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SUMMARY 

The knee is one of the most injured body parts, causing 18 million patients to be 

seen in clinics every year [1]. Because the knee is a weight bearing joint, it is prone to 

pathologies such as osteoarthritis and ligamentous injuries. Existing technologies for 

monitoring knee health can provide accurate assessment and diagnosis for acute injuries. 

However, they are mainly confined to clinical or laboratory settings only, time-consuming, 

expensive, and not well-suited for longitudinal monitoring. Developing a novel technology 

for joint health assessment beyond the clinic can further provide insights on the 

rehabilitation process and quantitative load of the knee joint.  

The objective of this research is to investigate joint acoustic emissions (JAEs) from 

joint movements as a potential biomarker for longitudinal monitoring and explore novel 

methods of interpreting the characteristics of the JAEs especially in relation to knee joint 

load. First, we developed a novel processing technique for JAEs that quantify on the 

structural change of the knee from injured athletes and human lower-limb cadaver models. 

Second, we quantified whether JAEs can detect the increase in the mechanical stress on the 

knee joint using an unsupervised graph mining algorithm. Lastly, we quantified the 

directional bias of the load distribution between medial and lateral compartment using 

JAEs. Understanding and monitoring the quantitative usage of knee loads in daily activities 

can broaden the implications for longitudinal joint health monitoring.  
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

The knee is one of the most complex joints with several anatomical planes of 

articulation with large [2], multidirectional stresses put on the knee during movement, 

making it prone to factures, sprains, tears, dislocations and is one of the most frequently 

injured body parts—especially in athletes [3]. Diagnosing and monitoring knee health is a 

viable target for innovation especially, but existing technologies are mainly confined to 

clinical or laboratory settings such as medical imaging [4] and biomechanics 

instrumentation [5]. While these technologies provide great value in facilitating one-time 

assessments like those needed for acute injury diagnosis [6], they are not well-suited for 

monitoring the rehabilitation of the injury. For example, repeat MRIs are time intensive, 

confined to a clinical setting, difficult to schedule, and cost prohibitive – particularly for 

underserved populations. Thus, there is a compelling need for enabling continuous knee 

health sensing using inexpensive technologies that provide in-depth physiology and 

functional information. Wearable knee health sensing technologies could benefit those 

suffering from joint injury by providing easily interpretable feedback on rehabilitation 

progress and perhaps even provide warnings before injuries occur and allow longitudinal 

monitoring outside of a clinical or laboratory settings. 

The idea of capturing acoustical emissions from the knee has been explored 

previously as a means of diagnosing and differentiating between healthy and impaired knee 

joints. Previous work has shown that acoustic emissions captured from arthritic knees are 

different than the signals captured from the healthy knees [7-9]. These findings 
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demonstrate the viability of using these signals as a tool for noninvasive diagnosis and 

monitoring of cartilage pathology. One aspect that is of clinical interest is the quantification 

of knee joint loads throughout daily living activities and exercises. Prior work in estimating 

knee loading forces has been constrained to a laboratory setting using biomechanics 

toolbox or from the force sensors instrumented in the total knee replacement or knee 

prothesis [10-12]. However, quantification knee joint loading using a potential wearable 

sensing has never been previously demonstrated. 

To better understand the underlying properties and fundamentals of joint sounds, this 

research will investigate the relationship between the changes in the knee joint structure 

(i.e. structural damage and joint contact force) and the JAEs while developing novel 

techniques for analyzing these sounds. We envision that the possibility of quantifying joint 

structure and joint load usage from these acoustic sensors would advance the potential of 

JAE as the next biomarker of joint health that can be captured with wearable technology.   

1.2 Major Contributions of this Work 

Knee acoustic emissions have been previously studied as a potential biomarker for 

evaluating joint health. To the best of our knowledge, no work has focused on translating 

these acoustic data for longitudinal monitoring or quantifying joint contact force that would 

potentially provide insights to the knee usage and cartilage health during daily activities 

and drive future projects. As such, the major contribution of this work include: 

1) Quantified the specific characteristics of JAEs that correspond to structural damage 

using both cadaver models and in vivo studies for potential longitudinal assessment. 
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2) Discovered, for the first time, that JAEs can quantify the increase in the mechanical 

stress of the knee using an unsupervised clustering algorithm via graph mining. 

3) Demonstrated that JAEs can determine the directional bias of medial to lateral load 

distribution by using representation learning via convolutional autoencoder in a 

subject independent model.  

1.3 Dissertation Organization 

The remainder of this dissertation is organized as follows: In Chapter 2, a brief 

background of JAE and previous signal processing methods from the literature are 

presented. Then, a novel method for longitudinal joint health assessment is introduced and 

validated on datasets acquired from athletes with acute injuries at the time of the injury 

followed by 4-6 months of post-recovery phase and an injury model in human lower limb 

cadavers. Chapter 3 explores a novel method to quantify whether the characteristics of 

acoustical emissions from the joint change in response to the increased biomechanical 

stress on the joint using an unsupervised graph mining technique. This methods extracts 

the number of complex communities to determine the heterogeneity of the sounds as the 

joints experience greater mechanical stress. Chapter 4 demonstrates that knee acoustics can 

detect the directional bias of medial to lateral joint load distribution by using automated 

feature extraction and sensor fusion algorithms. Finally, in chapter 5, the conclusions, 

impact, and directions for future work are discussed. 
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CHAPTER 2. NOVEL METHODS FOR PROCESSING JOINT 

ACOUSTIC EMISSION 

2.1 Introduction 

 In this chapter, a brief background of various signal processing methods for JAEs 

is first presented. Then, a novel method of analyzing JAE and the result of estimating joint 

health using the proposed technique from the dataset acquired after acute injury and post 

recovery in athletes and from cadaver legs at four different stages of intervention are 

presented. The methods presented are not limited to classifying health versus injured knee 

status but provides the possibility of using JAE as a potential longitudinal assessment tool. 

2.2 Joint Acoustic Emissions 

JAEs has been studied as a potential biomarker for quantifying knee joint health. The 

joint sounds generally occur when anatomical structures are in contact with each other 

during movement which could capture information regarding the changes in the 

physiological structure of the joint. The idea of joint sounds as a marker of health has first 

been reported in 1902 when Blodgett used a stethoscope and reported that auscultation of 

the knee joint could serve as a potential diagnostic tool [7]. Over the past century, 

researchers have investigated these joint sounds to distinguish healthy knees from those 

with degenerative diseases or injuries using surface vibration sensors (e.g. accelerometers, 

piezoelectric devices, and stethoscope) or “air” microphones (e.g. microelectromechanical 

systems and electret microphones). The air microphones will measure attenuated, higher 

frequency signals and have less of motion artifact. Accelerometers, on the other hand, 
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directly measure the original non-attenuated signals and have less sensitivity to the 

background noise. The sensors will measure the JAEs produced during joint articulation 

and these signals are processed using signal processing techniques. 

Because the knee is one of the largest and most complex joint in the body consisting 

of diverse anatomical mechanisms, the exact origin of the joint acoustics is difficult to 

quantify.  The most common cause of the pathological JAEs would be the cartilage 

degenerations leading to osteoarthritis (OA) which is known to be the eleventh largest 

cause of disability and the sixth largest cause of mobility impairment [13]. Injuries such as 

lesions of ligaments, distortions, cartilage lesions, contusions, and dislocations could 

develop OA [3] and result in physiological changes of the tissue such as softening or loss 

of cartilage [14]. Shark et al. investigated the OA knees and concluded that OA knees 

produce higher peaks, longer duration, and more frequent acoustical emissions than the 

healthy knees [8]. Prior et al studied the high frequency component of the OA knees and 

discovered that OA knees had more joint acoustical events, defined as burst signal 

waveforms above a threshold of 32 dB  [9]. Many of the previous studies have sought to 

develop acoustical processing technique to classify subjects, most often as either healthy 

or injured knees [15-17]. Few studies have focused on differentiating the types and severity 

of knee joint cartilage pathology, or the location of injuries [18, 19].  

2.2.1 Signal Processing and Feature Extraction of Joint Acoustical Emissions 

Many of the prior cross-sectional studies on knee JAEs have been successful in 

distinguishing healthy versus injured knees. However, the types of features and 

classification methods still differ and there are no gold standard metrics for quantifying the 
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characteristics of the JAEs. The frequency band of the sensors and the filtering cut-off 

frequencies all differ in the literatures, but the most common frequency range of the JAEs 

were between 50Hz and 500Hz. Mascaro et al. explored the frequency range from 50kHz 

to 200kHz with the notion that JAE techniques in structural monitoring usually explore the 

signals at a much higher frequency range (>20kHz) [20].  

There is no consensus on which set of features produce the best results when 

classifying the JAEs into healthy or injured groups. Many features have been explored in 

previous studies [Shark][Frank][Befrui] and the three major subset of features are 

spatiotemporal, time-frequency, and statistical features. Additionally, a variety of 

classifiers have been tested such as neural networks, support vector machines, and logistic 

regression and provided accuracies ranging from 70% to 90%. Cai et al. used 

spatiotemporal features (form-factor, turn count with fixed threshold) and statistical 

features (variance of means) along with least-squares support vector machine and produced 

accuracy of 88.76% with area under the curve (AUC) of 0.95 [16]. Rangayyan et al. 

calculated spatiotemporal features (form factor) and statistical features (skewness, kurtosis, 

and entropy) and used neural networks with radial basis functions to obtain an AUC of 

0.82 [15] Kim et al. used time-frequency features (mean and standard deviation of energy 

parameter, energy spread parameter, frequency parameter, and frequency spread 

parameter) and used back propagation neural network to get an accuracy of 95.4% [21].  

2.3 Novel methods of processing JAE using b-value 

2.3.1 b-value: a Potential Biomarker for Assessing Joint Health using JAE  
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 The b-value represents a scaling of magnitude distribution of acoustical emissions. 

It is a measure of the relative number of large amplitudes to small amplitudes. In the field 

of seismology particularly pertaining to earthquakes, Gutenberg and Richter [22] proposed 

the empirical formula, expressed in Eq. (1), to quantify the logarithmic relationship 

between the magnitude and frequency of the shockwave generate by the shifting earth  

log10𝑁 = 𝑎 − 𝑏𝑀𝐿                                             (1) 

where ML is the corresponding earthquake magnitude, N is the number of corresponding 

earthquakes larger than ML, and a and b are the constants. The coefficient b which is the 

slope of the magnitude distribution represents the relative proportion of large to small 

fracture events occurred during the damage of the material. A high b-value is due to a large 

quantity of small acoustical emissions representing microscopic cracks. A low b-value 

indicates macroscopic, fast, and unstable crack growth accompanied by a high quantity of 

high amplitude acoustical emissions. To apply the Gutenberg-Richter formula to acoustical 

emissions, the magnitude term (ML) is replaced by the amplitude of the acoustical 

emissions in decibels as follows in Eq. (2) and Eq. (3): 

log10𝑁𝐴𝐸 = 𝑎 − 𝑏𝐴𝑑𝐵                                              (2) 

𝐴𝑑𝐵 = 20log10(𝑉𝑝𝑒𝑎𝑘/𝑉𝑟𝑒𝑓)                                          (3) 

where AdB represents the peak amplitude of the acoustical emission hit in decibels, and NAE 

represents the number of acoustical emission hits with an amplitude greater than the 

predefined threshold. The b-value obtained in this relationship must be multiplied by a 

factor of 20 because the acoustical emission amplitude is measured in dB, whereas the 

Richter magnitude of an earthquake is defined in terms of the logarithm of its maximum 
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amplitude. Due to the variability of amplitude distributions and potential outliers, an 

‘improved b-value (Ib-value)’ was proposed by Shiotani et al [23].  The Ib-value is defined 

as 

𝐼𝑏 =
𝑙𝑜𝑔𝑁(𝜇−𝛼1𝜎)−𝑙𝑜𝑔𝑁(𝜇−𝛼2𝜎)

(𝛼1+𝛼2)𝜎
                                          (4) 

 

where σ is the standard deviation of the detected clicks, µ  is the mean amplitude of the 

detected clicks, α1 and α2 represent coefficients of upper and lower limits defined by the 

user. Previous studies have used this relationship for monitoring the progressive failure of 

various geologic materials (e.g. rocks, concrete, wood, fiberglass, etc) [24].  

 Our applications of this b-value statistic demonstrated a novel use of this analysis 

technique; specifically, the first ever application of b-value quantification in joint health 

assessment in both human subjects and human lower-limb cadaver model. 

2.3.2 b-value Assessment on Pre- and Post- Recovery of Injured Subjects 

2.3.2.1 Data Collection Protocol for Method Evaluation 

All human subjects research was conducted under approval from the Georgia 

Institute of Technology Institutional Review Board (IRB) and for the DoD-funded portion 

of the work were also approved by the Army Human Research Protection Office. The 

dataset included knee JAEs from nine injured subjects and two measurements: the first 

measurement was taken within seven days of the injury, and the second measurement was 

taken four to six months following surgery and rehabilitation. The injuries included torn 

anterior cruciate ligaments, torn lateral menisci, and sprained medial collateral ligaments. 

At the time of the second recording, the subjects could resume regular functional activities. 
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Fig. 1 provides an illustration of the measurement setup. For each subject, a low-noise, 

wide bandwidth electret microphone (COS-11D, Sanken Microphone Co., Japan) was 

attached to the medial and lateral aspect of the patella without directly contacting the skin. 

The COS-11D microphone was selected due to its small size, very low noise, high dynamic 

range, and fairly flat frequency response in the measurement range. The subject was asked 

to perform five unloaded knee flexion / extension exercises while seated without allowing 

the foot to contact the ground. The sounds measured by the electret microphones were 

recorded using an audio recorder (Zoom H6 Recorder, Zoom Corp., Japan) at a sampling 

rate of 44.1 kHz. Data collection was completed by Dr. Sinan Hersek and Dr. Caitlin 

Teague of Inan Research Laboratory and Michael L. Jones of the Exercise Physiology 

Laboratory at Georgia Institute of Technology. 

In this work, we did not observe any distinct outliers of high or low amplitude in 

the acoustical emissions from the previously recorded joint sounds. Thus, we implemented 

a modified b-value analysis (Eq. 2 and 3). In recordings with distinct outliers in JAE 

amplitude, Equation (4) should be used instead. The changes in the b-value from the two 

measurements for each subject were compared to evaluate whether acoustical emissions 

Figure 1 Click detection algorithm that consists of three steps: bandpass filter, noise 

reduction and envelope detection. 
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from the knee joints could classify and quantify the knee’s status as injured or healthy (i.e., 

recovered). The b-value is presented as the average of the b-values from each of the 

acoustical signals acquired from the microphones placed on the medial and lateral  side of 

the patella. 

2.3.2.2 Signal Processing 

The principal goal of the signal processing was to detect high amplitude, short 

durations “clicks” in the acoustical signals—these are typically referred to as “acoustical 

emissions.” First, the sounds acquired during five flexion / extension cycles from the knees 

of the subjects are digitally filtered using a finite impulse response band-pass filter with a 

bandwidth from 1kHz-15kHz. This bandpass filter removes the majority of the interface 

Figure 2. Cumulative occurrence frequency and the amplitude relationship plot of the 

acoustical emissions for injured and post-recovery phase for one subject. 
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noise in the signal, and prioritizes the bandwidth of the high energy, short duration joint 

sound signatures.  

After this pre-processing step, we implement a spectral noise suppression technique 

to remove the static background noise [25] as illustrated in Fig. 1. The measurements had 

a static background noise recorded prior to performing the flexion / extension exercise and 

thus this segment was considered as the background noise model that we then removed 

Figure 3 (a) An example 10 sec joint sound recording showing injured and recovered 

phases showing in the b-value for subjects (n=8) between the injured knee and the 

recovered knee (b) and showing no significant changes in the healthy, contralateral knee 

(c). There are more clicks with larger amplitudes in the injured phase than the recovered 

phase. The asterisk (*) represents significance (p<0.01).  
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automatically. The sound data is windowed, and for each windowed segment we perform 

a fast Fourier transform (FFT) using a Hanning window and compute the expected value 

of the noise magnitude spectrum μN for each frequency bin. This is then subtracted from  

the signal magnitude spectrum and the differences having negatives values are set to zero. 

After the noise suppression, the signal is reconstructed using an inverse FFT. Then we use 

a modified envelope detection algorithm where the adaptive threshold is set as the sum of 

the root-mean squared and the maximum value of the reduced static background segment. 

This identifies the desired joint clicks from the acoustical emissions that are high-frequency 

and short durations. Once the clicks are detected, we calculate N which is the total number 

of clicks greater than the corresponding AdB. Using equation (2), we calculate the linear 

coefficients to obtain the b-value. 

2.3.2.3 Results and Discussion  

We calculated the b-values from two measurements: the first was at the time of the 

knee injury, and the second took place four to six months later. Fig. 2 shows the cumulative 

frequency-magnitude distribution plots of acoustical emissions corresponding to the 

injured and recovered phase for one subject to provide a means of visualizing how the b-

value relates to peak amplitudes in the acoustical emissions waveform. A recording from 

one subject was found to be an outlier, likely attributed to a noisy measurement, and thus 

this subject was omitted for the analysis. Additionally, Fig. 3(a) illustrates an example of 

the difference between the injured and recovered phase. 

 For the entire dataset, the average b-value was 1.46 ± 0.35 for the injured phase 

and 1.92 ± 0.21 for the recovery phase. Fig. 3(b) provides a comparison plot of the b-values 
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calculated for all subjects. A paired sample t-test was performed to evaluate the statistical 

significance. This difference between the two groups  (injured vs recovered) was 

statistically significant (p<0.01). There was an increase in the b-value of the acoustical 

emissions from the joints from the injured phase to the recovered phase in all eight subjects. 

We also calculated the b-values from the healthy, contralateral (i.e. control) knee to 

compare against the differences between the injured and recovery phase with the injured 

knee. The average b-value was 2.16 ± 0.51 for the injured phase and 2.26 ± 0.43 for the 

recovery phase. Fig. 3(c) provides all the b-values calculated for the healthy, contralateral 

knees of the same subjects. There was no statistical significance between the two groups 

suggesting that there is little to no change in the b-value in the contralateral (control) knee. 

Additionally, the values from the healthy knees were generally higher than the values from 

the injured knees. This indicates that b-value algorithm can be applied for one knee alone, 

and that it can be used as an absolute measure of knee health without the need for 

normalization. The results stated above indicate that the b-value can provide useful 

information about the knee sound patterns and enables one to discern between an injured 

knee and a recovered, healthy knee.  

This section demonstrates that the b-value, extracted automatically from knee 

acoustical emissions, can quantify changes in the knee health for patients with acute 

injuries and throughout rehabilitation. This method of using the b-value greatly enhances 

the potential for incorporating a joint sound detection suite into a wearable system by 

allowing the device to be equally as effective in assessing knee health while requiring far 

less computational time and power. Future work will focus on optimizing the required 

number of cycles and quantifying whether the b-value follows the same pattern for multiple 
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measurements over the course of rehabilitation. Additionally, the measurements required 

the use of expensive electret microphones. In future studies, we will investigate less 

expensive contact microphones for detecting joint acoustical emissions. Finally, the 

development of b-value measurement algorithms on a microcontroller would facilitate the 

Figure 4. Concept model of knee acoustic wave creation before and after a meniscus tear 

with representative acoustic wave forms. A. Diagram of the knee during flexion and 

extension. B. Medial femoral condyle compressing the medial meniscus from flexion to 

extension. C. Representative acoustic waveform produced by the knee’s movement. D. 

Compression of the radially torn, medial meniscus from flexion to extension. E.  

Representative acoustic waveform produced by the knee. 
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extraction of joint health in real-time with the system without the need for the full 

acoustical emission waveforms to be recorded or transmitted wireless. This could 

substantially reduce the power consumption and memory requirements for the system, and 

thereby enhance the potential for adoption by users for broad applicability in assisting the 

management of rehabilitation through sensor feedback. 

2.3.3 b-value Assessment on Cadaver Lower-limb Model 

In this work, we investigate JAEs using an injury model in human lower limb 

cadavers to better understand the nature of these JAEs. Previous studies to interpret 

acoustic emissions from the knee for clinical decisions has had limited success. One of the 

main reasons for this is a lack of mechanistic understanding of how these joint sounds are 

produced and what factors influence them. The cadaver model would allow a reproducible 

and more controlled analysis of the JAEs from the knee and understanding of the 

anatomical complexity and confounding physiological factors that occur in the specific 

structural change in the knee. The cadaver model was conceived by Dr. Geza Kogler, and 

the experimental design and implementation was conducted by Dr. Daniel Whittingslow 

of the Inan Research Laboratory. To better understand the source of these joint sounds and 

observe the changes in acoustic emissions from the knee, we created a medial meniscus 

injury model to better understand how alterations of the underlying anatomy can correlate 

with the JAEs recorded on the surface of the knee. Combining literature on internal joint 

pressure, our findings of minimum articulating surface distances, and joint sounds at each 

stage of injury led to our proposed model of joint sound production as shown in Fig. 4. To 

provide more physiologic context to the model, we next emulated the biomechanical 

alterations associated with swelling following an acute injury by serially injecting saline 
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into the joint capsule. The b-value of the acoustic emissions was calculated at each stage 

of testing. This sections represents the first time that an analysis of knee acoustic emissions 

has been performed on a controlled, cadaver model with incorporation of anatomical 

complexity, confounding physiological factors that occur in an injured state (i.e. swelling), 

Figure 5 Testing setup for the generation, acquisition, and analysis of knee JAEs on a 

cadaver model. The cadaver knee is outfitted with two accelerometers and a high-precision 

IMU. The accelerometers are sutured medial and lateral to the patellar tendon and record 

the surface vibrations (JAEs) created by the manual flexion/extension of the leg. The IMU 

captures and syncs the 3D motion data to the joint sounds providing anatomical relevance 

to the recorded signals. A DAQ captures the audio waveform data and a microcontroller 

captures the IMU data. All data is transmitted to a laptop computer with custom acquisition 

and analysis software written in MATLAB. 
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and specific structural changes in the knee. Our findings allowed us to propose a model of 

knee acoustic emission that better localized the source of these sounds while remaining 

consistent with the prior literature’s findings that these sounds can be useful in classifying 

the health status of a knee [26, 27]. If characteristic alterations of these JAEs can be linked 

with knee health status, joint sounds may offer a biomarker for early detection and 

assessment of musculoskeletal injury. 

2.3.3.1 Data Collection and Methodology 

Nine fresh frozen human cadaver lower limbs were procured from MedCure, Inc 

(Orlangdo, FL, with permission for use in a research experiment) with an average age of 

63.6 ± 9.5 years of age, stored at -20°C, and thawed to room temperature in a water bath 

for 8 h prior to testing. The age of these cadaver specimens may not be fully representative 

of the overall population, but the exclusion criteria helped limit the impact of confounding 

comorbidities. The joints were selected from donors with no known arthritis, injuries or 

past surgeries of the knee, and that were mobile at time of death. Prior to use, the legs were 

clamped to the laboratory benchtop and preconditioned with manual flexion/extension 

movements for five minutes. Two uniaxial analog accelerometers (3225F7, Dytran 

Instruments Inc. Chatsworth, CA) were sutured (4-0 Nylon Kit, Your Design Medical, 

Brooklyn, NY) 2 cm medial and lateral to the patellar tendon. These accelerometers have 

a broad bandwidth (2Hz-10kHz), high sensitivity (100 mV/g), low noise floor (700 μgrms), 

miniature size and low weight (1 gram). The medial and lateral patellar locations were 

selected due to the relatively unimpeded route (only a thin layer of muscle, tendon, and fat) 

to the articulating surface of the knee (where intra-joint friction is thought to produce the 

recorded vibrations [28].  
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To record the knee acoustic emissions, the cadaver legs were suspended on the side 

of a lab bench and passively flexed and extended through their full range of motion (~90° 

to 180°) every 4 seconds. This suspension ensured the cadaver limb did not contact the 

surface of the lab bench at any stage of the motion. The recordings contained a total of ten 

flexion/extension cycles with 5 seconds of background, environment noise recorded before 

and after. An inertial measurement unit (MPU6050, TDK InvenSense, San Jose, CA) was 

attached 5 cm proximal to the ankle and used to validate the joint angle and rotational 

velocity during these exercises. The signals from the accelerometer were sampled at 100 

kHz and recorded using a data acquisition module (USB-4432, National Instruments 

Corporation, Austin, TX). The recording setup is illustrated in Fig. 5.  

Each of the knees (n=9) were serially, surgically altered in four stages to isolate the 

effects that a medial meniscus tear has on the joint’s acoustic emissions. The four stages 

of testing were baseline, sham surgery, meniscus tear, and the meniscectomy. After 

thawing and pre-conditioning, the joint sounds were first recorded at their baseline status. 

Next, a sham surgery was performed on the leg. The sham surgery was performed with the 

knee at 90° of flexion with a 5-cm oblique incision made just posterior to the superficial 

medial collateral ligament (MCL) at the level of the vastus medialis curving over the 

medial epicondyle onto the anteromedial aspect of the tibia. This cut exposed the interval 

between the posteromedial joint capsule, semimembranosus, and medial head of the 

gastrocnemius [29]. Next, the posteromedial joint capsule was cut 2 cm to expose the 

medial meniscus. Without damaging the meniscus, the incisions were closed with simple 

continuous, running sutures [30]. The sounds were recorded after this sham surgery status. 

Next, the meniscus tear was introduced by performing a 10mm transverse (radial) incision 
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on the posterior (zone A) portion of the meniscus. The surgical entry path was again sealed 

with a simple continuous running suture and the sounds were recorded. Finally, a 

meniscectomy was performed on the injured meniscus. The sutures were cut to re-expose 

the meniscus and a 5mm margin anterior and posterior to the transverse/radial meniscus 

cut was surgically removed. All the recordings took place after being sealed with a simple 

continuous running suture. 

To emulate the altered mechanical environment within the knee resulting from 

swelling following acute injury [31], varying levels of saline were injected into the knees 

prior to meniscus surgery (n=5). 5 mL aliquots of saline were serially injected from 0 to 50 

mL underneath the superolateral surface of the patella and directed posteriorly and 

inferomedially into the knee joint. After each injection, the joint sounds were recorded 

using the above acoustic emission acquisition protocol. 

2.3.3.2 Signal Processing 

The recorded signals were analyzed using MATLAB (MathWorks, Natick, MA). The 

signals were pre-processed using a digital finite impulse response (FIR) band-pass filter 

with 250Hz - 20kHz bandwidth to maintain emissions in the audible range while removing 

motion artifacts. Once filtered, the signals were synchronized to the (inertial measurement 

unit) IMU data and trimmed to remove the excess periods of noise before and after the 

flexion/extensions. This trimmed noise was then used as a basis for a noise suppression 

algorithm using spectral subtraction from the acoustic emission recordings [25]. The b-

value metric was computed for the acoustic emissions to differentiate the sounds based on 

their amplitude distribution of the acoustic emissions. The mean and standard deviation 
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were calculated for each dataset. The data were assessed for normality using a Lilliefors 

test. It was found that the groups were non-normal, so the Scheirer-Ray-Hare extension of 

the Kruskal Wallis test was performed. This test is often used as a non-parametric 

Figure 6. Acoustic data and b-values from four stages of meniscus intervention: baseline, 

sham, meniscus tear, and meniscectomy. A) Transverse plane view of tibial plateau 

diagram shown in order: baseline, sham surgery, posteromedial radial cut, and post-

meniscectomy. B) Representative time-domain acoustical signal from one flexion and 

extension cycle at these four interventions. The meniscus tear signal has loud amplitudes 

compared to the baseline and sham and a slight decrease during meniscectomy. C) Boxplot 

showing the comparison of b-value across the interventions. There were statistically 

significant declines in the b-value from baseline to tear and meniscectomy, and from sham 

to tear and meniscectomy. (indicated with *, n=9 and p<0.05). 
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equivalent to the two-way analysis of variance (ANOVA) test. Finally, multiple Wilcoxon 

signed rank tests were performed to compare between the data groups. A Bonferroni 

correction was applied to correct for the multiple comparisons. The same series of tests 

were performed on the saline injection data.  

2.3.3.3 Results and Discussion 

The b-value statistic of the joint sounds at baseline was 1.99±0.54. After the sham 

surgery, the b-value dropped to 1.87±0.40. This shift was not statistically significant  

(p=0.25). This lack of statistical significance indicated that the sham surgery, with its  

alteration to the tissue external to the joint cavity and exposure of the joint capsule to the 

air and laboratory atmosphere, had minimal influence on the acoustic emissions of the 

knee. A full width, radial tear was performed on the posterior, medial meniscus. At this 

stage, the sounds appear much more chaotic, with several large spikes in the amplitude of 

the sounds. This increase in amplitude was reflected in the b-value after the meniscus tear 

(b-value = 1.33±0.15). This drop in the b-value was significant when compared to the 

baseline and sham stages (p=0.0039). This significance indicated that the meniscus tear 

was solely responsible for the change seen in the acoustic emissions. It indicates that knee 

acoustic emissions can differentiate the internal environment of the knee. After the 

meniscus cut was completed, the torn meniscus was removed resembling a meniscectomy. 

Qualitatively, the acoustic signal appeared to diminish at this stage from the meniscus tear 

state. When analyzed, there was a marginal increase in the b-value (1.34±0.29) toward the 

baseline/sham values. However, this increase was statistically insignificant when 

compared to the meniscus tear group (p=0.91). This lack of significant change in the b-

value following meniscectomy indicates two possible outcomes: 1) The cadaver model was 
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not a suitable substitute for a reparative treatment given the lack of blood flow/synovial 

fluid, or 2) this sensing modality may not be suitable for monitoring post-surgical repairs. 

In earlier work, the knee acoustic emissions were recorded from athletes at the start of their 

season and after suffering injuries such as torn anterior cruciate ligaments, torn menisci, 

and sprained medial collateral ligaments. In that study we found that the b-value and this 

sensing modality was able to track their recovery post-surgical intervention [27]. Thus, the  

lack of return toward baseline is most likely due to differences in the physiology/anatomy 

of the cadaver model and young, collegiate athletes. 

After a meniscus tear occurs in vivo, a series of physiologic events begin in response 

to the injury. Principal among these regarding the effect on mechanical articulation is 

Figure 7 Acoustic Data and b-values from serial saline injections.  Saline was serially 

injected from 0 to 50 mL into the joint cavity. (A) Demonstration of the superolateral 

approach used for injection of the saline. The corresponding b-values at each amount of 

injection are presented in (B). There were no significant differences from 0-50 mL of 

injected saline indicating that there was not a statistically significant change in the AEs of 

the knee from this intervention. (n=5, error bars= 1 standard deviation from mean of the b-

value from the 5 legs tested.) 
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localized swelling. To better understand the extent to which this swelling affects joint 

acoustic emissions we serially injected 5 mL aliquots of 0.9% saline solution into the knee 

capsule (Fig. 7 (A)). After each injection, the acoustic emissions were recorded, and b-

values were calculated. The b-values ranged from a minimum of 1.6±0.3 to 2.1±.6. The 

data were highly variable with no clear trends or statistical significance (p>.05 for n=5) 

(Fig. 7 (B)). Therefore, the injection of saline into the knee capsule does not directly 

influence the production or propagation of acoustic emissions. 

The section presents the first time that knee acoustic emissions have been 

characterized in a controlled setting with a cadaver model of knee injury. The insights 

gained on the application of acoustic emissions for identifying meniscus tears are 

promising and warrant future work in the field. The relation between joint anatomy, the 

associated interactions upon articulation, and the resulting acoustic emissions should be 

further explored to help understand the full utility of this novel sensing modality. With 

more research, joint acoustic emissions could soon serve as a readily measurable, non-

invasive biomarker of joint health. 
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CHAPTER 3. QUANTIFYING THE EFFECTS OF INCREASING 

MECHANICAL STRESS ON KNEE ACOUSTICAL EMISSIONS 

3.1 Introduction 

This chapter seeks to expand the scope of JAE assessment beyond chronic conditions 

and acute knee injury and instead focus on quantification of knee joint loads. One aspect 

that is of interest clinically and scientifically is the quantification of vertical loading forces 

experienced by the knee throughout daily living activities and exercises. Prior work in 

estimating knee loading forces has used instrumented knee implants to quantify loading in 

vivo [32], or biomechanical modeling techniques to estimate loading profiles [10]. 

However, estimation of vertical loading forces in the knee using wearable, non-invasive 

sensing has never been previously demonstrated. In this work, we investigate whether the 

characteristics of acoustical emissions from the joint change in a quantifiable and 

monotonic manner in response to increased biomechanical  stress on the joint during a 

standard movement. We predict that as the internal stress on the knee increases, additional 

interactions between the articulating surfaces may occur and cause a more complex 

acoustic profile. Fig. 8 provides an illustration of our hypothesis and shows the 

measurement setup used for assessing loading effects, based on a vertical leg press with 

varying weight and the measurement of acoustical emissions from the knee. We leveraged 

graph mining algorithms [33] to quantify this complexity and evaluated our approach in a 

study of able-bodied subjects. 
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3.2 Data Collection and Methodology 

Twelve healthy subjects with no prior injuries were recruited for the study which was 

approved by the Georgia Institute of Technology Institutional Review Board (IRB). For 

each subject, four miniature contact microphones (BU-23173-000, Knowles Electronics 

LLC., USA) were attached to the medial and lateral sides of the patella and superficial to 

the lateral and medial meniscus using Kinesio Tex tape (see Fig. 8(a)). The anatomic 

Table 1. Demographic Data for Study Participants 

 
Male Female 

Number of Subjects 9 3 

Age (mean ± σ, in years) 24.3 ± 1.9 25.3 ± 2.1 

Height (mean ± σ, in cm) 175.1 ± 3.5 155 ± 2.7 

Weight (mean ± σ, in kg) 74.3 ± 9.9 50.7 ± 7.2 

 

 

 

TABLE I 

DEMOGRAPHIC DATA FOR STUDY PARTICIPANTS 

 
Male Female 

Number of Subjects 9 3 

Age (mean ± σ, in years) 24.3 ± 1.9 25.3 ± 2.1 

Height (mean ± σ, in cm) 175.1 ± 3.5 155 ± 2.7 

Weight (mean ± σ, in kg) 74.3 ± 9.9 50.7 ± 7.2 

 

 

Figure 8. Illustration of the effects of vertical loading forces on the acoustic emissions 

resulting from increased biomechanical stress on the internal surfaces in the knee 
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positions were selected because of their ease of use as prominent landmarks for repeated  

placement of the microphones between subjects. The biomechanics of the joint was also 

considered in choosing these placement locations. The patella experiences significant 

frictional forces from the movement of the quadriceps tendon during flexion extension and 

is directly superior to the articulating surfaces of the femur and tibia. The menisci are a pair 

of crescent-shaped, fibrocartilaginous pads that provide structural integrity to the knee 

when it undergoes torsion and tension and can disperse the load and relieve friction over 

the articular surfaces of the femur and tibia in the knee. As we increase the compressive 

forces to these locations with external loading, we expect to see a change in the emitted 

sounds by the complex interaction between these surfaces. The contact microphone, which 

are piezoelectric sensors with broad bandwidth (>20kHz) and low output noise (7 µVrms 

Figure 9. Sensor placement and overview of the method of how the signals acquired are 

analyzed. (a) Four contact microphones are placed on the medial and lateral sides of the 

patella and superficially to the medial and lateral meniscus (b) The signal analysis 

workflow for knee joint sounds. The signals from the dominant knee of the subjects are 

filtered and standardized (to zero mean and unity variance) and windowed (frame length 

of 200ms with 90% overlap). The features are extracted for all four mics and vertically 

concatenated where columns represent the features and rows represent all the windowed 

segments. The rows represent all the windows in microphone 1 to microphone 4 and the 

columns represent the 64 features. A k-Nearest Neighbor graph (kNN graph) is constructed 

from the matrix formed using data from the dominant knee and calculates the graph 

community factor (GCF) using the graph community detection algorithm. 
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“A” weighted), were selected as they provide high quality acoustical pick-up from the body 

while maintaining a small footprint amenable for wearable use. The subjects were then 

asked to perform ten repetitions of vertical leg press with different loading conditions. 

Vertical leg press was selected as the exercise for this study since it allows for vertical 

loading at the knee joint to be varied in a controlled manner up to a sufficiently large load 

(i.e. body weight) to notice effects on the acoustical emissions. There was a total of four 

loading conditions, starting with zero load (no weights), and increasing by a third of the 

subject’s body weight up to the full weight of the subject. The audio signals from each 

microphone were pre-amplified using a custom analog front-end consisting of a voltage 

regulator, setting a 3V supply used for powering the microphones and amplifiers, a low 

noise amplifier with a voltage gain of 100, and 180kHz bandwidth, and a bandpass filter 

(bandwidth: 16Hz-20kHz, Butterworth). The amplified signals were then sampled at 

50kHz (16bits/sample) using NI USB-6225 data acquisition hardware (NI, Austin, TX, 

USA). All signals were recorded on a laptop using LabVIEW System Design Software (NI, 

Austin, TX, USA) and were processed using MATLAB (The Mathworks, Naticks, MA, 

USA) and RStudio (RStudio, Boston, MA, USA). 
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Table 2. Audio Features for Knee Joint Sounds 

Feature Name Equation General Description and Significance 

Energy 
 

Total signal energy 

Short term energy is expected to exhibit high variation 
over successive speech frame 

Zero Crossing 

Rate  
Rate of sign changes: 

Exhibit higher values in the case of noisy signals (i.e. 
noisier if there is higher loading forced on the knee joints) 

Energy Entropy 
 

Measure of abrupt changes in the energy level: 

- Low value in abrupt energy changes (i.e. low peaks if 

there are higher loads affecting the joints) 

Spectral Centroid 

and Spread  

Center of gravity of spectrum/ second central moment of 

spectrum: 
- Higher values correspond to brighter sounds (i.e. 

brighter sounds if higher loads are endured on the 

joints) 

Spectral Entropy 
 

Like entropy but in frequency domain:  
- Higher value in sounds for more loads on the joints 

Spectral Flux 

 

Measure of spectral change between two successive 

frames:  

- Lower value if the signals are more consistent (i.e. 
lower the values will be as more loads affect the joint 

sounds) 

Spectral Rolloff 

 
Frequency below which 90% of the signal energy 
(magnitude) is concentrated:  

- Higher value for wider spectrum (i.e. higher in joint 

sounds with more loads are enforced) 

MFCCs  
 

Coefficients that make up a representation of the short-

term power spectrum of a sound, based on a linear cosine 

transform of a log power spectrum on a nonlinear mel 
scale of frequency:  

- First 13 MFCCs carry enough discriminative 
information to compare joint sounds with different 

loading conditions 

Band Powers  
 

Power of the signal in 29 distinct frequency bands, 
between 30 logarithmically spaced frequencies in the 

range of 1kHz-15kHz:  

- Higher frequency band powers will exhibit high 

values at frames where joint sounds are most abrupt. 

(i.e. joints affected by more loads will have higher 

values) 
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3.2.1 Signal Pre-processing and Feature Extraction 

The acoustical signals were acquired during ten repetitions of vertical leg press cycles 

on the dominant leg of the subject. The signals were digitally filtered using a Kaiser-

window finite impulse response bandpass filter with a bandwidth of 400Hz – 20kHz to 

remove the low-frequency interface noise between the tape, the skin and the microphone. 

The filtered signals were standardized with zero mean and unity variance to balance out 

any variations in the signal amplitude among sensors that could result from differences in 

contact pressure against the skin. The normalized signals were then divided into segments 

(windows) with a duration of 200ms and 90% overlap between successive segments. This 

segment duration and the overlap allowed multiple joint sound signatures to be present 

within a given frame. The features derived from each segment are summarized in Table 2 

and many of them are described in detail in Giannakopoulos, et al. [34]. The features were 

selected empirically and are commonly used in other audio signal processing applications. 

For example, the mel-frequency cepstrum coefficient (MFCC) [35] is prevalent in speech 

recognition analysis, for discriminating speech, music, and background noise [36]. 

For each windowed segment of each microphone, a total of 64 features were extracted 

and stored in a vector. For each loading condition, we vertically concatenated the features 

extracted from the windowed segments of all four microphones into one single matrix. 
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Based on the common statistical learning rules found in [38] and [39] the number of 

features acquired for our dataset is a reasonable value. 

3.2.2 Repeatability Testing 

To test the repeatability of the measurements of placing the sensors and loading the 

joint, we have analyzed the acoustical emissions from five subjects over three different 

trials from different days using t-Stochastic Neighbor Embedding (t-SNE). This technique, 

t-SNE, reduces dimensionality by constructing a probability distribution over the points in 

the high-dimensional feature space and a similar probability distribution over the points in 

the low-dimensional map while minimizing Kullback-Leibler divergence between the two 

distributions with respect to the locations of the points in the feature space [40]. This 

Figure 10. A visual representation of the audio signal frames for three different trials on 

one subject for one of the loading conditions (two loads) using t-Stochastic Neighbor 

Embedding (t-SNE). The clusters from the three different trials heavily overlap indicating 

that the measurements are repeatable. 
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minimization ensures that the mappings maintain the relations between each data point in 

the high dimensional space in the newly calculated low dimensional space. Each data point 

represents a 200ms frame of the acoustical signals acquired while the subject performed 

one leg press. For visual representation, 64 feature set (64 dimensions) is reduced to two 

dimensions as shown in Fig. 10. Note the labels on the axis do not have any physical 

meaning, and instead describe the two calculated axes from the t-SNE dimension reduction. 

For each loading conditions, the plot showed little to no separation within the clusters of 

data points for three different trials. This indicates that the signals can be consistently 

measured from one day to the next. 

3.2.3 Proof-of-Concept Study of Loading Effects during Walking 

We considered an alternative exercise using an AlterG (AlterG, Inc., Fremont CA., 

USA), an anti-gravity treadmill that assists rehabilitation of patients by off-loading body 

mass during weight-bearing exercise [41]. Testing was performed on the AlterG treadmill 

because of its ability to alter the body weight (or load) on the knee joints while walking. 

This exercise provides a more real-world context to the nature of joint acoustical emissions 

during an everyday activity. The AlterG assessments further tested our proposed concept 

that an increased load on the joint leads to an increasingly complex acoustical emission. 

llustrations for the measurement setup and the exercise movement are depicted in Fig. 15(a) 

and 15(b). The microphone placements were the same as the locations for the vertical leg 

press. In the case of the AlterG device, we were able to decrease the load on the joint and 

thus test our hypothesis on joint loading conditions that were less than body weight during 

walking. Given that this exercise, and thus the movement/loads of the joint, are different 
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between walking and performing leg presses, no cross comparisons across exercise are 

performed. 

 As a proof-of-concept, we recruited three subjects, under an IRB approved protocol, 

to perform 20 seconds of walking on the treadmill with two different weight conditions: 

20% of the body weight (minimum), and 100% of the body weight (maximum). The 

walking speed was kept constant at a speed of 2.0mph. While the sounds were recorded 

during the entire gait phase, the preprocessing of the signals during gait required different 

approach as the sounds recorded during the heel strike could only depict the noise caused 

by the foot hitting the ground which obscures any knee joint sounds we hoped to record. 

As such, this period of heel strike (the first 5% of gait cycle) was omitted from the analysis 

and the rest of the stance phase (5% to 50% of gait cycle) and swing phase (50% to 100% 

of gait cycle) were used in this analysis.An inertial measurement unit was synchronously 

recorded to define the stance and swing phase of the gait cycle. After this preprocessing 

step, the signal processing and feature extraction methods were used to derive a qualitative 

metric.  

3.3 Graph Mining Algorithm 

Our hypothesis is that increasing the vertical loading forces on the knee would 

increase heterogeneity among acoustical signals captured by the microphones. To 

investigate this matter, we utilized the concept in graph theory of quantifying heterogeneity 

by locating, and computing the number of, communities within the graph. We considered 

the combined features from microphones for a single loading condition as a data matrix X. 

Accordingly, the distribution of X should be modeled. Although this can be done using 
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some statistical models such as Gaussian or student t-distributions [42], these techniques 

require strong assumptions about the high-dimensional shape of the data (e.g., ellipsoid 

versus convex) and model parameters (e.g. mean and standard deviation) which can cause 

many problems, such as unreliable bandwidth estimation for applied kernel density 

function.  

To overcome these challenges, we reconstructed a k-Nearest Neighbor graph (kNN) 

from graph theory which previously has been successfully used by researchers to model 

and cluster high dimensional bioinformatics data [43, 44]. Our idea is that the constructed 

graph from a knee which experienced smaller loads should be less heterogeneous than the 

one that experiences higher loads. This heterogeneity can be modeled with the number of 

complex communities in the related graph: a greater number of graph “communities” 

should be needed to describe sounds emitted from a knee which is loaded with higher 

forces. 

In this work, we define a kNN graph for each dataset X. Let KG = {V, E} indicate the 

Figure 11. An example illustration of the clustering of the node (degree of 4). (a) General 

depiction of the dataset (b) Example graph where vi and vj represents vertex in the nodes 

and wij represents the weight of an edge between the two nodes. 
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kNN graph corresponding to X where V = {v1, v2,…,vN} is the set of vertices and E ⊆ V ×V 

represents the set of edges among vi. In this graph, each vertex vi indicates one row  

(acoustical window) in X. To model the local neighbor of each window xi in X, the 

corresponding vertex vi is connected to its k nearest neighbors using Euclidean distance. 

Fig. 11 illustrates how each windowed segment will be grouped and differentiated into 

separate clusters. In this work, k was chosen to be 10 empirically. Other values were also 

investigated (e.g. 5-15) and similar results were obtained. 

If we only consider the Euclidean distance values [45] to assign related weights of 

edges between vi with its nearest neighbors, noisy data points would engender many  

problems. If there are some vis expanding the dispersed zones between two different 

communities, we may not distinguish these two communities and merge them as one single 

community incorrectly. Hence, weights are reassigned to each graph edge using dice 

similarity [46], such that we incorporate the properties of each point’s neighborhood rather 

than relying on Euclidean distance alone in attributing points to clusters or communities. 

The dice similarity of vi and vj means twice the number of common neighbors divided by 

the sum of the degrees of vi and vj. Assuming vi and vj indicate two connected vertices 

within the kNN graph, the assigned weight for the edge between these two vertices is 

defined as, 

𝑤𝑖𝑗 =
2∗|{𝐴𝑖∩𝐵𝑗}|

(|𝐷𝑖|+|𝐷𝑗|)
                    

where Ai and Bj denotes the set of the neighbors of vi and vj, respectively. Also, the degree 

of vi and vj are represented as Di and Dj, respectively and finally, the notation |*| is the 

number of elements in a set. Fig. 3.4(b) shows how the calculated weight will allow two 

edges, vi and vj, from different clusters not to be merged. Once the weighted kNN graph is 
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extracted, a community detection algorithm is applied to extract all the potential 

communities (clusters) within the kNN graph [47]. In this work, the Infomap community 

detection algorithm [48] is employed to quantify the communities of the kNN graph, since 

Infomap has been applied successfully in various areas of graph mining in different fields 

such as bioinformatics [49]. Infomap uses the probability flow of random walks on the 

network as a proxy for information flows and clusters the graph into multiple communities 

[50]. The algorithm searches for a partitioning of the kNN graph to minimize the expected 

description length of a random walk and seeks to compress  

the description of information flow visited by a random walker on the network. Using 

Huffman code [51], all vi visited by a walker are recorded and coded. The walker takes a 

reasonable amount of time within the same community which results in longer walking 

process. The computational complexity of this algorithm is approximately O(|E|). The 

number of detected communities is shown with “GCF” (Graph Community Factor) which 

represents the heterogeneity of extracted kNN graph from the data matrix X.  

One important note is that discovering of the potential communities in the kNN graph 

is tantamount to finding the number of clusters (dense areas) in a high dimensional dataset 

X. Applying regular clustering methodologies such as K-means and Gaussian Mixture 

Models are not possible in this problem, as these methods require the knowledge of the 

number of clusters (dense populations of acoustical windows) within the data matrix. We 

also note that applying a kernel-based density clustering algorithm [52] (as it automatically 

estimates the number of dense areas in data) on a 64-dimensional dataset X to find the 

clusters is challenging and not practical. The difficulty is that the curse of dimensionality  

causes the density detection in high dimension (in this problem 64) to be very time 
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consuming and statistically not robust. 

3.4 Results and Discussion 

3.4.1 Changes in the GCF with Loadings for All Microphones 

We evaluated the use of the graph mining algorithm to quantify the changes of 

acoustical emissions from the knee joints with respect to different vertical loading forces 

on twelve subjects. Four contact microphones were used to collect the joint sounds from 

various locations on the knee (medial and lateral of patella and meniscus). Fig. 12 

illustrates the increasing trend of heterogeneity and the calculated GCF value with respect 

to different loading conditions for one representative subject. The knee graph is constructed 

from the individual loading data matrix where each data point (vertex in the graph) 

represents all the time and frequency domain features for one windowed frame of the 

acoustical emissions and different colors characterize different communities. The graph on 

the far left of Fig.12 represents densely clustered nodes that are more homogeneous and 

closer to one another in high dimensional space. As the loading conditions increase, the set 

No Load

GCF = 26

One Load

GCF = 34

Two Loads

GCF=38

Three Loads

GCF=40

Figure 12. Graphs created based on the sound features for all windows of the recording and 

calculating the GCF score. Example graph from one subject is shown with the associated 

loading condition and GCF. Different colors correspond to different groups of clusters, 

implying that higher GCF value represents more variation of colors in the graph. 
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of nodes in  the graph become heterogeneous and geometrically more dispersed in space 

indicating a more variable feature set. The mean GCF values for no loading, one-third body 

weight (BW), two-thirds BW, and BW were 26, 34, 38, 40, respectively. Fig. 13 provides 

a boxplot of the GCF values calculated for all subjects for each loading condition. The 

mean values for no load, one-third BW, two-thirds BW, and BW were 30, 32, 36, and 39. 

Since the sample size is not large, the non-parametric paired Kolmogorov-Smirnov test 

was used to calculate the p-value (p<0.01). For twelve subjects, we demonstrated the 

increase in GCF of the acoustic emissions from the joints with respect to the increasing 

load level on the knee. 

Figure 13. Boxplot showing GCF increases with loading for subject (n=12), indicating 

more heterogeneity for all acoustical signatures. The asterisk (*) represents the p-value less 

than 0.01 which is calculated using a non-parametric   paired Kolmogorov-Smirnov test. 
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3.4.2 Changes in GCF Across Microphones 

We also evaluated the characteristics of the acoustical signals across four different 

microphone locations to determine which locations had the most heterogeneity. Each 

microphone data matrix consists of all the segments and the features for the four loading 

conditions. Fig. 14 shows the boxplot of average GCF value for all subjects with respect to 

the microphone locations (numbers). Microphones 1,2,3, and 4 have mean GCF values of 

26.4, 32.6, 33.5, and 23.8 respectively. We used the same non-parametric paired 

Kolmogorov-Smirnov test to calculate the p-value (p<0.01). Referring to Fig. 9(a), the 

results showed that locations 2 and 3 (medial side of the patella and superficial to the lateral 

Figure 14. Boxplot showing GCF for different microphones (locations on the knee). The 

data matrix consists of all loading conditions per microphone for each subject. The asterisk 

(*) indicates the p-value less than 0.01 which is calculated using a non-parametric paired 

Kolmogorov-Smirnov test. 
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meniscus, respectively) seem to show higher variation than the microphones placed on 1 

and 4 (lateral side of the patella and superficial to the medial meniscus, respectively). The 

underlying anatomical sources of this variation are hypothesized as follows: microphone 1 

is located on the superior lateral aspect of the knee which is principally superficial to the 

femur, quadriceps tendons, muscle, and fat. Microphone 3 placement includes the tibia 

collateral ligament, muscles, and the semi-membranous bursae, a jelly filled sacs in 

between ligament and bone, along with the previously mentioned lateral meniscus and 

associated connective tissue. In addition, the fibula connects to the tibia on this side of the 

leg, which could cause considerable differences from the sounds produced on the opposite 

side. The fibular collateral ligaments are located on the lateral side, close to microphone 3, 

which could contribute to more heterogeneity in that location since it is another source of 

tension on the joint when load is applied. Locations 1 to 4 (lower heterogeneity) and 

locations 2 to 3 (higher heterogeneity) makes an ‘X’ through the knee. There are several 

anatomical structures that follow a similar course through the region, and as such may be 

particularly potent contributors to the variations and heterogeneity seen. These structures 

(a) (b)

 
180

90 

20% Body 

Weight

GCF = 28

100% Body 

Weight

GCF = 36

(c)

Figure 15. Alternative exercise that can measure joint sounds with different loads. (a) 

AlterG device allows the user to reduce their body weight by a designated percentage down 

to 20 percent. (b) Illustration of the activity and measurements of acoustical emissions from 

the joint with contact microphones with respect to the angle of the dominant knee. (c) 

Graphs created based on the sound features for all windows of the recording and calculating 

the GCF score. Example graph from one subject is shown with different percentage of the 

body weight. 
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include the two proximal heads of the gastrocnemius, the popliteus muscle/ligaments, and 

the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). 

3.4.3 Changes in GCF during Walking with Loading 

From the walking dataset, using the graph mining technique from the acoustical 

signal obtained from three subjects, we found that the average GCF value increased from 

26 to 33 as the body weight changed from 20% (minimum) to 100% (maximum),  

respectively (see Fig. 15(c)). This showed that changing the loading on the knee while 

walking has an impact on the knee joint acoustical emissions.  

3.5 Conclusion 

This work established a method of using a graph mining algorithm to quantify the 

impact that mechanical loading of the knee has on the joint sounds produced. We 

demonstrated that with increasing loading conditions in both leg press and walking, the 

acoustical emissions became more heterogeneous. Furthermore, we observed that there 

were more variations in microphone placement at the medial side of the patella and the 

lateral side of the meniscus. 

Future work will include investigating the causes for the variation in signals due to 

microphone placement and which locations would provide the best signal quality. This will 

include a cadaveric dissection with microphones placed on the aforementioned anatomical 

structures. On the skin, microphones will continue to be placed on different parts of the 

knees superficially to find the optimal locations for maximizing signal quality. In addition, 

more subjects will be recruited for investigating how different loading and joint angle speed 
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on different rehabilitation exercises can impact the acoustical emissions using the AlterG 

and their importance in the rehabilitation process. The longitudinal measurements of 

cumulative joint loading forces in athletes or patients rehabilitating knee injuries may 

provide a means of assessing knee use during normal activities or exercises, which can then 

be provided to the user as feedback. 
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CHAPTER 4. QUANTIFYING ASYMMETRY BETWEEN 

MEDIAL AND LATERAL COMPARTMENT KNEE LOADING 

FORCES USING ACOUSTIC EMISSIONS 

4.1 Introduction 

Accordingly, an abnormally large knee joint load is considered an important factor 

in the development of OA [King]. Biomechanically, the medial knee compartment is the 

most susceptible to severe disease due to the natural alignment of the lower limb which 

places the ground reaction force directly through the medial compartment at a rate of 5-10 

times that of the lateral compartment [10]. Quantifying the joint contact force (JCF) 

distribution or asymmetry between the medial and lateral compartments would provide 

important insights to understanding the relationship between JCF and potential progression 

of these pathologies. Musculoskeletal models (MSKM) are considered the current gold 

standard for estimating muscle forces and JCF and these models have been used in the 

literature to estimate tibiofemoral JCF [53]. Although this is a non-invasive method, it is 

limited to a controlled lab setting requiring motion capture cameras for joint angles, force 

plates for ground reaction force (GRF) and electromyography (EMG) sensors for muscle 

activation making it difficult to monitor and measure joint loading outside of lab 

environments.   

 In this chapter, we present a novel approach using representation learning, 

specifically convolutional autoencoders (CAE), to learn the compressed representation of 

the joint acoustic emissions to build a subject independent model that can estimate the 
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directional bias of joint load asymmetry between medial and lateral compartments of the 

knee and generalize to new and unseen subjects. We hypothesize that time-frequency 

representation of the acoustic signal and a multi-sensor fusion technique can improve the 

performance of the subject independent classification model over the handcrafted features. 

Previous study has used short time Fourier transform (STFT) of knee acoustic signals to 

classify healthy versus injured knee [54]. In this work, we further investigate different types 

of time-frequency representation known as scalogram using three different wavelet 

transforms. Different types of fusion are explored such as signal level fusion which 

includes cross spectrogram and wavelet coherence prior to features extraction and feature 

level fusion which combines the two or more extracted features matrices into a single 

matrix either by concatenating or adding. We used a hybrid machine learning algorithm 

consisting of both neural networks and support vector machine (SVM) for classification 

and has shown for the first time that the medial to lateral load distribution can be quantified 

and that wavelet coherence yields the best performance.  

4.2 Materials and Methods 

4.2.1 Study Participant 

Sixteen able-bodied subjects (10 male / 6 female, age: 24.7 ± 3.6 years, height: 171 

± 7.5 cm, weight: 71 ± 10 kg) participated in this study under the approval from the Georgia 

Institute of Technology Institutional Review Board. Inclusion criteria included no history 

of major knee injury or surgery.  

4.2.2 Hardware Setup and Data Acquisition 
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Each subject was instrumented with 20 reflective body markers to provide full 3D 

kinematics of the subject’s lower limbs based on the Plug-In Gait lower body mode [55]. 

These markers were tracked using a motion capture system including 15 infrared cameras 

at a sampling rate of 200 Hz (Vicon Motion Systems, Denver, CO, USA). The subject 

stood on force plates (Bertec, Columbus, OH, USA) to capture the GRF and center of 

pressure on each leg with a sampling rate of 1 kHz. Twelve EMG sensors (Trigno Wireless 

EMG, Delsys, Natick, MA) were placed on key muscles targeted during squat exercises on 

the left and right leg: namely, rectus femoris, vastus lateralis, vastus medialis, biceps 

femoris, semitendinosus and the lateral gastrocnemius [56]. Fig. 16a illustrates our 

hypothesis and Fig. 16b shows the measurement setup used to capture the necessary 

biomechanical signals to calculate JCF. Data collection took place in the biomechanics lab 

with the assistance in experimental setup and supply of materials from the members of 

Exoskeleton and Prosthetic Intelligent Controls Lab at Georgia Institute of Technology.   

Figure 16. Experimental procedure and system architecture. (Left) Subject performing 

squat exercises. The knee joint acoustical emission could indicate the asymmetry in medial 

and lateral compartmental forces. (Right) Experimental setup including motion capture 

system to calculate the kinematics, electromyography sensors for muscle activation, force 

plate to detect ground reaction force, and contact microphones for acoustic detection from 

the knee joint. 
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The acoustic emissions from the knee were captured using miniature, high-

bandwidth, uniaxial accelerometers (series 3225, Dytran Instruments, Inc., Chatsworth, 

CA, USA) which have a high sensitivity (100mV/g), low noise floor (700 ugrms) and a 

broad bandwidth (up to 10 kHz). These accelerometers were attached to the medial and 

lateral sides of the patella tendon on both the left and right knees using adhesive tape. These 

locations have been used in previous studies as they provide the optimal contact area and 

minimize the influence of soft tissue, muscle, and fat on the acoustic signals [57]. These 

signals were collected with a sampling rate of 25 kHz using a data acquisition device (NI 

USB-4432, National Instruments Corporation, Austin, TX) through MATLAB software 

(MathWorks, Natick, MA). 

4.2.3 Experimental Procedure 

After being instrumented with these sensors, the subject was asked to perform 10 

cycles of deep flexion squats across three different leg stances. The speed of the squat was 

controlled to 4 seconds per cycle using a metronome (2 seconds down, 2 seconds up) to 

mitigate the effect of velocity on the acoustic emissions. The baseline condition was 

defined as a squat with the feet at approximately the subject’s shoulder-width apart and is 

considered the most common posture for the subjects when performing a squat movement. 

A narrow squat was defined as a squat with the leg stance width less than half of the 

baseline condition and the wide squat was defined as a squat with the leg stance 

approximately twice as big as the baseline condition. Previous studies showed that the 

shear force was much greater in narrow stance squat than shoulder-width or wide stance 

[58] and that the increasing stance width resulted in the center of pressure being placed 

more on the lateral side [59]. Thus, these two conditions (narrow and wide stance widths) 
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were expected to change the loading on the medial and lateral compartments of the knee 

thus creating a larger asymmetry compared to the baseline condition.  

4.2.4 Joint Contact Force Estimation 

The marker trajectory data, GRF, and EMG signals were filtered and processed with 

a MATLAB toolbox MotoNMS [60] and were used as an input to the musculoskeletal 

modeling software called OpenSim [61]. To calculate the JCF in the medial and the lateral 

compartments of the knee during squats, a custom MSKM designed by Bedo et. al. was 

implemented [62]. This model is a modified version from the generic model that computes 

the medial and lateral tibiofemoral contact force by resolving the differences between the 

two using the tibial and femoral components and allowing larger lower-limb range of 

motion. This MSKM was scaled for each subject and the joint angle (inverse kinematics), 

joint moments (inverse dynamics), and muscle moment arms (muscle analysis) were 

derived from the OpenSim. Muscle forces were computed using the Calibrated EMG-

Informed Neuromusculoskeletal Modelling Toolbox (CEINMS) [63]. This toolbox 

comprises EMG-assisted algorithms that adjusts existing excitations from experimental 

EMG signals and uses static optimization to synthesize the muscle activations for muscles 

that were not collected experimentally. Using these muscle forces along with joint 

moments and internal and external loads, the medial and lateral JCF were derived using 

the JointReaction analysis and were segmented for each squat cycle. The resultant forces 

were normalized to each subject’s BW.  

4.3 Joint Acoustic Emission Processing 

4.3.1 Handcrafted Features 
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The acoustic signals were downsampled and bandpass filtered between 10 Hz to 2 

kHz. Although the frequency band of the sensors and filtering cut-off frequencies differ in 

the literature, this frequency bandwidth was chosen based on previous studies [64][65] as 

this range contains both the lower frequency grinding loudness and the large-amplitude, 

short-duration clicks of the acoustic signals while removing the baseline wanders caused 

by the limb movement. After preprocessing, the filtered data was segmented into each squat 

cycle and the most widely used features such as spatiotemporal, spectral, Mel-frequency 

cepstrum coefficient, and gammatone cepstral coefficients were extracted with 100ms 

window size and 50% overlap. For each squat cycle, the average and standard deviation of 

these windowed features were calculated to provide a single instance. 

4.3.2 Audio-to-Image Representation 

In this work, we explored four types of image representation of the acoustic signals. 

The spectrogram is a time-frequency representation of the acoustic signal generated by 

STFT [66] with a hamming window of size 50ms with 50% overlap. The power 

spectrogram which is the square magnitude of the complex-valued amplitude spectrogram 

is the most common representation as it is easily interpretable. The scalogram is the time-

frequency representation of the acoustic signal generated by a wavelet transformation [67]. 

There are three different types of wavelets used in this study: morse which is useful for 

analyzing signals with time-varying amplitude and frequency [68], Morlet which has equal 

variance in time and frequency [69], and bump which has wider variance in time and 

narrower variance in frequency [70]. Given a time series signal 𝑥(𝑡), a continuous wavelet 

transform can be expressed as follows: 



48 

 

𝑊𝑥(𝑢, 𝑠) =
1

√𝑠
∑ 𝑥(𝑡)𝜓∗+∞
−∞ (

𝑡−𝑢

𝑠
)     (x) 

where 𝜓 represents a Fourier transform of designated wavelet, 𝑠 denotes the scale factor, 

𝑢 represents time shift factor and * denotes a complex conjugate.  

These time-frequency representation are expressed in two-dimensional matrix 

using the aforementioned calculation of spectrograms and/or scalograms. STFT provides 

uniform time-frequency resolution and wavelet transformation yields better time 

localization at higher frequencies and better frequency localization at lower frequencies 

than the spectrogram [71].  

4.3.3 Sensor Fusion Methods 

Sensor fusion is a technique of combining multiple signals from multiple sensors 

to extract more useful information than the ones provided by the single sensor. Two types 

of fusion mechanisms are explored in this work: signal-level fusion and feature-level 

fusion. Signal-level fusion refers to the combination of signals from the multiple sensors. 

In this case, the relationship of the two signals is extracted and used as an input to the CAE. 

The sampling rate, data size and time synchronization should be comparable between the 

multiple signals. This method computes correlation between two acoustic signals prior to 

the feature extraction. One approach is the cross spectrogram which is a cross-correlation 

in the frequency domain between the two signals [72]. Given two time series 𝑥 and 𝑦, the 

cross spectrum 𝛤𝑥𝑦 can be expressed as follows: 

𝛤𝑥𝑦 = ℱ{𝛾𝑥𝑦}(𝑓) = ∑ 𝛾𝑥𝑦(𝜏)𝑒
−2𝜋𝑖𝜏𝑓∞

𝜏=∞      (x) 
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where 𝛾𝑥𝑦  is the cross-variance function and ℱ  is the Fourier transform. The log-

magnitude can be calculated from this equation to provide the 2-D input to our 

CAE. The other approach is the magnitude-squared wavelet coherence. The 

wavelet coherence is computed using the Morlet wavelet over logarithmic scales 

[73]. Given two time-series signals 𝑥(𝑡)  and 𝑦(𝑡) ,wavelet coherence can be 

expressed as following: 

𝑊𝑐𝑜ℎ(𝑢, 𝑠) =  
|𝑆(𝑊𝑥

∗(𝑢,𝑠)𝑊𝑦(𝑢,𝑠))|
2

𝑆(|𝑊𝑥(𝑢,𝑠)|2)∙𝑆(|𝑊𝑦(𝑢,𝑠)|
2
)
     (x) 

where 𝑊𝑥(𝑢, 𝑠) and 𝑊𝑦(𝑢, 𝑠) denote the continuous wavelet transforms of 𝑥(𝑡) and 𝑦(𝑡) 

at scales 𝑢 and time shift factor 𝑠. 𝑆 is a smoothing function in time and scale domain that 

keeps the balance between frequency resolution and significance. Fig. 17 visually 

represents the differences between the two signal level fusion methods. In feature-level 

fusion, the fusion occurs after the features are extracted from each sensor. The most 

common method is fusing the features extracted individually from the autoencoder by 

Figure 16. Example of a cross spectrum and wavelet coherence of the acoustic signal for a 

single squat cycle. 
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concatenating the two feature spaces together [74]. We will compare the performance of 

the different sensor fusion methods to determine the robustness of using multi-sensor 

approach and to define which sensor fusion methods best estimate the directional bias of 

asymmetry between medial and lateral compartment JCF. 

4.4 Representation Learning for Feature Extraction 

4.4.1 Convolutional Neural Network 

A convolutional neural network (CNN) is a widely used deep learning algorithms 

successfully applied in fields of computer vision. The benefit of CNN is that it can 

successfully capture the spatial information of the input image data without losing 

important features when the image is flattened to a single vector as an input [75]. CNN 

consists of convolutional layer, and a pooling layer. Convolution layer is where the 

convolution operation occurs that involves multiplication of a set of weights with the input 

to extract comprehensive features of the input image. This multiplication is performed 

between the input data and a 2-D array of weights determined by the kernel size. Usually, 

the first convolutional layer captures the low-level features such as edges, color, and 

gradient orientations. With more layers, the architecture will learn the high-level features 

that gives an overall understanding of the input data.  There are other parameters to consider 

when formulating the convolutional layer: number of filters, padding, and activation. 

Number of filters can be understood as number of feature detectors that the network can 

potentially learn. Activation function such as rectified linear unit (ReLU) helps to decide 

whether to activate the neurons or not. Padding is used to handle the problem of preserving 

the information at the border by filling a layer of zeros around the input image [76]. 



51 

 

The pooling layer is optional but is widely used in CNN to reduce the spatial size 

of the convolved feature to decrease the computational power required to process the data 

and to extract dominant features of the image. In general, there are two types of pooling: 

max pooling and average pooling. Max pooling takes the maximum value within a matrix 

while the average pooling computes the average value. In this work, we employed max 

pooling which is known to contain more informative features and improves generalization 

performance [77].  

4.4.2 Convolutional Autoencoder 

An autoencoder is a self-supervised neural network model that learns the 

compressed representation of the input data and tries to reproduce the input at the output 

[78]. Autoencoder consists of two parts: an encoder that learns the informative features of 

the input and compresses it into a latent space; a decoder that tries to reconstruct the input 

from the compressed representation provided by the encoder. Given a set of input data 𝑋 =

 {𝑥(1), 𝑥(2), 𝑥(3),⋯ }, where 𝑥(𝑖) ∈ 𝑅𝑛, the encoder can be represented as 𝜑: 𝑥 ∈ 𝑋 → ℎ ∈

𝐷  where the function 𝜑  maps the input data 𝑋  to latent space 𝐷 . The decoder can be 

represented as 𝜓: ℎ ∈ 𝐷 → 𝑥′ ∈ 𝑋 where the function 𝜓 maps the latent space 𝐷 to the 

output which is expected to be same as the input. Through the training process, the 

autoencoder applies backpropagation by taking the input data as the target variable (i.e., 

𝑦(𝑖) = 𝑥′(𝑖) = 𝑥(𝑖)) and minimizes the reconstruction errors using the loss function such as 

mean squared error. 
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CAE is a variant of CNN where the encoder and decoder are basically a form of 

CNN [79]. The convolutional encoder extracts the important features to a feature map from 

the 2-D input, while the convolutional decoder reconstructs the feature map to the output. 

4.4.3 Model Architecture 

The proposed model used in this study is the CAE using a two-layer of CNN 

architecture for encoder and decoder individually and SVM for classification shown in Fig. 

18. We used SVM as our classification model due to its ability to work with a smaller 

dataset and high dimensional space [80]. This hybrid machine learning algorithm 

consisting of both neural networks for feature extraction and SVM for classification task 

has commonly been used in other studies [81-83]. Since the dataset is relatively small, 

reducing the number of trainable parameters would help prevent overfitting. We employed 

Figure 1817. Hybrid machine learning algorithm consisted of CAE and SVM. The encoder 

has two convolutional layers with kernel size of 5 and filter size of 10 and 20, respectively. 

Max pooling layer is added after each convolutional filter. The decoder has a similar layout 

as the encoder. Once CAE is trained, the encoder will extract the reduced representation of 

both training and testing data which is used as an input to the SVM classification model. 
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a nested cross validation along with grid search to find the optimal hyperparameters for the 

autoencoder and the SVM [84] and the model parameters were kept the same to ensure that 

the model performance on an unseen subject can be evaluated fairly. Some of the 

hyperparameters that were tuned were the number of layers (1-3), number of filters (10-60, 

in increments of 10), kernel size (3,5,7), activation functions {tanh, ReLU, sigmoid}, and 

the optimizer in the set {Adadelta, RMSProp, Adam, stochastic gradient descent (SGD)}. 

The first convolutional layer consists for 10 filters, a kernel size of 5, a ReLU activation 

function, and a max pooling. The second convolutional layer is similar except the number 

of filter is increased to 20. For the model training, we used mean squared error (MSE) as 

the loss function and 200 epochs with an early stopping to prevent overfitting [85] if the 

validation loss did not continue to decrease in 5 epochs. Once the CAE is trained, the 

decoder is discarded, and the encoder is used as a feature extractor to obtain the reduced 

dimension of the input data. The model’s performance was tested using the leave-one-

subject-out cross validation (LOSO-CV) split where the model was trained and tuned using 

the 15 subject’s data. The idea is to validate whether the model can predict on an unseen 

Figure 19. Overview of the signal processing with sensor fusion methods and machine 

learning pipeline. 
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data recurrently. The LOSO train-test split was performed such that all subject’s data was 

tested once and the accuracy of the model for each subject was averaged. The F1 score, 

precision and recall were also reported to provide insights to performance of the model. 

The overall pipeline is illustrated in Fig. 19. 

4.5 Results and Discussion 

4.5.1 Joint Contact Force Analysis 

The overall JCF of the medial and lateral compartment were normalized to their 

baseline condition and the difference (∆𝐽𝑅𝐹) between the two were calculated for each 

squat cycle. In general, the peak compressive force at the medial side was higher than the 

lateral side for a shoulder-width baseline squat. Fig. 20a illustrates an example of the 

averaged medial and lateral JCF of a single subject for each squat condition. In general, 

Figure 20. (a) Joint contact force for medial and lateral side for three different conditions. 

The joint contact force per cycle was calculated as the area under the curve which indicates 

the overall force acting on the knee joint per squat cycle. (b) Boxplot showing statistical 

difference among three conditions. 
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the normalized ∆𝐽𝑅𝐹 showed that certain ranges (|∆𝐽𝑅𝐹| < 0.1𝐵𝑊) can be referred to as 

a baseline or no asymmetry. The actual value of medial and lateral JCF will not be the same 

and the difference between the two will be different from subject to subject. Thus, to define 

asymmetry, this baseline range is considered as having no imbalance between the medial  

and lateral JCF. The medial JCF was higher than the lateral JCF for narrow squat condition 

(∆𝐽𝑅𝐹 > 0.1𝐵𝑊) and vice versa for the wide squat condition (∆𝐽𝑅𝐹 < −0.1𝐵𝑊). We 

validated the statistical significance between these three conditions using a Wilcoxon 

signed rank test [86] across subjects and showed that these three conditions were 

statistically significant from one another. Bonferroni correction was applied for multiple 

comparison [87]. Fig. 20b demonstrates boxplot for the normalized ∆𝐽𝑅𝐹  for each 

condition across all subjects. The purpose of these different experimental conditions was 

to introduce an extreme case that would cause the medial JCF to be much greater than the 

later JCF and vice versa. The goal is to determine whether the joint acoustic emissions can 

detect these extreme conditions which are defined as greater than the assigned range of the 

baseline (-0.1 BW to 0.1 BW). 

 

Table 3. Sensor Fusion Classification Accuracy on Unseen Subject (%) 

Feature-Level Signal-Level 

Spectrogram 51.7 ± 3.4 % Cross-spectrum 75.49 ± 6.8% 

Morse 67.6 ± 2.8% Wavelet 

Coherence 

83.75 ± 6.3% 

Bump 63.4 ± 8.7% 

Morlet 69.9 ± 4.2% 
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4.5.2 Using CAE for Feature Extraction 

The comparison of the time frequency representations of a single sensor (medial and 

lateral) and the feature-level fusion method is shown in Table 3. The results showed that 

for the feature-fusion method, the Morlet wavelet had the highest accuracy of 69.9 ± 4.2%. 

The cross-spectrum method shows an accuracy of 75.49 ± 6.8% while the wavelet 

coherence shows an accuracy of 83.76 ± 6.3%. 

These results indicate that using the signal-level fusion of wavelet coherence 

yielded the highest accuracy of estimating the direction of medio-lateral joint distribution 

which suggests that the difference in the medial and lateral compartment JCF can be best 

described as the wavelet coherence between the acoustic signals captured from the medial 

and lateral side of the patella. Table 4 shows the precision, recall and F1-score of the testing 

set using the wavelet coherence for all the squat conditions. This indicates that the model’s 

accuracy on the testing set is not skewed to one condition and that the model performed 

consistently well across subjects and across conditions. 

 

Table 4. Wavelet Coherence Precision, Recall, and F1-Score (%) 

 Precision Recall F1-score 

Narrow squat 78.77 86.52 77.21 

Normal squat 93.61 90.53 91.73 

Wide squat 87.01 86.46 85.15 
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4.5.3 Handcrafted versus Automated Features 

We also explored the performance of the handcrafted features and compared them 

with the automated features from the CAE. Fig. 21 shows the comparison of these two 

feature extraction methods using a uniform manifold approximation and projection   

(UMAP) which is a dimensionality reduction technique used for visualization that can take 

in non-linear dimensions and preserves more of the global structure with faster run time 

[88]. Automated features extracted from the wavelet coherence between two signals were 

used as an input to this dimensionality reduction technique. This visualization indicates 

that the handcrafted features show much overlap between the squat conditions while the 

automated features relatively show some separation which is also shown in the 

aforementioned testing accuracy result. We applied the same machine learning method 

using the handcrafted features to test the performance of the model on an unseen subject’s 

data. The handcrafted features extracted from medial and lateral sensors were concatenated 

into a single matrix where the rows represent each cycles and columns represent features. 

Figure 18. Comparison of the unsupervised clustering of the acoustic signal for different 

conditions. 
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To improve the performance of the model and reduce high structural variability of the knee 

between subjects, forward feature selection was implemented to select most discriminative 

and less subject-specific features. Once the generalizable features have been selected, the 

SVM was trained with LOSO-CV. The testing accuracy across subjects came out to be 

47.63 ± 7.8% which demonstrates that these handcrafted features may not generalize across 

all subjects 

4.5.4 Discussion 

This is the first study to identify the direction of the medial and lateral load distribution 

of the knee joints using acoustic emissions. Previous studies attempted to estimate the 

medial and lateral contact force during shoulder-width squat by using electronic force 

transducers embedded in the total knee replacement [11], designing a load cell embedded 

instrumented knee prothesis [12], or using several total knee arthroplasty (TKA) designs 

on a cadaver leg model [89]. Although using these force sensors could be more accurate 

and a direct measurement of the medial and lateral contact forces, these methods would 

only be applicable to patients undergoing TKA treatments. Additionally, these studies 

recruited either a single subject with age greater than 70 or used cadaver leg models. Other 

studies investigated the effect of stance width during squats to understand how knee forces 

and muscle activation varies [90, 91]. Escamilla et al computed tibiofemoral contact force 

(TFCF) and demonstrated that TFCF were on average 15-16% higher in wide stance squat 

compared with the narrow stance squat [90]. Lorenzetti et al showed that the knee external 

moments, which has been studied as a potential measure of medial JCF [92, 93], was the 

highest in the narrow stance squat followed by the shoulder-width and the wide stance 

squat [91].  
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Since our method is not a direct measurement of the magnitude of medial and lateral 

contact forces, direct comparison of this method to previous literatures cannot be made. 

However, the MSKM used in this study demonstrated that in the shoulder-width squat, the 

medial compartment JCF were generally higher than the lateral across the subjects (medial 

to lateral load ratio = 1.1 ± 0.5) and the ratio between the medial and lateral JCF was higher 

in narrow stance squat than the wide stance squat (medial to lateral load ratio for narrow 

squat = 1.5 ± 0.4, medial to lateral load ratio for wide squat = 0.8 ± 0.3).     

4.6 Conclusion and Future Work 

These preliminary findings demonstrate that joint acoustic emissions can be used as 

a potential measure to detect the internal medio-lateral asymmetry of knee joint force. 

There are a few limitations in this study. One limitation is that the model does not estimate 

the actual magnitude difference of the JCF for the three squat exercises. The results from 

MSKM modeling showed that varying leg stance width while squatting showed a 

statistically significant difference of the medial and lateral JCF. While the normalized 

∆𝐽𝑅𝐹s for baseline squat relatively fall within the range between -0.1 BW and 0.1 BW, the 

absolute value of other conditions can vary from as little as 0.2 BW up to 4.6 BW. Further 

research is needed to estimate the actual difference of the medial and lateral JCF or the 

quantitative magnitude of JCF on each side. Also,  knowledge of actual medial and lateral 

JCF would provide further insight to clinicians and patients allowing them to monitor knee 

compartment loading over time, therefore enabling more informed treatment decisions. 

Another limitation is that only one type of activity was explored in this study. It is expected 

that the characteristics of the joint acoustic emissions would differ based on the range of 

motion. Further research should investigate the medial to lateral load distributions for 
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different types of activities such as stair climbing, standing-up, sitting-down, and walking 

which is considered the most common activity of daily living. 

In this chapter, we have demonstrated for the first time that joint acoustic emissions 

can be used to determine the imbalance or asymmetry between the medial and lateral 

compartment joint contact forces during squats. We developed a novel method of 

interpreting the signals from sensors attached to the medial and lateral side of the patella 

tendon by using a wavelet coherence and learning compressed representation of this 

coherence using a convolutional autoencoder. Results demonstrate that acoustic emissions 

can be used to determine the directional bias of medial to lateral load distribution and that 

acoustic signals can be used to determine the medio-lateral asymmetry on an unseen 

subject’s data. These findings suggest the possibility of using wearable devices to measure 

joint sounds and monitor the medial to lateral joint load distribution without the need to 

collect biomechanical data in the laboratory environment. Wearable sensing technology to 

quantify medial to lateral joint load distribution would have clinical values as well since 

over usage of knee loads can potentially lead to osteoarthritis, especially on the medial 

side. This wearable technology would also provide useful insights on determining 

appropriate exercises for rehabilitation and treatment without overloading a specific 

compartment within the knee. 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This work presents algorithms that can be used for longitudinal joint health 

assessment. The ultimate vision of this work is to allow users to monitor their joint health 

outside of clinics and laboratory settings and receive feedback throughout their daily 

activities, ideally in the form of a wearable system. JAEs can serve as a potential biomarker 

to quantify joint health as the sensors and systems to capture these signals can be designed 

to be wearable. 

In this dissertation, key scientific findings helped pave the way towards enabling 

longitudinal joint health monitoring using JAEs. As a first step, we developed a novel 

method for processing JAE by investigating the knee sounds recorded from athletes at the 

time of an acute injury and 4-6 months of post recovery. We validated that the b-value of 

the acoustic signals can quantify changes in the knee health for patients with acute injuries 

and throughout rehabilitation. We further validated this novel method by exploring the 

cadaver model of acute knee injury and the changes before and after injury. This method 

of using the b-value greatly enhances the potential for incorporating a joint sound detection 

suite into a wearable system by allowing the device to be equally as effective in tracking 

rehabilitation improvement of the knee following acute injury while requiring far less 

computational time and power.  

One of the important parameters for understanding joint health is quantifying the 

overuse and changes of knee joint loads in activities of daily life. In this dissertation, the 
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relationship between the changes in increasing mechanical stress and the JAEs is quantified 

by using an unsupervised graph mining algorithm that determines the number of complex 

communities within the signal. As the knee joint experienced greater loads, the number of 

communities increased accordingly, suggesting that JAE can be leveraged as a biomarker 

for detecting changes in knee joint load. In addition, we quantified the directional bias of 

medial to lateral load distribution from JAEs by using sensor fusion and hybrid machine 

learning algorithm in a subject independent model. There is no gold standard set of 

handcrafted features that can explain the conditions of the knee health and the importance 

of the features differ from subject to subject. The ability to overcome subject variability by 

using automated feature extraction method shows the potential that JAEs can be used to 

quantify JCF in diverse activities without the need to collect biomechanics data in a lab.  

5.2 Future Directions 

There are several future research directions from this work. First, further clinical 

studies can be conducted to collect a broad range of data with diverse injury types of the 

knee along with multiple recordings throughout the days or weeks following the injuries 

as the patients complete rehabilitation. In addition, other demographic information or 

clinical data can be simultaneously collected that defines the health of the knee. This could 

provide more insights and details as to how JAEs change as the joint starts to heal and 

return to the healthy status. This could also lead to improved signal processing methods 

that are more intuitive and effective that can be incorporated in a wearable sensing system.   

Second, future work towards conducting studies to quantify the usage of the knee 

and measure knee joint load in everyday activities could broaden the scope of joint health 
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assessment. Most of the previous studies in clinics have recorded JAE through a simple 

motion, namely flexion extension and sit-to-stand (or squat) as these maneuvers allow more 

controlled and repeatable measures. Exploring other common activities such as walking 

and stair climbing, or rehabilitation exercises such as leg press and step ups could augment 

the datasets for understanding biomechanical and physiological changes of the knee joint 

using JAEs and how they change as the patients undergo rehabilitation. Furthermore, 

methods to process JAEs that can overcome subject variability across multiple activities 

should be investigated. The goal of using JAEs is to allow users to measure joint health 

outside of labs or clinics. Further research should examine robust feature extraction 

methods that would allow users to assess their knee usage in any activities without the need 

to take measurements in the biomechanics lab.  

Finally, future work should involve determining the number of sensors and 

investigating more effective signal processing methods that would provide best 

performance using a wearable device. Current studies are mostly confined to a controlled 

setting such as in the clinic or in the biomechanics lab. The hardware and sensor modality 

in a wearable mechanism could be more uncontrolled including loose contact or wire 

interference during more dynamic activities such as walking and stair climbing. Signal 

processing methods that effectively handles these artifacts should be integrated to collect 

high quality and useful data.  

5.3 Aspirations and Potential Impact of This Work 

With rising healthcare cost and advancement in artificial intelligence driven 

technologies, remote health monitoring provides a promising alternative to clinical visits 
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and could benefit many patients by saving time and cost. Especially in joint health 

monitoring, the current gold standard tools such as MRI, X-rays, and CT scans are not 

well-suited for longitudinal measurement throughout days or weeks as they are time-

consuming, costly, and limited to clinical settings. A wearable sensing technology, 

specifically using a novel sensing modality such as joint acoustics, could reveal 

information regarding the underlying joint structure or quantify complex biomechanical 

parameters that would previously need to be measured either in clinics or laboratory 

settings. For instance, joint load is a force applied to a weight-bearing joint where abnormal 

knee loading can lead to different types of injuries or conditions such as OA. An 

appropriate amount of knee loading is important to build durable cartilage while proper 

unloading is needed to allow healing and repair of the tissues. An ability to measure the 

mechanical stress on the knee using a wearable measurement of joint sounds could allow 

patients to monitor their knee daily and provide insights to the progression of OA and other 

types of diseases. 

This dissertation explored whether wearable JAEs measurements can be used as a 

potential biomarker for longitudinal joint health assessment and for the first time 

investigated whether knee joint loads can be quantified using these sounds. The adverse 

effects of joint health from the structural change to loading are common and represent such 

a large component of healthcare expenses. We envision that our efforts will eventually 

reach and benefit many people in need to readily assess their joint health anytime and 

anywhere and provide longitudinal monitoring capability. 
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