IBM, Armonk, NY, USA).

3.4 Results

3.4.1 Di�erences across skill levels and sprint phases

Mean and standard deviation for the biomechanical variables (CT, ST, SP) as

well as P values and effect sizes of the ANOVAs are shown in Table 3.2. Dur-

ing both stride types, high caliber exhibited a shorter CT and an increased SP

than low caliber (P < 0.05). ST did not differ across player caliber. When

comparing acceleration and steady-state strides, CT and ST was seen to be sig-

nificantly shorter during the accelerative phase compared to the steady-state

phase (P < 0.05). In addition to changes in timing characteristics, SP was

seen to be significantly higher for acceleration strides compared to steady-state
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Table 3.2: Differences in skating biomechanics (CT = contact time, ST = stride
time, SP = stride propulsion) across skill level (high caliber and low caliber) and
sprint phase (acceleration = 2nd stride, steady-state = 6th stride).

Stride High Caliber Low Caliber Difference Pgroup η2
p group Pstride η2

p stride

CT [%]
2nd 55.14 ± 5.18 58.60 ± 3.17 3.46

0.046* 0.184 0.010* 0.288
6th 58.02 ± 2.83 60.36 ± 3.35 2.34

ST [s]
2nd 0.51 ± 0.04 0.54 ± 0.05 0.02 0.252 0.065 <0.001* 0.840
6th 0.60 ± 0.04 0.62 ± 0.05 0.02

SP [g]
2nd 1.93 ± 0.33 1.58 ± 0.24 0.35 0.005* 0.335 <0.001* 0.515
6th 0.60 ± 0.04 0.62 ± 0.05 0.02

Notes: Values are mean ± SD. P values and effect sizes (Partial Eta Squared η2
p) as

revealed by two-way mixed model analyses of variance (P < 0.05): * statistically signif-
icant; small effect: η2

p ≥ 0.01; medium effect: η2
p ≥ 0.06; large effect: η2

p ≥ 0.14 (Cohen,
1988).

strides (P < 0.05). The two-way ANOVAs did not show any significant interac-

tions with respect to player caliber or stride type.

3.4.2 Relationship to sprint performance

Correlations between each biomechanical variable (CT, ST, SP) and the sprint

performance (TST) are presented in Figure 3.2. SP was found to be largely cor-

related with the TST for an acceleration stride (r = −0.57, P < 0.05) and mod-

erately correlated with the TST for a steady-state stride (r = −0.44, P < 0.05),

respectively. For both stride types (acceleration and steady-state), no significant

correlation with TST were seen for CT and ST. R values of 0.34–0.42 and 0.16–

0.25 indicate a moderate and small relationship with performance (TST) for CT

and ST, respectively.

3.5 Discussion

The current study investigated the feasibility of using body worn accelerometers

to identify performance related biomechanical changes in forward skating. In-

field diagnosis opens new possibilities to gauge the impact of training or mon-

itor individual skating performance (Camomilla et al., 2018; Myklebust et al.,

2015; van der Kruk et al., 2016). For this purpose, two 3D accelerometers were

placed on the participants while they performed 30 m skating sprints. Two mea-

sures of the temporal stride characteristics (CT and ST) and one measure of the

propulsive power of a skating stride (SP) were evaluated as meaningful biome-

chanical variables. Previous research in forward skating biomechanics (Buck-

eridge et al., 2015; Renaud et al., 2017; Stidwill et al., 2009; Upjohn et al., 2008)
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has highlighted that skating technique elements such as CT or elements charac-

terizing the propulsive power such as CoM acceleration are closely related to

skating performance. Based on the current literature, we expected that our mea-

sures show discriminating effects across skill levels and sprint phases and we

speculated that the measures indicate a strong relationship to the overall skat-

ing performance (TST).

The study revealed that: (i) the variables CT and SP discriminated between high

and low caliber ice hockey players; (ii) the variables CT, ST and SP discriminated

between fundamental skating phases (accelerative and steady-state); (iii) SP of

acceleration strides primarily correlated to skating performance (TST). In conse-

quence, the results indicate that accelerometer-derived biomechanical variables

are effective at predicting skating performance.

3.5.1 Di�erences across skill level

High caliber players performed the 30 m sprint 9% (average decrease of the TST)

faster than the low caliber players, which corresponds to a 0.56 m/s increased

average skating velocity (high caliber: 6.90 m/s, low caliber: 6.34 m/s). This

highlights a clear distinction in terms of the skating performance. The first hy-

pothesis was confirmed by the main effects of player caliber for SP and CT. The

increased SP and shorter CT of high caliber players is in line with previous find-

ings on the level of lower limb joint kinematics (Buckeridge et al., 2015; Renaud

et al., 2017; Upjohn et al., 2008), CoM movement (Renaud et al., 2017), plantar

force application (Buckeridge et al., 2015) and muscle activation pattern (Buck-

eridge et al., 2015). In particular, the 22% increased SP (average increase) of high

caliber players highlights their skills to apply a relatively large impulse to the

body’s center of mass when compared to the recreational player. Leg strength is

of importance in this context, as previous studies have either linked differences

between high and low caliber players (Buckeridge et al., 2015; Upjohn et al.,

2008) or identified leg power measures (e.g. long jumps) as predictors of skat-

ing sprint performance (Farlinger et al., 2007). As reported for the sprint start

in running (Mero et al., 1992), high caliber players have the ability to generate

maximal forward acceleration to attain high forward velocity of the CoM.

High caliber players also showed a decreased CT, which goes along with an in-

creased swing phase duration (Pearsall et al., 2000). The finding of a decreased

CT for high caliber players is in agreement with the findings for other temporal
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variables (e.g. double-support time). Renaud et al. (2017) found a decreased

double-support time for high caliber players in comparison with low caliber

players. The coupling between the biomechanical changes with respect to the

skating performance (TST) can be described as follows: A high propulsive power

(i.e. increased SP) is necessary to skate fast. Therefore, the consequence of skat-

ing with a higher power leads to a change in the timing characteristic of the

stride. The contact phase decreases (i.e. shorter CT), while the swing phase

increases in order to not compromise stride rate/time. This results in having a

higher stride propulsion, which leads to a change in timing characteristics, and

ultimately, a higher skating performance as shown for high caliber players (i.e.

shorter TST). The described coupling is supported by studies in cross-country

skiing (Nilsson et al., 2004) and roller skating (Lindinger et al., 2009), which

highlighted similar relationships between biomechanical variables and skating

performance.

3.5.2 Di�erences across sprint phases

In terms of the comparison between the two stride types, significant differences

were seen for CT and ST as well as for the SP. These findings confirm hypothesis

two. Substantial biomechanical differences between the accelerative and steady-

state sprint phase were revealed and provide evidence that the accelerometer-

derived variables are sensitive to modifications in skating technique. Our results

confirm earlier studies in ice hockey skating related areas, such as speed skating

and cross-country skiing, which showed the sensitivity of accelerometers to cap-

ture biomechanical skating variables and distinguish skating technique (Mykle-

bust et al., 2014, 2015; van der Kruk et al., 2016). Differences in the movement

strategies between the two sprint phases of forward skating have been shown in

ice hockey (Buckeridge et al., 2015; Stidwill et al., 2009) and speed skating (De

Koning et al., 1995) studies. The observed increase in the SP correspond well

with the larger plantar push-off force during the initial sprint phase shown

by Buckeridge et al. (2015) and underline the increased propulsive demands for

a running-like motion compared to a gliding motion. During the accelerative

phase, the player pushes against a fixed point on the ice, in order to increase the

skating velocity (De Koning et al., 1995). During the constant velocity phase, the

skater can typically take advantage of a gliding push-off technique (De Koning

et al., 1995), which corresponds to a longer CT and ST.
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3.5.3 Biomechanics and sprint performance

The three analyzed biomechanical variables showed varying levels of association

with the skating performance. Our third hypothesis was not supported, as the

correlation results indicated only for SP a strong relationship to the total sprint

time. The negative correlations (racc = −0.57, rss = −0.44) between the SP and

the TST has shown that a higher stride intensity is associated with a higher per-

formance (i.e. shorter sprint time). In light of the importance attributed to SP

by our analysis, the results of the present study are consistent with the results

of Farlinger et al. (2007), who identified primary leg power variables in off-ice

tests (e.g. off-ice sprint and 3 hop jumps) as the best predictors of on-ice skating

performance. The derived SP from the acceleration of a single sensor positioned

on the lower back, nearby the position of the CoM, can provide useful infor-

mation as an intensity measure for an in-field skating performance evaluation.

As stated by Myklebust et al. (2014) for skiing, such measures are suitable for

direct feedback systems, comparison of different level of athletes in the field,

documenting development of technique over time, and also detecting changes

in technique due to fatigue.

CT showed positive correlations at moderate strength with TST (racc = 0.42,

rss = 0.34), which indicates that a shorter total sprint time was reached with

a shorter CT. Due to low correlations between the ST and TST (racc = 0.25,

rss = 0.16), ST was not a clear indicator for high skating performance. This is

in accordance with the absence of a significant group effect for ST between low

and high caliber player. However, similar as shown for running (Buchheit et al.,

2015), temporal variables could be beneficial for monitoring acute neuromuscu-

lar fatigue and serve as fatigue-sensitive measures.

Overall, our results showed higher correlations with the total sprint time for ac-

celeration strides than for maximum velocity strides. These results demonstrate

the accelerative phase as a key portion of forward skating, which has been high-

lighted in previous studies (Buckeridge et al., 2015; Marino, 1995; Renaud et al.,

2017). The accelerative phase requires high mechanical power so as to over-

come inertia. Greater propulsive capabilities can lead to larger initial propul-

sion. In addition, the accelerative phase of skating is considered to be crucial

to a player’s success in a game situation (Renaud et al., 2017) and emphasized

in skill development (Marino, 1995), thus supporting the higher association of

accelerative strides with skating performance.
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3.5.4 Limitations

The players needed to carry a backpack with data acquisition equipment (total

mass approximately 4 kg), which could have limited them in their usual skating

style. However, the natural hockey setting was mimicked by wearing essential

security gear and skating with a stick, as per their natural skating environment.

Participants gave subjective feedback that they felt no constraints in their skat-

ing style caused by the test setting or equipment.

Although care was paid to the fixation of the accelerometers to limit their oscilla-

tions and any misalignment, we cannot fully ensure that the fixation technique

excluded this source of error due to the explosive task and an eventual loosening

of tape across the lumbar accelerometer. However, in order to control for this is-

sue, the attachment of the accelerometer was checked periodically and replaced

when necessary.

The SP was calculated on acceleration data in all three axes of the accelerome-

ter on the lower back. Therefore, a differentiated consideration of acceleration

caused by a high propulsive effort in forward direction and acceleration due to

an inefficient skating technique (e.g. vertical motion of the CoM) is not possi-

ble. This combined consideration of the 3D acceleration for the estimation of

the propulsion power of a skating stride is a potential limitation of the study.

Future studies could focus on the quantification of energy fluctuations during

skating. In this context, the coupling of accelerometers with gyroscopes could

help to estimate the displacement of the CoM in vertical, sideward and forward

direction (Myklebust et al., 2015). Advantages of the combined consideration

of the 3D acceleration are the prevention of inaccuracies due to the discrepancy

between the movement in a global coordinate system and the sensing of acceler-

ation with an accelerometer attached to a part of the body (Kavanagh & Menz,

2008) as well as the prevention of inaccuracies when estimating and analysing

linear velocity and displacement by numerical integration of acceleration signals

(Camomilla et al., 2018). It must be noted that it remains unknown to what ex-

tent the lower back located accelerometer can capture the actual acceleration of

the CoM. As stated by Myklebust et al. (2015), CoM variables estimated from a

lower back located accelerometer does not take into account the movement of the

upper limbs. Nevertheless, SP provided a clear distinction between high and low

caliber players and showed a high relationship to skating performance, which

can be valuable in in-field diagnosis without requiring cumbersome setup.
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3.6 Conclusions

This study demonstrated the use of two body worn 3D accelerometers to per-

form biomechanical performance analysis of ice hockey skating. The results

highlight the feasibility of obtaining skating performance data from body worn

accelerometers. Based on the findings of this study further investigations are

warranted, which aim to monitor biomechanical performance variables, such as

SP, over a longer period of time (e.g. training session) and at various levels of

intensity, and the analysis of different ice hockey-related movement tasks. In a

first step, the combination of a biomechanical performance variable extraction,

as presented in this paper, combined with an automated stride detection would

be advantageous. It could be interesting to measure temporal events bilaterally,

whereby the time play between both legs can be analyzed, and variables such

as the double support time could be extracted. As a consequence, the quality

of training and player development can benefit from wearable performance sen-

sors.
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4.1 Abstract

Knee Joint Forces (KJFs) are biomechanical measures used to infer the load on

knee joint structures. The purpose of this study is to develop an Artificial Neu-

ral Network (ANN) that estimates KJF during sport movements, based on data

obtained by wearable sensors. Thirteen participants were equipped with two

Inertial Measurement Units (IMUs) located on the right leg. Participants per-

formed a variety of movements, including linear motions, changes of direction,

and jumps. Biomechanical modelling was carried out to determine KJF. An

ANN was trained to model the association between the IMU signals and the

KJF time series. The ANN-predicted KJF yielded correlation coefficients that

ranged from 0.60 to 0.94 (vertical KJF), 0.64 to 0.90 (anterior-posterior KJF) and

0.25 to 0.60 (medial-lateral KJF). The vertical KJF for moderate running showed

the highest correlation (0.94± 0.33). The summed vertical KJF and peak verti-

cal KJF differed between calculated and predicted KJF across all movements by

an average of 5.7% ± 5.9% and 17.0% ± 13.6%, respectively. The vertical and

anterior-posterior KJF values showed good agreement between ANN-predicted

outcomes and reference KJF across most movements. This study supports the

use of wearable sensors in combination with ANN for estimating joint reactions

in sports applications.

4.2 Introduction

Knee pain and injury are common problems in both elite and recreational ath-

letes in team and individual sports, and represent a large part of the costs of

medical care (de Loes et al., 2000). Studies have highlighted that team sports

that involve start-stop movements, rapid changes in direction, intense jumps

and landings are prone to knee injuries (Weiss & Whatman, 2015; Hootman

et al., 2007). Furthermore, epidemiological studies in team sports (Ingram et al.,

2008) and individual sports, such as running (Taunton et al., 2002), found the

knee to be one of the most frequently injured parts of the human body. The knee,

as an important load-bearing joint in the body, undergoes huge stress during ac-

tivities, due to the multidirectional forces exerted on the joint (Besier et al., 2001;

D’Lima et al., 2012, 2008; Mündermann et al., 2008). Therefore, forces transmit-

ted by the knee are of great significance, as they provide a resource to estimate

the internal loading of the anatomical structures (e.g., bones) (Umberger & Cald-

well, 2014; Vanrenterghem et al., 2017).
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A common way of assessing the load on internal anatomical structures is through

the use of biomechanical modelling. Inverse dynamics can be calculated by

means of three-dimensional (3D) motion capture and force plate data (Whit-

tlesey & Robertson, 2014). Inverse dynamics studies have been carried out to

determine knee kinetics during various movements, such as walking (Morgen-

roth et al., 2014; Stief et al., 2008), running (Stief et al., 2008; Cole et al., 1996),

cutting (McLean et al., 2004; Kaila, 2007), and jumping (Milner et al., 2011; Sell

et al., 2006). It must be noted that two different types of knee forces can be

calculated by means of biomechanical modelling. First are net joint forces (also

termed as joint intersegmental forces or joint reaction forces), calculated using

the traditional Newton-Euler inverse dynamics method (Whittlesey & Robert-

son, 2014; Zajac et al., 2002); second are joint contact forces, representing the

sum of the net joint forces and the compressive joint forces (Umberger & Cald-

well, 2014; Zajac et al., 2002; Shelburne et al., 2006). The compressive joint forces

are mainly caused by muscle forces, and can be obtained via musculoskele-

tal modelling (Umberger & Caldwell, 2014; Zajac et al., 2002; Shelburne et al.,

2006). Knee joint contact forces have additionally been measured in vitro by

means of an instrumented implant (D’Lima et al., 2008; Mündermann et al.,

2008). Therein, it was shown that knee joint contact forces are closely related

to the activity (D’Lima et al., 2008; Mündermann et al., 2008). High-impact ac-

tivities, such as tennis, generate peak tibial forces of up to four times the body

weight (D’Lima et al., 2008). Net joint forces underestimate the actual internal

load, but their determination require less complex modelling (Umberger & Cald-

well, 2014; Zajac et al., 2002). However, neither the biomechanical modelling nor

direct force measurement can be readily added to an athletes’ natural sports en-

vironment.

As a consequence, alternative technologies, such as wearable Inertial Measure-

ment Units (IMUs), have experienced tremendous advances within the last two

decades (Chambers et al., 2015; Camomilla et al., 2018). The integration of

such sensors into sports equipment (e.g., shoes) or attachment to an athlete

has allowed the assessment of temporal, kinematic, and dynamic parameters

(Camomilla et al., 2018). The recent review by Camomilla et al. (2018) high-

lighted the potential of wearable inertial sensors for sports performance evalua-

tion. However, performance indicators are not necessarily appropriate to charac-

terize the loads on specific body structures, especially joints. The estimation of
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biomechanical variables has not yet been fully established, primarily due to the

difficulty in assessing external forces (Camomilla et al., 2018).

Recently, estimating the Ground Reaction Force (GRF) by means of wearable

sensors has gained more attention (Ancillao et al., 2018; Shahabpoor & Pavic,

2018). The majority of applied methods require modelling of the musculoskele-

tal system to a certain extent, which requires subject-specific data (e.g., mass, di-

mensions, and center of mass of the body segments), which inevitably introduce

inaccuracies and uncertainty (Ancillao et al., 2018; Karatsidis et al., 2017; Guo

et al., 2017). As a consequence, several studies have explored modern machine

learning techniques to simplify modelling and data acquisition strategies (Guo

et al., 2017; Wouda et al., 2018; Leporace et al., 2015). The recent study by Wouda

et al. (2018) presented an Artificial Neural Network (ANN) approach to estimate

vertical GRF during running, based on vertical accelerations and lower limb

joint angles. The estimated GRF profiles of the non-personalized ANN showed

a high correlation (> 0.90) with the actual force time series. Guo et al. (2017)

used directly-measured acceleration signals without providing joint kinematics,

as well as a slightly different model (nonlinear, autoregressive moving average

model with exogenous inputs) to estimate vertical GRF during walking. In this

study, a minimum model prediction error of 3.8% was shown when comparing

the predicted vertical GRF time series to data measured directly from pressure

insoles. Although the studies described above have estimated forces during lo-

comotion, no study has yet performed a direct estimation of knee joint forces;

these are of paramount importance, as the GRF is not necessarily an accurate

predictor of knee joint loading, due to modulations within the kinetic chain of

the lower extremity (Morgenroth et al., 2014; Cole et al., 1996; Matijevich et al.,

2019).

In summary, having a field-based method to quantify and monitor knee joint

forces in the field is of substantial importance from two viewpoints: (i) studying

the relationship between force measures and injury helps to establish effective in-

jury prevention strategies; and (ii) to monitor an athlete’s workload is important

in setting up effective training programs, which provide an adequate training

stimulus while minimizing the risk of non-functional overreaching (e.g., pain).

Providing this feedback to athletes, coaches, and physicians is highly relevant,

especially during rehabilitation after an injury.

Therefore, the purpose of this study was to develop an ANN that estimates net
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knee joint forces during sport movements, based on data obtained by wearable

sensors. The findings of this study could help to overcome current restrictions in

the mobile assessment of knee joint forces and open new possibilities for in-field

diagnosis, which could help to provide better injury prevention strategies in the

future.

4.3 Materials and methods

4.3.1 Participants

A total of 13 healthy male sport students (age: 26.1 ± 2.9 years; height: 178.7 ±

5.5 cm; body mass: 78.4 ± 5.9 kg) voluntarily participated in this study. None

reported recent injuries. The study was approved by the ethics committees of

the Karlsruhe Institute of Technology. All participants were informed of the

experimental procedures and gave informed written consent prior to the test.

4.3.2 Measurement protocol

All participants came once to the institutional motion analysis laboratory. After

signing the study documents, anthropometric measurements were taken, and

the data collection equipment was attached. After warming up by running

on a treadmill for 5 min at a self-selected speed, participants were instructed

to perform a variety of sport-specific movements, including moderate running;

fast running; running 90° clockwise turns; running 90° counterclockwise turns;

sprint start; full-stop after sprinting; left-sided cutting maneuver; right-sided

cutting maneuver; side shuffle cut; straight ahead walking; walking 90° clock-

wise turns; walking 90° counterclockwise turns; one-leg horizontal jumps (sub-

maximal; distance = 50% body height); and maximal, two-leg, vertical counter

movement jumps. For a detailed description of the cutting maneuver (called

a "v-cut") and side shuffle cut, see Neptune et al. (1999). The 90° turns were

carried out following Krafft et al. (2015).

4.3.3 Measurement setup

Full-body kinematics were recorded with a marker-based motion capture sys-

tem (11 MX-13 cameras, 200 Hz, Vicon, Oxford, UK). A total of 42 spherical

reflective markers were placed on the participants’ skin using the ALASKA Dy-

namicus protocol (ALASKA, INSYS GmbH, Germany). 3D GRF data were col-

lected simultaneously from two plates (1000 Hz; AMTI Inc., Watertown, MA,
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USA) embedded in the floor and centered in the capture volume. Two identi-

cal, custom-built, six-degrees-of-freedom IMUs (1500 Hz, ±8 g accelerometer,

±2000 °/s gyroscope) were attached to each participant’s right leg via a knee

sleeve, in order to capture IMU signals related to knee kinematics and dynamics.

The IMUs were positioned at the upper and lower frontal end of the sleeve (Fig-

ure 4.1), and connected to a data acquisition unit. The data collecting systems

were synchronized during post-processing by an analog signal, induced by the

3D motion capture system each time data acquisition was initiated.

Figure 4.1: Placement of Inertial Measurement Units (IMUs) used in the study.
The IMUs were positioned in the two black patch pockets at the upper and lower
frontal end of the sleeve.

4.3.4 Data processing and biomechanical modelling

The 3D trajectories of the markers were reconstructed using Vicon Nexus V1.8.5.

After 15 Hz low-pass filtering (Butterworth fourth-order filter) of the 3D marker

coordinates and GRF data (Härtel & Hermsdorf, 2006), net Knee Joint Force

(KJF) (Fv = vertical, Fap = anterior–posterior, and Fml = medial–lateral compo-

nent) were determined via inverse dynamic modelling, using the full-body Dy-

namicus 9 model (Härtel & Hermsdorf, 2006; Willwacher et al., 2017). Each

participant was individually modeled as a linked-segment model based on stan-

dardized anthropometric measures (Robertson, 2014). By means of the recorded
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full-body kinematics and external forces, inertial net forces were calculated (Whit-

tlesey & Robertson, 2014). A 20 N threshold of the vertical GRF was used

to extract the stance phase for each locomotion movement (Milner & Paque-

tte, 2015). Two separate stance phases were extracted for the jumps. The first

represented take-off, starting at the time point when vertical GRF undercut the

body weight, and ending when vertical GRF was zero (beginning of the flight

phase). The second stance phase represented the landing, starting when vertical

GRF was greater than zero (end of the flight phase), and ending when vertical

GRF equaled body weight. As a consequence, each of the two jump forms con-

sisted of two conditions, whereas the other twelve movements consisted of one

condition. Ten trials were excluded from the inverse dynamic calculation, due

to measurement errors of the 3D motion capture system, resulting in a total of

198 trials (13 participants’ x 16 conditions − 10 invalid trials).

The IMU signals were also filtered (Butterworth fourth-order filter; cut-off fre-

quency of 15 Hz) and each trial was cropped to contain data for the same phase

as the KJF. Subsequently, the KJF time series and IMU signals were organized

to represent 0%–100% of the stance phase. Finally, an IMU signal matrix and

a KJF matrix were created by vertically concatenating the IMU signals and KJF

time series, respectively, of all the trials. Both matrices contained 19,800 rows

(198 trials x 100 time points), with 12 columns for the IMU signal matrix (six

acceleration signals + six angular velocity signals) and three columns for the

KJF matrix (three spatial dimensions).

4.3.5 Neural network modelling

The ANN developed for this study maps the IMU signals of all movements to

the KJF time series of all movements, and was set up with the Neural Network

Toolbox in MATLAB R2018b (The MathWorks, United States). The IMU signal

matrix served as the input and the KJF matrix served as the target (output). Thus,

the ANN had 12 variables (i.e., nodes) in its input layer and three variables in its

output layer. The ANN had two hidden layers, one with 250 and one with 100

neurons, which were connected to the input and output nodes (Wouda et al.,

2018). The ANN was trained with a Levenberg-Marquardt, back-propagated

error correction, and a random division of 70/15/15 was used for the respective

training/validation/testing. Hyperbolic tangent sigmoid activation functions

were defined between the hidden layers. The network was trained for 1000
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iterations, and training was stopped if the gradient did not decrease for six

consecutive iterations, or if the gradient was smaller than 1 x 10−6. Evaluation

of the ANN was done using a leave-one-subject-out cross-validation, in order

to assess the performance of a non-personalized model. The cross-validation

involved training the ANN with all trials from 12 participants (i.e., the training

set), and then testing with the trials from the remaining participant (i.e., the test

set).

4.3.6 Statistical analysis

For each movement, the similarity between the ANN-predicted KJF time se-

ries (F∗v , F∗ap and F∗ml) and the calculated inverse dynamics (Fv, Fap and Fml)

was assessed using Pearson’s correlation coefficient (r) and relative Root-Mean-

Squared Error (rRMSE) (Ren et al., 2008). The averages and standard deviations

from the 13 cross-validation subsets were calculated for r and the rRMSE. A

Fishers z-transformation of r was performed to calculate the mean correlation

coefficient. Mean values were expressed as r by reversing the transformation.

Additionally, classical discrete biomechanical metrics of knee loading were eval-

uated by means of peak Fv and summed Fv over the stance phase. %Diff between

ANN-predicted peak Fv, inverse-dynamic calculated peak Fv, and summed Fv

were used to provide a pragmatic interpretation.

4.4 Results

Table 4.1 shows an overview of the estimated accuracy for all movements. The

ANN-predicted KJF yielded r values that ranged from 0.60 to 0.94 (F∗v vs. Fv),

0.64 to 0.90 (F∗ap vs. Fap) and 0.25 to 0.60 (F∗ml vs. Fml) for the different movements.

F∗v for moderate running showed the highest correlation with Fv (0.94 ± 0.33).

The rRMSE between F∗v and Fv, F∗ap and Fap, and F∗ml and Fml ranged between

14.2% and 25.9%, 17.4% and 27.1%, and 27.7% and 45.9%, respectively. The

estimation of Fv for moderate running and walking yielded the lowest rRMSE

(14.2% each). The time series of estimated KJF are shown in Figure 4.2 for three

representative movements (moderate running, walking a 90° counterclockwise

turn, and a one-leg horizontal jump take-off). The KJF time series of all move-

ments are provided as Supplementary Material (S1).

Results of the discrete outcomes (peak Fv and summed Fv) are presented in

Table 4.2. The mean peak Fv difference between ANN-predicted and the ref-
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Table 4.1: Accuracy (r: Pearson’s correlation coefficient; rRMSE: relative root-
mean-squared error) of the predicted continuous knee joint force outcomes
(vertical (F∗v ), anterior–posterior (F∗ap), and medial–lateral (F∗ml)). Values are pre-
sented as mean (and standard deviation).

Movement task Component

F∗v F∗ap F∗ml

r rRMSE
[%]

r rRMSE
[%]

r rRMSE
[%]

Moderate running 0.94
(0.33)

14.2
(4.0)

0.90
(0.30)

18.9
(5.5)

0.43
(0.26)

41.7
(11.5)

Fast running 0.89
(0.43)

20.3
(5.8)

0.88
(0.44)

22.9
(9.5)

0.42
(0.41)

43.4
(12.0)

Running
90° clockwise turn

0.89
(0.40)

17.2
(4.0)

0.82
(0.36)

21.0
(6.5)

0.38
(0.35)

36.7
(18.4)

Running 90° counter-
clockwise turn

0.87
(0.35)

17.5
(5.3)

0.88
(0.43)

19.5
(8.1)

0.37
(0.42)

37.2
(11.5)

Sprint start 0.73
(0.45)

25.9
(8.8)

0.76
(0.40)

25.8
(9.3)

0.31
(0.29)

43.3
(10.0)

Full-stop 0.78
(0.45)

24.7
(7.2)

0.80
(0.34)

21.8
(7.5)

0.45
(0.29)

37.7
(9.0)

Left-sided cutting
maneuver

0.86
(0.44)

19.4
(6.6)

0.86
(0.41)

22.0
(7.3)

0.30
(0.42)

44.8
(13.0)

Right-sided cutting
maneuver

0.86
(0.39)

19.0
(5.4)

0.84
(0.35)

21.5
(5.2)

0.25
(0.39)

45.7
(9.0)

Side shuffle cut 0.79
(0.47)

20.4
(6.6)

0.81
(0.43)

19.8
(6.0)

0.35
(0.45)

36.5
(9.3)

Walking 0.87
(0.32)

14.2
(4.3)

0.71
(0.39)

20.8
(5.6)

0.60
(0.31)

27.7
(5.7)

Walking 90° clockwise
turn

0.81
(0.27)

16.9
(4.5)

0.65
(0.31)

23.0
(6.2)

0.31
(0.20)

34.1
(8.1)

Walking 90° counter-
clockwise turn

0.83
(0.29)

15.3
(4.0)

0.64
(0.30)

22.7
(5.8)

0.48
(0.34)

29.1
(6.0)

One-leg jump take-off 0.92
(0.39)

15.4
(6.6)

0.89
(0.25)

17.4
(5.5)

0.31
(0.46)

45.9
(19.7)

One-leg jump landing 0.84
(0.43)

16.7
(7.2)

0.77
(0.53)

25.1
(9.4)

0.42
(0.38)

38.9
(14.4)

Two-leg jump take-off 0.60
(0.36)

23.0
(8.6)

0.82
(0.40)

20.5
(7.4)

0.51
(0.23)

27.8
(2.9)

Two-leg jump landing 0.61
(0.34)

25.9
(6.2)

0.65
(0.36)

27.1
(5.5)

0.54
(0.32)

37.6
(6.8)

Mean 0.82
(0.10)

19.1
(4.0)

0.79
(0.09)

21.8
(2.6)

0.40
(0.10)

38.0
(6.1)
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Figure 4.2: Mean (and standard error) of the estimated three-dimensional (3D)
Knee Joint Force (KJF) (F∗v , F∗ap, and F∗ml) for moderate running (top), walking a
90° counterclockwise turn (middle), and One-Leg horizontal Jump (OLJ) take-
off are presented (normalized to the stance phase), compared to their respective
reference values (inverse dynamics-calculated knee joint forces Fv, Fap, and Fml).
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erence values across all movements was 17.0% ± 13.6%. The smallest %Diff

values were seen for side shuffle cut (2.6% ± 19.3%). Differences between the

ANN-predicted and the reference values were smaller for the summed Fv (mean

differences across all movements = 5.7% ± 5.9%) compared to the peak Fv (mean

differences across all movements = 17.0% ± 13.6%). Of the 16 movements, 13

had a %Diff for summed Fv smaller than 6.8%. Two-leg jump take-off and land-

ing yielded substantial differences for both metrics (%Diff peak Fv ≥ 22.9%;

%Diff summed Fv ≥ 16.1%).

Table 4.2: Absolute Percent Differences (%Diff ) between ANN-predicted peak,
inverse dynamic-calculated peak, and summed vertical knee joint force (Fv). The
superscript minus indicates an underestimation of the ANN.

Movement task Discrete biomechanical metrics

Peak Fv Summed Fv

%Diff %Diff

Moderate running 10.0 (12.8) 3.0 (11.0)–

Fast running 16.1 (34.2) 2.8 (15.5)–

Running
90° clockwise turn

17.4 (36.3) 6.8 (15.2)–

Running 90° counter-
clockwise turn

19.3 (28.0) 2.3 (9.6)–

Sprint start 24.9 (26.7) 1.5 (31.0)–

Full-stop 3.3 (23.3) 2.6 (32.0)–

Left-sided cutting
maneuver

21.0 (25.6) 0.8 (15.8)

Right-sided cutting
maneuver

17.2 (20.2) 1.9 (16.4)

Side shuffle cut 2.6 (19.3)– 15.0 (7.3)–

Walking 13.8 (16.2) 0.9 (9.3)

Walking 90° clockwise
turn

8.7 (12.6) 2.1 (12.7)

Walking 90° counter-
clockwise turn

19.5 (24.5) 2.6 (7.5)

One-leg jump take-off 8.0 (18.7) 6.5 (17.0)–

One-leg jump landing 6.4 (12.6)– 6.1 (10.5)–

Two-leg jump take-off 60.8 (59.8) 16.1 (31.2)

Two-leg jump landing 22.9 (34.7) 19.5 (30.0)

Mean 17.0 (13.6) 5.7 (5.9)

4.5 Discussion

This study investigated the feasibility of an ANN approach to estimate KJF dur-

ing sport-specific movements based on data from two IMUs. Mobile assessment

of KJF allows measurement of biomechanics outside the laboratory. The ac-

curacy of ANN estimation of various common sport-specific movements was
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compared to standard inverse dynamic-calculated KJFs.

The results indicated that the estimation accuracy of the ANN varied between

movements, but that accuracy was good for most movements. With respect to

the three different force components, vertical KJF showed the highest agreement

between the ANN-predicted outcomes and the inverse dynamics-calculated data,

followed by the anterior–posterior KJF, and finally the medial–lateral. For 13

of the 16 movements, discrete biomechanical measures showed a %Diff for

summed Fv of less than 6.8%; and 12 of the 16 movements showed a %Diff

for peak Fv of less than 19.3%.

4.5.1 Comparison of di�erent movements

In general, good agreement (r ≥ 0.81 and rRMSE ≤ 20.3%) was found for Fv of

the majority (11 out of 16) of the analyzed movements. Ten of the 16 movements

showed comparable estimation accuracies (r ≥ 0.80 and rRMSE ≤ 22.9%) for

Fap. However, there was a pronounced drop (r ≤ 0.60 and rRMSE ≥ 27.7%) in

estimation accuracy for Fml .

When comparing the estimation accuracy for Fv across the different movements,

moderate running had the highest predictive power. Alterations of the running

movement, such as running turns and cutting maneuvers, as well as walking

forms, showed slight reductions in the estimation accuracy. A potential reason

for the higher predictive power of moderate running is the repeatable charac-

teristic of the movement, while other movements are performed with a higher

rate of variation (Morgan et al., 1991). Similar changes in estimation accuracy

were shown by Fluit et al. (2014) when they evaluated a prediction model for

GRFs and moments during various activities of daily living, by means of 3D

full-body motion. The limited estimation accuracy for sprint starts, full-stops,

and side shuffle cuts may be explained by higher variations in the execution of

such movements. Reduced estimation accuracy in continuous outcomes does

not necessarily mean an inaccurate estimation of discrete variables, as seen for

full stops. However, it must be noted that both variables show a high standard

deviation, which indicates a wide dispersion across participants.

Across all movements, differences for summed Fv were lower than for peak Fv.

Therefore, estimated peak Fv should be treated with caution. The ANN often

overestimated the peak Fv, but slightly underestimated the summed Fv for the

majority of the movements. A study by Charry et al. (2013), which investigated
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the predictive ability of tibial accelerations to estimate peak vertical GRF in run-

ning, showed lower deviations (rRMSE ≈ 6%) for comparable discrete variables.

However, their method was only applied to training and testing on individuals.

Distinct differences (r for take-off: 0.92 vs. 0.60; r for landing: 0.84 vs. 0.61) in es-

timation accuracy were seen between one-leg jumps and two-leg jumps, respec-

tively. Additionally, a high %Diff was seen between ANN-predicted and inverse

dynamics-calculated peak Fv and summed Fv for two-leg jumps. One reason for

the reduced estimation accuracy for two-leg jumps may be the bipedal charac-

teristic of the movement. Potential inaccuracies in KJF estimations are caused

by the distribution of the total external load on both legs. Combining KJF es-

timations with an activity recognition approach could help to overcome such

limitations by selecting individual prediction models for movement categories.

4.5.2 Comparison with related methods

Overall, machine learning-based approaches do not need an a priori knowledge

of the model or require modelling of the musculoskeletal system, since they

build up their model as they go using training data (Ancillao et al., 2018). It

should be noted that ground truth reference data, such as the calculated KJFs

by means of biomechanical modelling, are necessary for the model development

process. Such methods run on the hypothesis that a relationship exists between

the sensor signals measured somewhere on the body and the biomechanical

target variable (e.g., KJF) (Ancillao et al., 2018). This is supported by the re-

lationship between acceleration and force, according to Newton’s second law

of motion, as well as by the relationship between the measured quantities and

the segment’s motion (Karatsidis et al., 2017; Wouda et al., 2018). There are

many studies highlighting the usability of ANN to estimate GRF or joint mo-

ments by means of kinematic data obtained from an optical motion analysis

system (Ancillao et al., 2018; Hahn & O’Keefe, 2008; Kipp et al., 2018; Oh et al.,

2013). In contrast to a machine learning-based approach, kinematics and kinet-

ics of the lower limb joints can be estimated by means of posture information

obtained from wearable sensors and an analytical model (Yang & Mao, 2015).

Such approaches typically require the modelling of the biomechanical system

(e.g., trunk, thigh, shank, and foot) to a certain extent. For the most part, com-

plex modelling is necessary to obtain reasonable results, as discrepancies in

subject-specific parameters, such as masses, dimensions, etc., inevitably intro-
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duce inaccuracies (Ancillao et al., 2018).

One of the first studies combining wearable sensors and ANN was done by Lep-

orace et al. (2015). Their findings revealed the lowest r in the medial–lateral

component when they estimated 3D GRF with an ANN during walking. In

the present study, the medial–lateral KJF were also found to have the lowest r

value compared to the other two components across all investigated movements.

Previous studies estimating the GRF highlighted similar findings and suggested

that this was due to the small magnitude of the lateral measurements, which

causes a larger impact of small errors on final estimates (Karatsidis et al., 2017;

Fluit et al., 2014; Oh et al., 2013). Karatsidis et al. (2017) compared the GRF

estimation accuracy of a full-body inertial motion capture and optical motion

capture system. Their results showed slightly higher r values (ranging from to

0.82 to 0.99 and 0.76 to 0.99 for the inertial and optical motion capture systems,

respectively) and lower rRMSE values (ranging from around 5% to 15% for both

systems) for walking than the present study.

Wouda et al. (2018) used a similar machine-learning approach to the one we used

for estimating vertical GRF and sagittal knee kinematics during running. The es-

timated vertical GRF profiles of their non-personalized ANN showed a slightly

higher agreement (r > 0.94) with the actual force time series for five of their eight

participants. One reason for the slightly lower accuracy in our study may be the

less specific model with respect to single movements. Overall, a more generic

model for multiple movements decreases the performance for some movements

(as described above), but provides the advantage that not every movement must

be modeled. From a practical point of view, this ultimately enlarges the use.

However, it remains unclear if the level of accuracy would be high enough for

applications of interest, such as tracking fatigue-related changes, which may be

related to increased chance of injury (Halson, 2014). This is especially due to

the fact that research in this area is limited, and much of what we know about

monitoring comes from personal experience (Halson, 2014). Future research in

applied settings would be indispensable to observe and analyze biomechanical

risk factors over a defined exposure time, with the ability to influence injury

prevention models (Adesida et al., 2019).
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4.5.3 Limitations

Attention was paid to the fixation of the IMUs to limit their oscillations and

any misalignment; however, we cannot fully ensure that the fixation technique

excluded this source of error, due to the explosive characteristic of some tasks.

To control for this issue, the exact fit of the sleeve was checked periodically

and replaced when necessary. Additionally, the IMUs measure acceleration and

angular velocity on the body surface, and relative movements may occur with

respect to the bone (Roetenberg et al., 2009). Such movements may negatively

affect the estimation of the KJFs, especially for movements that are highly dy-

namic.

As the estimation accuracy of the proposed approach depends on the neural

network architecture, this is a potential limitation of the study. Our ANN was

built in accordance with previous work (Wouda et al., 2018), and is capable of

mapping non-linearity between input and output; however, we cannot exclude

that other model specifications would result in an improved outcome. In addi-

tion, a relatively small sample size was used to build the ANN. This represents

a limitation of the study, as the robustness of the relationship between the input

and output variables of the ANN depends on the amount of training data (An-

cillao et al., 2018). The ANN was trained with data from all tested movements.

As a consequence, it remains unclear to which extent an ANN built with a sub-

set of movements could estimate KJFs of movements that were not included in

the training of the model. It is worth noting that the net KJF used to build the

ANN represent only a part of the internal loading of the anatomical structures.

Muscles forces, which contribute to the total force transmitted by the joint, were

not incorporated in the biomechanical modelling (Umberger & Caldwell, 2014;

Shelburne et al., 2006).

In the current approach, direct acceleration and angular velocity measures were

input to the ANN. The amplitudes of such signals are sensitive to the place-

ment and fixation technique, as well as participant anthropometrics and soft

tissue characteristics (Godfrey et al., 2008). In order to keep potential artefacts

low, this study involved only young and healthy male sport students. Further

research is necessary to better assess the effects of inter-participant variabilities

on input signals for the model building, as well as to translate the results of this

study to other age and sex groups or athletes in rehabilitation. Body weight nor-

malization of the KJF time series could help to compensate for variations across
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individuals.

4.6 Conclusion

The results of this study show that a machine-learning approach can be very

useful to estimate KJF for various movements based on data obtained by two

wearable sensors. Specifically, the vertical and anterior–posterior KJF showed

good agreement between the ANN-predicted outcomes and inverse dynamic-

calculated forces for a variety of movements. However, caution is required for

tasks with lower estimation accuracy (e.g., two-leg jumps). It could be helpful to

develop individual prediction models for movement categories, such as bilateral

tasks, in order to strengthen the overall estimation accuracy. Additionally, a com-

parison of ANN with different configurations and inputs could help to improve

the estimation accuracy, as well as perform a sensor-to-segment calibration for

aligning wearable sensors with human body segments. The scaling of input sig-

nals (e.g., acceleration signals to body mass) or the normalization of the KJF time

series to body weight could help to compensate for inter-individual differences.

Future research could focus on the combination of the presented approach with

musculoskeletal modelling or with direct force measurements, using an instru-

mented knee prosthesis. Providing the best means of reference data for the ANN

modelling could help to assess the internal loadings on the knee joint structures

more precisely. Looking ahead, this study supports the use of wearable sensors

in combination with machine-learning techniques for estimating joint reactions

in sports applications. Ultimately, this has high practical implications, as new

possibilities for in-field diagnosis can help to provide better injury prevention

strategies in the future.
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5.1 Abstract

Joint moment measurements represent an objective biomechanical parameter of

knee joint load in Knee Osteoarthritis (KOA). Wearable sensors in combination

with machine learning techniques may provide solutions to develop assistive

devices in KOA patients to improve disease treatment and to minimize risk of

non-functional overreaching (e.g., pain). The purpose of this study was to de-

velop an Artificial Neural Network (ANN) that estimates external Knee Flexion

Moments (KFMs) and external Knee Adduction Moments (KAMs) during vari-

ous locomotion tasks, based on data obtained by two wearable sensors. Thirteen

participants were instrumented with two Inertial Measurement Units (IMUs) lo-

cated on the right thigh and shank. Participants performed six different loco-

motion tasks consisting of linear motions and motions with a change of direc-

tion, while IMU signals as well as full body kinematics and ground reaction

forces were synchronously recorded. KFM and KAM were determined using

a full body biomechanical model. An ANN was trained to estimate the KFM

and KAM time series using the IMU signals as input. Evaluation of the ANN

was done using a leave-one-subject-out cross-validation. Concordance of the

ANN-estimated KFM and reference data was categorized for five tasks (walking

straight, 90° walking turn, moderate running, 90° running turn and 45° cutting

maneuver) as strong (r ≥ 0.69, rRMSE ≤ 23.1) and as moderate for fast running

(r = 0.65± 0.43, rRMSE = 25.5% ± 7.0%). For all locomotion tasks, KAM yielded

a lower concordance in comparison to the KFM, ranging from weak (r ≤ 0.21,

rRMSE ≥ 33.8%) in cutting and fast running to strong (r = 0.71± 0.26, rRMSE =

22.3%± 8.3%) for walking straight. Smallest mean difference of classical discrete

load metrics was seen for KFM impulse, 10.6%± 47.0%. The results demonstrate

the feasibility of using only two IMUs to estimate KFM and KAM to a limited

extent. This methodological step facilitates further work that should aim to im-

prove the estimation accuracy to provide valuable biofeedback systems for KOA

patients. Greater accuracy of effective implementation could be achieved by a

participant- or task-specific ANN modeling.

5.2 Introduction

Medio-tibiofemoral Knee Osteoarthritis (KOA) is a major cause of disability in

elderly people (Hurley et al., 1997) and accounts for high socio-economic bur-

den in industrial countries (Neogi et al., 2009; Reeves & Bowling, 2011; Ferreira
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et al., 2015). Symptoms known as knee pain, functional impairment and a loss of

mobility, can lead to physical and psychological disability and reduced quality

of life (Bennell et al., 2011; Richards et al., 2017).

Mechanical factors, particularly the knee joint load have shown to profoundly

influence the severity and progression of KOA (Sharma et al., 1998; Andriacchi

& Mundermann, 2006; Foroughi et al., 2009; Bennell et al., 2011; Reeves & Bowl-

ing, 2011). A widely used surrogate measure of the compressive load of the

medial compartment is the external Knee Adduction Moment (KAM) (Sharma

et al., 1998; Bennell et al., 2011; Reeves & Bowling, 2011; Ferreira et al., 2015).

Moreover, the Knee Flexion Moment (KFM) has been highlighted as a critical

measure to assess the loading of the medial compartment (Walter et al., 2010;

Ferreira et al., 2015; Cheung et al., 2018) as well as to quantify the progression

of patellofemoral cartilage damage (Teng et al., 2015; Crossley et al., 2016).

Beside other non-pharmacological conservative treatments (e.g., bracing or

footwear interventions) (Sarzi-Puttini et al., 2005; Reeves & Bowling, 2011), gait

modification approaches by gait retraining therapies (e.g., modifying the foot

progression angle) have shown to be effective to reduce the KAM during walk-

ing and to improve the symptoms of patients (Barrios et al., 2010; Cheung et al.,

2018; Karatsidis et al., 2018). Richards et al. (2017) stated in their systematic re-

view that a strong potential exists for the development of biofeedback systems

for reducing KAM and pain and for improving knee joint function in KOA pa-

tients. The development of assistive devices (e.g., a smart knee sleeve to monitor

the knee load in combination with a smartphone-based user feedback system)

could help to provide effective disease-enhancing interventions to slow down

the loss of cartilage volume (Shull et al., 2014). Additionally, as exercise is a

key component of the KOA management (Bennell et al., 2011; Ferreira et al.,

2015; Richards et al., 2017), assistive devices could be beneficial in supporting

therapeutical exercise. However, most of the current studies with respect to the

assessment of knee joint loading were conducted in a laboratory setting using

motion capture and force plate measurements (Barrios et al., 2010; Richards et al.,

2017; Cheung et al., 2018). The major shortcoming of such laboratory-based

methods is that they cannot be completely included into a patients’ habitual en-

vironment (Muro-de-la Herran et al., 2014; Shull et al., 2014).

As a consequence, alternative measurement technologies have been provided

progressive advances over the past years (Muro-de-la Herran et al., 2014; Wong
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et al., 2015). One of the first studies towards a wearable measurement tool was

done by van den Noort et al. (2011). The authors tested the effect of an in-

strumented force shoe in combination with an optoelectronic marker system on

target variables (e.g., KAM) in 20 KOA patients. Therein, the authors stated

the necessity of additional measurement equipment (e.g., inertial sensors) to

obtain joint positions and orientations as a complement to Ground Reaction

Force (GRF) measurements in order to calculate the KAM. Karatsidis et al. (2017)

compared GRF estimation accuracies of a full-body inertial motion capture and

optical motion capture system due to the importance of the GRF measures as

input in biomechanical analysis to estimate joint kinetics. Their results showed

comparable results between the two systems. Therefore, the authors concluded

that the inertial sensor-based system has a high potential in monitoring critical

biomechanical parameters in habitual conditions. Yang & Mao (2015) postulated

a method for evaluating the intersegmental forces and moments acting on the

lower limbs during walking solely based on posture data obtained from seven

inertial sensors placed on the lower limbs and trunk in combination with a 3D

analytical model. In 2018 Karatsidis et al. proposed and evaluated a wearable vi-

sual feedback system for gait retraining using inertial sensing with seven Inertial

Measurement Units (IMUs) and augmented reality technologies. The foot pro-

gression angle was used for visual feedback and was tracked by the wearable

system with a root mean square error of 2.4°, compared to an optical motion

capture system. Knee joint kinetics were not analyzed in this study. A further

approach of a mobile assessment of knee joint biomechanics in natural environ-

ment was recently provided by Konrath et al. (2019). The authors estimated the

KAM and the tibio-femoral joint contact force during activities of daily living by

means of combining musculoskeletal modeling with inertial motion capture (17

IMUs). The results showed comparable estimation accuracies for the IMU-based

approach compared to the same musculoskeletal model using optical motion

capture and force plate measurements.

The majority of applied methods require modeling of the musculoskeletal sys-

tem to a certain degree, with mandatory embedded subject-specific anthropo-

metric data (e.g., mass, dimensions and center of mass of the body segments).

However, such modeling processes inevitably introduce inaccuracies (van den

Noort et al., 2013; Faber et al., 2016; Ancillao et al., 2018). In contrast, machine

learning-based approaches do not need an a priori knowledge of the model as
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they build up their model by using training data (Sivakumar et al., 2016; An-

cillao et al., 2018; Halilaj et al., 2018). Accurate predictions for new data can

be made by learning the relationship between a set of independent variables

(e.g., IMU signals) and one or more dependent variables (e.g., KAM) (Lin et al.,

2016; Halilaj et al., 2018). Several studies have shown that machine learning tech-

niques, such as Artificial Neural Network (ANN), are powerful tools to deduce

biomechanical variables based on measured accelerations or angular velocities

of body segments (Leporace et al., 2015; Guo et al., 2017; Ancillao et al., 2018;

Wouda et al., 2018; Stetter et al., 2019b). The study by Wouda et al. (2018) used

an ANN approach to estimate vertical GRFs and sagittal knee kinematics dur-

ing running, based on three inertial sensors placed at the lower legs and the

pelvis. The estimated force-time profiles and flexion/extension profiles showed

high agreement with the optical and GRF reference measure. In a recent study

we presented an ANN approach to estimate knee joint forces in sport move-

ments (Stetter et al., 2019b). Good agreement between ANN-estimated outcomes

and inverse dynamics-calculated vertical and anterior-posterior knee joint forces

were shown, which highlights the feasibility of an ANN approach to estimate

internal loadings on the knee joint structures.

Although the above described studies have estimated joint kinematics and kinet-

ics during locomotion, no study has directly estimated biomechanical surrogate

measures for knee joint load in KOA using an ambulatory minimal body-worn

sensor setup so far. Therefore, the purpose of this study was to develop an ANN

that estimates KFM and KAM during various locomotion tasks based on data ob-

tained by two wearable sensors integrated in a knee sleeve. The findings of this

study could help to (i) overcome current restrictions in the mobile assessment

of knee joint loading in KOA patients and (ii) open new possibilities in diagnos-

ing the patients’ habitual life, which could help to improve disease treatment

strategies and minimizing the risk of non-functional overreaching (e.g., pain).

5.3 Materials and methods

5.3.1 Participants

The current study used data from the sample presented in Stetter et al. (2019b)

and forms a secondary dataset analysis. The sample consisted of thirteen healthy

males (age: 26.1 ± 2.9 years; height: 178.7 ± 5.5 cm; body mass: 78.4 ± 5.9 kg).

All participants exhibited bowlegs (minimum inter-knee distance of 0.05 m),
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which mimics the common varus malalignment of medial KOA patients (Ben-

nell et al., 2011). All participants gave written informed consent in accordance

with the Declaration of Helsinki. The study was approved by the ethics commit-

tee of the Karlsruhe Institute of Technology.

5.3.2 Experimental protocol

Measurements were performed at the BioMotion Center, Institute of Sports and

Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany. Two

identical custom-built 6DOF IMUs (1500 Hz, ±8 g accelerometer, ±2000 °/s gy-

roscope) were attached to each participant’s right leg while they performed six

different locomotion tasks at self-selected speed: walking straight, 90° walking

turn, moderate running, fast running, 90° running turn and 45° cutting maneu-

ver. Participants were instructed to perform the 90° turns in clockwise direction.

A detailed description of the right orientated cutting maneuver (named as v-cut)

is described by Neptune et al. (1999). Participants were instructed to perform

at least three successful trials of each task. A trial was considered successful

when the right foot landed cleanly within the boundaries of a force plate. The

IMUs were positioned in two patch pockets at the upper and lower frontal end

of a customized knee sleeve (Figure 5.1). This positioning was chosen in order

to capture IMU signals closely related to knee kinematics and dynamics, as the

recent study by Matijevich et al. (2019) has highlighted that a targeted approach

is necessary to obtain structure-specific loading.

Full body kinematics and GRFs (1000 Hz, AMTI Inc., Watertown, MA) were col-

lected synchronously using a marker-based motion capture system (11 MX-13

cameras, 200 Hz, Vicon, Oxford, UK) in order to perform biomechanical model-

ing. A total of 42 spherical reflective markers were placed on the participants’

body segments in accordance to the ALASKA Dynamicus protocol (ALASKA,

INSYS GmbH, Germany) (Härtel & Hermsdorf, 2006; Willwacher et al., 2017).

Prior to the attachment of the data collection equipment, standardized anthro-

pometric measurements were exhibited. The measurements consisted of a total

of 22 length, width and circumference measures of the body segments. Prior to

performing trials, a static calibration trial was recorded for each participant in a

natural upright posture.
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Figure 5.1: A participant wearing the knee sleeve on the right leg. The two
inertial measurement units were placed in the patch pockets at the upper and
lower frontal end of the knee sleeve.

5.3.3 Biomechanical model

The 3D marker coordinates and GRF data were reconstructed and filtered with

a 15 Hz low-pass filter (zero-phase Butterworth 4th order) (Kristianslund et al.,

2012). Inverse dynamics modeling was performed using the full-body Dynam-

icus 9 model (Härtel & Hermsdorf, 2006; Willwacher et al., 2017). Each partic-

ipant was individually scaled to the generic linked-segment model using the

measured anthropometrics and the static calibration trial (Whittlesey & Robert-

son, 2014). In a next step, the marker trajectories and GRFs acquired from the

dynamic trials were used to determine the Knee Flexion Moment (KFM) and

the Knee Adduction Moment (KAM). A 20 N threshold of the vertical GRF

was used to extract the stance phase for each locomotion movement (Milner &

Paquette, 2015). KFM and KAM time series were time-normalized to 100 time

steps representing 0 to 100% of the stance phase. Joint moment amplitudes were

normalized to body weight and expressed as external moments.

5.3.4 Machine learning model

ANN modeling was set up with the Neural Network Toolbox in MATLAB

R2019a (The MathWorks, USA). The IMU signals were low-pass filtered (zero-
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phase Butterworth 4th order filter; cut-off frequency of 15 Hz) and each trial

was cropped to contain data for the same phase as the biomechanical data. An

IMU signal matrix (rows: 13 participants x three trials x six tasks x 100 time

steps; columns: two locations x six spatial dimensions) and a biomechanical

data matrix (rows: 13 participants x three trials x six tasks x 100 time steps;

columns: two variables) were created by vertically concatenating the IMU sig-

nals and KFM and KAM time series of all trials, respectively. An ANN was

trained to model the association between the IMU signals and the KFM and

KAM time series. The IMU signal matrix served as input and the biomechanical

data matrix served as output (target). As a consequence, the ANN had 12 and

2 variables (i.e., nodes) in its input and output layer, respectively. The ANN

architecture was inspired by previous work (Favre et al., 2012; Wouda et al.,

2018) and had two hidden layers with 100 and 20 neurons, which were con-

nected to the input and output nodes. The hidden layers and the output layer

consisted of hyperbolic tangent sigmoid transfer functions and a linear transfer

function, respectively. Initialization of the ANN was done using the Nguyen-

Widrow initialization function. The ANN was trained for 1000 iterations with

Levenberg-Marquardt back-propagated error correction (Moré, 1978) and train-

ing was stopped if the gradient did not decrease for 6 consecutive epochs or if

the gradient was smaller than 1 x 10−6. Evaluation of the ANN was done using a

leave-one-subject-out cross-validation (Halilaj et al., 2018). The cross-validation

involved training the ANN with all trials from 12 participants (i.e., the training

set) and then testing with the trials from the remaining participant (i.e., the test

set). As cross-dependencies between the input and output in a combined estima-

tion model for KFM and KAM may affect the estimation accuracy (Wouda et al.,

2018), independent models for KFM and KAM were also build. Independent

models were trained and evaluated in the same manner as the combined model,

beside the fact that only one variable was chosen in its output layer.

5.3.5 Statistical analysis

According to previous studies, for each movement, the agreement between the

ANN-estimated outcomes (KFM* and KAM*) and the inverse dynamics-

calculated data (KFM and KAM) was derived from Pearson’s correlation coef-

ficients, which were categorized as weak (r ≤ 0.35), moderate (0.35 < r ≤ 0.67),

strong (0.67 r ≤ 0.90) and excellent (r > 0.90) (Taylor, 1990; Fluit et al., 2014;
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Karatsidis et al., 2017). Additionally, the Root-Mean-Squared Error (RMSE) and

relative Root-Mean-Squared Error (rRMSE) were determined to assess the accu-

racy of the ANN-estimations (Ren et al., 2008). The rRMSE facilitates the compar-

ison between the different locomotion tasks with different moment amplitudes.

The averages and standard deviations were calculated for r, RMSE and rRMSE

from the 13 cross-validation subsets. Average r values across participants were

computed using Fisher’s z transformation (Corey et al., 1998). Mean r values

were expressed in the original range from -1 to 1 by reversing the transforma-

tion. Furthermore, peak KFM* and KFM* impulse as well as peak KAM and

KAM impulse were evaluated as classical discrete load metrics (Bennell et al.,

2011; Teng et al., 2015). Impulse represents the area under the corresponding

moment-time curve. Percent Differences (%Diff ) between ANN-estimated and

inverse-dynamic calculated peak and impulse metrics were used to provide a

pragmatic interpretation.

5.4 Results

5.4.1 Estimated continuous outcomes

The ANN-estimated KFM* and KAM* time series of the whole stance phase are

illustrated in Figure 5.2 and Figure 5.3, respectively, with the measured references

used for comparison. An overview of the estimated accuracy for all movements

is presented in Table 5.1.

For the different locomotion tasks, the ANN-estimated time series revealed mod-

erate to strong correlations for the KFM* and weak to strong correlations for the

KAM*. The highest correlation for KFM* and KAM* was observed for moderate

running (r = 0.85± 0.43; mean ± standard deviation) and for walking straight

(0.71 ± 0.26), respectively. For all locomotion tasks, the RMSE for KFM* was

between 0.26 ± 0.09 Nm/kg and 1.13 ± 0.46 Nm/kg, whereas for KAM*, that

was between 0.18 ± 0.06 Nm/kg and 0.92 ± 0.54 Nm/kg. The rRMSE for the

different locomotion tasks ranged between 17.2% ± 3.1% (walking 90° turn) and

25.5% ± 7.0% (fast running) for KFM* and between 22.3% ± 8.3% (walking

straight) and 37.2% ± 7.8% (cutting maneuver) for KAM*.
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Figure 5.2: Mean (and standard error) of the estimated Knee Flexion Moments
(KFMs) (blue) for the six analyzed locomotion tasks compared to their respective
inverse dynamics-calculated values (black). Positive values indicate external
flexion moments and negative values indicate external extension moments.
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Figure 5.3: Mean (and standard error) of the estimated Knee Adduction Mo-
ments (KAMs) (blue) for the six analyzed locomotion tasks compared to their
respective inverse dynamics-calculated values (black). Positive values indicate
external adduction moments and negative values indicate external abduction
moments.
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Table 5.1: Accuracy (r: Pearson’s correlation coefficient; RMSE: root-mean-
squared error; rRMSE: relative root-mean-squared error) of the estimated con-
tinuous outcomes (knee flexion moment (KFM*), and knee adduction moment
(KAM*)). Data are presented as mean ± standard deviations. Mean r and r
standard deviation were computed using Fisher’s z transformation.

Locomotion task KFM* KAM*

r RMSE
[Nm/kg]

rRMSE
[%]

r RMSE
[Nm/kg]

rRMSE
[%]

Walking
straight

0.72± 0.32 0.26± 0.09 18.4± 5.3 0.71 ± 0.26 0.18± 0.06 22.3± 8.3

90° walking
turn

0.69± 0.31 0.32± 0.10 17.2± 3.1 0.56 ± 0.33 0.29± 0.10 23.9± 6.4

Moderate
running

0.85± 0.43 0.58± 0.20 19.7± 7.9 0.40 ± 0.35 0.37± 0.14 34.4± 13.5

Fast running 0.65± 0.43 1.13± 0.46 25.5± 7.0 0.21 ± 0.47 0.80± 0.46 33.8± 8.5

90° running
turn

0.79± 0.28 0.77± 0.20 20.8± 4.5 0.51 ± 0.22 0.62± 0.19 27.9± 3.9

45° cutting
maneuver

0.73± 0.41 1.05± 0.41 23.1± 6.5 -0.05 ± 0.30 0.92± 0.54 37.2± 7.8

Mean 0.74± 0.36 0.67± 0.24 20.8± 5.7 0.39 ± 0.32 0.53± 0.25 29.9± 8.1

5.4.2 Discrete load metrics

The inverse dynamics-calculated and ANN-estimated discrete load metrics (peak

moments and moment integrals) are shown in Table 5.2. Table 5.3 presents the

%Diff results for each of the performed locomotion tasks. The 90° walking turn

showed the smallest %Diff (6.7% ± 31.3%) for the ANN-estimated KFM im-

pulse in comparison to the reference values. In contrast, %Diff of KAM impulse

were higher with a minimum value of 42.7 ± 108.9% for moderate running.

The smallest %Diff for the estimation of peak KFM and KAM was 24.7% ±

33.0% (moderate running) and 39.1% ± 101.0% (walking straight), respectively.

Across all locomotion tasks, mean differences of peak moments and moment

integrals were lower for the KFM* in comparison to the KAM* (40.4% ± 56.5%

vs 130.3% ± 157.3% and 10.6% ± 47.0% vs. 161.4% ± 252.8%, respectively).

5.4.3 Model comparison

The changes in estimation accuracy due to independent model building for KFM

and KAM for each of the analyzed locomotion tasks is presented in Table 5.4.

Independent model building resulted in a lower r value for both KFM and KAM

in the majority (5 out of 6) of the analyzed locomotion tasks in comparison

to the combined estimation model. Across all locomotion tasks, mean RMSE

and mean rRMSE increased for KFM* (RMSE = 0.15, rRMSE = 1.18) and KAM*
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0.20
51.35

±
27.01

3.44
±

1.92
259.80

±
118.59

1.72
±
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±
26.66
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Table 5.3: Percent Differences (%Diff ) of discrete load metrics (peak and im-
pulse). Data are presented as mean ± standard deviations; KFM, knee flexion
moment; KAM, knee adduction moment.

Locomotion task KFM* KAM*

Peak Impulse Peak Impulse

%Diff %Diff %Diff %Diff

Walking straight 44.3 ± 70.8 27.4 ± 83.9 39.1 ± 101.0 62.0 ± 253.1

90° walking turn 47.1 ± 60.6 6.7 ± 31.3 82.4 ± 110.5 69.3 ± 127.5

Moderate running 24.7 ± 33.0 0.65 ± 37.2 68.7 ± 94.5 42.7 ± 108.9

Fast running 37.2 ± 68.7 6.8 ± 40.7 123.5 ± 124.1 94.2 ± 145.3

90° running turn 44.9 ± 45.2 12.1 ± 46.5 159.8 ± 157.1 230.0 ± 179.9

45° cutting maneuver 44.1 ± 60.7 10.0 ± 42.6 308.2 ± 356.5 470.0 ± 702.0

Mean 40.4 ± 56.5 10.6 ± 47.0 130.3 ± 157.3 161.4 ± 252.8

Table 5.4: Increase (+) or decrease (–) in estimation accuracy (r: Pearson’s corre-
lation coefficient; RMSE: root-mean-squared error; rRMSE: relative root-mean-
squared error) due to independent model building in comparison to the com-
bined model. KFM*, knee flexion moment; KAM*, knee adduction moment.

Locomotion task KFM* KAM*

r RMSE
[Nm/kg]

rRMSE
[%]

r RMSE
[Nm/kg]

rRMSE
[%]

Walking straight 0.03 0.00 0.5 –0.2 0.05 2.64

90° walking turn –0.02 0.03 1.56 –0.08 0.07 0.09

Moderate running –0.02 0.18 1.31 –0.1 0.09 –1.58

Fast running -0.03 0.15 0.9 –0.04 0.2 1.87

90° running turn –0.08 0.11 0.85 –0.14 0.16 –0.87

45° cutting maneuver –0.07 0.44 1.94 0.26 0.22 –0.57

Mean –0.03 0.15 1.18 –0.05 0.13 0.26

(mean RMSE = 0.13, rRMSE = 0.26) due to independent model building.

5.5 Discussion

This study was aimed to develop and train an ANN model to estimate KFM

and KAM during various locomotion tasks based on data obtained by two wear-

able sensors. The mobile assessment of knee joint loading enlarges the scope

of diagnostic methods and disease management of KOA, which could help to

improve disease treatement strategies and minimizing the risk of non-functional

overreaching (e.g., pain).

The results of the study show a higher estimation accuracy of the KFM com-

pared to the KAM over most locomotion task. However, estimation accuracy

highly varied between tasks for both the KFM and the KAM, especially with

increasing intensity and movement velocity. Apart from walking straight, for all
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locomotion tasks, a distinct reduced level of agreement was found between the

ANN-estimated outcomes and reference data for the KAM (mean r = 0.39 ± 0.32,

mean rRMSE = 29.9% ± 8.1%) in comparison to the KFM (mean r = 0.74 ± 0.36,

mean rRMSE = 20.8% ± 5.7%). Discrete load metrics highlighted lower %Diff

of KFM impulses in comparison to KFM peaks in all locomotion tasks, whereas

%Diff of KAM impulses were lower compared to KAM peaks only in three out

of the six locomotion tasks.

5.5.1 Estimation accuracy across di�erent locomotion tasks

In general, when comparing the estimation accuracy across the different loco-

motion tasks, predictive power was always better and %Diff was always less for

KFM than for KAM. On average, strong correlations (r = 0.74) and rRMSE of

20.8% for KFM and moderate correlations (r = 0.39) with rRMSE of 29.9% for

KAM were found. Nonetheless, distinct differences between KFM and KAM

estimation values were evident across the locomotion tasks.

For KFM, highest correlations with the inverse dynamics calculations were found

for moderate running (r = 0.85), which is reinforced by lowest %Diff for both the

peak and impulse of the KFM. The lowest correlations and largest rRMSE were

found for fast running (r = 0.65; rRMSE = 25.5%). Nevertheless, %Diff for KFM

peaks and impulses during fast running were lower than for most of the other

locomotion tasks, except for moderate running. Interestingly, the largest %Diff

was found for walking straight, while %Diff of moment integrals were in gen-

eral lower compared to %Diff of peak moments. These findings indicate that

our ANN-configuration is more appropriate for estimating knee joint loading

over the stance phase than for estimating the peak moment of the stance phase.

In particular, during walking straight, the low knee flexion moment peaks and

impulses might account for the strong correlations but large %Diff . Albeit, for

KFM generally high agreement was found for ANN-estimated outcomes, with

a reduced performance for the high intensity movements running and cutting

maneuvers. In contrast, in these movements lower %Diff occurred to the lower-

intensity movements.

For the estimation of KAM, overall weak to strong correlations were found for

the analyzed movements. Estimation accuracy was highest in walking straight

(r = 0.71, rRMSE = 22.3%). Mediocre correlations were found in moderate run-

ning as well as 90° walking/running turns (0.40 ≤ r ≤ 0.56), and low or nega-
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tive correlations in fast running and 45° cutting maneuvers (−0.05 ≤ r ≤ 0.21).

With regard to rRMSE, alterations of locomotion speed (walking to running) and

direction (turning and cutting) led to slight reductions in accuracy of the ANN-

estimations. Concomitant, large increases in %Diff along with high variability

were detected in fast running, 90° running turns and 45° cutting maneuvers

(KAM impulse: 94.2, 230.0 and 470.0%, respectively). A potential reason for the

less estimation accuracy and larger differences for movements with increased

velocity and changes of direction might be the higher variation in the execution

of these movements, while locomotor tasks such as walking or moderate run-

ning are performed automatically with repeatable characteristics (Schmidt &

Lee, 2011). Similarly, variability in estimation accuracy was also shown by Fluit

et al. (2014), evaluating a prediction model for GRFs and moments during vari-

ous activities of daily living by means of 3D full-body motion.

However, a generalization of the estimation accuracies cannot be deduced, as

a reduced estimation accuracy in continuous outcomes does not necessarily re-

sult in an inaccurate estimation of discrete variables, as it was seen in the KFM

during fast running. Similarly, good agreement in continuous outcomes does

not implicate accurate estimation of discrete load metrics, as seen in 90° run-

ning turn. Furthermore, it must be noted that most the KFM and KAM show

high standard deviations, which indicates a wide dispersion across participants.

Nonetheless, %Diff of KFM were entirely lower in the impulses compared to

the peak values. In contrast, %Diff of KAM impulse were lower compared to

the peak values only in three out of the six locomotion tasks (90° walking turn,

moderate and fast running). Summarized, KAM estimations were less accurate

both for continuous and for discrete outcomes compared to KFM and should

therefore be treated with caution. The more pronounced characteristic changes

in the KAM time series between locomotion tasks in comparison to the KFM

time series are a potential reason for the reduced estimation accuracy in KAM

(see Figure 5.2 and Figure 5.3).

Furthermore, with respect to the comparison of a combined estimation model

for KFM and KAM and independent models for KFM and KAM, the results

show that an independent model building leads to slightly decreased estimation

accuracy of the KFM and a more pronounced decrease of the KAM, concomitant

with increased RMSE and rRMSE in the investigated locomotion tasks. Hence,

if only one variable was chosen as an output, decreased performance for the
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model was observed, indicating that cross-dependencies between input and out-

put in the combined estimation model clearly affected the estimation accuracy.

Overall, the combined estimation model for KFM and KAM presented a fair

estimation accuracy, especially, in the low-intensity movements.

5.5.2 Comparison of di�erent wearable measurement systems

A novel machine learning based method was developed and applied in this

study to estimate KFM and KAM based on data obtained by two wearable sen-

sors integrated in a knee sleeve. Various approaches have experienced progres-

sive advances to assess the mechanical loading of KOA patients in their habitual

environment over the past years. The majority of the approaches were based on

analytical biomechanical models, which typically determine joint moments by

means of the inverse dynamics calculations. As a consequence, GRF measure-

ments and kinematic data are necessary to perform such analysis (Whittlesey &

Robertson, 2014).

van den Noort et al. presented in 2011 an instrumented force shoe as an alter-

native to force plate measurements. Subsequently, an ambulatory measurement

system, consisting of the instrumented force shoe and an inertial measurement

system combined with a linked-segment model, was used to compare KAM

measures with a laboratory based system in KOA patients (van den Noort et al.,

2013). Limited accuracy was shown and the authors concluded that a more ad-

vanced calibrated linked-segment model should be investigated (van den Noort

et al., 2013). As an alternative to a direct measurement of GRF, Karatsidis et al.

(2017) estimated GRF by means of a full-body inertial motion capture system

during walking. Their results showed for the comparison with an optical motion

capture system higher r values (range 0.82 to 0.99 and 0.76 to 0.99 for the iner-

tial and optical motion capture systems, respectively) and lower rRMSE values

(range from 5% to 15% for both systems) compared to the KFM and KAM esti-

mations present in this study. More recent studies from Dorschky et al. (2019)

and Konrath et al. (2019) used inertial motion capturing and musculoskeletal

modeling to estimate biomechanical variables, such as joint kinematics and ki-

netics without GRF data. Dorschky et al. (2019) presented high correlations for

sagittal plain kinematics (r > 0.93) and kinetics (r > 0.90) in gait and running. In

accordance, Konrath et al. (2019) estimated the KAM and the tibio-femoral joint

contact force during daily living activities (e.g., stair walking) with moderate to
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strong correlation coefficients. However, such approaches using inertial sensor

data and musculoskeletal models require more IMUs (seven IMUs in Dorschky

et al. (2019) and 17 IMUs in Konrath et al. (2019)) compared to this study’s ap-

proach.

Parallel to the analytical model development, an increasing number of machine

learning approaches have been explored to simplify data acquisition and mod-

eling strategies to estimate target variables, such as the KAM (Liu et al., 2009;

Favre et al., 2012; Wouda et al., 2018). ANN modeling does not require model-

ing of the musculoskeletal system, as the relationship between the input IMU

signals and the target variables is build up during the training process of the

model (Halilaj et al., 2018; Wouda et al., 2018). However, ground truth reference

data, such as the inverse dynamics-calculated KFMs and KAMs, are required

during the supervised learning process of the model. Providing a large amount

of known output data is essential to establish a robust model (Sivakumar et al.,

2016; Halilaj et al., 2018). Wouda et al. (2018) used similar ANN modeling to the

one used in this study for estimating vertical GRF and sagittal knee kinematics

during running. The estimated vertical GRF profiles of their non-personalized

ANN developed by eight participants showed a higher correlation (r > 0.90) to

the actual force time series. The slightly reduced estimation accuracy in the cur-

rent study (r < 0.85) may depend on the variety of locomotion tasks included

in the model building. A more locomotion task-specific modeling may lead to

an increased estimation accuracy for individual tasks, but has the disadvantage

that each task must be modeled by itself (Wouda et al., 2018). In consequence,

the combination with an activity recognition approach could help to select indi-

vidual estimation models in practical applications.

5.5.3 Limitations

Certain limitations of this study need to be considered when interpreting the

results. One consideration worth noting is that the estimation accuracy de-

pends on the neural network architecture. The ANN was built on previous

work (Favre et al., 2012; Wouda et al., 2018), which highlighted that such config-

uration is capable of mapping non-linearity between input and output; however,

other model specifications may result in an improved estimation accuracy. The

ANN was trained with data from multiple participants as well as various loco-

motion tasks, which should rather lead to a less participant- and task-specific
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but a more generic model. As a consequence, this approach rather yields a de-

creased performance due to a lack of individualization, but has the advantage

that not every new user needs to perform a training phase (Favre et al., 2012;

Wouda et al., 2018). Further research is necessary to assess if a single partici-

pant learning approach increases the estimation accuracy. Another limitation is

that we included a homogeneous group of participants consisting of only males

without any musculoskeletal disorders and the translation of the results to the

target group of KOA patients remains speculative. Nonetheless, future clinical

studies may benefit from the use of the method developed in this study, espe-

cially in low-intensity movements (Richards et al., 2017). Beyond, the sample

size was rather small, including thirteen participants. Similar investigations in-

cluded comparable numbers of participants (e.g., sample of eight participants in

Wouda et al. (2018) or sample of seventeen participants in Leporace et al. (2015)).

The small sample size potentially limits the outcome, as the robustness of the

relationship between the input and output variables of the ANN depends on

the amount of training data (Sivakumar et al., 2016; Ancillao et al., 2018; Halilaj

et al., 2018). Finally, it cannot be fully ensured that the fixation technique ex-

cluded any oscillations or misalignment of the IMUs, even though the exact fit

of the sleeve and the sensors was repetitively checked. However, the wearable

sensors were integrated in a knee sleeve on purpose to mimic natural effects and

to capture IMU signals closely related to the joint under investigation.

5.6 Conclusion

This study demonstrated the potential of estimating KFM and KAM for various

locomotion tasks using a minimal body-worn sensor setup consisting of two

IMUs integrated in a knee sleeve. The agreement between the ANN-estimated

outcomes and inverse dynamics-calculated data was strong for the majority of

analyzed locomotion tasks in the KFM and moderate in the KAM. Overall,

higher estimation accuracies were seen for the KFM in comparison to the KAM

across all locomotion tasks. The accuracy limitations especially of KAM estima-

tion makes prediction of knee joint loading challenging. In order to reach an ac-

ceptable level of accuracy related to critical changes due to KOA, typically char-

acterized by relatively small kinetic differences, a participant- or task-specific

modeling could be helpful. This has important implications for the develop-

ment of wearable devices as well as for scientific research on KOA. The highest
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estimation accuracy for both KFM and KAM of walking straight matches the

main characteristic of KOA therapy and treatment by low-intensity movements

(e.g., walking). Looking ahead, wearable technology could serve as a rehabilita-

tion aid for patients with KOA leading to an improved load management, which

could result in a slower progression.
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6 Discussion

6.1 Aims of the thesis and main �ndings

This thesis aims at investigating the use of wearable sensors and machine learn-

ing techniques to obtain meaningful biomechanical measures with respect to

sports performance and the load on body structures. Special consideration is

given to ice hockey skating performance diagnosis as well as to the assessment

of the knee joint loading during various everyday and sport movements using

machine learning techniques. Wearable sensors in the field of sports and clinical

human movement analysis enlarge the scope of diagnostic methods. This is of

great importance not only for sports performance diagnosis but also for health

diagnostics and rehabilitation of injuries or musculoskeletal disease.

The presented approach in study I – the automated identification of temporal

events during ice hockey skating based on a 3D accelerometer fixed on the skate

chassis – shows a high level of agreement (95% Limits of Agreement (LoA)

< 0.022 seconds) when comparing with simultaneously recorded plantar force

data. This approach was then used in the subsequent study (study II), to gauge

in-field ice hockey skating performance. The results demonstrate that it is

feasible to identify previously highlighted performance related biomechanical

changes in terms of substantial differences across skill levels and skating phases

using two 3D accelerometers, which were located on the skate and the waist.

Specifically, high caliber players show a 22% increased SP compared to recre-

ational players, which highlights their skills to apply a relatively large impulse

to the body’s center of mass.

Study III and study IV devotes particular attention to the development of ma-

chine learning models to estimate loads on knee joint structures by means of

wearable sensor data. The results of study III show that KJFs can be estimated

using only two wearable sensors positioned at the upper and lower frontal end

of a knee sleeve. In particular, the vertical and anterior-posterior KJF time series

are estimated with good accuracy with respect to reference inverse dynamics cal-

culations (r ≥ 0.81 and rRMSE ≤ 20.3% as well as r ≥ 0.80 and rRMSE ≤ 22.9%
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for 11 and 10 out of 16 movements, respectively). Furthermore, an ANN trained

to estimate knee joint moments (study IV) using the same minimal sensor setup

achieves moderate to strong concordance with reference data for KFM across dif-

ferent locomotion tasks, but shows accuracy limitations for KAM. Apart from

walking straight a distinct reduced level of agreement is found between the

ANN-estimated outcomes and reference data for the KAM (mean r = 0.39 ±

0.32, mean rRMSE = 29.9% ± 8.1%) in comparison to the KFM (mean r = 0.74 ±

0.36, mean rRMSE = 20.8% ± 5.7%) for all locomotion tasks.

6.2 Wearable sensor based ice hockey skating analysis

In modern times, the capturing of movements by means of wearable sensors has

become increasingly popular and important for sport performance assessment.

A primary benefit of wearable sensor based human movement analysis is the

potential for measuring data in a realistic environment, which limits inhibition

or disturbance of natural movement patterns. Furthermore, due to the small

size of these sensors they can be easily attached to various parts of the body

(e.g., waist) or integrated into sports equipment (e.g., shoes). Consequently, the

application is even possible in unique environments like an ice rink, where com-

monly used movement analysis instruments are of limited use (Díaz et al., 2020;

Adesida et al., 2019). Multiple applications have been created for team (e.g.,

rugby and soccer) and individual sports (e.g., running and tennis) (Camomilla

et al., 2018). However, ice hockey has received limited attention so far despite

the sport’s worldwide appeal (Camomilla et al., 2018). The lack of knowledge

may be due to the dynamic characteristics of the sport and its unique on-ice con-

ditions (Buckeridge et al., 2015; Upjohn et al., 2008). Two studies were conducted

to address this lack of knowledge by investigating the potential of wearable sen-

sors for a biomechanical ice hockey skating performance analysis.

In study I, the use of a single skate mounted 3D accelerometer for an auto-

mated detection of temporal events during forward ice hockey skating was in-

vestigated. As an accurate and efficient detection of timing events is invaluable

to study temporal movement characteristics or to quantify other biomechanical

variables (Camomilla et al., 2018; Iosa et al., 2016), the findings of this study are

of great significance. Research in running has shown that inertial sensors can

effectively be used to identify timing events (Bergamini et al., 2012; Lee et al.,

2010; Auvinet et al., 2002). The proposed algorithm for forward skating in ice
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hockey showed an comparable level of agreement (95% LoA < 0.025 s) as other

methods used to identify gait events during running (Bergamini et al., 2012; Lee

et al., 2010). The difference (biases < 1 ms) between the accelerometer and plan-

tar pressure system is comparable to other studies, which validated an inertial

sensor approach with a standard method for walking (Salarian et al., 2004) or

running (Lee et al., 2010). Additionally, the methodology developed appears to

be valid for a wide range of forward stride patterns. Despite the fact that there

are notable differences in the stride pattern across progressive strides (Stidwill

et al., 2010; Lafontaine, 2007), no significant difference in the accuracy of the new

method was found between strides.

In study II, a second accelerometer was placed at the lower back as a comple-

mentary tool for characterizing the propulsive power during skating. Two mea-

sures of the temporal stride characteristics (CT and ST) and one measure of the

propulsive power of a skating stride (SP) were evaluated. Biomechanical litera-

ture shows that such skating technique elements are closely related to skating

performance (Buckeridge et al., 2015; Renaud et al., 2017; Stidwill et al., 2009;

Upjohn et al., 2008). The results highlight that (1) the variables CT and SP dis-

criminated between high and low caliber ice hockey players; (2) the variables

CT, ST and SP discriminated between fundamental skating phases (accelerative

and steady-state); (3) SP of acceleration strides primarily correlated to skating

performance (TST). In particular, a 22% increased SP (average increase) of high

caliber players was observed, which highlights their skills to apply a relatively

large impulse to the body’s center of mass when compared to the recreational

player. Previous studies have revealed that leg strength is of importance in this

context (Buckeridge et al., 2015; Farlinger et al., 2007). This applies to situations,

when observing differences between high and low caliber players (Buckeridge

et al., 2015; Upjohn et al., 2008) or identifying predictors of skating sprint per-

formance (e.g., leg power variables in off-ice sprints and jumps) (Farlinger et al.,

2007). Although temporal variables (CT and ST) showed only limited correlation

with the skating performance (i.e., TST), such variables could potentially serve

as fatigue-sensitive measures, as mentioned by Buchheit et al. (2015).

In general, the location at which an IMU is placed on the body plays an im-

portant role in analyzing specific movements. In study I, the accelerometer was

deliberately placed in the center of the chassis in order to detect the majority of

vibrations during the contact between the ice and the metal blade of the skate.
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This setup is effective in hockey skating since the movement pattern of the foot

during a skating stride does not consist of a distinct heel or toe contact (Pearsall

et al., 2000), such as for example in running (Lieberman et al., 2010). In study II,

the propulsion power of skating strides were considered beside timing charac-

teristics. As underlined by the findings in study II, the placement near the waist

is a useful location because of its proximity to the center of mass, and represents

the major acceleration of the body (Yang & Hsu, 2010).

The results of the two studies confirm earlier studies in ice hockey skating re-

lated areas, such as speed skating and cross-country skiing (Myklebust et al.,

2014, 2015; van der Kruk et al., 2016). The sensitivity of wearable sensors to cap-

ture biomechanical skating variables as well as to distinguish skating technique

was shown (Myklebust et al., 2014, 2015; van der Kruk et al., 2016). Overall,

the current results underline the potential of wearable sensors to assess skating

technique elements (e.g., contact time) or elements to gauge skating performance

(e.g., center of mass acceleration). Nevertheless, further research is warranted,

which aims to monitor biomechanical variables over a longer period of time (e.g.,

training session). Objective field-based biomechanical metrics can help to con-

trol for sufficient training loads that are required to achieve beneficial physical

adaptations, whilst preventing overuse (Verheul et al., 2020; Camomilla et al.,

2018). As a consequence, the quality of training and player development can

increasingly benefit from wearable sensors in the future.

6.3 Estimating knee joint dynamics with machine learning

Understanding and quantifying the load on body structures is important for

injury prevention in sports and for the management of chronic disease and is

traditionally assessed by using a multi-camera motion capture system and force

plates (Verheul et al., 2020; Adesida et al., 2019; Konrath et al., 2019). In this

context, joint dynamics (especially forces and moments) are biomechanical mea-

sures used to infer the load on knee joint structures (Vanrenterghem et al., 2017;

Bennell et al., 2011; Miyazaki et al., 2002; Zernicke & Whiting, 2000). For in-

stance, the knee joint is continuously subjected to forces that vary in magnitude,

location, direction, duration, frequency, variability and rate during athletic ac-

tivities (Zernicke & Whiting, 2000). In many cases, obtaining biomechanical

measures under non-laboratory conditions is indispensable, e.g. for monitoring

an athlete’s workload or for the ambulant assessment of patients. As stated pre-
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viously, wearable sensors are an ideal alternative to laboratory based techniques

for performing human movement analyses in habitual sport and everyday en-

vironments. However, as these sensors only provide kinematic data, modeling

approaches are required to obtain joint dynamics (Gurchiek et al., 2019; Lim

et al., 2019; Dorschky et al., 2019). An additional challenge is to measure all

necessary data with a limited number of wearable sensors, as a large number

of sensors can inhibit the natural movement (Gurchiek et al., 2019; Lim et al.,

2019; Dorschky et al., 2019). To overcome these current limitations, two studies

(study III and study IV) where conducted within this thesis to investigate the

feasibility of machine-learning methods to estimate loads on knee joint struc-

tures by way of an ambulatory minimal body-worn sensor setup.

In study III, an ANN was developed for various common sport-specific move-

ments and the accuracy of ANN KJF estimations was compared to standard

inverse dynamics calculations. Apart from the medial–lateral force component

(F∗ml : r≤ 0.60 and rRMSE≥ 27.7%), high agreement between the ANN-predicted

outcomes and the inverse dynamics-calculated data was identified (F∗v : r ≥ 0.81

and rRMSE ≤ 20.3%; F∗ap: r = ≥ 0.80 and rRMSE ≤ 22.9%, respectively) for the

majority of the analyzed movements (11 and 10 out of 16, respectively). Similarly,

an early study from Leporace et al. (2015) which combined wearable sensors

and ANN highlighted the lowest r in the medial–lateral component when they

estimated 3D GRF with an ANN during walking. Additionally, further studies

estimating the GRF based on 3D full-body motion revealed similar findings and

suggested that this was due to the small magnitude of the lateral measurements,

which caused a larger impact of small errors on final estimates (Karatsidis et al.,

2017; Fluit et al., 2014; Oh et al., 2013). When comparing the results for KJF esti-

mations with GRF estimations, slightly lower correlations are demonstrated for

KJFs (e.g., mean r for F∗v ≤ 0.82± 0.10). Karatsidis et al. (2017) showed r ≥ 0.82

for GRF estimations using a biomechanical model and the Newton equations

of motion. Furthermore, Wouda et al. (2018) presented r > 0.94 for GRF esti-

mations using a machine-learning approach based on vertical accelerations and

lower limb joint angles. One reason for the slightly lower accuracy when esti-

mating KJFs in study III may be the less specific model with respect to single

movements. Individual prediction models for single movements or movement

categories based on an activity recognition approach could help to strengthen

the overall estimation accuracy. In terms of applications of interest such as track-
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ing fatigue-related changes, it remains unclear if the current level of accuracy is

sufficient. This comes especially from the fact that research in this area is rather

limited, and much of what we know about monitoring comes from personal

experience (Halson, 2014). It is noteworthy that the detection of critical changes

is generally challenging. The body has a high capacity to tolerate forces. Con-

sequently, in most cases acting forces can be withstand. However, when loads

exceed the physiological range, body structures can experience overload and

sustain injury (Verheul et al., 2020; Zernicke & Whiting, 2000). Future research

in applied settings is indispensable to observe and analyze biomechanical risk

factors over a defined exposure time, with the ability to influence injury preven-

tion models (Adesida et al., 2019; Verheul et al., 2020).

Study IV built up on study III and was aimed to explore the potential for an

ambulatory assessment of joint loading in KOA using the same wearable sen-

sor system as before. Consequently, a case-specific ANN was developed that

estimates external KFMs and external KAMs during various locomotion tasks

as objective biomechanical measures of knee joint load in KOA (Bennell et al.,

2011; Miyazaki et al., 2002). The results of the study showed a higher estimation

accuracy of the KFM (mean r = 0.74 ± 0.36, mean rRMSE = 20.8% ± 5.7%) com-

pared to the KAM (mean r = 0.39 ± 0.32, mean rRMSE = 29.9% ± 8.1%) over

most locomotion tasks. Concordance of the ANN-estimated KFM and reference

data of five tasks (walking straight, 90° walking turn, moderate running, 90° run-

ning turn and 45° cutting maneuver) was strong (r ≥ 0.69, rRMSE ≤ 23.1) and

moderate for fast running (r = 0.65± 0.43, rRMSE = 25.5% ± 7.0%). Due to the

generally lower %Diff of KFM integrals compared to %Diff of peak KFMs, the

findings indicate that the ANN-configuration is more appropriate for estimating

knee joint loading over the stance phase than for estimating the peak moment of

the stance phase. Nevertheless, caution is required when interpreting the results

for KAMs as large %Diff were detected along with high variability (KAM im-

pulse: 94.2, 230.0 and 470.0%, in fast running, 90° running turns and 45° cutting

maneuvers, respectively). This is problematic, especially because the KAM is a

widely used surrogate measure of the compressive load of the medial compart-

ment (Ferreira et al., 2015; Bennell et al., 2011; Reeves & Bowling, 2011; Sharma

et al., 1998).

The recent studies from Dorschky et al. (2019) and Konrath et al. (2019) used iner-

tial motion capturing and musculoskeletal modeling to estimate joint dynamics.
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Dorschky et al. (2019) presented high correlations for sagittal plain moments

(r > 0.90) in gait and running. Accordingly, Konrath et al. (2019) showed mod-

erate to strong correlations for estimating the KAM and the tibio-femoral joint

contact force during daily living activities (e.g., stair walking). However, such

approaches that use inertial sensor data and musculoskeletal models require no-

ticeably more IMUs (seven IMUs in Dorschky et al. (2019), 17 IMUs in Konrath

et al. (2019)) compared to the presented ANN approach. Especially, the results

for the external KFM demonstrated the potential of estimating joint dynamics

using a minimal body-worn sensor setup and ANN modeling. Earlier attempts

toward a wearable measurement tool, e.g. consisting of an instrumented force

shoe and an inertial measurement system (van den Noort et al., 2013, 2011), also

yielded limited accuracy at an early stage. To reach an acceptable level of accu-

racy related to critical changes due to KOA a participant or task-specific ANN

modeling could be helpful in the future.

In both studies (study III and study IV), movements characterized by a high

repeatability showed an increased estimation accuracy (e.g., F∗v for moderate

running in study III), when comparing the estimation accuracy across the differ-

ent movements. Higher variation in the execution of movements with changes

in velocity (e.g., sprint starts and full-stops) or changes of direction (e.g., run-

ning turns and cutting maneuvers) might be a potential reason for the lower

estimation accuracy and larger differences in such movements (Morgan et al.,

1991; Schmidt & Lee, 2011). Similarly, Fluit et al. (2014) also showed changes

in estimation accuracy by evaluating a prediction model for GRFs as well as

moments during various activities of daily living using 3D full-body motion. A

more movement-specific modeling approach could help to overcome such limi-

tations. However, individual prediction models have the disadvantage that each

movement must be modeled by itself (Wouda et al., 2018). In practical appli-

cations, the selection of individual estimation models could be realized by an

activity recognition approach.

Novel machine learning models (ANNs) were applied to estimate joint dynam-

ics (forces and moments) based on data obtained by two wearable sensors in-

tegrated in a knee sleeve. ANN modeling does not require modeling of the

musculoskeletal system, as the relationship between the input IMU signals and

the target variables is build up during the training process of the model (Halilaj

et al., 2018; Wouda et al., 2018). Such methods are based on the hypothesis
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that a relationship exists between the sensor signals measured somewhere on

the body and the biomechanical target variable (e.g., KJF) (Ancillao et al., 2018).

This assumption is supported by the relationship between acceleration and force,

according to Newton’s second law of motion, as well as by the relationship be-

tween the measured quantities and the segment’s motion (Karatsidis et al., 2017;

Wouda et al., 2018). Nevertheless, providing the best means of ground truth

reference data, such as the inverse dynamics-calculated joint reactions, are indis-

pensable for the learning process of the model. Furthermore, a large amount of

known output data are essential to establish a robust model (Sivakumar et al.,

2016; Halilaj et al., 2018). In contrast to machine learning-based approaches,

joint dynamics can be estimated by means of posture information obtained from

wearable sensors as well as by means of an analytical model (Yang & Mao, 2015).

For the most part, complex modeling is necessary to obtain reasonable results,

because discrepancies in subject-specific parameters, such as masses, dimen-

sions, etc., inevitably introduce inaccuracies (Ancillao et al., 2018). Additionally,

these approaches often require considerably more wearable sensors (typically

between seven and 17 IMUs (Konrath et al., 2019; Dorschky et al., 2019; Yang &

Mao, 2015)) in comparison to the presented machine learning-based approach.

The findings of study III and study IV highlight the large benefit of machine

learning models to solve the tradeoff between data quantity and wearable con-

venience (Lim et al., 2019). Consequently, such models provide an opportunity

to simplify practical implementation while preventing inhibitions of the natural

movement (Gurchiek et al., 2019).

6.4 Current limitations and future research directions

When interpreting the findings of this thesis, the reader should be aware of a

number of limitations.

First, in study I, reference times were measured with a rather low sampling

frequency (90 Hz), and the data were interpolated to match the sampling fre-

quency of the accelerometer (2400 Hz). This might indicate a potential limitation

of this study. However, the measured contact and stride times for consecutive

strides are supported by those times found by Stidwill et al. (2010). Despite this

agreement, validation of single strides against a high-speed video could provide

greater confidence that the accelerometer-derived temporal characteristics are ac-

curate.
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Second, with respect to study II, the SP was calculated by means of accelera-

tion data in all three axes of the accelerometer on the lower back. Therefore, a

differentiated consideration of acceleration caused by a high propulsive effort

in forward direction and acceleration due to an inefficient skating technique

(e.g., vertical motion of the CoM) is not possible. Future studies could focus

on the quantification of energy fluctuations during skating. In this context, the

coupling of accelerometers with gyroscopes could help to determine the dis-

placement of the CoM in vertical, sideward and forward direction (Myklebust

et al., 2015).

Third, in study I and study II, methodologies were developed and tested in an

isolated 30 m forward sprinting task on an ice rink. This is a major limitation,

as other movements fundamental to ice hockey skating, such as turning and

backward skating, are also important for detailed athlete monitoring purposes.

Consequently, future investigations should extend the application of the pro-

posed methods to other essential ice hockey movements. A future step would

be to monitor biomechanical performance variables, such as stride propulsion,

over a longer period of time (e.g., training session) and at various levels of inten-

sity.

Fourth, in study III and study IV, ANNs were trained with data from multiple

participants as well as various locomotion tasks, which should rather lead to

a less participant- and task-specific but a more generic model. Therefore, this

approach might lead to a decreased performance due to a lack of individualiza-

tion, but has the advantage that not every new user needs to perform a training

phase (Wouda et al., 2018; Favre et al., 2012). Further research is needed to assess

if a single participant or single task learning approach could increase estimation

accuracy. Recent literature suggests the development of hybrid estimation mod-

els, taking advantage of the strengths of both analytical/biomechanical models

and machine learning (Gurchiek et al., 2019; Ancillao et al., 2018). Consequently,

additional research is required to investigate whether such a combined approach

leads to an increased overall estimation accuracy. Besides that, the translation of

the results to target groups, such as athletes in rehabilitation or KOA patients,

should be investigated in the future.

Finally, the small sample size in study III and study IV limits the external valid-

ity of these studies as the robustness of the relationship between the input and

output variables of the ANN depends on the amount of training data (Sivaku-
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mar et al., 2016; Ancillao et al., 2018; Halilaj et al., 2018). Similar investigations

were based on a comparable number of participants (e.g., a sample of eight

participants in Wouda et al. (2018) or a sample of seventeen participants in Lep-

orace et al. (2015)). Nevertheless, whether or not a training data set containing

a larger number of observations yield an increased estimation accuracy remains

subject to speculation. With respect to the model building, it is worth noting

that reference inverse dynamics calculations only allow for the determination of

the resultant rather than individual forces and moments acting on the knee joint.

Combining the presented approach with musculoskeletal modeling or with di-

rect force measurements (e.g., using an instrumented knee prosthesis) could

help to assess the internal loadings on the knee joint structures more precisely.

Independent of present limitations, wearable sensors and machine learning pro-

vide the technology for the development of viable monitoring systems, which

can turn related studies (clinical and not clinical) in a new direction (Faisal et al.,

2019; Gurchiek et al., 2019). Overall, further research effort is needed to trans-

fer developments in real-world applications. Despite promising results, novel

health technology must be evaluated in real-world settings using structured re-

search frameworks like randomized controlled trials (Cabitza et al., 2018).

6.5 Conclusion

The results of this thesis show that wearable sensors and machine learning tech-

niques are valuable tools to obtain meaningful biomechanical measures with

respect to sport and medical applications. The findings of study I and study II

help to overcome restrictions in the performance assessment of sport-specific

movements under field-based conditions, particularly with respect to ice hockey

skating. Consequently, this opens new possibilities for in-field diagnosis. As a

result, the quality of training and player development can increasingly benefit

from wearable technology and associated applications for providing feedback.

Furthermore, the methodological steps and findings of study III and study IV

demonstrate the high potential of estimating joint dynamics, as a resource to

assess the internal loading of anatomical structures (e.g., cartilage) for various

everyday and sport movements. The developed ANNs for estimating knee joint

forces in sport movements as well as to estimate joint loading in knee osteoarthri-

tis showed a high level of agreement with gold-standard inverse dynamics-

calculated data, for the majority of the investigated movements. Nevertheless,
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accuracy limitations were observed for certain movements (e.g., tow-leg jumps)

as well as specific spatial dimensions (e.g., medial-lateral KJF and KAM). Over-

all, high model quality is of paramount importance, as critical biomechanical

changes due to overuse or musculoskeletal diseases are typically characterized

by relatively small differences, to prevent incorrect diagnosis or treatment.

Overall, future research at the intersection of wearable sensors, machine learning

and biomechanics offers great promise for advancing wearable monitoring and

health technology. Ultimately, this has high practical implications, as wearable

human movement analysis can facilitate sports performance diagnosis, improve

health diagnostics and rehabilitation of injuries as well as musculoskeletal dis-

eases.
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r = Pearson’s correlation coefficient; rRMSE = relative Root Mean Squared Errror; mean (standard deviation) 
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