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Glossary of Terms

Base of Support (BoS): The possible range of the centre of pressure, loosely 
equal to the area below and between the feet (Hof et al., 2005). When only 
the feet are the contact points with the ground, the BoS can be defined using 
the boundaries of the feet. 

Behavioural restitution of function: The return towards more normal 
patterns of motor control with the impaired effector (a body part such as a 
hand or foot that interacts with an object or the environment) and reflects the 
process toward ‘true (neurological) recovery’ (Bernhardt et al., 2017; Levin et 
al., 2009). Neural repair is required for true recovery.

Behavioural substitution/compensation of function: A patient’s ability to 
accomplish a goal through substitution with a new approach rather than using 
their normal pre-stroke behavioural repertoire constitutes compensation 
(Bernhardt et al., 2017). This behaviour does not require neural repair, but 
may require learning. 

Biomechanics: The study of continuum mechanics (loads, motion, stress, 
and strain) of biological systems and the mechanical effects on the body’s 
movement, size, shape and structure (Lu and Chang, 2012).

Centroidal Moment Pivot (CMP) point: The contact point on the ground 
through which a line passing through the CoM is parallel to the ground 
reaction force vector (Popovic et al., 2005). 

Centre of Mass (CoM): An imaginary point at which the total body mass can 
be assumed to be concentrated (Schepers et al., 2009). 

Centre of Pressure (CoP): The origin or application point of the ground 
reaction force (GRF), the point on the contact surface between body and 
ground where the moments about the horizontal axes are zero (Hof et al., 
2005; Schepers et al., 2009).
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vi

(Integration) Drift: A source of error when dealing with IMUs. Integration 
drift occurs when IMU data (acceleration or angular velocity) is integrated to 
derive kinematics of interest, and is present as the constant bias and sensor 
noise are both being integrated (Kok et al., 2017; Woodman, 2007).  

Dynamic Stability: The ability to maintain balance during locomotion (Chang 
et al., 2010).

(End) effector: A body part such as a hand or foot that interacts with an object 
or the environment (Bernhardt et al., 2017; Levin et al., 2009).

Extrapolated Centre of Mass (XCoM): A vector quantity that tracks the 
movement of the CoM after accounting for its velocity during gait (Hof et al., 
2005). 

Human motion analysis: Systematic study of human motion by careful 
observation, augmented by instrumentation for measuring body movements, 
body mechanics and the activity of the muscles (Lu and Chang, 2012).

Inertial Measurement Units (IMUs): Sensors that contain a 3D accelerometer 
and a 3D gyroscope (Kok et al., 2017; Woodman, 2007). The accelerometer 
measures the external specific force acting on the sensor, whereas the 
gyroscope measures the sensor’s angular velocity (rate of change of 
orientation).   

International Classification of Functioning, disability, and health (ICF): 
A classification that provides a standard language and conceptual basis 
for the definition and measurement of health and disability (World Health 
Organization, 2002). 

Margin of Stability (MoS): A measure of dynamic stability that measures 
the (directed) distance between the XCoM and the boundaries of the BoS (Hof 
et al., 2005). 

Mathematical coupling: This occurs when part of a relationship between 
two variables is due to a common component, where one of the variables is 
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contained in the other variable or a third dependent variable is common to 
both (Archie, 1981).

(Biomechanical) Metrics: A kinematic or kinetic measure of a predefined 
movement. Kinematic metrics measure the motion of the body, whereas 
kinetic metrics measure the different forces acting on the body that causes 
motion.

Motor control: The process by which motor commands produced by the 
central nervous system activate and coordinate muscles to generate joint 
torques to move effectors in goal-directed actions (Haith and Krakauer, 2013).

Motor impairment: Problems in body function and structure such as a 
significant deviation or loss related to movement, (WHO, 2001).

Motor recovery: Improvement in motor performance dependent on the tasks 
and measures that are used (Krakauer et al., 2012). 

Movement assays: Movement quality can be assessed using assays in two 
ways: Performance assays that isolate core motor execution capacities outside 
a motor task content and a standardized functional task that can help separate 
the contribution of behavioural restitution and compensation during the 
movement (Kwakkel et al., 2019).

Movement quality: A measure of patient’s motor task execution in comparison 
with age-matched normative values of healthy individuals (Kwakkel et al., 
2019). The closer one approaches these values, the higher the movement 
quality (Kwakkel et al., 2017). 

Proportional recovery rule: After the onset of stroke, most patients are 
expected to recover about 70% of their lost function (Hope et al., 2019; Vliet 
et al., 2020).

Reaching: The ICF defines reaching movement as ‘Using the hands and arms 
to extend outwards and touch and grasp something, such as when reaching 
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across a table or desk for a book’ (WHO, 2017). Reaching could be further 
differentiated as reach-to-point or reach-to-grasp.

Reference/Coordinate Frames: Data measured by the IMUs can be expressed 
in different reference/coordinate frames. This may include the sensor frame, 
mounting frame, anatomical frame, or the global frame. In this thesis, we 
introduce two body-centric frames; current step frame and initial contact 
frame.

Sensor fusion: The process of combining of sensory data such that the 
resulting information is in some sense better than would be possible when 
these sources are used individually (Gustafsson, 2018; Wikipedia, 2005). 
Bayesian fusion models such as Kalman Filters are commonly used to combine 
different sensory data. 

Smoothness (of movement): The continuity or non-intermittency of a 
movement, independent of its amplitude or duration (Balasubramanian et 
al., 2015).

Spatiotemporal parameters: Parameters that measure an aspect of space 
or time, and is used within the context of measuring gait in this thesis. For 
example, spatial parameters include step length, step width etc., whereas 
temporal parameters includes step time, swing time etc. 

Spontaneous neurobiological recovery: Improvements in recovery of 
behavior, occurring during a time-sensitive window of heightened recovery 
that begins early after stroke and slowly tapers off (Bernhardt et al., 2017; 
Krakauer et al., 2012). 

Stable Gait: Gait that doesn’t lead to falls in spite of perturbations (Bruijn et 
al., 2013). If the net moments around the CoM sum to zero, then the body is 
rotationally stable (Goswami and Kallem, 2004).

Strapdown inertial navigation: A commonly used method of inertial 
navigation where the miniature IMUs are mounted rigidly onto a system 
that is being measured, and therefore the quantities are measured in the 
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frame defined by the sensor orientation (Woodman, 2007). The rotation and 
movement of the system can be obtained by integrating the angular velocity 
and acceleration respectively measured by the IMU. 

Stroke: A broad term that refers to a central nervous system infarction in 
the brain, spinal cord, or retinal cell death attributable to ischemia (Sacco et 
al., 2013). 

Stroke recovery phases: Phases after stroke onset can be classified as hyper-
acute (0 – 24 hours post onset), acute (1 – 7 days post onset), early sub-acute 
(7 days – 3 months post onset), late sub-acute (3 – 6 months post onset), and 
chronic (> 6 months post onset) (Bernhardt et al., 2017).

Zero Moment Point (ZMP): The contact point on the ground where the 
resulting reaction forces acts on the body (Popovic et al., 2005). During gait 
on even surfaces, this point is the same as the CoP. 
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General Introduction

“All we have to decide is what to do with the time that is given us.”

J. R. R. Tolkien, The Fellowship of the Ring

I
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Chapter 1

1.1. STROKE AND MOTOR RECOVERY

Around 5th century B.C., Hippocrates (Fig. 
1.1) described a state of paralysis, possibly 
due to acute non-traumatic brain injuries, as 
apoplexia (Clarke, 1963; Sacco et al., 2013). The 
Greek word implies being ‘struck with violence’ 
(Clarke, 1963). Later, in 1689, the related word 
stroke was introduced to medicine by William 
Cole (Sacco et al., 2013). Today, stroke is an 
umbrella term that includes cases of neurological 
dysfunction presumed to be caused by ischemia 
or haemorrhage (Sacco et al., 2013). It is the 
second cause of death worldwide (Avan et al., 
2019). Both environmental and genetic factors 
play an important role in the incidence of stroke 
(Donnan et al., 2008). The total annual costs for stroke treatment and care 
was estimated to be 27 billion euros in 27 European Union countries (Rajsic et 
al., 2019), and the prevalence for stroke is only expected to increase in 2035 
(Stevens et al., 2017).

Impairments and long-term effect of stroke depends on the stroke site and 
lesion (Langhorne et al., 2011). Commonly found impairments include those of 
speech and language, swallowing, vision, sensation and cognition (Langhorne 
et al., 2011). Additionally, about 80% of persons with stroke suffer from motor 
impairment on one side of the body, which includes restricted functions in 
muscle movement or mobility (Langhorne et al., 2009a). Upper limb strength 
plays an important role in predicting health related quality of life (Lieshout et 
al., 2020). Only 20% of persons with upper limb limitations may demonstrate 
full recovery six months post stroke (Kwakkel et al., 2019). In case of persons 
with stroke that showed initial motor deficits in the lower extremity, we 
see that 65% tend to recover (Hendricks et al., 2002). Nonetheless, motor 
impairments influence the independence in Activities of Daily Living (ADL), 
balance, risk of falls, and thereby the quality of life for patients and care givers 
(Kwakkel et al., 2019; Li et al., 2018; Morris et al., 2013).

Figure 1.1 Hippocrates 
( Unidentified Engraver, 
2005).
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Neurological recovery is expected to take place biologically via spontaneous 
learning-dependent processes, including restitution and compensation (Inset: 
Stroke Recovery Pattern) (Langhorne et al., 2011). Behavioural restitution is 
the return towards more normal patterns of motor control with the impaired 
effector, whereas compensation is identified as accomplishing a goal through 
substitution with a new approach rather than use of normal pre-stroke 
behavioural repertoire (Bernhardt et al., 2017).

Recovery after stroke is quite tricky to measure (Duncan et al., 2000). The 
proportional recovery rule suggests that most patients will recover about 
70% of their lost function (Krakauer and Marshall, 2015). However, there are 
two camps in literature that either contest or support this rule. Studies that 
contest show that the association between initial impairments and amount 
of change arises due to mathematical coupling (Hawe et al., 2019; Hope et al., 
2019). Mathematical coupling occurs when one variable is included in another 
directly or indirectly, and therefore the resulting association may be a degree 
of their non-independence (Archie, 1981). Additionally, the time course of 
recovery early post stroke is not explained by the rule (Hawe et al., 2019; Hope 
et al., 2019). Other studies claim that the recovery rule is the best model we 
have regarding population-level recovery of persons with sub-acute stroke 
(Kundert et al., 2019). In sum, recovery patterns post stroke are an ongoing 
subject of analysis (Vliet et al., 2020).

It is important to understand the progress of recovery and the underlying 
paradigms in order to direct appropriate training of persons with stroke in 
their recovery, and in design of meaningful interventions (Bernhardt et al., 
2017). Clinical outcome measures such as Action Research Arm Test (ARAT) 
focus on accomplishment of specified tasks and are not sensitive enough 
to measure improvement in task performance (Levin et al., 2009; Sivan et 
al., 2011). The Fugl-Meyer assessment (FM) was designed to measure stroke 
recovery by assessing selective movements (Gladstone et al., 2002). However, 
clinical outcome measures are ordinal scales which may affect studying the 
differences in scores within or between patients (Hsueh et al., 2008). 

1
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Stroke Recovery pattern

Body functions and activities post stroke are hypothesized to recover in the 
pattern seen in the figure above (Langhorne et al., 2011). Spontaneous biological 
recovery begins soon after stroke onset and slowly tapers off. The duration of 
the recovery window varies across neural systems. For instance, arm movement 
recovery may take weeks to months post stroke, but the language system may 
take longer, maybe years (Bernhardt et al., 2017). Phases after stroke onset can 
be divided into acute (up to 7 days), subacute (7 days to 6 months), and chronic 
(> 6 months) phase (Bernhardt et al., 2017). 

Furthermore, clinical outcomes often have ceiling effects and low resolution, 
and are therefore inadequate in differentiating behavioural restitution from 
compensatory strategies (Gladstone et al., 2002; Kwakkel et al., 2017; Levin et 
al., 2009). The consensual definition of movement quality is the comparison of 
the motor execution of a task or action with reference to healthy age-matched 
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population (Kwakkel et al., 2019). The closer the movement matches the 
reference population, the better the movement quality (Kwakkel et al., 2019). 
Thus, objective measures that can reflect movement quality and differentiate 
behavioural restitution from compensation are necessary for measuring motor 
recovery post stroke. This knowledge is of utmost value for stroke research, 
and can help us design interventions, and appropriate individually tailored 
therapies (Bernhardt et al., 2017).

1.2. MEASURING MOVEMENT QUALITY

Human motion analysis is the systematic study 
of human motion by careful observation using 
instrumentation that measures body movements, 
body mechanics, or muscle activity (Lu and 
Chang, 2012). The field of biomechanics was 
born from the principles laid by Leonardo Da 
Vinci, and matured with the studies of Andrea 
Vesalius, and Galileo Galilei. Standing on their 
shoulders, Giovani Alfonso Borelli (Fig. 1.2), the 
Father of Biomechanics, published a treatise 
‘De Motu Animalum’ that studied the muscular 
movement and body dynamics of animals (Lu 
and Chang, 2012). The advent of Newtonian mechanics helped quantify the 
relation between applied force and the resulting movement (Lu and Chang, 
2012). Instrumentation allows us to obtain objective measurements of the 
movements made. In this thesis, we will consider the term biomechanics to 
include kinematics and kinetics of human movement.

Biomechanical analysis can provide objective information about movement 
components and strategies (Murphy et al., 2011), and might be better indicators 
of movement quality. Therefore, it is prudent to identify biomechanical metrics 
that reflect longitudinal change in movement quality, and can distinguish 
behavioural restitution from compensatory strategies post stroke (Kwakkel 
et al., 2019). As lack of a standardized approach to stroke research and 
reporting affects our understanding of motor recovery, the Stroke Recovery 
and Rehabilitation Roundtable (SRRR) task force was setup. The roundtable 

Figure 1.2  Borelli  
(Wellcome Library).

1
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aimed to reach consensus on a number of different aspects related to stroke 
recovery (Bernhardt et al., 2016). They also recommend the use of technology 
to objectively measure quality of motor performance.

1.3. WEARABLE SENSING OF MOVEMENT

Kinematic and kinetic measurements are usually performed using optical 
marker systems, and force plates built into the ground or treadmills 
respectively (Baker, 2006; Colyer et al., 2018). These are considered to be the 
gold standards for measuring the respective metrics. However, these systems 
are quite large, and not suitable for measuring movement of the user outside 
the laboratory. They usually have extensive setup and processing times, and 
cannot be installed in the living environment of the users. For instance, optical 
marker systems require marker placement and a lot of processing prior and post 
measurement. Therefore, systems that are wearable, of a minimal construction, 
and can measure movement are needed (Bergmann and McGregor, 2011).

The advantages of using minimal wearable systems are two-pronged. Firstly, it 
offers ease of use. Wearable systems can reduce the hassle of clinicians in setting 
up measurements and can drastically reduce the time needed for processing 
and analysing the data. Therefore, wearable systems can increase the number 
of biomechanical measurements post stroke. This can help monitor changes in 
movement quality (Kwakkel et al., 2019). Secondly, minimal wearable systems 
are better suited to monitor movement quality during functional activities of 
the person with stroke in their home environment (van Meulen et al., 2016a). 
Monitoring movement impairment at home helps understand the actual 
performance in daily life. One of the main missions of the Health and Care sector 
of the Knowledge and Innovation agenda highlighted by the Dutch government 
for the period 2020-2023 is to bring care to the living environment of each 
individual (Health Holland, 2020). Wearable setups can help achieve this mission.

1.4. THESIS SCOPE 

The goals of the Perspectief programme NeuroCIMT funded by the Netherlands 
Organisation for Scientific Research (NWO) was in line with the mission 
statement of the Knowledge and Innovation agenda (Health Holland, 2020). 
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The programme aimed to develop novel ways of monitoring and treating 
neurological diseases through quantitative models of the brain. AMBITION 
was one of the eight projects of NeuroCIMT. The goal of the project, of which 
this thesis is a part of, was ‘To develop and evaluate an on-body sensing and 
real-time biofeedback system for optimal, patient-tailored motor rehabilitation in 
neurological disorders, aimed at optimising adaptation and prevent maladaptation 
in motor performance of upper and lower extremities during daily life’.

The two aspects that this thesis addresses are identifying kinematic and kinetic 
metrics that measure movement quality and developing wearable systems that 
can measure them. However, the function and biomechanics of movements 
in the upper (reaching, grasping, etc.) and lower extremity (gait, balance, 
etc.) are quite different. As stroke affects the upper and lower extremities 
disproportionately, we need to identify relevant research questions within 
the context of movements performed by the two extremities separately. 
Furthermore, appropriate wearable systems that measure movement quality 
must be developed specifically for the upper and lower extremities. In the 
following sections, we explore the scope of the thesis in detail. We also 
identify concrete research questions that need to be addressed for movement 
in each extremity.

1.5. UPPER EXTREMITY

Movement quality of the upper extremity may be assessed by using performance 
assays or standardized functional tasks applied to both the affected and 
less affected arm (Kwakkel et al., 2019). Performance assays include planar 
reaching task, finger individuation, grip strength, and precision grip strength, 
whereas the functional task could include a standardized drinking task 
(Kwakkel et al., 2019). In order to study motor recovery, biomechanics of 
these movement must be obtained longitudinally at fixed times post stroke 
(Kwakkel et al., 2019). A 15% change in performance based on these metrics 
can be considered as a clinically important difference (Kwakkel et al., 2019). 
However, currently, there is no consensus on which metrics are a suitable 
measure of movement quality during these performance assays (Kwakkel et al., 
2019). Earlier studies such as that of Schwarz and colleagues (Schwarz et al., 
2019) addressed this gap by systematically reviewing all available metrics used 

1
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for kinematic assessments of movement tasks in the upper limb. Although 
the study considered functional tasks such as planar 2D pointing, and 3D 
reach-to-grasp, they did not focus on metrics that quantified a longitudinal 
change in movement quality post stroke. Therefore, analysis of metrics used in 
longitudinal studies conducted soon after stroke are necessary to understand 
changes in biomechanical metrics that reflect movement quality.

Identifying kinematic and kinetic metrics that quantify recovery of 
movement quality longitudinally post stroke, and can potentially 
distinguish between behavioural restitution and compensation is 
an issue that needs to be addressed.

During a 2D reach-to-grasp movement, biomechanical metrics may be used 
to measure a particular aspect of reaching, or to quantify the complete task. 
Earlier studies grouped the different metrics available in literature based 
on body function and structure categories defined by the International 
Classification of Function (ICF) categories, or the physiological interpretation 
of the metrics (De Los Reyes-Guzmán et al., 2014; Nordin et al., 2014; Schwarz 
et al., 2019; Sivan et al., 2011; Tran et al., 2018; World Health Organization, 
2002). Alternatively, within the AMBITION project, we attempted to classify 
them based on their mathematical definitions. For instance, metrics could be:

1. used to describe the overall movement, for example, movement time, 
trunk displacement (Palermo et al., 2018), movement distance (Prange et 
al., 2015), movement efficacy (Duret and Hutin, 2013), Path Error (Duret 
et al., 2019), active movement index (Colombo et al., 2013), trajectory 
length (van Dokkum et al., 2014), etc.

2. based on the velocity or acceleration of the reaching movement, 
for example, hand velocity (Duret and Hutin, 2013), posture speed, 
speed maxima count, min/max speed difference (Semrau et al., 2015), 
average velocity, normalized reaching speed (Mazzoleni et al., 2019), 
peak velocity, time to peak velocity (Palermo et al., 2018), max hand 
acceleration, deceleration time (Konczak et al., 2010), number of hand 
trajectory reversals (Duret and Hutin, 2013), velocity Index (Pila et al., 
2017), sub-movements speed profile characteristic (Krebs et al., 2014) etc.
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3. used to reflect smoothness of the reaching movement, for example, jerk 
(Mazzoleni et al., 2019), speed metric, mean arrest period ratio, peaks 
metric, tent metric (Rohrer et al., 2002), smoothness Index (Pila et al., 
2017) etc.

4. used to measure the accuracy or efficiency in performing the reaching 
movement, for example, active range of motion (Duret et al., 2019), hand 
path ratio (Palermo et al., 2018), average squared Mahalanobis distance 
(Cortes et al., 2017), distance Index, Accuracy Index (Pila et al., 2017), 
initial direction error, initial distance ratio (Semrau et al., 2015), quality 
index (Mazzoleni et al., 2018), Movement Error (Mazzoleni et al., 2019) 
etc.

5. used to describe the grasping movement, for example, aperture speed, 
aperture efficiency, peak aperture (Edwards et al., 2012), Time of peak 
aperture (Lang et al., 2006b), normalized jerk grasp (Buma et al., 2016) 
etc.

6. used to measure rotation of joints, for example, trunk rotation, shoulder 
rotation, elbow rotation, forearm rotation, wrist rotation (van Kordelaar 
et al., 2013) etc.

7. unsuited for the earlier categories, for example, composite score, reaction 
time (Semrau et al., 2015) etc.

Of these categories, metrics that reflect smoothness have often been studied 
as an indicator of movement quality, and we pay attention to it in this thesis 
(Balasubramanian et al., 2012; Hogan and Sternad, 2009; Reinkensmeyer et 
al., 2016; Rohrer et al., 2002). However, the underlying neurophysiological 
mechanisms of smoothness deficits are poorly understood (van Kordelaar 
et al., 2014). Reduced smoothness is proposed to reflect unstable co-
contractions between agonists and antagonists post stroke due to reduced 
or lack of reciprocal inhibition (Krylow and Zev Rymer, 1997; Rohrer et al., 
2002). Another hypothesis suggests that pathological muscle synergies post 
stroke and discrepancies in muscle activation timing during reaching in the 
upper paretic limb could result in deviations of the end-effector from the 
optimal reaching profile shown by healthy individuals (Scano et al., 2017). 
This in turn could result in lower smoothness. Furthermore, maximising 
movement smoothness is hypothesized as one feasible method to reduce the 
control burden by the central nervous system (Schwartz, 2016). Unfortunately, 

1
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there is currently no commonly accepted metric for quantifying movement 
smoothness.

Identifying a suitable smoothness metrics can help understand 
change in smoothness deficits, and possibly neurological recovery 
after stroke.

Addressing these two gaps in literature can help provide the basis for future 
studies and recommendations on stroke research in motor recovery of the 
upper paretic limb.

1.6. LOWER EXTREMITY

Gait impairments affect an individual’s independence in mobility and 
performing Activities of Daily Life (ADL) (Li et al., 2018). Assessing gait quality 
contributes to rehabilitation of the lower extremity and assessing potential 
risk to falls or instability. Deviations of gait biomechanics post stroke from 
healthy gait offers insights about gait quality (Balasubramanian et al., 2009; 
Punt et al., 2017b).

1.6.1. Biomechanics of gait and gait quality
Changes in gait biomechanics post stroke manifest in different ways. For 
instance, asymmetry is pronounced, paretic swing phase is prolonged, paretic 
stance phase, walking speed, and foot clearance are all reduced, and stride 
length is shorter (Li et al., 2018; Perry, 1992). Additionally, changes in joint 
angles are also observed. For instance, during swing, the knee flexion and 
dorsiflexion are reduced which results in pelvic hiking, and circumduction 
(Kerrigan et al., 2000, 1999; Stanhope et al., 2014).

Within the AMBITION project, we focused on biomechanical gait metrics 
that reflected stability and balance. Stable gait can be defined as walking 
that doesn’t lead to falls in spite of perturbations (Bruijn et al., 2013), and 
dynamic stability can be defined as the ability to maintain balance during 
locomotion (Chang et al., 2010), while accounting for any internal or 
external perturbations. Internal perturbations during gait may occur due to 
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neuromuscular capacity for instance, whereas external perturbations may 
be caused by wind, or floors with lower surface friction (Bruijn et al., 2013). 
Factors such as reduced vision or proprioception may also influence stability. 
Bruijn and colleagues summarized all available balance control measures used 
to reflect gait stability in the following three groups (Bruijn et al., 2013):

G1. those that reflect the ability to recover from small perturbations.
G2. those that reflect the ability to recover from larger perturbations.
G3. those that reflect the maximum perturbations that can be handled.

Small perturbations may include internal perturbations, small differences in 
floor height, etc., and large perturbations are those that require a significant 
change in behaviour without which the person would fall (Bruijn et al., 2013). 
As perturbations during swing phase of gait leads to a higher risk of fall than 
those compared to the stance phase, G3 could be used to indicate gait stability 
during swing phases (Haarman et al., 2017).

As we see in Table 1.1, there are a number of balance control metrics in 
literature (Bruijn et al., 2013; Devetak et al., 2019). Bruijn and colleagues 
did not address the final group G3, as these metrics were subject to the type 
and intensity of perturbations applied (Bruijn et al., 2013). They concluded 
that maximum Lyapunov exponent (λl) shows good construct, predictive, 
and convergent validity with regards to probability of falling. An additional 
advantage is that it can be measured from any kinematic data expressed in 
any frame. As estimation of λl requires long data series, it is ideal for clinical 
gait analysis using treadmill walking (Punt et al., 2017b).

Nonetheless, it is unsure which of the balance control metrics are best 
suited for monitoring gait recovery post stroke. Metrics of spatiotemporal 
symmetry across the affected and less affected side reflect the degree of 
inter-limb coordination post stroke (Kwakkel et al., 2017). Although these 
metrics are proposed to reflect gait quality (Kwakkel et al., 2017), their relation 
with motor recovery is unclear. This is mainly because the few studies that 
followed changes in these metrics longitudinally post stroke were inconclusive 
(Patterson et al., 2015; Shin et al., 2020).

1
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Balance control metrics based on biomechanics of gait have an advantage over 
those based on dynamic systems theory, in that they can be used to analyse 
individual steps (van Meulen et al., 2016c), and highlight mechanisms used 
during turns or specific instances during gait (Eng, 2010). Nevertheless, two 
major caveats influence the use of such metrics. The first is that these metrics 
rely on feet and Centre of Mass (CoM) positions, and therefore need extensive 
measurement setups for accurate estimations. Another caveat is that they are 
based on simple models of walking, such as the inverted pendulum model, 
which comes with its own set of assumptions (Inset: Inverted pendulum gait 
model).

Inverted pendulum gait model

The inverted pendulum analogy for gait states that the stance leg is kept 
relatively straight during single support, functioning like an inverted 
pendulum. The centre of mass, located near the hip, travels in a series of arcs 
prescribed by each single support phase. A related theory proposes that the 
swing leg also moves like a pendulum, swinging about the hip. The logical 
extension of the inverted pendulum theory is that walking can be performed 
with no muscle actuation, and therefore no energy cost (Kuo, 2007).

Recently, a study showed that bilateral temporal control is an efficient 
mechanism for maintaining dynamic stability during walking (Buurke et al., 
2019). The Margin of Stability (MoS) (Fig. 1.3) is also shown to be useful for 
objective evaluation of gait quality (Hof et al., 2005; van Meulen et al., 2016c). 
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Figure 1.3 Top view of a step. The left and right foot are in contact with the ground. The light 
blue line is the Centre of Mass (CoM’) trajectory projected on the horizontal plane. The arrow from 
the CoM’ points to the Extrapolated CoM projected on the horizontal plane (XCoM’). The XCoM’ 
accounts for the walking speed. The dark blue lines denote the borders of the Base of Support 
(BoS). The (directed) distance from the XCoM’ and the BoS is called as Margin of Stability. If the 
XCoM’ is outside the BoS, then, the gait is dynamically unstable (Hof et al., 2005).

The Extrapolated CoM (XCoM) is the movement of the CoM that accounts for 
walking speed (Hof et al., 2005). The base of support includes the boundaries 
of contact points by the body on the ground, which changes during gait. 
The MoS is defined in the Medio-lateral (ML), and Anterio-posterior (AP) 
directions by measuring the directed distance between XCoM and the ML or 
AP boundaries of the BoS respectively. In a study conducted using treadmill 
walking, Punt and colleagues showed that the relation between ML-MoS and 
falls in stroke survivors (Punt et al., 2017b) was unclear for steady state gait. 
However, the researchers found that a decrease in AP-MoS was correlated 
with a tendency to fall (Punt et al., 2017b). They found that the people with a 
tendency to fall maintained ML-MoS by walking with increased step widths 
and reduced step lengths as they were forced to maintain their speed by the 
treadmill (Punt et al., 2017a).

1.6.2. Metrics for gait recovery
Thus, in order to study changes in gait quality, and thereby gait recovery, 
it is wise to monitor spatiotemporal variability along with biomechanical 
measures such as AP- or ML- MoS for individual steps (Hak et al., 2015). 
Comparing spatiotemporal variability with values in healthy gait offers an 
idea of the degree of motor recovery post stroke (Balasubramanian et al., 
2009). The MoS measures can additionally throw light on foot placement, and 
possible compensatory strategies per individual (van Meulen et al., 2016c). 

1
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However, akin to the efforts in the upper extremity, we need to study the 
above measures longitudinally soon after stroke onset in order to assess if they 
reflect motor recovery (Kwakkel et al., 2017). This would also help understand 
if these measures potentially distinguish between behavioural restitution and 
compensation.

The proposed gait quality measures such as MoS, and spatiotemporal measures 
(step width, and step length) require knowledge about ground reaction 
forces and relative foot and CoM movement. Accurate measurement of these 
metrics during gait requires large laboratory setups. This results in extended 
measurement times per participant, need for trained personnel, and causes a 
hindrance to the number of measurements performed post stroke and setting 
up measurements at the participant’s home. Therefore, although there is a  
gap with respect to identifying metrics that reflect gait quality, here we shift 
tracks to focus on developing wearable systems for said measures. We envision 
that the portability of wearable systems can help accelerate studies (as it solves 
the aforementioned measurement problems) that aim to study gait recovery.

1.6.3. Portable systems for gait analysis

Conventional systems for gait analysis
Conventional systems for gait analysis can be broadly classified into the 
following types (Perry, 1992):

T1. Dynamic electromyography measures the period and relative intensity of 
muscle function.

T2. Force plate recordings display the functional demands being experienced 
during weight bearing period. This includes sensor systems such as force 
plates and pressure insoles.

T3. Motion analysis systems are used to measure magnitude and timing of 
individual joint action. This includes electro goniometers, video cameras 
and motion markers.

Each of these systems measure an aspect of movement such as muscle 
activation (T1), generation of force or measuring reactive force (T2), and 
movement of body segments (T3). Optical measurement systems and force 
plates are usually considered to be gold standards for measuring movement 
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kinematics and ground reaction forces respectively (Baker, 2006; Devetak et 
al., 2019).

Conventional systems such as T2 and T3 are usually restricted to a laboratory 
setting. In order to improve ease of use, minimal wearable sensing systems 
must be developed for gait analysis. The system must be compact, preferably 
invisible and not stigmatizing, and contain miniature embedded sensors 
(Bergmann and McGregor, 2011). Wearable systems help clinicians measure 
more often post stroke, and also allow remote monitoring, if needed, of the 
person with stroke in their home environment (van Meulen et al., 2016a). 
There are several sensor systems for portable and minimal sensing of gait, a 
few of which we look at closely in the following sections (Shull et al., 2014).

Inertial measurement units (IMU)
The miniature Inertial Measurement Units (IMUs) consist of accelerometers, 
gyroscopes, and sometimes magnetometers and are used to measure changes 
in kinematics and kinetics of motion of the system they are attached to. 
IMUs are similar in working principle to the human vestibular system (Inset: 
Inertial sensors and the human vestibular organ). Recent advances in Micro-
machined Electro-Mechanical systems (MEMS) have exploded the potential 
applications of IMUs (Woodman, 2007). They find commercial applications 
in areas including navigation, automotive industry, industrial fault analysis 
systems, consumer markets including gaming and activity tracking, and also 
sports (Collin et al., 2019; Wagner, 2018). Simultaneously, movement analysis 
research using IMUs have increased rapidly in the recent years (Fig. 1.4) in 
areas including rehabilitation (Al-Amri et al., 2018), and ADL (Bruno et al., 
2015), etc. IMU based research is so ubiquitous that it has been accused of a 
large degree of redundant publications (Nilsson and Skog, 2016). Nevertheless, 
conceptually new methods using machine learning, and sensor fusion enable 
new applications using IMUs.

Forceshoes™
IMUs can measure specific dynamic forces due to movement or gravity. 
Interaction or reactive forces, however, cannot be measured by IMUs. Ground 
reaction forces during gait is useful for measuring joint moments, and also 
Centre of Pressure (CoP), and CoM trajectories (Koopman et al., 1995; Schepers 
et al., 2009). Therefore, the Biomedical Signals and Systems group of the

1
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Figure 1.4 The number of publications per year on Scopus® using keywords related to inertial 
measurement units and movement show an exponential growth. The increasing miniaturization 
and accuracy of IMUs along with novel sensor fusion and machine learning methods enables 
interesting applications in different fields of movement science.

University of Twente and Xsens Technologies B.V., developed the Forceshoes™ 
(Inset: Forceshoes™: Over the ages) as a wearable system for measuring ground 
reaction forces (Veltink et al., 2005). 

The system consists of shoes with 3D Force and Moment (F&M) sensors that 
can be used to measure 3D ground reaction as well as movement of CoP for each 
foot (Veltink et al., 2005). After IMUs were added to the Forceshoes™, a series 
of developments enabled estimation of several relevant gait parameters. This 
included improved estimation of CoP and ankle moments, lumbar moments, 
CoM, lateral foot placement, and stride length (Faber et al., 2010; Schepers 
et al., 2007, 2009, 2010b). Finally, addition of ultrasound sensors improved 
estimation of relative foot positions (Weenk et al., 2015), and thereby gait 
stability measures such as XCoM, AP- and ML-MoS (van Meulen et al., 2016b, 
2016c). The individual studies also validated the different gait parameters 
against reference systems (force plates or VICON© motion capture systems).
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Inertial sensors and the human vestibular organ

   a)  b)  

   c)  

a) During linear movement, the distance between miniature capacitive 
plates within the MEMS accelerometer varies, which is measured as linear 
acceleration. b) During rotational movement, the outer frames within the 
MEMS gyroscope oscillate in a direction opposite to the resonant vibration, 
which is measured as angular velocities. c) The otolith organs (Utricle and 
Saccule) in the inner ear measure linear accelerations (Day and Fitzpatrick, 
2005), and the function of semicircular canals in the inner human ear (Blausen 
Staff, 2014) is similar to the gyroscope.

1
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In spite of the advantages of the Forceshoes™ as a portable system, its 
dimensions and bulkiness are major limitations. Although the Forceshoes™ 
did not seem to significantly influence walking patterns (Liedtke et al., 2007), 
each shoe weighs about 1 kg and is 2.5 cm tall which can be quite cumbersome 
for use in daily life. Furthermore, the rigidity of the shoe hinders natural 
rolling of the feet during gait. These features are not ideal for a wearable 
sensing system (Bergmann and McGregor, 2011).

Pressure Insoles
Pressure insole systems are more flexible, can be inconspicuously placed inside 
the shoe, and measure 1D forces acting at the pressure sensor (Abdul Razak et al., 
2012). An array of sensors can measure the pressure profile under the foot, and can 
be used to model shear forces too (Savelberg and de Lange, 1999; Sim et al., 2015).

Nevertheless, the Forceshoes™ contain several sensor modalities (Weenk et al., 
2015). This results in a need for additional protocols regarding synchronization 
of different sensor systems, and appropriate calibration methods. Developing 
wearable systems with minimal sensors can help improve its portability, and 
acceptability (Bergmann and McGregor, 2011).

 

Identifying whether the 1D plantar pressure are a lightweight 
alternative to the 3D F&M sensors in the Forceshoes™ for estimating 
dynamic balance measures can help improve the portability of the 
measurement setup.

Portable Gait Lab system
The balance control metrics that we identified including MoS, and 
spatiotemporal variability require knowledge of movement of the feet and 
CoM. Although the Forceshoes™ can do this, they are still conspicuous and 
not easy to use in daily life situations (van Meulen et al., 2016c). An IMU 
placed at the foot and pelvis can provide information about the change in 
kinematics at these locations, which can be used to derive the metrics of 
interest. Therefore, a three IMU system could be an ideal wearable sensing 
system as it measures the segments of interest, can be small, and easy to wear 
owing to the miniature sensors. For instance, the foot IMUs can be integrated 
with footwear. The movement of the CoM can be approximated with an IMU
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Forceshoes™: Over the ages

Forceshoes™ versions Sensors included and measured 
kinematics/kinetics

(Veltink et al., 2005)

The ForceShoes™ was first built with two 
3D Force & Moment sensors per shoe that 

measured 3D ground reaction forces during 
gait.

(Schepers et al., 2010b)

Two inertial measurement units were added 
to each shoe which helped measure the 
foot trajectory and spatiotemporal gait 

parameters.

(Mohamed Refai et al., 2019b)

An ultrasound receiver-transmitter system 
was added to measure relative foot distance 

during gait (Weenk et al., 2015).

placed near the pelvis (Floor-Westerdijk et al., 2012), which may be integrated 
into the belt or clothing around the hip. This three IMU system is what we 
envision as a Portable Gait Lab (PGL) system (Fig. 1.5), as it has potential to 
be a minimal wearable sensing system that can provide essential information 
about gait and balance.

With IMUs at these locations, a number of relevant gait parameters can be 
estimated such as gait events, joint angles, stride length, and spatiotemporal 
gait parameters (Caldas et al., 2017; Iosa et al., 2016; Okkalidis et al., 2020a; 
Pacini Panebianco et al., 2018; Peruzzi et al., 2011; Rebula et al., 2013). 
However, the system falls short when measuring relative movements of the feet 
or CoM. This is mainly due to two limitations related to IMUs. First, the IMUs 

1
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do not sense their relative positions as they 
only track the change in linear or angular 
movement of the system they are attached 
to. Second, drift due to strapdown inertial 
navigation results in errors in quantities 
derived from the IMUs. For instance, 
accelerations measured by the IMUs need to 
be integrated to estimate velocities during 
gait. The continuous integration of constant 
bias and sensor noise introduces a drift in 
the actual estimate of velocity (Kok et al., 
2017). This issue is compounded when we 
wish to estimate positions from accelerations 
(Inset: Kinematic drift in Inertial Measurement 
Units). Although this was solved by including 
sensors such as ultrasound, or infrared, it increases the system complexity 
(Bertuletti et al., 2019; Weenk et al., 2015). Therefore, if we wish to avoid the 
use of additional sensors, we require additional assumptions regarding gait.

Some researchers overcame the issue of drift by enforcing artificial 
mathematical constraints regarding the distance between the feet (Niu et al., 
2019; Skog et al., 2012). However, these constraints may not reflect the true 
foot positions during continuous tracking and does not provide information 
about the relative movement of the CoM. Other studies used biomechanical 
constraints related to the pattern of gait. For instance, Bancroft and Lachapelle 
used information of an average stride length, and Zhao and colleagues used 
a derivation of step length from information about limb sway to restrict drift 
(Bancroft et al., 2008; Zhao et al., 2018). In both cases, approximations have 
been made regarding a general pattern of gait cycle. A recent publication 
showed that using an extended set of biomechanical constraints regarding 
movement of the CoM and feet can help reduce drift (Sy et al., 2020). But 
the researchers estimated the movement of segments with respect to a fixed 
pelvis, and do not comment on the relative segment distances.

Figure 1.5 The Portable Gait Lab 
(PGL) consists of three IMUs: one 
on the pelvis, and one on each 
foot.
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Kinematic drift in Inertial Measurement Units

The positions of each foot and the Centre of Mass (CoM) measured by respective 
Inertial Measurement Units (IMUs) placed will start to drift away from each 
other after some time. This is because the IMUs do not measure relative 
distances, and also suffer from errors during strapdown integration. Using 
common constraints, the drift in foot positions can be corrected during foot 
contact. Therefore, the drift in foot positions is lesser than that of the CoM.

Centroidal Moment Pivot point (CMP)
The ground reference point, CMP, finds its origins from the works of Borelli, 
the Father of Biomechanics (Popovic et al., 2005). The CMP point and Zero 
Moment Point (ZMP) have been used in control of legged locomotion in robots 
ever since its first demonstration on WL-10RD in Japan in 1984 (Computer 
History Museum, 1985; Takanishi et al., 1985; Vukobratović and Borovac, 
2004). Even now, the Atlas robot uses these principles to control placement 
of its feet (Inset: Humanoid walking using ZMP).

The CMP is defined as the contact point on the ground from which a line 
passing through the CoM is parallel to the ground reaction force for ‘stable’ 
biped gait (Fig. 1.6) (Goswami, 1999; Goswami and Kallem, 2004; Popovic et 
al., 2005). 

1
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Humanoid walking using ZMP

            

WL-10RD was one of the early humanoids to use zero moment point for 
trajectory planning. On the right, we see the futuristic Atlas® robot which 
also uses zero moment point principles. These simple biomechanical gait 
models could provide additional constraints regarding the relative positions 
of the feet and CoM.

This requires that the horizontal component of the whole-body angular 
momentum is constant, and net moments around the CoM is 0. This assumption 
provides a relation for the relative movement of the CMP and CoM (Popovic et 
al., 2005). The CMP and ZMP overlap when the ground reaction force passes 
directly through the CoM of the body (Popovic et al., 2005). Normal human 
gait can be assumed to move with a constant angular momentum with no 
moments around the CoM (Herr and Popovic, 2008; Popovic et al., 2005). Thus, 
the CMP point can serve as a potential biomechanical constraint for reducing 
the drift between the foot and CoM positions measured using IMUs during 
gait (Schepers et al., 2009). Testing the feasibility of this approach within the 
PGL system can help develop a novel minimal and wearable sensing system 
for gait analysis.
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Figure 1.6 Defining the ground reference points. Here, only the lagging foot is in contact with the 
ground. If the line (dotted light blue) connecting the virtual Centroidal Moment Pivot (CMP) point 
(blue circle) and the Centre of Mass (CoM) (orange circle) is parallel to the ground reaction forces 
(dark blue line), then the net moment around the CoM is zero. In this case, the CMP overlaps with 
the Zero Moment Point, which is otherwise referred to as the Centre of Pressure for flat ground 
surfaces (Herr and Popovic, 2008; Popovic et al., 2005). This assumption of ‘stable’ gait provides 
a relation between the relative movement of CMP and CoM.

Identifying whether the assumptions of the Centroidal Moment 
Pivot theory can offer potential biomechanical constraints when 
using only three inertial measurement units for estimating relative 
movement of the feet and CoM can help develop a wearable sensing 
system for gait analysis.

1.7. THESIS GOAL AND OUTLINE

The research gaps in the previous section allows us to define the goal of this 
thesis as ‘To identify metrics that reflect movement quality of upper and lower 
extremities after stroke and develop wearable minimal systems for tracking the 
proposed metrics. We address the goal in several sub-questions identified 
within two sections: Section Upper Extremity and Section Lower Extremity. An 
overview is seen in Fig. 1.7.

1
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Figure 1.7 Overview of chapters in this thesis.

1.7.1. Section Upper Extremity
As metrics that reflect movement quality of the upper limb are yet to be 
identified, the research questions related to the upper extremity deals with 
identifying relevant metrics. The research questions for each chapter are as 
follows:

Chapter II: ‘Which kinematic or kinetic metrics have been used in longitudinal 
studies to reflect movement quality of post-stroke reaching?’

Chapter III: ‘Which metric, identified using systematic review, has a 
mathematically sound definition, responds as expected to changes in reaching 
pattern, and is thereby best suited for measuring smoothness of upper limb 
reaching?’

Our analyses in Chapter II and III provides the basis for future studies and 
recommendations on stroke research in motor recovery of the upper paretic 
limb.

1.7.2. Section Lower Extremity
Unlike the section above, here we focused on developing novel wearable 
systems for estimation of relevant gait parameters. Developing wearable 
systems can help future researchers and clinicians measure more often post 
stroke which is useful in tracking recovery. These systems will also be useful 
in exploring remote monitoring, if needed, of the person with stroke. The 
research questions for each chapter are as follows:
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Chapter IV: ‘What is the feasibility of pressure insoles in replacing the 
functionality of the bulky 3D F&M sensors in the Forceshoes™ with a focus on 
estimating gait stability metrics?’

The following chapters aimed at developing the PGL system using three IMUs; 
one IMU at the pelvis, and one on each foot. The research questions in each of 
the chapters help make a step towards the development of the system.

Chapter V: ‘Can the assumptions of CMP be effectively used as potential 
biomechanical constraints for estimating relative movement of the feet and CoM?’

Chapter VI: ‘Can the Portable Gait Lab system measure shear and vertical ground 
reaction forces for variable gait patterns seen in daily life?’

Chapter VII: ‘Can only the pelvis IMU of the Portable Gait Lab system measure 
shear and vertical ground reaction forces for variable gait patterns seen in daily life?’

Chapter VIII: ‘Can the Portable Gait Lab system accurately estimate velocity of 
CoM without drift for variable gait patterns seen in daily life?’

Chapter IX: ‘Based on the earlier developments, and the assumptions of CMP, 
can the Portable Gait Lab system track the relative positions of feet and CoM, and 
spatiotemporal parameters for variable gait patterns seen in daily life?’

Chapter X: ‘Is the Portable Gait Lab system suitable for tracking relative 
positions of feet and CoM, and spatiotemporal and balance parameters during 
gait in persons with stroke?’

The principles regarding the development of the PGL were explored in Chapter V. 
In order to measure the relative positions of the foot and CoM, a few 
biomechanical parameters are required for applying the CMP assumptions, 
which were estimated in Chapters VI – VIII. Finally in Chapters IX and 
X, we validate the system for healthy participants and persons with stroke 
respectively.

1
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1.8. CONTRIBUTIONS  OF THE THESIS

The two aspects that this thesis addresses are identifying kinematic and kinetic 
metrics that measure movement quality and developing wearable systems that can 
measure them. The chapters in Section Upper Extremity focus on measuring 
movement quality post stroke and offers recommendations for setting up 
future studies that can help understand motor recovery better. The chapters 
in Section Lower Extremity introduces novel techniques in developing wearable 
systems for measuring gait quality. The impact of the thesis and prospective 
research directions are addressed in Chapter XI (General Discussion).  
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Section Upper 
Extremity





Quantifying quality of reaching 
movements longitudinally post 
stroke - a systematic review.

“Because that’s what Hermione does. When in doubt, go to the library.”

J. K. Rowling, Harry Potter and the Chamber of Secrets

Submitted as:
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J.W., Kwakkel, G., Quantifying quality of reaching movements longitudinally 
post stroke - a systematic review.
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ABSTRACT

Disambiguation of behavioural restitution from compensation is important 
to better understand recovery of upper limb motor control post stroke and 
subsequently design better interventions. Measuring movement quality during 
standardized performance assays and functional tasks using kinematic and 
kinetic metrics allows for this disambiguation. Therefore, the objective of this 
study was to identify longitudinal studies that used kinematic and/or kinetic 
metrics to investigate post stroke recovery of reaching; and assess whether these 
metrics distinguish behavioural restitution from compensation. A systematic 
literature search was conducted using the databases PubMed, EMBASE, Scopus 
and Wiley/Cochrane Library up to July 1st, 2020. Studies were identified if they 
performed longitudinal kinematic and/or kinetic measurements during reaching, 
starting within the first six months post stroke. Thirty-two longitudinal studies 
were identified, which reported a total of forty-six different kinematic metrics. 
Although the majority investigated improvements in kinetics or kinematics 
to quantify recovery of movement quality, none of these studies explicitly 
addressed the distinction between behavioural restitution and compensation. 
One study obtained kinematic metrics for both performance assays and a 
functional task. Despite the growing number of kinematic and kinetic studies 
on post-stroke recovery, longitudinal studies that explicitly seek to delineate 
between behavioural restitution and compensation are still lacking. To rectify 
this situation, future studies should measure kinematics and/or kinetics during 
performance assays to isolate restitution and during a standardized functional 
task to determine the contributions of restitution and compensation.
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2.1. INTRODUCTION

About 80% of stroke survivors suffer from upper extremity motor impairment 
(Lawrence et al., 2001), which affects activities of daily living (Langhorne et 
al., 2011). Therefore, being able to use the arm to complete functional tasks is 
among the top ten priorities for stroke survivors, caregivers and health care 
professionals (Pollock et al., 2014). Upper extremity motor impairment after 
stroke is comprised of weakness, diminished dexterity and abnormal muscle 
synergies (Jones, 2017).

Most patients exhibit some degree of spontaneous recovery of upper extremity 
motor impairment, with 80-90% of clinical improvements occurring within 
the first 8-10 weeks post stroke (Duncan et al., 1992; Kwakkel et al., 2006; 
Vliet et al., 2020). Studies suggest that reaching movements tend to converge 
toward healthy patterns, without necessarily returning fully to pre-stroke 
patterns (i.e. partial behavioural restitution) (Cortes et al., 2017; van Kordelaar 
et al., 2014, 2013). The ability to use the upper limb during functional tasks 
may further improve through the use of compensatory strategies; in which 
patients accomplish a functional goal in a different way then pre-stroke (i.e. 
behavioural compensation) (Bernhardt et al., 2017). The ability to distinguish 
between behavioural restitution and compensation would help to better 
identify interventions that can influence true neurological recovery.

Movement quality reflects the degree of motor control (Kwakkel et al., 2019). 
Despite consensus on a standardized set of clinical outcomes in stroke studies 
(Kwakkel et al., 2017), these clinical measures lack the ability to capture 
small changes in movement quality (Bernhardt et al., 2016; Kwakkel et al., 
2019) and cannot distinguish behavioural restitution from compensation. 
Longitudinal kinematic studies early after stroke are needed to investigate 
the time course of movement quality of the upper limb. Recommendations 
on suitable study designs were provided by the Stroke Recovery and 
Rehabilitation Roundtable (SRRR) task force (Kwakkel et al., 2019). The 
SRRR recommends kinematic and/or kinetic measurements during four 
standardized performance assays for measuring behavioural restitution and 
a functional task to distinguish true recovery from compensation strategies. 
Performance assays are needed to quantify the different components of motor 
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impairment: weakness, diminished dexterity and abnormal muscle synergies. 
To capture these components of impairment, the SRRR defined the following 
performance assays: grip strength (Mathiowetz et al., 1985, 1984), precision 
grip (Mathiowetz et al., 1985), finger individuation (Ejaz et al., 2018; Schieber, 
1991) and 2D planar reaching (Alt Murphy et al., 2017; McCrea et al., 2002). It 
was recommended to perform these measurements repeatedly in the first six 
months post stroke. Moreover, given the non-linear time course of recovery, 
these measurements should be repeated more frequently in the first months 
post stroke, preferably at fixed times (Kwakkel et al., 2017). Investigating these 
performance assays is not only important to distinguish between behavioural 
restitution and compensation. The association between performance assays 
and clinical assessments may elucidate which motor impairment is most 
strongly represented by a clinical assessment score. This may make clear 
whether, for example, the Fugl-Meyer motor assessment for Upper Extremity 
(FM-UE), a clinical assessment commonly used in stroke rehabilitation, truly 
captures synergy-driven intra-limb coupling or whether it is contaminated 
by other motor impairment components such as strength (Ellis et al., 2008; 
McPherson and Dewald, 2019). Furthermore, to determine the degree to which 
recovery has converged on normal movement, the SRRR recommended that 
a healthy control group should be included (Kwakkel et al., 2017). A recent 
review showed that the number of studies that use kinematics and kinetics to 
investigate reaching performance is growing exponentially (Schwarz et al., 
2019). However, the focus of that particular review was not on longitudinal 
studies, nor on the metrics that distinguish between behavioural restitution 
and compensation.

Our objective was to review the literature on the use of kinematic and/
or kinetic metrics to measure recovery of movement quality after stroke. 
We focused on upper limb reaching and pointing tasks, as they require 
coordination of the elbow and shoulder, which is an important component of 
many daily activities, and is often limited post-stroke as a result of weakness, 
loss of motor control and the intrusion of abnormal muscle synergies (Levin 
et al., 2002; McCrea et al., 2002). We aimed to:
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i. identify longitudinal studies which used kinematic and/or kinetic 
metrics reflecting movement quality to investigate post-stroke recovery 
of reaching, to show the reported responsiveness of these metrics over 
time, and their association with clinical measures; and

ii. assess whether these studies have addressed or provided suggestions 
on how to best track behavioural restitution and distinguish it from 
compensation.

2.2. METHODS

2.2.1. Search strategy
A systematic literature search was performed based on the Preferred Reporting 
Items for Systematic Reviews and Meta-Analysis (PRISMA) statement (Moher 
et al., 2009) and registered in PROSPERO (number CRD42018100648). To 
identify all relevant publications, systematic searches were conducted (by 
MS, MIMR and EJ) in the databases PubMed, EMBASE, Scopus (Elsevier) and 
the Cochrane Library (Wiley) from inception to July 1st, 2020. Search terms 
included controlled terms from MeSH in PubMed and EMtree in EMBASE.com 
as well as free text terms. Free text terms only were used in Scopus and the 
Cochrane Library. Search terms expressing ‘stroke’ were used in combination 
with search terms comprising ‘reach and grasp activity’ and ‘kinematics and 
kinetics’. Search filters for human studies and English language were used. 
Reference tracking was performed to identify other relevant publications. 
Finally, duplicate articles were removed. The full search strategies for all 
databases can be found in Appendix A.

2.2.2. Study selection
After the initial literature search, the titles and abstracts of all papers found 
were screened independently by two researchers (MS, MIMR). Differences of 
opinion were discussed, and if no consensus was reached a third reviewer (EW) 
was approached. Criteria for inclusion were:

2
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i. adult participants who suffered from a cerebral vascular accident,
ii. use of a repeated measures study design with at least two serial within 

participant measurements starting before the chronic phase (< 6 months) 
(Bernhardt et al., 2017) post stroke,

iii. at least one kinetic or kinematic outcome metric, measured with any 
device that does not interfere with movements during an active goal-
oriented reaching or pointing task.

A study was excluded when:

i. it was a review or conference proceeding, or
ii. the investigated population consisted of less than ten participants, or
iii. it was not written in English. Investigated cohorts were allowed to be 

part of an intervention study.

A full-text version of all remaining studies was obtained for thorough 
reviewing by the researchers (MIMR, MS) to establish the definitive inclusion.

2.2.3. Data analysis

Definitions
Behavioural restitution was defined as changes of movement execution 
patterns that made them more similar to those observed in healthy 
participants (Bernhardt et al., 2017). Behavioural compensation was defined 
as regaining the ability to accomplish a goal through substitution with a new 
movement approach that differs from pre-stroke behaviour (Bernhardt et 
al., 2017). Performance assays were defined as tests that quantify aspects 
of affected motor control performance in the absence of compensatory 
movements and outside the context of a functional task (Kwakkel et al., 2019). 
Movement quality was defined as a measure of patient’s motor task execution 
in comparison with age-matched normative values of healthy individuals 
(Kwakkel et al., 2019). Other definitions can be found in the Glossary of Terms.

Data extraction
The following data were extracted (when applicable): (1) authors and date of 
publication; (2) sample size; (3) characteristics of included participants; (4) 
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assessment moments; (5) authors’ description of the investigated reaching task; 
(6) the performed clinical sensory and motor assessments; (7) measurement 
setup (equipment, segments, sample frequency, dimensions, number of 
repetitions); (8) definitions of the investigated kinematic and kinetic metrics; 
(9) the change of the outcome metrics over time; (10) association of metrics 
with clinical assessments; (11) psychometric properties (validity, reliability, 
and responsiveness) of these metrics; and (12) investigated performance 
assays.

Data interpretation
After summarizing the findings of the systematic review in Section 2.3.1, an 
overview was provided in Section 2.3.2 regarding the reported metrics, how 
they are used to quantify movement trajectories, their responsiveness (i.e., 
change over time) and longitudinal association with clinical measures.

Thereafter, in Section 2.3.3, we described any suggestions made by the authors 
of the studies on how to track behavioural restitution or distinguish restitution 
from compensation. We discussed what the reviewed studies reported about 
kinematics in association with behavioural restitution and/or compensation. 
We also assessed each study design based on recent recommendations of the 
SRRR for studying movement quality post-stroke using kinematics and/or 
kinetics (Kwakkel et al., 2019, 2017). This was only meant as a retrospective 
review, as most of the studies included in this review were conducted before 
the task force’s recommendations were published. The SRRR recommendations 
concern measurement time points and measurement methods, such as: 
(1) performing the first measurement within or before the early sub-acute 
phase (≤ 3 months) post stroke, when changes in movement quality are still 
to be expected due to spontaneous neurobiological recovery; (2) inclusion  
≤ 1 week post stroke, pursuing an inception cohort; (3) perform measurements 
at fixed time points post-stroke (Duncan et al., 1992; Kwakkel et al., 2006); (4) 
repeat measurements at least in weeks 1, 12 and 26 post stroke; (5) presence 
of reference data of age-matched non-disabled participants; (6) use high-
resolution digital optoelectronic systems to capture movements; (7) use a 
sample frequency ≥ 60 Hz; (8) ≥ 15 movement repetitions; and (9) investigate 
performance assays related to motor impairments (Kwakkel et al., 2019) in 
addition to the reaching task.

2
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2.3. RESULTS

2.3.1.	 Study	identification
The PRISMA flow diagram of the search and selection process is presented 
in Fig. 2.1. The literature search generated a total of 17943 references: 6063 
in PubMed, 6678 in EMBASE, 1839 in Scopus and 3363 in the Cochrane 
Library. After removing duplicates, 10712 references remained. Of these 
articles 10538 were discarded after reviewing title and abstract. The full-
text of the remaining 174 articles was assessed for eligibility (Ouzzani et al., 
2016). Thirty-two articles, involving a total of 1259 unique patients with a 
haemorrhagic or ischemic stroke, met all criteria and were included in the 
current systematic review. Table 2.1 shows the detailed characteristics of the 
included studies.

2.3.2. Longitudinally investigated kinematic and kinetic metrics

Kinematic metrics to quantify movement quality
Spontaneous neurological recovery leads to improved movement quality. In 
healthy individuals the movement trajectory during a standardized reaching 
task is close to a straight line between the starting position and the target 
(McCrea et al., 2002; Murphy et al., 2011). The velocity profiles of healthy 
individuals are smooth and bell-shaped curves with one clear velocity peak 
(McCrea et al., 2002; Murphy et al., 2011). A pre-planned and well-controlled 
movement results in a smooth increase of velocity whereby an adequate 
peak velocity is reached (Thrane et al., 2020). Fig. 2.2 shows 2D movement 
trajectories during a standardized reaching task and the corresponding 
velocity profiles of one random patient at different time points post-stroke 
(Rohrer et al., 2004; van Kordelaar et al., 2014). Through visual inspection, 
one can clearly conclude that movement quality is affected early after stroke 
and improves over time, especially in the first weeks. 

Fig. 2.2 shows that in addition to visual inspection, movement trajectories 
can be quantified with many different kinematic metrics, each of which may 
be affected by different aspects of motor impairment and/or compensation. 
For instance, patients perform movements slower early after stroke either due 
to weakness or to compensate for decreased accuracy (Nordin et al., 2014). 
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Figure 2.1 PRISMA flow diagram summarises the number of studies filtered during the review. 
32 studies met all inclusion criteria.

Early post-stroke, peak hand velocity is often decreased and the time at which 
this peak is reached is often delayed, reflecting slowed muscle recruitment 
(Thrane et al., 2020). Movement smoothness is a widely acknowledged metric 
of movement quality (Balasubramanian et al., 2015; Rohrer et al., 2002). 
Different smoothness metrics have been reported during reaching, which 
quantify different aspects of motor control. Metrics which have been reported 
include, amongst others, jerk (3rd derivative of hand position) and peaks metric 
(number of velocity peaks in the velocity profile), both have been associated 
with feedback corrections and the number of sub-movements. The deviation 
in movement trajectory can also be quantified by comparing the performed 
hand trajectory to a straight line between start position and the target (e.g., 
path error, reach efficiency). Quality of performance in a multi-joint reaching 
movement can also be quantified as the accuracy in arriving at the target 
location (e.g., endpoint accuracy), which requires adequate coordination of 
different joints during the movement. Besides the hand, kinematic data can 
be obtained from other segments of the upper extremity, which allows to 
estimate joint rotations (e.g., elbow, shoulder, trunk).

2
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Chapter 2

Figure 2.2 (a) Reaching trajectories of the hand of one patient in weeks 1, 5, and 26 after stroke 
onset. Patients move their hand from the start position to a block, in this figure visualized as a 
black square. Each trace represents one reach-to-grasp movement (Adapted figure (van Kordelaar 
et al., 2014)). (b) Typical velocity profile of a stroke patient during a point-to-point movement 
at the first day of therapy and after 4-6 weeks of therapy (Adapted figure (Rohrer et al., 2004)).

Overview of reported metrics
In total, 46 different kinematic metrics have been investigated during a 
reaching task in longitudinal studies starting in or before the sub-acute 
phase post-stroke (Table 2.2). The most frequently investigated metrics were 
movement time and peak hand velocity (Fig. 2.3). Other metrics investigated in 
more than 20% of the studies were: average hand velocity, jerk, speed metric, 
endpoint accuracy and reach efficiency. None of the studies investigated kinetic 
metrics during reaching. An overview of the investigated metrics per study, 
including details on metric definitions as provided by the authors, and when 
applicable their psychometric properties, can be found in Appendix B.

Responsiveness and longitudinal association with clinical measures
Here, we report responsiveness of metrics to changes over time, and the 
longitudinal association between kinematics and the FM-UE, since this 
particular clinical measure was often reported by the studies. Table 2.2 
provides an overview of the responsiveness of all reported kinematic metrics 
to change over time and the longitudinal association with clinical measures.
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Quality of reaching longitudinally post stroke

Figure 2.3 Percentage of studies that investigated each metric. The most frequently investigated 
metrics were movement time and peak hand velocity.

2
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Movement time, average hand velocity and peak hand velocity were shown to 
significantly change over time, mainly in the early sub-acute phase post-
stroke. The longitudinal association between movement time and FM-UE was 
not significant (Palermo et al., 2018; van Dokkum et al., 2014). Average hand 
velocity showed a poor longitudinal association with FM-UE (Duret et al., 
2016). The longitudinal association between peak hand velocity and FM-UE 
was found to be weak (Duret et al., 2016) or not significant (Palermo et al., 
2018; van Dokkum et al., 2014). Time to peak velocity did not change over 
time (Palermo et al., 2018), nor was it longitudinally associated with FM-UE 
(Palermo et al., 2018; van Dokkum et al., 2014).

The movement smoothness metrics that were most frequently investigated in 
longitudinal studies after stroke were: jerk, speed metric and peaks metric (Fig. 
2.2). These metrics were shown to change over time post-stroke, mainly in 
the early sub-acute phase (Colombo et al., 2013; Duret et al., 2016; Mazzoleni 
et al., 2019, 2018; Metrot et al., 2013; Palermo et al., 2018; van Kordelaar 
et al., 2014; Yoo and Kim, 2015). Studies showed varying outcomes for the 
longitudinal association between peaks metric and FM-UE (Rohrer et al., 
2002; van Dokkum et al., 2014). Inconclusive results were reported for the 
longitudinal association between speed metric and FM-UE. One study showed 
a significant longitudinal association with FM-UE (Pearson’s r: 0.40) (Rohrer 
et al., 2002), while another study found a significant but poor longitudinal 
association with FM-UE (Duret et al., 2016), and yet another study found no 
significant longitudinal association (van Dokkum et al., 2014). Rohrer and 
colleagues (Rohrer et al., 2002) found a significant longitudinal association 
between jerk and FM-UE (Pearson’s r: -0.48), while Palermo and colleagues 
did not (Palermo et al., 2018). For the smoothness metrics mean arrest period 
ratio and tent metric, change over time was not investigated. Mean arrest period 
ratio was longitudinally associated with FM-UE (Pearson’s r:0.33), while tent 
metric was not (Rohrer et al., 2002).

Endpoint accuracy and reach efficiency were both responsive to change over 
time in the early sub-acute phase post-stroke. Endpoint accuracy was stated 
to be poorly longitudinally associated with FM-UE (Duret et al., 2016). Reach 
efficiency showed no significant longitudinal association with FM-UE (Palermo 
et al., 2018; van Dokkum et al., 2014) Path error was responsive to change over 
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time and was longitudinally associated with FM-UE (Spearman’s ρ: -0.51) 
(Duret et al., 2016).

In 11 out of 32 studies, the reaching task also included grasping. In five of 
these studies, kinematic metrics for grasping were investigated (Buma et al., 
2016; Edwards et al., 2012; Lang et al., 2006a, 2006b; van Kordelaar et al., 
2014). Grasp-related metrics such as aperture speed, peak aperture and jerk 
grasp aperture are responsive to change over time, which was not the case for 
aperture efficiency or time of peak aperture (Lang et al., 2006b; van Kordelaar 
et al., 2014).

A combination of simultaneously measured joint rotation metrics reflecting 
elbow extension and shoulder abduction were stated to be relevant since they are 
main components of stroke related abnormal muscle synergies (van Kordelaar 
et al., 2013). In one study, a principal component analysis showed that during 
a reach-to-grasp task, elbow and shoulder rotations are most associated early 
after stroke, and become more dissociated mainly within the first 8 weeks 
post-stroke (van Kordelaar et al., 2013). In the chronic phase post stroke, elbow 
and shoulder joint rotation during reaching remain more associated compared 
to healthy individuals (van Kordelaar et al., 2013). The kinematic metric trunk 
displacement is acknowledged to be a reflection of a compensation strategy 
to overcome the shoulder-elbow synergy that prevents elbow extension and 
thereby induces restriction of reaching area. The longitudinal association with 
clinical measures was not investigated.

2.3.3.	 Metrics	reflecting	behavioural	restitution	or	compensation	strategies

Attempts to investigate recovery of movement quality by quantifying be-
havioural restitution and compensation

Trunk movement is a common compensatory strategy shown by stroke patients 
with any degree of motor impairment (Cirstea and Levin, 2000; Levin et al., 
2002). Half of the studies intentionally restricted trunk movement during the 
reaching task in order to obtain kinematic data of a reaching movement which 
was not influenced by this form of compensation (Table 2.1). Three studies 
deliberately sought to measure compensatory movements of the trunk during 
a reaching task (Li et al., 2015; Palermo et al., 2018; van Kordelaar et al., 2013).

2
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Several studies explicitly addressed whether changes in particular metrics 
reflect either behavioural restitution or compensation. For example, Konczak 
and colleagues (Konczak et al., 2010) showed that stroke patients perform 
pointing movements at a slower speed compared to controls, which was 
independent of whether the participants had to point in the air or at a target. 
From this, they concluded that moving slower is not a compensatory strategy 
per se. Buma and colleagues (Buma et al., 2016) suggested that decreased 
movement smoothness may result from corrections of deviations from the 
intended optimal movement pattern. They state that jerk may reflect the 
control strategy to correct these deviations, which may be interpreted as a 
quantification of compensation.

Three studies focus on the time period in which behavioural restitution is 
argued to take place. van Kordelaar and colleagues (van Kordelaar et al., 2013) 
showed that recovery of the control over Degrees of Freedom (DoF) during a 
reach-to-grasp task, reflecting the ability to perform movements dissociated 
from pathological synergies (van Kordelaar et al., 2012a), is restricted to the 
first five weeks post stroke, while FM-UE increased until eight weeks post 
stroke. Similar findings were shown for movement smoothness (van Kordelaar 
et al., 2014). Therefore, they conclude that these kinematic metrics may 
quantify behavioural restitution of motor control. Cortes and colleagues 
(Cortes et al., 2017) investigated improvement of motor control of the upper 
extremity during a 2D reaching task using the Kinereach™, which is designed 
to decrease strength requirements by providing gravity support and reducing 
friction, while the trunk was restricted to limit compensation strategies. 
Thereby, the reaching task is in line with one of the performance assays 
suggested by the SRRR (Kwakkel et al., 2019). Cortes and colleagues showed 
that motor control of horizontal reaching plateaued in the first five weeks 
post stroke, whereas clinical scores as FM-UE and ARAT continued to show 
improvements until 14 weeks post stroke (Cortes et al., 2017). They suggest 
that this difference in time window may be due to strength improvements 
and learning of compensatory movements contaminating the FM-UE and the 
ARAT respectively. They concluded that kinematics of performance assays 
such as 2D reaching could help isolate the underlying process of spontaneous 
recovery compared to clinical motor impairment scales such as FM-UE and 
capacity scores such as ARAT (Cortes et al., 2017).
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Lang and colleagues (Lang et al., 2006b) compared recovery of reaching versus 
grasping after stroke. They showed that reaching accuracy recovered post 
stroke, while grasping efficiency did not. It is currently unclear what the 
contribution of different descending pathways is concerning restitution or 
compensation, and what causes the difference in recovery of reaching versus 
grasping.

Only one study measured performance assays and a functional task 
longitudinally (Wagner et al., 2007). In the study, participants performed 
a reaching task and two performance assays: isolated joint movements 
and grip strength (Wagner et al., 2007). Deficits in isolated (fractionated) 
movements were shown to be present by comparing the composite score of the 
individuation index of the shoulder, elbow and wrist to healthy controls. Also, 
maximal grip strength was significantly decreased in stroke patients when 
compared to controls. Both performance assays showed improvement over 
time from the acute to the subacute phase post-stroke. However, deficits in grip 
strength and isolated movement control remained. Normal values of kinematic 
metrics such as reaching accuracy and efficiency were shown during a 3D goal 
directed forward reaching task, despite the remaining deficits revealed by the 
performance assays. On the other hand, peak wrist velocity during a reaching 
task remained deviated from healthy values. From this, they conclude that 
“performance of functional movement can be normal or near-normal, despite the 
presence of underlying sensorimotor impairments. This may reflect the idea that 
not all functional movements require full sensorimotor capacity” (Wagner et al., 
2007). This conclusion is in line with the present dichotomy of behavioural 
recovery, whereby motor function at the activity-level of the ICF is achieved 
by two components: behavioural restitution and compensation.

SRRR recommendation compatibility
None of the longitudinal studies met all recommendations provided by the 
SRRR, one reason of course being that these recommendations were published 
only recently (Kwakkel et al., 2019). The SRRR recommendations were 
predicated on the idea that it is important to distinguish between behavioural 
restitution and compensation. The recommendation to include longitudinal 
measurements of performance assays besides a functional task was met by one 
out of 32 studies. In 24 out of 32 studies, the first measurement was performed 

2
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after the acute phase post-stroke, and measurements were repeated limited 
number of times. Furthermore, 24 out of 32 studies did not include healthy 
reference data and were thereby not able to determine whether observed 
recovery was complete. An overview of which recommendations of the SRRR 
were met by the individual studies is provided in Appendix C.

The only study which investigated recovery by performing both a functional 
task and performance assays (Wagner et al., 2007) met many of the 
recommendations of the SRRR, except for the minimal number of repetitions 
within a measurement, and they only performed two measurements per 
patient.

2.4. DISCUSSION

Despite the large number of cross-sectional kinematic post-stroke studies 
(Schwarz et al., 2019), longitudinal studies that track recovery of quality of 
upper limb movement remain scarce. Thirty-two longitudinal post stroke 
studies were found that measured kinematic metrics during a reaching task. 
A few of these studies addressed the need to distinguish between behavioural 
restitution and compensation. Only one study investigated the combination 
of performance assays and a functional task longitudinally (Kwakkel et al., 
2019), showing that metrics such as reaching accuracy and reaching efficiency 
normalized, while peak wrist velocity and performance assays, such as grip 
strength and isolated movement control, showed recovery but remained 
impaired. The recommendations recently provided by the SRRR, together with 
the overview of reported metrics reflecting movement quality, may serve as 
inspiration and starting point for designing stroke studies which will bring 
us closer to kinematics that can distinguish between behavioural restitution 
and compensation.

From a translational perspective, it is of interest to study the longitudinal 
association between the recommended performance assays and common 
clinical assessments. For example, in case of FM-UE, such studies would help 
elucidate precisely what the measure is capturing; whether it mainly quantifies 
the degree to which out-of-synergy movements can be made as intended (Fugl-
Meyer et al., 1975; Twitchell, 1951), or the degree to which it is contaminated 
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by other motor impairment components, both neural and musculoskeletal 
(Ellis et al., 2016, 2008; McPherson and Dewald, 2019). However, although 
some of the available studies investigated longitudinal associations between 
kinematics and clinical outcomes (Buma et al., 2016; Duret et al., 2016; 
Edwards et al., 2012; Hussain et al., 2020; Lang et al., 2006a; Wagner et al., 
2007), these analyses did not concern kinematics obtained from performance 
assays.

A difference in recovery between reaching and grasping was observed by Lang 
and colleagues (Lang et al., 2006b). It is currently unclear what causes the 
difference in recovery of reaching versus grasping and what the contribution is 
of different descending pathways with regard to restitution and compensation. 
This has to be investigated by obtaining longitudinal neurophysiological data 
alongside kinematic data within the first months post stroke.

Smoothness is assumed to be a good reflection of movement quality. However, 
many different kinematic metrics have been used to quantify smoothness, 
many of which have different mathematical underpinnings and therefore show 
varying recovery patterns. We explore this issue in Chapter III. Moreover, 
smoothness of the hand trajectory during a reaching task can be influenced 
by several components of motor impairment across different joints in the 
upper extremity. Whether smoothness metrics are able to reflect behavioural 
restitution remains inconclusive and should be studied in a longitudinal study 
post-stroke.

In sum, this review shows that despite the growing number of cross-sectional 
kinematic and kinetic post-stroke studies, there is still a need for longitudinal 
studies that separate behavioural restitution from compensation over the 
course of recovery. Thus, measuring movement quality remains in its infancy 
in stroke recovery and rehabilitation studies. Further research is necessary 
to provide better means to interpret neuroimaging studies (Krakauer et al., 
2012; Kwakkel et al., 2019; Levin et al., 2009), and insight into which aspects 
of post-stroke arm function deficits are targeted during CIMT (Kwakkel et al., 
2015; Wolf et al., 2006) and neuro-modulation therapies such as repetitive 
Transcranial magnetic stimulation (Edwards et al., 2008) and Transcranial 
direct current stimulation (Elsner et al., 2018). Finally, understanding recovery 
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of movement quality may aid in the design of better rehabilitation approaches 
targeting restitution (Krakauer et al., 2012; Kwakkel and Meskers, 2014).

2.4.1. Barriers in kinematic research post-stroke
There are a number of possible explanations for the paucity of longitudinal 
studies. First, collecting longitudinal datasets in a post-stroke cohort is a 
challenge when having to adhere to fixed time points, at higher frequency 
early on; the need to restrict inclusion to those patients that can be captured 
in the first few weeks post stroke; and losing patients because they often 
change locations during their clinical trajectory. Second, while there is 
agreement on movement quality as proxy of true neurological recovery 
(Krakauer et al., 2012), consensus on which metrics reflect movement quality 
is lacking. Third, there may be technology-based barriers. High-resolution 
optical tracking systems (Kwakkel et al., 2019) are typically not portable 
and pose a challenge for serial assessments as patients need to return to 
the movement laboratory for follow-up measurements, which increases the 
chances of drop-out. User-friendly, portable, high-resolution measurement 
setups or a validated setup of wearables in which inertial measurement units 
provide information using accelerometers and gyroscopes, would greatly 
improve feasibility of investigating kinematics post-stroke. An overview of 
the ease of application and practicality of different motion capture systems 
to measure kinematic metrics was recently provided (Mesquita et al., 2019). 
In line with the SRRR task force, authors state that marker-less systems are 
promising for implementation in hospitals and clinics, yet require validation 
(Mesquita et al., 2019). Examples of such systems are the Microsoft Kinect, 
electromagnetic motion capture systems and miniature inertial measurement 
units (Mesquita et al., 2019).

2.4.2. Limitations
Due to our search restrictions regarding databases and language, some 
relevant studies may have been missed. Studies in which no reaching task 
was performed were excluded. Studies which measured performance assays 
but did not include a reaching task will therefore be missed.
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2.4.3. Future directions
In order to understand what occurs during true recovery from motor 
impairments after stroke and how innovative therapies may interact with such 
behavioural restitution, there is an urgent need for longitudinal kinematic 
and kinetic studies. In line with the SRRR recommendations, future studies 
should perform frequently repeated measurements in the first three months 
post stroke, measurement time points should be defined as elapsed time since 
the moment of stroke onset and healthy reference data should be provided 
regarding metrics reflecting movement quality. Moreover, studies targeting 
QoM after stroke should use different performance assays such as strength, 
dexterity, and the ability to execute isolated movements for quantification 
of behavioural restitution. The contributions of these different motor 
impairment components and their relation to underlying mechanisms that 
drive behavioural restitution and neural repair early post-stroke need further 
investigation. Besides better understanding of dynamics of the different 
performance assays and improvements in movement quality, this will also 
contribute to proper interpretation of observed dynamics in neuroimaging 
such as EEG (Saes et al., 2020) and fMRI (Desowska and Turner, 2019) obtained 
early post stroke.

From a technical and practical point of view, there are a number of barriers 
that hinder the use of high-fidelity systems outside the laboratory. Therefore, 
we recommend the development of minimal and portable movement analysis 
systems or validation of existing ones to measure movement quality outside 
the laboratory. Such portable systems will decrease burden on patients and 
improve feasibility of longitudinal studies. Moreover, quick and easy to use 
systems are more likely to ultimately make the transition to routine clinical 
practice. These systems along with analysis packages that provide a small 
number of interpretable measures will be essential to make studying recovery 
using kinematics useful for clinicians.

2
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Chapter II
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ABSTRACT

Smoothness is commonly used for measuring movement quality of the upper 
paretic limb during reaching tasks after stroke. Many different smoothness 
metrics have been used in stroke research, but a ‘valid’ metric has not 
been identified. A systematic review, and subsequent rigorous analysis of 
smoothness metrics used in stroke research, in terms of their mathematical 
definitions and response to simulated perturbations, is needed to conclude 
whether they are valid for measuring smoothness. Our objective was to provide 
a recommendation for metrics that reflect smoothness after stroke, based on: 
(1) a systematic review of smoothness metrics for reaching used in stroke 
research, (2) the mathematical description of the metrics, and (3) the response 
of metrics to simulated changes associated with smoothness deficits in the 
reaching profile. The systematic review was performed by screening electronic 
databases using combined keyword groups Stroke, Reaching and Smoothness. 
Subsequently, each metric identified was assessed with mathematical criteria 
regarding smoothness: (a) being dimensionless, (b) being reproducible, (c) 
being based on rate of change of position, and (d) not being a linear transform 
of other smoothness metrics. The resulting metrics were tested for their 
response to simulated changes in reaching using models of velocity profiles 
with varying durations, amplitudes, harmonic disturbances, noises, and sub-
movements. Two reaching tasks were simulated: reach-to-point and reach-to-
grasp. The metrics that responded as desired in all simulation analyses were 
considered to be valid. 

The systematic review identified 32 different smoothness metrics, 17 of 
which were excluded based on mathematical criteria, and 13 more as they 
did not respond as desired in all simulation analyses. Eventually, we found 
that, for reach-to-point movements, the correlation metric, and the Spectral 
Arc Length (SPARC) are valid metrics. For reach-to-grasp movements, only 
SPARC was found to be a valid metric. Based on this systematic review and 
simulation analyses, we recommend the use of SPARC as a valid smoothness 
metric in both reach-to-point and reach-to-grasp tasks of the upper limb after 
stroke. However, further research is needed to understand the time course 
of smoothness measured with SPARC for the upper limb early post stroke, 
preferably in a longitudinal study.
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3.1. INTRODUCTION

Stroke is one of the main causes of adult disability (Feigin et al., 2014; 
Langhorne et al., 2011; Sacco et al., 2013). Goal-directed upper limb movements 
after stroke are characterized by slowness, spatial and temporal discontinuity 
(i.e., lack of smoothness), and abnormal stereotypic patterns of muscle 
activation or movement synergies (Cirstea and Levin, 2000; Twitchell, 1951).

Improved smoothness during reaching, pointing or grasping using the 
upper paretic limb reflects improvement in the movement quality early 
after stroke (Balasubramanian et al., 2015; van Kordelaar et al., 2014). The 
Stroke Recovery and Rehabilitation Roundtable (SRRR) task force identified 
standardized measurement of upper limb movement quality as an important 
target in recovery research (Bernhardt et al., 2019). Smoothness of movement 
is regarded as the result of ‘learned, coordinative processes in sensorimotor 
control’, although the underlying neuronal and mechanical substrates 
that cause lack of smoothness in motor control are still poorly understood 
(Reinkensmeyer et al., 2016; Rohrer et al., 2002). Smoothness is therefore 
interpreted as a reflection of the level of sensorimotor coordination and 
movement proficiency (Hogan and Sternad, 2009; Kiely et al., 2019). 

Balasubramanian and colleagues defined movement smoothness as continuity 
or non-intermittency of a movement, independent of its amplitude and 
duration (Balasubramanian et al., 2015). Maximizing the smoothness of a 
movement is considered to be prioritized by the neuro-muscular system, as 
it reduces the control burden on the brain (Schwartz, 2016). Nonetheless, the 
neurophysiological mechanisms of smoothness deficits after stroke are yet 
to be understood. Muscle activity patterns observed during reaching after 
stroke have been shown to be impaired (Shumway-Cook and Woollacott, 
2007). Smoothness deficits could, for example, be caused by the inability 
to synchronize motor units or control agonists and antagonists in the right 
proportions (Krylow and Zev Rymer, 1997; Rohrer et al., 2002), or may be due 
to changes in Corticospinal tract (CST) excitability following stroke (Talelli 
et al., 2006). 

3
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A prerequisite for investigating smoothness deficits after stroke is identifying 
a valid smoothness metric. Unfortunately, there is currently no commonly 
accepted metric for quantifying movement smoothness, and many types have 
been used in the literature to investigate smoothness of reaching movements 
post stroke. The use of many smoothness metrics in clinical research is 
limited by several methodological concerns. For instance, some metrics are 
not clearly described and therefore not reproducible. Other metrics depend 
on the duration or distance of reaching or are not dimensionless. In both 
cases, they could be confounded by the shape, i.e., the duration and amplitude, 
of the movement (Hogan and Sternad, 2009). Some proposed smoothness 
metrics are based on position, and do not truly reflect smoothness per se 
(Balasubramanian et al., 2015; Melendez-Calderon et al., 2021) as they do not 
measure the rate of change of position. Furthermore, some metrics are linear 
transformations of other smoothness metrics, and are therefore proxies of 
existing metrics. Finally, some metrics lack robustness against measurement 
noise (Balasubramanian et al., 2015). 

Several narrative reviews about smoothness have discussed the strengths and 
weaknesses of a limited set of available metrics (Balasubramanian et al., 2015; 
Hogan and Sternad, 2009; Rohrer et al., 2002). The relations between these 
metrics and smoothness were assessed either by using simulation models, or by 
studying post-stroke correlations with clinical scales. However, these studies 
reviewed the literature narratively, rather than systematically. Therefore, a 
comprehensive overview of metrics used to measure smoothness after stroke 
is lacking. Furthermore, these metrics have not been validated in terms of 
whether they reflect smoothness (Feinstein and Cannon, 2001). As a result, 
proper recommendations for a valid smoothness metric are currently lacking 
in the literature.  

Our goal was to identify the most valid metrics for quantifying smoothness of 
upper paretic limb movement after stroke during reaching tasks, specifically 
the reach-to-point and reach-to-grasp tasks. To this end, several subsidiary 
questions were formulated. Firstly, to identify available metrics, we addressed 
the question ‘Which metrics have been used in the literature to assess movement 
smoothness in reaching by persons with stroke?’. Secondly, we filtered metrics 
sequentially, using a set of criteria derived from the literature to assess 
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whether their mathematical definitions regarding smoothness were sound 
(Balasubramanian et al., 2015; Hogan and Sternad, 2009; Rohrer et al., 2002). 
This was done to answer the question ‘Which of the available metrics are 
mathematically defined, reproducible, not linear transforms of another metric, 
dimensionless, and defined using the rate of change in position?’. Thirdly, we 
assessed how each metric responds to smoothness deficits in the reaching 
task, to answer the question ‘How does each smoothness metric respond to a 
simulated change in the velocity profile of a reaching task?’

3.2. METHODS

3.2.1 Systematic Literature Review
The literature search was performed in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
statement, using keyword groups ‘Stroke’, ‘Reaching’ and ‘Smoothness’ (Moher 
et al., 2009) (Full search query in Appendix D). PubMed, Scopus, Cochrane 
Library, EMBASE and CINAHL databases were searched for all records up to 
October 2019. The screening of the literature was performed by one author 
(BLS) and ambiguities were resolved with another author (MRMI). Articles 
were excluded if they were in a language other than English, or if they were 
reviews or conference proceedings. Eventually, we included articles in which 
(1) reaching or aiming movements of persons with stroke were studied and 
(2) a metric was used to determine the smoothness of a reaching movement. 
The International Classification of Functioning, Disability, and Health (ICF) 
definition of a reaching movement (code: d4452) is ‘Using the hands and arms 
to extend outwards and touch and grasp something, such as when reaching across 
a table or desk for a book’ (WHO, 2017). The references of the included articles 
were scanned for additional suitable articles. The review has been registered 
in the PROSPERO registry under CRD42020173211. 

3.2.2.	 Metrics	mathematically	reflecting	smoothness
Metrics should reflect the definition of movement smoothness, i.e., the 
continuity or non-intermittency of the movement profile, independent of 
its amplitude and duration (Balasubramanian et al., 2015). Based on the 
requirements stated in the introduction above, the definition of a metric was 
not sound if: 

3
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E1. the units contained m and/or s,
E2. the metric was not reproducible from the literature,
E3. the metric was not based on velocity or a derivative of velocity, or
E4. the metric was linearly related to another metric by (a) scaling or (b) 

addition of a constant.

3.2.3	 Response	of	metrics	to	changes	in	velocity	profile	
The response of each metric to four different types of simulated perturbations, 
applied to two reaching velocity profiles, viz. reach-to-point and reach-to-
grasp, were studied. A reach-to-point movement was simulated using a 
minimal jerk model (Flash and Hogan, 1985): 

Smoothness metrics for reaching performance after stroke 
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reaching velocity profiles, viz. reach-to-point and reach-to-grasp, were studied. A reach-to-point 

movement was simulated using a minimal jerk model (Flash and Hogan, 1985):  
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where vmj is the minimal jerk velocity profile, dt  is the total reaching distance, T is the total 

movement time and t is the time scale from 0 to T. Using this, a symmetrical velocity profile 

(vsymm) was created with a dt of 0.3 m, and a T of 1 s. While this velocity profile reflects a reach-

to-point movement, it does not truly reflect reach-to-grasp movements (Hughes et al., 2013), as 

the latter movements have to account for a higher accuracy when nearing the target position 

(Hughes et al., 2013). An initial analysis on healthy participants showed that an asymmetrical 

velocity profile (vasymm) was better suited for this purpose. This was modelled using a polynomial 

curve (Appendix E). Both velocity profiles are shown in Appendix F and have been further 

investigated in this chapter.  

Of the four simulated perturbations, the first three are analytical evaluations of the 

smoothness metrics, and the last one is specifically based on theories regarding recovery of 

movement after stroke (Rohrer et al., 2002). 

- Shape Simulation (SS): The movement duration and distance of the base velocity profiles 

were varied. The smoothness metric must not depend on either of these parameters. 

The durations and distances of both velocity profiles were varied from 0.5 to 6.0 s in 

steps of 0.1 s, and from 0.2 to 0.7 m in steps of 0.01 m. A total of 2856 combinations 

were used to calculate the outcomes of the metrics. The ranges for movement duration 

and distance were chosen such that they were within the physiological range of human 

reaching. 

- Harmonic Disturbances (HD): In this analysis, tremor or weak control of reaching 

movement was simulated using harmonic disturbances added to the base velocity 

profiles (Elias et al., 2018). This included sinusoids with varying amplitude and 

 (3.1)

where vmj is the minimal jerk velocity profile, dt is the total reaching distance, 
T is the total movement time and t is the time scale from 0 to T. Using this, 
a symmetrical velocity profile (vsymm) was created with a dt of 0.3 m, and a T 
of 1 s. While this velocity profile reflects a reach-to-point movement, it does 
not truly reflect reach-to-grasp movements (Hughes et al., 2013), as the latter 
movements have to account for a higher accuracy when nearing the target 
position (Hughes et al., 2013). An initial analysis on healthy participants 
showed that an asymmetrical velocity profile (vasymm) was better suited for 
this purpose. This was modelled using a polynomial curve (Appendix E). Both 
velocity profiles are shown in Appendix F and have been further investigated 
in this chapter. 

Of the four simulated perturbations, the first three are analytical evaluations 
of the smoothness metrics, and the last one is specifically based on theories 
regarding recovery of movement after stroke (Rohrer et al., 2002).

• Shape Simulation (SS): The movement duration and distance of the base 
velocity profiles were varied. The smoothness metric must not depend on 
either of these parameters. The durations and distances of both velocity 
profiles were varied from 0.5 to 6.0 s in steps of 0.1 s, and from 0.2 to  
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0.7 m in steps of 0.01 m. A total of 2856 combinations were used to 
calculate the outcomes of the metrics. The ranges for movement duration 
and distance were chosen such that they were within the physiological 
range of human reaching.

• Harmonic Disturbances (HD): In this analysis, tremor or weak control of 
reaching movement was simulated using harmonic disturbances added to 
the base velocity profiles (Elias et al., 2018). This included sinusoids with 
varying amplitude and frequency. The relation between frequency or 
amplitude and the metric should be monotonic. Smoothness is expected 
to decrease with increasing amplitude for a given frequency, and also 
with increasing frequency for a given amplitude. 

 Sinusoids of frequencies between 2 and 25 Hz in steps of 0.5 Hz, and 
amplitudes between 0 and 0.2 m/s in steps of 0.005 m/s were added to the 
base velocity profile. A total of 1927 unique combinations were explored. 
The ranges chosen were within the physiological ranges of movement 
(Balasubramanian et al., 2012; Lang et al., 2006b). 

• Measurement noise (MN): A more robust smoothness metric is less sensitive 
to measurement noise (Balasubramanian et al., 2015). The noise was 
modelled as normally distributed white noise (mean = 0, standard 
deviation = 1) and added to the base velocity profiles. 

 The root mean square (RMS) of the noise was varied from 0 to 0.08 m/s 
in steps of 0.002 m/s. Twenty-five different realizations for each RMS 
were generated, and the metrics were estimated for each realization. The 
minimum, maximum, mean and standard deviation of the metrics were 
calculated and reported. In an additional analysis of noise we filtered 
the noise-added velocity profile using a zero phase 4th order low pass 
Butterworth filter with cut off of 20 Hz (Balasubramanian et al., 2015). 
The mean of the metric outcome across the 25 realizations after filtering 
was determined.

• Sub-movement Simulation (SMS): A smoothness metric must reflect the 
change in the progressive blending of sub-movements (Rohrer et al., 
2004). The smoothness metric should decrease monotonically with 
increasingly distinct sub-movements, and increasing delays between 
each sub-movement (Rohrer et al., 2002). 

3
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This study is an extension of previous work applied to a set of metrics 
(Balasubramanian et al., 2012; Rohrer et al., 2002). The reaching profiles were 
modelled as a composition of two or more sub-movements, each defined as the 
base velocity profile with a duration of 1 s. The sub-movements were separated 
by a varying lag, denoted as Ks. Ks ranged from 0 s, were the sub-movements 
fully overlap, to 1.2 s, where there was 1.2 s between the starting points of the 
two sub-movements. The lag was increased in steps of 0.02 s. Note that when 
the lag was greater than 1 s, there were instances of zero velocity between 
subsequent sub-movements. The total duration of the movement increased 
with Ks. Simulations were performed with two, three and four sub-movements.

Analysis of the simulations
The responses of each metric to the four different types of simulated 
perturbations were individually assessed. For the Shape Simulation, the 
percentage of change (%Δ) from the metric value for base profile was 
estimated, and in this study, a change of more than 10% was considered to 
be meaningful.

The Combinations Exceeded (CE) parameter was introduced in order to 
quantify how each metric responded to the Harmonic Disturbances. The %Δ 
was estimated for each combination of frequency and amplitude. CE was 
marked as the percentage of the combinations that exceeded 10%. Hence, a 
higher value of CE meant that there were more combinations of frequency and 
amplitude that caused a meaningful change in the value of the metric from 
its base velocity profile. 

For the Measurement Noise simulation, the ratio of signal-to-noise power 
(SNR) was estimated, to quantify the robustness to noise. First the power 
of the measurement noise was estimated. Then, the power of the signal was 
estimated as the power of the base velocity profile with added measurement 
noise. The lowest RMS of added noise was 0.002 m/s, which corresponds to 
SNRs of 45.0 dB for vsymm and 45.4 dB for vasymm. Subsequently, the highest 
noise RMS added was 0.08 m/s, which corresponded to SNRs of 13.2 dB for 
vsymm and 13.6 dB for vasymm. The SNR at which the mean value of the metric 
differed from the base velocity profile by at least 10% is reported. Metrics that 
reached a 10% threshold only at a high RMS of added measurement noise, and 
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therefore a low SNR, were deemed to be more robust to noise. On the other 
hand, metrics that crossed the threshold at lower RMS values, and therefore 
a higher SNR, are highly sensitive to noise. An SNR threshold to distinguish 
between high and low robustness was determined using the distribution of 
the SNR values obtained at the 10% cut-off for each metric. The SNR values 
that fell in the interquartile range of the distribution were deemed to have low 
robustness to noise. All metrics with an SNR lower than the 25th percentile 
were considered to have high robustness to noise. 

Finally, in the Sub-movements Simulations, monotonicity was assessed using 
visual inspection, and in case of ambiguities, the slope of the resulting graph 
was assessed. Metrics that did not change monotonically were considered 
invalid for measuring smoothness. All computations were performed using 
MATLAB® 2015b Mathworks, Natick, MA, USA).

3.3. RESULTS

3.3.1 Systematic Literature Review
A total of 476 unique articles were identified, 102 of which were found to be 
eligible for inclusion using Rayyan (Ouzzani et al., 2016). A total of 32 different 
metrics (see Appendix G) were identified (Fig. 3.1 shows the PRISMA flow 
chart). 

3.3.2	 Metrics	mathematically	reflecting	smoothness
Table 3.1 shows an overview of all metrics identified from the literature, and 
the ones that did not meet the four exclusion criteria (E1-E4). The metrics 
identified in the systematic review were classified into categories based on their 
mathematical definitions. Metrics defined in the time domain were classified 
as ‘Trajectory metrics’, or ‘Velocity metrics’, or ‘Acceleration metrics’, or ‘Jerk 
metrics’. Metrics defined in the frequency domain were classified as ‘Frequency 
metrics’. Metrics that did not fit in any of these categories, or fitted in more 
than one category, were classified as ‘Other metrics’.

3
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Figure 3.1 PRISMA Flow diagram summarises the number of studies filtered during the review. 
A total of 102 studies met all inclusion criteria.

Trajectory-based smoothness metrics: The Index of Curvature (IC) (Bigoni et 
al., 2016) and the standard deviation of the position perpendicular to the 
movement direction (SD_XY) measured smoothness using only the discrete 
position information of the reaching movement. As these are not based on 
the rate of change of position, they do not reflect smoothness of reaching 
(criterion E3). This holds for any proposed metric that belongs to this category.

Velocity-based smoothness metrics: Of the seven velocity-based metrics, 
Movement Arrest Period Ratio (MAPR), Speed Metric (SM), Number of Sub-
movements (NOS), Velocity Arc Length (VAL) and Correlation Metric (CM) 
were found to be mathematically sound for measuring smoothness and were 
used for further analysis.
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MAPR is the proportion of time that the movement speed exceeds a given 
percentage of the peak speed (Beppu et al., 1984). SM, defined as the mean 
speed of the whole movement normalized by the peak speed, was found to 
decrease with the severity of the stroke (Rohrer et al., 2002). Normalized 
Reaching Speed (NRS) is the ratio of the difference in peak and mean speed 
over the peak speed (Mazzoleni et al., 2011). As NRS = 1 – SM, it is a linear 
transform of the SM metric, and is expected to behave congruently. Therefore, 
NRS was excluded from further analysis (criterion E4). The definition and 
mathematical description of the Tent Metric (TM) was incomplete in the study 
(Rohrer et al., 2002), and therefore could not be evaluated further (criterion 
E2). NOS counts the sub-movements that make up the tangential velocity 
profile (Rohrer and Hogan, 2006) and has been used to assess smoothness in 
persons with stroke (Liebermann et al., 2010). VAL (Balasubramanian et al., 
2012) is based on the arc length of the speed profile normalized by the peak 
speed. It assumes that a bell-shaped velocity profile has a shorter arc length 
than one with velocity fluctuations. CM determines the correlation between 
the velocity profile extracted from the minimal jerk model and the actual hand 
velocity profile during reaching (Krebs et al., 2001). 

Acceleration-based smoothness metrics: In this category, six metrics were 
identified, of which peaks (Peaks) and Inverse Number of Peaks and Valleys 
(IPV ) were analysed further.

Peaks was the most frequently used metric (61 citations). The metric reflects the 
number of local maxima in the velocity profile for a given movement (Brooks, 
1974), which is inversely proportional to the smoothness of a movement. Peaks 
can also be defined as zero crossings in the acceleration domain. Peaks were 
additionally normalized either to the movement duration (NPt) (Kahn et al., 
2006) or to the movement distance (NPd) (Abdul Rahman et al., 2017). However, 
doing so causes the metric to be dependent on movement duration or movement 
distance. Therefore, these adapted definitions of Peaks (NPt and NPd) were 
excluded (criterion E1). Smoothness was also estimated using the Number of 
Valleys (Bermúdez i Badia and Cameirão, 2012) or the Number of Valleys and 
Peaks (Mohapatra et al., 2016). Since these definitions are linear transforms 
of Peaks, they are assumed to show congruent behaviour to Peaks, and were 
excluded from further analysis (criterion E4). IPV, on the other hand, is not 
a linear transform of Peaks, and was included in further analysis (Pila et al., 

3
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2017). Although a few studies employed additional criteria for peak detection 
(Casadio et al., 2009; Hussain et al., 2018), the choices for these criteria were not 
motivated, and they were not considered for the present study. The Acceleration 
Metric (AM) is the ratio between the mean acceleration and the peak acceleration 
(Mazzoleni et al., 2011). A point-to-point reaching movement should have zero 
velocity both at the beginning and end of the movement, which implies that the 
mean acceleration over this movement must be zero. However, this was not the 
case in the referenced studies, suggesting that some aspect of its definition is 
missing (Mazzoleni et al., 2013, 2011). According to the textual description, the 
metric definition is not face-valid, and it was therefore excluded (criterion E2).

Jerk-based smoothness metrics: There were a total of 12 different jerk-based 
metrics, of which only two types of dimensionless squared jerk metrics, DSJt 
and DSJb, and their respective log transformations, LDSJt, and LDSJb, were 
further analysed. 

Jerk, the third derivative of position, has often been used as a measure of 
smoothness in different ways; either as the integral of the squared jerk or the 
integral of the absolute jerk (Hogan and Sternad, 2009; Rohrer et al., 2002; 
Teulings et al., 1997). Furthermore, the results were scaled using different 
terms, which introduces a unit to the metric. As smoothness metrics have 
to be dimensionless (criterion E1), only the dimensionless jerk metrics were 
considered. Three types of dimensionless squared jerk metrics, DSJt (Teulings 
et al., 1997), DSJb (Balasubramanian et al., 2012), and DSJm (Marini et al., 2017), 
were introduced to measure smoothness. The suffixed letter corresponds to the 
author’s name. These jerk metrics differ in the normalizations used in their 
definitions. As DSJm is a linear transform of DSJt, it was excluded (criterion 
E4a). A natural logarithm transform of the DSJb metric was performed to 
improve its sensitivity (LDSJb) (Balasubramanian et al., 2012). The same was 
applied to DSJt, thereby introducing LDSJt (van Kordelaar et al., 2014). LDSJb 
and LDSJt employ the peak velocity, and the average velocity respectively in 
their equations and are not linear transformations of each. Rotational Jerk (RJ) 
measures movement smoothness using the orientations of the wrist during 
the movement (Repnik et al., 2018). This form of smoothness quantifies the 
variability of hand orientation. However, as we analysed changes to a tangential 
velocity profile, we have no models for the changes in orientation during the 
reaching movement. Therefore, this metric was not analysed further.
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Frequency-based smoothness metrics: All four metrics from this category, 
including Spectral Method (SPM), Spectral Arc Length 2012 (SPAL), Spectral 
Arc Length (SPARC), and Spectral Metric (SPMR), were analysed further.

The SPM, SPAL, and SPARC were developed by the same authors 
(Balasubramanian et al., 2015, 2012, 2009), and are directly proportional to 
the increase in smoothness of the movement. The SPM measures smoothness 
as the sum of all peaks in the amplitude-normalized Fourier transform of the 
velocity profile (Balasubramanian et al., 2009). The SPAL uses the negative 
arc length of the amplitude and the frequency-normalized Fourier transform 
of the velocity profile (Balasubramanian et al., 2012). The frequency range 
used in SPAL was further limited in order to define SPARC (Balasubramanian 
et al., 2015). Finally, SPMR expresses smoothness using the energy within a 
0.2 Hz bin around the dominant frequency in the Fourier transform of the 
accelerations normalized by the entire energy (Strohrmann et al., 2013). 

Other metrics: Kostić and Popović (Kostić and Popović, 2013) defined Combined 
Smoothness Metric (CSM) in the context of a drawing task in which a patient, 
while seated at a desk, draws a pre-defined square. The smoothness metric 
uses information from the movement velocity and jerk, and consists of four 
different terms. As the formula uses different dimensions incorrectly, the 
metric was excluded (criterion E1).

3.3.3	Response	of	metrics	to	changes	in	velocity	profile	

Metrics used in the simulation analyses
In the previous section, fifteen metrics were identified as mathematically 
sound, and therefore subjected to further analysis: NOS, SM, MAPR, VAL, 
Peaks, IPV, DSJt, LDSJt, DSJb, LDSJb, CM, SPMR, SPM, SPAL and SPARC.  
Table 3.2 describes the selected metrics’ range of feasible mathematical values 
obtained for each type of perturbation. Finally, it shows the parameters used 
to interpret the response of metrics to the simulations %Δ, CE, and SNR. 
Note that SM, MAPR, IPV, CM, SPM, SPMR, SPAL and SPARC should decrease 
with decreasing smoothness of movement, while the other metrics (i.e., NOS, 
VAL, Peaks, DSJt, LDSJt, DSJb, and LDSJb) should increase with decreasing 
smoothness. In this section, we discuss the results of the simulation analyses 
using vsymm as the base velocity profile. 
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As we found that the changes in the values of the smoothness 
metrics for the vasymm were similar, their results have been placed in 
Appendix H. The main difference between using the two base velocity 
profiles was the magnitude of the resulting values, as shown in  
Table 3.2. Where other differences in the response to the simulation analyses 
were found, they are addressed in the following sections.

Shape Simulation (SS)
Fig. 3.2 shows the response of each metric to changes in movement duration 
and movement distance for the symmetric velocity profile. The percentage of 
change (%Δ) shows that NOS, VAL, SPMR, and SPAL were sensitive to changes 
in this simulation for both velocity profiles (Table 3.2). DSJt, DSJb and LDSJb 
showed significant changes only for the vasymm. SM, Peaks, IPV, and SPM were 
truly insensitive to changes in movement duration and distance for both base 
velocity profiles. The other metrics showed a %Δ less than 10%. 

Harmonic Disturbances (HD)
Fig. 3.3 shows the metric outcomes with added sines of varying frequencies 
and amplitudes. The algorithm used to estimate NOS failed to converge 
to an optimal solution for higher frequencies (shown as missing data in  
Fig. 3.3). It can be seen that all metrics show a lower smoothness outcome 
as the amplitude of the added sine increases. All metrics except SM, MAPR 
and CM showed lower smoothness outcomes at higher frequencies for the 
same amplitude. SPAL and SPARC were insensitive to sine disturbances with 
frequencies higher than 20 Hz, as their definitions include the use of a cut-
off frequency. Table 3.2 shows that the CE parameter values for MAPR, VAL, 
and CM are less than 50%, suggesting that these metrics are relatively less 
sensitive to harmonic disturbances. 

Measurement Noise (MN)
NOS is only capable of analysing the smoothness at low noise powers, up to an 
RMS of 0.008 m/s (Fig. 3.4). For higher noise powers, the algorithm that counts 
NOS fails to converge to an optimal solution (indicated by N.A. in Table 3.2 
in the SNR column). The other metrics show lower outcomes of smoothness 
as the RMS of the noise is increased (Fig. 3.4). 
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MAPR, CM, and SPAL did not cross the 10% threshold for any noise power 
included in the simulation (unfilled entries ‘-’ in Table 3.2). This indicates 
that these metrics are robust to the range of measurement noise added 
in this study. All jerk-based smoothness metrics were highly sensitive to 
measurement noise. Peaks and IPV were more sensitive to measurement noise 
when the base velocity profile was vsymm rather than vasymm. 

Sub-movements Simulation (SMS)
The algorithm used to estimate NOS calculated incorrect values at certain 
instances when the algorithm failed to converge to a solution (Fig. 3.5). For 
all numbers of sub-movements evaluated, the changes in the values of SM 
and MAPR were non-monotonic. VAL, CM, SPM, SPAL, and SPARC showed 
monotonic increases with increasing lag. Surprisingly, SPMR showed a higher 
outcome of smoothness with increasing numbers of sub-movements, which 
shows that the metric fails in this analysis. All other metrics showed a lower 
outcome for smoothness with increasing lag. For Peaks and IPV, a third peak 
was detected at 0.3 and 0.5 s, respectively (Fig. 3.5). 

None of the dimensionless jerk metrics changed monotonically in this 
simulation, and they also showed a dip at Ks = 1.0 s. Additionally, the 
monotonicity of jerk-based metrics depended on the base velocity profile 
model used for the vsymm (Appendix I). For CM, we found that the changes in 
values were monotonic only for vsymm, and not for vasymm. 

3.3.4	 Summary	of	findings
Table 3.3 summarizes the simulation analysis results and indicates whether the 
responses of each metric were as desired. For the measurement noise analysis, it 
describes the robustness of each metric to added noise. Descriptive statistics of the 
SNR values as shown in Table 3.2 were used to divide the metrics into two groups: 
high and low robustness to measurement noise. Note that a higher added RMS noise 
value corresponds to a lower SNR value, and hence to greater robustness to noise. 

From Table 3.3, we find that the CM and SPARC metrics responded as desired 
to all simulation analyses for the symmetrical profile and were also most 
robust to added values of measurement noise. On the other hand, only SPARC 
satisfied all desirable properties for the asymmetric velocity profile. 

3
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Table 3.3 Summary of the analysis results. 

Metric Duration/Distance
independence

Harmonic
Disturbances

Sub-
movements

Robustness

vsymm vasymm vsymm vasymm vsymm vasymm vsymm vasymm

CM Yes⸸ Yes Yes Yes Yes No High* High*

SPAL No No Yes Yes Yes Yes High* High*

MAPR Yes Yes⸸ Yes Yes No No High* High*

VAL No No Yes Yes Yes Yes High High

SM Yes⸸ Yes⸸ Yes Yes No No High High

SPM Yes Yes Yes Yes Yes Yes Low Low

SPMR No No Yes Yes No No Low Low

NOS No No  No Data+ No No  No Data+

SPARC Yes Yes Yes Yes Yes Yes High High

Peaks Yes⸸ Yes⸸ Yes Yes No No Low Low

IPV Yes Yes Yes Yes No No Low Low

DSJt Yes No Yes Yes No Yes Low Low

LDSJt Yes⸸ Yes Yes Yes No Yes Low Low

DSJb Yes No Yes Yes No Yes Low Low

LDSJb Yes No Yes Yes No Yes Low Low

‘Yes’ means that the metric responded to the perturbations as desired, whereas ‘No’ means 
otherwise. ⸸ There was no instance in the analysis where the metric value crossed the 10% 
threshold. * The metric was robust to all noise values added in the simulation. + Incomplete data. 
Metrics included are NOS (number of sub-movements), SM (speed metric), MAPR (movement arrest 
period ratio), VAL (velocity arc length), Peaks (number of peaks), IPV (inverse of number of peaks 
and valleys), DSJt and DSJb (Dimensionless squared jerk), LDSJb and LDSJt (log of DSJt and DSJb), 
CM (correlation metric), SPMR (spectral metric), SPM (spectral method), SPAL (spectral arc length 
2012), and SPARC (spectral arc length).

3.4. DISCUSSION 

The aim of the present study was to identify valid smoothness metrics to 
investigate the movement quality of the upper paretic limb during reaching 
tasks by persons with stroke. A metric was determined to be valid if it is 
mathematically sound and responds to the simulation analyses as desired. 
The systematic literature review revealed 32 different metrics used in stroke 
research. However, only 15 unique metrics had a sound mathematical definition 
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relating to smoothness (Hogan and Sternad, 2009). Furthermore, many 
metrics failed to respond as desired to the sub-movement simulations and 
were not robust to added measurement noise. Our simulation analyses showed 
that the Correlation Metric (CM) responded as desired in all simulations for 
the symmetric velocity profile but failed to respond as desired to the sub-
movement simulations for the asymmetric velocity profile. Spectral Arc 
Length (SPARC), by contrast, responded as desired in all simulation analyses, 
for both base velocity profiles. This finding suggests that both CM and SPARC 
are valid metrics reflecting the smoothness of reach-to-point movement, 
whereas only SPARC seems to be valid for measuring smoothness in a reach-
to-grasp movement post stroke. 

3.4.1. Clinical Relevance
The present study showed that in spite of the plethora of smoothness metrics 
available in the literature, only SPARC and CM are valid, given the reaching 
task performed. Smoothness is considered a result of learned coordinative 
processes, and increased motor control results in improved smoothness 
during reaching, pointing and grasping (Balasubramanian et al., 2015; 
Rohrer et al., 2002; van Kordelaar et al., 2014). Identifying and using valid 
smoothness metrics is essential for proper clinical research, and results in 
accurate observations of the recovery of motor control while improving the 
identification of true treatment effects on movement quality. 

Clinical assessments which are most closely related to behavioural 
restitution, and thereby neurological recovery, take into account the ability 
to perform movements outside the pathologic synergies (See et al., 2013). 
Whether smoothness metrics reflect neurological recovery after stroke 
can be determined by investigating the longitudinal association between 
smoothness metrics and assessments closely related to behavioural restitution. 
Furthermore, studying the associations between the recovery of neurological 
pathways and changes in movement smoothness will reveal the influence of 
behavioural restitution and compensation on smoothness. These smoothness 
values must be compared with reference values from healthy age- and gender-
matched individuals. Identifying these associations with smoothness during 
recovery, and eventually the underlying physiology that governs smoothness, 
will provide an indication whether smoothness can be used as a target or 

3
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outcome measure in training and, for example, in designing rehabilitation 
robots. 

3.4.2. Practical Barriers
Practical requirements need to be considered when the metrics are applied in 
either a clinical setting or an ambulatory or daily life setting. When measuring 
the smoothness of reach-to-point movements using motion tracking systems 
or high-end kinematic measurement sensors, the simplest and most robust 
metric is CM, due to its low sensitivity to noise. For ambulatory or daily life 
settings, metrics that can be estimated using wearable on-body sensors are 
preferred. Inertial and Magnetic Measurement Units (IMUs) are commonly 
used as wearable sensors for measuring the kinematics of movement. However, 
as an IMU measures accelerations, estimating velocity from it would require 
additional processing and is usually prone to drift (Woodman, 2007). In a 
recent study, Melendez-Calderon and colleagues suggest that SPARC should 
not be applied to linear velocities obtained from IMUs, and an alternative 
definition based on angular velocities may be of interest (Melendez-Calderon 
et al., 2021). However, techniques to correct drift due to strapdown integration 
(Woodman, 2007) were not employed in their study, as the authors suggest that 
it warrants a systematic analysis of the errors introduced in the smoothness 
estimate (Melendez-Calderon et al., 2021). Therefore, if the errors are 
accounted for, it should be possible to reliably measure SPARC using corrected 
linear velocities obtained from IMUs for a standardized pre-defined movement 
with a clear start and end posture. Given the advantages of using IMUs, their 
validity in measuring movement quality after stroke requires further research 
(Mesquita et al., 2019).  

3.4.3.	 Generalizability	of	current	findings
Besides populations with stroke, smoothness is highly relevant to studying 
the impact of neurological disease in other populations, such as those with 
Huntington’s disease and with Parkinson’s disease (Hogan and Sternad, 2009). 
For instance, smoothness has been used to study fluidity of movement in the 
upper limb, reflecting bradykinesia and rigidity in patients with Parkinson’s 
disease (di Biase et al., 2018). Furthermore, smoothness has been used to 
differentiate between affected and healthy gait, as well as to examine effects 
of medications, and to identify fall risk (Beck et al., 2018). In addition, the 
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level of smoothness is highly relevant in sports, as a measure of proficiency 
(Choi et al., 2014; Hreljac, 2000). The present findings emphasize the need for 
metrics that truly reflect smoothness and may serve as inspiration for related 
fields to determine which smoothness metric is valid for the movement task 
they analyse.

3.4.4. Limitations and future directions
The first limitation of the current review was that it was restricted to 
smoothness metrics investigated in stroke, focusing on post-stroke reaching. 
Generalization to other neurological diseases is therefore limited. The same 
is true for other movement tasks such as rhythmic drinking tasks (Osu et al., 
2011) or self-paced, isolated elbow flexion movements (Wininger et al., 2012). 
Secondly, only English language articles were considered for our systematic 
review. Thirdly, our simulations are not real movements, instead they offer 
a systematic analysis of changes in an ideal movement. For instance, our 
noise simulation analysis considered the robustness of metrics to added 
measurement noise. However, if the noise is a result of weak human control, 
the resulting movement would be less smooth, as reflected by the smoothness 
metric. Therefore, efforts to distinguish between measurement noise and 
perturbations due to actual human motion control must be undertaken in 
order to distinguish abnormal, pathologically reduced movement smoothness 
from that seen in healthy, age- and gender-matched participants. Fourthly, we 
see that different reaching tasks result in different velocity profiles; reach-to-
point or aiming movements are associated with symmetrical velocity profiles 
(Flash and Hogan, 1985), while reach-to-grasp movement is associated with an 
asymmetrical velocity profile (Hughes et al., 2013). We found CM to be highly 
dependent on the symmetry of the profile, as it estimates the correlation 
with a minimal jerk profile. Therefore, it might be of interest to consider a 
CM measure that takes account of correlation with a velocity profile that 
models the reaching task, for instance the asymmetric profile for reach-to-
grasp movements. This would require knowledge of the intended reaching task 
beforehand, which could be solved by testing using standardized pre-defined 
movements. Fifthly, smoothness metrics such as RJ are based on rotational 
movements and had to be rejected as they could not be tested with the current 
simulations. Finally, smoothness metrics have been designed so as not to be 
influenced by the movement duration or distance (Balasubramanian et al., 
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2015; Hogan and Sternad, 2009; Rohrer et al., 2002). The impact of additional 
factors such as anthropometric differences in arm thickness or length, etc., 
on smoothness is unknown and requires further investigation.  

Although our simulations mimicked features of reaching movements of 
persons with stroke, such as varying duration or distance, and sub-movement 
segmentation (Cirstea and Levin, 2000), they cannot truly replace actual 
reaching by participants who have suffered a stroke. Additionally, longitudinal 
studies of patterns of smoothness metrics in patients early post stroke will 
show which metric is sensitive to changes in the values of smoothness over 
time and how these values relate to values measured in healthy age- and 
gender-matched participants. Therefore, the next step (not part of this 
thesis) would be to investigate the time courses of CM and SPARC and their 
associations with upper limb motor recovery early post stroke (Saes et al., 
n.d.).
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G Mathematical definition of selected smoothness metrics
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ABSTRACT

Remote monitoring of gait performance offers possibilities for objective 
evaluation, and tackling impairment in motor ability, gait, and balance in 
populations such as elderly, stroke, multiple sclerosis, Parkinson’s, etc. This 
requires a wearable and unobtrusive system capable of estimating ambulatory 
gait and balance measures, such as Extrapolated Centre of Mass (XCoM) and 
dynamic Margin of Stability (MoS). These estimations require knowledge of 3D 
Forces and Moments (F&M), and accurate foot positions. Though an existing 
Ambulatory Gait and Balance System (AGBS) consisting of 3D F&M sensors, 
and Inertial Measurement Units (IMUs) can be used for the purpose, it is bulky 
and conspicuous. Resistive pressure sensors were investigated as an alternative 
to the on-board 3D F&M sensors. Subject specific regression models were built 
to estimate 3D F&M from 1D plantar pressures. The model was applicable for 
different walking speeds. Different pressure sensor configurations were studied 
to optimise system complexity and accuracy. Using resistive sensors only under 
the toe and heel, we were able to estimate the XCoM with a mean absolute RMS 
error of 2.2 ± 0.3 cm in the walking direction while walking at a preferred speed, 
when compared to the AGBS. For the same case, the XCoM was classified as 
ahead or behind the Base of Support correctly at 97.7 ± 1.7 %. In conclusion, the 
study shows that pressure sensors, minimally under the heel and toe, offer a 
lightweight and inconspicuous alternative for F&M sensing, towards estimating 
ambulatory gait and dynamic balance.
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4.1. INTRODUCTION

Assessment of motor impairment periodically during rehabilitation is crucial 
in understanding recovery. This is feasible via clinical outcome measures, and 
instrumented laboratory facilities, particularly in participants with motor 
impairment, such as stroke, Parkinson’s, multiple sclerosis, etc., and also 
others prone to instability such as frail elderly. Clinical outcomes indicate a 
subjective change in capacity or function of given tasks whereas instrumented 
systems offer objective quantification of kinematic and kinetic changes on 
impairment level of said tasks. Once the patient is discharged from the clinic, 
she/he is expected to continue functional training to maintain recovery 
and increase independence in Activities of Daily Life (ADL) (Dobkin, 2005). 
Continuing objective monitoring after discharge helps quantify recovery, and 
identify compensatory patterns if present (Kwakkel et al., 2017; World Health 
Organization, 2002). As instrumented laboratory facilities are expensive 
and restrictive in measurement space, wearable systems can be explored as 
alternatives.

ForceShoesTM (Xsens Technologies B.V., Enschede, The Netherlands) is a shoe 
with on-board sensors and was developed as an ambulatory gait lab (Veltink 
et al., 2005; Weenk et al., 2015). It consists of two Inertial Measurement Units 
(IMUs) and two 3D Force and Moment (F&M) sensors on each foot. It has 
been validated against commonly used systems, such as force plates (AMTI®) 
and motion capture (VICON©), for measurement of contact forces and foot 
position estimations respectively (Liedtke et al., 2007; Schepers et al., 2009; 
Weenk et al., 2015). Unlike these systems, ForceShoesTM has the advantage of 
being portable, and not restricted by area of measurement setup or marker 
placement. It is used to reconstruct the kinematics and kinetics of the feet 
during walking (Schepers et al., 2007; van Meulen et al., 2016c, 2016b).

Gait measures such as step length and width, and foot positions can be 
estimated using IMUs on the ForceShoesTM. Weenk and colleagues (Weenk 
et al., 2015) reduced the drift in position estimation using an Extended 
Kalman Filter (EKF), and validated it with motion capture. The EKF fused 
foot positions from the IMUs, and relative foot distance from an ultrasound 
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sensor. The ForceShoesTM, along with ultrasound sensor, EKF, and additional 
processing will be referred to as Ambulatory Gait and Balance System (AGBS).

Using the AGBS, Schepers and colleagues (Schepers et al., 2009) derived 
Centre of Mass (CoM) of the body during gait. Subsequently, van Meulen and 
colleagues (van Meulen et al., 2016b) estimated the Extrapolated CoM (XCoM), 
which is the CoM extrapolated in the direction of the walking velocity. The 
trajectory of the XCoM projected on the ground with respect to the Base of 
Support (BoS), which is the region between two feet when they are in contact 
with the ground, is an indication of dynamic stability (Hof et al., 2005). van 
Meulen and colleagues (van Meulen et al., 2016b) used the shortest distance 
from the XCoM and the frontline of the BoS as a condition of stability during 
continuous gait, called as the dynamic Margin of Stability (MoS) (Hof et al., 
2005). Bruijn and colleagues (Bruijn et al., 2013), suggested that XCoM (and 
eventually MoS) can objectively indicate balance quality, and van Meulen and 
colleagues (van Meulen et al., 2016c) showed that MoS varies with differences 
in participant’s balance impairments. Balance quality is otherwise estimated 
using clinical outcomes such as Berg Balance Scale, Dynamic Gait Index, 
Tinetti Falls Scale, etc. However, the construct of these outcomes show 
that they are subjective to the assessor. Using a system like AGBS, one can 
objectively evaluate gait and dynamic balance in an ambulatory or home 
setting for different populations including stroke, multiple sclerosis, Becker’s 
Muscle Dystrophy, Parkinson’s, elderly, etc.

However, the system has its limitations. Liedtke and colleagues (Liedtke et 
al., 2007), showed that gait pattern is slightly modified when wearing the 
AGBS. Moreover, it is not practical to use them every day due to the bulky 3D 
F&M sensors. These make each shoe weigh close to 1 kg and increases the 
sole height by 2.5 cm (van Meulen et al., 2016b), increasing discomfort and 
chances of tripping, especially for people with gait impairments. Alternative 
systems for ambulatory estimation of 3D F&M can be achieved by using an 
IMU-only setup. Karatsidis and colleagues solved this using 17 IMUs placed 
in a full body suit (Karatsidis et al., 2016). However, the system requires a full 
body setup and the effect of a reduced IMU setup for this purpose has not yet 
been studied.
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Insoles with pressure sensors can be used as an alternative to the bulky 3D 
F&M sensors. They can be slipped into everyday use shoes, are lightweight, 
and inconspicuous. They provide 1D plantar pressures under the feet during 
walking and can be used for estimating a range of gait parameters (Abdul 
Razak et al., 2012; Hegde et al., 2016; Koch et al., 2016).

Pressure insoles can only provide the vertical plantar pressure. However, 3D 
F&M of the feet (along with its positions) are required to estimate the CoM 
(Schepers et al., 2009), XCoM and MoS. Studies have shown estimations of 
3D F&M from 1D plantar pressures by using analytic and machine learning 
methods. Forner-Cardeno and colleagues (Forner Cordero et al., 2004) showed 
analytic derivation of 3D forces from 1D plantar pressure data, but their 
method relies on force plate data. Sim and colleagues (Sim et al., 2015), showed 
the use of a wavelet neural network to estimate time-normalised 3D F&M 
from 1D plantar pressure. Other studies use other machine learning methods 
to achieve the same (Fong et al., 2008; Rouhani et al., 2010; Savelberg and de 
Lange, 1999). In spite of a few disadvantages, such as the need for training 
data, or possible failure in untrained scenarios, machine learning methods 
have some potential use in this study.

The goal of this study is to evaluate 1D plantar pressure sensing as a lightweight 
alternative to the 3D F&M sensors in AGBS for estimating dynamic balance 
measures. To do so, linear regression models were built to predict 3D F&M 
from 1D plantar pressures. The models are subject specific and independent of 
walking speeds. The predicted 3D F&M along with foot positions are used to 
estimate CoM, XCoM, and MoS. The estimations are compared with those of 
the AGBS for different pressure sensor configurations. The study throws light 
on pressure sensors as a replacement to the 3D F&M sensors, the influence of 
the number of sensors on the estimation of XCoM and MoS, and insights on 
the algorithms used during the process.

4
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4.2. METHODS

Figure 4.1 (a) Side view of right ForceShoes™. The shoe consists of an ultrasound system (US), 
3D Force & Moment sensors (F&M), and Inertial Measuring Units (IMUs) as seen on the side. 
Each shoe weighs close to 1 kg and is about 2.5 cm thick making it uncomfortable to walk with. 
(b) Pressure insoles are placed within the ForceShoes™ to study if they are a feasible alternative 
to the 3D F&M sensors.

4.2.1. Measurement System
Fig. 4.1a shows the ForceShoesTM containing two 3D F&M sensors, two 
IMUs, and an ultrasound. Only the IMU located at the forefoot was used for 
analysis. The data from the 3D F&M sensors and IMUs were sent to an Xbus 
that transmits data wirelessly to a PC. The transmitter and receiver of the 
ultrasound system was placed on the right and left foot respectively. They 
were synchronized and the data were transmitted via Bluetooth to a PC. Fig. 
4.1b shows the pressure insole system (medilogic® insoles, T&T medilogic 
Medizintechnik GmbH, Germany) placed in the ForceShoesTM. It has 151 
resistive pressure sensors and was held in place using tape to eliminate 
slippage. The wireless transmitters of the pressure insoles and ForceShoesTM 
were worn as a belt around the waist. The 3D F&M sensors, IMUs, and the 
pressure insoles were sampled at 50 Hz. The data was then low pass filtered 
twice at 10 Hz using second order Butterworth filter to ensure zero-phase lag. 
The data was then transformed to the global coordinate frame, where X axis is 
along the walking direction and Z axis is the vertical axis pointing upwards.

4.2.2. Participants
Six healthy participants were recruited for the study. All participants signed 
an informed consent before the experiment. The study was conducted in 
accordance with the Declaration of Helsinki, and the protocol was approved 
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by the Ethical Committee of the faculty. The inclusion criteria included 
participants with no history of impaired gait or leg injury. Five participants 
were males and the size of the shoe used was 44 (European Size Chart). The 
average and standard deviation of the height, weight, and age was 1.81 ± 0.06 m,  
81 ± 9 kg, and 25 ± 1 years respectively. Leg length was measured from the 
greater trochanter to the ground (Hof, 1996) and was 1.04 ± 0.05 m.

4.2.3. Experimental Protocol
The ultrasound system and 3D F&M sensors were calibrated before each 
measurement. The participants were then asked to perform different walking 
tasks. In each of the walking tasks, the participant was asked to walk for 
10 m along a straight unobstructed path. The participant was instructed 
to begin with their feet placed parallel. Once the researcher gave the start 
sign, the participant walked along a straight line. The time taken between 
start and stop of the walking was measured using a stopwatch. This activity 
was repeated six times. The walking tasks were performed in four different 
scenarios which are as follows:

• Normal walking: During this task, the participant was asked to walk at 
his preferred walking speed.

• Slow walking: During this task, the participant was asked to walk at a 
slower pace. The speed was guided by the use of a metronome that beat at 
a frequency of 37 beats per minute. Each beat corresponds to heel strike 
of the same foot on the ground. The frequency was found using trial and 
error such that the participants reduced their walking speed to 0.8 m/s.

• Very Slow walking: During this task, the participant was asked to walk 
at a much slower pace. The frequency of the metronome was set at 27 
beats per minute. This frequency was found so as to reduce the walking 
speed to 0.4 m/s.

• Bag walking: During this task, the participant was asked to walk at his 
preferred walking speed while wearing a backpack weighing 5 kg. This 
is to represent an extra, yet minimal load people may carry during daily 
life tasks, such as a shopping bag.

4
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4.2.4 Objective Evaluation of Gait and Dynamic Balance

Gait
Ultrasound and IMUs were used for estimating foot positions, from which 
gait parameters such as step length, and step width were obtained. The EKF 
predicted states of position, instantaneous velocity, orientation error and 
gyroscope bias error (Weenk et al., 2015, Fig. 3). Error between predicted and 
measured data was used to correct the states for every measurement sample. 
Measurement updates included foot position and instantaneous velocity 
measured from the IMU, zero velocity instances, height of IMU during zero 
velocity and relative feet distance from the ultrasound system (Weenk et al., 
2015). The ultrasound updates were used in the EKF at an update frequency 
of 13 Hz (van Meulen et al., 2016b).

Dynamic Balance
Estimation of CoM is the first step towards evaluating dynamic balance. Low 
and high frequency components of CoM were estimated using two separate 
algorithms and fused using a complementary filter, to improve estimation 
accuracy (Schepers et al., 2009). The first stage estimates CoM from both foot 
kinetic and kinematic information by low pass filtering the Centre of Pressure 
(CoP) to estimate the position of CoM, referred to as Stage Low Frequency 
(Stage LF). Here, the CoP for each foot (xCoP,foot) is estimated as:
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where Fl and Fr represent the vertical GRF in the left and right foot respectively. 
The xCoP was then low pass filtered at 0.4 Hz to obtain the xCoM,LF . The cut off 
was found to be optimal for continuous walking (Schepers et al., 2009). The 
Stage LF CoM is estimated from both foot kinetic and kinematic information.
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The second algorithm estimates CoM from kinetic information alone by double 
integration of the net forces based on Newton’s second law, referred hereafter 
as Stage High Frequency (Stage HF). The body mass mbody can be embodied at 
the CoM and it’s acceleration is given as
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where Fl and Fr represent the vertical GRF in the left and right foot respectively. The xCoP was 

then low pass filtered at 0.4 Hz to obtain the xCoM,LF. The cut off was found to be optimal for continuous 

walking (Schepers et al., 2009). The Stage LF CoM is estimated from both foot kinetic and kinematic 

information.   

The second algorithm estimates CoM from kinetic information alone by double integration of 

the net forces based on Newton’s second law, referred hereafter as Stage High Frequency (Stage HF). 

The body mass mbody can be embodied at the CoM and it’s acceleration is given as  
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𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

+ 𝐠𝐠    (4.3)  (4.3)

where Ft is the net force acting on the body, and g is the gravitational 
acceleration (9.8 m/s2 positive downwards). The CoM position was derived from 
integrating the aCoM twice. This results in xCoM,int which was high pass filtered 
with a cut off at 0.4 Hz to obtain xCoM,HF. This is the same cut off as that of Stage 
LF low pass filter. The xCoM,LF and xCoM,HF were fused using a complementary 
filter to obtain the trajectory of CoM. Fig. 1.3 shows the Extrapolated CoM 
(XCoM) that can be obtained by
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as shown earlier. However, pressure insoles are only able to provide the 1D plantar pressures. 

Therefore, Subject Specific Regression Models (SSRM) were created to estimate 3D F&M from 1D 
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First, the data from IMUs, 3D F&M, and pressure insoles were synchronized. Trials that had 

sensor issues or measurement errors were removed. It was made sure that each participant had at 

least three trials for each walking task.  

, and l0 is the vertical CoM position (Hof et al., 
2005; van Meulen et al., 2016b). In Fig. 1.3, we see that the MoS is the shortest 
distance between the vertical projection of XCoM on the ground (XCoM’) from 
the frontline of BoS (van Meulen et al., 2016b).

4.2.5. Estimation of 3D F&M from Pressure Insoles
The AGBS provides positions, and 3D F&M of the feet. This is used to estimate 
CoM, XCoM, and MoS as shown earlier. However, pressure insoles are only able 
to provide the 1D plantar pressures. Therefore, Subject Specific Regression 
Models (SSRM) were created to estimate 3D F&M from 1D plantar pressure 
data.

First, the data from IMUs, 3D F&M, and pressure insoles were synchronized. 
Trials that had sensor issues or measurement errors were removed. It was 
made sure that each participant had at least three trials for each walking task.
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Fig. 4.2a shows the workflow of building an SSRM. First, all walking trials 
from the ‘Normal’, ‘Slow’, and ‘Very Slow’ tasks are appended. This forms one 
extended dataset containing 1D pressures for all walking trials with all speeds 
as inputs for the SSRM. Then, the SSRM is built as a linear regression model 
fitted between the inputs and targets (3D F&M) using least squares method. 
This results in six different models, one for each dimension of the F&M. The 
SSRM built using the walking profiles for three different speeds is then used to 
estimate the 3D F&M for each walking speed separately, and also for the Bag 
task which was not included in building the SSRM. Walking velocity was not 
used as an input to the SSRM. The same model can predict forces and moments 
during quiet standing, initiation of walking, cyclical walking and deceleration 
of walking and stopping for different walking speeds. The modelling process 
was repeated to create SSRMs for each participant. Fig. 4.2b shows the sensors 
used for the two stages, Stage LF and HF, and how the 3D F&M estimated using 
the SSRMs was used to calculate the CoM (along with foot positions), XCoM, 
and MoS. These measures were then compared with the measurements from 
the AGBS.

4.2.6.	 Influence	of	Sensor	Choice
The influence of the sensor configuration on the estimation of CoM, XCoM, 
and MoS was studied next. By reducing the number of pressure sensors 
used, the contribution of foot kinematics and kinetics can be understood 
better. Additionally, this could serve as a reference to design sensor setups 
with required error margins of stability parameters. Therefore, the number 
of pressure inputs used in building the SSRMs is varied. Fig. 4.3 shows the 
overlap between the 151 medilogic® pressure sensors, and that of the IEE 
(IEE S.A, Luxembourg) sensors. The IEE sensors (green regions in Fig. 4.3) 
were used to determine specific foot regions. The IEE insole has 8 sensors 
placed strategically under four foot regions: two under the toe, three under 
the metatarsal, one covering the arch, and two under the heel. The different 
configurations used are described as follows.

• All: All 151 sensors were used to build the SSRM.
• FF: The pressure sensors in the medilogic® insole that corresponded to 

the 8 sensor locations were used for building the SSRMs. This covered 
the four foot regions.

4
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Figure 4.3 Pressure sensor configurations used to build the SSRM based on the four foot regions 
are depicted here. The pluses denote the placement of the 151 medilogic® pressure sensors. The 
shaded regions denote the overlap with the sensors of IEE. The sensors of the medilogic® insole 
that correspond to the shaded regions were used for analysis. The different sensor configurations 
used: ‘All’, where all 151 sensors were used, ‘FF’, where only the medilogic® pressure sensors that 
overlapped with the IEE sensor locations were used, ‘T+H’, where the medilogic® pressure sensors 
only under the toe and heel regions were used, ‘T’, which covered only the toe region, and ‘H’, 
which covered only the heel region.

• T + H: This configuration covered only the toe and heel regions.
• T: This configuration covered the toe region alone.
• H: This configuration covered the heel region alone.
• None: In this the accuracy of estimating CoM, XCoM, and MoS is studied 

under the absence of any force or moment information. Therefore, only 
foot positions are used in this configuration. In order to proceed, a few 
assumptions were made. First, the position of the CoP during standing is 
assumed to lie equidistant from the centre of two feet. Secondly, during 
single stance, the CoP lies entirely at the centre of the foot in contact with 
the ground. Thirdly, during double stance phase, a smooth transition 
assumption (using spline interpolation) is used to smoothly shift weight 
from the lagging to the leading foot (Ren et al., 2008). These assumptions 
were used in Stage LF to obtain CoM. The Stage HF estimation of the 
CoM was not performed as there is no data about the force acting on the 
body in this configuration.
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4.2.7.	 Classification	of	Stability
The MoS, an indication of dynamic balance, both in anterior-posterior as well 
as medio-lateral directions, gives information about walking stability (Hof et 
al., 2005; van Meulen et al., 2016c). However, here only the gross placement of 
the projection of XCoM (XCoM’) in 2D with respect to the frontline of the BoS 
is studied . The BoS is estimated using the AGBS setup. The XCoM’ could then 
be classified as either ahead or behind the BoS. Instances when the XCoM’ is 
ahead of the BoS can be termed as unstable. This is compared between the 
SSRM and AGBS estimated XCoM’. This exercise is done to study how closely 
the SSRM based system can identify instances of instability as compared to 
the AGBS.

4.2.8. Analysis of Results
The Root Mean Square (RMS) of the differences normalised to the range of 
measured values was calculated between estimations by SSRMs and results 
obtained from the AGBS. This is done for the 3D forces (rrmsdF) and moments 
(rrmsdM) and compared with results seen in literature. This is an estimation 
of the error margin present when the 3D F&M are predicted by the SSRMs. 
Following this, the absolute RMS of the differences (rmsdX) for the XCoM was 
found, which quantifies the uncertainty in measurement. Then, a study of the 
contribution by the two stages, Stage LF and HF, to the accuracy of the XCoM 
was done. In this case, the Mean Absolute Distance (madt), the 2D distance 
in the XY plane, is calculated. Finally, the Percentage of Correctly Classified 
(PCC) samples of stability by the SSRMs was studied.

4.3. RESULTS

4.3.1. Forces and Moments
The average walking speeds of the participants for the Normal, Slow, V Slow, 
and Bag walking tasks are 1.03 ± 0.15, 0.6 ± 0.1, 0.42 ± 0.05, and 0.98 ± 0.2 m/s 
respectively. The regression models were built using walking trials in the 
Normal, Slow, and Very Slow tasks. The total number of steps (averaged 
between left and right) for each of the six participants used in building the 
SSRMs were 97, 100, 116, 133, 162, and 200. The number of steps vary as each 
participant differed in number of valid trials used, and also step sizes. Fig. 4.4a 
shows the comparison between the 3D forces estimated by the SSRM and 
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measured by the 3D F&M sensors (of the AGBS). The mean value for each 
participant is displayed as a boxplot. The distributions are shown for the 
different walking tasks for each sensor configuration (‘All’, ‘T+H’, ‘H’, ‘T’) used 
in the SSRM. The values are averaged over the left and right leg. In Fig 4.4, 
the white filled circle denotes the inter-participant mean of the distribution. 
The filled box contains the distribution that lies between 25% to 75% of the 
data. The outliers of the distribution beyond 1.5 times the interquartile range 
is denoted by stars.

In Fig. 4.4a, the forces estimated by the SSRM built with ‘All’ sensors shows 
relatively small error margins with the AGBS measured forces. This is seen to 
be the case for Normal, Slow, and Very Slow tasks. This shows that the model can 
be applied to different walking speeds, making it robust to changes in walking 
speeds. The SSRMs were used to estimate the forces in the Bag walking task to 
test its validity in an untrained scenario. The Bag task involves walking at the 
preferred walking speed while carrying a bag weighing 5 kg. Fig. 4.4a shows that 
when using ‘All’ sensors, the forces can be estimated accurately for the untrained 
Bag task. The rrmsdF in all three axes is 6% or less. This shows that the model is 
not only capable of reproducing the forces during an untrained walking profile 
but can also be used when the participant is carrying a small additional load. 
This could be due to the participant specificity of the SSRMs, enabling it to map 
the walking profile of each participant under different conditions.

The estimations remain relatively accurate when we consider the ‘FF’ sensor 
configuration. The rrmsdF is below 12% in all the three axes, for all walking 
tasks. Other sensor configurations show decreasing correlation coefficients and 
increasing RMS errors when reducing number of sensors for all walking tasks. 
When considering the ‘T’ or ‘H’ sensor configuration, we see that the error 
margin in rrmsdF increases to 20%. This is expected as these configurations do 
not contain pressure profile during either the toe off or heel strike. Additionally, 
as the number of sensors is reduced, the regression model uses lesser sensors 
to estimate the forces. Moments, however, show larger errors than forces as 
they are a cross product of distance and forces in the two orthogonal axes. 
Subsequently, the estimation worsens as the number of sensors are reduced. 
In both Fig. 4.4a and b, the results for ‘None’ sensor configuration is not shown 
as there is no force or moment information in these cases.
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4.3.2. Dynamic Balance
The 3D F&M from AGBS and SSRM are then used to estimate the CoM using 
Stage LF and Stage HF. Fig. 4.5 shows representative trajectories of the CoM 
and XCoM for a Normal task. The CoM fluctuates between the two feet as the 
stance changes. Simultaneously, in Fig. 4.5b the XCoM can be seen to oscillate 
with changes in the instantaneous velocity of the CoM. The SSRM trajectories 
deviate from the reference trajectory estimated by the AGBS, as they have 
different accuracies in estimating the forces and moments. Fig. 4.6 shows the 
comparison of XCoM in only the X and Y axes as we are interested only in the 
projection of XCoM, i.e., XCoM’ on the ground as rmsdX. When using ‘All’ 
sensors, the accuracy of estimating XCoM’ for all walking tasks is high. The 
rmsdX is less than 2 cm for the X and Y axes respectively. This is the case for all 
walking tasks. For other sensor configurations (‘T+H’, ‘T’, and ‘H’), the rmsdX 
does not change drastically as seen with 3D F&M in Fig. 4.4a or b. Although 
there is no force or moment information of the feet in the ‘None’ configuration, 
the XCoM’ has low errors in both X and Y axes. The rmsdX for the X and 
Y axis is less than 12 and 8 cm respectively. Assuming step width during 
quiet stance as 15 cm, maximum step width and length as 40 cm and 70 cm 
respectively, the BoS can range between 700 cm2 to a maximum of 2400 cm2. 
Comparing error margins of XCoM with respect to the BoS gives an idea about 
the relative magnitude of the error.

The previous paragraph threw light on the influence of 3D F&M estimation 
accuracy on the estimation of XCoM. Next, the contribution of Stage HF 
on the estimation of XCoM is studied. Here, we hypothesize that for lower 
walking speeds, there is lesser useful information in the higher frequencies. 
This is acceptable as our primary applications are towards people with gait 
impairment. Also, the Stage HF relies on the need for good kinetic information. 
Lesser reliance on this translates to the possibility of eliminating kinetic 
sensors. Therefore, the XCoM’ with and without the Stage HF is considered. 
Then, the madt is calculated between the estimations by the SSRMs and AGBS. 
Fig. 4.7 shows the distribution of madt in two cases during the Slow task. One 
case (XCoM Fused) contains the madt between the fused XCoM’ from the SSRM 
from the AGBS. The second case (XCoM LF) contains the madt between the 
XCoM’ with only low frequency information and the fused XCoM’ of the AGBS. 
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Figure 4.5 Representative trajectory of (a) CoM and (b) XCoM from a Normal walking task when 
the participant moves from the left to the right. The black line shows the reference trajectory 
estimated using the AGBS. The other dotted lines show the trajectory with respect to different 
sensor configurations used: All sensors (‘All’), Four foot regions (‘FF’), Toe+Heel (‘T+H’), Toe (‘T’), 
Heel (‘H’), and No pressure sensors (‘None’).

In Fig. 4.7, the XCoM Fused shows lower madt than XCoM LF when compared 
with the estimations from the AGBS. The average madt for XCoM LF in all 
sensor configurations (except ‘None’) is about 3 cm. The distribution of the 
madt for XCoM LF shows larger variance but remains robust with reduction 
in sensor configuration. This suggests that for walking at low speeds, the low 
frequency information of CoM is sufficient to estimate XCoM given an error 
margin of 3 cm. This could translate to advantages in terms of lower sampling 
rates of sensors, which may influence power consumption, or the possibility 
to eliminate kinetic sensors. Note that in case of ‘None’, the XCoM LF and 
XCoM Fused distributions are similar as this sensor configuration does not 
have any Stage HF information.

4
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Figure 4.6 Average root mean square of the differences between the XCoM estimat-
ed using regression model and measured from AGBS (rmsdX ) in the X and Y axes. Box 
plots of the mean values shown for the different walking tasks for each sensor configura-
tion used: All sensors (‘All’), Four foot regions (‘FF’), Toe+Heel (‘T+H’), Toe (‘T’), Heel (‘H’), 
and No pressure sensors (‘None’). For the ‘All’ configuration, the rmsdX is less than 2 cm 
for both the X and Y axes, which increases to 12 cm and 8 cm respective axes in the ‘None’ con-
figuration.

4.3.3.	 Classification	of	Stability
Once the XCoM’ estimated by the SSRMs is classified as ahead or behind the 
frontline of the BoS, it is compared with the classifications done by the AGBS, 
which is assumed to be the ground truth. Fig. 4.8 shows the percentage of 
sample points rightly classified as ahead (PCC Ahead) or behind (PCC Behind) 
the frontline of the BoS.

In order to classify, the frontline of the BoS is needed, which is measured only 
during quiet standing or instances of double support. During quiet standing, 
the XCoM’ lies well within the BoS, as there is no movement. During these 
instances, XCoM’ is most correctly classified.
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Figure 4.7 The mean absolute distance (madt) between XCoM with both low and high frequency 
(XCoM fused) and XCoM with only low frequency content (XCoM LF) for the Slow task for each 
sensor configuration used: All sensors (‘All’), Four foot regions (‘FF’), Toe+Heel (‘T+H’), Toe (‘T’), 
Heel (‘H’), and No pressure sensors (‘None’). We see that the madt is larger for the XCoM LF.

It can be seen from Fig. 4.8a that the percentages are very high for any sensor 
configuration in all walking tasks. The inset table shows the percentage of 
actual time behind or ahead the BoS. Simultaneously, during double support 
phase the XCoM’ is usually ‘ahead’ of the BoS in healthy people. However, as 
double support phases are very short in a gait cycle, the number of samples 
where the XCoM’ is ahead of the BoS is limited. Subsequently, there is a higher 
chance of error or mismatch in the placement of XCoM’ ahead of the BoS. Fig. 
4.8b shows that the distributions are wider, and the mean PCC is lower as 
compared to Fig. 4.8a. For ‘All’ sensors, the figure shows that the SSRMs has 
high PCC in estimating the dynamic stability. The mean PCC is above 95% (for 
both ahead and behind) for all four walking tasks. In Fig. 4.8, the PCC reduces 
as the number of sensors are reduced.

4.4. DISCUSSION

In this study, subject specific models were built instead of a generic model for 
all participants. This choice was made as preliminary studies showed poor 
performance of a generic regression model built using trials from different 
participants. 

4
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Figure 4.8 The percentage of samples when XCoM’ was rightly classified (PCC) as (a) Behind or 
(b) Ahead of the BoS is shown as box plot distributions. The classifications by the AGBS were 
considered to be true and was used as the reference. The percentage of time during gait when the 
XCoM’ was ahead or behind the BoS as measured by AGBS is shown in the inset table. The sensor 
configurations used: All sensors (‘All’), Four foot regions (‘FF’), Toe+Heel (‘T+H’), Toe (‘T’), Heel 
(‘H’), and No pressure sensors (‘None’).

Additionally, this method could be expected to perform better for people 
with gait impairment. Correlations between the estimated and measured 3D 
F&M as average percentages among both foot were estimated, and compared 
with Sim and colleagues (Sim et al., 2015) and tabulated in Table 4.1. Their 
study used fast, normal, and slow walking speeds for training a wavelet neural 
network that estimated the 3D F&M from plantar pressures. It is seen that in 
both, this study and Sim and colleagues, forces in the Z axis show the highest 
correlation, followed by the X axis. This is expected as plantar pressures are 
defined by the vertical ground reaction force. In case of moments, Z axis 
showed the least correlation. Comparatively, except for forces in X axis, this 
study shows slightly higher correlations with the reference, than that in Sim 
and colleagues (Sim et al., 2015). Note that the current study doesn’t use a 
normalised gait cycle for building the SSRMs, as Sim and colleagues (Sim et al., 
2015) does. Therefore, the SSRMs contain information of the gait cycle during 
initiation and decelerations, allowing better prediction even when making 
short steps or shuffling at home.
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Table 4.1 Comparison of the correlations found in this study and Sim and colleagues 
(Sim et al., 2015).

-- This Study (%) Sim and colleagues (%)

FX 95.5 97.6

FY 95.3 85.3

FZ 99.6 98.8

MX 97.9 87

MY 96.3 88.1

MZ 87.1 84.7

The most interesting observation is found when we study the influence of 
F&M estimation on the estimation of XCoM’. We know from Fig. 4.4, that the 
estimation of F&M deteriorates as we reduce the number of sensors. However, 
Fig. 4.6 shows that this has little effect on the estimation of XCoM’. It has to 
be noted that the foot position used is the same for all sensor configurations. 
This could give rise to the argument that accuracy of foot position is more 
important than force or moment sensing, highlighting the relative influence 
of foot kinetics and kinematics towards accuracy of XCoM. This argument is 
strengthened when considering the ‘None’ configuration. We see low rmsdX 
values in Fig. 4.6 for this configuration. However, it must be noted that some of 
the assumptions, especially the smooth transition assumption, in ‘None’ may 
fail during instances of daily life such as shuffling of feet, or while turning. 
Nonetheless, the comparisons show that in order to identify the XCoM’, we 
must have good accuracy in estimating the foot position. Currently, EKF and 
ultrasound range updates are used to improve the foot position estimation 
provided by the IMUs.

Fig. 4.8 can serve as a reference for choosing the right sensor configuration 
based on the required task. If we are to consider an ‘optimal’ case that has fewer 
number of sensors while providing good accuracy, the ‘FF’ sensor configuration 
seems to be the right choice. However, the ‘T+H’ sensor configuration can be 
used if a more minimal setup is preferred. This configuration has only sensors 
under the heel and toe, but the model shows good accuracy in estimating the 
XCoM’. This shows that for minimal sensing of ADL, a simple sensor set with at 
least two pressure sensors (one under the heel and other under the toe), IMUs 
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on the forefoot, and updates of the distance between the two feet is required 
for a confident estimation of the XCoM and dynamic stability.

Limitations and Future Work
Though the recruitment was not selective to sole size or gender, the 
participating group is not very diverse. There is only one shoe size tested and 
only one female participant in the study. However, this would not have any 
effect on validity of the method as the models are participant specific. Also, 
as the study was performed on healthy participants, the results might vary in 
populations with gait impairment.

Walking trajectories were required to create the SSRMs, which in practice, 
would translate to a calibration phase where the participant should walk a few 
times using the measurement setups. As seen earlier, an average of 134 steps 
is needed to achieve the results shown. Though this is an extra effort, it 
eliminates the use of bulky 3D F&M sensors in daily life which can modify gait 
pattern and cause discomfort during extended wear (Liedtke et al., 2007; van 
Meulen et al., 2016c). Alternatives to create participant specific models could 
be building models generic to any participant and calibrating them before use.

In this study, the SSRMs are linear regression models. Studies have shown 
other possibilities for improving accuracy in predicting 3D forces/moments 
(Fong et al., 2008; Rouhani et al., 2010; Savelberg and de Lange, 1999). Further, 
this study finds that Stage LF is sufficient for CoM estimation. Therefore the 
CoP, essential for estimating CoM in Stage LF, can be found using only the 
pressure sensors (Mohamed Refai et al., 2018). This eliminates the conversion 
from 1D pressure to 3D F&M, thereby reducing the complexity in generating 
SSRMs.

The participants were asked to walk in straight lines in this study. Shuffling 
or turning can introduce shear forces directed towards the direction of 
turning. The accuracy of the SSRMs in these conditions should be studied 
further. Additionally, the study is missing assessments of MoS in the medio-
lateral direction as it is highly relevant in understanding gait stability (Bruijn 
et al., 2013). This study shows the feasibility of pressure sensors over 3D 
F&M sensors. The IMUs can be embedded inside the insoles, as designed by 
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Moticon® (Moticon GmbH, 2018), allowing design for a thinner, and wearable 
AGBS. However, the ultrasound range estimator requires further improvement. 
The range estimator requires synchronized receiver and transmitter placed 
in a direct line of sight. Alternatives, such as using infrared, may contribute 
towards the design of an inconspicuous AGBS (Bertuletti et al., 2016).

4.5. CONCLUSIONS

The AGBS in this study can thus be replaced with a setup containing pressure 
sensors and IMUs on each foot, and an ultrasound range estimator. During 
straight line walking, pressure sensors under the toe and heel can be sufficient 
(along with foot positions), to study the XCoM and dynamic stability of a 
healthy participant. Also, low frequency information of the CoM is sufficient 
for estimating the XCoM trajectory. Using a few assumptions, XCoM could 
also be estimated using only the estimations of foot position, ignoring any 
kinetic information. In addition, the current study highlights the contribution 
of foot kinematics and kinetics while estimating XCoM. These results could be 
used in the design of a lighter and wearable AGBS system. Such a system can 
contribute towards objective quantification of gait and balance quality in an 
ambulatory setup. This, unlike current clinical outcomes, can help monitor 
functional recovery.

4
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ABSTRACT

Ambulatory sensing of gait kinematics using Inertial Measurement Units (IMUs) 
usually uses sensor fusion filters. These algorithms require measurement 
updates to reduce drift between segments. A full body IMU suit can use 
biomechanical relations between body segments to solve this. However, when 
minimising the sensor set, we lose a lot of this information. In this chapter, we 
explore the assumptions of Centroidal Moment Pivot point (CMP) as a possible 
source of measurement updates for the sensor fusion filters. CMP is otherwise 
utilised for humanoid gait in robots. First, the relation between the CMP and 
Centre of Pressure (CoP) was studied using a GRAIL system, consisting of opto-
kinetic measurements. We found that the mean distance over the gait cycle 
between CMP and CoP was 10.5 ± 1.2 % of the foot length. Following this, we 
show how these results could be used to improve measurements in a minimal 
IMU based sensing setup.
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5.1. INTRODUCTION

Ambulatory estimation of gait measures is useful in understanding gait 
patterns in healthy participants, and also recovery in people with gait 
impairment (Bruijn et al., 2013). One possible ambulatory method is to use 
Inertial Measurement Units (IMUs). IMUs consists of 3D accelerometers, and 
3D gyroscopes, and are small and wearable. They can be used to estimate 
full body kinematics, and also kinetics, if a full body suit of IMUs is used 
(Karatsidis et al., 2016; Roetenberg et al., 2009).

IMUs have also been widely explored for minimal sensing of gait (Wouda et 
al., 2018). Several algorithms including machine learning and sensor fusion 
approaches have been applied in order to estimate spatial and temporal 
parameters from a small set of IMUs (Pacini Panebianco et al., 2018; Zhao et 
al., 2018). Sensor fusion approaches derive movement velocity and position 
of the segment they are attached to. However, they are affected by drift. 
Additionally, the IMUs do not have a sense of relative distance between each 
segment. In a full body setup, biomechanical constraints are used to solve this 
issue (Roetenberg et al., 2009). However, in a minimal sensing setup, such as 
IMUs on the feet, this may cause the two feet to drift apart from each other. 
This issue has been solved either as a problem with inequality constraints 
(Skog et al., 2012), or using biomechanical constraints based on the inverted 
pendulum model of human motion (Zhao et al., 2018).

The Zero moment point (ZMP) and Centroidal Moment Pivot (CMP) point 
have been extensively used to balance gait in humanoid systems (Popovic et 
al., 2005; Sorao et al., 1997). These ground reference points are addressed in 
Chapter I. The CMP point assumes that for a stable gait pattern, the moments 
around the Centre of Mass (CoM) are zero. Assuming this to be true for gait in 
healthy individuals, we can derive relations between CMP, CoM, and distances 
between the feet. This could be potential information that would reduce 
drift in the sensor fusion approaches. Therefore, in this study, we explore 
the assumptions of CMP to identify biomechanical constraints that would 
be useful as a measurement update for sensor fusion filters. First, we study 
the differences between CMP and the reference Centre of Pressure (CoP) for 
walking in two conditions: normal and a casted condition. 

5
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This is measured in an optoelectronic setup. Using the same setup, we test a 
relation derived from the CMP that could provide relative distances between 
each foot and CoM. Further, we show an IMU example to describe steps to 
implement the CMP in IMU based sensor fusion approaches.

5.2. METHODS

5.2.1. Measurement Setup
Seven healthy female participants were asked to walk on the GRAIL 
(Motekforce Link, The Netherlands). As can be seen in Fig. 5.1a, the GRAIL was 
used to collect gait biomechanics. The setup measured the 3D ground reaction 
forces and also the 3D kinematics of the body positions. The participants’ 
average age was 22.9 ± 1.4 years, height was 1.78 ± 0.06 m, and weight was 
73.4 ± 5.4 kg. The participants were asked to walk for 5 minutes on the 
treadmill at 1.2 m/s. After this, a plaster technician casted the right foot of 
the participant and they were asked to walk again for 5 minutes at the same 
speed on the treadmill. Casting was done to induce asymmetry in gait. The 
institutional ethical review board of the Vrij University Amsterdam approved 
the experimental procedure in this study. All participants provided written 
informed consent.

5.2.2. Centre of Mass
Schepers et al. (Schepers et al., 2009) used a complementary filter algorithm 
to estimate low and high frequency components of CoM from the 3D forces 
and moments measured from the Forceshoes™ (Fig. 5.1b). Here, we apply 
the algorithms to measurements from the GRAIL, as it has been validated 
against the CoM estimations using segmental kinematics (Schepers et al., 
2009). Additionally, as we use the Forceshoes™ in the later part of the study, 
the same algorithms are applied here. The first stage estimates CoM from 
both foot kinetic and kinematic information by low pass filtering the CoP to 
estimate the position of CoM. The total body CoP is estimated from the force 
measurements on the GRAIL as

CMP point for minimal sensing of gait 

𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎 = 𝐹𝐹𝑍𝑍,𝑙𝑙⋅𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎,𝑙𝑙 
𝐹𝐹𝑍𝑍,𝑙𝑙+ 𝐹𝐹𝑍𝑍,𝑟𝑟

 +   𝐹𝐹𝑍𝑍,𝑟𝑟⋅𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎,𝑟𝑟 
𝐹𝐹𝑍𝑍,𝑙𝑙+ 𝐹𝐹𝑍𝑍,𝑟𝑟

  (5.1)  

where 𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎 is the CoP. All variables in (5.1) are expressed in a global frame with Z axis positive 

upwards along the vertical, and X positive along the walking direction. This coordinate frame is used 

throughout this chapter. All variables are a function of time. Here, subscript r and l stand for the right 

and left foot respectively, and subscript ax corresponds to either X or Y axes. 𝐹𝐹 refers to the force in a 

particular axis. The 𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎 is then low pass filtered at 0.4 Hz to obtain the 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐿𝐿𝐹𝐹 (Schepers et al., 

2009). 

The second algorithm estimates CoM from kinetic information alone by double integration of 

the net forces based on Newton's second law. The acceleration of the body mass 𝑚𝑚𝑏𝑏𝐶𝐶𝑏𝑏𝑏𝑏  at the CoM is  

𝒂𝒂𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑭𝑭
𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

+ 𝐠𝐠  (5.2) 

where F is the net force acting on the body, and g is the gravitational acceleration. The change in 

CoM position over time was derived from integrating the 𝒂𝒂𝐶𝐶𝐶𝐶𝐶𝐶 twice. This results in 𝒙𝒙𝐶𝐶𝐶𝐶𝐶𝐶 which was 

high pass filtered with a cut off at 0.4 Hz to obtain 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐻𝐻𝐹𝐹. This is the same cut off as that of 

𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐿𝐿𝐹𝐹 's low pass filter. The 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐿𝐿𝐹𝐹 and 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐻𝐻𝐹𝐹  are fused using a complementary filter to 

obtain the trajectory of CoM. 

  

3. Centroidal Moment Point (CMP) 
In Chapter I (Section 1.5.3 (Centroidal Moment Pivot)), the ground reference points including the CMP 

are defined. During ‘stable’ gait, we assume that the whole body angular momentum is constant, and 

thereby the net moment around the CoM is zero. Therefore, CMP is a virtual point of contact on the 

ground, such that the cross product of the vector (r) joining the CoM and CMP and the ground reaction 

force vector (F) is zero. This gives us the following equations: 

𝒓𝒓 x 𝑭𝑭 = 0       (5.3) 

(𝐶𝐶𝐶𝐶𝑀𝑀 − 𝐶𝐶𝑀𝑀𝑃𝑃)𝑎𝑎𝑎𝑎 ⋅ 𝐹𝐹𝑍𝑍 = (𝐶𝐶𝐶𝐶𝑀𝑀 − 𝐶𝐶𝑀𝑀𝑃𝑃)𝑧𝑧 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎  (5.4) 

𝐶𝐶𝑀𝑀𝑃𝑃𝑎𝑎𝑎𝑎 = 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎 − (𝐶𝐶𝐶𝐶𝑀𝑀𝑧𝑧 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑍𝑍

).    (5.5) 

In (5.4), 𝐶𝐶𝑀𝑀𝑃𝑃𝑧𝑧 is zero as it lies on the floor, and 𝐶𝐶𝐶𝐶𝑀𝑀𝑧𝑧 is the height of pelvis from the GRAIL 

system. Therefore, (5.5) provides CMP positions in X and Y axes. This is then compared with the CoP 

estimated from the treadmill force plates using (5.1). 

  (5.1)
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Figure 5.1 Measurement setups used in this study. Gait data was collected using the (a) GRAIL 
platform which consists of a split belt treadmill with force plates and ten VICON motion capture 
cameras. (b) The Forceshoes™ can be used as an ambulatory system for measuring gait parameters. 
The shoe consists of an Ultrasound System (US), 3D Force & Moment sensors (F&M), and Inertial 
Measuring Units (IMU) as seen on the side.

where CoPax is the CoP. All variables in (5.1) are expressed in a global frame 
with Z axis positive upwards along the vertical, and X positive along the 
walking direction. This coordinate frame is used throughout this chapter. 
All variables are a function of time. Here, subscripts r and l stand for the right 
and left foot respectively, and subscript ax corresponds to either X or Y axes. 
F refers to the force in a particular axis. The CoPax is then low pass filtered at 
0.4 Hz to obtain the CoMax,LF  (Schepers et al., 2009).

The second algorithm estimates CoM from kinetic information alone by double 
integration of the net forces based on Newton’s second law. The acceleration 
of the body mass mbody at the CoM is

CMP point for minimal sensing of gait 

𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎 = 𝐹𝐹𝑍𝑍,𝑙𝑙⋅𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎,𝑙𝑙 
𝐹𝐹𝑍𝑍,𝑙𝑙+ 𝐹𝐹𝑍𝑍,𝑟𝑟

 +   𝐹𝐹𝑍𝑍,𝑟𝑟⋅𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎,𝑟𝑟 
𝐹𝐹𝑍𝑍,𝑙𝑙+ 𝐹𝐹𝑍𝑍,𝑟𝑟

  (5.1)  

where 𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎 is the CoP. All variables in (5.1) are expressed in a global frame with Z axis positive 

upwards along the vertical, and X positive along the walking direction. This coordinate frame is used 

throughout this chapter. All variables are a function of time. Here, subscript r and l stand for the right 

and left foot respectively, and subscript ax corresponds to either X or Y axes. 𝐹𝐹 refers to the force in a 

particular axis. The 𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎 is then low pass filtered at 0.4 Hz to obtain the 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐿𝐿𝐹𝐹 (Schepers et al., 

2009). 

The second algorithm estimates CoM from kinetic information alone by double integration of 

the net forces based on Newton's second law. The acceleration of the body mass 𝑚𝑚𝑏𝑏𝐶𝐶𝑏𝑏𝑏𝑏  at the CoM is  

𝒂𝒂𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑭𝑭
𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

+ 𝐠𝐠  (5.2) 

where F is the net force acting on the body, and g is the gravitational acceleration. The change in 

CoM position over time was derived from integrating the 𝒂𝒂𝐶𝐶𝐶𝐶𝐶𝐶 twice. This results in 𝒙𝒙𝐶𝐶𝐶𝐶𝐶𝐶 which was 

high pass filtered with a cut off at 0.4 Hz to obtain 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐻𝐻𝐹𝐹. This is the same cut off as that of 

𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐿𝐿𝐹𝐹 's low pass filter. The 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐿𝐿𝐹𝐹 and 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐻𝐻𝐹𝐹  are fused using a complementary filter to 

obtain the trajectory of CoM. 

  

3. Centroidal Moment Point (CMP) 
In Chapter I (Section 1.5.3 (Centroidal Moment Pivot)), the ground reference points including the CMP 

are defined. During ‘stable’ gait, we assume that the whole body angular momentum is constant, and 

thereby the net moment around the CoM is zero. Therefore, CMP is a virtual point of contact on the 

ground, such that the cross product of the vector (r) joining the CoM and CMP and the ground reaction 

force vector (F) is zero. This gives us the following equations: 

𝒓𝒓 x 𝑭𝑭 = 0       (5.3) 

(𝐶𝐶𝐶𝐶𝑀𝑀 − 𝐶𝐶𝑀𝑀𝑃𝑃)𝑎𝑎𝑎𝑎 ⋅ 𝐹𝐹𝑍𝑍 = (𝐶𝐶𝐶𝐶𝑀𝑀 − 𝐶𝐶𝑀𝑀𝑃𝑃)𝑧𝑧 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎  (5.4) 

𝐶𝐶𝑀𝑀𝑃𝑃𝑎𝑎𝑎𝑎 = 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎 − (𝐶𝐶𝐶𝐶𝑀𝑀𝑧𝑧 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑍𝑍

).    (5.5) 

In (5.4), 𝐶𝐶𝑀𝑀𝑃𝑃𝑧𝑧 is zero as it lies on the floor, and 𝐶𝐶𝐶𝐶𝑀𝑀𝑧𝑧 is the height of pelvis from the GRAIL 

system. Therefore, (5.5) provides CMP positions in X and Y axes. This is then compared with the CoP 

estimated from the treadmill force plates using (5.1). 

   (5.2)

where F is the net force acting on the body, and g is the gravitational 
acceleration. The change in CoM position over time was derived from 
integrating the aCoM twice. This results in xCoM which was high pass filtered 
with a cut off at 0.4 Hz to obtain CoMax,HF. This is the same cut off as that 
of CoMax,LF’s low pass filter. The CoMax,LF and CoMax,HF are fused using a 
complementary filter to obtain the trajectory of CoM.

5
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5.2.3. Centroidal Moment Point (CMP)
In Chapter I (Section 1.5.3 (Centroidal Moment Pivot)), the ground reference 
points including the CMP are defined. During ‘stable’ gait, we assume that the 
whole body angular momentum is constant, and thereby the net moment around 
the CoM is zero. Therefore, CMP is a virtual point of contact on the ground, 
such that the cross product of the vector (r) joining the CoM and CMP and the 
ground reaction force vector (F) is zero. This gives us the following equations:

r x F = 0                                                         (5.3)

CMP point for minimal sensing of gait 

𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎 = 𝐹𝐹𝑍𝑍,𝑙𝑙⋅𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎,𝑙𝑙 
𝐹𝐹𝑍𝑍,𝑙𝑙+ 𝐹𝐹𝑍𝑍,𝑟𝑟

 +   𝐹𝐹𝑍𝑍,𝑟𝑟⋅𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎,𝑟𝑟 
𝐹𝐹𝑍𝑍,𝑙𝑙+ 𝐹𝐹𝑍𝑍,𝑟𝑟

  (5.1)  

where 𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎 is the CoP. All variables in (5.1) are expressed in a global frame with Z axis positive 

upwards along the vertical, and X positive along the walking direction. This coordinate frame is used 

throughout this chapter. All variables are a function of time. Here, subscript r and l stand for the right 

and left foot respectively, and subscript ax corresponds to either X or Y axes. 𝐹𝐹 refers to the force in a 

particular axis. The 𝐶𝐶𝐶𝐶𝑃𝑃𝑎𝑎𝑎𝑎 is then low pass filtered at 0.4 Hz to obtain the 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐿𝐿𝐹𝐹 (Schepers et al., 

2009). 

The second algorithm estimates CoM from kinetic information alone by double integration of 

the net forces based on Newton's second law. The acceleration of the body mass 𝑚𝑚𝑏𝑏𝐶𝐶𝑏𝑏𝑏𝑏  at the CoM is  

𝒂𝒂𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑭𝑭
𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

+ 𝐠𝐠  (5.2) 

where F is the net force acting on the body, and g is the gravitational acceleration. The change in 

CoM position over time was derived from integrating the 𝒂𝒂𝐶𝐶𝐶𝐶𝐶𝐶 twice. This results in 𝒙𝒙𝐶𝐶𝐶𝐶𝐶𝐶 which was 

high pass filtered with a cut off at 0.4 Hz to obtain 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐻𝐻𝐹𝐹. This is the same cut off as that of 

𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐿𝐿𝐹𝐹 's low pass filter. The 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐿𝐿𝐹𝐹 and 𝐶𝐶𝐶𝐶𝑀𝑀𝑎𝑎𝑎𝑎,𝐻𝐻𝐹𝐹  are fused using a complementary filter to 

obtain the trajectory of CoM. 

  

3. Centroidal Moment Point (CMP) 
In Chapter I (Section 1.5.3 (Centroidal Moment Pivot)), the ground reference points including the CMP 

are defined. During ‘stable’ gait, we assume that the whole body angular momentum is constant, and 

thereby the net moment around the CoM is zero. Therefore, CMP is a virtual point of contact on the 

ground, such that the cross product of the vector (r) joining the CoM and CMP and the ground reaction 

force vector (F) is zero. This gives us the following equations: 

𝒓𝒓 x 𝑭𝑭 = 0       (5.3) 
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).    (5.5) 

In (5.4), 𝐶𝐶𝑀𝑀𝑃𝑃𝑧𝑧 is zero as it lies on the floor, and 𝐶𝐶𝐶𝐶𝑀𝑀𝑧𝑧 is the height of pelvis from the GRAIL 

system. Therefore, (5.5) provides CMP positions in X and Y axes. This is then compared with the CoP 

estimated from the treadmill force plates using (5.1). 
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In (5.4), 𝐶𝐶𝑀𝑀𝑃𝑃𝑧𝑧 is zero as it lies on the floor, and 𝐶𝐶𝐶𝐶𝑀𝑀𝑧𝑧 is the height of pelvis from the GRAIL 

system. Therefore, (5.5) provides CMP positions in X and Y axes. This is then compared with the CoP 

estimated from the treadmill force plates using (5.1). 

 (5.5)

In (5.4), CMPZ is zero as it lies on the floor, and CoMZ is the height of pelvis 
from the GRAIL system. Therefore, (5.5) provides CMP positions in X and Y 
axes. This is then compared with the CoP estimated from the treadmill force 
plates using (5.1).

5.2.4. Application of Centroidal Moment Pivot Point
The relation between CMP and CoM as shown in (5.5) can be utilised as 
additional information about relative distance between the feet and CoM. 
Therefore, they can be used as measurement updates for a sensor fusion filter, 
if the other variables are known. For example, during swing phase of the 
left foot, the CoP of the body will lie under the right foot. Without pressure 
insoles, it is not straight forward to measure CoP of each foot. However, the 
foot positions can be estimated using an IMU on each foot (Weenk et al., 
2015), and CoM can be tracked using a pelvis IMU (Floor-Westerdijk et al., 
2012). Here, we can provide an estimate for the right foot during left foot 
swing phase as
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where 𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑎𝑎,𝑟𝑟 is position of the right foot, and subscript sl denotes instances of left foot swing 

phase. We have assumed that the differences in CMP and foot position is trivial. Subsequently, we can 

derive an estimate for the left foot during the swing phase of the right foot (sr) as 

𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑎𝑎,𝑠𝑠 = 𝐶𝐶𝑝𝑝𝑀𝑀𝑎𝑎𝑎𝑎,𝑠𝑠𝑟𝑟 − (𝐶𝐶𝑝𝑝𝑀𝑀𝑧𝑧 ⋅
𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑍𝑍
)   (5.7) 

and then compare 𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑎𝑎,𝑟𝑟 and 𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑎𝑎,𝑠𝑠 with the true foot positions at the respective instances (sl 

and sr). 

  

5. Example using IMUs 

We show a possible application of (5.6) and (5.7) in practice by describing a preliminary measurement. 

A participant (male, 71 kg, 1.78 m tall, and 25 years old) is asked to walk with the ForceShoes™ for 

10 m in a straight line. There is an IMU on each foot. We apply the sensor fusion filter of Weenk and 

colleagues (Weenk et al., 2015) to the measurements by the IMU. This includes their prediction 

models, and measurement updates such as zero velocity update, and zero height update. However, 

we skip the measurement updates from the ultrasound sensor, as this includes relative foot distance 

information. Therefore, we obtain foot positions, 𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑎𝑎,𝑟𝑟𝑤𝑤𝑤𝑤  and 𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑎𝑎,𝑠𝑠𝑤𝑤𝑤𝑤 . Here, the superscript wk refers 

to the method of Weenk and colleagues (Weenk et al., 2015) and the subscript ax refers to either the 

X or Y axis. The subscripts r/l refer to either the right or left foot. These position estimates will have 

drifted due to noise, due to absence of any relative distance information. Then, we estimate reference 

CoM trajectory using forces measured by the ForceShoes™ (Schepers et al., 2009). Further, we apply 

(5.6) and (5.7) to the CoM estimated, in order to estimate 𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑎𝑎,𝑟𝑟𝑐𝑐𝑐𝑐  and 𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑎𝑎,𝑠𝑠𝑐𝑐𝑐𝑐  respectively. Here, the 

superscript cm refers to the CMP method. Further, we assume 𝐶𝐶𝑝𝑝𝑀𝑀𝑧𝑧 is a constant line, with a value 

   (5.6)

where posax,r is position of the right foot, and subscript sl denotes instances 
of left foot swing phase. We have assumed that the differences in CMP and 
foot position is trivial. Subsequently, we can derive an estimate for the left 
foot during the swing phase of the right foot (sr) as
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(5.7)

and then compare posax,r and posax,l with the true foot positions at the 
respective instances (sl and sr).

5.2.5. Example using IMUs
We show a possible application of (5.6) and (5.7) in practice by describing an 
example measurement. A participant (male, 71 kg, 1.78 m tall, and 25 years 
old) is asked to walk with the Forceshoes™ for 10 m in a straight line. There is 
an IMU on each foot. We apply the sensor fusion filter of Weenk and colleagues 
(Weenk et al., 2015) to the measurements by the IMU. This includes their 
prediction models, and measurement updates such as zero velocity update, 
and zero height update. However, we skip the measurement updates from 
the ultrasound sensor, as this includes relative foot distance information. 
Therefore, we obtain foot positions, poswk

ax,r  and poswk
ax,l. Here, the superscript 

wk refers to the method of Weenk and colleagues (Weenk et al., 2015) and 
the subscript ax refers to either the X or Y axis. The subscripts r/l refer to 
either the right or left foot. These position estimates will have drifted due to 
noise, due to absence of any relative distance information. Then, we estimate 
reference CoM trajectory using forces measured by the Forceshoes™ (Schepers 
et al., 2009). Further, we apply (5.6) and (5.7) to the CoM estimated, in order 
to estimate poscm

ax,r and poscm
ax,l respectively. Here, the superscript cm refers to 

the CMP method. Further, we assume CoMZ is a constant line, with a value 
equal to the participant’s pelvis height during quiet standing. We plot the 
trajectories of interesting parameters and comment on how this could be used 
in a sensor fusion setup.

5.2.6. Analysis of Results
We compare the CMPax measured in (5.5) with the CoP measured from the 
treadmill force plates in GRAIL. Then, we compare the error as a percentage 
of participant’s foot length 𝛽% with Herr et al (Herr and Popovic, 2008). 
Following this, we compare posax,r and posax,l from (5.6) and (5.7) with foot 
positions measured by VICON in GRAIL. For each of these, we test if the 
differences are statistically significant using a two tailed t-test. Following 
this, we plot the trajectories of the interesting parameters in our example 
(Section 5.2.5) with the IMUs.

5
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5.3. RESULTS

Fig. 5.2 shows the normalised trajectories of CMP and CoP in the X and Y axes 
for both conditions: normal and casted. The graph shows the normalised gait 
cycle averaged over all participants. The shaded regions show the standard 
deviation of the trajectories. The first column denotes the normal condition, 
and the second column denotes the casted condition. Each row corresponds 
to one axis in the global frame. The mean absolute Root Mean Square (RMS) 
of the differences between the CMP and CoP over the complete cycle is shown 
in Table 5.1 for both conditions. No statistically significant difference was 
found between the two variables. In Table 5.2, we compare the mean RMS of 
the distance between the CMP and CoP across the gait cycle normalised by 
foot length (𝛽%) with that of Herr et al (Herr and Popovic, 2008). Further, in 
Table 5.3, the mean RMS of the differences between the posax,r and posax,l 
and respective foot positions from GRAIL is shown for normal and casted 
walking conditions. It was found that during casted walking only posY,r was not 
significantly different from the respective reference foot positions. Finally, in 
Fig. 5.3, we see a top view of a walking trajectory, and the potential estimates 
of relative distances using the assumptions of CMP.

Table 5.1 Mean RMS of the differences between CMP point and CoP over a gait cycle.

- X Axis Y Axis

Normal (cm) 2.8 ± 0.3 0.8 ± 0.2

Casted (cm) 3.6 ± 0.4 1.4 ± 0.3

Table 5.2 Mean distance between CMP and CoP across gait cycle normalised by foot 
length (𝛽%).

- (Herr and Popovic, 2008) This study

Normal (%) 14 ± 2 10.5 ± 1.2

Casted (%) - 13.5 ± 1.5

Table 5.3 Mean RMS of difference between posax and reference foot positions at 
respective instances. (*p<0.05).

posX,l posY,l posX,r posY,r

Normal (cm) 9.5 ± 0.8* 1.3 ± 0.3* 9.3 ± 0.6* 1.9 ± 0.5*

Casted (cm) 8.9 ± 1.4* 1.5 ± 0.4* 12.8 ± 1.8* 2.8 ± 0.9

5
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5.4. DISCUSSION

In practice (5.3) is not valid. Although the whole body angular momentum 
is regulated, the moments around the CoM oscillate around zero in healthy 
gait (Herr and Popovic, 2008, Fig. 3). Upper body angular rotations also cause 
moments around the CoM. This is a missing component in (5.3). However, here 
we look at how the CMP and CoP agree, during straight walking, where the 
moments around the CoM may be really small.

Fig. 5.2 shows that there is close overlap between the trajectories of CMP and 
CoP for the normalised gait cycle. The gait cycle begins with right heel strike, 
and we can see the transition of the CoP from left to the right foot. The CoP 
falls completely under the right foot around 15% of the gait cycle. Following 
the left swing phase, we notice the left heel strike around 50% of the gait cycle, 
as the CoP starts to move towards the left foot. The trajectory continues to the 
next right heel strike which is the end of the gait cycle. Further, we observe 
that the standard deviation of the trajectories (both CMP and CoP) is smaller 
during the transition from one foot to the other. In both normal and casted 
conditions, the trajectory of CMP is closer to the CoP in the Y axis during 
these transition (double stance) phases, when compared to the swing phases. 
This could suggest that the moments around the CoM are smaller during 
double stance phase, thereby showing lower differences in the CMP and CoP 
trajectories during these instances.

Table 5.1 shows these differences as mean RMS of the differences between 
CMP and CoP over the whole gait cycle. It is seen that the casting increases 
the error margins of the differences. The influence of casting on asymmetry 
of gait was verified by studying the step length. It was found that there were 
significant differences in the step lengths on the restricted foot before and 
after casting. Casting therefore, could induce asymmetry, causing increased 
rotation of the upper body to compensate for the change in walking pattern, 
and therefore, we see the differences in Table 5.1. Table 5.2 shows the mean 
distance between CMP and CoP across the gait cycle, normalised by foot 
length of the participants. The lower errors in this study could be due to the 
use of the method of Schepers et al. (Schepers et al., 2009), for estimating 
CoM, as both the low and high frequency information are present. However, 
this inference should be tested.

5
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Table 5.3 shows the differences between foot positions estimated from CoM 
using CMP assumptions and true foot positions from GRAIL system. The 
larger errors can be explained by the fact that we are actually comparing CMP 
estimates from CoM with foot positions. We assume CMP to lie close to CoP 
for each foot, and in turn, assume differences between CoP and foot positions 
to be trivial. Therefore, the Table 5.3 shows the error margins associated with 
these assumptions. The table shows that the error margins are around 9.5 cm 
in X axis, and about 1.6 cm in the Y axis, for the normal walking condition. 
They show larger deviations in case of casting. These margins give us an 
idea of the feasibility of using CMP based assumptions for estimating foot 
positions from CoM.

In Fig. 5.3, we see the different trajectories of interest, during an over-
ground walking situation. Here, we see that the feet drift away from each 
other as there is no relative distance information. Therefore, we could use 
the estimates of right and left feet from CoM and CMP to reduce this drift. 
Fig. 5.3 shows these estimates, poscm

ax,r and poscm
ax,l (denoted as solid green and 

yellow lines) oscillating on either side of the CoM. These lines are present only 
at the respective gait phases, either during left swing, or during right swing. 
This information could be used as a measurement update in a sensor fusion 
filter, at the right instances. As these filters, such as Kalman Filter, work with 
uncertainty margins, the error margins (Table 5.3) could be accommodated for.

Thus, this shows that a minimal sensing system could consist of three 
IMUs; one on each foot, and one at the pelvis. The foot IMUs could track 
the movement of the feet in 3D. Measurement updates such as zero velocity 
update will minimise the drift in the X and Z directions (Weenk et al., 2015). 
The CoM can be tracked using a pelvis IMU (Floor-Westerdijk et al., 2012). 
The CMP assumptions shown in this study could be used during left swing to 
estimate relative position of CoM relative to right foot. Additionally, during 
right swing phase, we can estimate CoM relative to left foot. If we fuse all 
this information, we can estimate the relative positions between the two feet 
during subsequent stance phases. This removes the need for full body sensing 
(Roetenberg et al., 2009), or an inter-foot distance sensor (Bertuletti et al., 
2016; Weenk et al., 2015). However, these assumptions need to be validated 
using a separate study.
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Equation (5.5) also requires knowledge of the height of the CoM and forces in 3D. 
CoM height can be measured by the pelvis IMU, with appropriate measurement 
updates (Floor-Westerdijk et al., 2012). Estimating forces in 3D could be solved 
by either using pressure insoles, or a sensor fusion approach that measures 
the rotations of the pelvis in 3D. If we assume that the body is only in contact 
with the ground, then the accelerations of the pelvis could be similar to the 
accelerations at the CoM. This is simply the specific ground reaction forces in 3D.

The current method assumes that the CoM position is used as a reference, 
and the estimates of the two feet could be corrected based on (5.6) and (5.7). 
An alternative method is to assume the right foot to be a reference point and 
then estimate the CoM, and subsequently, left foot position.

Limitations and Conclusions
The measurements were done on a treadmill which result in repetitive gait 
patterns. These are suitable for analysis, although, these patterns are not 
present in daily life. It is interesting to study the validity of CMP assumptions 
during over ground walking, and while performing tasks of daily life, and also 
asymmetric gait patterns. These evaluations would provide some indication 
about its use in minimal sensing of gait in a remote setting, or people with 
impaired gait. Asymmetrical walking may require the use of a sternum IMU 
to measure rotations of the upper body, to account for possible additional 
moments during walking.

The errors in Table 5.3 are majorly present as we compare CMP with reference 
foot positions. Therefore, a possible solution could be to measure CoP during 
walking, as they show lower errors with CMP, as can be seen in Table 5.1. In 
an ambulatory sensing setup, these errors could be solved by using a pressure 
insole to measure CoP providing more accurate relative distances between 
CoM and either foot.

This study shows possible applications of using CMP assumptions to reduce 
the lateral drift during minimal sensing of gait using IMUs. The next step is 
indeed to build a sensor fusion algorithm (with a setup similar to that shown 
in Section 5.2.5) that can implement these updates iteratively. It is advised 
that the assumptions are studied for different walking patterns.

5
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ABSTRACT 

Ground Reaction Forces (GRF) during gait are measured using expensive 
laboratory setups such as in-floor or treadmill force plates. Ambulatory 
measurement of GRF using wearables enables remote monitoring of gait 
and balance. Here, we propose using an Inertial Measurement Unit (IMU) 
mounted on the pelvis to estimate the GRF during gait in daily life. Calibration 
procedures and an Error State Extended Kalman filter (EEKF) were used to 
transform the accelerations at the Centre of Mass (CoM) to the 3D GRF. The 
instantaneous 3D GRF was estimated for different over ground walking 
patterns and compared with the 3D GRF measured using the reference 
ForceShoes™ system. Furthermore, we introduce a changing reference 
frame called the current step frame that followed the direction of each step 
made. The frame was defined using movement of the feet, and the estimated 
GRF were expressed in this new frame. This allowed direct comparison and 
validation with the reference. The mean and standard deviation of error 
between the estimated instantaneous 3D GRF and the reference, normalized 
against the range of the reference, was 12.1 ± 3.3 % across all walking tasks, 
in the horizontal plane. The error margins show that a single pelvis IMU 
could be a minimal and ambulatory sensing alternative for estimating the 
instantaneous 3D components of GRF during over ground gait. 
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6.1. INTRODUCTION

Whole body Ground Reaction Forces (GRF) are used to evaluate gait kinetics 
and balance measures (Schepers et al., 2009; van Meulen et al., 2016c). 
Traditionally, GRF are measured using force plates installed under either the 
floor, or special treadmills. These, indeed, cannot be used in an ambulatory 
manner. 

If a simple inverted pendulum model of gait is assumed (Hof et al., 2005), 
the GRF is equal and opposite the sum of accelerations at the Centre of Mass 
(CoM); and accelerations can be directly measured by Inertial Measurement 
Units (IMUs). Ancillao and colleagues (Ancillao et al., 2018) reviewed 
several approaches where IMUs were used to estimate the GRF using either 
biomechanical models or machine learning methods. For instance, Karatsidis 
and colleagues (Karatsidis et al., 2016) used several IMUs placed in a full 
body suit and applied inverse dynamics to obtain GRF. Others attempted to 
estimate GRF using a single sensor (Kiernan et al., 2018; Neugebauer et al., 
2012). However, these studies only assessed the vertical GRF (vGRF). Other 
studies estimated the 3D GRF using machine learning methods (Leporace 
et al., 2015; Wouda et al., 2018). These showed good estimates using models 
for straight line walking but can be limited for variable gait. Gurchiek and 
colleagues (Gurchiek et al., 2017) estimated the 3D GRF with only one pelvis 
IMU, but only during specific steps where the GRF vector changes its direction. 
A later study (Shahabpoor and Pavic, 2018) used dynamic time warping to 
estimate an average progression of only the vGRF. To summarize, most studies 
reviewed measured only the vGRF using a single pelvis IMU, or the 3D GRF 
using machine learning methods or additional ancillary IMUs (Ancillao et 
al., 2018). Estimating the lateral components of GRF is a critical aspect when 
using a one IMU approach (Ancillao et al., 2018). It is therefore, of interest to 
estimate the instantaneous 3D GRF using a single IMU during variable gait.  

A commonly used biomechanical assumption is that the CoM is encompassed 
by the rigid pelvis (Floor-Westerdijk et al., 2012; Schepers et al., 2009), and 
thereby, an IMU at the pelvis could measure the CoM accelerations. Using 
Newton’s law, the product of body mass and CoM accelerations provides the 
whole body GRF. This is a simplification of the inverted pendulum model of gait 

6



150

Chapter 6

and errors are expected (Ancillao et al., 2018; Shahabpoor and Pavic, 2018). 
However, this allows us to minimize the measurement setup for ambulatory 
estimation of GRF. The challenge here is to estimate the CoM accelerations 
measured at the pelvis IMU in the three axes that correspond to the anterio-
posterior, medio-lateral, and vertical axes of the GRF.

Gait kinematics and kinetics are usually expressed in a fixed global frame, 
defined using the non-portable measurement setup or certain pre-defined 
initializations. However, this can be restrictive in understanding GRF in an 
ambulatory manner. Expressing these forces along the changing walking 
direction can provide a more functional representation, which is body-centric, 
especially during shuffling or turns. It is therefore, also of interest to define 
a changing reference frame, expressed along the direction of each step being 
made. This changing reference frame is referred to hereon as the current step 
frame. 

Thus, the main goal in this study is to evaluate the feasibility of estimating 3D 
GRF from a pelvis IMU, for different walking patterns seen in daily life for the 
complete gait. A calibration procedure, and an Error State Extended Kalman 
Filter (EEKF) were used to estimate body orientation, in order to determine 
the 3D components of the pelvis acceleration in a certain reference frame. 
Two additional IMUs were placed, one on each foot, and were used to define 
the current step frame. This frame was based on the direction of each step 
being made, and the GRF was then expressed in this frame. The estimates of 
the GRF were derived from the pelvis IMU, and the foot IMUs were only used 
to define the changing current step frame. Introducing this new frame is the 
second goal of this paper. The instantaneous 3D GRF was then compared with 
the reference system, the ForceShoes™, and also with results from literature. 

6.2. METHODS

In this section, the methodology used to estimate 3D GRF from a pelvis IMU 
in the current step frame is explained. First, in Section 6.2.1, the definition of 
reference frames used in this study are described. Section 6.2.2 summarizes 
the assumptions considered for the models that will be described. Section 6.2.3 
describes the IMU models used for the following sections. In Section 6.2.4, the 
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algorithms used for foot contact detection is explained. Using the IMU models 
described, and foot contact instances, Section 6.2.5 describes the estimation 
of the different reference frames as mentioned in Section 6.2.1, and also the 
3D GRF. Section 6.2.6 describes the measurement system used, and Sections 
6.2.7 and 6.2.8 describe the participants, and the experimental protocol used 
to validate this study respectively. Finally, Section 6.2.9 describes the analysis 
of the results.

Figure 6.1 Graphical interpretation of the reference frames used. The left foot is in light blue, 
and the CoM trajectory is the thin grey line. Instead of a fixed global frame ψg, a current step 
frame of reference ψcs(k) is used for step k which changes for each step. The frame is defined 
using the movement of the feet. Segment frames used are ψfl and ψfr for foot frames, and ψp 
for the pelvis frame. 

6.2.1. Reference Frames used
The use of a fixed global frame of reference for gait analysis could be attributed 
to the fixed nature of force plates or optical motion capture systems. As shown 
in Fig. 6.1, the global frame ψg has a predefined and fixed frame throughout 
the measurement. However, wearable setups allow us to define frames that 
are associated with the direction of gait. For instance, pressure profiles, and 
centre of pressure patterns are expressed in foot frames. Similarly, here we 
can define reference frames that are attached to the moving body.

There are two possible options to define a body-centric reference frame. 
One option is to have a reference frame defined by the heading of the body. 
This would be based on the measurements of the pelvis IMU and tracking 
CoM positions. Alternatively, we could define reference frames based on the 
direction of each step. Estimating changes in foot positions is feasible using 
strapdown inertial navigation, and zero velocity updates (Sabatini et al., 2005). 

6
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Figure 6.2 Rotations from sensor (ψs) to current step (ψcs) frame. Sensor data is first calibrated 
to segment frame (pelvis (p), left foot (fl), or right foot (fr)). Then, during a step k, they are first 
transformed to a previous step frame ψcs(k-1), for each sample i. At the end of this step, the change 
in foot positions is used to build the current step frame ψcs(k). 

Further, the reference system used in this study, the ForceShoes™, can track 
changes in foot positions (Weenk et al., 2015). Therefore, the second method 
is preferred. This is made feasible by one additional IMU placed on each foot.

The current step frame is denoted as ψcs(k) and defined graphically in Fig. 6.1. 
It depends on the direction of the step k, and thus, changes for each step. 
Although this is similar to the local foot frame defined by other studies (Fino 
et al., 2020; Rebula et al., 2013), ψcs(k) is defined for each step. We define the 
X axis of this frame as positive in the forward direction, defined by the line 
between the beginning and end of a step. The Z axis is positive upwards along 
the vertical. This is the ψcs(k) for the current step k, and is redefined for the 
next step.

The sensors of the IMUs measure in their respective sensor frames denoted 
by ψs. This has to be transformed to the ψcs per step. The transformation 
between frames is shown in Fig. 6.2. First, each sensor was transformed to 
their respective segment (seg) frames ψseg using a simple calibration method. 
The segments of interest in this study are the pelvis (p), left foot (fl), and the 
right foot (fr). Then, during step k, the orientation of these segments was 
expressed in the current step frame of the previous step ψcs(k-1), as this frame 
was already defined. EEKFs were used to estimate the change in orientation of 
the segments during this phase. At the end of step k, the change in position of 
the moving foot was used to estimate the orientation from ψcs(k-1)  to ψcs(k) as 
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Rcs(k),cs(k-1) allowing transforming to ψcs(k). This was redefined for each step, 
resulting in a ψcs(step) per step. In short, four frames of reference were used in 
this study: sensor frame (ψs), segment frames (pelvis ψp, right foot ψfr and 
left foot ψfl), current step frame of the previous step (ψcs(k-1)), and that of the 
current step k (ψcs(k)). The notations used in this study are listed in Table 6.1. 

6.2.2. Assumptions considered
As mentioned earlier, an inverted pendulum model of gait was considered in 
this study. The GRF accelerates the CoM and opposes gravity. Also, we assume 
that all mass is concentrated at the CoM, which is located within the pelvis. 
Additionally, the feet are the only contact with the external world, and no 
additional load is carried by the body. Therefore, the accelerations measured 
by the IMU at the pelvis are similar to the CoM accelerations, and eventually 
reflects the GRF.

6.2.3. Inertial Measurement Unit Model
The 3D accelerometer and 3D rate gyroscope present in the IMU provides the 
acceleration and angular velocities in the sensor frame ψs respectively, and 
can be modelled as

Equations for replacement 

Eq 7.3 

𝑋𝑋 = 𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚
‖𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚‖ 

Eq 6.1 and 9.1 

   𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝐠𝐠𝑠𝑠 + 𝒆𝒆𝐴𝐴 

Eq 9.4 

 

�̂�𝒂𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘) =  𝑹𝑹𝑘𝑘

𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  �̂�𝒂𝑖𝑖

𝑠𝑠𝑣𝑣𝑠𝑠) (9.4) 

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅   (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠  +  𝐠𝐠𝑠𝑠𝑣𝑣𝑠𝑠 ) )    

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠 +  𝐠𝐠𝑐𝑐𝑠𝑠(𝑘𝑘−1))    

 

9.11a 

𝒛𝒛𝑧𝑧ℎ  =   𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓    

9.11b 

�̂�𝒛𝑧𝑧ℎ  = 𝑯𝑯𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ 

 (6.1)

and, 
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𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝒈𝒈𝑠𝑠 + 𝒆𝒆𝐴𝐴    (6.1[MRM(2]) 

and, 𝒚𝒚𝐺𝐺
𝑠𝑠 = 𝝎𝝎𝑠𝑠 + 𝒃𝒃𝑠𝑠 + 𝒆𝒆𝐺𝐺 (6.2) 

where 𝒚𝒚𝐴𝐴
𝑠𝑠 , and 𝒚𝒚𝐺𝐺

𝑠𝑠  denote the accelerometer and gyroscope signals respectively from the IMU. 

They are measured in the 𝜓𝜓𝑠𝑠 reference frame denoted by the superscript s. 𝒂𝒂 is the linear acceleration 

of the sensor, 𝒈𝒈 is gravity, and 𝒆𝒆𝐴𝐴 is Gaussian white noise. Also, 𝝎𝝎 is the angular velocity, 𝒃𝒃 is a slowly 

varying offset, and 𝒆𝒆𝐺𝐺  is the Gaussian noise. Both (6.1) and (6.2) are discrete time equations and are 

expressed for a given time instance 𝑖𝑖. 

4. Foot Contact and Step Detection
Step detection is important in estimating the current step frame. Here, the method of Skog and 

colleagues (Skog et al., 2010) was used to estimate the foot contact instances for the two feet. As the 

IMUs are synchronized in time, the double stance instances can be estimated. A step is defined as the 

instance between the heel strike of one foot to that of the other. However, as we are using IMUs to 

track the foot as one rigid body, we do not model the rolling of the foot during the stance phase. 

Therefore, it becomes less important to identify the different gait events during stance. Hence, we 

define a step as the instance between the midpoint of a double stance event to the midpoint of the 

next double stance. 

5. Orientation in the different reference frames
The transformation between different frames is explained in the following sections. Static calibrations 

used to transform the sensor data to the respective segment frame is first described. Following this, 

the structure of the fusion filter, used to estimate changes in orientation of the segment during a step, 

expressed in the previous step frame is described. Finally, the estimation and transformation to the 

current step frame is explained.  

Sensor to Segment Calibration 
The orientation of the sensor 𝜓𝜓𝑠𝑠 in segment frame 𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠 written as 𝑹𝑹𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 was estimated using the
mounting frame calibration techniques described by Bonnet and colleagues (Bonnet et al., 2009): 

𝑎𝑎𝑥𝑥𝑍𝑍 = 𝒚𝒚𝐴𝐴
𝑠𝑠

‖𝒚𝒚𝐴𝐴
𝑠𝑠 ‖ (6.3a) 

𝐺𝐺 (6.3b) 

(6.3c) 

𝑎𝑎𝑥𝑥𝑌𝑌,𝑝𝑝 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝒚𝒚𝑠𝑠 ) 

𝑎𝑎𝑥𝑥𝑋𝑋 = 𝑎𝑎𝑥𝑥𝑌𝑌 × 𝑎𝑎𝑥𝑥Z 

𝑎𝑎𝑥𝑥𝑌𝑌 = 𝑎𝑎𝑥𝑥𝑍𝑍 × 𝑎𝑎𝑥𝑥𝑋𝑋 (6.3d) 

𝑹𝑹𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 = [𝑎𝑎𝑥𝑥𝑋𝑋 𝑎𝑎𝑥𝑥𝑌𝑌 𝑎𝑎𝑥𝑥𝑍𝑍]. (6.3e) 

        (6.2)

where y s
A, and y s

G denote the accelerometer and gyroscope signals respectively 
from the IMU. They are measured in the ψs reference frame denoted by the 
superscript s. a is the linear acceleration of the sensor, g is gravity, and eA 
is Gaussian white noise. Also, ω is the angular velocity, b is a slowly varying 
offset, and eG is the Gaussian white noise. Both (6.1) and (6.2) are discrete time 
equations and are expressed for a given time instance i.

6.2.4. Foot Contact and Step Detection
Step detection is important in estimating the current step frame. Here, the 
method of Skog and colleagues (Skog et al., 2010) was used to estimate the foot 
contact instances for the two feet. As the IMUs are synchronized in time, the 
double stance instances can be estimated. A step is defined as the instance 
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between the heel strike of one foot to that of the other. However, as we are 
using IMUs to track the foot as one rigid body, we do not model the rolling 
of the foot during the stance phase. Therefore, it becomes less important to 
identify the different gait events during stance. Hence, we define a step as 
the instance between the midpoint of a double stance event to the midpoint 
of the next double stance.

6.2.5. Orientation in the different reference frames
The transformation between different frames is explained in the following 
sections. Static calibrations used to transform the sensor data to the respective 
segment frame is first described. Following this, the structure of the fusion 
filter, used to estimate changes in orientation of the segment during a step, 
expressed in the previous step frame is described. Finally, the estimation and 
transformation to the current step frame is explained. 

Sensor to Segment Calibration
The orientation of the sensor ψs in segment frame ψseg written as Rseg,s was 
estimated using the mounting frame calibration techniques described by 
Bonnet and colleagues (Bonnet et al., 2009):

3D GRF in a foot IMU defined frame 

𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝒈𝒈𝑠𝑠 + 𝒆𝒆𝐴𝐴    (6.1[MRM(2]) 

and, 𝒚𝒚𝐺𝐺
𝑠𝑠 = 𝝎𝝎𝑠𝑠 + 𝒃𝒃𝑠𝑠 + 𝒆𝒆𝐺𝐺 (6.2) 

where 𝒚𝒚𝐴𝐴
𝑠𝑠 , and 𝒚𝒚𝐺𝐺

𝑠𝑠  denote the accelerometer and gyroscope signals respectively from the IMU. 

They are measured in the 𝜓𝜓𝑠𝑠 reference frame denoted by the superscript s. 𝒂𝒂 is the linear acceleration 

of the sensor, 𝒈𝒈 is gravity, and 𝒆𝒆𝐴𝐴 is Gaussian white noise. Also, 𝝎𝝎 is the angular velocity, 𝒃𝒃 is a slowly 

varying offset, and 𝒆𝒆𝐺𝐺  is the Gaussian noise. Both (6.1) and (6.2) are discrete time equations and are 

expressed for a given time instance 𝑖𝑖. 

4. Foot Contact and Step Detection
Step detection is important in estimating the current step frame. Here, the method of Skog and 

colleagues (Skog et al., 2010) was used to estimate the foot contact instances for the two feet. As the 

IMUs are synchronized in time, the double stance instances can be estimated. A step is defined as the 

instance between the heel strike of one foot to that of the other. However, as we are using IMUs to 

track the foot as one rigid body, we do not model the rolling of the foot during the stance phase. 

Therefore, it becomes less important to identify the different gait events during stance. Hence, we 

define a step as the instance between the midpoint of a double stance event to the midpoint of the 

next double stance. 

5. Orientation in the different reference frames
The transformation between different frames is explained in the following sections. Static calibrations 

used to transform the sensor data to the respective segment frame is first described. Following this, 

the structure of the fusion filter, used to estimate changes in orientation of the segment during a step, 

expressed in the previous step frame is described. Finally, the estimation and transformation to the 

current step frame is explained.  

Sensor to Segment Calibration 
The orientation of the sensor 𝜓𝜓𝑠𝑠 in segment frame 𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠 written as 𝑹𝑹𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 was estimated using the
mounting frame calibration techniques described by Bonnet and colleagues (Bonnet et al., 2009): 

𝑎𝑎𝑥𝑥𝑍𝑍 = 𝒚𝒚𝐴𝐴
𝑠𝑠

‖𝒚𝒚𝐴𝐴
𝑠𝑠 ‖ (6.3a) 

𝐺𝐺 (6.3b) 

(6.3c) 

𝑎𝑎𝑥𝑥𝑌𝑌,𝑝𝑝 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝒚𝒚𝑠𝑠 ) 

𝑎𝑎𝑥𝑥𝑋𝑋 = 𝑎𝑎𝑥𝑥𝑌𝑌 × 𝑎𝑎𝑥𝑥Z 

𝑎𝑎𝑥𝑥𝑌𝑌 = 𝑎𝑎𝑥𝑥𝑍𝑍 × 𝑎𝑎𝑥𝑥𝑋𝑋 (6.3d) 

𝑹𝑹𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 = [𝑎𝑎𝑥𝑥𝑋𝑋 𝑎𝑎𝑥𝑥𝑌𝑌 𝑎𝑎𝑥𝑥𝑍𝑍]. (6.3e) 

                                                 (6.3a)

3D GRF in a foot IMU defined frame 

𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝒈𝒈𝑠𝑠 + 𝒆𝒆𝐴𝐴    (6.1[MRM(2]) 

and, 𝒚𝒚𝐺𝐺
𝑠𝑠 = 𝝎𝝎𝑠𝑠 + 𝒃𝒃𝑠𝑠 + 𝒆𝒆𝐺𝐺 (6.2) 

where 𝒚𝒚𝐴𝐴
𝑠𝑠 , and 𝒚𝒚𝐺𝐺

𝑠𝑠  denote the accelerometer and gyroscope signals respectively from the IMU. 

They are measured in the 𝜓𝜓𝑠𝑠 reference frame denoted by the superscript s. 𝒂𝒂 is the linear acceleration 

of the sensor, 𝒈𝒈 is gravity, and 𝒆𝒆𝐴𝐴 is Gaussian white noise. Also, 𝝎𝝎 is the angular velocity, 𝒃𝒃 is a slowly 

varying offset, and 𝒆𝒆𝐺𝐺  is the Gaussian noise. Both (6.1) and (6.2) are discrete time equations and are 

expressed for a given time instance 𝑖𝑖. 

4. Foot Contact and Step Detection
Step detection is important in estimating the current step frame. Here, the method of Skog and 

colleagues (Skog et al., 2010) was used to estimate the foot contact instances for the two feet. As the 

IMUs are synchronized in time, the double stance instances can be estimated. A step is defined as the 

instance between the heel strike of one foot to that of the other. However, as we are using IMUs to 

track the foot as one rigid body, we do not model the rolling of the foot during the stance phase. 

Therefore, it becomes less important to identify the different gait events during stance. Hence, we 

define a step as the instance between the midpoint of a double stance event to the midpoint of the 

next double stance. 

5. Orientation in the different reference frames
The transformation between different frames is explained in the following sections. Static calibrations 

used to transform the sensor data to the respective segment frame is first described. Following this, 

the structure of the fusion filter, used to estimate changes in orientation of the segment during a step, 

expressed in the previous step frame is described. Finally, the estimation and transformation to the 

current step frame is explained.  

Sensor to Segment Calibration 
The orientation of the sensor 𝜓𝜓𝑠𝑠 in segment frame 𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠 written as 𝑹𝑹𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 was estimated using the
mounting frame calibration techniques described by Bonnet and colleagues (Bonnet et al., 2009): 

𝑎𝑎𝑥𝑥𝑍𝑍 = 𝒚𝒚𝐴𝐴
𝑠𝑠

‖𝒚𝒚𝐴𝐴
𝑠𝑠 ‖ (6.3a) 

𝐺𝐺 (6.3b) 

(6.3c) 

𝑎𝑎𝑥𝑥𝑌𝑌,𝑝𝑝 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝒚𝒚𝑠𝑠 ) 

𝑎𝑎𝑥𝑥𝑋𝑋 = 𝑎𝑎𝑥𝑥𝑌𝑌 × 𝑎𝑎𝑥𝑥Z 

𝑎𝑎𝑥𝑥𝑌𝑌 = 𝑎𝑎𝑥𝑥𝑍𝑍 × 𝑎𝑎𝑥𝑥𝑋𝑋 (6.3d) 

𝑹𝑹𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 = [𝑎𝑎𝑥𝑥𝑋𝑋 𝑎𝑎𝑥𝑥𝑌𝑌 𝑎𝑎𝑥𝑥𝑍𝑍]. (6.3e) 

                                           (6.3b)

3D GRF in a foot IMU defined frame 

𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝒈𝒈𝑠𝑠 + 𝒆𝒆𝐴𝐴    (6.1[MRM(2]) 

and, 𝒚𝒚𝐺𝐺
𝑠𝑠 = 𝝎𝝎𝑠𝑠 + 𝒃𝒃𝑠𝑠 + 𝒆𝒆𝐺𝐺 (6.2) 

where 𝒚𝒚𝐴𝐴
𝑠𝑠 , and 𝒚𝒚𝐺𝐺

𝑠𝑠  denote the accelerometer and gyroscope signals respectively from the IMU. 

They are measured in the 𝜓𝜓𝑠𝑠 reference frame denoted by the superscript s. 𝒂𝒂 is the linear acceleration 

of the sensor, 𝒈𝒈 is gravity, and 𝒆𝒆𝐴𝐴 is Gaussian white noise. Also, 𝝎𝝎 is the angular velocity, 𝒃𝒃 is a slowly 

varying offset, and 𝒆𝒆𝐺𝐺  is the Gaussian noise. Both (6.1) and (6.2) are discrete time equations and are 

expressed for a given time instance 𝑖𝑖. 

4. Foot Contact and Step Detection
Step detection is important in estimating the current step frame. Here, the method of Skog and 

colleagues (Skog et al., 2010) was used to estimate the foot contact instances for the two feet. As the 

IMUs are synchronized in time, the double stance instances can be estimated. A step is defined as the 

instance between the heel strike of one foot to that of the other. However, as we are using IMUs to 

track the foot as one rigid body, we do not model the rolling of the foot during the stance phase. 

Therefore, it becomes less important to identify the different gait events during stance. Hence, we 

define a step as the instance between the midpoint of a double stance event to the midpoint of the 

next double stance. 

5. Orientation in the different reference frames
The transformation between different frames is explained in the following sections. Static calibrations 

used to transform the sensor data to the respective segment frame is first described. Following this, 

the structure of the fusion filter, used to estimate changes in orientation of the segment during a step, 

expressed in the previous step frame is described. Finally, the estimation and transformation to the 

current step frame is explained.  

Sensor to Segment Calibration 
The orientation of the sensor 𝜓𝜓𝑠𝑠 in segment frame 𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠 written as 𝑹𝑹𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 was estimated using the
mounting frame calibration techniques described by Bonnet and colleagues (Bonnet et al., 2009): 

𝑎𝑎𝑥𝑥𝑍𝑍 = 𝒚𝒚𝐴𝐴
𝑠𝑠

‖𝒚𝒚𝐴𝐴
𝑠𝑠 ‖ (6.3a) 

𝐺𝐺 (6.3b) 

(6.3c) 

𝑎𝑎𝑥𝑥𝑌𝑌,𝑝𝑝 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝒚𝒚𝑠𝑠 ) 

𝑎𝑎𝑥𝑥𝑋𝑋 = 𝑎𝑎𝑥𝑥𝑌𝑌 × 𝑎𝑎𝑥𝑥Z 

𝑎𝑎𝑥𝑥𝑌𝑌 = 𝑎𝑎𝑥𝑥𝑍𝑍 × 𝑎𝑎𝑥𝑥𝑋𝑋 (6.3d) 

𝑹𝑹𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 = [𝑎𝑎𝑥𝑥𝑋𝑋 𝑎𝑎𝑥𝑥𝑌𝑌 𝑎𝑎𝑥𝑥𝑍𝑍]. (6.3e) 

                                            (6.3c)

3D GRF in a foot IMU defined frame 

𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝒈𝒈𝑠𝑠 + 𝒆𝒆𝐴𝐴    (6.1[MRM(2]) 

and, 𝒚𝒚𝐺𝐺
𝑠𝑠 = 𝝎𝝎𝑠𝑠 + 𝒃𝒃𝑠𝑠 + 𝒆𝒆𝐺𝐺 (6.2) 

where 𝒚𝒚𝐴𝐴
𝑠𝑠 , and 𝒚𝒚𝐺𝐺

𝑠𝑠  denote the accelerometer and gyroscope signals respectively from the IMU. 

They are measured in the 𝜓𝜓𝑠𝑠 reference frame denoted by the superscript s. 𝒂𝒂 is the linear acceleration 

of the sensor, 𝒈𝒈 is gravity, and 𝒆𝒆𝐴𝐴 is Gaussian white noise. Also, 𝝎𝝎 is the angular velocity, 𝒃𝒃 is a slowly 

varying offset, and 𝒆𝒆𝐺𝐺  is the Gaussian noise. Both (6.1) and (6.2) are discrete time equations and are 

expressed for a given time instance 𝑖𝑖. 

4. Foot Contact and Step Detection
Step detection is important in estimating the current step frame. Here, the method of Skog and 

colleagues (Skog et al., 2010) was used to estimate the foot contact instances for the two feet. As the 

IMUs are synchronized in time, the double stance instances can be estimated. A step is defined as the 

instance between the heel strike of one foot to that of the other. However, as we are using IMUs to 

track the foot as one rigid body, we do not model the rolling of the foot during the stance phase. 

Therefore, it becomes less important to identify the different gait events during stance. Hence, we 

define a step as the instance between the midpoint of a double stance event to the midpoint of the 

next double stance. 

5. Orientation in the different reference frames
The transformation between different frames is explained in the following sections. Static calibrations 

used to transform the sensor data to the respective segment frame is first described. Following this, 

the structure of the fusion filter, used to estimate changes in orientation of the segment during a step, 

expressed in the previous step frame is described. Finally, the estimation and transformation to the 

current step frame is explained.  

Sensor to Segment Calibration 
The orientation of the sensor 𝜓𝜓𝑠𝑠 in segment frame 𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠 written as 𝑹𝑹𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 was estimated using the
mounting frame calibration techniques described by Bonnet and colleagues (Bonnet et al., 2009): 

𝑎𝑎𝑥𝑥𝑍𝑍 = 𝒚𝒚𝐴𝐴
𝑠𝑠

‖𝒚𝒚𝐴𝐴
𝑠𝑠 ‖ (6.3a) 

𝐺𝐺 (6.3b) 

(6.3c) 

𝑎𝑎𝑥𝑥𝑌𝑌,𝑝𝑝 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝒚𝒚𝑠𝑠 ) 

𝑎𝑎𝑥𝑥𝑋𝑋 = 𝑎𝑎𝑥𝑥𝑌𝑌 × 𝑎𝑎𝑥𝑥Z 

𝑎𝑎𝑥𝑥𝑌𝑌 = 𝑎𝑎𝑥𝑥𝑍𝑍 × 𝑎𝑎𝑥𝑥𝑋𝑋 (6.3d) 

𝑹𝑹𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 = [𝑎𝑎𝑥𝑥𝑋𝑋 𝑎𝑎𝑥𝑥𝑌𝑌 𝑎𝑎𝑥𝑥𝑍𝑍]. (6.3e) 

                                           (6.3d)

3D GRF in a foot IMU defined frame 

𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝒈𝒈𝑠𝑠 + 𝒆𝒆𝐴𝐴    (6.1[MRM(2]) 

and, 𝒚𝒚𝐺𝐺
𝑠𝑠 = 𝝎𝝎𝑠𝑠 + 𝒃𝒃𝑠𝑠 + 𝒆𝒆𝐺𝐺 (6.2) 

where 𝒚𝒚𝐴𝐴
𝑠𝑠 , and 𝒚𝒚𝐺𝐺

𝑠𝑠  denote the accelerometer and gyroscope signals respectively from the IMU. 

They are measured in the 𝜓𝜓𝑠𝑠 reference frame denoted by the superscript s. 𝒂𝒂 is the linear acceleration 

of the sensor, 𝒈𝒈 is gravity, and 𝒆𝒆𝐴𝐴 is Gaussian white noise. Also, 𝝎𝝎 is the angular velocity, 𝒃𝒃 is a slowly 

varying offset, and 𝒆𝒆𝐺𝐺  is the Gaussian noise. Both (6.1) and (6.2) are discrete time equations and are 

expressed for a given time instance 𝑖𝑖. 

4. Foot Contact and Step Detection
Step detection is important in estimating the current step frame. Here, the method of Skog and 

colleagues (Skog et al., 2010) was used to estimate the foot contact instances for the two feet. As the 

IMUs are synchronized in time, the double stance instances can be estimated. A step is defined as the 

instance between the heel strike of one foot to that of the other. However, as we are using IMUs to 

track the foot as one rigid body, we do not model the rolling of the foot during the stance phase. 

Therefore, it becomes less important to identify the different gait events during stance. Hence, we 

define a step as the instance between the midpoint of a double stance event to the midpoint of the 

next double stance. 

5. Orientation in the different reference frames
The transformation between different frames is explained in the following sections. Static calibrations 

used to transform the sensor data to the respective segment frame is first described. Following this, 

the structure of the fusion filter, used to estimate changes in orientation of the segment during a step, 

expressed in the previous step frame is described. Finally, the estimation and transformation to the 

current step frame is explained.  

Sensor to Segment Calibration 
The orientation of the sensor 𝜓𝜓𝑠𝑠 in segment frame 𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠 written as 𝑹𝑹𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 was estimated using the
mounting frame calibration techniques described by Bonnet and colleagues (Bonnet et al., 2009): 

𝑎𝑎𝑥𝑥𝑍𝑍 = 𝒚𝒚𝐴𝐴
𝑠𝑠

‖𝒚𝒚𝐴𝐴
𝑠𝑠 ‖ (6.3a) 

𝐺𝐺 (6.3b) 

(6.3c) 

𝑎𝑎𝑥𝑥𝑌𝑌,𝑝𝑝 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝒚𝒚𝑠𝑠 ) 

𝑎𝑎𝑥𝑥𝑋𝑋 = 𝑎𝑎𝑥𝑥𝑌𝑌 × 𝑎𝑎𝑥𝑥Z 

𝑎𝑎𝑥𝑥𝑌𝑌 = 𝑎𝑎𝑥𝑥𝑍𝑍 × 𝑎𝑎𝑥𝑥𝑋𝑋 (6.3d) 

𝑹𝑹𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 = [𝑎𝑎𝑥𝑥𝑋𝑋 𝑎𝑎𝑥𝑥𝑌𝑌 𝑎𝑎𝑥𝑥𝑍𝑍]. (6.3e)                                (6.3e)

For all three segments, the inclination estimate was estimated by measuring 
the magnitude of the accelerometer signal using (6.3a) during an initial 
standing still phase, during which the 3D accelerometer is expected to measure 
only gravity. The Y axis of the pelvis was estimated by asking the participant 
to bend forward. Principal component analysis was applied to the gyroscope 
output to find the axis measuring largest angular rotation. The X axis of the 
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pelvis was estimated using right hand thumb rule, as seen in (6.3c). The Y axis 
was then updated using (6.3d). The orientation is given in (6.3e).

Alternatively, the heading (X axis) for the feet was estimated by running the 
filter once with arbitrary values for three steps. Then, the change in position 
between the start and the third step was used to estimate the X axis. The third 
step was arbitrarily chosen. Drift during these steps were removed using Zero 
Velocity (ZV) and Zero Height (ZH) updates (Weenk et al., 2015). The Y axis 
was estimated using (6.3d), and the X axis was updated using (6.3c). Again, 
the rotation matrix was given as the 3x3 matrix in (6.3e). 

Table 6.1 Notations used, shown for an arbitrary vector a.

Notation Definition

ak a at k-th instant     

as a expressed in frame ψs

a· derivative of a

â a-posteriori estimate of a

a– a-priori estimate of a 

ea Gaussian white noise associated with a

Error State Extended Kalman Filter
Now, the change in orientation of the segments during each step has to be 
estimated. The current step frame ψcs(k) can only be defined at the end of the 
step k as it requires the change in foot positions during that step. However, 
the previous current step frame ψcs(k-1) has already been defined. Therefore, 
the change in orientation of the segment during step k was first expressed in 
ψcs(k-1) using an EEKF. The EEKF tracked the Ri

cs(k-1),seg, i.e., the orientation of 
the segment ψseg with respect to ψcs(k-1) for given instance i. Here, i denotes 
the samples of the current step k.

6
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Figure 6.3 Block representation of the Error State Extended Kalman filter for the pelvis IMU. The 
state vector consists of orientation error θϵ and gyroscope bias error bϵ . The updated states are 
used to estimate the Ri

cs(k-1),p  for each step. Using information from the foot IMUs, Rstep
cs(k),cs(k-1) 

was estimated, and then the GRF was transformed to frame ψcs(k) for the step k. 

The EEKF filter used for the pelvis orientation is shown in Fig. 6.3 and 
was based on Kortier and colleagues (Kortier et al., 2014), and Luinge and 
colleagues (Luinge and Veltink, 2005). The states included in the state vector 
(x) of the EEKF were orientation error θϵ and gyroscope bias error bϵ. The 
state vector was thus x = (θϵ  bϵ)T, and its covariance matrix was denoted as 
P. The advantage of using an EEKF for estimating orientation errors is that 
the inertial processes can be considered linear, if the errors are assumed to 
be small. Similar EEKFs were built for the other segments. 

Prediction
Prediction models were defined for each state. First, the gyroscope bias (b) 
was modelled as a first-order Markov process as 
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Prediction 
Prediction models were defined for each state. First, the gyroscope bias (𝒃𝒃) was modelled as a first-
order Markov process as  

𝒃𝒃𝑖𝑖 = 𝒃𝒃𝑖𝑖−1 + 𝒆𝒆𝑏𝑏,𝑖𝑖   (6.4) 

where 𝒆𝒆𝑏𝑏,𝑖𝑖 is white Gaussian noise associated with the process. Then, the gyroscope bias was predicted 

as   

�̂�𝒃𝑖𝑖
− = �̂�𝒃𝑖𝑖−1.   (6.5) 

The gyroscope bias error 𝒃𝒃𝜖𝜖 can be modelled as  

𝒃𝒃𝜖𝜖,𝑖𝑖 = �̂�𝒃𝑖𝑖 − 𝒃𝒃𝑖𝑖.  (6.6) 

Using equations (6.4), (6.5), and (6.6), we get 

𝒃𝒃𝜖𝜖,𝑖𝑖 = 𝒃𝒃𝜖𝜖,𝑖𝑖−1 − 𝒆𝒆𝑏𝑏,𝑖𝑖.    (6.7) 

Next, orientation can be estimated from orientation error (𝜽𝜽𝜖𝜖): 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠  ≈ 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 (𝐈𝐈 + �̃�𝜽𝜖𝜖,𝑖𝑖).  (6.8)  

 

For any vector 𝑽𝑽, [�̃�𝑽] =  (
0 −𝑣𝑣𝑧𝑧 𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧 0 −𝑣𝑣𝑥𝑥

−𝑣𝑣𝑦𝑦 𝑣𝑣𝑥𝑥 0
). Note that (6.8) is valid when orientation errors are 

assumed to be small. Furthermore, we can derive orientation from angular velocity using (Schepers et 

al., 2010a): 

�̇�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 = 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 ⋅ (�̃�𝝎).   (6.9) 

Based on (Schepers et al., 2010a), we have the derivative of orientation error and its discretised form 

(Gustafsson, 2018) as   

�̇�𝜽𝜖𝜖 =  �̃�𝝎 ⋅ 𝜽𝜽𝜖𝜖 − 𝒃𝒃𝜖𝜖          (6.10) 

and 𝜽𝜽𝜖𝜖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.    (6.11) 

The Kalman filter prediction equation is given as (Welch and Bishop, 2006):   

�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1              (6.12) 

                                                    (6.4)
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where eb,i is white Gaussian noise associated with the process. Then, the 
gyroscope bias was predicted as  
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Prediction 
Prediction models were defined for each state. First, the gyroscope bias (𝒃𝒃) was modelled as a first-
order Markov process as  

𝒃𝒃𝑖𝑖 = 𝒃𝒃𝑖𝑖−1 + 𝒆𝒆𝑏𝑏,𝑖𝑖   (6.4) 

where 𝒆𝒆𝑏𝑏,𝑖𝑖 is white Gaussian noise associated with the process. Then, the gyroscope bias was predicted 

as   

�̂�𝒃𝑖𝑖
− = �̂�𝒃𝑖𝑖−1.   (6.5) 

The gyroscope bias error 𝒃𝒃𝜖𝜖 can be modelled as  

𝒃𝒃𝜖𝜖,𝑖𝑖 = �̂�𝒃𝑖𝑖 − 𝒃𝒃𝑖𝑖.  (6.6) 

Using equations (6.4), (6.5), and (6.6), we get 

𝒃𝒃𝜖𝜖,𝑖𝑖 = 𝒃𝒃𝜖𝜖,𝑖𝑖−1 − 𝒆𝒆𝑏𝑏,𝑖𝑖.    (6.7) 

Next, orientation can be estimated from orientation error (𝜽𝜽𝜖𝜖): 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠  ≈ 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 (𝐈𝐈 + �̃�𝜽𝜖𝜖,𝑖𝑖).  (6.8)  

 

For any vector 𝑽𝑽, [�̃�𝑽] =  (
0 −𝑣𝑣𝑧𝑧 𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧 0 −𝑣𝑣𝑥𝑥

−𝑣𝑣𝑦𝑦 𝑣𝑣𝑥𝑥 0
). Note that (6.8) is valid when orientation errors are 

assumed to be small. Furthermore, we can derive orientation from angular velocity using (Schepers et 

al., 2010a): 

�̇�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 = 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 ⋅ (�̃�𝝎).   (6.9) 

Based on (Schepers et al., 2010a), we have the derivative of orientation error and its discretised form 

(Gustafsson, 2018) as   

�̇�𝜽𝜖𝜖 =  �̃�𝝎 ⋅ 𝜽𝜽𝜖𝜖 − 𝒃𝒃𝜖𝜖          (6.10) 

and 𝜽𝜽𝜖𝜖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.    (6.11) 

The Kalman filter prediction equation is given as (Welch and Bishop, 2006):   

�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1              (6.12) 

                                                     (6.5)

The gyroscope bias error bϵ  can be modelled as 
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Prediction 
Prediction models were defined for each state. First, the gyroscope bias (𝒃𝒃) was modelled as a first-
order Markov process as  

𝒃𝒃𝑖𝑖 = 𝒃𝒃𝑖𝑖−1 + 𝒆𝒆𝑏𝑏,𝑖𝑖   (6.4) 

where 𝒆𝒆𝑏𝑏,𝑖𝑖 is white Gaussian noise associated with the process. Then, the gyroscope bias was predicted 

as   

�̂�𝒃𝑖𝑖
− = �̂�𝒃𝑖𝑖−1.   (6.5) 

The gyroscope bias error 𝒃𝒃𝜖𝜖 can be modelled as  

𝒃𝒃𝜖𝜖,𝑖𝑖 = �̂�𝒃𝑖𝑖 − 𝒃𝒃𝑖𝑖.  (6.6) 

Using equations (6.4), (6.5), and (6.6), we get 

𝒃𝒃𝜖𝜖,𝑖𝑖 = 𝒃𝒃𝜖𝜖,𝑖𝑖−1 − 𝒆𝒆𝑏𝑏,𝑖𝑖.    (6.7) 

Next, orientation can be estimated from orientation error (𝜽𝜽𝜖𝜖): 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠  ≈ 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 (𝐈𝐈 + �̃�𝜽𝜖𝜖,𝑖𝑖).  (6.8)  

 

For any vector 𝑽𝑽, [�̃�𝑽] =  (
0 −𝑣𝑣𝑧𝑧 𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧 0 −𝑣𝑣𝑥𝑥

−𝑣𝑣𝑦𝑦 𝑣𝑣𝑥𝑥 0
). Note that (6.8) is valid when orientation errors are 

assumed to be small. Furthermore, we can derive orientation from angular velocity using (Schepers et 

al., 2010a): 

�̇�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 = 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 ⋅ (�̃�𝝎).   (6.9) 

Based on (Schepers et al., 2010a), we have the derivative of orientation error and its discretised form 

(Gustafsson, 2018) as   

�̇�𝜽𝜖𝜖 =  �̃�𝝎 ⋅ 𝜽𝜽𝜖𝜖 − 𝒃𝒃𝜖𝜖          (6.10) 

and 𝜽𝜽𝜖𝜖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.    (6.11) 

The Kalman filter prediction equation is given as (Welch and Bishop, 2006):   

�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1              (6.12) 

                                                   (6.6)

Using equations (6.4), (6.5), and (6.6), we get

  

 

Equation 6.7: 

𝒃𝒃𝜖𝜖,𝑖𝑖 = 𝒃𝒃𝜖𝜖,𝑖𝑖−1 − 𝒆𝒆𝑏𝑏,𝑖𝑖.     

 

Equation 6.11: 

and 𝜽𝜽𝜖𝜖,𝑖𝑖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 − 𝑇𝑇2

2 ⋅ �̃�𝝎) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.   

 

Equation 9.10c 

with, 𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓   = (𝟎𝟎3×9 𝐈𝐈3×3 𝟎𝟎3×6)      

 

 

Equation 9.18c: 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶  = (𝟎𝟎2×6  𝐈𝐈2×2  𝟎𝟎2×10 ).    

 

                                              (6.7)

Next, orientation can be estimated from orientation error (θϵ):
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Prediction 
Prediction models were defined for each state. First, the gyroscope bias (𝒃𝒃) was modelled as a first-
order Markov process as  

𝒃𝒃𝑖𝑖 = 𝒃𝒃𝑖𝑖−1 + 𝒆𝒆𝑏𝑏,𝑖𝑖   (6.4) 

where 𝒆𝒆𝑏𝑏,𝑖𝑖 is white Gaussian noise associated with the process. Then, the gyroscope bias was predicted 

as   

�̂�𝒃𝑖𝑖
− = �̂�𝒃𝑖𝑖−1.   (6.5) 

The gyroscope bias error 𝒃𝒃𝜖𝜖 can be modelled as  

𝒃𝒃𝜖𝜖,𝑖𝑖 = �̂�𝒃𝑖𝑖 − 𝒃𝒃𝑖𝑖.  (6.6) 

Using equations (6.4), (6.5), and (6.6), we get 

𝒃𝒃𝜖𝜖,𝑖𝑖 = 𝒃𝒃𝜖𝜖,𝑖𝑖−1 − 𝒆𝒆𝑏𝑏,𝑖𝑖.    (6.7) 

Next, orientation can be estimated from orientation error (𝜽𝜽𝜖𝜖): 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠  ≈ 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 (𝐈𝐈 + �̃�𝜽𝜖𝜖,𝑖𝑖).  (6.8)  

 

For any vector 𝑽𝑽, [�̃�𝑽] =  (
0 −𝑣𝑣𝑧𝑧 𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧 0 −𝑣𝑣𝑥𝑥

−𝑣𝑣𝑦𝑦 𝑣𝑣𝑥𝑥 0
). Note that (6.8) is valid when orientation errors are 

assumed to be small. Furthermore, we can derive orientation from angular velocity using (Schepers et 

al., 2010a): 

�̇�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 = 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 ⋅ (�̃�𝝎).   (6.9) 

Based on (Schepers et al., 2010a), we have the derivative of orientation error and its discretised form 

(Gustafsson, 2018) as   

�̇�𝜽𝜖𝜖 =  �̃�𝝎 ⋅ 𝜽𝜽𝜖𝜖 − 𝒃𝒃𝜖𝜖          (6.10) 

and 𝜽𝜽𝜖𝜖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.    (6.11) 

The Kalman filter prediction equation is given as (Welch and Bishop, 2006):   

�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1              (6.12) 

                            (6.8) 

For any vector V, 

3D GRF in a foot IMU defined frame 

 

Prediction 
Prediction models were defined for each state. First, the gyroscope bias (𝒃𝒃) was modelled as a first-
order Markov process as  

𝒃𝒃𝑖𝑖 = 𝒃𝒃𝑖𝑖−1 + 𝒆𝒆𝑏𝑏,𝑖𝑖   (6.4) 

where 𝒆𝒆𝑏𝑏,𝑖𝑖 is white Gaussian noise associated with the process. Then, the gyroscope bias was predicted 

as   

�̂�𝒃𝑖𝑖
− = �̂�𝒃𝑖𝑖−1.   (6.5) 

The gyroscope bias error 𝒃𝒃𝜖𝜖 can be modelled as  

𝒃𝒃𝜖𝜖,𝑖𝑖 = �̂�𝒃𝑖𝑖 − 𝒃𝒃𝑖𝑖.  (6.6) 

Using equations (6.4), (6.5), and (6.6), we get 

𝒃𝒃𝜖𝜖,𝑖𝑖 = 𝒃𝒃𝜖𝜖,𝑖𝑖−1 − 𝒆𝒆𝑏𝑏,𝑖𝑖.    (6.7) 

Next, orientation can be estimated from orientation error (𝜽𝜽𝜖𝜖): 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠  ≈ 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 (𝐈𝐈 + �̃�𝜽𝜖𝜖,𝑖𝑖).  (6.8)  

 

For any vector 𝑽𝑽, [�̃�𝑽] =  (
0 −𝑣𝑣𝑧𝑧 𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧 0 −𝑣𝑣𝑥𝑥

−𝑣𝑣𝑦𝑦 𝑣𝑣𝑥𝑥 0
). Note that (6.8) is valid when orientation errors are 

assumed to be small. Furthermore, we can derive orientation from angular velocity using (Schepers et 

al., 2010a): 

�̇�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 = 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 ⋅ (�̃�𝝎).   (6.9) 

Based on (Schepers et al., 2010a), we have the derivative of orientation error and its discretised form 

(Gustafsson, 2018) as   

�̇�𝜽𝜖𝜖 =  �̃�𝝎 ⋅ 𝜽𝜽𝜖𝜖 − 𝒃𝒃𝜖𝜖          (6.10) 

and 𝜽𝜽𝜖𝜖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.    (6.11) 

The Kalman filter prediction equation is given as (Welch and Bishop, 2006):   

�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1              (6.12) 

. Note that (6.8) is valid when orientation 

errors are assumed to be small. 

Furthermore, we can derive orientation from angular velocity using (Schepers 
et al., 2010a):
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�̇�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 = 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 ⋅ (�̃�𝝎).   (6.9) 

Based on (Schepers et al., 2010a), we have the derivative of orientation error and its discretised form 

(Gustafsson, 2018) as   

�̇�𝜽𝜖𝜖 =  �̃�𝝎 ⋅ 𝜽𝜽𝜖𝜖 − 𝒃𝒃𝜖𝜖          (6.10) 

and 𝜽𝜽𝜖𝜖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.    (6.11) 

The Kalman filter prediction equation is given as (Welch and Bishop, 2006):   

�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1              (6.12) 

where 𝑭𝑭 = (𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2 −𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2

 𝟎𝟎3  𝐈𝐈3
). (6.13) 

The covariance matrix is predicted using  

�̂�𝑷𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝑷𝑖𝑖−1

− ⋅ 𝑭𝑭𝑇𝑇 + 𝑸𝑸  (6.14) 

where 𝑸𝑸 is the process noise covariance matrix. 

�̂�𝒚𝐴𝐴,𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1) =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝 ).   (6.15) 

Then, (6.3a) was used to estimate inclination at instant 𝑖𝑖. The difference (𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)) between 

measured 𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1) and estimated �̂�𝒚𝐴𝐴

𝑐𝑐𝑐𝑐(𝑘𝑘−1) was then used to update the orientation error as (Kortier 

et al., 2014): 

𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1) = 𝒚𝒚𝐴𝐴

𝑐𝑐𝑐𝑐(𝑘𝑘−1) −  �̂�𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)      (6.16a) 

     = �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ (𝐈𝐈 + �̃�𝜽𝜖𝜖) ⋅ 𝒚𝒚𝐴𝐴
𝑝𝑝 − �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ 𝒚𝒚𝐴𝐴

𝑝𝑝 + 𝒆𝒆𝐴𝐴 

                   =  − �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 ⋅ 𝜽𝜽𝜖𝜖 +  𝒆𝒆𝐴𝐴.    (6.16b) 

The measurement can be predicted from the state at instance i using  

 �̂�𝒛𝑑𝑑𝑑𝑑 = 𝑯𝑯𝑑𝑑𝑑𝑑 ⋅ �̂�𝒙 + 𝒆𝒆𝑑𝑑𝑑𝑑           (6.16c) 

 𝒛𝒛𝑑𝑑𝑑𝑑 = 𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)           (6.16d) 

where 𝑯𝑯𝑑𝑑𝑑𝑑 = [−𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 𝟎𝟎3×3]     (6.16e) 

                         (6.9)

Based on (Schepers et al., 2010a), we have the derivative of orientation error 
and its discretised form (Gustafsson, 2018) as  
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�̇�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 = 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 ⋅ (�̃�𝝎).   (6.9) 

Based on (Schepers et al., 2010a), we have the derivative of orientation error and its discretised form 

(Gustafsson, 2018) as   

�̇�𝜽𝜖𝜖 =  �̃�𝝎 ⋅ 𝜽𝜽𝜖𝜖 − 𝒃𝒃𝜖𝜖          (6.10) 

and 𝜽𝜽𝜖𝜖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.    (6.11) 

The Kalman filter prediction equation is given as (Welch and Bishop, 2006):   

�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1              (6.12) 

where 𝑭𝑭 = (𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2 −𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2

 𝟎𝟎3  𝐈𝐈3
). (6.13) 

The covariance matrix is predicted using  

�̂�𝑷𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝑷𝑖𝑖−1

− ⋅ 𝑭𝑭𝑇𝑇 + 𝑸𝑸  (6.14) 

where 𝑸𝑸 is the process noise covariance matrix. 

�̂�𝒚𝐴𝐴,𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1) =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝 ).   (6.15) 

Then, (6.3a) was used to estimate inclination at instant 𝑖𝑖. The difference (𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)) between 

measured 𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1) and estimated �̂�𝒚𝐴𝐴

𝑐𝑐𝑐𝑐(𝑘𝑘−1) was then used to update the orientation error as (Kortier 

et al., 2014): 

𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1) = 𝒚𝒚𝐴𝐴

𝑐𝑐𝑐𝑐(𝑘𝑘−1) −  �̂�𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)      (6.16a) 

     = �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ (𝐈𝐈 + �̃�𝜽𝜖𝜖) ⋅ 𝒚𝒚𝐴𝐴
𝑝𝑝 − �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ 𝒚𝒚𝐴𝐴

𝑝𝑝 + 𝒆𝒆𝐴𝐴 

                   =  − �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 ⋅ 𝜽𝜽𝜖𝜖 +  𝒆𝒆𝐴𝐴.    (6.16b) 

The measurement can be predicted from the state at instance i using  

 �̂�𝒛𝑑𝑑𝑑𝑑 = 𝑯𝑯𝑑𝑑𝑑𝑑 ⋅ �̂�𝒙 + 𝒆𝒆𝑑𝑑𝑑𝑑           (6.16c) 

 𝒛𝒛𝑑𝑑𝑑𝑑 = 𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)           (6.16d) 

where 𝑯𝑯𝑑𝑑𝑑𝑑 = [−𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 𝟎𝟎3×3]     (6.16e) 

                                             (6.10)

and 

  

 

Equation 6.7: 

𝒃𝒃𝜖𝜖,𝑖𝑖 = 𝒃𝒃𝜖𝜖,𝑖𝑖−1 − 𝒆𝒆𝑏𝑏,𝑖𝑖.     

 

Equation 6.11: 

and 𝜽𝜽𝜖𝜖,𝑖𝑖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 − 𝑇𝑇2

2 ⋅ �̃�𝝎) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.   

 

Equation 9.10c 

with, 𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓   = (𝟎𝟎3×9 𝐈𝐈3×3 𝟎𝟎3×6)      

 

 

Equation 9.18c: 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶  = (𝟎𝟎2×6  𝐈𝐈2×2  𝟎𝟎2×10 ).    

 

   
(6.11)

The Kalman filter prediction equation is given as (Welch and Bishop, 2006):  
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and 𝜽𝜽𝜖𝜖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.    (6.11) 

The Kalman filter prediction equation is given as (Welch and Bishop, 2006):   

�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1              (6.12) 

where 𝑭𝑭 = (𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2 −𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2

 𝟎𝟎3  𝐈𝐈3
). (6.13) 

The covariance matrix is predicted using  

�̂�𝑷𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝑷𝑖𝑖−1

− ⋅ 𝑭𝑭𝑇𝑇 + 𝑸𝑸  (6.14) 

where 𝑸𝑸 is the process noise covariance matrix. 

�̂�𝒚𝐴𝐴,𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1) =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝 ).   (6.15) 

Then, (6.3a) was used to estimate inclination at instant 𝑖𝑖. The difference (𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)) between 

measured 𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1) and estimated �̂�𝒚𝐴𝐴

𝑐𝑐𝑐𝑐(𝑘𝑘−1) was then used to update the orientation error as (Kortier 

et al., 2014): 

𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1) = 𝒚𝒚𝐴𝐴

𝑐𝑐𝑐𝑐(𝑘𝑘−1) −  �̂�𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)      (6.16a) 

     = �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ (𝐈𝐈 + �̃�𝜽𝜖𝜖) ⋅ 𝒚𝒚𝐴𝐴
𝑝𝑝 − �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ 𝒚𝒚𝐴𝐴

𝑝𝑝 + 𝒆𝒆𝐴𝐴 

                   =  − �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 ⋅ 𝜽𝜽𝜖𝜖 +  𝒆𝒆𝐴𝐴.    (6.16b) 

The measurement can be predicted from the state at instance i using  

 �̂�𝒛𝑑𝑑𝑑𝑑 = 𝑯𝑯𝑑𝑑𝑑𝑑 ⋅ �̂�𝒙 + 𝒆𝒆𝑑𝑑𝑑𝑑           (6.16c) 

 𝒛𝒛𝑑𝑑𝑑𝑑 = 𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)           (6.16d) 

where 𝑯𝑯𝑑𝑑𝑑𝑑 = [−𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 𝟎𝟎3×3]     (6.16e) 

                                           (6.12)

where 

Equation 6.13 

where 𝑭𝑭 = (𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2 −𝑇𝑇 ⋅ 𝐈𝐈3 − 𝑇𝑇2

2 ⋅ �̃�𝝎
 𝟎𝟎3  𝐈𝐈3

).  

 

Equation 6.16e 

where 𝑯𝑯𝑑𝑑𝑑𝑑 = [−�̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 𝟎𝟎3] .    

Equation 10.17 

𝑝𝑝𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  𝑝𝑝𝑎𝑎𝑎𝑎𝐶𝐶 − (𝑝𝑝𝑑𝑑

𝐶𝐶 ⋅   𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑉𝑉

) − 𝑀𝑀𝑎𝑎𝑎𝑎′
𝐹𝐹𝑉𝑉

   

 

 

  
(6.13)
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 �̂�𝒛𝑑𝑑𝑑𝑑 = 𝑯𝑯𝑑𝑑𝑑𝑑 ⋅ �̂�𝒙 + 𝒆𝒆𝑑𝑑𝑑𝑑           (6.16c) 

 𝒛𝒛𝑑𝑑𝑑𝑑 = 𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)           (6.16d) 

where 𝑯𝑯𝑑𝑑𝑑𝑑 = [−𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 𝟎𝟎3×3]     (6.16e) 

                           (6.16a)

3D GRF in a foot IMU defined frame 

�̇�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 = 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 ⋅ (�̃�𝝎).   (6.9) 

Based on (Schepers et al., 2010a), we have the derivative of orientation error and its discretised form 

(Gustafsson, 2018) as   

�̇�𝜽𝜖𝜖 =  �̃�𝝎 ⋅ 𝜽𝜽𝜖𝜖 − 𝒃𝒃𝜖𝜖          (6.10) 

and 𝜽𝜽𝜖𝜖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.    (6.11) 

The Kalman filter prediction equation is given as (Welch and Bishop, 2006):   

�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1              (6.12) 

where 𝑭𝑭 = (𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2 −𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2

 𝟎𝟎3  𝐈𝐈3
). (6.13) 

The covariance matrix is predicted using  

�̂�𝑷𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝑷𝑖𝑖−1

− ⋅ 𝑭𝑭𝑇𝑇 + 𝑸𝑸  (6.14) 

where 𝑸𝑸 is the process noise covariance matrix. 

�̂�𝒚𝐴𝐴,𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1) =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝 ).   (6.15) 

Then, (6.3a) was used to estimate inclination at instant 𝑖𝑖. The difference (𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)) between 

measured 𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1) and estimated �̂�𝒚𝐴𝐴

𝑐𝑐𝑐𝑐(𝑘𝑘−1) was then used to update the orientation error as (Kortier 

et al., 2014): 

𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1) = 𝒚𝒚𝐴𝐴

𝑐𝑐𝑐𝑐(𝑘𝑘−1) −  �̂�𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)      (6.16a) 

     = �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ (𝐈𝐈 + �̃�𝜽𝜖𝜖) ⋅ 𝒚𝒚𝐴𝐴
𝑝𝑝 − �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ 𝒚𝒚𝐴𝐴

𝑝𝑝 + 𝒆𝒆𝐴𝐴 

                   =  − �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 ⋅ 𝜽𝜽𝜖𝜖 +  𝒆𝒆𝐴𝐴.    (6.16b) 

The measurement can be predicted from the state at instance i using  

 �̂�𝒛𝑑𝑑𝑑𝑑 = 𝑯𝑯𝑑𝑑𝑑𝑑 ⋅ �̂�𝒙 + 𝒆𝒆𝑑𝑑𝑑𝑑           (6.16c) 

 𝒛𝒛𝑑𝑑𝑑𝑑 = 𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)           (6.16d) 

where 𝑯𝑯𝑑𝑑𝑑𝑑 = [−𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 𝟎𝟎3×3]     (6.16e) 
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�̇�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 = 𝑹𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 ⋅ (�̃�𝝎).   (6.9) 

Based on (Schepers et al., 2010a), we have the derivative of orientation error and its discretised form 

(Gustafsson, 2018) as   

�̇�𝜽𝜖𝜖 =  �̃�𝝎 ⋅ 𝜽𝜽𝜖𝜖 − 𝒃𝒃𝜖𝜖          (6.10) 

and 𝜽𝜽𝜖𝜖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.    (6.11) 

The Kalman filter prediction equation is given as (Welch and Bishop, 2006):   

�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1              (6.12) 

where 𝑭𝑭 = (𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2 −𝑇𝑇 ⋅ 𝐈𝐈3 −  𝑇𝑇2

2 ⋅ �̃�𝝎2

 𝟎𝟎3  𝐈𝐈3
). (6.13) 

The covariance matrix is predicted using  

�̂�𝑷𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝑷𝑖𝑖−1

− ⋅ 𝑭𝑭𝑇𝑇 + 𝑸𝑸  (6.14) 

where 𝑸𝑸 is the process noise covariance matrix. 

�̂�𝒚𝐴𝐴,𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1) =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝 ).   (6.15) 

Then, (6.3a) was used to estimate inclination at instant 𝑖𝑖. The difference (𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)) between 

measured 𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1) and estimated �̂�𝒚𝐴𝐴

𝑐𝑐𝑐𝑐(𝑘𝑘−1) was then used to update the orientation error as (Kortier 

et al., 2014): 

𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1) = 𝒚𝒚𝐴𝐴

𝑐𝑐𝑐𝑐(𝑘𝑘−1) −  �̂�𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)      (6.16a) 

     = �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ (𝐈𝐈 + �̃�𝜽𝜖𝜖) ⋅ 𝒚𝒚𝐴𝐴
𝑝𝑝 − �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ 𝒚𝒚𝐴𝐴

𝑝𝑝 + 𝒆𝒆𝐴𝐴 

                   =  − �̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 ⋅ 𝜽𝜽𝜖𝜖 +  𝒆𝒆𝐴𝐴.    (6.16b) 

The measurement can be predicted from the state at instance i using  

 �̂�𝒛𝑑𝑑𝑑𝑑 = 𝑯𝑯𝑑𝑑𝑑𝑑 ⋅ �̂�𝒙 + 𝒆𝒆𝑑𝑑𝑑𝑑           (6.16c) 

 𝒛𝒛𝑑𝑑𝑑𝑑 = 𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)           (6.16d) 

where 𝑯𝑯𝑑𝑑𝑑𝑑 = [−𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 𝟎𝟎3×3]     (6.16e) 

  (6.16b)

The measurement can be predicted from the state at instance i using 

 

3D GRF in a foot IMU defined frame 

 �̂�𝒛𝑑𝑑𝑑𝑑 = 𝑯𝑯𝑑𝑑𝑑𝑑 ⋅ �̂�𝒙 + 𝒆𝒆𝑑𝑑𝑑𝑑           (6.16c) 

 𝒛𝒛𝑑𝑑𝑑𝑑 = 𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)           (6.16d) 

where 𝑯𝑯𝑑𝑑𝑑𝑑 = [−𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 𝟎𝟎3×3]     (6.16e) 

In the above equations, 𝑯𝑯 transforms the state vector to a measurement prediction (�̂�𝒛), and 𝒛𝒛 

in (6.16d) denotes the actual measurement (Welch and Bishop, 2006). 𝒆𝒆𝑑𝑑𝑑𝑑 is the noise associated with 

this measurement.  

When 𝑯𝑯 is known from (6.16e), the Kalman gain can be estimated and applied to the KF using 

(Welch and Bishop, 2006):  

 

𝑲𝑲𝑖𝑖 = 𝑷𝑷𝑖𝑖
− ⋅ 𝑯𝑯𝑇𝑇 (𝑯𝑯 ⋅ 𝑷𝑷𝑖𝑖

− ⋅ 𝑯𝑯𝑇𝑇 + 𝑹𝑹)−1     (6.17a) 

 �̂�𝒙𝑖𝑖 =  �̂�𝒙𝑖𝑖
− + 𝑲𝑲𝑖𝑖 ⋅ (𝒛𝒛𝑖𝑖 − 𝑯𝑯 ⋅ �̂�𝒙𝑖𝑖

−)          (6.17b) 

𝑷𝑷𝑖𝑖 = (𝐈𝐈 − 𝑲𝑲𝑖𝑖 ⋅ 𝑯𝑯) ⋅ 𝑷𝑷𝑖𝑖
−     (6.17c) 

The state matrix and the error covariance matrix were updated with (6.17b) and (6.17c) 

respectively. 

 

Update States 
The orientation estimate and gyroscope bias were then updated. Singular value decomposition was 

used to maintain orthonormality of 𝑹𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠. The error state vector was reset for the next iteration 

using 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠,− ⋅ (𝐈𝐈 − �̃�𝜽𝜖𝜖,𝑖𝑖) (6.18[MRM(3]) 

and �̂�𝒃𝑖𝑖 = �̂�𝒃𝑖𝑖
− + 𝒃𝒃𝜖𝜖,𝑖𝑖. (6.19) 

 

Initialization 
The initial orientation error �̂�𝜽𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was assumed to be zero, and the initial gyroscope bias error �̂�𝒃𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

was estimated from gyroscope output while standing still. At the start of each step 𝑘𝑘, the 𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 

is known from the previous step. This is described in Section 6.2.5 (Current Step Frame). However, an 

estimate of 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 is needed for the first step ever made. For this, the EEKF is run once for a few 

steps with an arbitrary initial heading estimate. The change in position between the start and end of 

these steps was the X axis, and the Z axis was taken to be along the vertical. After estimating the Y axis 

                                       (6.16c)
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 𝒛𝒛𝑑𝑑𝑑𝑑 = 𝛿𝛿𝒚𝒚𝐴𝐴
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where 𝑯𝑯𝑑𝑑𝑑𝑑 = [−𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 𝟎𝟎3×3]     (6.16e) 

In the above equations, 𝑯𝑯 transforms the state vector to a measurement prediction (�̂�𝒛), and 𝒛𝒛 

in (6.16d) denotes the actual measurement (Welch and Bishop, 2006). 𝒆𝒆𝑑𝑑𝑑𝑑 is the noise associated with 

this measurement.  

When 𝑯𝑯 is known from (6.16e), the Kalman gain can be estimated and applied to the KF using 

(Welch and Bishop, 2006):  

 

𝑲𝑲𝑖𝑖 = 𝑷𝑷𝑖𝑖
− ⋅ 𝑯𝑯𝑇𝑇 (𝑯𝑯 ⋅ 𝑷𝑷𝑖𝑖

− ⋅ 𝑯𝑯𝑇𝑇 + 𝑹𝑹)−1     (6.17a) 

 �̂�𝒙𝑖𝑖 =  �̂�𝒙𝑖𝑖
− + 𝑲𝑲𝑖𝑖 ⋅ (𝒛𝒛𝑖𝑖 − 𝑯𝑯 ⋅ �̂�𝒙𝑖𝑖

−)          (6.17b) 

𝑷𝑷𝑖𝑖 = (𝐈𝐈 − 𝑲𝑲𝑖𝑖 ⋅ 𝑯𝑯) ⋅ 𝑷𝑷𝑖𝑖
−     (6.17c) 

The state matrix and the error covariance matrix were updated with (6.17b) and (6.17c) 

respectively. 

 

Update States 
The orientation estimate and gyroscope bias were then updated. Singular value decomposition was 

used to maintain orthonormality of 𝑹𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠. The error state vector was reset for the next iteration 

using 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠,− ⋅ (𝐈𝐈 − �̃�𝜽𝜖𝜖,𝑖𝑖) (6.18[MRM(3]) 

and �̂�𝒃𝑖𝑖 = �̂�𝒃𝑖𝑖
− + 𝒃𝒃𝜖𝜖,𝑖𝑖. (6.19) 

 

Initialization 
The initial orientation error �̂�𝜽𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was assumed to be zero, and the initial gyroscope bias error �̂�𝒃𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

was estimated from gyroscope output while standing still. At the start of each step 𝑘𝑘, the 𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 

is known from the previous step. This is described in Section 6.2.5 (Current Step Frame). However, an 

estimate of 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 is needed for the first step ever made. For this, the EEKF is run once for a few 

steps with an arbitrary initial heading estimate. The change in position between the start and end of 

these steps was the X axis, and the Z axis was taken to be along the vertical. After estimating the Y axis 

                                        (6.16d)
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where 

Equation 6.13 

where 𝑭𝑭 = (𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2 −𝑇𝑇 ⋅ 𝐈𝐈3 − 𝑇𝑇2

2 ⋅ �̃�𝝎
 𝟎𝟎3  𝐈𝐈3

).  

 

Equation 6.16e 

where 𝑯𝑯𝑑𝑑𝑑𝑑 = [−�̂�𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 𝟎𝟎3] .    

Equation 10.17 

𝑝𝑝𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  𝑝𝑝𝑎𝑎𝑎𝑎𝐶𝐶 − (𝑝𝑝𝑑𝑑

𝐶𝐶 ⋅   𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑉𝑉

) − 𝑀𝑀𝑎𝑎𝑎𝑎′
𝐹𝐹𝑉𝑉

   

 

 

                 (6.16e)

In the above equations, H transforms the state vector to a measurement 
prediction (ẑ ), and z in (6.16d) denotes the actual measurement (Welch and 
Bishop, 2006). edV is the noise associated with this measurement. 

When H is known from (6.16e), the Kalman gain can be estimated and applied 
to the KF using (Welch and Bishop, 2006): 

3D GRF in a foot IMU defined frame 

 �̂�𝒛𝑑𝑑𝑑𝑑 = 𝑯𝑯𝑑𝑑𝑑𝑑 ⋅ �̂�𝒙 + 𝒆𝒆𝑑𝑑𝑑𝑑           (6.16c) 

 𝒛𝒛𝑑𝑑𝑑𝑑 = 𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)           (6.16d) 

where 𝑯𝑯𝑑𝑑𝑑𝑑 = [−𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 𝟎𝟎3×3]     (6.16e) 

In the above equations, 𝑯𝑯 transforms the state vector to a measurement prediction (�̂�𝒛), and 𝒛𝒛 

in (6.16d) denotes the actual measurement (Welch and Bishop, 2006). 𝒆𝒆𝑑𝑑𝑑𝑑 is the noise associated with 

this measurement.  

When 𝑯𝑯 is known from (6.16e), the Kalman gain can be estimated and applied to the KF using 

(Welch and Bishop, 2006):  

 

𝑲𝑲𝑖𝑖 = 𝑷𝑷𝑖𝑖
− ⋅ 𝑯𝑯𝑇𝑇 (𝑯𝑯 ⋅ 𝑷𝑷𝑖𝑖

− ⋅ 𝑯𝑯𝑇𝑇 + 𝑹𝑹)−1     (6.17a) 

 �̂�𝒙𝑖𝑖 =  �̂�𝒙𝑖𝑖
− + 𝑲𝑲𝑖𝑖 ⋅ (𝒛𝒛𝑖𝑖 − 𝑯𝑯 ⋅ �̂�𝒙𝑖𝑖

−)          (6.17b) 

𝑷𝑷𝑖𝑖 = (𝐈𝐈 − 𝑲𝑲𝑖𝑖 ⋅ 𝑯𝑯) ⋅ 𝑷𝑷𝑖𝑖
−     (6.17c) 

The state matrix and the error covariance matrix were updated with (6.17b) and (6.17c) 

respectively. 

 

Update States 
The orientation estimate and gyroscope bias were then updated. Singular value decomposition was 

used to maintain orthonormality of 𝑹𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠. The error state vector was reset for the next iteration 

using 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠,− ⋅ (𝐈𝐈 − �̃�𝜽𝜖𝜖,𝑖𝑖) (6.18[MRM(3]) 

and �̂�𝒃𝑖𝑖 = �̂�𝒃𝑖𝑖
− + 𝒃𝒃𝜖𝜖,𝑖𝑖. (6.19) 

 

Initialization 
The initial orientation error �̂�𝜽𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was assumed to be zero, and the initial gyroscope bias error �̂�𝒃𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

was estimated from gyroscope output while standing still. At the start of each step 𝑘𝑘, the 𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 

is known from the previous step. This is described in Section 6.2.5 (Current Step Frame). However, an 

estimate of 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 is needed for the first step ever made. For this, the EEKF is run once for a few 

steps with an arbitrary initial heading estimate. The change in position between the start and end of 

these steps was the X axis, and the Z axis was taken to be along the vertical. After estimating the Y axis 

                       (6.17a)

3D GRF in a foot IMU defined frame 

 �̂�𝒛𝑑𝑑𝑑𝑑 = 𝑯𝑯𝑑𝑑𝑑𝑑 ⋅ �̂�𝒙 + 𝒆𝒆𝑑𝑑𝑑𝑑           (6.16c) 

 𝒛𝒛𝑑𝑑𝑑𝑑 = 𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)           (6.16d) 

where 𝑯𝑯𝑑𝑑𝑑𝑑 = [−𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 𝟎𝟎3×3]     (6.16e) 

In the above equations, 𝑯𝑯 transforms the state vector to a measurement prediction (�̂�𝒛), and 𝒛𝒛 

in (6.16d) denotes the actual measurement (Welch and Bishop, 2006). 𝒆𝒆𝑑𝑑𝑑𝑑 is the noise associated with 

this measurement.  

When 𝑯𝑯 is known from (6.16e), the Kalman gain can be estimated and applied to the KF using 

(Welch and Bishop, 2006):  

 

𝑲𝑲𝑖𝑖 = 𝑷𝑷𝑖𝑖
− ⋅ 𝑯𝑯𝑇𝑇 (𝑯𝑯 ⋅ 𝑷𝑷𝑖𝑖

− ⋅ 𝑯𝑯𝑇𝑇 + 𝑹𝑹)−1     (6.17a) 

 �̂�𝒙𝑖𝑖 =  �̂�𝒙𝑖𝑖
− + 𝑲𝑲𝑖𝑖 ⋅ (𝒛𝒛𝑖𝑖 − 𝑯𝑯 ⋅ �̂�𝒙𝑖𝑖

−)          (6.17b) 

𝑷𝑷𝑖𝑖 = (𝐈𝐈 − 𝑲𝑲𝑖𝑖 ⋅ 𝑯𝑯) ⋅ 𝑷𝑷𝑖𝑖
−     (6.17c) 

The state matrix and the error covariance matrix were updated with (6.17b) and (6.17c) 

respectively. 

 

Update States 
The orientation estimate and gyroscope bias were then updated. Singular value decomposition was 

used to maintain orthonormality of 𝑹𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠. The error state vector was reset for the next iteration 

using 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠,− ⋅ (𝐈𝐈 − �̃�𝜽𝜖𝜖,𝑖𝑖) (6.18[MRM(3]) 

and �̂�𝒃𝑖𝑖 = �̂�𝒃𝑖𝑖
− + 𝒃𝒃𝜖𝜖,𝑖𝑖. (6.19) 

 

Initialization 
The initial orientation error �̂�𝜽𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was assumed to be zero, and the initial gyroscope bias error �̂�𝒃𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

was estimated from gyroscope output while standing still. At the start of each step 𝑘𝑘, the 𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 

is known from the previous step. This is described in Section 6.2.5 (Current Step Frame). However, an 

estimate of 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 is needed for the first step ever made. For this, the EEKF is run once for a few 

steps with an arbitrary initial heading estimate. The change in position between the start and end of 

these steps was the X axis, and the Z axis was taken to be along the vertical. After estimating the Y axis 

                           (6.17b)

3D GRF in a foot IMU defined frame 

 �̂�𝒛𝑑𝑑𝑑𝑑 = 𝑯𝑯𝑑𝑑𝑑𝑑 ⋅ �̂�𝒙 + 𝒆𝒆𝑑𝑑𝑑𝑑           (6.16c) 

 𝒛𝒛𝑑𝑑𝑑𝑑 = 𝛿𝛿𝒚𝒚𝐴𝐴
𝑐𝑐𝑐𝑐(𝑘𝑘−1)           (6.16d) 

where 𝑯𝑯𝑑𝑑𝑑𝑑 = [−𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ �̃�𝒚𝐴𝐴
𝑝𝑝 𝟎𝟎3×3]     (6.16e) 

In the above equations, 𝑯𝑯 transforms the state vector to a measurement prediction (�̂�𝒛), and 𝒛𝒛 

in (6.16d) denotes the actual measurement (Welch and Bishop, 2006). 𝒆𝒆𝑑𝑑𝑑𝑑 is the noise associated with 

this measurement.  

When 𝑯𝑯 is known from (6.16e), the Kalman gain can be estimated and applied to the KF using 

(Welch and Bishop, 2006):  

 

𝑲𝑲𝑖𝑖 = 𝑷𝑷𝑖𝑖
− ⋅ 𝑯𝑯𝑇𝑇 (𝑯𝑯 ⋅ 𝑷𝑷𝑖𝑖

− ⋅ 𝑯𝑯𝑇𝑇 + 𝑹𝑹)−1     (6.17a) 

 �̂�𝒙𝑖𝑖 =  �̂�𝒙𝑖𝑖
− + 𝑲𝑲𝑖𝑖 ⋅ (𝒛𝒛𝑖𝑖 − 𝑯𝑯 ⋅ �̂�𝒙𝑖𝑖

−)          (6.17b) 

𝑷𝑷𝑖𝑖 = (𝐈𝐈 − 𝑲𝑲𝑖𝑖 ⋅ 𝑯𝑯) ⋅ 𝑷𝑷𝑖𝑖
−     (6.17c) 

The state matrix and the error covariance matrix were updated with (6.17b) and (6.17c) 

respectively. 

 

Update States 
The orientation estimate and gyroscope bias were then updated. Singular value decomposition was 

used to maintain orthonormality of 𝑹𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠. The error state vector was reset for the next iteration 

using 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠,− ⋅ (𝐈𝐈 − �̃�𝜽𝜖𝜖,𝑖𝑖) (6.18[MRM(3]) 

and �̂�𝒃𝑖𝑖 = �̂�𝒃𝑖𝑖
− + 𝒃𝒃𝜖𝜖,𝑖𝑖. (6.19) 

 

Initialization 
The initial orientation error �̂�𝜽𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was assumed to be zero, and the initial gyroscope bias error �̂�𝒃𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

was estimated from gyroscope output while standing still. At the start of each step 𝑘𝑘, the 𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 

is known from the previous step. This is described in Section 6.2.5 (Current Step Frame). However, an 

estimate of 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 is needed for the first step ever made. For this, the EEKF is run once for a few 

steps with an arbitrary initial heading estimate. The change in position between the start and end of 

these steps was the X axis, and the Z axis was taken to be along the vertical. After estimating the Y axis 

                                    (6.17c)

The state matrix and the error covariance matrix were updated with (6.17b) 
and (6.17c) respectively.

Update States
The orientation estimate and gyroscope bias were then updated. Singular 
value decomposition was used to maintain orthonormality of 

3D GRF in a foot IMU defined frame 

 �̂�𝒙𝑖𝑖 =  �̂�𝒙𝑖𝑖
− + 𝑲𝑲𝑖𝑖 ⋅ (𝒛𝒛𝑖𝑖 − 𝑯𝑯 ⋅ �̂�𝒙𝑖𝑖

−)          (6.17b) 

𝑷𝑷𝑖𝑖 = (𝐈𝐈 − 𝑲𝑲𝑖𝑖 ⋅ 𝑯𝑯) ⋅ 𝑷𝑷𝑖𝑖
−     (6.17c) 

The state matrix and the error covariance matrix were updated with (6.17b) and (6.17c) 

respectively. 

 

Update States 
The orientation estimate and gyroscope bias were then updated. Singular value decomposition was 

used to maintain orthonormality of 𝑹𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠. The error state vector was reset for the next iteration 

using 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠,− ⋅ (𝐈𝐈 − �̃�𝜽𝜖𝜖,𝑖𝑖) (6.18[MRM(3]) 

and �̂�𝒃𝑖𝑖 = �̂�𝒃𝑖𝑖
− + 𝒃𝒃𝜖𝜖,𝑖𝑖. (6.19) 

 

Initialization 
The initial orientation error �̂�𝜽𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was assumed to be zero, and the initial gyroscope bias error �̂�𝒃𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

was estimated from gyroscope output while standing still. At the start of each step 𝑘𝑘, the 𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 

is known from the previous step. This is described in Section 6.2.5 (Current Step Frame). However, an 

estimate of 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 is needed for the first step ever made. For this, the EEKF is run once for a few 

steps with an arbitrary initial heading estimate. The change in position between the start and end of 

these steps was the X axis, and the Z axis was taken to be along the vertical. After estimating the Y axis 

using cross product and updating the X axis using (6.3c), the initial 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 was estimated using 

(6.3e).  

Estimating Ground Reaction Forces 
The accelerations measured at the pelvis IMU were transformed to the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1) using the estimated 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 for each step 𝑘𝑘. As these are assumed to be the same as the accelerations at the CoM, the 

GRF was estimated as the product of acceleration and body mass: 

𝑮𝑮𝑹𝑹𝑭𝑭𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ 𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝 .   (6.20) 

 

Current Step Frame 
The GRF has been expressed in the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1), and has to be transformed to 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) for the current step 

𝑘𝑘. For this, the change in orientation of the feet as well as their positions need to be known. An 

. 
The error state vector was reset for the next iteration using

3D GRF in a foot IMU defined frame 

 �̂�𝒙𝑖𝑖 =  �̂�𝒙𝑖𝑖
− + 𝑲𝑲𝑖𝑖 ⋅ (𝒛𝒛𝑖𝑖 − 𝑯𝑯 ⋅ �̂�𝒙𝑖𝑖

−)          (6.17b) 

𝑷𝑷𝑖𝑖 = (𝐈𝐈 − 𝑲𝑲𝑖𝑖 ⋅ 𝑯𝑯) ⋅ 𝑷𝑷𝑖𝑖
−     (6.17c) 

The state matrix and the error covariance matrix were updated with (6.17b) and (6.17c) 

respectively. 

 

Update States 
The orientation estimate and gyroscope bias were then updated. Singular value decomposition was 

used to maintain orthonormality of 𝑹𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠. The error state vector was reset for the next iteration 

using 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠,− ⋅ (𝐈𝐈 − �̃�𝜽𝜖𝜖,𝑖𝑖) (6.18[MRM(3]) 

and �̂�𝒃𝑖𝑖 = �̂�𝒃𝑖𝑖
− + 𝒃𝒃𝜖𝜖,𝑖𝑖. (6.19) 

 

Initialization 
The initial orientation error �̂�𝜽𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was assumed to be zero, and the initial gyroscope bias error �̂�𝒃𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

was estimated from gyroscope output while standing still. At the start of each step 𝑘𝑘, the 𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 

is known from the previous step. This is described in Section 6.2.5 (Current Step Frame). However, an 

estimate of 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 is needed for the first step ever made. For this, the EEKF is run once for a few 

steps with an arbitrary initial heading estimate. The change in position between the start and end of 

these steps was the X axis, and the Z axis was taken to be along the vertical. After estimating the Y axis 

using cross product and updating the X axis using (6.3c), the initial 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 was estimated using 

(6.3e).  

Estimating Ground Reaction Forces 
The accelerations measured at the pelvis IMU were transformed to the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1) using the estimated 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 for each step 𝑘𝑘. As these are assumed to be the same as the accelerations at the CoM, the 

GRF was estimated as the product of acceleration and body mass: 

𝑮𝑮𝑹𝑹𝑭𝑭𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ 𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝 .   (6.20) 

 

Current Step Frame 
The GRF has been expressed in the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1), and has to be transformed to 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) for the current step 

𝑘𝑘. For this, the change in orientation of the feet as well as their positions need to be known. An 

                (6.18)

and 

3D GRF in a foot IMU defined frame 

 �̂�𝒙𝑖𝑖 =  �̂�𝒙𝑖𝑖
− + 𝑲𝑲𝑖𝑖 ⋅ (𝒛𝒛𝑖𝑖 − 𝑯𝑯 ⋅ �̂�𝒙𝑖𝑖

−)          (6.17b) 

𝑷𝑷𝑖𝑖 = (𝐈𝐈 − 𝑲𝑲𝑖𝑖 ⋅ 𝑯𝑯) ⋅ 𝑷𝑷𝑖𝑖
−     (6.17c) 

The state matrix and the error covariance matrix were updated with (6.17b) and (6.17c) 

respectively. 

 

Update States 
The orientation estimate and gyroscope bias were then updated. Singular value decomposition was 

used to maintain orthonormality of 𝑹𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠. The error state vector was reset for the next iteration 

using 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠,− ⋅ (𝐈𝐈 − �̃�𝜽𝜖𝜖,𝑖𝑖) (6.18[MRM(3]) 

and �̂�𝒃𝑖𝑖 = �̂�𝒃𝑖𝑖
− + 𝒃𝒃𝜖𝜖,𝑖𝑖. (6.19) 

 

Initialization 
The initial orientation error �̂�𝜽𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was assumed to be zero, and the initial gyroscope bias error �̂�𝒃𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

was estimated from gyroscope output while standing still. At the start of each step 𝑘𝑘, the 𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 

is known from the previous step. This is described in Section 6.2.5 (Current Step Frame). However, an 

estimate of 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 is needed for the first step ever made. For this, the EEKF is run once for a few 

steps with an arbitrary initial heading estimate. The change in position between the start and end of 

these steps was the X axis, and the Z axis was taken to be along the vertical. After estimating the Y axis 

using cross product and updating the X axis using (6.3c), the initial 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 was estimated using 

(6.3e).  

Estimating Ground Reaction Forces 
The accelerations measured at the pelvis IMU were transformed to the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1) using the estimated 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 for each step 𝑘𝑘. As these are assumed to be the same as the accelerations at the CoM, the 

GRF was estimated as the product of acceleration and body mass: 

𝑮𝑮𝑹𝑹𝑭𝑭𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ 𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝 .   (6.20) 

 

Current Step Frame 
The GRF has been expressed in the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1), and has to be transformed to 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) for the current step 

𝑘𝑘. For this, the change in orientation of the feet as well as their positions need to be known. An 

                                        (6.19)

Initialization
The initial orientation error θ̂ϵ,init was assumed to be zero, and the initial 
gyroscope bias error b̂ϵ,init was estimated from gyroscope output while 
standing still. At the start of each step k, the 

3D GRF in a foot IMU defined frame 

 �̂�𝒙𝑖𝑖 =  �̂�𝒙𝑖𝑖
− + 𝑲𝑲𝑖𝑖 ⋅ (𝒛𝒛𝑖𝑖 − 𝑯𝑯 ⋅ �̂�𝒙𝑖𝑖

−)          (6.17b) 

𝑷𝑷𝑖𝑖 = (𝐈𝐈 − 𝑲𝑲𝑖𝑖 ⋅ 𝑯𝑯) ⋅ 𝑷𝑷𝑖𝑖
−     (6.17c) 

The state matrix and the error covariance matrix were updated with (6.17b) and (6.17c) 

respectively. 

 

Update States 
The orientation estimate and gyroscope bias were then updated. Singular value decomposition was 

used to maintain orthonormality of 𝑹𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠. The error state vector was reset for the next iteration 

using 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠,− ⋅ (𝐈𝐈 − �̃�𝜽𝜖𝜖,𝑖𝑖) (6.18[MRM(3]) 

and �̂�𝒃𝑖𝑖 = �̂�𝒃𝑖𝑖
− + 𝒃𝒃𝜖𝜖,𝑖𝑖. (6.19) 

 

Initialization 
The initial orientation error �̂�𝜽𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was assumed to be zero, and the initial gyroscope bias error �̂�𝒃𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

was estimated from gyroscope output while standing still. At the start of each step 𝑘𝑘, the 𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 

is known from the previous step. This is described in Section 6.2.5 (Current Step Frame). However, an 

estimate of 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 is needed for the first step ever made. For this, the EEKF is run once for a few 

steps with an arbitrary initial heading estimate. The change in position between the start and end of 

these steps was the X axis, and the Z axis was taken to be along the vertical. After estimating the Y axis 

using cross product and updating the X axis using (6.3c), the initial 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 was estimated using 

(6.3e).  

Estimating Ground Reaction Forces 
The accelerations measured at the pelvis IMU were transformed to the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1) using the estimated 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 for each step 𝑘𝑘. As these are assumed to be the same as the accelerations at the CoM, the 

GRF was estimated as the product of acceleration and body mass: 

𝑮𝑮𝑹𝑹𝑭𝑭𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ 𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝 .   (6.20) 

 

Current Step Frame 
The GRF has been expressed in the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1), and has to be transformed to 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) for the current step 

𝑘𝑘. For this, the change in orientation of the feet as well as their positions need to be known. An 

 is known from the 
previous step. This is described in Section 6.2.5 (Current Step Frame). However, 
an estimate of 

3D GRF in a foot IMU defined frame 

 �̂�𝒙𝑖𝑖 =  �̂�𝒙𝑖𝑖
− + 𝑲𝑲𝑖𝑖 ⋅ (𝒛𝒛𝑖𝑖 − 𝑯𝑯 ⋅ �̂�𝒙𝑖𝑖

−)          (6.17b) 

𝑷𝑷𝑖𝑖 = (𝐈𝐈 − 𝑲𝑲𝑖𝑖 ⋅ 𝑯𝑯) ⋅ 𝑷𝑷𝑖𝑖
−     (6.17c) 

The state matrix and the error covariance matrix were updated with (6.17b) and (6.17c) 

respectively. 

 

Update States 
The orientation estimate and gyroscope bias were then updated. Singular value decomposition was 

used to maintain orthonormality of 𝑹𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠. The error state vector was reset for the next iteration 

using 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠,− ⋅ (𝐈𝐈 − �̃�𝜽𝜖𝜖,𝑖𝑖) (6.18[MRM(3]) 

and �̂�𝒃𝑖𝑖 = �̂�𝒃𝑖𝑖
− + 𝒃𝒃𝜖𝜖,𝑖𝑖. (6.19) 

 

Initialization 
The initial orientation error �̂�𝜽𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was assumed to be zero, and the initial gyroscope bias error �̂�𝒃𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

was estimated from gyroscope output while standing still. At the start of each step 𝑘𝑘, the 𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 

is known from the previous step. This is described in Section 6.2.5 (Current Step Frame). However, an 

estimate of 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 is needed for the first step ever made. For this, the EEKF is run once for a few 

steps with an arbitrary initial heading estimate. The change in position between the start and end of 

these steps was the X axis, and the Z axis was taken to be along the vertical. After estimating the Y axis 

using cross product and updating the X axis using (6.3c), the initial 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 was estimated using 

(6.3e).  

Estimating Ground Reaction Forces 
The accelerations measured at the pelvis IMU were transformed to the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1) using the estimated 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 for each step 𝑘𝑘. As these are assumed to be the same as the accelerations at the CoM, the 

GRF was estimated as the product of acceleration and body mass: 

𝑮𝑮𝑹𝑹𝑭𝑭𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ 𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝 .   (6.20) 

 

Current Step Frame 
The GRF has been expressed in the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1), and has to be transformed to 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) for the current step 

𝑘𝑘. For this, the change in orientation of the feet as well as their positions need to be known. An 

 is needed for the first step ever made. For this, the 
EEKF is run once for a few steps with an arbitrary initial heading estimate. 
The change in position between the start and end of these steps was the X 
axis, and the Z axis was taken to be along the vertical. After estimating the 
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Y axis using cross product and updating the X axis using (6.3c), the initial 

3D GRF in a foot IMU defined frame 

 �̂�𝒙𝑖𝑖 =  �̂�𝒙𝑖𝑖
− + 𝑲𝑲𝑖𝑖 ⋅ (𝒛𝒛𝑖𝑖 − 𝑯𝑯 ⋅ �̂�𝒙𝑖𝑖

−)          (6.17b) 

𝑷𝑷𝑖𝑖 = (𝐈𝐈 − 𝑲𝑲𝑖𝑖 ⋅ 𝑯𝑯) ⋅ 𝑷𝑷𝑖𝑖
−     (6.17c) 

The state matrix and the error covariance matrix were updated with (6.17b) and (6.17c) 

respectively. 

 

Update States 
The orientation estimate and gyroscope bias were then updated. Singular value decomposition was 

used to maintain orthonormality of 𝑹𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠. The error state vector was reset for the next iteration 

using 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠,− ⋅ (𝐈𝐈 − �̃�𝜽𝜖𝜖,𝑖𝑖) (6.18[MRM(3]) 

and �̂�𝒃𝑖𝑖 = �̂�𝒃𝑖𝑖
− + 𝒃𝒃𝜖𝜖,𝑖𝑖. (6.19) 

 

Initialization 
The initial orientation error �̂�𝜽𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was assumed to be zero, and the initial gyroscope bias error �̂�𝒃𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

was estimated from gyroscope output while standing still. At the start of each step 𝑘𝑘, the 𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 

is known from the previous step. This is described in Section 6.2.5 (Current Step Frame). However, an 

estimate of 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 is needed for the first step ever made. For this, the EEKF is run once for a few 

steps with an arbitrary initial heading estimate. The change in position between the start and end of 

these steps was the X axis, and the Z axis was taken to be along the vertical. After estimating the Y axis 

using cross product and updating the X axis using (6.3c), the initial 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 was estimated using 

(6.3e).  

Estimating Ground Reaction Forces 
The accelerations measured at the pelvis IMU were transformed to the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1) using the estimated 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 for each step 𝑘𝑘. As these are assumed to be the same as the accelerations at the CoM, the 

GRF was estimated as the product of acceleration and body mass: 

𝑮𝑮𝑹𝑹𝑭𝑭𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ 𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝 .   (6.20) 

 

Current Step Frame 
The GRF has been expressed in the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1), and has to be transformed to 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) for the current step 

𝑘𝑘. For this, the change in orientation of the feet as well as their positions need to be known. An 

 was estimated using (6.3e). 

Estimating Ground Reaction Forces
The accelerations measured at the pelvis IMU were transformed to the ψcs(k-1)  
using the estimated 

3D GRF in a foot IMU defined frame 

 �̂�𝒙𝑖𝑖 =  �̂�𝒙𝑖𝑖
− + 𝑲𝑲𝑖𝑖 ⋅ (𝒛𝒛𝑖𝑖 − 𝑯𝑯 ⋅ �̂�𝒙𝑖𝑖

−)          (6.17b) 

𝑷𝑷𝑖𝑖 = (𝐈𝐈 − 𝑲𝑲𝑖𝑖 ⋅ 𝑯𝑯) ⋅ 𝑷𝑷𝑖𝑖
−     (6.17c) 

The state matrix and the error covariance matrix were updated with (6.17b) and (6.17c) 

respectively. 

 

Update States 
The orientation estimate and gyroscope bias were then updated. Singular value decomposition was 

used to maintain orthonormality of 𝑹𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠. The error state vector was reset for the next iteration 

using 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 =  �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠,− ⋅ (𝐈𝐈 − �̃�𝜽𝜖𝜖,𝑖𝑖) (6.18[MRM(3]) 

and �̂�𝒃𝑖𝑖 = �̂�𝒃𝑖𝑖
− + 𝒃𝒃𝜖𝜖,𝑖𝑖. (6.19) 

 

Initialization 
The initial orientation error �̂�𝜽𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was assumed to be zero, and the initial gyroscope bias error �̂�𝒃𝜖𝜖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

was estimated from gyroscope output while standing still. At the start of each step 𝑘𝑘, the 𝑹𝑹𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 

is known from the previous step. This is described in Section 6.2.5 (Current Step Frame). However, an 

estimate of 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 is needed for the first step ever made. For this, the EEKF is run once for a few 

steps with an arbitrary initial heading estimate. The change in position between the start and end of 

these steps was the X axis, and the Z axis was taken to be along the vertical. After estimating the Y axis 

using cross product and updating the X axis using (6.3c), the initial 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 was estimated using 

(6.3e).  

Estimating Ground Reaction Forces 
The accelerations measured at the pelvis IMU were transformed to the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1) using the estimated 

�̂�𝑹𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 for each step 𝑘𝑘. As these are assumed to be the same as the accelerations at the CoM, the 

GRF was estimated as the product of acceleration and body mass: 

𝑮𝑮𝑹𝑹𝑭𝑭𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ �̂�𝑹𝑖𝑖

𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 ⋅ 𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝 .   (6.20) 

 

Current Step Frame 
The GRF has been expressed in the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1), and has to be transformed to 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) for the current step 

𝑘𝑘. For this, the change in orientation of the feet as well as their positions need to be known. An 
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is known from the previous step. This is described in Section 6.2.5 (Current Step Frame). However, an 

estimate of 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑐𝑐𝑠𝑠𝑠𝑠 is needed for the first step ever made. For this, the EEKF is run once for a few 

steps with an arbitrary initial heading estimate. The change in position between the start and end of 

these steps was the X axis, and the Z axis was taken to be along the vertical. After estimating the Y axis 

using cross product and updating the X axis using (6.3c), the initial 𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
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The accelerations measured at the pelvis IMU were transformed to the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1) using the estimated 
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𝑐𝑐𝑐𝑐(𝑘𝑘−1),𝑝𝑝 for each step 𝑘𝑘. As these are assumed to be the same as the accelerations at the CoM, the 

GRF was estimated as the product of acceleration and body mass: 

𝑮𝑮𝑹𝑹𝑭𝑭𝑖𝑖
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Current Step Frame 
The GRF has been expressed in the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1), and has to be transformed to 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) for the current step 

𝑘𝑘. For this, the change in orientation of the feet as well as their positions need to be known. An 

              (6.20)

Current Step Frame
The GRF has been expressed in the ψcs(k-1), and has to be transformed to 
ψcs(k) for the current step k. For this, the change in orientation of the feet as 
well as their positions need to be known. An Extended Kalman filter (EKF) 
(Weenk et al., 2015) was used to track the foot positions. The states of this 
EKF were the velocity and position of each foot. Strapdown inertial navigation 
was used to track these states, and ZV and ZH updates were used to improve 
these estimations. As we are only interested in the change in position for a 
given step, the state vector was reset to zero before the next step.  

In order to define the ψcs for each step, we use the information about foot 
movement. For example, in Fig. 6.1, the right foot changes direction while 
making the step k. The following equations were used to derive the  ψcs and 
subsequently express the GRF in the ψcs frame:    

3D GRF in a foot IMU defined frame 

Extended Kalman filter (EKF) (Weenk et al., 2015) was used to track the foot positions. The states of 

this EKF were the velocity and position of each foot. Strapdown inertial navigation was used to track 

these states, and ZV and ZH updates were used to improve these estimations. As we are only interested 

in the change in position for a given step, the state vector was reset to zero before the next step.   

In order to define the 𝜓𝜓𝑐𝑐𝑐𝑐 for each step, we use the information about foot movement. For example, 

in Fig. 6.1, the right foot changes direction while making the step 𝑘𝑘. The following equations were used 

to derive the  𝜓𝜓𝑐𝑐𝑐𝑐 and subsequently express the GRF in the  𝜓𝜓𝑐𝑐𝑐𝑐 frame:     

𝑴𝑴 = [1 1 0] ⋅ 𝐈𝐈3×3          (6.21a) 

𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑 = 𝑴𝑴 ⋅ (𝒑𝒑𝒑𝒑𝒑𝒑𝑒𝑒𝑒𝑒𝑒𝑒 − 𝒑𝒑𝒑𝒑𝒑𝒑𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)   (6.21b) 

𝑎𝑎𝑥𝑥𝑋𝑋 = 𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑
‖𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑‖               (6.21c) 

𝑎𝑎𝑥𝑥𝑍𝑍 = [0 0 1]𝑇𝑇     (6.21d) 

𝑎𝑎𝑥𝑥𝑍𝑍 = 𝑎𝑎𝑥𝑥𝑋𝑋 × 𝑎𝑎𝑥𝑥𝑌𝑌      (6.21e) 

𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) = [𝑎𝑎𝑥𝑥𝑋𝑋 𝑎𝑎𝑥𝑥𝑌𝑌 𝑎𝑎𝑥𝑥𝑍𝑍].    (6.21f) 

Finally, 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘) = 𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) ⋅ (𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘−1))𝑘𝑘. (6.21g) 

The change in position in the horizontal XY plane (6.21a, 6.21b) between the start and end of 

this step, shown by the dotted line in Fig. 6.1, was the X axis of the new 𝜓𝜓𝑐𝑐𝑐𝑐 and was estimated from 

(6.21c). The vertical Z axis was defined as (6.21d). The Y axis of the pelvis was estimated using right 

hand thumb rule, as seen in (6.3d). The Z axis was then updated using (6.21e). The 𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) is 

given in (6.21f), which gives us the transformation to the new 𝜓𝜓𝑐𝑐𝑐𝑐 for the step 𝑘𝑘. This was redefined 

for every new step being made, and then we transformed the 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘−1) to the new 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) using 

(6.21g).  

 

Estimating Noise values 
The process and measurement noise were estimated from sensor specifications and static 

measurements. The measurement noise 𝒆𝒆𝑒𝑒𝑑𝑑 was fine-tuned manually by minimizing the root mean 

square of error between the 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘) from (6.21g) and the reference GRF. The 𝒆𝒆𝑒𝑒𝑑𝑑 turned out to vary 

slightly for different trials across participants, and an average value is reported here. The resulting 

noise values are tabulated in Table 6.2.  

                                      (6.21a)
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(6.21c). The vertical Z axis was defined as (6.21d). The Y axis of the pelvis was estimated using right 

hand thumb rule, as seen in (6.3d). The Z axis was then updated using (6.21e). The 𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) is 

given in (6.21f), which gives us the transformation to the new 𝜓𝜓𝑐𝑐𝑐𝑐 for the step 𝑘𝑘. This was redefined 
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The process and measurement noise were estimated from sensor specifications and static 

measurements. The measurement noise 𝒆𝒆𝑒𝑒𝑑𝑑 was fine-tuned manually by minimizing the root mean 

square of error between the 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘) from (6.21g) and the reference GRF. The 𝒆𝒆𝑒𝑒𝑑𝑑 turned out to vary 

slightly for different trials across participants, and an average value is reported here. The resulting 

noise values are tabulated in Table 6.2.  

                                             
(6.21c)

3D GRF in a foot IMU defined frame 

Extended Kalman filter (EKF) (Weenk et al., 2015) was used to track the foot positions. The states of 

this EKF were the velocity and position of each foot. Strapdown inertial navigation was used to track 

these states, and ZV and ZH updates were used to improve these estimations. As we are only interested 

in the change in position for a given step, the state vector was reset to zero before the next step.   

In order to define the 𝜓𝜓𝑐𝑐𝑐𝑐 for each step, we use the information about foot movement. For example, 

in Fig. 6.1, the right foot changes direction while making the step 𝑘𝑘. The following equations were used 

to derive the  𝜓𝜓𝑐𝑐𝑐𝑐 and subsequently express the GRF in the  𝜓𝜓𝑐𝑐𝑐𝑐 frame:     

𝑴𝑴 = [1 1 0] ⋅ 𝐈𝐈3×3          (6.21a) 

𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑 = 𝑴𝑴 ⋅ (𝒑𝒑𝒑𝒑𝒑𝒑𝑒𝑒𝑒𝑒𝑒𝑒 − 𝒑𝒑𝒑𝒑𝒑𝒑𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)   (6.21b) 

𝑎𝑎𝑥𝑥𝑋𝑋 = 𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑
‖𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑‖               (6.21c) 

𝑎𝑎𝑥𝑥𝑍𝑍 = [0 0 1]𝑇𝑇     (6.21d) 

𝑎𝑎𝑥𝑥𝑍𝑍 = 𝑎𝑎𝑥𝑥𝑋𝑋 × 𝑎𝑎𝑥𝑥𝑌𝑌      (6.21e) 

𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) = [𝑎𝑎𝑥𝑥𝑋𝑋 𝑎𝑎𝑥𝑥𝑌𝑌 𝑎𝑎𝑥𝑥𝑍𝑍].    (6.21f) 

Finally, 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘) = 𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) ⋅ (𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘−1))𝑘𝑘. (6.21g) 

The change in position in the horizontal XY plane (6.21a, 6.21b) between the start and end of 

this step, shown by the dotted line in Fig. 6.1, was the X axis of the new 𝜓𝜓𝑐𝑐𝑐𝑐 and was estimated from 

(6.21c). The vertical Z axis was defined as (6.21d). The Y axis of the pelvis was estimated using right 

hand thumb rule, as seen in (6.3d). The Z axis was then updated using (6.21e). The 𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) is 

given in (6.21f), which gives us the transformation to the new 𝜓𝜓𝑐𝑐𝑐𝑐 for the step 𝑘𝑘. This was redefined 

for every new step being made, and then we transformed the 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘−1) to the new 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) using 

(6.21g).  

 

Estimating Noise values 
The process and measurement noise were estimated from sensor specifications and static 

measurements. The measurement noise 𝒆𝒆𝑒𝑒𝑑𝑑 was fine-tuned manually by minimizing the root mean 

square of error between the 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘) from (6.21g) and the reference GRF. The 𝒆𝒆𝑒𝑒𝑑𝑑 turned out to vary 

slightly for different trials across participants, and an average value is reported here. The resulting 

noise values are tabulated in Table 6.2.  

                                        (6.21d)

3D GRF in a foot IMU defined frame 

Extended Kalman filter (EKF) (Weenk et al., 2015) was used to track the foot positions. The states of 

this EKF were the velocity and position of each foot. Strapdown inertial navigation was used to track 

these states, and ZV and ZH updates were used to improve these estimations. As we are only interested 

in the change in position for a given step, the state vector was reset to zero before the next step.   

In order to define the 𝜓𝜓𝑐𝑐𝑐𝑐 for each step, we use the information about foot movement. For example, 

in Fig. 6.1, the right foot changes direction while making the step 𝑘𝑘. The following equations were used 

to derive the  𝜓𝜓𝑐𝑐𝑐𝑐 and subsequently express the GRF in the  𝜓𝜓𝑐𝑐𝑐𝑐 frame:     

𝑴𝑴 = [1 1 0] ⋅ 𝐈𝐈3×3          (6.21a) 

𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑 = 𝑴𝑴 ⋅ (𝒑𝒑𝒑𝒑𝒑𝒑𝑒𝑒𝑒𝑒𝑒𝑒 − 𝒑𝒑𝒑𝒑𝒑𝒑𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)   (6.21b) 

𝑎𝑎𝑥𝑥𝑋𝑋 = 𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑
‖𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑‖               (6.21c) 

𝑎𝑎𝑥𝑥𝑍𝑍 = [0 0 1]𝑇𝑇     (6.21d) 

𝑎𝑎𝑥𝑥𝑍𝑍 = 𝑎𝑎𝑥𝑥𝑋𝑋 × 𝑎𝑎𝑥𝑥𝑌𝑌      (6.21e) 

𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) = [𝑎𝑎𝑥𝑥𝑋𝑋 𝑎𝑎𝑥𝑥𝑌𝑌 𝑎𝑎𝑥𝑥𝑍𝑍].    (6.21f) 

Finally, 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘) = 𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) ⋅ (𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘−1))𝑘𝑘. (6.21g) 

The change in position in the horizontal XY plane (6.21a, 6.21b) between the start and end of 

this step, shown by the dotted line in Fig. 6.1, was the X axis of the new 𝜓𝜓𝑐𝑐𝑐𝑐 and was estimated from 

(6.21c). The vertical Z axis was defined as (6.21d). The Y axis of the pelvis was estimated using right 

hand thumb rule, as seen in (6.3d). The Z axis was then updated using (6.21e). The 𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) is 

given in (6.21f), which gives us the transformation to the new 𝜓𝜓𝑐𝑐𝑐𝑐 for the step 𝑘𝑘. This was redefined 

for every new step being made, and then we transformed the 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘−1) to the new 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) using 

(6.21g).  

 

Estimating Noise values 
The process and measurement noise were estimated from sensor specifications and static 

measurements. The measurement noise 𝒆𝒆𝑒𝑒𝑑𝑑 was fine-tuned manually by minimizing the root mean 

square of error between the 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘) from (6.21g) and the reference GRF. The 𝒆𝒆𝑒𝑒𝑑𝑑 turned out to vary 

slightly for different trials across participants, and an average value is reported here. The resulting 

noise values are tabulated in Table 6.2.  

                                        (6.21e)
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3D GRF in a foot IMU defined frame 

Extended Kalman filter (EKF) (Weenk et al., 2015) was used to track the foot positions. The states of 

this EKF were the velocity and position of each foot. Strapdown inertial navigation was used to track 

these states, and ZV and ZH updates were used to improve these estimations. As we are only interested 

in the change in position for a given step, the state vector was reset to zero before the next step.   

In order to define the 𝜓𝜓𝑐𝑐𝑐𝑐 for each step, we use the information about foot movement. For example, 

in Fig. 6.1, the right foot changes direction while making the step 𝑘𝑘. The following equations were used 

to derive the  𝜓𝜓𝑐𝑐𝑐𝑐 and subsequently express the GRF in the  𝜓𝜓𝑐𝑐𝑐𝑐 frame:     

𝑴𝑴 = [1 1 0] ⋅ 𝐈𝐈3×3          (6.21a) 

𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑 = 𝑴𝑴 ⋅ (𝒑𝒑𝒑𝒑𝒑𝒑𝑒𝑒𝑒𝑒𝑒𝑒 − 𝒑𝒑𝒑𝒑𝒑𝒑𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)   (6.21b) 

𝑎𝑎𝑥𝑥𝑋𝑋 = 𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑
‖𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑‖               (6.21c) 

𝑎𝑎𝑥𝑥𝑍𝑍 = [0 0 1]𝑇𝑇     (6.21d) 

𝑎𝑎𝑥𝑥𝑍𝑍 = 𝑎𝑎𝑥𝑥𝑋𝑋 × 𝑎𝑎𝑥𝑥𝑌𝑌      (6.21e) 

𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) = [𝑎𝑎𝑥𝑥𝑋𝑋 𝑎𝑎𝑥𝑥𝑌𝑌 𝑎𝑎𝑥𝑥𝑍𝑍].    (6.21f) 

Finally, 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘) = 𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) ⋅ (𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘−1))𝑘𝑘. (6.21g) 

The change in position in the horizontal XY plane (6.21a, 6.21b) between the start and end of 

this step, shown by the dotted line in Fig. 6.1, was the X axis of the new 𝜓𝜓𝑐𝑐𝑐𝑐 and was estimated from 

(6.21c). The vertical Z axis was defined as (6.21d). The Y axis of the pelvis was estimated using right 

hand thumb rule, as seen in (6.3d). The Z axis was then updated using (6.21e). The 𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) is 

given in (6.21f), which gives us the transformation to the new 𝜓𝜓𝑐𝑐𝑐𝑐 for the step 𝑘𝑘. This was redefined 

for every new step being made, and then we transformed the 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘−1) to the new 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) using 

(6.21g).  

 

Estimating Noise values 
The process and measurement noise were estimated from sensor specifications and static 

measurements. The measurement noise 𝒆𝒆𝑒𝑒𝑑𝑑 was fine-tuned manually by minimizing the root mean 

square of error between the 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘) from (6.21g) and the reference GRF. The 𝒆𝒆𝑒𝑒𝑑𝑑 turned out to vary 

slightly for different trials across participants, and an average value is reported here. The resulting 

noise values are tabulated in Table 6.2.  

                 (6.21f)

Finally, 

3D GRF in a foot IMU defined frame 

Extended Kalman filter (EKF) (Weenk et al., 2015) was used to track the foot positions. The states of 

this EKF were the velocity and position of each foot. Strapdown inertial navigation was used to track 

these states, and ZV and ZH updates were used to improve these estimations. As we are only interested 

in the change in position for a given step, the state vector was reset to zero before the next step.   

In order to define the 𝜓𝜓𝑐𝑐𝑐𝑐 for each step, we use the information about foot movement. For example, 

in Fig. 6.1, the right foot changes direction while making the step 𝑘𝑘. The following equations were used 

to derive the  𝜓𝜓𝑐𝑐𝑐𝑐 and subsequently express the GRF in the  𝜓𝜓𝑐𝑐𝑐𝑐 frame:     

𝑴𝑴 = [1 1 0] ⋅ 𝐈𝐈3×3          (6.21a) 

𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑 = 𝑴𝑴 ⋅ (𝒑𝒑𝒑𝒑𝒑𝒑𝑒𝑒𝑒𝑒𝑒𝑒 − 𝒑𝒑𝒑𝒑𝒑𝒑𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)   (6.21b) 

𝑎𝑎𝑥𝑥𝑋𝑋 = 𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑
‖𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑‖               (6.21c) 

𝑎𝑎𝑥𝑥𝑍𝑍 = [0 0 1]𝑇𝑇     (6.21d) 

𝑎𝑎𝑥𝑥𝑍𝑍 = 𝑎𝑎𝑥𝑥𝑋𝑋 × 𝑎𝑎𝑥𝑥𝑌𝑌      (6.21e) 

𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) = [𝑎𝑎𝑥𝑥𝑋𝑋 𝑎𝑎𝑥𝑥𝑌𝑌 𝑎𝑎𝑥𝑥𝑍𝑍].    (6.21f) 

Finally, 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘) = 𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) ⋅ (𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘−1))𝑘𝑘. (6.21g) 

The change in position in the horizontal XY plane (6.21a, 6.21b) between the start and end of 

this step, shown by the dotted line in Fig. 6.1, was the X axis of the new 𝜓𝜓𝑐𝑐𝑐𝑐 and was estimated from 

(6.21c). The vertical Z axis was defined as (6.21d). The Y axis of the pelvis was estimated using right 

hand thumb rule, as seen in (6.3d). The Z axis was then updated using (6.21e). The 𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) is 

given in (6.21f), which gives us the transformation to the new 𝜓𝜓𝑐𝑐𝑐𝑐 for the step 𝑘𝑘. This was redefined 

for every new step being made, and then we transformed the 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘−1) to the new 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) using 

(6.21g).  

 

Estimating Noise values 
The process and measurement noise were estimated from sensor specifications and static 

measurements. The measurement noise 𝒆𝒆𝑒𝑒𝑑𝑑 was fine-tuned manually by minimizing the root mean 

square of error between the 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘) from (6.21g) and the reference GRF. The 𝒆𝒆𝑒𝑒𝑑𝑑 turned out to vary 

slightly for different trials across participants, and an average value is reported here. The resulting 

noise values are tabulated in Table 6.2.  

   
(6.21g)

The change in position in the horizontal XY plane (6.21a, 6.21b) between the 
start and end of this step, shown by the dotted line in Fig. 6.1, was the X axis of 
the new ψcs and was estimated from (6.21c). The vertical Z axis was defined as 
(6.21d). The Y axis of the pelvis was estimated using right hand thumb rule, as 
seen in (6.3d). The Z axis was then updated using (6.21e). The 

3D GRF in a foot IMU defined frame 

Extended Kalman filter (EKF) (Weenk et al., 2015) was used to track the foot positions. The states of 

this EKF were the velocity and position of each foot. Strapdown inertial navigation was used to track 

these states, and ZV and ZH updates were used to improve these estimations. As we are only interested 

in the change in position for a given step, the state vector was reset to zero before the next step.   

In order to define the 𝜓𝜓𝑐𝑐𝑐𝑐 for each step, we use the information about foot movement. For example, 

in Fig. 6.1, the right foot changes direction while making the step 𝑘𝑘. The following equations were used 

to derive the  𝜓𝜓𝑐𝑐𝑐𝑐 and subsequently express the GRF in the  𝜓𝜓𝑐𝑐𝑐𝑐 frame:     

𝑴𝑴 = [1 1 0] ⋅ 𝐈𝐈3×3          (6.21a) 

𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑 = 𝑴𝑴 ⋅ (𝒑𝒑𝒑𝒑𝒑𝒑𝑒𝑒𝑒𝑒𝑒𝑒 − 𝒑𝒑𝒑𝒑𝒑𝒑𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)   (6.21b) 

𝑎𝑎𝑥𝑥𝑋𝑋 = 𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑
‖𝛿𝛿𝒑𝒑𝒑𝒑𝒑𝒑‖               (6.21c) 

𝑎𝑎𝑥𝑥𝑍𝑍 = [0 0 1]𝑇𝑇     (6.21d) 

𝑎𝑎𝑥𝑥𝑍𝑍 = 𝑎𝑎𝑥𝑥𝑋𝑋 × 𝑎𝑎𝑥𝑥𝑌𝑌      (6.21e) 

𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) = [𝑎𝑎𝑥𝑥𝑋𝑋 𝑎𝑎𝑥𝑥𝑌𝑌 𝑎𝑎𝑥𝑥𝑍𝑍].    (6.21f) 

Finally, 𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘) = 𝑹𝑹𝑘𝑘
𝑐𝑐𝑐𝑐(𝑘𝑘),𝑐𝑐𝑐𝑐(𝑘𝑘−1) ⋅ (𝑮𝑮𝑹𝑹𝑭𝑭𝑐𝑐𝑐𝑐(𝑘𝑘−1))𝑘𝑘. (6.21g) 
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 from 
(6.21g) and the reference GRF. The edV turned out to vary slightly for different 
trials across participants, and an average value is reported here. The resulting 
noise values are tabulated in Table 6.2. 

Filtering Estimated Ground Reaction Forces
The estimated 3D GRF was found to have certain sharp peaks around foot 
contact instances, possibly due to foot impact. Different methods to selectively 
remove these peaks were tested. This resulted in an adaptive peak removal 
algorithm. In this method, first, the peaks were identified by finding the local 
minima or maxima around the foot contact. Then, a Savitsky Golay smoothing 
filter (Orfanidis, 2010) of order 3 was used to smooth the signal around 
this peak and suppress it. Following this, a power spectral density analysis 
showed that each axis had different noise levels at different frequency bands. 
Therefore, a zero phase band pass Butterworth filter of order 4 and bandwidth 
of 0.1 – 5 Hz and 0.1 – 3 Hz was used for the X and Y axis respectively, in order 
to account for high frequency noise as well as any offset errors. However, the 
Z axis was filtered using a zero phase Butterworth low pass filter of order 4. 
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TABLE 6.2 Standard Deviations of the Gaussian Noises used.

eG eb edV

rad/s rad/s rad/s

1 · 10-2 1 · 10-4 1 · 102

6.2.6. Measurement System 
Three Xsens™ MTw IMUs were used (Fig. 6.4). The MT Manager (version 4.8) 
software was used to read the data from the IMU wirelessly, sampled at 100 Hz.  

The reference system seen in Fig. 6.4 was the ForceShoes™ which consists 
of 6 DoF Force and Moment sensor, and an IMU under each toe and heel of 
both feet (Veltink et al., 2005). It has been validated against force plates 
(AMTI®) for measurement of contact forces (Schepers et al., 2009). Although 
portable, it is bulky and not comfortable for every-day use (Liedtke et al., 
2007). However, it is a good wearable reference system for this study. The data 
were sent wirelessly to a PC, sampled at 100 Hz. It was then low pass filtered 
twice at 10 Hz using a second order Butterworth filter to ensure zero-phase lag. 
The measured GRF on each foot was summed to obtain the total GRF, which 
reflected the accelerations at the CoM (Schepers et al., 2009). The GRF was 
then transformed to the ψcs as defined in Section 6.2.5 (Current Step Frame). 

6.2.7. Participants
Eight healthy participants were recruited for the study. The average and 
standard deviation of the height, weight, and age was 1.78 ± 0.1 m, 76.4 ± 
12.5 kg, and 26.7 ± 3.8 years respectively. Six participants were male. Leg 
length was measured from the greater trochanter to the ground (Hof, 1996) 
and was 0.94 ± 0.06 m. All participants signed an informed consent before 
the experiment. The study was conducted in accordance with the Declaration 
of Helsinki, and the protocol was approved by the Ethical Committee of the 
faculty. 

6.2.8 Experimental Protocol
The participants began by standing still for a few seconds, following which 
they were asked to bend the trunk forward thrice. This was used to calibrate 
the sensor to segment orientation for the pelvis sensor as seen in (6.3b).  
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Figure 6.4 Three Xsens™ IMUs (in orange) were used as part of the Portable Gait Lab. One was 
placed at the back of the pelvis using a strap and mounted on the sacrum at the midway point 
between the line connecting the left and right posterior superior iliac spine. The other two IMUs 
were placed on top of each foot on the midfoot region. The reference ForceShoes™ is seen in the 
right image which consists of 6 DoF Force and Moment sensors that measure ambulatory ground 
reaction forces. 

The participants were then asked to perform variable gait starting with their 
feet placed parallel. Once the researcher gave the start sign, the participant 
walked along a given path. The time taken between start and stop of the 
walking was measured using a stopwatch. The following walking tasks were 
performed one after the other, with each task repeated four times: 

• Normal Walk (NW): The participant was asked to walk at his preferred 
walking speed for 10 m.

• L Walk (LW): The participant was asked to walk for 15 m and then turn 
90o to the right and walk for another 10 m.

• Slow Walk (SW): The participant was asked to walk at a slower pace. They 
were guided by the use of a metronome beating at 50 beats per minute. 
Each beat corresponded to a heel strike. This frequency was used so that 
the participants walked slower than 0.6 m/s.

• Walk and Turn (WT): The participant was asked to walk for 10 m and then 
turn and walk back to start position. 

• Slalom Walk (SlW): The participant was asked to walk in a slalom pattern. 
In order to guide them, two pylons were placed on the floor. These were 
placed slightly away and on either sides of an imaginary line from start 
to end.   
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• Asymmetric Walk (AW): In this task, the participant was asked to walk in 
an asymmetric manner. The instruction given was to induce a stiff left 
knee and abduct the hip as much as possible on the right side.

6.2.9. Analysis of Results
First, an example of the estimations of GRF in 3D using the EEKF (GRFKF) and 
that of the ForceShoes™ (GRFFS) is shown in the current step frame ψcs. There 
were some noisy peaks in the GRFKF, which were removed, and an example of 
the post processed results are displayed. Then, the root mean square of the 
differences between the post-processed instantaneous GRFKF and GRFFS were 
studied across different walking tasks. Following this, Pearson’s correlations 
and its significance were analysed. The difference in the angle of estimated 
GRF vectors from the reference in the horizontal plane was also measured. 
All analyses were done in MATLAB® 2018b (MathWorks, Natick, MA, USA).

6.3. RESULTS

Some trials were excluded from the analysis due to issues with the reference 
system. However, each participant had at least three walking trials per task. 
The average walking speed measured for the included trials of NW task was 
1.01 ± 0.12 m/s, LW was 1.14 ± 0.14 m/s, SW was 0.47 ± 0.07 m/s, WT was 0.98 
± 0.19 m/s, during SlW was 0.89 ± 0.11 m/s, and during AW was 0.52 ± 0.17 m/s.  

An example of the estimated GRFKF  in the current step frame ψcs is seen in 
Fig. 6.5, along with the reference GRFFS. The figure is a five second snapshot 
of the walking trajectory. It shows peaks in GRFKF  specifically around foot 
contact. They were removed using the method described in Section 6.2.5 
(Filtering Estimated Ground Reaction Forces) and this results in Fig. 6.6. Note 
that Fig. 6.6 shows the complete LW task, including the starting and stopping 
of the task, and also turning.

In Table 6.3, we compare the post-processed instantaneous GRFKF and 
reference GRFFS, for all walking tasks. The table shows the Root Mean Square 
(RMS) of differences as a percentage of body weight, correlations (CORR), 
and also differences in 2D GRF vector angle in the XY plane (θd) between 
the GRFKF and GRFFS. The average RMS and CORR across all participants 
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are displayed along with their standard deviations. The range of the GRF for 
the respective axes is also provided in the table. The CORR was found to be 
significant for all walking tasks. 

6.4. DISCUSSION

This study is the first to estimate 3D GRF over a complete gait using a pelvis 
IMU for different gait patterns. It has to be noted that the foot IMUs were not 
used to estimate the 3D GRF during gait, rather they were used to estimate 
the current step frames per step. Using a changing frame has two advantages. 
First, it provides a user centric expression of the kinetics convenient for real 
time gait assessment. Secondly, they could also be compared with similar 
estimations made by the reference ForceShoes™. Nevertheless, it is possible 
to estimate the changing reference frame using only the pelvis IMU. For this, 
first, gait events should be detected using the measurements of the pelvis IMU 
(Pacini Panebianco et al., 2018). Then, during each gait cycle, the change in 
CoM positions can be estimated using strapdown integration with arbitrary 
initial and final values (Floor-Westerdijk et al., 2012; Zok et al., 2004). The 
change in CoM positions would be the X axis, and the vertical would define 
the Z axis of this new changing reference frame mentioned in Section 6.2.1. 

Estimations of the shear GRF are the most challenging using the single IMU 
approach (Ancillao et al., 2018; Shahabpoor and Pavic, 2018). This is due to 
the large contribution of gravity, and the assumption that CoM lies at the 
centre of the pelvis. The EEKF was tuned to be able to resolve the accelerations 
measured at the pelvis into 3D components of the GRF within the current step 
frame ψcs. Assuming that the CoM accelerations along the vertical measured 
inclination due to gravity seemed to be a sufficient measurement update. 
However, the resulting GRF was found to have high frequency noise in the 
three axes. Additionally, there were peaks seen during foot impact, as shown 
in Fig. 6.5. These peaks during foot contact could be due to impact impulse, 
or soft tissue artefacts, or that the CoM accelerations deviate further from the 
measured pelvis accelerations. These peaks were more conspicuous in the Y 
or the medio-lateral axis. 
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Therefore, to improve the estimations, adaptive peak removal and filtering 
methods were applied. Fig. 6.6 shows the post processed output of the GRFKF 
and the reference GRFFS for the LW task. Here, the participant was asked 
to make a right turn, and the moment this occurs is denoted by a shaded 
rectangle. We see that after the turn, the X and Y axis measure the anterio-
posterior and medio-lateral GRF respectively, similar to that before the turn. 
As the frame used here is defined by the direction of steps being made, the 
profiles of Fx and Fy remain unchanged after the turn. However, if a fixed 
global frame denoted as ψg in Fig. 6.1 was used, the axes would have been 
interchanged. Thus, the ψcs(k)  represents the biomechanics of the body 
irrespective of the change in walking direction. Fig. 6.1 also shows that the 
error is relatively larger for the Fy, and more so during the right turn. 

Table 6.3 shows that the RMS between the GRFKF  and the reference GRFFS is 
quite low, less than 7.4 ± 2.3 % of body weight in the worst case. On average, 
the normalized root mean square error expressed as percent of range of the 
reference measurement (NRMSE) was 12.1 ± 3.3 % for the horizontal plane, 
which is better than previous studies (Gurchiek et al., 2017). It is similar 
to findings of Leporace and colleagues (Leporace et al., 2015) who found 
an average NRMSE of 9.3 ± 6.4 % in the horizontal plane. They employed a 
shank IMU and single multilayer perceptron to obtain the 3D GRF. However, 
comparing only the vertical, we found that the average NRMSE across 
different walking tasks was 10.2 ± 1.2 % as compared to 4.2 ± 1.1 % found by 
Shahabpoor and colleagues (Shahabpoor and Pavic, 2018). The reference study 
was able to obtain a better estimation of the vertical GRF for each gait cycle 
using a dynamic time warping method. On the other hand, in spite of a larger 
error margin, the current study estimated the instantaneous GRF during the 
complete gait, including starting and stopping of walking. 

Table 6.3 also allows comparison with the actual range of the GRF measured 
using the reference system. This shows that the errors in Y axis are relatively 
larger compared to that of the other axes. We find that the correlations were 
highest for the X and Z axis, except for Z axis of SW task. The AW task shows 
least correlations as compared to the other walking tasks. This task was 
meant to simulate impaired gait and is not a standardized test. Though, the 
participants were given instructions to walk asymmetrically, each of them 
chose a unique pattern. However, the results show that the algorithm can 

6
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be used to measure 3D GRF in a simulated asymmetric gait. Additionally, θd 
shows quite some differences in the XY plane, which could be attributed to 
the low correlations in the Y axis. 

The errors seen in Table 6.3 could be caused by differences in transforming the 
GRFKF and the reference GRFFS to their respective ψcs(k)  frames. One source 
of difference is that the IMUs used in this study were placed on top of the 
mid-foot, whereas the ForceShoes™ had IMUs under the toe region. Also, the 
reference system used the forces measured by the ForceShoes™ to determine 
foot contact. In the IMU only setup, some approximations were required for 
the true instances of foot contact. 

Each step was first expressed in the previous step frame before transforming 
it to the ψcs. Alternatively, they could have been estimated in the global frame 
ψg, and then transformed to the ψcs. However, as the rotation between the ψcs 
of each subsequent step is known, the GRF can be expressed in the current step 
frame of any specific step m of choice. This may be used to visualize changes 
in shear forces between subsequent steps. 

Limitations and Future Work
The GRF estimated in this study is the sum of the GRF acting under both feet. 
If required, a smooth transition assumption could be used to resolve the 3D 
GRF into forces acting under each foot (Karatsidis et al., 2016). In this study, 
the IMU was placed at the pelvis, which is less susceptible to orientation or 
placement errors (Tan et al., 2019), when compared to the trunk. Furthermore, 
the errors associated with the assumption that the CoM lies within the centroid 
of the pelvis might be larger when we consider people with an unconventional 
or asymmetrical body posture. Modelling deviations between the true CoM 
and the placement of the IMU would help improve the results (Floor-Westerdijk 
et al., 2012). The participant was asked to bend forward to calibrate a sensor to 
segment orientation for the pelvis sensor. However, this could be avoided by 
exploring simpler calibration methods based on the user’s daily life functional 
movements, such as squatting or sit to stand. The algorithm needs to be run 
with an arbitrary initialization before it can converge to the optimal solution. 
In actual practice, this means that the participant has to make a few physical 
steps before output is produced. 



171

3D GRF in a foot IMU defined frame

As Xsens™ IMUs were used, well defined error specifications were available 
to initialise the EEKF. Further, the three IMUs were synchronized well. Any 
mismatch would have caused errors in the estimation of the current step 
frames, which would be reflected in the estimated GRF. Therefore, good 
communication protocols are required. Furthermore, identifying foot contact 
using IMU signals (Skog et al., 2010) might be susceptible to errors. As we are 
interested at instances where the foot is completely still, we opted to use the 
midpoint of the foot contact. However, gait event detection can be further 
improved using other techniques (Pacini Panebianco et al., 2018). 

The setup has to be further validated in other variable walking instances such 
as walking on an incline or stair climbing. The AW task performed in this study 
may not be similar to gait patterns exhibited by gait impaired populations. 
The same argument holds for rapid walking or running scenarios. Therefore, a 
similar experiment shown in this study for gait impaired populations and other 
gait variations must be performed as a follow up. Finally, the measurements 
were done when no external loads were acting on the body. Modelling an 
external load is not trivial, and its contribution to the GRF has to be measured 
with additional sensors. 

As a next step, the 3D components of GRF can be used to estimate the inter-
foot distances during gait (Chapter V, Equations (5.6) and (5.7)) following 
a Centroidal Moment Pivot assumption. This can reduce drift when using a 
three IMU setup to track the feet and CoM over time, and also during variable 
gait. Thus, the findings of this article can be useful to estimate relative foot 
positions. This will be described in Chapter IX.

6.5. CONCLUSIONS

We show how to monitor 3D GRF in an ambulatory manner using a pelvis IMU. 
Foot IMUs were used to express the measured GRF with respect to the moving 
and turning body. The steps made for this study are useful for developing a 
minimized and portable gait lab.

6
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ABSTRACT

As an alternative to force plates, an Inertial Measurement Unit (IMU) at the 
pelvis can offer an ambulatory method for measuring total Centre of Mass 
(CoM) accelerations and, thereby, the Ground Reaction Forces (GRF) during 
gait. The challenge here is to estimate the 3D components of the GRF. We 
employ a calibration procedure and an error state extended Kalman filter based 
on Chapter VI to estimate the instantaneous 3D GRF for different over-ground 
walking patterns. The GRF were then expressed in a body-centric reference 
frame defined using only the information from the pelvis IMU, to enable an 
ambulatory setup not related to a fixed global frame. The results were validated 
with ForceshoesTM, and the average error in estimating instantaneous shear 
GRF was 5.2 ± 0.5 % of body weight across different variable over-ground 
walking tasks. The study shows that a single pelvis IMU can measure 3D GRF 
in a minimal and ambulatory manner during over-ground gait.
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7.1. INTRODUCTION

Measuring kinetics of gait such as 3D Ground Reaction Forces (GRF) includes 
estimating the vertical and shear forces acting on the body during gait. The 
total GRF acting on the body, and its derived parameters related to the Centre 
of Mass (CoM) such as dynamic balance and stability measures (van Meulen et 
al., 2016c), can be helpful in understanding gait quality (Bruijn and van Dieën, 
2018). Therefore, measuring GRF is useful in studying healthy gait, as well as 
sports biomechanics (Komaris et al., 2019; Wouda et al., 2018) and recovery 
in gait impaired populations (van Meulen et al., 2016c).

Unfortunately, the reliable estimation of GRF requires expensive measurement 
setups such as force plates. These may be installed under the floor or 
incorporated into treadmills. In either case, they either measure limited 
strides or restrict the movement space of the participant. It is therefore useful 
to explore wearable setups that allow freedom of movement, while providing 
reliable estimates of the GRF during gait or variable walking. Wearable 
alternatives (Chen et al., 2016) to these restricted laboratory setups include 
systems such as ForceshoesTM (Schepers et al., 2009) and pressure insoles 
(Chapter IV), although each of them are associated with their respective 
drawbacks. ForceshoesTM are bulky (Liedtke et al., 2007), and pressure insoles 
require additional analytical or machine-learning-based models to extract the 
3D GRF (Chapter IV) (Forner Cordero et al., 2004).

Assuming a simple inverted pendulum gait model, GRF can be considered 
equal and opposite to the weight plus mass times linear accelerations at 
the CoM (CoMacc) (Hof et al., 2005), given no additional external forces are 
present. Therefore, if we can measure the CoMacc, we can estimate the GRF. 
Note that here, the GRF are the sum of all forces acting on the body, which is 
the sum of reactive forces at both feet, provided no additional contact with the 
environment. As Inertial Measurement Units (IMUs) measure accelerations of 
the segment they are attached to, the GRF acting on the body can be estimated 
either using a biomechanical model (Chapter VI) (Karatsidis et al., 2016) or 
machine learning techniques (Ancillao et al., 2018; Komaris et al., 2019; Revi 
et al., 2020). Ancillao and colleagues (Ancillao et al., 2018) summarize several 
of these methods and find that they either estimate only the vertical GRF using 

7
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a minimal setup or estimate the shear forces using machine learning methods 
or an array of several IMUs. The drawback of using machine learning methods 
includes the need for a representative training dataset. A minimal set of IMUs, 
combined with biomechanical models of gait is, therefore, a preferred setup 
for ambulatory sensing of 3D GRF.

In the previous chapter (Chapter VI), we estimated the instantaneous 3D GRF 
during over-ground gait using a pelvis IMU expressed in a body-centric frame. 
We first identified the pelvis segment frame (ψp) using a bowing calibration 
method (Bonnet et al., 2009). Assuming that the CoM is encompassed within 
the pelvis, an Error Extended Kalman Filter (EEKF) was designed to track 
the change in orientation of the CoMacc during each step. IMUs placed on 
either foot were used to detect gait events and, additionally, provide the body-
centric frame of reference. The heading for the reference frame was estimated 
using the movement of the feet, thereby avoiding the use of magnetometers. 
This avoids the handling of distortions induced due to measurement of 
magnetic field (Fan et al., 2018). The body-centric frame provides a first person 
perspective, irrespective of the measurement setup, and thereby a functional 
representation of the gait, unlike a fixed global frame (Rebula et al., 2013). 
The average error across all walking tasks was 6 ± 1% Body Weight (BW). 
In Chapter VI, although 3D GRF were estimated using the pelvis IMU, the 
estimation of the body-centric frame (ψcs) required the use of foot IMUs. An 
ideal next step would be to estimate a body-centric frame using the pelvis 
IMU instead of the foot IMUs, in order to enable a minimal wearable setup.

Therefore, in this study, our goal is to use a pelvis IMU to measure 3D GRF 
during over-ground gait and express it in a body-centric frame also defined 
using the pelvis IMU. Ergo, we first estimate 3D GRF using methods from 
Chapter VI, and additionally, detect gait events, and a body-centric reference 
frame using information from the pelvis IMU. Different methods can be 
employed to estimate the heading for a body-centric frame using a pelvis 
IMU. For instance, the heading of the frame could be defined along the average 
pelvis acceleration over a few steps. However, validating this approach with 
reference setups is non-trivial. Change in CoM position could be used to define 
the heading, but it requires deriving the position from pelvis accelerations 
while correcting for drift, thereby introducing additional complexities. In 
this study, the heading of the body-centric frame was estimated using the 
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direction of the high frequency CoM velocity (CoMvel). This approach was 
easier to validate with reference setups and less complex compared to the 
other approaches. The estimations of 3D GRF were then validated using 
reference setups and results from Chapter VI and literature.

7.2. MATERIALS AND METHODS

In this section, we first show the estimation of gait events using a pelvis 
IMU in Section 7.2.1, following which, we define the body-centric reference 
frame in Section 7.2.2. Then, in Section 7.2.3 we summarize the method used 
to estimate the GRF from the pelvis IMU. In Section 7.2.4, we describe the 
measurement setup and then the experimental protocol in Section 7.2.5. 
Finally, Section 7.2.6 summarizes the analysis that will be performed on the 
data.

7.2.1 Initial Contact Detection
Studies have investigated heuristic approaches to detect gait events using only 
a pelvis IMU (González et al., 2010; Hyo-Ki Lee et al., 2009; Pacini Panebianco 
et al., 2018; Sabatini et al., 2005). We employ a simple approach using the 
accelerations measured in the pelvis frame (ψp). The ψp frame was estimated 
from a forward bowing calibration method (Chapter VI). A second order zero 
phase Butterworth filter of cut off 2 Hz was used to low pass filter the sensor 
accelerations, which were transformed to ψp. The magnitude of the resulting 
signal was de-trended, and the peaks in the signal, which had a prominent 
height of at least 0.2 m/s2, were considered to be Initial Contact (IC) moments. 
Subsequently, we defined a step as the instance between two ICs.

7.2.2 Reference Frames Used
Here, we describe the definition of the body-centric frame. This frame is 
referred to in this study as the IC frame ψic. The ψic frame is similar to the 
current step frame ψcs (Chapter VI), but relies only on information from the 
pelvis IMU. Fig. 7.1 graphically defines the IC frame ψic. The heading of the 
ψic frame was defined using the direction of CoMvel estimated from the pelvis 
IMU during a step. The X axis of this frame is positive in the forward direction, 
and the Z axis lies along the vertical. The ψic was redefined per step, and the 
3D GRF were transformed to this frame.

7
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Figure 7.1 Graphical interpretation of the reference frames. The left foot is light blue, and the 
centre of mass (CoM) trajectory is the thin grey line. Instead of a fixed global frame ψg, an in-
itial contact frame ψic(k), which depends on the direction of the CoM velocity vector in step k, 
is employed.

The steps required to estimate the ψic are shown in Fig. 7.2. Table 7.1 lists 
the different notations employed in this study. The pelvis IMU measures 
accelerations (y s

A) and angular velocities (y s
G) in the sensor frame ψs. As 

mentioned earlier, the data were transformed to the pelvis frame ψp, which 
was defined using the bowing calibration method (Chapter VI). Then, during 
step k, an EEKF  was designed to track the change in orientation (Ri

ic(k-1),p) of 
the pelvis with respect to a predefined frame ψic(k-1) for a given sample i. This 
EEKF is described in detail in Chapter VI. The states tracked by the filter were 
orientation error θϵ and gyroscope bias error bϵ. The change in orientation 
was first tracked with respect to a previous step k – 1, and then, using the 
change in orientation in step k, the current IC frame ψic(k) was estimated. 
The orientation estimated by integrating the angular velocity was corrected 
by inclination information derived from the accelerometer. The Ri

ic(k-1),p was 
estimated using (Weenk et al., 2015):

R̂i
ic(k-1),p = R̂i

ic(k-1),p,– (I— θ~ϵ)                                     (7.1)

We assumed the initial orientation error θ̂ϵ,init to be zero. The initial  
gyroscope bias error b̂ϵ,init  was measured from gyroscope data when the 
participants were standing still. Note that Ric(k-1),p is known at the beginning 
of each step k, as it would have been estimated using the EEKF in the previous 
step. However, an estimate of Rinit

ic(k-1),p  is needed for the first step ever made. 
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For this, the EEKF is run once for a few steps with an arbitrary initial heading 
estimate. After this, the change in orientation was used to estimate Rinit

ic(k-1),p 
using methods in Chapter VI.

Figure 7.2 Overview of the method used to estimated 3D Ground Reaction Forces (GRF): the error 
extended Kalman filter (Chapter VI) tracks the orientation error θϵ and gyroscope bias error bϵ, 
to estimate the Ri

ic(k-1),p for each step. Then, Rstep
ic(k),ic(k-1) was estimated using the direction 

of CoM velocity.

Table 7.1 Notations used, shown for an arbitrary vector a.

Notation Definition

ak a at k-th instant 

as a expressed in frame ψs

a· derivative of a 

â a posteriori estimate of a

a- a priori estimate of a

a~ skew symmetric operator on a

ea Gaussian white noise associated with a

7
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In the following equations, we describe how the ψic frame is defined for each 
step: 

 

�̂�𝒂 a posteriori estimate of a  

𝒂𝒂− a priori estimate of a  

�̃�𝒂 skew symmetric operator on a  

𝒆𝒆𝑎𝑎 Gaussian white noise associated with a  

 

In the following equations, we describe how the 𝜓𝜓𝑖𝑖𝑖𝑖 frame is defined for each step:  

𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘−1) =  �̂�𝐑𝑖𝑖

𝑖𝑖𝑖𝑖(𝑘𝑘−1),𝑝𝑝 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝  

(7.2

[MRM(1]) 

𝑋𝑋 = 𝐶𝐶𝐶𝐶𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚
‖𝐶𝐶𝐶𝐶𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚‖ (7.3) 

𝑍𝑍 = [0 0 1]𝑇𝑇 (7.4) 

𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) = [𝑋𝑋 𝑍𝑍 × 𝑋𝑋 𝑍𝑍] (7.5) 

Pelvis accelerations in each step are first expressed in 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘−1) (7.2) as 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) and must be 

transformed to 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘). Using arbitrary initial and final conditions, 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) was high-pass filtered 

using a second order zero phase Butterworth filter with a cut off of 2 Hz to obtain the high frequency 

CoMvel. Then, during step k, the time instance m was selected when the magnitude of CoMvel vector 

was highest in the XY plane. At this time, instance m, the direction of the velocity vector in the XY 

plane, was defined using (7.3) below. This was the heading or X axis for 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘). After assuming that 

the Z axis lies along the vertical in (7.4), the 𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) was determined in (7.5). This was redefined 

for each step, resulting in a 𝜓𝜓𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠𝑣𝑣𝑝𝑝) per step. Note that, in this study, a step is the instance between 

subsequent ICs. 

3. Estimating Ground Reaction Forces 

The accelerations 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) in frame 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘−1) from (7.2) were transformed to the frame 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘) using 

𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) per step k as: 

𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘) =  𝐑𝐑𝑘𝑘

𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘−1)[MRM(2]. (7.6) 

𝐆𝐆𝐑𝐑𝐆𝐆𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖

𝑖𝑖𝑖𝑖(𝑘𝑘). (7.7) 

   (7.2)

Equations for replacement 

Eq 7.3 

𝑋𝑋 = 𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚
‖𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚‖ 

Eq 6.1 and 9.1 

   𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝐠𝐠𝑠𝑠 + 𝒆𝒆𝐴𝐴 

Eq 9.4 

 

�̂�𝒂𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘) =  𝑹𝑹𝑘𝑘

𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  �̂�𝒂𝑖𝑖

𝑠𝑠𝑣𝑣𝑠𝑠) (9.4) 

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅   (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠  +  𝐠𝐠𝑠𝑠𝑣𝑣𝑠𝑠 ) )    

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠 +  𝐠𝐠𝑐𝑐𝑠𝑠(𝑘𝑘−1))    

 

9.11a 

𝒛𝒛𝑧𝑧ℎ  =   𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓    

9.11b 

�̂�𝒛𝑧𝑧ℎ  = 𝑯𝑯𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ 

    (7.3)

 

�̂�𝒂 a posteriori estimate of a  

𝒂𝒂− a priori estimate of a  

�̃�𝒂 skew symmetric operator on a  

𝒆𝒆𝑎𝑎 Gaussian white noise associated with a  

 

In the following equations, we describe how the 𝜓𝜓𝑖𝑖𝑖𝑖 frame is defined for each step:  

𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘−1) =  �̂�𝐑𝑖𝑖

𝑖𝑖𝑖𝑖(𝑘𝑘−1),𝑝𝑝 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝  

(7.2

[MRM(1]) 

𝑋𝑋 = 𝐶𝐶𝐶𝐶𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚
‖𝐶𝐶𝐶𝐶𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚‖ (7.3) 

𝑍𝑍 = [0 0 1]𝑇𝑇 (7.4) 

𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) = [𝑋𝑋 𝑍𝑍 × 𝑋𝑋 𝑍𝑍] (7.5) 

Pelvis accelerations in each step are first expressed in 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘−1) (7.2) as 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) and must be 

transformed to 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘). Using arbitrary initial and final conditions, 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) was high-pass filtered 

using a second order zero phase Butterworth filter with a cut off of 2 Hz to obtain the high frequency 

CoMvel. Then, during step k, the time instance m was selected when the magnitude of CoMvel vector 

was highest in the XY plane. At this time, instance m, the direction of the velocity vector in the XY 

plane, was defined using (7.3) below. This was the heading or X axis for 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘). After assuming that 

the Z axis lies along the vertical in (7.4), the 𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) was determined in (7.5). This was redefined 

for each step, resulting in a 𝜓𝜓𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠𝑣𝑣𝑝𝑝) per step. Note that, in this study, a step is the instance between 

subsequent ICs. 

3. Estimating Ground Reaction Forces 

The accelerations 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) in frame 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘−1) from (7.2) were transformed to the frame 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘) using 

𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) per step k as: 

𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘) =  𝐑𝐑𝑘𝑘

𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘−1)[MRM(2]. (7.6) 

𝐆𝐆𝐑𝐑𝐆𝐆𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖

𝑖𝑖𝑖𝑖(𝑘𝑘). (7.7) 

     (7.4)

 

�̂�𝒂 a posteriori estimate of a  

𝒂𝒂− a priori estimate of a  

�̃�𝒂 skew symmetric operator on a  

𝒆𝒆𝑎𝑎 Gaussian white noise associated with a  

 

In the following equations, we describe how the 𝜓𝜓𝑖𝑖𝑖𝑖 frame is defined for each step:  

𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘−1) =  �̂�𝐑𝑖𝑖

𝑖𝑖𝑖𝑖(𝑘𝑘−1),𝑝𝑝 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝  

(7.2

[MRM(1]) 

𝑋𝑋 = 𝐶𝐶𝐶𝐶𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚
‖𝐶𝐶𝐶𝐶𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚‖ (7.3) 

𝑍𝑍 = [0 0 1]𝑇𝑇 (7.4) 

𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) = [𝑋𝑋 𝑍𝑍 × 𝑋𝑋 𝑍𝑍] (7.5) 

Pelvis accelerations in each step are first expressed in 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘−1) (7.2) as 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) and must be 

transformed to 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘). Using arbitrary initial and final conditions, 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) was high-pass filtered 

using a second order zero phase Butterworth filter with a cut off of 2 Hz to obtain the high frequency 

CoMvel. Then, during step k, the time instance m was selected when the magnitude of CoMvel vector 

was highest in the XY plane. At this time, instance m, the direction of the velocity vector in the XY 

plane, was defined using (7.3) below. This was the heading or X axis for 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘). After assuming that 

the Z axis lies along the vertical in (7.4), the 𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) was determined in (7.5). This was redefined 

for each step, resulting in a 𝜓𝜓𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠𝑣𝑣𝑝𝑝) per step. Note that, in this study, a step is the instance between 

subsequent ICs. 

3. Estimating Ground Reaction Forces 

The accelerations 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) in frame 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘−1) from (7.2) were transformed to the frame 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘) using 

𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) per step k as: 

𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘) =  𝐑𝐑𝑘𝑘

𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘−1)[MRM(2]. (7.6) 

𝐆𝐆𝐑𝐑𝐆𝐆𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖

𝑖𝑖𝑖𝑖(𝑘𝑘). (7.7) 

   (7.5)

Pelvis accelerations in each step are first expressed in ψic (k-1) (7.2) as yA
ic(k-1) 

and must be transformed to
 
ψic(k). Using arbitrary initial and final conditions,  

yA
ic(k-1) was high-pass filtered using a second order zero phase Butterworth 

filter with a cut off of 2 Hz to obtain the high frequency CoMvel. Then, during 
step k, the time instance m was selected when the magnitude of CoMvel vector 
was highest in the XY plane. At this time, instance m, the direction of the 
velocity vector in the XY plane, was defined using (7.3) below. This was the 
heading or X axis for ψic(k). After assuming that the Z axis lies along the 
vertical in (7.4), the Rk

ic(k),ic(k-1) was determined in (7.5). This was redefined 
for each step, resulting in a ψic (step) per step. Note that, in this study, a step 
is the instance between subsequent ICs.

7.2.3 Estimating Ground Reaction Forces
The accelerations yA

ic(k-1) in frame ψic(k-1) from (7.2) were transformed to the 
frame ψic(k) using Rk

ic(k),ic(k-1) per step k as:

 

�̂�𝒂 a posteriori estimate of a  

𝒂𝒂− a priori estimate of a  

�̃�𝒂 skew symmetric operator on a  

𝒆𝒆𝑎𝑎 Gaussian white noise associated with a  

 

In the following equations, we describe how the 𝜓𝜓𝑖𝑖𝑖𝑖 frame is defined for each step:  

𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘−1) =  �̂�𝐑𝑖𝑖

𝑖𝑖𝑖𝑖(𝑘𝑘−1),𝑝𝑝 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝  (7.2) 

𝑋𝑋 = 𝐶𝐶𝐶𝐶𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚
‖𝐶𝐶𝐶𝐶𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚‖

 (7.3) 

𝑍𝑍 = [0 0 1]𝑇𝑇 (7.4) 

𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) = [𝑋𝑋 𝑍𝑍 × 𝑋𝑋 𝑍𝑍] (7.5) 

Pelvis accelerations in each step are first expressed in 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘−1) (7.2) as 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) and must be 

transformed to 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘). Using arbitrary initial and final conditions, 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) was high-pass filtered 

using a second order zero phase Butterworth filter with a cut off of 2 Hz to obtain the high frequency 

CoMvel. Then, during step k, the time instance m was selected when the magnitude of CoMvel vector 

was highest in the XY plane. At this time, instance m, the direction of the velocity vector in the XY 

plane, was defined using (7.3) below. This was the heading or X axis for 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘). After assuming that 

the Z axis lies along the vertical in (7.4), the 𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) was determined in (7.5). This was redefined 

for each step, resulting in a 𝜓𝜓𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠𝑣𝑣𝑝𝑝) per step. Note that, in this study, a step is the instance between 

subsequent ICs. 

3. Estimating Ground Reaction Forces 

The accelerations 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) in frame 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘−1) from (7.2) were transformed to the frame 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘) using 

𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) per step k as: 

𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘) =  𝐑𝐑𝑘𝑘

𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘−1). (7.6) 

𝐆𝐆𝐑𝐑𝐆𝐆𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖

𝑖𝑖𝑖𝑖(𝑘𝑘). (7.7) 

Commented [MRM(1]: @Birgit: Table that has been used to 

format can be removed if needed.  

Commented [MRM(2]: @birgit: table can be removed    (7.6)
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�̃�𝒂 skew symmetric operator on a  

𝒆𝒆𝑎𝑎 Gaussian white noise associated with a  

 

In the following equations, we describe how the 𝜓𝜓𝑖𝑖𝑖𝑖 frame is defined for each step:  

𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘−1) =  �̂�𝐑𝑖𝑖

𝑖𝑖𝑖𝑖(𝑘𝑘−1),𝑝𝑝 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑝𝑝  (7.2) 

𝑋𝑋 = 𝐶𝐶𝐶𝐶𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚
‖𝐶𝐶𝐶𝐶𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚‖

 (7.3) 

𝑍𝑍 = [0 0 1]𝑇𝑇 (7.4) 

𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) = [𝑋𝑋 𝑍𝑍 × 𝑋𝑋 𝑍𝑍] (7.5) 

Pelvis accelerations in each step are first expressed in 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘−1) (7.2) as 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) and must be 

transformed to 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘). Using arbitrary initial and final conditions, 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) was high-pass filtered 

using a second order zero phase Butterworth filter with a cut off of 2 Hz to obtain the high frequency 

CoMvel. Then, during step k, the time instance m was selected when the magnitude of CoMvel vector 

was highest in the XY plane. At this time, instance m, the direction of the velocity vector in the XY 

plane, was defined using (7.3) below. This was the heading or X axis for 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘). After assuming that 

the Z axis lies along the vertical in (7.4), the 𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) was determined in (7.5). This was redefined 

for each step, resulting in a 𝜓𝜓𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠𝑣𝑣𝑝𝑝) per step. Note that, in this study, a step is the instance between 

subsequent ICs. 

3. Estimating Ground Reaction Forces 

The accelerations 𝒚𝒚𝐴𝐴
𝑖𝑖𝑖𝑖(𝑘𝑘−1) in frame 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘−1) from (7.2) were transformed to the frame 𝜓𝜓𝑖𝑖𝑖𝑖(𝑘𝑘) using 

𝐑𝐑𝑘𝑘
𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) per step k as: 

𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘) =  𝐑𝐑𝑘𝑘

𝑖𝑖𝑖𝑖(𝑘𝑘),𝑖𝑖𝑖𝑖(𝑘𝑘−1) ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘−1). (7.6) 

𝐆𝐆𝐑𝐑𝐆𝐆𝐴𝐴,𝑖𝑖
𝑖𝑖𝑖𝑖(𝑘𝑘) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖

𝑖𝑖𝑖𝑖(𝑘𝑘). (7.7) 

Commented [MRM(1]: @Birgit: Table that has been used to 

format can be removed if needed.  

Commented [MRM(2]: @birgit: table can be removed 

   (7.7)

As we assume the pelvis accelerations to be similar to CoMacc, the GRF (GRFIM) 
were estimated using Newton’s second law (7.7). During preliminary analysis, 
we identified sharp peaks around the IC instances, possibly due to impact in 
the estimated 3D GRF. An adaptive peak removal algorithm was employed 
to remove these peaks (Chapter VI). The peaks around an IC were first  
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Figure 7.3 The image on the left shows the placement of the XsensTM MTw Inertial Measurement 
Unit (IMU) at the lower back of the participant. The sensor frame ψs of the IMU is also shown. 
The right image is a simplified overview of the experimental protocol. The participants stand still 
for a few seconds, following which they bow thrice, and then perform the walking task. After this, 
they bow again and stand still for a few seconds before the measurement is stopped. The bowing 
movement is used to determine the pelvis frame ψp seen in the figure.

identified by detecting the local maxima and minima. Then, the signal in this 
region around the peak was smoothened using a Savitsky Golay smoothing 
filter (Orfanidis, 2010) of order 3. Following this, a second order zero phase 
Butterworth band pass filter with a cut off range of 0.1 – 5 Hz and 0.1 – 3 Hz 
was used to filter the X and Y axis, respectively. For the Z axis, a second order 
zero phase Butterworth low pass filter with a cut off of 10 Hz was employed.

7.2.4 Measurement System
Fig. 7.3 shows the sensor setup; a single XsensTM MTw IMU was placed at 
the lower back on the pelvis. The data from the IMU were read using an MT 
Manager (version 4.8) software (Xsens™, Enschede, Netherlands) at 100 Hz. 
We employed two reference systems in this study. The ForceShoesTM (Xsens™, 
Enschede, Netherlands), consisting of two 6DoF Force and Moment sensors 
per foot, was used for validating the estimation of GRF. IC instances were 
determined when the magnitude of GRF on each foot exceeded 30 N. The GRF 
on both feet were summed to obtain the total reference GRF (GRFFS), which 
is equal and opposite to the body weight plus mass times CoMacc (Schepers et 
al., 2009).

The frame ψic for the IMU-based system was defined using (7.2) – (7.5). 
Similarly, we need to determine the frame ψic for the reference datasets. For 
this purpose, we measured the kinematics of CoM using a VICON© (Oxford 

7
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Metrics PLC., Oxford, UK) motion capture system. Markers were placed on 
the right anterior superior iliac spine, right posterior iliac spine, left anterior 
superior iliac spine, and left posterior iliac spine. We assumed that the 
position of the CoM was at the centroid of the pelvis, demarcated by the four 
pelvis markers. Velocities and accelerations of the CoM were obtained using 
differentiation and subsequent low pass filtering with a second order zero 
phase Butterworth filter of cut off 10 Hz. Then, gravitational acceleration was 
added to the Z axis of the accelerations to obtain the CoMacc. A second order 
zero phase Butterworth high-pass filter with cut off of 2 Hz was used to obtain 
the CoMvel. The direction of the velocity vector in the XY plane was used to 
transform the reference GRFFS to the frame ψic using the steps defined in 
Section 7.2.2. Thus, we estimate the acceleration from the VICON© position 
data, and then integrate it after including gravitational acceleration to obtain 
the high frequency CoMvel, in order to make sure that our reference ψic frame 
was estimated in a similar manner as the IMU-based system.

The data from VICON© and ForceShoesTM were sampled at 100 Hz. The data 
from XsensTM IMU, ForceShoesTM, and VICON© were synchronized. The 
participants raised their right foot before each task, and this movement was 
used for the synchronization of the three systems.

7.2.5 Participants and Experimental Protocol
Three healthy male participants were recruited for the study. The average 
height, weight, and age was 1.8 ± 0.04 m, 74.3 ± 7.6 kg, and 25.6 ± 3.3 years, 
respectively. Before the experiment, each participant signed an informed 
consent. The study was conducted in accordance with the Declaration of 
Helsinki, and the protocol was approved by the Ethical Committee of the 
research faculty under protocol number RP 2019-108.

The experimental protocol is shown in Fig. 7.3. The participants began by 
standing still for a few seconds, following which they were asked to bend the 
trunk forward thrice. This movement is used for the calibration. Once the 
researcher gave the start sign, the participant performed each of the following 
walking tasks four times:

• Normal Walk (NW): the participants walked at their preferred walking 
speed for 5 m.
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• L Walk (LW): the participants walked for 3 m and then turned 90o to the 
right, and walked for 2 m.

• Walk and Turn (WT): the participants walked for 5 m, and then turned 
and walked back to start position.

• Walk and Turn Twice (WT2): the participants walked for 5 m, turned and 
walked back to start position, and then turned again and walked for 5 m.

• Slalom Walk (SlW): the participants walked in a snake-like slalom 
pattern. A pylon was placed at 2 m and another at 4 m to help them with 
this pattern.

7.2.6 Analysis of Results
First, we validated the estimation of IC instances using the information from 
the pelvis IMU. Then, we evaluated the differences in heading (θd) between 
the ψic frames defined using the pelvis IMU, and that of the reference setup. 
This was estimated by measuring the angle between the heading vectors used 
to define the ψic frames. Following this, we test the accuracy of our method 
in estimating 3D GRF using different analyses. This includes measuring 
the Root Mean Square (RMS) of the differences and Pearson’s correlations 
(CORR) between the estimated 3D GRF (GRFIM) from the pelvis IMU and the 
reference GRFFS for the different walking tasks. A Bland–Altman analysis was 
also performed. MATLAB® 2018b (MathWorks, Natick, MA, USA) was used 
for all analyses.

7.3. RESULTS

Some trials had to be excluded from the analysis due to technical issues with 
the reference system. However, it was made sure that each participant had at 
least three walking trials per task.

Fig. 7.4 compares the GRFIM and GRFFS for a participant performing a WT 
trial. Table 7.2 summarizes the results of the analysis and compares the 
method against reference setups for each walking task. First, the average 
mean error in estimating IC instances per task is summarized in the column 
IC. Based on preliminary comparison with reference values, the estimated 
IC instances were adjusted for a uniform offset of 0.08 s for all trials. 

7
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Figure 7.4 Estimated (GRFIM) and reference GRF (GRFFS) compared for a Walk and Turn (WT) task 
shown as % BW. The participant makes a 180o around 25 s highlighted with the shaded region. 
The GRFIM is shown in blue and GRFFS is shown in red. The difference between them for each axis 
is shown in black, with the reading on the right Y axis.

Using our simplified approach, the average median error in estimating IC was 
found to be 2 ± 4.4 ms across all walking tasks. Table 7.2 also shows the average 
heading error θd for the ψic frames, excluding the first and last steps made. We 
see that the NW task has the highest errors with respect to estimation of IC, and 
therefore, the θd, as the ψic frames are identified between ICs. Then, Table 7.2 
summarizes the errors in estimating the 3D GRF over the complete gait, 
including quiet standing, gait initiation, turning events, and termination. The 
RMS values shown in the table are an average of all trials of all participants 
for each walking task. The maximum RMS across all axes was found to be 5.7, 
6, 6.8, 7.2, and 5.8% BW for the NW, LW, WT, WT2, and SlW walking tasks, 
respectively. The average RMS of the magnitude of the GRF was 5 ± 0.4 % BW 
across all walking tasks. The WT2 task showed a slightly larger error across 
the XY plane, probably because it had more changes in heading. The RMS 
errors Normalized (NRMSE) against the range of the reference GRF values 
were found to be 16.3 ± 1.7 % across all walking tasks. We found an average 
CORR of 0.5 ± 0.2 for the shear GRF, and a higher correlation of 0.8 ± 0.03 
in estimating vertical GRF. We estimated the RMS and correlation between the 
measurements for the complete gait cycle.

Fig. 7.5 shows the Bland–Altman plot comparing the magnitude of the 
estimated shear GRF (GRF in the XY plane) from GRFIM with the reference 
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GRFFS. The values for magnitude of shear GRF were not normally distributed. 
Therefore, the mean difference is shown along with the Interquartile Ranges 
(IQR) in the figure. The mean difference between the systems is on average 
0.24% BW across all tasks. We see a concentration of differences for mean shear 
GRF values close to 0% BW. The difference between the systems becomes more 
random as the mean magnitude of shear GRF increases. Fig. 7.6 depicts the 
Bland–Altman comparison for the estimation of vertical GRF. Here, the average 
of the mean difference across all walking tasks was found to be −2.7% BW. 
In this figure, we find a concentration of the difference spread across the 
vertical GRF close to 100% BW. For other values of vertical GRF, the difference 
is spread randomly. Note that 0% BW and 100% BW are the GRF values during 
no-motion for the shear GRF and vertical GRF, respectively. Hence, they show 
larger concentrations of the difference between systems.

7.4. DISCUSSION

The methods used in this study to estimate 3D GRF are similar to Chapter VI. 
Here, we additionally describe how to estimate gait events, and the body-
centric initial contact frame using the pelvis IMU, thereby avoiding the need for 
foot IMUs. This enables development of a minimal sensing system for 3D GRF 
during gait. The method has been applied to a limited set of participants, but 
a range of variable walking tasks, and shows the estimation of 3D GRF during 
the complete gait trial, including gait initiation, walking, and termination.

A number of assumptions have been made in this study. We assume an 
inverted pendulum model of gait, where the CoM is the swinging bob. We 
also assumed that the CoM moves within the pelvis, and that the accelerations 
can be measured with a pelvis IMU. The GRF opposes gravity and accelerates 
the CoM. Our methods are restricted to situations when only the feet are in 
contact with the environment. Our methods estimate the total GRF acting on 
the body, and therefore, we do not measure how the weight shifts from one foot 
to another. The only gait events estimated were the IC instances. There are 
several methods in literature for estimating ICs using one pelvis IMU (Pacini 
Panebianco et al., 2018). Our average median error in estimating IC was found 
to be similar to the results found using the method of Lee and colleagues (Hyo-
Ki Lee et al., 2009; Pacini Panebianco et al., 2018), which was 2 ms. 

7
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Figure 7.5 Bland–Altman plots: The magnitude of the shear GRF is compared between the refer-
ence GRFFS and estimated GRFIM. The mean shear GRF of the two systems are plotted along the X 
axis, and the difference between them is shown along the Y axis. All data are in % BW. The mean 
of the differences is shown by a thick black line. The data were not normally distributed, and the 
Interquartile Ranges (IQR) are shown by dotted black lines. The values of mean and the IQR are 
also shown in the graph. NW: Normal Walk, LW: L Walk, WT: Walk and Turn, WT2: Walk and 
Turn Twice, SlW: Slalom Walk.

Figure 7.6 Bland–Altman plots: The magnitude of the vertical GRF is compared between the ref-
erence GRFFS and estimated GRFIM. The mean vertical GRF of the two systems are plotted along 
the X axis, and the difference between them is shown along the Y axis. All data are in % BW. The 
mean of the differences is shown by a thick black line. The data were not normally distributed, 
and the Interquartile Ranges (IQR) are shown by dotted black lines. The values of mean and the 
IQR are also shown in the graph. NW: Normal Walk, LW: L Walk, WT: Walk and Turn, WT2: Walk 
and Turn Twice, SlW: Slalom Walk.
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Although we found one walking trial where our IMU-based method estimated 
an additional IC instance, our method is much simpler to that of Lee and 
colleagues (Hyo-Ki Lee et al., 2009). Our largest error was found for the NW 
task, which was 20 ms. Nonetheless, the robustness of IC detection may be 
improved with alternatives in literature (Pacini Panebianco et al., 2018). Our 
algorithm does not differentiate between left and right ICs, as that information 
was not required in this study. Differentiating left and right gait events from 
pelvis IMU data is challenging, but possible (Pacini Panebianco et al., 2018). 
The estimation of the heading for the ψic frame may be further improved 
with this knowledge, especially when measuring asymmetrical gait such as 
hemiparesis after stroke. During asymmetrical gait, it might be necessary 
to distinguish turning from asymmetrical inclination of the body towards 
the less affected side, while defining the heading for the for the ψic frame. 
In Table 7.2, we find larger errors in the heading (θd) for the NW task. This 
could be influenced by the larger mismatch in IC instances, which in turn, has 
an influence on the selection of time window for the steps. The ψic frame is a 
reference frame attached to the body, thereby tracking its kinetics irrespective 
of the change in direction. The use of such a reference frame avoids the need 
to correct for drift with respect to a fixed global frame. Our magnetometer 
free approach is insensitive to magnetic disturbances, which is an additional 
advantage.

Ancillao and colleagues (Ancillao et al., 2018) mentioned that the most 
challenging task when using IMUs to estimate GRF is determining the shear 
GRF; the anterio-posterior and medio-lateral components. As we assume 
that the CoM is located within the pelvis, its accelerations are estimated 
using the pelvis IMU. The estimation of CoMacc from the pelvis IMU in the 
anterio-posterior, medio-lateral, and vertical axes by the EEKF serves as the 
largest influence of errors. The estimation of CoMacc could be improved using 
additional biomechanical models (Floor-Westerdijk et al., 2012). Nevertheless, 
our results show that it is possible to estimate GRF using a single pelvis 
IMU. For instance, in Fig. 7.4 we see overlap between GRFIM and GRFFS for 
the complete gait cycle. Table 7.2 summarizes the errors in estimating the 
3D GRF for the complete walking tasks, from start to stop. The WT2 task 
showed a slightly larger error across the XY plane, probably because it had 
more changes in heading. The average NRMSE of 16.3 ± 1.7 % for all walking 
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tasks is slightly larger than our previous study (Chapter VI), where we found 
an average NRMSE of 12.1 ± 3.3 %, and also that of Leporace and colleagues 
(Leporace et al., 2015) who found an average of 9.3 ± 6.4 % in the horizontal 
plane. The GRFIM correlated strongly with the reference in the vertical axis due 
to the large influence of gravity and correlated weakly in the Y axis because 
of larger errors in this axis. We found all CORR to be significant (p < 0.01). 
Our average CORR for the vertical GRF is close to the results of Jiang and 
colleagues (Jiang et al., 2020), in which an array of IMU sensors were used 
to estimate only the vertical GRF with an average RMS of 2% BW and high 
correlations of 1. Nevertheless, our method offers an estimation of 3D GRF 
albeit with slightly larger errors.

The low number of participants and the low variability in age and gender 
are limitations. Our calibration method requires a bowing movement, which 
might be difficult for participants with back issues. Nevertheless, this paper 
presents a new method to estimate the 3D GRF as a function of time in a 
body-centric frame employing a single pelvis IMU, and thus offers a proof of 
principle of this new method. Finally, using simple models (Karatsidis et al., 
2016; Ren et al., 2008), and knowledge of distinct left and right gait events 
(Pacini Panebianco et al., 2018), the 3D GRF may also be separated into GRF 
acting on either foot.

7.5. CONCLUSIONS

The study shows the feasibility of using a single pelvis IMU to track the 3D 
GRF during over-ground gait and expressing it in a body-centric initial contact 
reference frame. The shear GRF were estimated with a root mean square 
error of 5.2 ± 0.5 % BW over the complete gait cycle including initiation and 
termination of gait. Though these margins are comparable with the literature, 
further validation studies in which more participants, including those with 
gait impairment, are required. Furthermore, more variable walking must be 
studied.
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ABSTRACT

Estimating instantaneous 3D Centre of Mass (CoM) velocity using wearables 
can improve ambulatory gait monitoring. Inertial Measurement Units (IMUs) 
are commonly used to estimate CoM velocity, although, studies have either 
measured only the magnitude, or use machine learning methods. Here, 
we propose a three IMU setup, where the CoM velocity is obtained by a 
complementary filter method. This method fuses high frequency information 
achieved using strapdown integration of accelerations measured at the pelvis 
with low frequency information of CoM velocity obtained from foot velocities. 
This method is applied in variable gait which includes turns. The root mean 
square of the error between the IMU estimated CoM velocity against a 
reference VICON© measurement was 0.1 ± 0.02 m/s across all walking tasks. 
This method provides a drift free ambulatory estimation of CoM velocity using 
minimal IMUs.
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8.1. INTRODUCTION

Estimation of the Centre of Mass (CoM) velocity has several practical 
applications, including measuring gait parameters, and balance measures such 
as Extrapolated CoM (XCoM) (van Meulen et al., 2016c). Inertial Measurement 
units (IMUs) offer solutions for ambulatory estimation of CoM velocity 
(Mannini and Sabatini, 2014; Sabatini and Mannini, 2016). However, so far, 
studies have either measured the magnitude of CoM velocity (Mannini and 
Sabatini, 2014), or used machine learning techniques (Sabatini and Mannini, 
2016) which require additional training.

Here, we propose a setup of three IMUs for estimating the CoM velocity; one 
IMU at the pelvis, and one on each foot. Information about CoM velocity is 
extracted from the movement of the pelvis and feet, and are fused using a 
complementary filter method (Sabatini and Mannini, 2016; Schepers et al., 
2009), resulting in drift free instantaneous estimation of 3D CoM velocity. The 
following sections describe the methods used to obtain the instantaneous 3D 
CoM velocity in a special current step frame (ψcs) (Chapter VI), and describes 
the performance of the method in variable over ground gait.

8.2. METHODS

First, Section 8.2.1 provides a brief overview of reference frames used in 
this study as already described in Chapter VI. Cyclical changes in CoM 
velocity was obtained by integrating pelvis accelerations and high pass 
filtering the output (Mannini and Sabatini, 2014; Sabatini and Mannini, 
2016). Furthermore, average movement of the feet encode information about 
the CoM velocity. These two sources of CoM velocity can be fused using a 
complementary filter method. Here we assume that gait is modelled as an 
inverted pendulum, with the pelvis IMU accelerations measuring the CoM 
accelerations. Section 8.2.2 shows the method used for strapdown integration 
of CoM accelerations. Following this, Section 8.2.3 explains the estimations 
of an average CoM velocity from foot velocities, and the fusion of the two 
information sources. Section 8.2.4 describes the measurement system used 
and the participants involved, and Section 8.2.5 describes the experimental 
protocol used to validate this study.

8
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Figure 8.1 Graphical interpretation of the frames. The left foot is light blue, and the CoM trajectory 
is the thin grey line. Instead of a fixed global frame ψg, a current step frame of reference ψcs(k) is 
used for step k which changes for each step. The frame is defined using the movement of the feet. 
Segment frames used are ψfl and ψfr for foot frames, and  for the pelvis frame.

8.2.1. Using a Current Step Frame ψcs
In this study, instead of a fixed global frame, a changing reference frame 
was employed. The body-centric current step frame, ψcs, was defined using 
the change in foot positions per step (Chapter VI). A graphical depiction is 
shown in Fig. 8.1. Fig. 8.2 summarizes the estimation of Rk

cs(k),cs(k-1) for the 
pelvis IMU. The steps are explained in detail in Chapter VI. To transform 
from sensor frame to current step frame makes, first a calibration to segment 
frame is performed (Bonnet et al., 2009). Then, an Error Extended Kalman 
Filter (EEKF) was employed to track the changes in orientation during the 
step. At the end of the step, using the change in swing foot position in the 
horizontal floor plane as the heading, and Z axis along the vertical, a ψcs(k) 
of the current step k was defined.

8.2.2. CoM velocity using strapdown integration
As seen in Fig. 8.2, gravity was removed from CoM accelerations in ψcs(k) 
(acccs(k)), and then strapdown integrated using the Direct and Reverse 
Integration method (DRI) (Zok et al., 2004) to obtain velocity VCOMsdi. 
The velocities at the beginning and end of trial were set to 0, as required 
by the DRI method. VCOMsdi is a time varying velocity estimate with drift 
that accumulates over time. Therefore, a high pass 2nd order zero phase 
Butterworth filter was applied to obtain the VCOMhf.
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Figure 8.2 Estimating instantaneous CoM velocity (VCOMest): First, the ψcs is estimated from 
foot movement (Chapter VI), and all data is expressed in this frame. Pelvis accelerations (acccs(k)) 
are integrated after removing gravity, and high pass filtered to obtain VCOMhf. This is fused with 
a low pass filtered (VCOMlf.) average velocity of the feet using a complementary filter method.

8.2.3. CoM velocity from foot velocities
A low frequency estimate of the CoM velocity can be approximated from 
averaging the foot velocities. Drift free foot velocity estimates were obtained 
using an extended Kalman Filter and zero velocity constraints (Weenk et 
al., 2015). As seen in Fig. 8.2, the velocities of both feet (velfl and velfr) were 
averaged. A low pass 2nd order zero phase Butterworth filter was applied to 
obtain the VCOMlf.

In order to employ a complementary filter (Schepers et al., 2009), the cut 
off frequencies used for the high pass filter of VCOMhf and low pass filter of 
VCOMlf were the same. After a preliminary analysis, the optimal values were 
found to be 0.5, 0.2, and 1.4 Hz for X, Y, and Z axes respectively. The VCOMhf 
and VCOMlf were then fused to obtain the instantaneous VCOMest.

8.2.4. Measurement System and Participants
Three IMUs were used: One Xsens™ IMU was mounted on the sacrum using 
a strap, and one was placed on each foot on the midfoot region (Chapter VI). 

8
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A MT Manager was used to read the data from the IMU wirelessly, which was 
sampled at 100 Hz. A VICON© (Oxford Metrics PLC.) motion capture system 
was used as the reference. Markers were placed on the following locations on 
both the left and right limbs: anterior superior iliac spine, posterior iliac spine, 
the second and fifth metatarsal, and heel. The VICON© was sampled at 100 Hz.

The CoM position obtained from VICON© (PCOMref ) was assumed to lie at 
the centroid of the pelvis markers. The PCOMref was differentiated and low 
pass filtered with a 2nd order zero phase Butterworth filter with cut off 10 Hz 
to obtain the VCOMref. These were transformed to the ψcs(k), determined 
independently using the foot position data of the VICON©.

Walking data was collected from trials by three healthy males. The mean 
height, weight, and age was 1.74 ± 3 m, 79.3 ± 9 kg, and 25 ± 3.5 years 
respectively. Leg length was 94 ± 3 cm (Hof, 1996). All participants signed 
an informed consent before the experiment. The study was conducted in 
accordance with the Declaration of Helsinki, and the protocol was approved 
by the Ethical Committee of the faculty.

8.2.5. Experimental Protocol
The participants began by standing still for a few seconds, following which 
they were asked to bend the trunk forward thrice. Once the researcher gave the 
start sign, the participant walked along a given path. The following walking 
tasks were each repeated four times:

• Normal Walk (NW): The participant was asked to walk at their preferred 
walking speed for 5 m.

•  L Walk (LW): The participant was asked to walk for 3 m and then turn 
right at 90o and walk for another 2 m.

• Walk and Turn (WT): The participant was asked to walk for 5 m and then 
turn and walk back to start position.

• Walk and Turn Twice (WT2): The participant performed WT and then 
asked to turn and walk for 5 m.

• Slalom Walk (SlW): The participant was asked to walk in a slalom pattern. 
Two pylons, at 2 m and 4 m from start respectively, were placed on the 
floor to guide them.
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• Asymmetric Walk (AW): The participant was asked to walk in an 
asymmetric manner. The instruction given was to induce a stiff left knee 
and abduct the hip as much as possible, and also have a shorter step on 
the right side.

8.3. RESULTS

Fig. 8.3 shows an example of VCOMhf and VCOMlf  for the WT2 task. Following 
this, Fig. 8.4 shows an example of the estimated instantaneous VCOMest (blue 
line) compared with the reference VCOMref (red line). Here, we also depict 
the strapdown integrated VCOMsdi  (thin black line), which is seen to clearly 
drift. Table 8.1 compares the average root mean square of the error between 
the VCOMest and VCOMref across all participants for different walking tasks 
as both absolute, and percentage error normalized to the range of VCOMref.

Figure 8.3 Comparing the high frequency VCOMhf in blue and low frequency VCOMlf in red 
for a WT2 task performed by a participant where they make two 180o turns. The complete gait 
including the initiation, termination, and turning (shaded as red regions) is shown. Each subplot 
corresponds to an axis of the ψcs(k).

8
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Figure 8.4 Comparing the estimated VCOMest (blue line) and VCOMsdi (thin black line) and 
VCOMref (red line) for the WT2 task performed by a participant where they make two 180o turns. 
The complete gait including the initiation, termination, and turning (shaded as red regions) is 

shown. Each subplot corresponds to an axis of the ψcs(k).

Table 8.1 Absolute and percentage root mean square error between VCOMest and 
VCOMref .

RMSX RMSY RMSZ

m/s % m/s % m/s %

NW 0.1 ± 0.03 12.2 ± 3.1 0.1 ± 0.02 13.9 ± 4.2 0.1 ± 0.01 11.6 ± 5.3

LW 0.1 ± 0.01 9.0 ± 1.4 0.2 ± 0.05 15.0 ± 2.6 0.1 ± 0.01 12.0 ± 2.8

WT 0.1 ± 0.04 10.1 ± 2.6 0.2 ± 0.02 14.4 ± 2.3 0.1 ± 0.01 12.3 ± 3.0

WT2 0.2 ± 0.04 11.5 ± 1.8 0.2 ± 0.07 11.9 ± 2.0 0.1 ± 0.02 12.1 ± 2.8

SlW 0.1 ± 0.02 12.8 ± 3.5 0.2 ± 0.01 18.6 ± 1.3 0.1 ± 0.01 18.9 ± 6.1

AW 0.1 ± 0.02 12.2 ± 6.7 0.1 ± 0.02 13.4 ± 3.3 0.1 ± 0.02 15.7 ± 2.2

 NW: Normal Walk, LW: L Walk, WT: Walk and Turn, WT2: Walk and Turn Twice, SlW: Slalom 
Walk, AW: Asymmetrical Walk.

8.4. DISCUSSION

The current method shows the feasibility of estimating 3D CoM velocity during 
variable gait. Although, the complementary method is similar to Sabatini 
and colleagues (Sabatini and Mannini, 2016), they used machine learning 
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to estimate the average CoM velocity. Our approach discards the need for a 
training step by including the foot IMUs. Note that the use of foot IMUs is 
two-fold: for defining the ψcs(k) as well as obtaining a low frequency CoM 
velocity information. Fig. 8.3 shows the complementary information present 
in the VCOMhf and VCOMlf. VCOMlf derived from the foot velocities encodes 
the trend and VCOMhf has information regarding a drift free change in this 
trend. In Fig. 8.3 and 8.4, the kinematics are expressed in ψcs, and hence, the 
velocities remain positive in the X axis even as the participant makes two 
180° turns, during the shaded regions. Note that in Fig. 8.4, the drift in the 
vertical VCOMsdi is quite limited compared to the other axes, but exists, as 
evident during the last few steps. Further, the VCOMref shows more drastic 
jumps during the turns, as compared to VCOMest, more clearly seen in the Y 
axis due to transformation to the ψcs. As we account for the Rk

cs(k),cs(k-1) per 
step k, we can represent the kinematics in a fixed global frame, or the frame 
of any other required step.

Table 8.1 shows that the errors are on average 13.1 ± 2.2 % of the range of CoM 
velocity across all axes and walking tasks. The errors seem to be largest for 
the SlW task, as the gait was always changing direction. The error margins 
are quite low overall, about less than 19% of the range in the worst case. The 
algorithm has lower errors for variable walking when compared to the results 
of Sabatini and colleagues (Sabatini and Mannini, 2016). The applicability of 
the method however, would be dependent on the application, and proposed 
error margins. Note that the cut offs used in the complementary filter was 
optimized across all participants. The errors found could be further lowered 
if this was optimized per participant. A drawback of this method is that it 
employs a DRI method for integration, which requires knowledge of the final 
state of the velocities.

A three IMU setup can provide a minimal sensing setup for drift free estimates 
of CoM velocity. This can further improve estimates of the position of CoM, 
and XCoM.

8
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ABSTRACT

Ambulatory estimation of gait and balance parameters requires knowledge 
of relative feet and Centre of Mass (CoM) positions. Inertial Measurement 
Units (IMUs) placed on each foot, and on the pelvis are useful in tracking 
these segments over time but cannot track the relative distances between 
these segments. Further, drift due to strapdown inertial navigation results 
in erroneous relative estimates of feet and CoM positions after a few steps. 
In this study, we track the relative distances using the assumptions of the 
Centroidal Moment Pivot (CMP) point. A Kalman filter approach was used 
to fuse information from different sources: strapdown inertial navigation, 
commonly used constraints such as zero velocity updates, and relative segment 
distances from the CMP assumption; to eventually track relative feet and CoM 
positions. These estimates were expressed in a reference frame defined by the 
heading of each step. The validity of this approach was tested on variable gait. 
The step lengths and step widths were estimated with an average absolute 
error of 4.6 ± 1.5 cm and 3.8 ± 1.5 cm respectively when compared against 
the reference VICON©. Additionally, we validated the relative distances of 
the feet and the CoM, and further, show that the approach proves useful in 
identifying asymmetric gait patterns. We conclude that a three IMU approach 
is feasible as a portable gait lab for ambulatory measurement of foot and CoM 
positions in daily life.
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9.1. INTRODUCTION

Gait kinematics and kinetics are necessary for assessing spatiotemporal as 
well as qualitative metrics such as Base of Support (BoS), and Margin of 
Stability (MoS), that are useful in assessing dynamic balance (van Meulen et 
al., 2016b). Ambulatory assessment of these parameters helps us understand 
gait biomechanics outside the restricted laboratory environment, providing 
potential applications in daily life monitoring.

A minimal approach using only Inertial Measurement Units (IMUs) has great 
benefits in being portable. They are suitable for measuring kinematics of any 
rigid body segment they are attached to using strapdown inertial navigation. 
However, this introduces errors in the position estimates. Further, IMUs do not 
track relative distances from nearby body segments. This results in erroneous 
estimates of relative distances of segments over time. There are different 
solutions to solve this issue of drift between two segments. For instance, 
Xsens™ offers a full body suit of IMUs that employ a biomechanical chain 
(Roetenberg et al., 2009) to track movement of associated body segments. 
This requires setting up a lot of IMUs and initializing a few biomechanical 
parameters. Alternatively, specially designed systems such as the ForceShoes™ 
(Weenk et al., 2015), and SWING (Bertuletti et al., 2019) use time of flight 
information from ultrasound or infrared respectively, to measure the relative 
distance between the feet. Unfortunately, the ForceShoes™ is quite thick 
and heavy, and not suited for daily wear (van Meulen et al., 2016b). Also, 
additional sensors require extra calibration and synchronisation steps for 
reliable monitoring.

A minimal three IMU setup, where one IMU is placed on each foot and one 
on the pelvis is an ideal setup for ambulatory monitoring. However, this may 
be insufficient for measuring relative foot and pelvis positions, owing to the 
issue of drift described earlier. Some studies solve this by using mathematical 
constraints that prevents drift between the feet (Niu et al., 2019; Skog et al., 
2012). However, these may not reflect the true foot positions during continuous 
tracking, or in cases of an asymmetric gait. Other studies use biomechanical 
constraints related to the pattern of gait. Bancroft and colleagues (Bancroft 
et al., 2008) use information about stride length, and a difference in vector 

9
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between foot positions to reduce the drift. Zhao and colleagues (Zhao et al., 
2018) use a derivation of step length from information about limb sway for this 
purpose. In both cases, approximations have been made regarding a general 
pattern of gait cycle. Sy and colleagues (Sy et al., 2020) show that using an 
extended set of biomechanical constraints can help estimate kinematics from 
a reduced sensor setup, but they assume a fixed pelvis, and do not comment 
on relative segment distances.

The Centroidal Moment Pivot (CMP) point could serve as a realistic 
biomechanical principle that relates the movement of the CoM with the 
stance foot. Assuming an inverted pendulum model of gait, for normal, level-
ground human walking, the moments around the CoM can be assumed to be 
zero (Popovic et al., 2005; Schepers et al., 2009). This implies that the whole 
body Ground Reaction Force (GRF) and a vector connecting the virtual CMP 
point and CoM are parallel. This gives us a relation between the virtual CMP 
point and CoM, and that of the GRF as described in Chapter V. For an IMU 
based approach, the virtual CMP point can be assumed to be the same as foot 
position. Additionally, estimations of the shear GRF and the height of the CoM 
are required (Chapter V). Using the pelvis IMU, we already estimated the 3D 
GRF in Chapter VI, and the height of the CoM can be tracked by adapting 
existing methods in literature (Floor-Westerdijk et al., 2012; Zok et al., 2004).

The goal of this study is to track the relative positions of the feet and CoM 
using only three IMUs and a Kalman Filter (KF) approach. For this, first, 
the foot trajectories were estimated from the foot IMUs using strapdown 
integration, improved by zero velocity and zero height updates (Weenk et 
al., 2015). Then, the 3D instantaneous estimates of GRF, CoM velocity (as 
described in Chapter VIII), and height (Zok et al., 2004) were estimated from 
the pelvis IMU. 3D GRF and CoM height were used to solve the CMP equation, 
and derive relative positions between the feet and CoM. These positions were 
used to reduce the drift between the feet and CoM. The proposed algorithm 
was tested for variable gait patterns. The resulting kinematics were expressed 
in a body-centric frame of reference or current step frame (Chapter VI), and 
compared with reference systems.
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9.2. METHODS

Here, the methods used to track the kinematics of feet and CoM are further 
explained. First, in Section 9.2.1, we briefly explain the reference frames used 
in this study. Next, Section 9.2.2 describes the IMU models used. In Section 
9.2.3, the design of the KF for the tracking is described. Section 9.2.4 describes 
the measurement systems used, and Sections 9.2.5 and 9.2.6 describe the 
participant group, and the experimental protocol used to obtain measurements 
and validate this study respectively. Finally, Section 9.2.7 explains how the 
results were analysed.

9.2.1. Reference Frames used
A changing reference frame as explained in Chapter VI was used to express 
the kinematics in this study. This allows us to provide a body-centric frame of 
expression, as opposed to an arbitrary global frame used commonly. A detailed 
description of the different frames used and the transformations between 
them are given in our earlier Chapter VI. Here, we summarize them briefly.

The changing reference frame was based on the direction of steps being made 
and will be referred to as the current step frame, denoted as ψcs. In Fig. 6.1 
(Chapter VI), an example of ψcs for the step k made by the right leg is shown. 
The frame was defined with the X axis along the heading of the step (bold 
dotted line in Fig. 6.1) and Z along the vertical.

As the IMU measures in its sensor frames, ψs, it has to be transformed to 
the ψcs per step. First, a sensor to segment calibration was performed to the 
respective segment (seg) frames ψseg (Chapter VI). The segments included the 
pelvis (p), left foot (fl), and the right foot (fr). Then, the change in orientation 
of the segments during a step k was first expressed in the current step frame 
ψcs(k-1) of the previous step k – 1. The change in orientation was estimated 
using an error extended Kalman filter. At the end of the step k, using the 
change in position of the swing foot the ψcs(k) was estimated. This procedure 
was iterated for each step.

9
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In short, four frames of reference were used in this study: sensor frame (ψs), 
segment frames (pelvis ψp, right foot ψfr and left foot ψfl), a current step 
frame defined by the previous step (ψcs(k-1)), and the current step k (ψcs(k)).

9.2.2. Inertial Measurement Unit Model
Similar to (6.1) and (6.2) in Chapter VI, the 3D accelerometer and 3D rate 
gyroscope present in the IMU provides the acceleration and angular velocities 
in the sensor frame ψs respectively, and can be modelled as

 

Equations for replacement 

Eq 7.3 

𝑋𝑋 = 𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚
‖𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚‖ 

Eq 6.1 and 9.1 

   𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝐠𝐠𝑠𝑠 + 𝒆𝒆𝐴𝐴 

Eq 9.4 

 

�̂�𝒂𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘) =  𝑹𝑹𝑘𝑘

𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  �̂�𝒂𝑖𝑖

𝑠𝑠𝑣𝑣𝑠𝑠) (9.4) 

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅   (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠  +  𝐠𝐠𝑠𝑠𝑣𝑣𝑠𝑠 ) )    

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠 +  𝐠𝐠𝑐𝑐𝑠𝑠(𝑘𝑘−1))    

 

9.11a 

𝒛𝒛𝑧𝑧ℎ  =   𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓    

9.11b 

�̂�𝒛𝑧𝑧ℎ  = 𝑯𝑯𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ 

    (9.1)

and 

  Tracking relative feet and CoM movement 

The changing reference frame was based on the direction of steps being made and will be referred to 

as the current step frame, denoted as 𝜓𝜓𝑐𝑐𝑐𝑐. In Fig. 6.1 (Chapter VI), an example of 𝜓𝜓𝑐𝑐𝑐𝑐 for the step k 

made by the right leg is shown. The frame was defined with the X axis along the heading of the step 

(bold dotted line in Fig. 6.1) and Z along the vertical.  

As the IMU measures in its sensor frames, 𝜓𝜓𝑐𝑐, it has to be transformed to the 𝜓𝜓𝑐𝑐𝑐𝑐 per step. First, a 

sensor to segment calibration was performed to the respective segment (seg) frames 𝜓𝜓𝑐𝑐𝑠𝑠𝑠𝑠 (Chapter 

VI). The segments included the pelvis (p), left foot (fl), and the right foot (fr). Then, the change in 

orientation of the segments during a step k was first expressed in the current step frame 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1) of 

the previous step k – 1. The change in orientation was estimated using an error extended Kalman filter. 

At the end of the step k, using the change in position of the swing foot the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) was estimated. This 

procedure was iterated for each step.   

In short, four frames of reference were used in this study: sensor frame (𝜓𝜓𝑐𝑐), segment frames 

(pelvis 𝜓𝜓𝑝𝑝, right foot 𝜓𝜓𝑓𝑓𝑓𝑓 and left foot 𝜓𝜓𝑓𝑓𝑓𝑓), a current step frame defined by the previous step 

(𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘−1)), and the current step 𝑘𝑘 (𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘)). 

9.2.2. Inertial Measurement Unit Model 
Similar to (6.1) and (6.2) in Chapter VI, the 3D accelerometer and 3D rate gyroscope present in the 

IMU provides the acceleration and angular velocities in the sensor frame 𝜓𝜓𝑐𝑐 respectively, and can be 

modelled as 

        𝒚𝒚𝐴𝐴𝑐𝑐 = 𝒂𝒂𝑐𝑐 − 𝒈𝒈𝑐𝑐 + 𝒆𝒆𝐴𝐴     (9.[MRM(1]1) 

and 𝒚𝒚𝐺𝐺𝑐𝑐 = 𝝎𝝎𝑐𝑐 + 𝒃𝒃𝑐𝑐 + 𝒆𝒆𝐺𝐺                               (9.2) 

where 𝒚𝒚𝐴𝐴𝑐𝑐 , and 𝒚𝒚𝐺𝐺𝑐𝑐  denote the accelerometer and gyroscope signals respectively from the IMU. 

They are measured in the 𝜓𝜓𝑐𝑐 reference frame denoted by the superscript s. 𝒂𝒂 is the linear acceleration 

of the sensor, 𝒈𝒈 is gravity, and 𝒆𝒆𝐴𝐴 is Gaussian white noise. Also, 𝝎𝝎 is the angular velocity, 𝒃𝒃 is a slowly 

varying offset, and 𝒆𝒆𝐺𝐺  is the Gaussian noise. Both (9.1) and (9.2) are discrete time equations and are 

expressed for a given time instance 𝑖𝑖. 

    (9.2)

where y s
A , and ys

G denote the accelerometer and gyroscope signals respectively 
from the IMU. They are measured in the ψs reference frame denoted by the 
superscript s. a is the linear acceleration of the sensor, g is gravity, and eA 
is Gaussian white noise. Also, ω is the angular velocity, b is a slowly varying 
offset, and eG is the Gaussian noise. Both (9.1) and (9.2) are discrete time 
equations and are expressed for a given time instance i.

9.2.3.	 Fusion	filter	to	track	relative	feet	and	CoM	positions
Fig. 9.1 shows a brief overview of the steps involved. There are a few working 
assumptions we need to consider. We assumed an inverted pendulum model 
of gait where all mass is concentrated at the CoM that is located within the 
pelvis (Floor-Westerdijk et al., 2012; Schepers et al., 2009). Thus, the GRF 
accelerates the CoM and opposes gravity. These assumptions should hold as 
long as the participant walks normally and doesn’t fall or negotiate large 
obstacles. Additionally, the feet are the only contact with the external world, 
and no additional load is carried by the body. Given these assumptions, the 
accelerations measured by the IMU at the pelvis is similar to the accelerations 
at the CoM. Thereby, the pelvis segment (p) will be hereto referred as the 
CoM (c).

The method of Skog and colleagues (Skog et al., 2010) was used to estimate 
the foot contact instances for each foot. As the IMUs were synchronized in 
time, double stance instances can be estimated. Though, distinct gait events  
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Figure 9.1 Overview of Sensor fusion filter design. For each step the process model and measure-
ment models are fused using a Kalman Filter. Biomechanical constraints applied as measurement 
updates include Zero Velocity (ZV), Zero Height (ZH), CoM Velocity (CV), CoM Height (CH), and 
Centroidal Moment Pivot (CMP).

can be estimated from foot IMUs (Pacini Panebianco et al., 2018), for sake of 
simplicity, a step was defined to take place between halfway of a double stance 
until halfway of the subsequent double stance.

Table 9.1 Notations used, shown for an arbitrary vector a.

Notation Definition

ak a at k-th instant 

as a expressed in frame ψs

a· derivative of a 

â a posteriori estimate of a 

a- a priori estimate of a 

ea Gaussian white noise associated with a 

A Kalman filter (KF) was used to track the velocity and position of the three 
segments: both feet and CoM, in the current step frame ψcs. The filter 
notations used are tabulated in Table 9.1. The state vector of the KF was 
denoted as x = (pfr   pfl   pC   v fr   vfl   vC)T (9.3)

9
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and its covariance matrix was P. The states shown in (9.3) include the 3D 
position p, and 3D velocity v of each segment, with the superscript denoting 
the corresponding segment.

The following text expands on the overview shown in Fig. 9.1. It describes the 
a-priori estimate determined using strapdown integration of the accelerations 
measured at each segment. Then, the special biomechanical constraints 
applied to each segment are shown. The implementation of the CMP 
assumptions to reduce the drift between the three segments is also described.

Strapdown Inertial Navigation
This is the prediction step of the KF. The accelerations of each segment was 
expressed in the ψcs(k) as:

Equations for replacement 

Eq 7.3 

𝑋𝑋 = 𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚
‖𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚‖ 

Eq 6.1 and 9.1 

   𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝐠𝐠𝑠𝑠 + 𝒆𝒆𝐴𝐴 

Eq 9.4 

 

�̂�𝒂𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘) =  𝑹𝑹𝑘𝑘

𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  �̂�𝒂𝑖𝑖

𝑠𝑠𝑣𝑣𝑠𝑠) (9.4) 

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅   (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠  +  𝐠𝐠𝑠𝑠𝑣𝑣𝑠𝑠 ) )    

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠 +  𝐠𝐠𝑐𝑐𝑠𝑠(𝑘𝑘−1))    

 

9.11a 

𝒛𝒛𝑧𝑧ℎ  =   𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓    

9.11b 

�̂�𝒛𝑧𝑧ℎ  = 𝑯𝑯𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ 

 (9.4)
   

Equations for replacement 

Eq 7.3 

𝑋𝑋 = 𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚
‖𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚‖ 

Eq 6.1 and 9.1 

   𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝐠𝐠𝑠𝑠 + 𝒆𝒆𝐴𝐴 

Eq 9.4 

 

�̂�𝒂𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘) =  𝑹𝑹𝑘𝑘

𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  �̂�𝒂𝑖𝑖

𝑠𝑠𝑣𝑣𝑠𝑠) (9.4) 

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅   (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠  +  𝐠𝐠𝑠𝑠𝑣𝑣𝑠𝑠 ) )    

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠 +  𝐠𝐠𝑐𝑐𝑠𝑠(𝑘𝑘−1))    

 

9.11a 

𝒛𝒛𝑧𝑧ℎ  =   𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓    

9.11b 

�̂�𝒛𝑧𝑧ℎ  = 𝑯𝑯𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ 

Equations for replacement 

Eq 7.3 

𝑋𝑋 = 𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚
‖𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚‖ 

Eq 6.1 and 9.1 

   𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝐠𝐠𝑠𝑠 + 𝒆𝒆𝐴𝐴 

Eq 9.4 

 

�̂�𝒂𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘) =  𝑹𝑹𝑘𝑘

𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  �̂�𝒂𝑖𝑖

𝑠𝑠𝑣𝑣𝑠𝑠) (9.4) 

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅   (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠  +  𝐠𝐠𝑠𝑠𝑣𝑣𝑠𝑠 ) )    

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠 +  𝐠𝐠𝑐𝑐𝑠𝑠(𝑘𝑘−1))    

 

9.11a 

𝒛𝒛𝑧𝑧ℎ  =   𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓    

9.11b 

�̂�𝒛𝑧𝑧ℎ  = 𝑯𝑯𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ 

where Ra,b denotes the rotation from frame ψb to ψa. Rk
cs(k),cs(k-1), and  

Rk
cs(k-1),seg were estimated using the methods described in Sections 6.2 

(Chapter VI) and 9.2.1. Here, i denotes the samples during the current step 
k. The velocity (v̂ i

cs) and position (p̂i
cs) can be estimated using (Weenk et al., 

2015)

  Tracking relative feet and CoM movement 

Notation Definition 

𝒂𝒂𝒌𝒌 𝒂𝒂 at k-th instant    

𝒂𝒂𝒔𝒔 𝒂𝒂 expressed in frame 𝜓𝜓𝑠𝑠  

�̇�𝒂 derivative of 𝒂𝒂  

�̂�𝒂 a-posteriori estimate of 𝒂𝒂  

𝒂𝒂− a-priori estimate of 𝒂𝒂   

𝒆𝒆𝒂𝒂 Gaussian white noise associated with 𝒂𝒂    

 

A Kalman filter (KF) was used to track the velocity and position of the three segments: both 

feet and CoM, in the current step frame 𝜓𝜓𝑐𝑐𝑠𝑠. The filter notations used are tabulated in Table 9.1. The 

state vector of the KF was denoted as 𝒙𝒙,  

where 𝒙𝒙 = (𝒑𝒑𝑓𝑓𝑓𝑓 𝒑𝒑𝑓𝑓𝑓𝑓 𝒑𝒑𝑪𝑪 𝒗𝒗𝑓𝑓𝑓𝑓 𝒗𝒗𝑓𝑓𝑓𝑓 𝒗𝒗𝑪𝑪)𝑇𝑇  (9.3) 

 and its covariance matrix was 𝑷𝑷. The states shown in (9.3) include the 3D position 𝒑𝒑, and 3D 

velocity 𝒗𝒗 of each segment, with the superscript denoting the corresponding segment.  

Strapdown Inertial Navigation 
This is the prediction step of the KF. The accelerations of each segment was expressed in the 𝜓𝜓𝑐𝑐𝑠𝑠(𝑘𝑘) as:  

  

�̂�𝒂𝒊𝒊
𝒄𝒄𝒔𝒔(𝒌𝒌) =  𝑹𝑹𝒌𝒌

𝒄𝒄𝒔𝒔(𝒌𝒌),𝒄𝒄𝒔𝒔(𝒌𝒌−𝟏𝟏) ⋅  ( 𝑹𝑹𝒊𝒊
𝒄𝒄𝒔𝒔(𝒌𝒌−𝟏𝟏),𝒔𝒔𝒆𝒆𝒔𝒔 ⋅  �̂�𝒂𝒊𝒊

𝒔𝒔𝒆𝒆𝒔𝒔
[MRM(2]) (9.4) 

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑠𝑠𝑠𝑠 ⋅   (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠  +  𝒔𝒔𝑠𝑠𝑠𝑠𝑠𝑠 ) )    

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑠𝑠𝑠𝑠 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 +  𝒔𝒔𝑐𝑐𝑠𝑠(𝑘𝑘−1))    

 

where 𝑹𝑹𝑎𝑎,𝑏𝑏 denotes the rotation from frame 𝜓𝜓𝑏𝑏 to 𝜓𝜓𝑎𝑎. 𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1), and 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑠𝑠𝑠𝑠 were 

estimated using the methods described in Sections 6.2 (Chapter VI) and 9.2.1. Here, i denotes the 

samples during the current step k. The velocity (�̂�𝒗𝑖𝑖
𝑐𝑐𝑠𝑠) and position (�̂�𝒑𝑖𝑖

𝑐𝑐𝑠𝑠) can be estimated using (Weenk 

et al., 2015) 

�̂�𝒗𝑖𝑖
𝑐𝑐𝑠𝑠  = �̂�𝒗𝑖𝑖−1

𝑐𝑐𝑠𝑠  +  𝑇𝑇 ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑠𝑠    (9.5) 

and �̂�𝒑𝑖𝑖
𝑐𝑐𝑠𝑠  = �̂�𝒑𝑖𝑖−1

𝑐𝑐𝑠𝑠  +  𝑇𝑇 ⋅ �̂�𝒗𝑖𝑖
𝑐𝑐𝑠𝑠 + 𝑇𝑇2

2  ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑠𝑠   (9.6) 

where 𝑇𝑇 is the time step. The Kalman filter prediction equation can be written as (Welch and Bishop, 

2006)   

    (9.5)

and 

  Tracking relative feet and CoM movement 

Notation Definition 

𝒂𝒂𝒌𝒌 𝒂𝒂 at k-th instant    

𝒂𝒂𝒔𝒔 𝒂𝒂 expressed in frame 𝜓𝜓𝑠𝑠  

�̇�𝒂 derivative of 𝒂𝒂  

�̂�𝒂 a-posteriori estimate of 𝒂𝒂  

𝒂𝒂− a-priori estimate of 𝒂𝒂   

𝒆𝒆𝒂𝒂 Gaussian white noise associated with 𝒂𝒂    

 

A Kalman filter (KF) was used to track the velocity and position of the three segments: both 

feet and CoM, in the current step frame 𝜓𝜓𝑐𝑐𝑠𝑠. The filter notations used are tabulated in Table 9.1. The 

state vector of the KF was denoted as 𝒙𝒙,  

where 𝒙𝒙 = (𝒑𝒑𝑓𝑓𝑓𝑓 𝒑𝒑𝑓𝑓𝑓𝑓 𝒑𝒑𝑪𝑪 𝒗𝒗𝑓𝑓𝑓𝑓 𝒗𝒗𝑓𝑓𝑓𝑓 𝒗𝒗𝑪𝑪)𝑇𝑇  (9.3) 

 and its covariance matrix was 𝑷𝑷. The states shown in (9.3) include the 3D position 𝒑𝒑, and 3D 

velocity 𝒗𝒗 of each segment, with the superscript denoting the corresponding segment.  

Strapdown Inertial Navigation 
This is the prediction step of the KF. The accelerations of each segment was expressed in the 𝜓𝜓𝑐𝑐𝑠𝑠(𝑘𝑘) as:  

  

�̂�𝒂𝒊𝒊
𝒄𝒄𝒔𝒔(𝒌𝒌) =  𝑹𝑹𝒌𝒌

𝒄𝒄𝒔𝒔(𝒌𝒌),𝒄𝒄𝒔𝒔(𝒌𝒌−𝟏𝟏) ⋅  ( 𝑹𝑹𝒊𝒊
𝒄𝒄𝒔𝒔(𝒌𝒌−𝟏𝟏),𝒔𝒔𝒆𝒆𝒔𝒔 ⋅  �̂�𝒂𝒊𝒊

𝒔𝒔𝒆𝒆𝒔𝒔
[MRM(2]) (9.4) 

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑠𝑠𝑠𝑠 ⋅   (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠  +  𝒔𝒔𝑠𝑠𝑠𝑠𝑠𝑠 ) )    

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑠𝑠𝑠𝑠 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 +  𝒔𝒔𝑐𝑐𝑠𝑠(𝑘𝑘−1))    

 

where 𝑹𝑹𝑎𝑎,𝑏𝑏 denotes the rotation from frame 𝜓𝜓𝑏𝑏 to 𝜓𝜓𝑎𝑎. 𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1), and 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑠𝑠𝑠𝑠 were 

estimated using the methods described in Sections 6.2 (Chapter VI) and 9.2.1. Here, i denotes the 

samples during the current step k. The velocity (�̂�𝒗𝑖𝑖
𝑐𝑐𝑠𝑠) and position (�̂�𝒑𝑖𝑖

𝑐𝑐𝑠𝑠) can be estimated using (Weenk 

et al., 2015) 

�̂�𝒗𝑖𝑖
𝑐𝑐𝑠𝑠  = �̂�𝒗𝑖𝑖−1

𝑐𝑐𝑠𝑠  +  𝑇𝑇 ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑠𝑠    (9.5) 

and �̂�𝒑𝑖𝑖
𝑐𝑐𝑠𝑠  = �̂�𝒑𝑖𝑖−1

𝑐𝑐𝑠𝑠  +  𝑇𝑇 ⋅ �̂�𝒗𝑖𝑖
𝑐𝑐𝑠𝑠 + 𝑇𝑇2

2  ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑠𝑠   (9.6) 

where 𝑇𝑇 is the time step. The Kalman filter prediction equation can be written as (Welch and Bishop, 

2006)   

  (9.6)

where T is the time step. The Kalman filter prediction equation can be written 
as (Welch and Bishop, 2006)

  Tracking relative feet and CoM movement 

�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1 + 𝒖𝒖𝑖𝑖−1      (9.7) 

where 𝑭𝑭 = ( 𝐈𝐈3 𝑇𝑇
 𝟎𝟎3  𝐈𝐈3

)and 𝒖𝒖 = (
𝑇𝑇2

2  ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑐𝑐

𝑇𝑇 ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑐𝑐

)       (9.8) 

and the covariance matrix was predicted using  

�̂�𝑷𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝑷𝑖𝑖−1

− ⋅ 𝑭𝑭𝑇𝑇 + 𝑸𝑸    (9.9) 

where, 𝑸𝑸 is the process noise covariance matrix. 

 

Measurement Update 
The measurement updates used to reduce drift in the estimation of position and velocity of the feet 

and CoM are as follows. A summary of when these updates are applied is shown in Fig. 9.1.  

• Zero Velocity Update (ZV): As shown in Fig. 9.1, this is applied when the foot is in contact with 

the ground (Skog et al., 2010), as the velocity of the feet are assumed to be zero. Therefore, 

we have a measurement update 𝒛𝒛𝑧𝑧𝑧𝑧 applied to the foot velocity such that  

𝒛𝒛𝑧𝑧𝑧𝑧 =  𝟎𝟎3×1    (9.10a) 

�̂�𝒛𝑧𝑧𝑧𝑧 =  𝑯𝑯𝑧𝑧𝑧𝑧 ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧𝑧𝑧   (9.10b) 

with, 𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓   = (𝟎𝟎3×9 𝑰𝑰3×3 𝟎𝟎3×6)     (9.10c) 

and  𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓  =  (𝟎𝟎3×12 𝐈𝐈3×3 𝟎𝟎3×3). (9.10d) 

In the above equations, 𝒛𝒛 denotes the measurement, and 𝑯𝑯 transforms the state vector to a 

measurement prediction (�̂�𝒛), and (Welch and Bishop, 2006). 𝒆𝒆𝑧𝑧𝑧𝑧 denotes the error associated 

with this measurement. The subscript zv corresponds to the update ZV. The same notations 

are used in the following equations.   

  

• Zero Height Update (ZH): Again, during foot contact instances, and assuming gait over a flat 

surface, we can model the information regarding the height of the foot from the floor as

  

𝒛𝒛𝑧𝑧ℎ  =   𝑝𝑝𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓       (9.11a) 

�̂�𝒛𝑧𝑧ℎ  = 𝐻𝐻𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ   (9.11b) 

with 𝑯𝑯𝑧𝑧ℎ
𝑓𝑓𝑓𝑓  =  (0  0  1  0  0  0  𝟎𝟎1×15)   (9.11c) 

    (9.7)
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where 

  Tracking relative feet and CoM movement 

�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1 + 𝒖𝒖𝑖𝑖−1      (9.7) 

where 𝑭𝑭 = ( 𝐈𝐈3 𝑇𝑇
 𝟎𝟎3  𝐈𝐈3

)and 𝒖𝒖 = (
𝑇𝑇2

2  ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑐𝑐

𝑇𝑇 ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑐𝑐

)       (9.8) 

and the covariance matrix was predicted using  

�̂�𝑷𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝑷𝑖𝑖−1

− ⋅ 𝑭𝑭𝑇𝑇 + 𝑸𝑸    (9.9) 

where, 𝑸𝑸 is the process noise covariance matrix. 

 

Measurement Update 
The measurement updates used to reduce drift in the estimation of position and velocity of the feet 

and CoM are as follows. A summary of when these updates are applied is shown in Fig. 9.1.  

• Zero Velocity Update (ZV): As shown in Fig. 9.1, this is applied when the foot is in contact with 

the ground (Skog et al., 2010), as the velocity of the feet are assumed to be zero. Therefore, 

we have a measurement update 𝒛𝒛𝑧𝑧𝑧𝑧 applied to the foot velocity such that  

𝒛𝒛𝑧𝑧𝑧𝑧 =  𝟎𝟎3×1    (9.10a) 

�̂�𝒛𝑧𝑧𝑧𝑧 =  𝑯𝑯𝑧𝑧𝑧𝑧 ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧𝑧𝑧   (9.10b) 

with, 𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓   = (𝟎𝟎3×9 𝑰𝑰3×3 𝟎𝟎3×6)     (9.10c) 

and  𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓  =  (𝟎𝟎3×12 𝐈𝐈3×3 𝟎𝟎3×3). (9.10d) 

In the above equations, 𝒛𝒛 denotes the measurement, and 𝑯𝑯 transforms the state vector to a 

measurement prediction (�̂�𝒛), and (Welch and Bishop, 2006). 𝒆𝒆𝑧𝑧𝑧𝑧 denotes the error associated 

with this measurement. The subscript zv corresponds to the update ZV. The same notations 

are used in the following equations.   

  

• Zero Height Update (ZH): Again, during foot contact instances, and assuming gait over a flat 

surface, we can model the information regarding the height of the foot from the floor as

  

𝒛𝒛𝑧𝑧ℎ  =   𝑝𝑝𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓       (9.11a) 

�̂�𝒛𝑧𝑧ℎ  = 𝐻𝐻𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ   (9.11b) 

with 𝑯𝑯𝑧𝑧ℎ
𝑓𝑓𝑓𝑓  =  (0  0  1  0  0  0  𝟎𝟎1×15)   (9.11c) 

 and 
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− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1 + 𝒖𝒖𝑖𝑖−1      (9.7) 

where 𝑭𝑭 = ( 𝐈𝐈3 𝑇𝑇
 𝟎𝟎3  𝐈𝐈3

)and 𝒖𝒖 = (
𝑇𝑇2

2  ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑐𝑐

𝑇𝑇 ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑐𝑐

)       (9.8) 

and the covariance matrix was predicted using  

�̂�𝑷𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝑷𝑖𝑖−1

− ⋅ 𝑭𝑭𝑇𝑇 + 𝑸𝑸    (9.9) 

where, 𝑸𝑸 is the process noise covariance matrix. 

 

Measurement Update 
The measurement updates used to reduce drift in the estimation of position and velocity of the feet 

and CoM are as follows. A summary of when these updates are applied is shown in Fig. 9.1.  

• Zero Velocity Update (ZV): As shown in Fig. 9.1, this is applied when the foot is in contact with 

the ground (Skog et al., 2010), as the velocity of the feet are assumed to be zero. Therefore, 

we have a measurement update 𝒛𝒛𝑧𝑧𝑧𝑧 applied to the foot velocity such that  

𝒛𝒛𝑧𝑧𝑧𝑧 =  𝟎𝟎3×1    (9.10a) 

�̂�𝒛𝑧𝑧𝑧𝑧 =  𝑯𝑯𝑧𝑧𝑧𝑧 ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧𝑧𝑧   (9.10b) 

with, 𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓   = (𝟎𝟎3×9 𝑰𝑰3×3 𝟎𝟎3×6)     (9.10c) 

and  𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓  =  (𝟎𝟎3×12 𝐈𝐈3×3 𝟎𝟎3×3). (9.10d) 

In the above equations, 𝒛𝒛 denotes the measurement, and 𝑯𝑯 transforms the state vector to a 

measurement prediction (�̂�𝒛), and (Welch and Bishop, 2006). 𝒆𝒆𝑧𝑧𝑧𝑧 denotes the error associated 

with this measurement. The subscript zv corresponds to the update ZV. The same notations 

are used in the following equations.   

  

• Zero Height Update (ZH): Again, during foot contact instances, and assuming gait over a flat 

surface, we can model the information regarding the height of the foot from the floor as

  

𝒛𝒛𝑧𝑧ℎ  =   𝑝𝑝𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓       (9.11a) 

�̂�𝒛𝑧𝑧ℎ  = 𝐻𝐻𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ   (9.11b) 

with 𝑯𝑯𝑧𝑧ℎ
𝑓𝑓𝑓𝑓  =  (0  0  1  0  0  0  𝟎𝟎1×15)   (9.11c) 

 (9.8)

and the covariance matrix was predicted using
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�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1 + 𝒖𝒖𝑖𝑖−1      (9.7) 

where 𝑭𝑭 = ( 𝐈𝐈3 𝑇𝑇
 𝟎𝟎3  𝐈𝐈3

)and 𝒖𝒖 = (
𝑇𝑇2

2  ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑐𝑐

𝑇𝑇 ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑐𝑐

)       (9.8) 

and the covariance matrix was predicted using  

�̂�𝑷𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝑷𝑖𝑖−1

− ⋅ 𝑭𝑭𝑇𝑇 + 𝑸𝑸    (9.9) 

where, 𝑸𝑸 is the process noise covariance matrix. 

 

Measurement Update 
The measurement updates used to reduce drift in the estimation of position and velocity of the feet 

and CoM are as follows. A summary of when these updates are applied is shown in Fig. 9.1.  

• Zero Velocity Update (ZV): As shown in Fig. 9.1, this is applied when the foot is in contact with 

the ground (Skog et al., 2010), as the velocity of the feet are assumed to be zero. Therefore, 

we have a measurement update 𝒛𝒛𝑧𝑧𝑧𝑧 applied to the foot velocity such that  

𝒛𝒛𝑧𝑧𝑧𝑧 =  𝟎𝟎3×1    (9.10a) 

�̂�𝒛𝑧𝑧𝑧𝑧 =  𝑯𝑯𝑧𝑧𝑧𝑧 ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧𝑧𝑧   (9.10b) 

with, 𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓   = (𝟎𝟎3×9 𝑰𝑰3×3 𝟎𝟎3×6)     (9.10c) 

and  𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓  =  (𝟎𝟎3×12 𝐈𝐈3×3 𝟎𝟎3×3). (9.10d) 

In the above equations, 𝒛𝒛 denotes the measurement, and 𝑯𝑯 transforms the state vector to a 

measurement prediction (�̂�𝒛), and (Welch and Bishop, 2006). 𝒆𝒆𝑧𝑧𝑧𝑧 denotes the error associated 

with this measurement. The subscript zv corresponds to the update ZV. The same notations 

are used in the following equations.   

  

• Zero Height Update (ZH): Again, during foot contact instances, and assuming gait over a flat 

surface, we can model the information regarding the height of the foot from the floor as

  

𝒛𝒛𝑧𝑧ℎ  =   𝑝𝑝𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓       (9.11a) 

�̂�𝒛𝑧𝑧ℎ  = 𝐻𝐻𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ   (9.11b) 

with 𝑯𝑯𝑧𝑧ℎ
𝑓𝑓𝑓𝑓  =  (0  0  1  0  0  0  𝟎𝟎1×15)   (9.11c) 

   (9.9)

where, Q is the process noise covariance matrix.

Measurement Update
The measurement updates used to reduce drift in the estimation of position 
and velocity of the feet and CoM are as follows. A summary of when these 
updates are applied is shown in Fig. 9.1.

•  Zero Velocity Update (ZV): As shown in Fig. 9.1, this is applied when the foot 
is in contact with the ground (Skog et al., 2010), as the velocity of the 
feet are assumed to be zero. Therefore, we have a measurement update 
zzv applied to the foot velocity such that
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− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1 + 𝒖𝒖𝑖𝑖−1      (9.7) 

where 𝑭𝑭 = ( 𝐈𝐈3 𝑇𝑇
 𝟎𝟎3  𝐈𝐈3

)and 𝒖𝒖 = (
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)       (9.8) 

and the covariance matrix was predicted using  

�̂�𝑷𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝑷𝑖𝑖−1

− ⋅ 𝑭𝑭𝑇𝑇 + 𝑸𝑸    (9.9) 

where, 𝑸𝑸 is the process noise covariance matrix. 

 

Measurement Update 
The measurement updates used to reduce drift in the estimation of position and velocity of the feet 

and CoM are as follows. A summary of when these updates are applied is shown in Fig. 9.1.  

• Zero Velocity Update (ZV): As shown in Fig. 9.1, this is applied when the foot is in contact with 

the ground (Skog et al., 2010), as the velocity of the feet are assumed to be zero. Therefore, 

we have a measurement update 𝒛𝒛𝑧𝑧𝑧𝑧 applied to the foot velocity such that  

𝒛𝒛𝑧𝑧𝑧𝑧 =  𝟎𝟎3×1    (9.10a) 

�̂�𝒛𝑧𝑧𝑧𝑧 =  𝑯𝑯𝑧𝑧𝑧𝑧 ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧𝑧𝑧   (9.10b) 
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𝑓𝑓𝑓𝑓   = (𝟎𝟎3×9 𝑰𝑰3×3 𝟎𝟎3×6)     (9.10c) 

and  𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓  =  (𝟎𝟎3×12 𝐈𝐈3×3 𝟎𝟎3×3). (9.10d) 

In the above equations, 𝒛𝒛 denotes the measurement, and 𝑯𝑯 transforms the state vector to a 

measurement prediction (�̂�𝒛), and (Welch and Bishop, 2006). 𝒆𝒆𝑧𝑧𝑧𝑧 denotes the error associated 

with this measurement. The subscript zv corresponds to the update ZV. The same notations 

are used in the following equations.   

  

• Zero Height Update (ZH): Again, during foot contact instances, and assuming gait over a flat 

surface, we can model the information regarding the height of the foot from the floor as

  

𝒛𝒛𝑧𝑧ℎ  =   𝑝𝑝𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓       (9.11a) 

�̂�𝒛𝑧𝑧ℎ  = 𝐻𝐻𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ   (9.11b) 

with 𝑯𝑯𝑧𝑧ℎ
𝑓𝑓𝑓𝑓  =  (0  0  1  0  0  0  𝟎𝟎1×15)   (9.11c) 

    (9.10a)
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− ⋅ 𝑭𝑭𝑇𝑇 + 𝑸𝑸    (9.9) 

where, 𝑸𝑸 is the process noise covariance matrix. 

 

Measurement Update 
The measurement updates used to reduce drift in the estimation of position and velocity of the feet 

and CoM are as follows. A summary of when these updates are applied is shown in Fig. 9.1.  

• Zero Velocity Update (ZV): As shown in Fig. 9.1, this is applied when the foot is in contact with 

the ground (Skog et al., 2010), as the velocity of the feet are assumed to be zero. Therefore, 

we have a measurement update 𝒛𝒛𝑧𝑧𝑧𝑧 applied to the foot velocity such that  

𝒛𝒛𝑧𝑧𝑧𝑧 =  𝟎𝟎3×1    (9.10a) 

�̂�𝒛𝑧𝑧𝑧𝑧 =  𝑯𝑯𝑧𝑧𝑧𝑧 ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧𝑧𝑧   (9.10b) 

with, 𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓   = (𝟎𝟎3×9 𝑰𝑰3×3 𝟎𝟎3×6)     (9.10c) 

and  𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓  =  (𝟎𝟎3×12 𝐈𝐈3×3 𝟎𝟎3×3). (9.10d) 

In the above equations, 𝒛𝒛 denotes the measurement, and 𝑯𝑯 transforms the state vector to a 

measurement prediction (�̂�𝒛), and (Welch and Bishop, 2006). 𝒆𝒆𝑧𝑧𝑧𝑧 denotes the error associated 

with this measurement. The subscript zv corresponds to the update ZV. The same notations 

are used in the following equations.   

  

• Zero Height Update (ZH): Again, during foot contact instances, and assuming gait over a flat 

surface, we can model the information regarding the height of the foot from the floor as

  

𝒛𝒛𝑧𝑧ℎ  =   𝑝𝑝𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓       (9.11a) 

�̂�𝒛𝑧𝑧ℎ  = 𝐻𝐻𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ   (9.11b) 

with 𝑯𝑯𝑧𝑧ℎ
𝑓𝑓𝑓𝑓  =  (0  0  1  0  0  0  𝟎𝟎1×15)   (9.11c) 

   (9.10b)

with, 

  

 

Equation 6.7: 

𝒃𝒃𝜖𝜖,𝑖𝑖 = 𝒃𝒃𝜖𝜖,𝑖𝑖−1 − 𝒆𝒆𝑏𝑏,𝑖𝑖.     

 

Equation 6.11: 

and 𝜽𝜽𝜖𝜖,𝑖𝑖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 − 𝑇𝑇2

2 ⋅ �̃�𝝎) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.   

 

Equation 9.10c 

with, 𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓   = (𝟎𝟎3×9 𝐈𝐈3×3 𝟎𝟎3×6)      

 

 

Equation 9.18c: 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶  = (𝟎𝟎2×6  𝐈𝐈2×2  𝟎𝟎2×10 ).    

 

   (9.10c)

and 
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− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1 + 𝒖𝒖𝑖𝑖−1      (9.7) 

where 𝑭𝑭 = ( 𝐈𝐈3 𝑇𝑇
 𝟎𝟎3  𝐈𝐈3

)and 𝒖𝒖 = (
𝑇𝑇2

2  ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑐𝑐

𝑇𝑇 ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑐𝑐

)       (9.8) 

and the covariance matrix was predicted using  

�̂�𝑷𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝑷𝑖𝑖−1

− ⋅ 𝑭𝑭𝑇𝑇 + 𝑸𝑸    (9.9) 

where, 𝑸𝑸 is the process noise covariance matrix. 

 

Measurement Update 
The measurement updates used to reduce drift in the estimation of position and velocity of the feet 

and CoM are as follows. A summary of when these updates are applied is shown in Fig. 9.1.  

• Zero Velocity Update (ZV): As shown in Fig. 9.1, this is applied when the foot is in contact with 

the ground (Skog et al., 2010), as the velocity of the feet are assumed to be zero. Therefore, 

we have a measurement update 𝒛𝒛𝑧𝑧𝑧𝑧 applied to the foot velocity such that  

𝒛𝒛𝑧𝑧𝑧𝑧 =  𝟎𝟎3×1    (9.10a) 

�̂�𝒛𝑧𝑧𝑧𝑧 =  𝑯𝑯𝑧𝑧𝑧𝑧 ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧𝑧𝑧   (9.10b) 

with, 𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓   = (𝟎𝟎3×9 𝑰𝑰3×3 𝟎𝟎3×6)     (9.10c) 

and  𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓  =  (𝟎𝟎3×12 𝐈𝐈3×3 𝟎𝟎3×3). (9.10d) 

In the above equations, 𝒛𝒛 denotes the measurement, and 𝑯𝑯 transforms the state vector to a 

measurement prediction (�̂�𝒛), and (Welch and Bishop, 2006). 𝒆𝒆𝑧𝑧𝑧𝑧 denotes the error associated 

with this measurement. The subscript zv corresponds to the update ZV. The same notations 

are used in the following equations.   

  

• Zero Height Update (ZH): Again, during foot contact instances, and assuming gait over a flat 

surface, we can model the information regarding the height of the foot from the floor as

  

𝒛𝒛𝑧𝑧ℎ  =   𝑝𝑝𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓       (9.11a) 

�̂�𝒛𝑧𝑧ℎ  = 𝐻𝐻𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ   (9.11b) 

with 𝑯𝑯𝑧𝑧ℎ
𝑓𝑓𝑓𝑓  =  (0  0  1  0  0  0  𝟎𝟎1×15)   (9.11c) 

  (9.10d)

 In the above equations, z denotes the measurement, and H transforms 
the state vector to a measurement prediction (z ̂) (Welch and Bishop, 
2006). ezv denotes the error associated with this measurement. The 
subscript zv corresponds to the update ZV. The same notations are used 
in the following equations.

•   Zero Height Update (ZH): Again, during foot contact instances, and assuming 
gait over a flat surface, we can model the information regarding the 
height of the foot from the floor as

9
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Chapter 9

Equations for replacement 

Eq 7.3 

𝑋𝑋 = 𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚
‖𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚‖ 

Eq 6.1 and 9.1 

   𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝐠𝐠𝑠𝑠 + 𝒆𝒆𝐴𝐴 

Eq 9.4 

 

�̂�𝒂𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘) =  𝑹𝑹𝑘𝑘

𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  �̂�𝒂𝑖𝑖

𝑠𝑠𝑣𝑣𝑠𝑠) (9.4) 

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅   (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠  +  𝐠𝐠𝑠𝑠𝑣𝑣𝑠𝑠 ) )    

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠 +  𝐠𝐠𝑐𝑐𝑠𝑠(𝑘𝑘−1))    

 

9.11a 

𝒛𝒛𝑧𝑧ℎ  =   𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓    

9.11b 

�̂�𝒛𝑧𝑧ℎ  = 𝑯𝑯𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ 

    (9.11a)

Equations for replacement 

Eq 7.3 

𝑋𝑋 = 𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚
‖𝐂𝐂𝐂𝐂𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚‖ 

Eq 6.1 and 9.1 

   𝒚𝒚𝐴𝐴
𝑠𝑠 = 𝒂𝒂𝑠𝑠 − 𝐠𝐠𝑠𝑠 + 𝒆𝒆𝐴𝐴 

Eq 9.4 

 

�̂�𝒂𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘) =  𝑹𝑹𝑘𝑘

𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖
𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  �̂�𝒂𝑖𝑖

𝑠𝑠𝑣𝑣𝑠𝑠) (9.4) 

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅   (𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠  +  𝐠𝐠𝑠𝑠𝑣𝑣𝑠𝑠 ) )    

 =  𝑹𝑹𝑘𝑘
𝑐𝑐𝑠𝑠(𝑘𝑘),𝑐𝑐𝑠𝑠(𝑘𝑘−1) ⋅  ( 𝑹𝑹𝑖𝑖

𝑐𝑐𝑠𝑠(𝑘𝑘−1),𝑠𝑠𝑣𝑣𝑠𝑠 ⋅  𝒚𝒚𝐴𝐴,𝑖𝑖
𝑠𝑠𝑣𝑣𝑠𝑠 +  𝐠𝐠𝑐𝑐𝑠𝑠(𝑘𝑘−1))    

 

9.11a 

𝒛𝒛𝑧𝑧ℎ  =   𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓    

9.11b 

�̂�𝒛𝑧𝑧ℎ  = 𝑯𝑯𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ    (9.11b)

with 
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�̂�𝒙𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝒙𝑖𝑖−1 + 𝒖𝒖𝑖𝑖−1      (9.7) 

where 𝑭𝑭 = ( 𝐈𝐈3 𝑇𝑇
 𝟎𝟎3  𝐈𝐈3

)and 𝒖𝒖 = (
𝑇𝑇2

2  ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑐𝑐

𝑇𝑇 ⋅ �̂�𝒂𝑖𝑖
𝑐𝑐𝑐𝑐

)       (9.8) 

and the covariance matrix was predicted using  

�̂�𝑷𝑖𝑖
− = 𝑭𝑭 ⋅ �̂�𝑷𝑖𝑖−1

− ⋅ 𝑭𝑭𝑇𝑇 + 𝑸𝑸    (9.9) 

where, 𝑸𝑸 is the process noise covariance matrix. 

 

Measurement Update 
The measurement updates used to reduce drift in the estimation of position and velocity of the feet 

and CoM are as follows. A summary of when these updates are applied is shown in Fig. 9.1.  

• Zero Velocity Update (ZV): As shown in Fig. 9.1, this is applied when the foot is in contact with 

the ground (Skog et al., 2010), as the velocity of the feet are assumed to be zero. Therefore, 

we have a measurement update 𝒛𝒛𝑧𝑧𝑧𝑧 applied to the foot velocity such that  

𝒛𝒛𝑧𝑧𝑧𝑧 =  𝟎𝟎3×1    (9.10a) 

�̂�𝒛𝑧𝑧𝑧𝑧 =  𝑯𝑯𝑧𝑧𝑧𝑧 ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧𝑧𝑧   (9.10b) 

with, 𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓   = (𝟎𝟎3×9 𝑰𝑰3×3 𝟎𝟎3×6)     (9.10c) 

and  𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓  =  (𝟎𝟎3×12 𝐈𝐈3×3 𝟎𝟎3×3). (9.10d) 

In the above equations, 𝒛𝒛 denotes the measurement, and 𝑯𝑯 transforms the state vector to a 

measurement prediction (�̂�𝒛), and (Welch and Bishop, 2006). 𝒆𝒆𝑧𝑧𝑧𝑧 denotes the error associated 

with this measurement. The subscript zv corresponds to the update ZV. The same notations 

are used in the following equations.   

  

• Zero Height Update (ZH): Again, during foot contact instances, and assuming gait over a flat 

surface, we can model the information regarding the height of the foot from the floor as

  

𝒛𝒛𝑧𝑧ℎ  =   𝑝𝑝𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓       (9.11a) 

�̂�𝒛𝑧𝑧ℎ  = 𝐻𝐻𝑧𝑧ℎ ⋅  �̂�𝒙−  +  𝒆𝒆𝑧𝑧ℎ   (9.11b) 

with 𝑯𝑯𝑧𝑧ℎ
𝑓𝑓𝑓𝑓  =  (0  0  1  0  0  0  𝟎𝟎1×15)   (9.11c)   (9.11c)

and 
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and  𝑯𝑯𝑧𝑧ℎ
𝑓𝑓𝑓𝑓  =  (0  0  0  0  0  1  𝟎𝟎1×12).  (9.11d) 

 The measurement matrix 𝑯𝑯𝑧𝑧ℎ has only one row as it was applied only to the Z axis of each 

foot. Here, 𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓  is the initial height and the superscript 𝑓𝑓 denotes either the left (fl) or right 

foot (fr). This update was only applied to the feet.   

 

• CoM Velocity (CV): The ZV update ensures that the velocity of the feet do not drift due to 

integration errors. However, the CoM is constantly moving. Therefore, using the methods 

described in Chapter VIII, an estimate of the CoM velocity was derived by fusing two 

complementary sources of information. A high frequency information (𝒗𝒗ℎ𝑓𝑓
𝐶𝐶 ) was derived from 

an optimally filtered direct and reverse strapdown integration (Zok et al., 2004) of the CoM 

accelerations using a cut off of 0.6 Hz. Then, low frequency information (𝒗𝒗𝑓𝑓𝑓𝑓
𝐶𝐶 ) of the CoM 

velocity was derived from low pass filtering the average of the foot velocities using the same 

cut off used for 𝒗𝒗ℎ𝑓𝑓
𝐶𝐶 . The two sources were fused to get estimates of the instantaneous 3D 

CoM velocity:  

𝒗𝒗C =  𝒗𝒗𝑓𝑓𝑓𝑓
𝐶𝐶 +  𝒗𝒗ℎ𝑓𝑓

𝐶𝐶 .  (9.12) 

 

• CoM Height (CH): The height of the CoM ( 𝒑𝒑𝑍𝑍
𝐶𝐶) was also estimated using a complementary filter 

method (Schepers et al., 2009). An optimally filtered direct and reverse strapdown integration 

(Zok et al., 2004) of vertical CoM velocity was used to obtain the changes in CoM height during 

gait using a cut off of 0.3 Hz to obtain the 𝒑𝒑𝑍𝑍,ℎ𝑓𝑓
𝐶𝐶 . Then, as the participant does not crouch or 

jump while walking, the height of the CoM should oscillate around an offset. Assuming an 

average walking CoM height as 98% of the height during quiet standing ( 𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐶𝐶 ) showed least 

errors when validating this method. The average height and the 𝒑𝒑𝑍𝑍,ℎ𝑓𝑓
𝐶𝐶  were fused to get an 

estimate of CoM height 𝒑𝒑𝑍𝑍
𝐶𝐶  during walking:   

𝒑𝒑𝑍𝑍
𝐶𝐶  =  0.98 ⋅ 𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐶𝐶  +  𝒑𝒑𝑍𝑍,ℎ𝑓𝑓
𝐶𝐶 .     (9.13) 

 

• Centroidal Moment Pivot Update (CMP): The CMP update was used to restrict the feet and 

CoM from drifting apart or towards each other. Fig. 9.1 summarizes the steps involved; the 

CMP update was used to first estimate the horizontal position of stance foot with respect to 

the movement of the CoM. After correcting discrete changes at the start of each swing phase, 

  (9.11d)

 The measurement matrix Hzh has only one row as it was applied only 
to the Z axis of each foot. Here, p f

Z,init is the initial height and the 
superscript f denotes either the left (fl) or right foot (fr). This update 
was only applied to the feet.

•   CoM Velocity (CV): The ZV update ensures that the velocity of the feet 
do not drift due to integration errors. However, the CoM is constantly 
moving. Therefore, using the methods described in Chapter VIII, an 
estimate of the CoM velocity was derived by fusing two complementary 
sources of information. A high frequency information (vC

hf) was derived 
from an optimally filtered direct and reverse strapdown integration 
(Zok et al., 2004) of the CoM accelerations using a cut off of 0.6 Hz. 
Then, low frequency information (v C

l f) of the CoM velocity was derived 
from low pass filtering the average of the foot velocities using the same 
cut off used for vC

hf . The two sources were fused to get estimates of the 
instantaneous 3D CoM velocity:

vC = vC
lf + v

C
hf.    (9.12)

•  CoM Height (CH): The height of the CoM (pC
Z) was also estimated using 

a complementary filter method (Schepers et al., 2009). An optimally 
filtered direct and reverse strapdown integration (Zok et al., 2004) of 
vertical CoM velocity was used to obtain the changes in CoM height 
during gait using a cut off of 0.3 Hz to obtain the pC

Z,hf . Then, as the 
participant does not crouch or jump while walking, the height of the 
CoM should oscillate around an offset. Assuming an average walking 
CoM height as 98% of the height during quiet standing (pC

Z,init) showed 
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least errors when validating this method. The average height and the 
pC

Z,hf were fused to get an estimate of CoM height pC
Z during walking:
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and  𝑯𝑯𝑧𝑧ℎ
𝑓𝑓𝑓𝑓  =  (0  0  0  0  0  1  𝟎𝟎1×12).  (9.11d) 

 The measurement matrix 𝑯𝑯𝑧𝑧ℎ has only one row as it was applied only to the Z axis of each 

foot. Here, 𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓  is the initial height and the superscript 𝑓𝑓 denotes either the left (fl) or right 

foot (fr). This update was only applied to the feet.   

 

• CoM Velocity (CV): The ZV update ensures that the velocity of the feet do not drift due to 

integration errors. However, the CoM is constantly moving. Therefore, using the methods 

described in Chapter VIII, an estimate of the CoM velocity was derived by fusing two 

complementary sources of information. A high frequency information (𝒗𝒗ℎ𝑓𝑓
𝐶𝐶 ) was derived from 

an optimally filtered direct and reverse strapdown integration (Zok et al., 2004) of the CoM 

accelerations using a cut off of 0.6 Hz. Then, low frequency information (𝒗𝒗𝑓𝑓𝑓𝑓
𝐶𝐶 ) of the CoM 

velocity was derived from low pass filtering the average of the foot velocities using the same 

cut off used for 𝒗𝒗ℎ𝑓𝑓
𝐶𝐶 . The two sources were fused to get estimates of the instantaneous 3D 

CoM velocity:  

𝒗𝒗C =  𝒗𝒗𝑓𝑓𝑓𝑓
𝐶𝐶 +  𝒗𝒗ℎ𝑓𝑓

𝐶𝐶 .  (9.12) 

 

• CoM Height (CH): The height of the CoM ( 𝒑𝒑𝑍𝑍
𝐶𝐶) was also estimated using a complementary filter 

method (Schepers et al., 2009). An optimally filtered direct and reverse strapdown integration 

(Zok et al., 2004) of vertical CoM velocity was used to obtain the changes in CoM height during 

gait using a cut off of 0.3 Hz to obtain the 𝒑𝒑𝑍𝑍,ℎ𝑓𝑓
𝐶𝐶 . Then, as the participant does not crouch or 

jump while walking, the height of the CoM should oscillate around an offset. Assuming an 

average walking CoM height as 98% of the height during quiet standing ( 𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐶𝐶 ) showed least 

errors when validating this method. The average height and the 𝒑𝒑𝑍𝑍,ℎ𝑓𝑓
𝐶𝐶  were fused to get an 

estimate of CoM height 𝒑𝒑𝑍𝑍
𝐶𝐶  during walking:   

𝒑𝒑𝑍𝑍
𝐶𝐶  =  0.98 ⋅ 𝒑𝒑𝑍𝑍,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐶𝐶  +  𝒑𝒑𝑍𝑍,ℎ𝑓𝑓
𝐶𝐶 .     (9.13) 

 

• Centroidal Moment Pivot Update (CMP): The CMP update was used to restrict the feet and 

CoM from drifting apart or towards each other. Fig. 9.1 summarizes the steps involved; the 

CMP update was used to first estimate the horizontal position of stance foot with respect to 

the movement of the CoM. After correcting discrete changes at the start of each swing phase, 

  (9.13)

•  Centroidal Moment Pivot Update (CMP): The CMP update was used to 
restrict the feet and CoM from drifting apart or towards each other. 
Fig. 9.1 summarizes the steps involved; the CMP update was used to 
first estimate the horizontal position of stance foot with respect to the 
movement of the CoM. After correcting discrete changes at the start of 
each swing phase, the CoM trajectory was updated for the corrected foot 
positions. The biomechanical constraint derived from the CMP point 
(Popovic et al., 2005) is written as

  Tracking relative feet and CoM movement 

the CoM trajectory was updated for the corrected foot positions. The biomechanical constraint 

derived from the CMP point (Popovic et al., 2005) is written as   

𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓   =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶  − (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
 ).   (9.14) 

Here, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  is the virtual CMP point under the stance foot f. ax denotes either X or Y axes, 

and F is the 3D GRF in a specific axis. When the 3D components of GRF are known, the distance 

between the CoM (𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶 ) and the CMP point under the stance foot can be estimated using the 

methods described in Chapter V. The 3D components of GRF estimated from the CoM 

accelerations were used to estimate the ratio 𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑍𝑍

. The 𝒑𝒑𝑍𝑍
𝐶𝐶  or height of the CoM was already 

estimated using the update CH in (9.13). Note that there are a few assumptions regarding 

(9.14). First, we assumed that the virtual CMP position (𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) coincides with the stance foot 

positions (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) tracked by the IMU. Secondly, we assumed that the moment of inertia around 

the trunk is negligible while walking. Thus, during single stance phase, (9.14) provides the 

relation between CoM and the stance foot (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ). This can be used as measurement updates 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  for either foot as follows:  

During left swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐     (9.15b) 

with  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑰𝑰2×2  𝟎𝟎2×16.  (9.15c) 

During right swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15d) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐    (9.15e) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝟎𝟎2×3  𝑰𝑰2×2  𝟎𝟎2×13. (9.15f) 

The measurement matrices 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  were applied only to the X and Y axes of the foot 

positions in the state vector. This update corrects the drift in relative positions between the 

CoM and stance foot during swing phase. However, this may cause a discrete jump in relative 

foot distances at the start of the swing phase. To have a smooth change in relative foot 

distances between subsequent steps, knowledge of the relative foot distances at the end of 

  (9.14)

 Here, cmp f
ax is the virtual CMP point under the stance foot f. ax denotes 

either X or Y axes, and F is the 3D GRF in a specific axis. When the 3D 
components of GRF are known, the distance between the CoM (pC

ax) and 
the CMP point under the stance foot can be estimated using the methods 
described in Chapter V. The 3D components of GRF estimated from the 
CoM accelerations were used to estimate the ratio 

  Tracking relative feet and CoM movement 

the CoM trajectory was updated for the corrected foot positions. The biomechanical constraint 

derived from the CMP point (Popovic et al., 2005) is written as   

𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓   =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶  − (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
 ).   (9.14) 

Here, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  is the virtual CMP point under the stance foot f. ax denotes either X or Y axes, 

and F is the 3D GRF in a specific axis. When the 3D components of GRF are known, the distance 

between the CoM (𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶 ) and the CMP point under the stance foot can be estimated using the 

methods described in Chapter V. The 3D components of GRF estimated from the CoM 

accelerations were used to estimate the ratio 𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑍𝑍

. The 𝒑𝒑𝑍𝑍
𝐶𝐶  or height of the CoM was already 

estimated using the update CH in (9.13). Note that there are a few assumptions regarding 

(9.14). First, we assumed that the virtual CMP position (𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) coincides with the stance foot 

positions (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) tracked by the IMU. Secondly, we assumed that the moment of inertia around 

the trunk is negligible while walking. Thus, during single stance phase, (9.14) provides the 

relation between CoM and the stance foot (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ). This can be used as measurement updates 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  for either foot as follows:  

During left swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐     (9.15b) 

with  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑰𝑰2×2  𝟎𝟎2×16.  (9.15c) 

During right swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15d) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐    (9.15e) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝟎𝟎2×3  𝑰𝑰2×2  𝟎𝟎2×13. (9.15f) 

The measurement matrices 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  were applied only to the X and Y axes of the foot 

positions in the state vector. This update corrects the drift in relative positions between the 

CoM and stance foot during swing phase. However, this may cause a discrete jump in relative 

foot distances at the start of the swing phase. To have a smooth change in relative foot 

distances between subsequent steps, knowledge of the relative foot distances at the end of 

 The pC
Z or height 

of the CoM was already estimated using the update CH in (9.13). Note 
that there are a few assumptions regarding (9.14). First, we assumed that 
the virtual CMP position (cmp f

ax) coincides with the stance foot positions 
(p f

ax) tracked by the IMU. Secondly, we assumed that the moment of 
inertia around the trunk is negligible while walking. Thus, during single 
stance phase, (9.14) provides the relation between CoM and the stance 
foot (p f

ax). This can be used as measurement updates z fr
cmr and z f l

cml for 
either foot as follows:

 During left swing:

  Tracking relative feet and CoM movement 

• Centroidal Moment Pivot Update (CMP): The CMP update was used to restrict the feet and 

CoM from drifting apart or towards each other. Fig. 9.1 summarizes the steps involved; the 

CMP update was used to first estimate the horizontal position of stance foot with respect to 

the movement of the CoM. After correcting discrete changes at the start of each swing phase, 

the CoM trajectory was updated for the corrected foot positions. The biomechanical constraint 

derived from the CMP point (Popovic et al., 2005) is written as   

𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓   =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶  − (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
 ).   (9.14) 

Here, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  is the virtual CMP point under the stance foot f. ax denotes either X or Y axes, 

and F is the 3D GRF in a specific axis. When the 3D components of GRF are known, the distance 

between the CoM (𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶 ) and the CMP point under the stance foot can be estimated using the 

methods described in Chapter V. The 3D components of GRF estimated from the CoM 

accelerations were used to estimate the ratio 𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑍𝑍

. The 𝒑𝒑𝑍𝑍
𝐶𝐶  or height of the CoM was already 

estimated using the update CH in (9.13). Note that there are a few assumptions regarding 

(9.14). First, we assumed that the virtual CMP position (𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) coincides with the stance foot 

positions (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) tracked by the IMU. Secondly, we assumed that the moment of inertia around 

the trunk is negligible while walking. Thus, during single stance phase, (9.14) provides the 

relation between CoM and the stance foot (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ). This can be used as measurement updates 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  for either foot as follows:  

During left swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐     (9.15b) 

with  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  = (𝐈𝐈2×2  𝟎𝟎2×16).  (9.15c) 

During right swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15d) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐    (9.15e) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13). (9.15f) 

The measurement matrices 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  were applied only to the X and Y axes of the foot 

positions in the state vector. This update corrects the drift in relative positions between the 

  (9.15a)

  Tracking relative feet and CoM movement 

• Centroidal Moment Pivot Update (CMP): The CMP update was used to restrict the feet and 

CoM from drifting apart or towards each other. Fig. 9.1 summarizes the steps involved; the 

CMP update was used to first estimate the horizontal position of stance foot with respect to 

the movement of the CoM. After correcting discrete changes at the start of each swing phase, 

the CoM trajectory was updated for the corrected foot positions. The biomechanical constraint 

derived from the CMP point (Popovic et al., 2005) is written as   

𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓   =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶  − (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
 ).   (9.14) 

Here, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  is the virtual CMP point under the stance foot f. ax denotes either X or Y axes, 

and F is the 3D GRF in a specific axis. When the 3D components of GRF are known, the distance 

between the CoM (𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶 ) and the CMP point under the stance foot can be estimated using the 

methods described in Chapter V. The 3D components of GRF estimated from the CoM 

accelerations were used to estimate the ratio 𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑍𝑍

. The 𝒑𝒑𝑍𝑍
𝐶𝐶  or height of the CoM was already 

estimated using the update CH in (9.13). Note that there are a few assumptions regarding 

(9.14). First, we assumed that the virtual CMP position (𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) coincides with the stance foot 

positions (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) tracked by the IMU. Secondly, we assumed that the moment of inertia around 

the trunk is negligible while walking. Thus, during single stance phase, (9.14) provides the 

relation between CoM and the stance foot (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ). This can be used as measurement updates 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  for either foot as follows:  

During left swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐     (9.15b) 

with  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  = (𝐈𝐈2×2  𝟎𝟎2×16).  (9.15c) 

During right swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15d) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐    (9.15e) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13). (9.15f) 

The measurement matrices 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  were applied only to the X and Y axes of the foot 

positions in the state vector. This update corrects the drift in relative positions between the 

   (9.15b)
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with  

  Tracking relative feet and CoM movement 

• Centroidal Moment Pivot Update (CMP): The CMP update was used to restrict the feet and 

CoM from drifting apart or towards each other. Fig. 9.1 summarizes the steps involved; the 

CMP update was used to first estimate the horizontal position of stance foot with respect to 

the movement of the CoM. After correcting discrete changes at the start of each swing phase, 

the CoM trajectory was updated for the corrected foot positions. The biomechanical constraint 

derived from the CMP point (Popovic et al., 2005) is written as   

𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓   =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶  − (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
 ).   (9.14) 

Here, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  is the virtual CMP point under the stance foot f. ax denotes either X or Y axes, 

and F is the 3D GRF in a specific axis. When the 3D components of GRF are known, the distance 

between the CoM (𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶 ) and the CMP point under the stance foot can be estimated using the 

methods described in Chapter V. The 3D components of GRF estimated from the CoM 

accelerations were used to estimate the ratio 𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑍𝑍

. The 𝒑𝒑𝑍𝑍
𝐶𝐶  or height of the CoM was already 

estimated using the update CH in (9.13). Note that there are a few assumptions regarding 

(9.14). First, we assumed that the virtual CMP position (𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) coincides with the stance foot 

positions (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) tracked by the IMU. Secondly, we assumed that the moment of inertia around 

the trunk is negligible while walking. Thus, during single stance phase, (9.14) provides the 

relation between CoM and the stance foot (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ). This can be used as measurement updates 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  for either foot as follows:  

During left swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐     (9.15b) 

with  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  = (𝐈𝐈2×2  𝟎𝟎2×16).  (9.15c) 

During right swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15d) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐    (9.15e) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13). (9.15f) 

The measurement matrices 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  were applied only to the X and Y axes of the foot 

positions in the state vector. This update corrects the drift in relative positions between the 

).   (9.15c)

 During right swing: 

  Tracking relative feet and CoM movement 

• Centroidal Moment Pivot Update (CMP): The CMP update was used to restrict the feet and 

CoM from drifting apart or towards each other. Fig. 9.1 summarizes the steps involved; the 

CMP update was used to first estimate the horizontal position of stance foot with respect to 

the movement of the CoM. After correcting discrete changes at the start of each swing phase, 

the CoM trajectory was updated for the corrected foot positions. The biomechanical constraint 

derived from the CMP point (Popovic et al., 2005) is written as   

𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓   =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶  − (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
 ).   (9.14) 

Here, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  is the virtual CMP point under the stance foot f. ax denotes either X or Y axes, 

and F is the 3D GRF in a specific axis. When the 3D components of GRF are known, the distance 

between the CoM (𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶 ) and the CMP point under the stance foot can be estimated using the 

methods described in Chapter V. The 3D components of GRF estimated from the CoM 

accelerations were used to estimate the ratio 𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑍𝑍

. The 𝒑𝒑𝑍𝑍
𝐶𝐶  or height of the CoM was already 

estimated using the update CH in (9.13). Note that there are a few assumptions regarding 

(9.14). First, we assumed that the virtual CMP position (𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) coincides with the stance foot 

positions (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) tracked by the IMU. Secondly, we assumed that the moment of inertia around 

the trunk is negligible while walking. Thus, during single stance phase, (9.14) provides the 

relation between CoM and the stance foot (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ). This can be used as measurement updates 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  for either foot as follows:  

During left swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐     (9.15b) 

with  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  = (𝐈𝐈2×2  𝟎𝟎2×16).  (9.15c) 

During right swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15d) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐    (9.15e) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13). (9.15f) 

The measurement matrices 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  were applied only to the X and Y axes of the foot 

positions in the state vector. This update corrects the drift in relative positions between the 

  (9.15d)

  Tracking relative feet and CoM movement 

• Centroidal Moment Pivot Update (CMP): The CMP update was used to restrict the feet and 

CoM from drifting apart or towards each other. Fig. 9.1 summarizes the steps involved; the 

CMP update was used to first estimate the horizontal position of stance foot with respect to 

the movement of the CoM. After correcting discrete changes at the start of each swing phase, 

the CoM trajectory was updated for the corrected foot positions. The biomechanical constraint 

derived from the CMP point (Popovic et al., 2005) is written as   

𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓   =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶  − (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
 ).   (9.14) 

Here, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  is the virtual CMP point under the stance foot f. ax denotes either X or Y axes, 

and F is the 3D GRF in a specific axis. When the 3D components of GRF are known, the distance 

between the CoM (𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶 ) and the CMP point under the stance foot can be estimated using the 

methods described in Chapter V. The 3D components of GRF estimated from the CoM 

accelerations were used to estimate the ratio 𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑍𝑍

. The 𝒑𝒑𝑍𝑍
𝐶𝐶  or height of the CoM was already 

estimated using the update CH in (9.13). Note that there are a few assumptions regarding 

(9.14). First, we assumed that the virtual CMP position (𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) coincides with the stance foot 

positions (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) tracked by the IMU. Secondly, we assumed that the moment of inertia around 

the trunk is negligible while walking. Thus, during single stance phase, (9.14) provides the 

relation between CoM and the stance foot (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ). This can be used as measurement updates 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  for either foot as follows:  

During left swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐     (9.15b) 

with  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  = (𝐈𝐈2×2  𝟎𝟎2×16).  (9.15c) 

During right swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15d) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐    (9.15e) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13). (9.15f) 

The measurement matrices 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  were applied only to the X and Y axes of the foot 

positions in the state vector. This update corrects the drift in relative positions between the 

   (9.15e)

with 

  Tracking relative feet and CoM movement 

• Centroidal Moment Pivot Update (CMP): The CMP update was used to restrict the feet and 

CoM from drifting apart or towards each other. Fig. 9.1 summarizes the steps involved; the 

CMP update was used to first estimate the horizontal position of stance foot with respect to 

the movement of the CoM. After correcting discrete changes at the start of each swing phase, 

the CoM trajectory was updated for the corrected foot positions. The biomechanical constraint 

derived from the CMP point (Popovic et al., 2005) is written as   

𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓   =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶  − (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
 ).   (9.14) 

Here, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  is the virtual CMP point under the stance foot f. ax denotes either X or Y axes, 

and F is the 3D GRF in a specific axis. When the 3D components of GRF are known, the distance 

between the CoM (𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶 ) and the CMP point under the stance foot can be estimated using the 

methods described in Chapter V. The 3D components of GRF estimated from the CoM 

accelerations were used to estimate the ratio 𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑍𝑍

. The 𝒑𝒑𝑍𝑍
𝐶𝐶  or height of the CoM was already 

estimated using the update CH in (9.13). Note that there are a few assumptions regarding 

(9.14). First, we assumed that the virtual CMP position (𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) coincides with the stance foot 

positions (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ) tracked by the IMU. Secondly, we assumed that the moment of inertia around 

the trunk is negligible while walking. Thus, during single stance phase, (9.14) provides the 

relation between CoM and the stance foot (𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓 ). This can be used as measurement updates 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  for either foot as follows:  

During left swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐     (9.15b) 

with  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  = (𝐈𝐈2×2  𝟎𝟎2×16).  (9.15c) 

During right swing: 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐     (9.15d) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐    (9.15e) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  =  (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13). (9.15f) 

The measurement matrices 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐  and 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐  were applied only to the X and Y axes of the foot 

positions in the state vector. This update corrects the drift in relative positions between the 

  (9.15f)

 The measurement matrices H fr
cmrand H fl

cml were applied only to the X and 
Y axes of the foot positions in the state vector. This update corrects the 
drift in relative positions between the CoM and stance foot during swing 
phase. However, this may cause a discrete jump in relative foot distances 
at the start of the swing phase. To have a smooth change in relative 
foot distances between subsequent steps, knowledge of the relative foot 
distances at the end of the preceding step was used to update the relative 
foot distances at the beginning of the subsequent swing phase.

 Start of left swing:

  Tracking relative feet and CoM movement 

CoM and stance foot during swing phase. However, this may cause a discrete jump in relative 

foot distances at the start of the swing phase. To have a smooth change in relative foot 

distances between subsequent steps, knowledge of the relative foot distances at the end of 

the preceding step was used to update the relative foot distances at the beginning of the 

subsequent swing phase.  

Start of left swing:  

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16a) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟      (9.16b) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  (𝐈𝐈2×2  𝟎𝟎2×16).   (9.16c) 

Start of right swing: 

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16d) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟    (9.16e) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  = (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13).  (9.16f) 

In (9.16a) and (9.16d), 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟  are the respective foot positions at the end of the 

preceding step in the axis 𝑎𝑎𝑎𝑎. As in (9.15), the measurement matrices 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟  were 

applied only to the X and Y axes of the foot positions. This correction of relative foot distances 

requires a final update of the CoM position following the assumptions of CMP point. (9.14) 

was adapted to obtain the CoM from foot estimates as  

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓   + (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅  𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
).    (9.17) 

During left swing, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  represents the right foot, and vice-versa for the right swing. During 

these instances, the CoM position was improved using the following measurement update:  

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶        (9.18a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐
𝐶𝐶     (9.18b) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  = (𝟎𝟎2×6  𝑰𝑰2×2  𝟎𝟎2×10 ).   (9.18c) 

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  was derived from (9.17). The measurement matrix 𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶  were applied to the X and Y axes 

of the CoM positions.  

     (9.16a)

  Tracking relative feet and CoM movement 

CoM and stance foot during swing phase. However, this may cause a discrete jump in relative 

foot distances at the start of the swing phase. To have a smooth change in relative foot 

distances between subsequent steps, knowledge of the relative foot distances at the end of 

the preceding step was used to update the relative foot distances at the beginning of the 

subsequent swing phase.  

Start of left swing:  

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16a) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟      (9.16b) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  (𝐈𝐈2×2  𝟎𝟎2×16).   (9.16c) 

Start of right swing: 

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16d) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟    (9.16e) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  = (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13).  (9.16f) 

In (9.16a) and (9.16d), 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟  are the respective foot positions at the end of the 

preceding step in the axis 𝑎𝑎𝑎𝑎. As in (9.15), the measurement matrices 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟  were 

applied only to the X and Y axes of the foot positions. This correction of relative foot distances 

requires a final update of the CoM position following the assumptions of CMP point. (9.14) 

was adapted to obtain the CoM from foot estimates as  

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓   + (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅  𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
).    (9.17) 

During left swing, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  represents the right foot, and vice-versa for the right swing. During 

these instances, the CoM position was improved using the following measurement update:  

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶        (9.18a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐
𝐶𝐶     (9.18b) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  = (𝟎𝟎2×6  𝑰𝑰2×2  𝟎𝟎2×10 ).   (9.18c) 

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  was derived from (9.17). The measurement matrix 𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶  were applied to the X and Y axes 

of the CoM positions.  

   (9.16b)

with, 

  Tracking relative feet and CoM movement 

CoM and stance foot during swing phase. However, this may cause a discrete jump in relative 

foot distances at the start of the swing phase. To have a smooth change in relative foot 

distances between subsequent steps, knowledge of the relative foot distances at the end of 

the preceding step was used to update the relative foot distances at the beginning of the 

subsequent swing phase.  

Start of left swing:  

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16a) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟      (9.16b) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  (𝐈𝐈2×2  𝟎𝟎2×16).   (9.16c) 

Start of right swing: 

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16d) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟    (9.16e) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  = (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13).  (9.16f) 

In (9.16a) and (9.16d), 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟  are the respective foot positions at the end of the 

preceding step in the axis 𝑎𝑎𝑎𝑎. As in (9.15), the measurement matrices 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟  were 

applied only to the X and Y axes of the foot positions. This correction of relative foot distances 

requires a final update of the CoM position following the assumptions of CMP point. (9.14) 

was adapted to obtain the CoM from foot estimates as  

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓   + (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅  𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
).    (9.17) 

During left swing, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  represents the right foot, and vice-versa for the right swing. During 

these instances, the CoM position was improved using the following measurement update:  

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶        (9.18a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐
𝐶𝐶     (9.18b) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  = (𝟎𝟎2×6  𝑰𝑰2×2  𝟎𝟎2×10 ).   (9.18c) 

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  was derived from (9.17). The measurement matrix 𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶  were applied to the X and Y axes 

of the CoM positions.  

  (9.16c)

 Start of right swing:

  Tracking relative feet and CoM movement 

CoM and stance foot during swing phase. However, this may cause a discrete jump in relative 

foot distances at the start of the swing phase. To have a smooth change in relative foot 

distances between subsequent steps, knowledge of the relative foot distances at the end of 

the preceding step was used to update the relative foot distances at the beginning of the 

subsequent swing phase.  

Start of left swing:  

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16a) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟      (9.16b) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  (𝐈𝐈2×2  𝟎𝟎2×16).   (9.16c) 

Start of right swing: 

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16d) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟    (9.16e) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  = (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13).  (9.16f) 

In (9.16a) and (9.16d), 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟  are the respective foot positions at the end of the 

preceding step in the axis 𝑎𝑎𝑎𝑎. As in (9.15), the measurement matrices 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟  were 

applied only to the X and Y axes of the foot positions. This correction of relative foot distances 

requires a final update of the CoM position following the assumptions of CMP point. (9.14) 

was adapted to obtain the CoM from foot estimates as  

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓   + (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅  𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
).    (9.17) 

During left swing, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  represents the right foot, and vice-versa for the right swing. During 

these instances, the CoM position was improved using the following measurement update:  

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶        (9.18a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐
𝐶𝐶     (9.18b) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  = (𝟎𝟎2×6  𝑰𝑰2×2  𝟎𝟎2×10 ).   (9.18c) 

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  was derived from (9.17). The measurement matrix 𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶  were applied to the X and Y axes 

of the CoM positions.  

     (9.16d)

  Tracking relative feet and CoM movement 

CoM and stance foot during swing phase. However, this may cause a discrete jump in relative 

foot distances at the start of the swing phase. To have a smooth change in relative foot 

distances between subsequent steps, knowledge of the relative foot distances at the end of 

the preceding step was used to update the relative foot distances at the beginning of the 

subsequent swing phase.  

Start of left swing:  

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16a) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟      (9.16b) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  (𝐈𝐈2×2  𝟎𝟎2×16).   (9.16c) 

Start of right swing: 

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16d) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟    (9.16e) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  = (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13).  (9.16f) 

In (9.16a) and (9.16d), 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟  are the respective foot positions at the end of the 

preceding step in the axis 𝑎𝑎𝑎𝑎. As in (9.15), the measurement matrices 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟  were 

applied only to the X and Y axes of the foot positions. This correction of relative foot distances 

requires a final update of the CoM position following the assumptions of CMP point. (9.14) 

was adapted to obtain the CoM from foot estimates as  

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓   + (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅  𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
).    (9.17) 

During left swing, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  represents the right foot, and vice-versa for the right swing. During 

these instances, the CoM position was improved using the following measurement update:  

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶        (9.18a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐
𝐶𝐶     (9.18b) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  = (𝟎𝟎2×6  𝑰𝑰2×2  𝟎𝟎2×10 ).   (9.18c) 

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  was derived from (9.17). The measurement matrix 𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶  were applied to the X and Y axes 

of the CoM positions.  

   (9.16e)

with 

  Tracking relative feet and CoM movement 

CoM and stance foot during swing phase. However, this may cause a discrete jump in relative 

foot distances at the start of the swing phase. To have a smooth change in relative foot 

distances between subsequent steps, knowledge of the relative foot distances at the end of 

the preceding step was used to update the relative foot distances at the beginning of the 

subsequent swing phase.  

Start of left swing:  

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16a) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟      (9.16b) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  (𝐈𝐈2×2  𝟎𝟎2×16).   (9.16c) 

Start of right swing: 

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16d) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟    (9.16e) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  = (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13).  (9.16f) 

In (9.16a) and (9.16d), 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟  are the respective foot positions at the end of the 

preceding step in the axis 𝑎𝑎𝑎𝑎. As in (9.15), the measurement matrices 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟  were 

applied only to the X and Y axes of the foot positions. This correction of relative foot distances 

requires a final update of the CoM position following the assumptions of CMP point. (9.14) 

was adapted to obtain the CoM from foot estimates as  

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓   + (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅  𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
).    (9.17) 

During left swing, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  represents the right foot, and vice-versa for the right swing. During 

these instances, the CoM position was improved using the following measurement update:  

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶        (9.18a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐
𝐶𝐶     (9.18b) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  = (𝟎𝟎2×6  𝑰𝑰2×2  𝟎𝟎2×10 ).   (9.18c) 

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  was derived from (9.17). The measurement matrix 𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶  were applied to the X and Y axes 

of the CoM positions.  

  (9.16f)
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Tracking relative feet and CoM movement

 In (9.16a) and (9.16d), p f r
ax,ed and p f l

ax,ed are the respective foot positions at 
the end of the preceding step in the axis ax. As in (9.15), the measurement 
matrices H f r

rdr and H f l
rdl were applied only to the X and Y axes of the foot 

positions. This correction of relative foot distances requires a final 
update of the CoM position following the assumptions of CMP point. 
(9.14) was adapted to obtain the CoM from foot estimates as

  Tracking relative feet and CoM movement 

CoM and stance foot during swing phase. However, this may cause a discrete jump in relative 

foot distances at the start of the swing phase. To have a smooth change in relative foot 

distances between subsequent steps, knowledge of the relative foot distances at the end of 

the preceding step was used to update the relative foot distances at the beginning of the 

subsequent swing phase.  

Start of left swing:  

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16a) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟      (9.16b) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  (𝐈𝐈2×2  𝟎𝟎2×16).   (9.16c) 

Start of right swing: 

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16d) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟    (9.16e) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  = (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13).  (9.16f) 

In (9.16a) and (9.16d), 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟  are the respective foot positions at the end of the 

preceding step in the axis 𝑎𝑎𝑎𝑎. As in (9.15), the measurement matrices 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟  were 

applied only to the X and Y axes of the foot positions. This correction of relative foot distances 

requires a final update of the CoM position following the assumptions of CMP point. (9.14) 

was adapted to obtain the CoM from foot estimates as  

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓   + (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅  𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
).    (9.17) 

During left swing, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  represents the right foot, and vice-versa for the right swing. During 

these instances, the CoM position was improved using the following measurement update:  

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶        (9.18a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐
𝐶𝐶     (9.18b) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  = (𝟎𝟎2×6  𝑰𝑰2×2  𝟎𝟎2×10 ).   (9.18c) 

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  was derived from (9.17). The measurement matrix 𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶  were applied to the X and Y axes 

of the CoM positions.  

.   (9.17)

 During left swing, cmp f
ax represents the right foot, and vice-versa for 

the right swing. During these instances, the CoM position was improved 
using the following measurement update:

  Tracking relative feet and CoM movement 

CoM and stance foot during swing phase. However, this may cause a discrete jump in relative 

foot distances at the start of the swing phase. To have a smooth change in relative foot 

distances between subsequent steps, knowledge of the relative foot distances at the end of 

the preceding step was used to update the relative foot distances at the beginning of the 

subsequent swing phase.  

Start of left swing:  

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16a) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟      (9.16b) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  (𝐈𝐈2×2  𝟎𝟎2×16).   (9.16c) 

Start of right swing: 

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16d) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟    (9.16e) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  = (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13).  (9.16f) 

In (9.16a) and (9.16d), 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟  are the respective foot positions at the end of the 

preceding step in the axis 𝑎𝑎𝑎𝑎. As in (9.15), the measurement matrices 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟  were 

applied only to the X and Y axes of the foot positions. This correction of relative foot distances 

requires a final update of the CoM position following the assumptions of CMP point. (9.14) 

was adapted to obtain the CoM from foot estimates as  

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓   + (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅  𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
).    (9.17) 

During left swing, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  represents the right foot, and vice-versa for the right swing. During 

these instances, the CoM position was improved using the following measurement update:  

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶        (9.18a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐
𝐶𝐶     (9.18b) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  = (𝟎𝟎2×6  𝑰𝑰2×2  𝟎𝟎2×10 ).   (9.18c) 

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  was derived from (9.17). The measurement matrix 𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶  were applied to the X and Y axes 

of the CoM positions.  

     (9.18a)

  Tracking relative feet and CoM movement 

CoM and stance foot during swing phase. However, this may cause a discrete jump in relative 

foot distances at the start of the swing phase. To have a smooth change in relative foot 

distances between subsequent steps, knowledge of the relative foot distances at the end of 

the preceding step was used to update the relative foot distances at the beginning of the 

subsequent swing phase.  

Start of left swing:  

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16a) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟      (9.16b) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  (𝐈𝐈2×2  𝟎𝟎2×16).   (9.16c) 

Start of right swing: 

𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟      (9.16d) 

�̂�𝒛𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  =  𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟 ⋅  �̂�𝒙−  +  𝒆𝒆𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟    (9.16e) 

with, 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  = (𝟎𝟎2×3  𝐈𝐈2×2  𝟎𝟎2×13).  (9.16f) 

In (9.16a) and (9.16d), 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝒑𝒑𝑎𝑎𝑎𝑎,𝑒𝑒𝑟𝑟

𝑓𝑓𝑟𝑟  are the respective foot positions at the end of the 

preceding step in the axis 𝑎𝑎𝑎𝑎. As in (9.15), the measurement matrices 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟  and 𝑯𝑯𝑟𝑟𝑟𝑟𝑟𝑟

𝑓𝑓𝑟𝑟  were 

applied only to the X and Y axes of the foot positions. This correction of relative foot distances 

requires a final update of the CoM position following the assumptions of CMP point. (9.14) 

was adapted to obtain the CoM from foot estimates as  

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  =  𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎

𝑓𝑓   + (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅  𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
).    (9.17) 

During left swing, 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  represents the right foot, and vice-versa for the right swing. During 

these instances, the CoM position was improved using the following measurement update:  

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶        (9.18a) 

�̂�𝒛𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  =  𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶 ⋅  �̂�𝒙−  +  𝒆𝒆𝑐𝑐𝑐𝑐
𝐶𝐶     (9.18b) 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶  = (𝟎𝟎2×6  𝑰𝑰2×2  𝟎𝟎2×10 ).   (9.18c) 

𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶  was derived from (9.17). The measurement matrix 𝑯𝑯𝑐𝑐𝑐𝑐

𝐶𝐶  were applied to the X and Y axes 

of the CoM positions.  

   (9.18b)

with 

  

 

Equation 6.7: 

𝒃𝒃𝜖𝜖,𝑖𝑖 = 𝒃𝒃𝜖𝜖,𝑖𝑖−1 − 𝒆𝒆𝑏𝑏,𝑖𝑖.     

 

Equation 6.11: 

and 𝜽𝜽𝜖𝜖,𝑖𝑖 = ( 𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2) 𝜽𝜽𝜖𝜖,𝑖𝑖−1 + (−𝑇𝑇 ⋅ 𝐈𝐈3 − 𝑇𝑇2

2 ⋅ �̃�𝝎) 𝒃𝒃𝜖𝜖,𝑖𝑖−1.   

 

Equation 9.10c 

with, 𝑯𝑯𝑧𝑧𝑧𝑧
𝑓𝑓𝑓𝑓   = (𝟎𝟎3×9 𝐈𝐈3×3 𝟎𝟎3×6)      

 

 

Equation 9.18c: 

with 𝑯𝑯𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶  = (𝟎𝟎2×6  𝐈𝐈2×2  𝟎𝟎2×10 ).    

 

.  (9.18c)

 pC
ax was derived from (9.17). The measurement matrix H C

cm was applied 
to the X and Y axes of the CoM positions.

The measurement updates were applied to the KF using the standard 
equations:

  Tracking relative feet and CoM movement 

The measurement updates were applied to the KF using the standard equations:   

𝑲𝑲𝑖𝑖 = 𝑷𝑷𝑖𝑖
− ⋅ 𝑯𝑯𝑇𝑇 (𝑯𝑯 ⋅ 𝑷𝑷𝑖𝑖

− ⋅ 𝑯𝑯𝑇𝑇 + 𝑹𝑹)−1   (9.19) 

�̂�𝒙𝑖𝑖 =  �̂�𝒙𝑖𝑖
− + 𝑲𝑲𝑖𝑖 ⋅ (𝒛𝒛𝑖𝑖 − 𝑯𝑯 ⋅ �̂�𝒙𝑖𝑖

−)     (9.20) 

𝑷𝑷𝑖𝑖 = (𝐈𝐈 − 𝑲𝑲𝑖𝑖 ⋅ 𝑯𝑯) ⋅ 𝑷𝑷𝑖𝑖
−.     (9.21) 

The Kalman gain was estimated using (9.19), the state matrix was updated with (9.20), and the 

error covariance matrix was updated using (9.21). 

 

Reinitialising for step k+1 
After the state vector has been updated using the prediction and measurement updates, the trajectory 

of the segments is known for the current step k. The 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) was adjusted using methods described in 

Section 9.2.1 using the improved estimates of the foot positions. For the next step k + 1, accelerations 

are transformed to the current step frame 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘+1) using (9.4), and the steps described in 

Sections 9.2.3 were reiterated.  

Initialisation and Noise 
Before applying the KF, the states for each segment and their covariance noises have to be initialised. 

The right foot was assumed to be the origin. The initial locations of the CoM, and the left foot were 

measured from VICON©. All initial velocities 𝒗𝒗𝑐𝑐𝑠𝑠𝑠𝑠 were set to zero, and the initial noise was set to 

arbitrary values. The process and measurement noises shown in Table 9.2 were estimated from sensor 

specifications, and then fine-tuned by optimizing the error between estimated and reference values. 

Table 9.2 Standard Deviations of the Gaussian Noises Used. 
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𝒇𝒇𝒄𝒄  𝒆𝒆𝒄𝒄𝒄𝒄
𝑪𝑪  

rad/s m/s2 m/s m m m m 

𝟏𝟏 ⋅ 𝟏𝟏𝟎𝟎−𝟐𝟐 1 ⋅ 103 7 ⋅ 10−2 5 ⋅ 10−2 1 ⋅ 102 [5 ⋅ 10−2   9 ⋅ 10−3] 𝐈𝐈2𝑥𝑥2  1 ⋅ 10−1 

 

9.2.4. Measurement System 
Three Xsens™ MTw IMUs formed the minimal setup as can be visualized in Chapter VI (Fig. 6.4): one 

IMU was mounted on the pelvis, and one on each foot. The pelvis IMU was placed below the midway 

point between the line connecting the left and right posterior superior iliac spine. The foot IMUs were 

placed on the midfoot region. The MT Manager (version 4.8) software was used to read the data from 

the IMU wirelessly, which was sampled at 100 Hz.   

  (9.19)
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The Kalman gain was estimated using (9.19), the state matrix was updated with (9.20), and the 

error covariance matrix was updated using (9.21). 
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are transformed to the current step frame 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘+1) using (9.4), and the steps described in 
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Before applying the KF, the states for each segment and their covariance noises have to be initialised. 

The right foot was assumed to be the origin. The initial locations of the CoM, and the left foot were 

measured from VICON©. All initial velocities 𝒗𝒗𝑐𝑐𝑠𝑠𝑠𝑠 were set to zero, and the initial noise was set to 

arbitrary values. The process and measurement noises shown in Table 9.2 were estimated from sensor 
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9.2.4. Measurement System 
Three Xsens™ MTw IMUs formed the minimal setup as can be visualized in Chapter VI (Fig. 6.4): one 

IMU was mounted on the pelvis, and one on each foot. The pelvis IMU was placed below the midway 

point between the line connecting the left and right posterior superior iliac spine. The foot IMUs were 

placed on the midfoot region. The MT Manager (version 4.8) software was used to read the data from 
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The Kalman gain was estimated using (9.19), the state matrix was updated with (9.20), and the 

error covariance matrix was updated using (9.21). 
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of the segments is known for the current step k. The 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) was adjusted using methods described in 
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measured from VICON©. All initial velocities 𝒗𝒗𝑐𝑐𝑠𝑠𝑠𝑠 were set to zero, and the initial noise was set to 

arbitrary values. The process and measurement noises shown in Table 9.2 were estimated from sensor 

specifications, and then fine-tuned by optimizing the error between estimated and reference values. 
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9.2.4. Measurement System 
Three Xsens™ MTw IMUs formed the minimal setup as can be visualized in Chapter VI (Fig. 6.4): one 

IMU was mounted on the pelvis, and one on each foot. The pelvis IMU was placed below the midway 

point between the line connecting the left and right posterior superior iliac spine. The foot IMUs were 

placed on the midfoot region. The MT Manager (version 4.8) software was used to read the data from 

the IMU wirelessly, which was sampled at 100 Hz.   

Two reference systems were used. The ForceShoe™ was used as wearable reference for the 

estimation of forces required in (9.14). The ForceShoe™ consists of a 6DoF Force and Moment sensor, 

and an IMU under each toe and heel of both feet (Veltink et al., 2005). It has been validated against 

force plates (AMTI®) for measurement of contact forces (Schepers et al., 2009). A VICON© motion 

capture system (Oxford Metrics PLC.) was used as the reference system for validating the velocities 

  (9.21)

The Kalman gain was estimated using (9.19), the state matrix was updated 
with (9.20), and the error covariance matrix was updated using (9.21).
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Reinitialising for step k+1
After the state vector has been updated using the prediction and measurement 
updates, the trajectory of the segments is known for the current step k. The 
ψcs(k) was adjusted using methods described in Section 9.2.1 using the 
improved estimates of the foot positions. For the next step k + 1, accelerations 
are transformed to the current step frame ψcs(k+1) using (9.4), and the steps 
described in Sections 9.2.3 were reiterated.

Initialisation and Noise
Before applying the KF, the states for each segment and their covariance noises 
have to be initialised. The right foot was assumed to be the origin. The initial 
locations of the CoM, and the left foot were measured from VICON©. All initial 
velocities vseg were set to zero, and the initial noise was set to arbitrary values. 
The process and measurement noises shown in Table 9.2 were estimated from 
sensor specifications, and then fine-tuned by optimizing the error between 
estimated and reference values.

Table 9.2 Standard Deviations of the Gaussian Noises Used.

eG eA ezv ezh e fl
cml and e fr

cmr e fl
rdl and e fr

rdr ec
cm

rad/s m/s2 m/s m m m m

1⋅10-2 1⋅103 7⋅10-2 5⋅10-2 1⋅102 [5 ⋅ 10-2   9 ⋅ 10-3] I2x2 1⋅10-1 

9.2.4. Measurement System
Three Xsens™ MTw IMUs formed the minimal setup as can be visualized in 
Chapter VI (Fig. 6.4): one IMU was mounted on the pelvis, and one on each 
foot. The pelvis IMU was placed below the midway point between the line 
connecting the left and right posterior superior iliac spine. The foot IMUs 
were placed on the midfoot region. The MT Manager (version 4.8) software was 
used to read the data from the IMU wirelessly, which was sampled at 100 Hz.

Two reference systems were used. The ForceShoes™ was used as wearable 
reference for the estimation of forces required in (9.14). The ForceShoes™ 
consists of a 6DoF Force and Moment sensor, and an IMU under each toe and 
heel of both feet (Veltink et al., 2005). It has been validated against force plates 
(AMTI®) for measurement of contact forces (Schepers et al., 2009). A VICON© 
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motion capture system (Oxford Metrics PLC.) was used as the reference system 
for validating the velocities and positions estimated using the state vector. 
Markers were placed on the following locations on both the left and right 
limbs: anterior superior iliac spine, posterior iliac spine, the second and fifth 
metatarsal, and heel. One marker was also placed on each IMU. The data from 
VICON© and ForceShoes™ were sampled at 100 Hz. The data was then low 
pass filtered at 10 Hz with a zero-phase second order Butterworth filter.

Foot contact was estimated when the magnitude of forces measured by the 
ForceShoes™ was below a set threshold of 30 N on each foot. Foot positions 
were derived from the marker on the IMU. The CoM position obtained from 
VICON© was assumed to lie at the centroid of the four pelvis markers. The 
feet and CoM positions were differentiated, and low pass filtered with a second 
order zero phase Butterworth filter of cut off 10 Hz to obtain the respective 
velocities. The measurements by both reference systems were transformed to 
the ψcs frame that was determined using the VICON© foot positions.

To synchronize the two reference systems with that of the Xsens™ MTw 
IMUs, the participants were asked to raise their right leg before starting the 
experimental protocol. The magnitude of angular velocities measured with 
the Xsens™, as well as the IMUs in the ForceShoes™ were used to synchronize 
these systems. The change in right foot position was used to synchronize the 
VICON© with the other two systems. A manual check was performed in order 
to verify if all the signals were properly synchronized.

9.2.5. Participants
Six healthy participants were recruited for the study. The average and 
standard deviation of the height, weight, and age was 1.7 ± 0.1 m, 74.1 ± 10 kg, 
and 25.6 ± 2.8 years respectively. Leg length was measured from the greater 
trochanter to the ground (Hof, 1996) and was 0.9 ± 0.04 m. All participants 
signed an informed consent before the experiment. The study was conducted 
in accordance with the Declaration of Helsinki, and the protocol was approved 
by the Ethical Committee of the faculty. The inclusion criteria included 
participants with no history of impaired gait or leg injury. One participant 
was female, and all of their shoe sizes were 40 (European Size Chart).

9
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9.2.6. Experimental Protocol
The ForceShoes™ was calibrated using the MT Manager software, and the 
VICON© was calibrated using standard procedures. Fig. 9.2 summarizes the 
experimental protocol. The participants began by standing still for a few 
seconds with their feet placed parallel and were asked to bend the trunk 
forward. This was used to calibrate the pelvis segment frame in Section 9.2.1 
(Chapter VI). The participants were then asked to perform a set of walking 
tasks, each repeated four times:

• Normal Walk (NW): The participant was asked to walk at their preferred 
walking speed for 5 m.

• L Walk (LW): The participant was asked to walk for 3 m and then turn 
right at 90o and walk for another 2 m.

• Walk and Turn (WT): The participant was asked to walk for 5 m and then 
turn and walk back to start position.

• Walk and Turn Twice (WT2): The participant performed WT and then 
asked to turn and walk for 5 m.

• Slalom Walk (SlW): The participant was asked to walk in a slalom pattern. 
Two pylons, at 2 m and 4 m from start respectively, were placed on the 
floor to guide them.

• Asymmetric Walk (AW): The participant was asked to walk in an 
asymmetric manner. The instruction given was to induce a stiff left knee 
and abduct the hip as much as possible, and also have a shorter step on 
the right side.

9.2.7. Analysis of Results
In the following text, the minimal IMU sensing setup, along with the 
algorithms explained in Section 9.2.3 will be referred to as Portable Gait Lab 
(PGL). A zero-phase Butterworth low pass filter of order 4 and cut off 3 Hz was 
used to filter noise from the estimated kinematics.

The estimated forces and kinematics were compared against the reference 
systems, ForceShoes™ and VICON© respectively. First, the errors in estimating 
the ratio of forces 
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9.2.7. Analysis of Results 
In the following text, the minimal IMU sensing setup, along with the algorithms explained in 

Section 9.2.3 will be referred to as Portable Gait Lab (PGL). A zero-phase Butterworth low pass filter of 

order 4 and cut off 3 Hz was used to filter noise from the estimated kinematics.  

The estimated forces and kinematics were compared against the reference systems, 

ForceShoe™ and VICON© respectively. First, the errors in estimating the ratio of forces (𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝑍𝑍

) in (9.14) 

from the pelvis IMU was studied. The errors were expressed as the Root Mean Square (RMS) of the 

differences normalised by the range of the reference values in both X (𝑟𝑟𝑅𝑅𝑅𝑅𝑡𝑡𝑋𝑋) and Y (𝑟𝑟𝑅𝑅𝑅𝑅𝑡𝑡𝑌𝑌) axis. Then, 

the RMS of the differences in estimating CoM height (𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑍𝑍) was studied. The error margins 𝑟𝑟𝑅𝑅𝑅𝑅𝑡𝑡𝑋𝑋𝑍𝑍, 

𝑟𝑟𝑅𝑅𝑅𝑅𝑡𝑡𝑌𝑌𝑍𝑍, and 𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑍𝑍 are required to understand the errors associated with (9.14), and eventually, the 

relative distance estimates.  

The RMS of the errors (𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡𝑋𝑋, 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡𝑌𝑌, 𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑋𝑋, 𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑌𝑌, 𝑅𝑅𝑅𝑅𝑀𝑀𝑋𝑋, and 𝑅𝑅𝑅𝑅𝑀𝑀𝑌𝑌) in estimating the 

horizontal positions of feet and CoM were then analysed for each step. The vertical foot clearance 

comparison has been neglected in this study, as it is not novel (Benoussaad et al., 2015). Then, the 

average 2D horizontal Euclidean Distance (ED) between the feet at the end of each step for all walking 

tasks was measured and compared against the VICON© reference. Following this, spatial gait 

parameters, such as the Step Lengths (SL), and Step Widths (SW) were estimated (Huxham et al., 2006). 

A metric CoM Width (CW) was derived by estimating the average 2D Euclidean distance between the 

stance foot and CoM trajectory for each step. This provided an average relative distance between 

either foot and CoM. Correlation and Bland-Altman plots were used to compare the SL, SW, and CW 

derived from the PGL with the reference VICON©. Finally, the feasibility of the PGL in differentiating 

between symmetrical and asymmetrical walking was studied by comparing the differences between 

left and right steps in two walking tasks, the NW and AW. 

TABLE 9.3 RMS of the Differences in estimating 𝑟𝑟𝑅𝑅𝑅𝑅𝑡𝑡𝑋𝑋, and 𝑟𝑟𝑅𝑅𝑅𝑅𝑡𝑡𝑌𝑌 and CoM height 𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑍𝑍. 

 𝒓𝒓𝒓𝒓𝒓𝒓𝒕𝒕𝑿𝑿 (%) 𝒓𝒓𝒓𝒓𝒓𝒓𝒕𝒕𝒀𝒀 (%) 𝒓𝒓𝑹𝑹𝑹𝑹𝑴𝑴𝒁𝒁 (mm) 

NW 15.0 ± 3.74 16.1 ± 3.15 6.1 ± 0.9* 
LW 15.2 ± 2.53 13.5 ± 3.55 5.6 ± 1.0* 
WT 17.8 ± 2.65 15.1 ± 4.69 5.3 ± 1.0* 
WT2 19.1 ± 2.7 15.5 ± 3.46 7.0 ± 3.1* 
SlW 17.7 ± 3.6 17.4 ± 6.84 6.3 ± 1.0* 
AW 13.0 ± 2.6 19.3 ± 3.13 11.7 ± 4.5* 

NW: Normal Walk, LW: L Walk, WT: Walk and Turn, WT2: Walk and Turn Twice, SlW: Slalom Walk, AW: Asymmetrical Walk. 
* denotes significant (p < 0.05) correlations. 

 in (9.14) from the pelvis IMU was studied. The errors 
were expressed as the Root Mean Square (RMS) of the differences normalised 
by the range of the reference values in both X (rRatX) and Y (rRatY) axis. 
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Figure 9.2 An overview of experimental protocol. The participants stand still for a few seconds, 
following which they bow thrice, and then perform the walking task. After this, they bow again 
and stand still for a few seconds before the measurement is stopped. The bowing movement is 
used to determine the pelvis frame ψp.

Then, the RMS of the differences in estimating CoM height (RCoMZ) was 
studied. The error margins rRatX, rRatY, and RCoMZ are required to understand 
the errors associated with (9.14), and eventually, the relative distance 
estimates.

The RMS of the errors (RightX, RightY, LeftX, LeftY, CoMX, and CoMY) in 
estimating the horizontal positions of feet and CoM were then analysed 
for each step. The vertical foot clearance comparison has been neglected in 
this study, as it is not novel (Benoussaad et al., 2015). Then, the average 2D 
horizontal Euclidean Distance (ED) between the feet at the end of each step for 
all walking tasks was measured and compared against the VICON© reference. 
Following this, spatial gait parameters, such as the Step Lengths (SL), and 
Step Widths (SW ) were estimated (Huxham et al., 2006). A metric CoM Width 
(CW ) was derived by estimating the average 2D Euclidean distance between 
the stance foot and CoM trajectory for each step. This provided an average 
relative distance between either foot and CoM. Correlation and Bland-Altman 
plots were used to compare the SL, SW, and CW derived from the PGL with 
the reference VICON©. Finally, the feasibility of the PGL in differentiating 
between symmetrical and asymmetrical walking was studied by comparing 
the differences between left and right steps in two walking tasks, the NW 
and AW.

9.3. RESULTS

A few trials were removed from analysis due to issues with the reference 
setups. Further, it was made sure that each participant had at least three

9
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Table 9.3 RMS of the Differences in estimating rRatX, and rRatY and CoM height  RCoMZ.

rRatX (%) rRatY (%) RCoMZ (mm)

NW 15.0 ± 3.74 16.1 ± 3.15 6.1 ± 0.9*

LW 15.2 ± 2.53 13.5 ± 3.55 5.6 ± 1.0*

WT 17.8 ± 2.65 15.1 ± 4.69 5.3 ± 1.0*

WT2 19.1 ± 2.7 15.5 ± 3.46 7.0 ± 3.1*

SlW 17.7 ± 3.6 17.4 ± 6.84 6.3 ± 1.0*

AW 13.0 ± 2.6 19.3 ± 3.13 11.7 ± 4.5*

NW: Normal Walk, LW: L Walk, WT: Walk and Turn, WT2: Walk and Turn Twice, SlW: Slalom Walk, 
AW: Asymmetrical Walk. * denotes significant (p < 0.05) correlations.

walking trials per walking task. First, an example of the CoM height estimated 
using the complementary filter approach in (9.13) is shown in Fig. 9.3. Table 9.3 
shows the errors (rRatX, and rRatY) in estimating the ratio of forces and that of 
CoM height (RCoMZ) in (9.14) for the different walking tasks. The CoM height 
estimations were significantly (p<0.05) correlated with an average of 83 ± 
8.2 % across all tasks, suggesting good agreement with the reference values.

Figure 9.3 Trajectory of CoM Height for a participant performing a WT task estimated from the 
pelvis IMU seen as solid blue line. The dotted red line is the VICON© reference. The participant 
performed a 180o turn around 25 s.
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Fig. 9.4 shows a graphical step-wise comparison of the feet and CoM positions 
estimated by the PGL with the reference VICON© for the same trial as shown 
in Fig. 9.3. As each step is represented in its own ψcs frame, they all progress 
to the right, even during turns. In the first subplot, the left foot moves first. 
Then, the participant can be seen to make consecutive steps, until step 6, 
where they prepare for the 180o turn. The turning step is highlighted with a 
shaded light red background. Although the PGL shows deviations during the 
turn when compared to the reference, it converges to the reference values 
two steps after.

Table 9.4 Average RMS of the errors in horizontal positions of the feet and CoM, and 
the differences (ED) in relative foot distances at the end of each step.

-- RightX 
(cm)

RightY
(cm)

LeftX
(cm)

LeftY
(cm)

CoMX
(cm)

CoMY
(cm)

ED
(cm)

NW 12.7 ± 3.3 4.1 ± 1.3 11.2 ± 1.5 3.6 ± 0.7 8.3 ± 2.2 5.3 ± 1.4 9.3 ± 3.4

LW 12.7 ± 5.2 4.8 ± 0.6 11.6 ± 3.2 4.6 ± 1.1 8.8 ± 3.1 5.7 ± 0.8 9.4 ± 4.5

WT 12 ± 3.3 5.3 ± 2.1 11.3 ± 2.3 4.7 ± 1.3 7.8 ± 2.3 6.3 ± 1.0 8.9 ± 2.5

WT2 12.1 ± 3.6 5.4 ± 0.9 11.4 ± 1.6 4.6 ± 0.9 8.1 ± 1.9 7.1 ± 0.9 9.3 ± 2.3

SlW 11.7 ± 3.9 5.7 ± 0.7 11.5 ± 2.3 5.0 ± 0.9 7.6 ± 2.4 7.5 ± 1.2 9.2 ± 1.1

AW 9.2 ± 3.0 4.9 ± 1.4 9.3 ± 1.6 4.1 ± 0.9 6.8 ± 1.9 5.5 ± 1.3 5.5 ± 2.0

NW: Normal Walk, LW: L Walk, WT: Walk and Turn, WT2: Walk and Turn Twice, SlW: Slalom 
Walk, AW: Asymmetrical Walk.

Table 9.4 displays the errors (RightX, RightY, LeftX, LeftY, CoMX, and CoMY) in 
estimating the horizontal feet and CoM positions for each step. These are an 
average across all steps in a walking task excluding the turning steps. Turning 
steps were those that made a 60o or larger change in direction when compared 
to the preceding step. Table 9.4 also summarizes the difference in relative 
distance between the feet (ED) at the end of each step. Across all walking 
tasks, this was found to be 8.8 ± 1.0 cm on average.

The estimates of SL, SW, and CW for all tasks except AW are compared 
against the reference using Fig. 9.5, 9.6, and 9.7 respectively. Some steps 
had particularly large SL or CW values measured by the VICON© than the 
average, thereby skewing the distribution as outliers. They were removed 
based on the interquartile range of the distribution of the VICON© 
estimates for each parameter (SL, SW, and CW ). Further, in Fig. 9.5, 9.6,  
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Figure 9.5 Comparing step lengths for all walking tasks except AW using correlation (left) and 
Bland-Altman (right) plots. The red circles are turning steps. In the correlation plot, the dotted 
grey line is the linear fit for the straight steps, and solid red line is the linear fit for the turning 
steps. For the Bland-Altman plot, the solid lines denote the median difference between the two 
systems, with * denoting significant (p<0.05) difference between the mean of the two systems. 
The dotted lines denote the 95% limits of agreement. The legend shows the correlation between 
the Portable Gait Lab (PGL) and the reference with * denoting significance (p<0.05). The average 
RMS of the errors is also shown.

Figure 9.6 Comparing step widths for all walking tasks except AW using correlation (left) and 
Bland-Altman (right) plots. The red circles are turning steps. In the correlation plot, the dotted 
grey line is the linear fit for the straight steps, and solid red line is the linear fit for the turning 
steps. For the Bland-Altman plot, the solid lines denote the median difference between the two 
systems, with * denoting significant (p<0.05) difference between the mean of the two systems. 
The dotted lines denote the 95% limits of agreement. The legend shows the correlation between 
the Portable Gait Lab (PGL) and the reference with * denoting significance (p<0.05). The average 
RMS of the errors is also shown.

9
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Figure 9.7 Comparing CoM widths for all walking tasks except AW using correlation (left) and 
Bland-Altman (right) plots. The red circles are turning steps. In the correlation plot, the dotted 
grey line is the linear fit for the straight steps, and solid red line is the linear fit for the turning 
steps. For the Bland-Altman plot, the solid lines denote the median difference between the two 
systems, with * denoting significant (p<0.05) difference between the mean of the two systems. 
The dotted lines denote the 95% limits of agreement. The legend shows the correlation between 
the Portable Gait Lab (PGL) and the reference with * denoting significance (p<0.05). The average 
RMS of the errors is also shown.

and 9.7, the right subplot shows the Bland-Altman plot. The Limits of 
Agreement (LoA) for SL were found to be [-25.5; 15.9] cm and [-24.7; 37] cm 
for the straight and turning steps respectively. For SW, an LoA of [-16; 11.6] 
cm and [-40.3; 11.3] cm, and for CW a value of [-9.5; 1.6] cm and [-17.2; 6.1] 
cm was found.

Finally, the feasibility of PGL in differentiating symmetric from asymmetric 
gait is shown in Fig. 9.8 and 9.9. Both figures compare the distribution of SL 
on the left and right side. From Fig. 9.9, we see that both, the reference and 
PGL, find significant differences in SL between the right and left side for the 
AW task.

9.4. DISCUSSION

This study shows the feasibility of relying on simply a three IMU setup for 
estimating relative distances of the feet and CoM. Estimating kinetics and 
kinematics using the principles in this study allows us to use the three IMU 
setup as a portable gait lab.
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Figure 9.8 Comparing distributions of right and left step lengths for the NW task. The left subplot 
shows the distributions measured by the reference system, and the right subplot shows that of the 
Portable Gait Lab. Outliers are shown as red pluses.

Figure 9.9 Comparing distributions of right and left step lengths for the AW task. The left subplot 
shows the distributions measured by the reference system, and the right subplot shows that of the 
Portable Gait Lab. Outliers are shown as red pluses. Significant difference is denoted by * (p < 0.05).

There are several biomechanical assumptions considered for this study. 
In order to apply (9.14), 3D GRF and height of CoM have to be estimated 
instantaneously. In Chapter VI, we have discussed the feasibility of using 
the PGL in estimating 3D GRF while assuming that the CoM resides within the 
centroid of the pelvis. Here, the errors associated with the ratios (rRatX, and 

9
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rRatY) as seen in Table 9.3 was 19.3 ± 3.1 % of the range of the reference values 
in the worst case. The RMS error in estimating the vertical CoM position 
using alternative approaches in literature was on average 3.5 ± 1.3 mm (Floor-
Westerdijk et al., 2012) and did not exceed 20 mm in another study (Paiman et 
al., 2016). In our study, it was on average 7 ± 2.4 mm across all walking tasks. 
Additionally, the other studies only compared the differences in a detrended 
position for an average stride (Floor-Westerdijk et al., 2012), or considered 
treadmill gait (Paiman et al., 2016). We state the average error in estimating 
the instantaneous CoM height over the complete gait including initiation, 
turning, and stopping. Knowledge of the force ratios and CoM height allows 
us to use the CMP constraint using (9.14) and (9.17). As the CMP measurement 
updates were applied only during specific instances of gait, the errors in 
estimating ratio of forces and CoM height influences the relative positions 
during these instances.

Fig. 9.4 shows the step-wise comparison of the tracking by the PGL for a 
participant performing the WT task. Each step is shown in its respective 
current step frame ψcs with the feet and CoM moving from left to right. In 
some steps, for instance step 3, the trajectory of the stance (right) foot position 
measured by PGL is slightly different from the VICON©. This could be the 
rolling of the foot during stance phase, which is measured by VICON©. As the 
PGL tracks the foot as a fixed point, this rolling is not modelled during stance 
phase. Thus, we observe a steady medio-lateral position of the stance foot for 
the PGL estimates. Furthermore, although the virtual CMP point follows the 
trajectory of the Center of Pressure (CoP) (Popovic et al., 2005), in (9.14) we 
assumed that it follows the trajectory of the stance foot tracked by the PGL. 
These two issues could induce a systematic difference in estimations of foot 
positions or spatial parameters of gait. The PGL could be further improved 
with a model for CoP movement (Chapter IV) or the rolling of the stance foot. 
Further, we see more discrepancies during the turning steps than other steps. 
These issues could be because the movement of the CoM deviates further 
from the centroid of the pelvis when making turns. Additional biomechanical 
constraints should be explored to improve estimation of kinematics during 
turning. Measuring the influence of the rotational inertia of the upper body 
could improve the assumptions of CMP. Nevertheless, the estimated positions 
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converge to the reference values when the participant continues to make 
additional steps.

Table 9.4 shows that the algorithm has comparable performances across 
different walking tasks in estimating the absolute position of the feet and 
CoM. As these errors are an average across all steps in a trial, they indicate 
the usefulness of PGL in restricting drift between the segments with time. 
Although marginal, the differences in the orientation of ψcs defined separately 
by the PGL and VICON© could influence these errors. The error margins can 
be put into perspective when comparing it against the average stride length, 
which was found to be 1.1 ± 0.2 m by VICON© for all tasks except AW. The 
mean absolute error in estimating stride lengths across all walking tasks was 
found to be 5.9 ± 1.5 cm in our study as compared to -1.5 ± 4.6 cm as found by 
Kitagawa and Ogihara (Kitagawa and Ogihara, 2016). Note that the errors in 
estimating positions for the AW task are similar to the others, even though 
this task comprised of an asymmetrical gait with shorter steps on the right. 
In our validation study (Chapter V) on the assumptions of CMP point, we 
found that there was an average error of 6.7 ± 0.6 cm between the virtual CMP 
position and true foot position as measured by VICON©. These influence the 
errors in the relative distances (ED) between either feet as seen in Table 9.4. 
Sy and colleagues (Sy et al., 2020) used a set of biomechanical constraints to 
track the lower limb using a similar three IMU approach with an average error 
of 5.2 ± 1.4 cm. This was 13.5 ± 0.7 cm for our study. However, in the reference 
study (Sy et al., 2020), they assume a fixed pelvis, and measure all segments 
with respect to it. On the other hand, we track the relative distances between 
the feet and CoM for variable as well as asymmetric gait. The error margins 
include all steps in the walking task, thereby showing robustness against drift 
in relative distances, which becomes larger with time. It may be of interest to 
include the constraints explored in Sy and colleagues (Sy et al., 2020) where 
they also estimate joint kinematics. Combining other biomechanical model 
of gait (Paiman et al., 2016; Sy et al., 2020) with the current study can result 
in a system that provides complete linear and joint kinematics of the lower 
limb using a minimal IMU setup.

We have also validated the PGL for estimating spatial parameters: SL, SW, and 
CW for variable gait. These parameters are dependent on good estimations 

9



226

Chapter 9

of relative distances of both feet and CoM. In healthy participants and 
patients with hemi paresis, the SL variability is close to 2 cm and 3.4 cm 
respectively, and the SW variability is close to 2 cm and 1.8 cm respectively 
(Balasubramanian et al., 2009). Using an ultrasound sensor to measure relative 
distances, Weenk and colleagues (Weenk et al., 2015) estimated the SL and SW 
with an average absolute error of 1.7 ± 2 cm and 1.5 ± 1.5 cm respectively. In 
our study, using only three IMUs, we found it to be 4.6 ± 1.5 cm and 3.8 ± 1.5 cm 
respectively. These errors include variable walking and are slightly larger than 
clinical variability. Analysing straight line walking tasks such as the 10 metre 
walk will reduce the impact of variable walking when using the PGL for clinical 
studies. Furthermore, although the estimates were significantly correlated 
with the reference system (Fig. 9.5, 9.6, and 9.7), the correlations were found to 
be moderate for estimations of SL, and CW, and weak for the SW. This suggests 
that there is merit in using the PGL to study average spatial parameters over a 
number of trials, although caution must be taken when comparing individual 
steps.

Fig. 9.5, 9.6, and 9.7 do not include the spatiotemporal parameters for AW task, 
as the steps were asymmetric on either side. The spread of the spatiotemporal 
parameters for straight steps in the correlation subplot in all three figures lies 
along the identity line. The bias seen in the Bland-Altman plots could be due 
to systematic differences owing to the several assumptions considered and 
discussed in this study.

Finally, Fig. 9.8 and 9.9 show that the algorithm can distinguish between 
normal and asymmetric walking patterns, as identified by significant 
differences in step lengths for the AW task. This indicates that the PGL may 
be adequately sensitive for differences of clinical importance such as gait 
asymmetry due to stroke or other conditions.

Limitations and Future Work
The PGL requires reliable estimations of the CoM height and velocity, feet 
velocities, and 3D GRF before it can track the relative distances. Therefore, 
a number of assumptions were used regarding the biomechanics of gait. 
For instance, in (9.13), we found the average height of CoM during walking 
by optimizing the errors between the PGL estimate and reference values. 
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Further, we used an inverted pendulum model of walking where the CoM 
is encompassed within the pelvis segment (Floor-Westerdijk et al., 2012). 
There may be larger errors if the CoM deviates further from the centroid of 
the pelvis, or if the participant crouches or jumps. Errors may also be larger 
for participants with an asymmetric body posture due to an impairment or 
paralysis.

Applying the PGL requires knowledge of initial relative distances of the feet 
and CoM, which could be input using a tape or other sources. Further, the 
algorithms require a few steps to calibrate and define the different reference 
frames, and to initialise the heading of the feet. This could mean that there 
are some restrictions to be considered when designing a real time application 
system. The current design of the sensor fusion filter tracks 18 parameters for 
each iteration that includes the position and velocity of each foot and CoM, 
and might result in a heavy computational load. However, this should not 
pose a problem if the processing is performed offline, on a desktop, or a cloud 
service. Further, it is important that the three IMUs are synchronized well, 
as the movements are related to each other.

The PGL has not been tested on other aspects of variable gait such as shuffling 
of the feet, ascending or descending stairs, walking backwards, etc. Although, 
we have shown that the errors are close to margins of variability, they can 
be improved, and a follow up study with measurements from a free daily life 
environment must be designed. The error margins found in the current PGL 
could be acceptable to derive an overview of gait patterns, track people in daily 
life, and also to derive balance and stability measures using the relative foot 
distances. For instance, the BoS and MoS (van Meulen et al., 2016b) can be 
derived using this approach. However, employing the PGL to study individual 
steps must be considered within the provided error margins.

Here, the AW task was used to validate the feasibility of using PGL in 
asymmetric gait. Nevertheless, a validation study using participants with 
impaired and/or asymmetric gait is required, as it might be difficult to detect 
distinct gait events in impaired gait. Issues with lower limb motor control 
may result in shuffling patterns, such as freezing of gait as seen in patients 

9
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with Parkinson’s disease. This will influence the estimation of gait events, 
and therefore the application of CMP updates.

9.5. CONCLUSIONS

The feasibility of using a minimal three IMU based setup in measuring relative 
distances between the feet and CoM is shown for over ground variable gait. 
The average absolute errors in estimating step lengths and step widths 
were 4.6 ± 1.5 cm and 3.8 ± 1.5 cm respectively. The approach is sensitive in 
differentiating symmetric and asymmetric gait. Further validation in free 
walking conditions and participants with impaired gait patterns must be done.
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ABSTRACT

Measuring gait and balance recovery is necessary post stroke. In Chapter IX, 
we developed a minimal system using only three Inertial Measurement Units 
(IMUs) called Portable Gait Lab (PGL). The PGL used the Centroidal moment 
Pivot (CMP) assumption to estimate relative foot and Centre of Mass (CoM) 
positions, and thereby estimate gait parameters in healthy participants. In 
this study, we validate the feasibility of the PGL using the CMP assumption to 
track foot and CoM trajectory during gait in four persons with chronic stroke. 
Spatiotemporal gait and balance measures were estimated from the estimated 
foot and CoM trajectories and compared with the reference ForceShoes™. Each 
participant made at least 20 steps, and the PGL was able to track foot and CoM 
trajectories with a root mean square of the differences with the reference of 2.9 
± 0.2 cm and 4.6 ± 3.6 cm. The distances between either foot at the end of the 
walking task, and step lengths were estimated by PGL with an average error with 
the reference of 1.98 ± 2.2 cm and 7.8 ± 0.1 cm respectively across participants. 
We show that our approach was able to estimate spatiotemporal and balance 
parameters related to gait quality in a clinically useful manner. We recommend 
conducting further studies to study the feasibility of using the PGL for variable 
gait patterns measured post stroke.
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10.1. INTRODUCTION

Clinical gait analysis is required for diagnosis of disease, assessment of its 
severity, or monitoring progress after onset (Baker, 2006). In spite of several 
clinical assessment instruments (Baker, 2006; Hart-Hughes et al., 2014), 
biomechanics can be useful in understanding objective changes in gait, and 
balance mechanisms, and thereby developing tailored therapies post stroke 
(van Meulen et al., 2016b).

Spatiotemporal gait characteristics, and joint biomechanics are often 
measured during clinical gait analysis (Muro-de-la-Herran et al., 2014; Punt 
et al., 2017b). Bilateral temporal control of gait, step lengths, and stride time 
are useful indicators of gait quality (Buurke et al., 2019; Punt et al., 2017b). 
Dynamic stability can be defined as the ability to maintain balance during 
locomotion (Chang et al., 2010). Margin of stability (MoS), defined as the 
movement of the Centre of Mass (CoM) and the Extrapolated CoM (XCoM) 
with respect to the Base of Support (BoS) during gait, is a potential indicator 
of dynamic stability (Hof et al., 2005; Punt et al., 2017b; van Meulen et al., 
2016b). A decreased MoS can be related to lower walking speed or a reduced 
balance control ability (Bruijn and van Dieën, 2018; Lugade et al., 2011; van 
Meulen et al., 2016b).

Currently, accurate measurement of these parameters require optical motion 
capture systems or force plates (Bruijn et al., 2013). These require a large 
installation space, and have low ecological validity (Colyer et al., 2018). 
Portable sensing systems are therefore necessary to enable ambulatory 
sensing (Fong and Chan, 2010; Kobsar et al., 2020; Rueterbories et al., 2010; 
Wong et al., 2015).

Inertial Measurement Units (IMUs) are ideal miniature sensors for wearable 
gait analysis (Caldas et al., 2017; Kobsar et al., 2020). In order to estimate 
spatial gait parameters, the accelerations and angular velocities measured by 
the IMUs strapdown integration to derive kinematics of interest (Kok et al., 
2017; Woodman, 2007). Estimating spatial parameters that require knowledge 
about relative feet movement is even more challenging when using IMUs. This 
is mainly due to the issue of drift caused by integration (Woodman, 2007), 
and that the IMUs cannot measure relative positions directly.
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We developed a Portable Gait Lab (PGL) system that estimates relative 
movement of the feet and CoM using a minimal set of IMUs in Chapter IX. 
The PGL uses three IMUs; one on each feet, and one on the pelvis, to track the 
relative movement of the feet and CoM using the assumptions of the Centroidal 
Moment Pivot (CMP) point described in Chapter V. The CMP assumes that 
for an inverted pendulum model of gait, the net moments around the CoM are 
zero (Popovic et al., 2005) . Solving this provides a relation between movement 
of the CoM and the CMP point. The latter can be assumed to coincide with foot 
trajectories estimated by the foot IMUs based on our analysis in Chapter V. 
We validated the PGL for estimation of 3D Ground Reaction Forces (GRF), CoM 
velocity, and relative foot movement with gold standards such as force sensors, 
and optical motion capture systems in healthy gait (Chapter VI - IX). We also 
showed the feasibility of PGL in estimating the asymmetry in step length when 
healthy participants were asked to mimic asymmetric gait. However, the PGL 
has not been validated for use in persons with stroke.

The aim of this study was to test the feasibility of tracking relative movement 
of the feet and CoM and estimating spatiotemporal gait and balance measures 
using the assumptions of the CMP in a minimal IMU only setup for gait in 
persons with chronic stroke.

10.2. METHODS

10.2.1. Participants
The dataset used in this study was approved by the METC Twente, The 
Netherlands (P12-27), registered in the Netherlands Trial Registry (NTR3636) 
and used in the INTERACTION project (van Meulen et al., 2016b, 2016c). 
The patients included were between 35-75 years and had hemiparesis due to 
haemorrhagic or single unilateral ischemic stroke which occurred at least six 
months earlier (van Meulen et al., 2016b). Patients excluded were those unable 
to perform given instructions, understand questionnaires, had a medical history 
of more than one stroke or other that might influence gait (van Meulen et al., 
2016b). In this preliminary study, we processed the data from four participants. 
The patient demographics are shown in Table 10.1. All participants provided 
their consent for the study prior participation. 
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a)    b)

Figure 10.1 Measurement setups used: The participants wore the (a) Xsens™ full body suit con-
sisting of 17 IMU sensors placed at different locations on the body (Roetenberg et al., 2009; Xsens, 
2020). In (b), we see the Forceshoes™, which consists of a 6DOF force and moment sensors, and an 
IMU under the heel and toe for each foot (Schepers et al., 2009). The shoes included ultrasound 
sensors which are not shown here (Weenk et al., 2015). The pelvis IMU, and the IMUs under the 
toe of each Forceshoes™ in panel (b) was used in the Portable Gait Lab system

Table 10.1 Demographic details of the study participants

ID Gender Age
(years)

Post 
Stroke

(months)

Dominant 
Side

Affected 
Side

Weight
(kg)

Height
(m)

BBS 10MWT
(m/s)

P01 M 70 89 R L 94 1.74 52 0.76

P02 F 67 40 R L 80 1.62 43 0.54

P03 M 65 16 R L 92 1.86 52 0.94

P04 F 71 17 R R 67 1.53 56 0.83

Mean 
(± SD)

68.3 
(2.8)

40.5 
(34.2)

84 
(13.4)

1.7 
(0.1)

50.8 
(5.5)

0.8 
(0.2)

10.2.2. Measurement setup and Experimental protocol
Fig. 10.1a shows the full body Xsens™ suit (Xsens Technologies B.V., Enschede, 
The Netherlands) worn by participant. The raw data, sampled at 120 Hz, was 
processed using a Xsens MVN studio (Xsens Technologies B.V., Enschede, 
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The Netherlands) software which contains a biomechanical model of the 
participant.

Each participant also wore the Forceshoes™ (Xsens Technologies B.V., 
Enschede, The Netherlands) as seen in Fig. 10.1b. The Forceshoes™ have been 
validated for estimations of gait kinematics (Schepers et al., 2009; Weenk et 
al., 2015). Therefore, it is used as the reference for 3D foot kinematics, and 
the CoM kinematics in the horizontal ground plane. Information regarding 
the CoM height was supplemented by the Xsens™ suit. All data from the 
Forceshoes™ were sampled at 50 Hz and sent wirelessly to a PC running a MT 
Manager software (Xsens Technologies B.V., Enschede, The Netherlands). All 
data were then resampled to 100 Hz. Data from the Forceshoes™ and Xsens™ 
suit were synchronized using IMU data from the first foot movement.

The three IMUs of the PGL are seen in Fig. 10.1b. This includes the foot IMUs 
(from the ForceShoes™) and the pelvis IMU (part of the Xsens™ suit). The raw 
acceleration and angular velocities measured from three IMUs were processed 
using the PGL system based on the methods described in Chapter VI – IX.

All participants performed a timed 10 m walk task (10MWT) at a self-selected 
comfortable pace without the use of any walking aid (van Meulen et al., 2016b). 
Clinical gait assessment was performed using the Berg Balance Scale (BBS).

10.2.3. Data Analysis

Portable Gait Lab system
The PGL assumes an inverted pendulum model of gait where the CoM is located 
within the pelvis, and the pelvis IMU measures the CoM accelerations. The 
PGL assumes that the feet are the only points of contact with the environment 
and no additional load is carried by the participant. The kinematics of 
the CoM, affected foot, and less affected foot (superscripts C, AF, and LA 
respectively) that were tracked include the 3D position and velocity ([p  v]). 
For each step k, the kinematics were expressed in the current step frame 
(ψcs(k)) described in our previous study (Chapter VI). The anterio-posterior 
(AP), medio-lateral (ML), and vertical (V ) axes of the ψcs(k) are denoted as 
subscripts in the equations used in this chapter. The PGL employs strapdown 
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integration in order to estimate kinematics from the IMU data, and the 
equations were applied in the context of Kalman filters (Chapter VI – IX). 
Additionally, biomechanical constraints were used to reduce the drift in 
estimating kinematics of the feet and CoM, and their relative distances. The 
constraints are as follows:

•  Zero Velocity constraint: This assumed that during gait, the velocity of 
the stance foot was zero.

•  Zero Height constraint: This assumed walking on a flat surface and 
therefore the height of the stance foot was the same as that at the start 
of the walking.

•  Inclination constraint: This assumed that on average the pelvis IMU 
measures inclination due to gravity. This was used to estimate the 3D 
GRF using the pelvis IMU as shown in Chapter VI.

•  CoM Velocity constraint: The CoM velocity was estimated by fusing two 
complementary sources as described in Chapter VIII:

Tracking relative feet and CoM movement post stroke 
 

3. Data Analysis 

Portable Gait Lab system  

The PGL assumes an inverted pendulum model of gait where the CoM is located within the pelvis, and 

the pelvis IMU measures the CoM accelerations. The PGL assumes that the feet are the only points of 

contact with the environment and no additional load is carried by the participant. The kinematics of 

the CoM, affected foot, and less affected foot (superscripts C, AF, and LA respectively) that were 

tracked include the 3D position and velocity ([𝒑𝒑 𝒗𝒗]). For each step k, the kinematics were expressed 

in the current step frame (𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘)) described in our previous study (Chapter VI). The anterio-posterior 

(AP), medio-lateral (ML), and vertical (V) axes of the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) are denoted as subscripts in the equations 

used in this chapter. The PGL employs strapdown integration in order to estimate kinematics from the 

IMU data, and the equations were applied in the context of Kalman filters (Chapter VI – IX). 

Additionally, biomechanical constraints were used to reduce the drift in estimating kinematics of the 

feet and CoM, and their relative distances. The constraints are as follows:  

1. Zero Velocity constraint: This assumed that during gait, the velocity of the stance foot was 

zero.  

2. Zero Height constraint: This assumed walking on a flat surface and therefore the height of the 

stance foot was the same as that at the start of the walking.  

3. Inclination constraint: This assumed that on average the pelvis IMU measures inclination due 

to gravity. This was used to estimate the 3D GRF using the pelvis IMU as shown in Chapter VI.   

4. CoM Velocity constraint: The CoM velocity was estimated by fusing two complementary 

sources as described in Chapter VIII:  

𝒗𝒗ℎ𝑓𝑓
𝐶𝐶 = 𝐻𝐻𝐻𝐻𝐻𝐻(∫ 𝒂𝒂𝐶𝐶  𝑑𝑑𝑑𝑑)     (10.1) 

𝒗𝒗𝑙𝑙𝑓𝑓
𝐶𝐶 = 𝐿𝐿𝐻𝐻𝐻𝐻 (0.6 ∗ 𝒗𝒗𝐿𝐿𝐿𝐿 + 0.4 ∗ 𝒗𝒗𝐿𝐿𝐴𝐴)    (10.2) 

𝒗𝒗𝐶𝐶 =  𝒗𝒗𝑙𝑙𝑓𝑓
𝐶𝐶 +  𝒗𝒗ℎ𝑓𝑓

𝐶𝐶 .     (10.3) 

   (10.1)

Tracking relative feet and CoM movement post stroke 
 

3. Data Analysis 

Portable Gait Lab system  

The PGL assumes an inverted pendulum model of gait where the CoM is located within the pelvis, and 

the pelvis IMU measures the CoM accelerations. The PGL assumes that the feet are the only points of 

contact with the environment and no additional load is carried by the participant. The kinematics of 

the CoM, affected foot, and less affected foot (superscripts C, AF, and LA respectively) that were 

tracked include the 3D position and velocity ([𝒑𝒑 𝒗𝒗]). For each step k, the kinematics were expressed 

in the current step frame (𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘)) described in our previous study (Chapter VI). The anterio-posterior 

(AP), medio-lateral (ML), and vertical (V) axes of the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) are denoted as subscripts in the equations 

used in this chapter. The PGL employs strapdown integration in order to estimate kinematics from the 

IMU data, and the equations were applied in the context of Kalman filters (Chapter VI – IX). 

Additionally, biomechanical constraints were used to reduce the drift in estimating kinematics of the 

feet and CoM, and their relative distances. The constraints are as follows:  

1. Zero Velocity constraint: This assumed that during gait, the velocity of the stance foot was 

zero.  

2. Zero Height constraint: This assumed walking on a flat surface and therefore the height of the 

stance foot was the same as that at the start of the walking.  

3. Inclination constraint: This assumed that on average the pelvis IMU measures inclination due 

to gravity. This was used to estimate the 3D GRF using the pelvis IMU as shown in Chapter VI.   

4. CoM Velocity constraint: The CoM velocity was estimated by fusing two complementary 

sources as described in Chapter VIII:  

𝒗𝒗ℎ𝑓𝑓
𝐶𝐶 = 𝐻𝐻𝐻𝐻𝐻𝐻(∫ 𝒂𝒂𝐶𝐶  𝑑𝑑𝑑𝑑)     (10.1) 

𝒗𝒗𝑙𝑙𝑓𝑓
𝐶𝐶 = 𝐿𝐿𝐻𝐻𝐻𝐻 (0.6 ∗ 𝒗𝒗𝐿𝐿𝐿𝐿 + 0.4 ∗ 𝒗𝒗𝐿𝐿𝐴𝐴)    (10.2) 

𝒗𝒗𝐶𝐶 =  𝒗𝒗𝑙𝑙𝑓𝑓
𝐶𝐶 +  𝒗𝒗ℎ𝑓𝑓

𝐶𝐶 .     (10.3) 

 (10.2)

Tracking relative feet and CoM movement post stroke 
 

3. Data Analysis 

Portable Gait Lab system  

The PGL assumes an inverted pendulum model of gait where the CoM is located within the pelvis, and 

the pelvis IMU measures the CoM accelerations. The PGL assumes that the feet are the only points of 

contact with the environment and no additional load is carried by the participant. The kinematics of 

the CoM, affected foot, and less affected foot (superscripts C, AF, and LA respectively) that were 

tracked include the 3D position and velocity ([𝒑𝒑 𝒗𝒗]). For each step k, the kinematics were expressed 

in the current step frame (𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘)) described in our previous study (Chapter VI). The anterio-posterior 

(AP), medio-lateral (ML), and vertical (V) axes of the 𝜓𝜓𝑐𝑐𝑐𝑐(𝑘𝑘) are denoted as subscripts in the equations 

used in this chapter. The PGL employs strapdown integration in order to estimate kinematics from the 

IMU data, and the equations were applied in the context of Kalman filters (Chapter VI – IX). 

Additionally, biomechanical constraints were used to reduce the drift in estimating kinematics of the 

feet and CoM, and their relative distances. The constraints are as follows:  

1. Zero Velocity constraint: This assumed that during gait, the velocity of the stance foot was 

zero.  

2. Zero Height constraint: This assumed walking on a flat surface and therefore the height of the 

stance foot was the same as that at the start of the walking.  

3. Inclination constraint: This assumed that on average the pelvis IMU measures inclination due 

to gravity. This was used to estimate the 3D GRF using the pelvis IMU as shown in Chapter VI.   

4. CoM Velocity constraint: The CoM velocity was estimated by fusing two complementary 

sources as described in Chapter VIII:  

𝒗𝒗ℎ𝑓𝑓
𝐶𝐶 = 𝐻𝐻𝐻𝐻𝐻𝐻(∫ 𝒂𝒂𝐶𝐶  𝑑𝑑𝑑𝑑)     (10.1) 

𝒗𝒗𝑙𝑙𝑓𝑓
𝐶𝐶 = 𝐿𝐿𝐻𝐻𝐻𝐻 (0.6 ∗ 𝒗𝒗𝐿𝐿𝐿𝐿 + 0.4 ∗ 𝒗𝒗𝐿𝐿𝐴𝐴)    (10.2) 

𝒗𝒗𝐶𝐶 =  𝒗𝒗𝑙𝑙𝑓𝑓
𝐶𝐶 +  𝒗𝒗ℎ𝑓𝑓

𝐶𝐶 .     (10.3)   (10.3)

 The first source was strapdown integration of the accelerations (aC) 
measured at the CoM that was high pass filtered as seen in (10.1). The 
lost low frequency information was supplemented by averaging the foot 
velocities during gait. As persons with stroke have an asymmetrical gait, 
assigning a 40% weight to the velocity of the affected foot improved 
the estimation of CoM velocity. The averaged foot velocities were 
then low pass filtered as seen in (10.2). Both, the high and low pass 
filters had the same cut off frequencies [1.7 0.5 0.5] Hz for the AP, ML, 
and V axes respectively. In (10.3), the vC

hf  and vC
lf  were fused using a 

complementary filter to obtain the instantaneous CoM velocity estimate. 
In the equations, the subscripts lf and hf refer to low and high frequency 
information respectively.
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•  CoM Height constraint: The height of the CoM was also estimated by fusing 
two sources using the approaches in Chapter IX:
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applied to the stance foot when the contralateral foot was in swing. The subscript ax refers to 
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cut off of 0.8 Hz, and both sources are fused in (10.6).  

 

6. Centroidal Moment Pivot (CMP) constraint: During normal gait, the moments around the CoM 

can be assumed to be close to zero (Popovic et al., 2005). Using this, the relative distance 
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 In (10.4), the CoM height was derived by strapdown integration of the 
CoM velocity, and subsequent high pass filtering. It was assumed that 
during gait the average CoM height was 99% of of the height during 
initial stance (pC

V,init) resulting in (10.5). Both filters had the same cut 
off of 0.8 Hz, and both sources are fused in (10.6).

• Centroidal Moment Pivot (CMP) constraint: During normal gait, the 
moments around the CoM can be assumed to be close to zero (Popovic 
et al., 2005). Using this, the relative distance between the stance foot 
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𝐶𝐶 ) resulting in (10.5). Both filters had the same 

cut off of 0.8 Hz, and both sources are fused in (10.6).  
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can be assumed to be close to zero (Popovic et al., 2005). Using this, the relative distance 
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where foot refers to either the affected or less affected stance foot. The constraint was only 

applied to the stance foot when the contralateral foot was in swing. The subscript ax refers to 

  (10.7)

 where foot refers to either the affected or less affected stance foot. The 
constraint was only applied to the stance foot when the contralateral 
foot was in swing. The subscript ax refers to either the AP or ML axis, 
and F denotes the GRF for a particular axis. The constraint reduced the 
drift between the stance foot and CoM during the swing phase of the 
contralateral foot. However, there might be a sudden change in foot 
position during the start of the swing phase. To remedy this, the foot 
position at the beginning of a current step k was constrained to be the 
same as at the end of the preceding step k – 1. This constraint was used 
after the end of the previous contralateral swing and at the beginning 
of the subsequent swing phase:
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either the AP or ML axis, and F denotes the GRF for a particular axis. The constraint reduced 

the drift between the stance foot and CoM during the swing phase of the contralateral foot. 

However, there might be a sudden change in foot position during the start of the swing phase. 

To remedy this, the foot position at the beginning of a current step k was constrained to be 

the same as at the end of the preceding step k – 1. This constraint was used after the end of 

the previous contralateral swing and at the beginning of the subsequent swing phase: 

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘)
𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠 =  𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘−1)

𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠 .    (10.8) 

Finally, the CoM was constrained by using the CMP equation in (10.7) and the information 

regarding the updated foot positions using methods in Chapter IX. 

Measurement noise associated with the biomechanical constraints 

The Kalman filter estimates an optimal value of ([𝒑𝒑 𝒗𝒗]) while accounting for the Gaussian 

measurement noise associated with each constraint (Welch and Bishop, 2006). The standard deviation 

(SD) of the Gaussian noises for the zero velocity, zero height, inclination, CoM velocity, and CoM height 

constraints were similar to Chapter IX. The SD of the noise for the constraint in (10.7) was [3 ⋅ 10-1  1 ⋅ 

10-1] m for the AP and ML directions. Then, we optimized the SD of the noise for (10.8) per participant 

by using two parameters that can be easily measured in the clinic. This included the total walking 

distance (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡), and the relative foot distances (𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡) at the end of gait. For each participant, 

we identified the SD of the noise for (10.8) that minimized ‖𝚫𝚫𝒚𝒚‖, where Δ𝒚𝒚 = 𝒚𝒚𝑃𝑃𝑃𝑃𝑃𝑃 − 𝒚𝒚𝑅𝑅𝑅𝑅𝑅𝑅.   

where 𝒚𝒚 = [𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡; 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡];    (10.9) 

and 𝑅𝑅𝑅𝑅𝑅𝑅 = ‖𝒑𝒑𝑒𝑒𝑒𝑒𝑒𝑒
𝐴𝐴𝑅𝑅 − 𝒑𝒑𝑒𝑒𝑒𝑒𝑒𝑒

𝑃𝑃𝐴𝐴 ‖.    (10.10) 

The participant specific values are tabulated in Table 10.2. Using a similar approach, the SD of 

the Gaussian noise for constraining the CoM using (10.7) was found to be [3 ⋅ 10-1] m.  

Table 10.2 Participant specific standard deviation of the Gaussian noise for (10.8). 

ID Foot Anterio-posterior Medio-lateral 

.  (10.8)
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 Finally, the CoM was constrained by using the CMP equation in (10.7) 
and the information regarding the updated foot positions using methods 
in Chapter IX.

Measurement noise associated with the biomechanical constraints
The Kalman filter estimates an optimal value of ([p  v]) while 
accounting for the Gaussian measurement noise associated with each 
constraint (Welch and Bishop, 2006). The standard deviation (SD) 
of the Gaussian noises for the zero velocity, zero height, inclination, 
CoM velocity, and CoM height constraints were similar to Chapter IX. 
The SD of the noise for the constraint in (10.7) was [3 ⋅ 10-1 1 ⋅ 10-1] m 
for the AP and ML directions. Then, we optimized the SD of the noise for (10.8) 
per participant by using two parameters that can be easily measured in the 
clinic. This included the total walking distance (disttotal), and the relative foot 
distances (RFPtotal) at the end of gait. For each participant, we identified the 
SD of the noise for (10.8) that minimized ‖Δy‖, where Δy = yPGL-yREF.

where y =[disttotal; RFPtotal]; (10.9)

and 
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  (10.10)

The participant specific values are tabulated in Table 10.2. Using a similar 
approach, the SD of the Gaussian noise for constraining the CoM using (10.7) 
was found to be [3 ⋅ 10-1] m.

Table 10.2 Participant specific standard deviation of the Gaussian noise for (10.8).

ID Foot Anterio-posterior
(m)

Medio-lateral
(m)

P01
Affected 1 ⋅ 10-1 1 ⋅ 10-1

Less Affected 1 ⋅ 10-1 1

P02
Affected 1 ⋅ 101 1 ⋅ 101

Less Affected 3 3 ⋅ 102

P03
Affected 3 ⋅ 10-1 3 ⋅ 10-1

Less Affected 3 ⋅ 10-1 3

P04
Affected 8 ⋅ 10-1 3 ⋅ 10-1

Less Affected 8 ⋅ 10-1 3

10
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Chapter 10

Initialization of parameters
The initial orientation of the feet was estimated from its initial heading and 
gravitational inclination (Weenk et al., 2015). The initial orientation of the CoM 
was estimated from an additional Timed Up and Go (TUG) test performed by the 
participants. Principal component analyses was applied to changes in angular 
velocity during the sit to stand task to estimate the medio-lateral axis (axML) of 
CoM (corresponding to the sagittal axis) as shown in (10.11). The inclination due 
to gravity (axV) was estimated during quiet standing in (10.12). After estimating 
axAP using (10.13), axMLwas adjusted using (10.14) to ensure an orthonormal 
coordinate system. Finally, (10.15) provides the rotation matrix (Rseg,s

init  )  that 
transforms data from sensor (ψs) to segment (ψseg) frame.
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(m) (m) 

P01 
Affected 1 ⋅ 10−1 1 ⋅ 10−1 

Less Affected 1 ⋅ 10−1 1 

P02 
Affected 1 ⋅ 101 1 ⋅ 101 

Less Affected 3 3 ⋅ 102 

P03 
Affected 3 ⋅ 10−1 3 ⋅ 10−1 

Less Affected 3 ⋅ 10−1 3 

P04 
Affected 8 ⋅ 10−1 3 ⋅ 10−1 

Less Affected 8 ⋅ 10−1 3 
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𝑠𝑠

‖𝒚𝒚𝐴𝐴
𝑠𝑠 ‖    (10.12) 
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(m) (m) 

P01 
Affected 1 ⋅ 10−1 1 ⋅ 10−1 

Less Affected 1 ⋅ 10−1 1 

P02 
Affected 1 ⋅ 101 1 ⋅ 101 

Less Affected 3 3 ⋅ 102 

P03 
Affected 3 ⋅ 10−1 3 ⋅ 10−1 

Less Affected 3 ⋅ 10−1 3 

P04 
Affected 8 ⋅ 10−1 3 ⋅ 10−1 

Less Affected 8 ⋅ 10−1 3 
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(m) (m) 

P01 
Affected 1 ⋅ 10−1 1 ⋅ 10−1 

Less Affected 1 ⋅ 10−1 1 

P02 
Affected 1 ⋅ 101 1 ⋅ 101 

Less Affected 3 3 ⋅ 102 

P03 
Affected 3 ⋅ 10−1 3 ⋅ 10−1 

Less Affected 3 ⋅ 10−1 3 

P04 
Affected 8 ⋅ 10−1 3 ⋅ 10−1 

Less Affected 8 ⋅ 10−1 3 
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(𝑹𝑹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠) that transforms data from sensor (𝜓𝜓𝑠𝑠) to segment (𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠) frame. 
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𝑎𝑎𝑥𝑥𝑉𝑉 = 𝒚𝒚𝐴𝐴
𝑠𝑠

‖𝒚𝒚𝐴𝐴
𝑠𝑠 ‖    (10.12) 

𝑎𝑎𝑥𝑥𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑥𝑥𝑀𝑀𝑀𝑀  × 𝑎𝑎𝑥𝑥𝑉𝑉   (10.13) 
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𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 = [𝑎𝑎𝑥𝑥𝐴𝐴𝐴𝐴  𝑎𝑎𝑥𝑥′𝑀𝑀𝑀𝑀  𝑎𝑎𝑥𝑥𝑉𝑉]   (10.15)   (10.15)

The initial 3D foot positions and the AP and ML position of CoM were obtained 
from the reference Forceshoes™, and the initial CoM height was estimated by 
the Xsens™ suit. The initial velocities were all set to zero. Foot contact was 
estimated using the method of Skog and colleagues (Skog et al., 2010). All 
filters used were zero phase Butterworth filters with order 4. All equations 
were a function of time.

10.2.4. Analysis of Results
We first assessed the errors in estimating the feet and CoM positions during 
the complete 10MWT including initiation, steady state, and termination. We 
report the root mean square of the differences in the AP and ML directions as 
estimated by the PGL and reference ForceShoes™ (van Meulen et al., 2016b, 
2016c; Weenk et al., 2015).
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Spatiotemporal and balance measures of gait
Then, we assessed the errors in measuring spatiotemporal measures such 
as stance time, and step length (Huxham et al., 2006). We defined stance 
phase when the velocity of each foot was less than 0.1 m/s. Following this, 
we estimated the MoS in the AP and ML directions. First, the Extrapolated 
Centre of Mass (XCoM) was estimated (Hof et al., 2005):
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 is the 
length of the inverted pendulum that is approximated as the height of the CoM 
when standing still. Estimation of the MoS requires knowledge of the Base 
of Support (BoS). A foot model was built that estimated anterior and lateral 
foot boundaries based on the positions estimated by the PGL, and similarly 
for the reference ForceShoes™ (van Meulen et al., 2016c). MoS during double 
support was estimated just before the contralateral foot entered swing phase. 
AP and ML MoS was defined as the distance between XCoM and anterior and 
lateral boundary of the foot respectively (Punt et al., 2017b; van Meulen et 
al., 2016c). We estimated the AP and ML MoS during three samples just before 
the contralateral foot-off and report the average values. This corresponds to 
a window of 30 ms before foot-off for a sampling frequency of 100 Hz.

We report the mean absolute difference, the correlation and Bland–Altman 
plots between all parameters estimated by the PGL and the reference system 
for each step. As each participant made at least 20 steps, we use two-sample 
t-tests to identify if there are differences in these parameters estimated on 
either foot by the PGL. We compare this with the findings of the reference.

10.3. RESULTS

Due to discrepancies in pelvis IMU placement for P03 between the 10MWT 
and TUG tasks, (10.11) did not provide a reliable initial orientation for the 
CoM. Therefore, for P03, the initial orientation estimated by the Xsens™ suit 
was employed.
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In Table 10.3, we summarize the errors between the PGL and reference 
Forceshoes™. The Root Mean Square (RMS) error in estimating foot positions 
in the AP direction are smaller than our previous study in Chapter IX 
performed on healthy participants. This was probably due to the use of 
participant specific noise models as shown in Table 10.2. The PGL also reliably 
estimated the relative foot distance at the end of the walking task with a root 
mean square of differences of 1.98 ± 2.20 cm.

In Table 10.4, we summarize the average spatiotemporal and balance 
parameters estimated across the four participants for the reference and PGL 
system. In the following figures, we take a closer look at each of the different 
parameters. In Fig. 10.2, we compare the estimation of stance time for both 
the affected and less affected foot. The correlation and Bland–Altman plots 
are shown in Fig. 10.2a and Fig. 10.2b. Table 10.5 summarizes if there are 
differences in the spatiotemporal and balance measures estimated on either 
foot and compares them between the PGL and reference. The table shows 
that both systems find similar differences in stance time on either foot for 
all participants.

Fig. 10.3 compares the step lengths estimated by the PGL and reference system. 
We see in Table 10.5 that the step lengths on either foot was not significantly 
different, as reported by both the reference and PGL. Fig. 10.4 and Fig. 10.5 
compare the estimated AP MoS and estimated ML MoS respectively. In Table 10.5 
we see that the PGL showed significant differences in AP MoS on either 
foot for P03, and similarly for ML MoS for P01. However, in both cases, the 
reference system did not measure such differences between either foot. For 
other participants, both systems show similar differences for these measures.

10.4. DISCUSSION

In this limited study, we show the feasibility of the PGL system using the CMP 
assumption to estimate foot and CoM trajectories over the complete 10MWT 
including initiation and termination in persons with chronic stroke. We also 
show the use of PGL in estimating spatiotemporal and balance parameters 
of gait. Further, we have tested the use of PGL in one severe (P02) as well as 
mildly affected persons with stroke. 
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Table 10.3 Performance of the PGL as compared with the reference.

Segment Positions⸸ Step 
Length*

AP MoS* ML MoS*

Mean ± SD (cm) AP ML

Affected foot 4.38 ± 0.61 3.05 ± 0.74 7.88 ± 0.85 5.60 ± 1.20 5.31 ± 1.76

Less Affected foot 5.01 ± 1.13 3.04 ± 0.88 7.69 ± 1.46 4.88 ± 0.89 6.43 ± 2.89

Centre of Mass 8.20 ± 1.36 4.70 ± 0.65

AP: anterio-posterior. ML: medio -lateral. ⸸Root mean square of the differences across participants 
are reported. *Mean absolute differences across participants are reported.

Table 10.4 Spatiotemporal and balance parameters estimated by the PGL and reference.

Metric Units Foot Reference PGL

Stance Time s Affected 0.67 ± 0.13 0.67 ± 0.13

Less Affected 0.67 ± 0.13 0.68 ± 0.13

Step Length m Affected 0.43 ± 0.14 0.47 ± 0.17

Less Affected 0.47 ± 0.11 0.43 ± 0.15

AP MoS m Affected 0.08 ± 0.08 0.10 ± 0.10

Less Affected 0.12 ± 0.08 0.13 ± 0.08

ML MoS m Affected 0.14 ± 0.04 0.17 ± 0.08

Less Affected 0.15 ± 0.04 0.19 ± 0.07

AP MoS: Anterio-posterior margin of stability, ML MoS: Medio-lateral margin of stability.

Table 10.5 Differences between the spatiotemporal and balance measures of the affected 
and less affected foot (p<0.05).

ID Stance time Step length AP MoS ML MoS

Reference PGL Reference PGL Reference PGL Reference PGL

P01 yes yes no no yes yes no yes

P02 yes yes no no yes yes yes yes

P03 no no no no no yes no no

P04 yes yes no no yes yes yes yes

10
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a)

b)

Figure 10.2 Correlation (left subplot) and Bland–Altman (right subplot) plots comparing the 
stance time estimated by the reference and Portable Gait Lab (PGL) on the (a) affected and (b) less 
affected foot. In both plots, steps made by P01, P02, P03, and P04 are shown by pluses, circles, 
inverted triangles, and squares respectively. The dotted gray line in the correlation plot shows 
the identity line. The black line shows the linear fit. The legend shows the Pearsons’ correlation, 
their significance denoted by *(p < 0.05), and the root mean square of the differences. The dotted 
lines in the Bland–Altman plot show the 95% limits of agreement, and the solid line shows the 
average mean of difference between the reference and PGL.
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a)

b)

Figure 10.3 Correlation (left subplot) and Bland–Altman (right subplot) plots comparing the 
step lengths estimated by the reference and Portable Gait Lab (PGL) system on (a) affected and 
(b) less affected foot. In both plots, steps made by P01, P02, P03, and P04 are shown by pluses, 
circle, inverted triangle, and squares respectively. We compared the steps during steady gait 
(Steady) in blue, and the first and last two steps (Other) are shown in red. The dotted gray line 
in the correlation plot shows the identity line. The blue and red lines shows the linear fit for the 
Straight and Other steps respectively. The legend shows the Pearsons’ correlation for both types 
of steps, their significance denoted by *(p < 0.05), and the root mean square of the differences. 
The Bland–Altman plots show the average mean of the differences for Steady state in blue and 
Other steps in red.

10
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a)

b)

Figure 10.4 Correlation (left subplot) and Bland–Altman (right subplot) plots comparing the 
anterio-posterior margin of stability (AP MoS) estimated by the reference and Portable Gait 
Lab (PGL) system on (a) affected and (b) less affected foot. In both plots, steps made by P01, 
P02, P03, and P04 are shown by pluses, circle, inverted triangle, and squares respectively. We 
compared the steps during steady gait (Steady) in blue, and the first and last two steps (Other) 
are shown in red. The dotted gray line in the correlation plot shows the identity line. The blue 
and red lines shows the linear fit for the Straight and Other steps respectively. The legend shows 
the Pearsons’ correlation for both types of steps, their significance denoted by *(p < 0.05), and 
the root mean square of the differences. The Bland–Altman plots show the average mean of the 
differences for Steady state in blue and Other steps in red.
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a)

b)

Figure 10.5 Correlation (left subplot) and Bland–Altman (right subplot) plots comparing the 
medio-lateral margin of stability (ML MoS) estimated by the reference and Portable Gait Lab 
(PGL) system on (a) affected and (b) less affected foot. In both plots, steps made by P01, P02, P03, 
and P04 are shown by pluses, circle, inverted triangle, and squares respectively. We compared 
the steps during steady gait (Steady) in blue, and the first and last two steps (Other) are shown 
in red. The dotted gray line in the correlation plot shows the identity line. The blue and red 
lines shows the linear fit for the Steady state and Other steps respectively. The legend shows 
the Pearsons’ correlation for both types of steps, their significance denoted by *(p < 0.05), and 
the root mean square of the differences. The Bland–Altman plots show the average mean of the 
differences for Steady state in blue and Other steps in red.

10
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The results of this study show that the PGL can be an alternative to high-end 
optical measurement systems given its portability, and ease of setup. This 
can help clinicians measure at remote locations, as well as more often post 
stroke, thereby generating an improved picture of lower limb motor recovery 
post stroke.

10.4.1. Clinical testing versus clinical research
Gait analysis can be used to either study changes in lower limb quality post 
stroke, or be used in clinical research to identify biomarkers of recovery (Baker, 
2006). We show here that the PGL is useful in case of the former, although it 
requires longitudinal studies that test the feasibility of measuring change over 
time. In case of use in clinical research, the usability of PGL must be tested 
in larger patient groups with varying levels of severity in order to evaluate 
if it can distinguish differences that are clinically significant and relevant. 
Nonetheless, the portability of the PGL allows setting up studies with these 
goals.

10.4.2 Assumptions underlying the PGL
The PGL is expected to fail when trunk rotational moments significantly 
deviate from zero, for example during turning (Popovic et al., 2005). If the 
moments around the CoM can be measured, then (10.7) can be updated as

Equation 6.13 

where 𝑭𝑭 = (𝐈𝐈3 + 𝑇𝑇 ⋅ �̃�𝝎 + 𝑇𝑇2

2 ⋅ �̃�𝝎2 −𝑇𝑇 ⋅ 𝐈𝐈3 − 𝑇𝑇2

2 ⋅ �̃�𝝎
 𝟎𝟎3  𝐈𝐈3
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  (10.17)

where M is the moment around the CoM, and ax' is the AP axis when ax is the 
ML axis and vice-versa. As it reduces the uncertainty with (10.7), this could 
improve the estimations of relative distance between CoM and stance foot 
during non-steady state gait. Thus, it is useful to consider additional wearable 
sensors such as a sternum IMU that can measure trunk rotations.

We estimated the initial orientation of the pelvis from a sit to stand movement. 
We assumed that the participant moves along the ML axis of their pelvis 
during these movements. However, this assumption must be tested further as 
persons with stroke can have an asymmetrical posture during gait or standing. 
It would also be useful to explore other movements from the extensive library 
of daily life postures for calibrating the initial orientation of the pelvis. Better 
calibration of initial orientation improves the performance of PGL.
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The PGL employs sensor fusion techniques to optimize the kinematics 
measured from different sources. Therefore, it has to be noted that the 
estimation of relative distances is an optimal estimate that depend on a good 
noise model for the constraints.

10.4.3. Measuring foot trajectories, spatiotemporal and balance parameters
We see that the PGL is able to reliably estimate relative foot positions in spite 
of each participant making at least 20 steps. This shows that the PGL is able to 
deal with drift associated with strapdown inertial navigation over longer gait. 
As gait in persons with stroke vary based on their impairment, we introduce 
a method to tune the noise models for the constraints based on parameters 
that can be measured easily in the clinic. This improved the performance of 
the PGL for each participant.

We chose a limited set of spatiotemporal and balance parameters that could 
be useful to monitor gait recovery after stroke longitudinally, and objectively 
measure gait quality (Punt et al., 2017b; van Meulen et al., 2016c). However, 
the PGL has to be tested on more participants in order to make generalizable 
conclusions. Estimating stance time does not require knowledge of the relative 
foot distances. Nevertheless, we report it here as it is a useful temporal 
parameter for gait quality (Buurke et al., 2019).

The average step lengths reported (Table 10.4) were similar to those reported 
by Punt and colleagues for persons with stroke (Punt et al., 2017b). The error 
in measuring step lengths (on average 7.8 ± 0.1 cm) were mainly due to the 
approximations made by the PGL system in estimating relative foot positions 
during gait. Weenk and colleagues found lower errors in estimating step 
lengths (Weenk et al., 2015). Nevertheless, the PGL uses only three IMUs, and 
does not rely on additional sensors such as ultrasound or infrared time of flight 
sensors to estimate relative foot distances (Bertuletti et al., 2019; Weenk et 
al., 2015). Using an extended list of biomechanical constraints, similar to our 
study, Sy and colleagues estimated positions of lower limb segments with an 
average error of 5.2 ± 1.3 cm for healthy participants (Sy et al., 2020), whereas 
we report an average of 3.5 ± 1 cm for persons with stroke.

The average AP MoS measured using the PGL was 11.5 ± 2.1 cm, with an 
average error of 5.2 ± 0.8 cm. This was relatively larger than the error in 
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measuring ML MoS, which was on average 5.9 ± 0.8 cm for an average ML MoS 
of 18 ± 1.4 cm. The larger errors in AP MoS could be due to larger discrepancies 
in the foot model used in the anterior direction, than the lateral direction. The 
accuracy of the PGL is expected to improve if foot contact and CoP movement 
can be measured using pressure insoles.

Based on these findings, we show that the PGL estimates the foot and CoM 
positions, stance times and step lengths well. The discrepancies in measuring 
MoS can be improved using additional portable sensors such as a sternum 
IMU, and pressure insoles.

10.4.4. Limitations
The possible issues due to the PGL assumptions have been discussed earlier. 
Another limitation is the use of a limited dataset, and therefore the results 
cannot be generalized to all persons with stroke. For each participant, we 
studied only one 10MWT which does not include turns or side steps.

In our previous study in Chapter IX, we showed the feasibility of PGL in 
measuring variable gait in healthy participants. We recommend setting up 
similar studies with persons with stroke and comparing the performance 
of PGL with optical motion capture systems. Furthermore, joint kinematics 
are quite useful in gait analysis, but we do not estimate them in this study. 
However, the method by Sy and colleagues can be combined with the PGL in 
order to measure joint kinematics and provide a comprehensive analysis of 
gait and balance (Sy et al., 2020).
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“Mischief, thou art afoot; Take thou what course thou wilt!”

William Shakespeare, Julius Caesar

XI
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11.1. THE VISION  FOR STROKE REHABILITATION

Considerable progress in stroke recovery has been made in the recent decades 
owing to advances in stroke research and medical technology (Hachinski et 
al., 2010). The onset of stroke disrupts Activities of Daily Life (ADL) and stroke 
rehabilitation is a process that takes place over several months or in some 
cases years (Langhorne et al., 2011). In spite of the large body of literature, 
insights from animal models and human trials have not been efficiently 
integrated into standard stroke practices (Krakauer et al., 2012). 

Standardizing stroke rehabilitation, especially for motor recovery, is an 
important vision on the stroke roadmap (Bernhardt et al., 2016; Kwakkel et al., 
2017). A major limitation to standardization and developing new therapies that 
improve recovery post stroke is not knowing how best to measure recovery 
(Bernhardt et al., 2016). Biomarkers of neuroimaging such as transcranial 
magnetic stimulation and neurophysiology of the Corticospinal tract (CST) 
can be used to stratify persons with stroke, predict motor outcomes, and 
track motor recovery post stroke (Boyd et al., 2017). Alternatively, objective 
measurement of movement biomechanics can also be ideal for measuring 
motor recovery and distinguishing behavioural restitution from compensation 
(Kwakkel et al., 2019).  

Another milestone on the stroke roadmap is improving diagnosis of stroke 
recovery and upgrading post stroke care (usually at home) by harnessing 
advances in technology (Kwakkel et al., 2019). Technology also impacts 
standardization of stroke rehabilitation and accessibility to equal care 
for people of all means and background (Health Holland, 2020). It can be 
used to enhance clinical analysis of recovery and home care. For instance, 
measuring movement biomechanics (to track recovery) using wearables is 
less intensive, invasive, and expensive when compared to neuroimaging 
or neurophysiological studies. Wearable solutions can enable clinicians to 
monitor motor recovery more often in the acute phases post stroke and help 
stratify patients based on their impairment. Wearables can be used during 
ADL to understand movement performance at home (Klaassen et al., 2014). 
Thus, identifying the right metrics to track movement recovery and measuring 
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them using wearables is needed to understand recovery and setting up patient 
tailored rehabilitation programs.  

The chapters in this thesis contribute to this long-term vision for stroke: 
standardization of rehabilitation and integration of technology in practice 
and home care. It became clear during the project that as movements in the 
upper and lower extremity are different, they must be addressed separately. 
This approach is also required before we study complex movements that 
incorporate both the upper and lower extremities. Therefore, in Chapter I, 
we identified specific research questions for each extremity (upper and 
lower). In the chapters related to the upper extremity (Chapters II – III), we 
prioritized questions related to standardization of stroke rehabilitation. These 
chapters advance our knowledge regarding the relation between movement 
biomechanics and motor recovery. As for the lower extremity, we prioritized 
questions related to integration of technology. Thereby, we developed wearable 
solutions (Chapters IV – X) to measure gait parameters of interest. In this 
chapter, we address the implications of the earlier chapters towards the long 
term vision and specify future research directions. 

11.2. A KINEMATIC PERSPECTIVE OF MOTOR RECOVERY

11.2.1. Upper extremity
Our first section (Chapters II and III) focused on reviewing literature to 
identify and recommend kinematic metrics that reflect movement quality in 
the upper extremity.

Spontaneous neurological recovery is a dynamic process that cannot be studied 
at a single time point (Langhorne et al., 2011). If we wish to investigate the time 
course of movement quality, longitudinal studies of changes in kinematics of 
upper limb reaching early after stroke are required. Existing reviews on metrics 
for reaching with the upper paretic limb did not study the correlation between 
changes in kinematics with motor recovery longitudinally (De Los Reyes-
Guzmán et al., 2014; Schwarz et al., 2019; Tran et al., 2018). Hence, our review 
in Chapter II was needed. In spite of the many longitudinal studies starting 
early post stroke, none of them identified kinematic metrics that distinguished 
behavioural restitution from compensation. This differentiation is required to 

11
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determine whether an intervention can influence motor recovery. Therefore, 
we strongly recommend setting up studies that target this gap.

Consensus on kinematics and kinetics that are capable of 
measuring quality of movement and distinguishing behavioural 
restitution from compensation post stroke must be reached.

Based on consensus from experts, the Stroke Recovery and Rehabilitation 
Roundtable (SRRR) recommend a set of criteria for setting up studies that 
can standardize measurement of movement quality (Kwakkel et al., 2019). 
These criteria include the number of measurement time points post stroke, 
measurement setup, assays performed etc. Studies setup with these criteria 
can help identify kinematics and/or kinetics that can be used as biomarkers 
of behavioural restitution and compensation. Note that we would be better 
able to gauge the criteria provided, once we have sufficient studies performed 
using the recommendations of SRRR.

Next, we focused on smoothness of reaching in the upper paretic limb. 
Studying recovery of smoothness deficits can help understand recovery of 
abnormal muscle synergies post stroke (Rohrer et al., 2004, 2002). Elucidating 
the interplay between neural circuits and biomechanics that give rise to muscle 
synergies can help us understand deficits in neural control mechanisms used 
in movement of the upper limb (Ting and McKay, 2007). Unfortunately, the 
definition of smoothness varied across studies, and this may bring to question 
the results of existing studies on smoothness. We addressed this problem in 
Chapter III and found that Spectral Arc Length (SPARC) was best suited for 
measuring smoothness of reach-to-point and reach-to-grasp tasks. The set of 
inclusion and exclusion criteria, as well as the simulation analyses provided in 
Chapter III offers a method to assess future proposals for novel smoothness 
metrics.

The next step was to investigate the time course of smoothness deficits early 
post stroke, as well as its longitudinal association with abnormal muscle 
synergies in persons with stroke. In an observational study (not part of this 
thesis), we studied changes in SPARC in a clinical setting during a reach-
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to-grasp task in the first 6 months after stroke in a cohort of 40 patients 
who suffered a first-ever ischemic stroke (Saes et al., n.d.). The study showed 
that recovery of smoothness during a multi-joint reaching task reflected by 
SPARC and the recovery from abnormal muscle synergies reflected by FM-UE 
are longitudinally associated and follow a similar time course. This suggests 
that the reduction of smoothness deficits and abnormal muscle synergies 
may be driven by a common underlying process of spontaneous neurological 
recovery. This was seen in the first 5 weeks post stroke in persons who were 
moderately to mildly affected due to a stroke. Therefore, we recommend 
studying smoothness measured by SPARC in future stroke studies, and in 
clinical measures on movement quality in the upper limb.

Thus, Chapters II and III make significant steps for future research in the 
direction of kinematics and its relation to changes in motor recovery. Both 
chapters focused on the 2D reaching assay. This assay was studied more often 
in literature (Schwarz et al., 2019) as it reflects the participant’s capacity to 
coordinate planar movements around more than one joint including the 
shoulder and elbow (Kwakkel et al., 2019). The assay requires the participant 
to produce smooth and accurate reaching trajectories and to maintain a stable 
endpoint position at the end of the movement (Kwakkel et al., 2019). Using 
2D reaching as a performance assay results in selection bias, as the assay is 
usually feasible only in persons moderately or mildly affected with stroke. 
Therefore, additional assays must be considered to study recovery post stroke.

Additional performance (finger individuation, grip strength and precision 
grip between thumb and index finger) or functional (3D drinking task) assays 
may be used to measure movement quality (Kwakkel et al., 2019). The 3D 
drinking task further consists of several sub-tasks including reaching and 
grasping, transporting glass to mouth, drinking, transporting the glass back to 
its starting point, and retuning the hand to the starting point (Kwakkel et al., 
2019; Murphy et al., 2006). Identifying the quality of each sub-task is required 
to understand the quality of the complete functional assay (Adans-Dester et 
al., 2020; Murphy et al., 2006). Further research is required to identify and 
reach consensus on the metrics that measure quality of the overall tasks, or 
the sub tasks.

11
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11.2.2. Lower Extremity
Movements in the upper and lower extremities are indeed different. Movements 
in the upper extremity are goal directed, usually related to interaction with 
the environment, and employ one or both sides. However, movements in the 
lower extremity are related to transfer of oneself, periodic or non-periodic 
patterns, or balance correction that use both sides. Therefore, stroke affects 
the two extremities differently, and measuring movement quality of the lower 
extremity and distinguishing between recovery and compensation using 
biomechanics is more complicated. Measures of symmetry and inter-limb 
coordination are proposed to reflect movement quality (Kwakkel et al., 2019; 
Shin et al., 2020). However, it is not clear how they relate to motor recovery. 
In order to measure recovery on each leg, we have to first disentangle their 
respective contribution towards gait and balance (van Asseldonk, 2008). This 
requires special tools such as system identification and induced acceleration 
(van Asseldonk, 2008). Using these tools, we can identify biomechanical 
metrics that reflect gait quality. These metrics must be assessed longitudinally 
post stroke in order to state whether they reflect motor recovery. Therefore, 
our understanding of kinematics and kinetics that can distinguish recovery 
from compensation in the lower extremity post stroke is currently in a nascent 
stage.

In spite of this gap, we rather focused on developing wearable solutions 
that can measure gait parameters in the second section of this thesis. These 
solutions can arm clinicians with an extended set of tools for measuring 
movement quality. This increases the number of possible measurement points 
over time, thereby painting a more detailed picture of motor recovery post 
stroke.

11.2.3. Compensating for less optimal recovery after stroke
Compensation is defined as accomplishing a goal through substitution with 
a new approach rather than use of normal pre-stroke behavioural repertoire 
(Bernhardt et al., 2017). After the spontaneous recovery that takes place in the 
first 5 weeks post stroke, functional improvements in the chronic phase are 
probably supported by compensation strategies (Cirstea and Levin, 2000; van 
Kordelaar et al., 2013). Identifying compensation strategies helps clinicians 
prescribe appropriate therapies that either reduce or optimize these strategies 
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per patient. Jones summarized the different compensatory strategies used 
in human and animals during the upper limb movement after stroke (Jones, 
2017):

C1. Using trunk displacement to support hand extension.
C2. Excess finger opening before a grasping task.
C3. Excessive grip force during gripping.
C4. Grasping by flexing proximal finger joints, whereas healthy participants 

usually flex their distal finger joints, and extend their proximal finger 
joints.

C5. Relying more on the non-paretic hand.
C6. Using trunk rotation to assist hand orientation.
C7. Bringing the palm towards the mouth using trunk and head rotation, 

with lesser wrist supination.
C8. Compensating precision grip by grasping between fingertip and palm or 

proximal thumb.

Compensatory strategies C1 – C4 were reported in human clinical trials, 
C5 and C6 were seen in both clinical as well as rodent studies, and the 
last two were only reported in animal (rodent and monkey) studies (Inset: 
Compensation strategies). In rodent stroke models, kinematics have been the 
gold standard for differentiating motor recovery from compensation (Jones, 
2017), and this could be extended to clinical stroke models. Marker based 
video capture systems can measure appearance of pathological synergies 
(van Kordelaar et al., 2012a) as seen in strategies C1, C2, C4, C5, and C6. 
Furthermore, grip strength sensors can be useful in measuring strategy C3 
(Ye et al., 2014). Compensation using trunk movement during reaching is seen 
quite often and influences reaching performance (Cirstea and Levin, 2000; 
Schwarz et al., 2020; Suvada et al., 2020). Recently, using fMRI, Bani-Ahmed 
and Cirstea studied the relation between ipsilateral primary Motor Cortex 
(iM1) activity and its relation with compensation of the paretic arm (Bani-
Ahmed and Cirstea, 2020). They concluded that dynamic recruitment of iM1 
is associated with trunk motion in chronic stroke, which is not seen in healthy 
participants (Bani-Ahmed and Cirstea, 2020). They further speculated that 
the instead of directly controlling the impaired arm, the iM1 area is involved 
in compensating brain damage (Bani-Ahmed and Cirstea, 2020). These initial 

11
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results concluded that kinematics in addition to being objective also enhance 
scope and reliability of fMRI studies.

Compensatory strategies in hemiparetic gait during the swing phase includes, 
amongst others, pelvis hiking, reduced knee flexion, and circumduction due 
to limited ankle dorsiflexion on the paretic side (De Luca et al., 2019; Kerrigan 
et al., 2000; Olney and Richards, 1996). Additionally, persons with stroke may 
also exhibit flat foot landing during initial contact, and knee hyperextension 
and excessive knee flexion during the stance phase on the paretic side (Olney 
and Richards, 1996). Although these strategies improve walking speed, they 
may affect long term recovery, and result in weakness of the underutilized 
muscles (Levin, 1996). Therefore, it is unclear whether it is optimal to avoid 
these strategies or embrace them as they help improve parameters such as 
walking speed. Further, as these strategies involve movement of different 
joints or lower extremity segments, they require measurement of biomechanics 
across different joints. Hence, measuring compensation in the lower extremity 
can be an involved process. Further research is required in order to concur how 
compensation should be best measured in the lower extremity.

11.3. MEASURING MOVEMENT QUALITY OUTSIDE THE LAB

We see in the previous sections that biomechanics are well poised to assist 
clinicians to measure differences in behavioural restitution and compensation 
post stroke. However, the gold standard for measuring movement currently 
is marker based optical motion capture systems. These systems have low 
ecological validity (Colyer et al., 2018) and do not allow quick measurement 
of the persons with stroke or home monitoring. Therefore, suitable wearable 
sensors need to be developed.

11.3.1. Wearables for the Upper Extremity
An ideal wearable system for measuring movement of the upper extremity 
should be light weight, inconspicuous, and integrated into the clothing or 
a watch (Bergmann and McGregor, 2011). Thus, Inertial Measurement Units 
(IMUs) find potential uses in this direction.
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Compensation strategies in the upper extremity

There are some similarities in compensatory strategies used by rodent and 
humans during movement of the upper extremity. Notice that the person/
animal with stroke either uses additional synergies when using the paretic 
limb, or simply replaces the function by using the less affected limb (Jones, 
2017).

IMU data could be exploited to estimate biomechanics that provide objective 
information regarding the upper extremity movement such as reaching 
or during clinical assessments such as the Fugl-Meyer assessment (FM) 
(Bhagubai et al., 2021). The measurement setup of Bhagubai and colleagues 
was able to provide objective information about changes in joint angles and 
presence of pathological synergies during each of the FM tasks (Bhagubai 
et al., 2021). Instrumented gloves or arm wear can be useful in measuring 
compensations used in the hand during fine movements, and grasping or 
gripping (Raghavan et al., 2010; Schwarz et al., 2020). These setups can help 
clinicians measure objective changes in kinematic metrics of the upper limb 
and distinguish behavioural restitution from compensation during the initial 
weeks post stroke.

11
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In the AMBITION project, efforts have been taken towards developing a 
minimal sensor setup for measuring quality of upper limb movement. In a 
limited study, the feasibility of a three IMU approach to detect reaching and 
to subsequently measure its quality was tested (Jafarzadeh Esfahani, 2019). 
The IMUs were placed on each wrist, and one on the chest. The study showed 
the feasibility of the setup for measuring smoothness of the reaching events 
using the SPARC metric. In a recent study on persons with stroke, Melendez-
Calderon and colleagues (Melendez-Calderon et al., 2021) concluded that 
IMU based estimation of SPARC is not recommended due to the issue of drift 
that occurs when processing IMU data. However, they avoided exploring 
drift correction techniques and state that velocity reconstruction is almost 
always erroneous due to incorrect orientation correction. Nevertheless, other 
studies show, in situations where we can confidently identify the movement 
task being made, a good assumption regarding the initial and final velocities 
of reaching can be made (Bhagubai et al., 2021; Jafarzadeh Esfahani, 2019). 
This allows us to use appropriate drift correction techniques which provides a 
better estimate of reaching kinematics. Furthermore, sensor fusion techniques 
may be used to optimize the estimated velocity of reaching based on expected 
error margins associated with the measurements. Therefore, we recommend 
setting up studies on persons with stroke that test the feasibility of a minimal 
sensing setup (preferably three IMUs; one on each wrist, and one on the chest) 
to detect reaching tasks during ADL, and thereafter measure its quality.

The feasibility of a minimal three IMU system (one on each 
wrist, and one on the chest) must be studied for detecting 
reaching and measuring reaching quality post stroke.

Apart from reaching, measuring recovery of finger individuation is also 
important post stroke (Kwakkel et al., 2019). There have been efforts in 
developing wearable systems for this purpose. The Powerglove consists 
of a series of IMUs placed at different finger segments, and provides a 
comprehensive visualization of finger movement (Kortier et al., 2014; van den 
Noort et al., 2016). However, the system employs 17 IMUs, and that increases 
the cost and complexity of the device. The system can rather be minimized 
when the movements we wish to measure require the hand and finger tips 
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move together (Schwarz et al., 2020; Yang et al., 2020). This is also an area 
of active research.

Measuring forces during finger individuation, grasping or gripping using 
wearables is rather non-trivial. Nonetheless, there have been several attempts 
in this direction. Kortier and colleagues studied the manipulation of loads at 
the finger tips using miniature 3D force sensors (Kortier et al., 2016). However, 
these sensors mask the natural tactile feedback at the fingertips. Wolterink 
and colleagues designed a 3D printed shear force sensor that can help reduce 
the loss of touch sensation (Wolterink et al., 2019). The commercially available 
Myo™ band can be explored as an alternative that can measure forearm muscle 
activity and model it to estimate the forces exerted by the fingers.

Thus, further development on minimal wearable sensor systems is required 
for measuring finger individuation, and grasp/grip forces. Such systems would 
help measure performance assays of the upper extremity post stroke.

Further development of wearable systems for measuring 
finger individuation and grasping/grip forces will be useful 
in studying upper extremity recovery post stroke.

11.3.2. Wearables for the Lower Extremity
The second section of the thesis focused on developing wearable sensors for 
estimation of gait and gait quality. Tracking gait quality helps us understand 
recovery post stroke, and therefore, these solutions were provided within the 
context of stroke research. Nevertheless, the wearable solutions presented in 
this thesis can be applied to populations other than stroke.

In Chapter IV, we showed that pressure sensors can be used to extract more 
information than simply the pressure profiles of the feet. Changes in pressure 
profiles under the feet were related to measurement of shear forces using 
machine learning models. We also showed that measurement of balance 
metrics is feasible even when only the changes in pressure profile under the 
heel and metatarsal region are available.

11



264

Chapter 11

11.3.3. Portable Gait Lab (PGL)
A major part of the thesis focuses on translating the data from IMUs to 
useful gait parameters using a three IMU based Portable Gait Lab (PGL) setup 
(Chapters V - X).

IMUs measure 3D linear accelerations, and 3D angular velocities of the 
object they are attached to. One approach to extract gait parameters is to 
employ physical models. Parameters such as orientation, linear velocity, and 
position of the object can be estimated from IMU data using strapdown inertial 
navigation (Woodman, 2007). Strapdown inertial navigation introduces drift 
in the estimated variables, which are usually removed by employing principles 
of gait biomechanics. This approach is influenced by errors associated with 
strapdown inertial navigation, and assumptions regarding the gait models 
used. The estimated variables can be used to extract gait parameters of 
interest. For instance, IMU data has been used to estimate gait events (Pacini 
Panebianco et al., 2018), walking speed (Sabatini et al., 2005), joint angles 
(Muro-de-la-Herran et al., 2014; Tham et al., 2021), foot pose and trajectory 
(Okkalidis et al., 2020a) etc. We also employ this ‘physical model’ approach in 
Chapters VI – X for estimating ground reaction forces, Centre of Mass (CoM) 
velocity, and relative movement of feet and CoM.

Additionally, there are other methods in literature to extract gait and balance 
parameters from IMU data. We could classify them into the following broad 
categories. Although these categories can also apply to estimation of upper 
extremity kinematics, we restrict our discussion to the lower extremity:

• Employing raw IMU data: Using smart heuristics, the angular velocities 
and accelerations of the IMUs can be used to obtain spatiotemporal 
parameters. Using this approach, temporal and symmetry parameters are 
relatively easier to measure (Pacini Panebianco et al., 2018; Storm et al., 
2016; Zhang et al., 2018). This method offers relatively lower processing 
complexity and could be applicable in real time.

• Employing machine learning models: Machine learning methods 
automatically build a black box model of the gait parameters of interest 
from IMU data without needing any knowledge of the underlying physical 
models. The advantage of this approach is that it allows us to extract 
data from sensors that are not directly measured by them. For instance, 
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using machine learning models applied to sparse IMUs, we can extract 
3D ground reaction forces (Ancillao et al., 2018; Revi et al., 2020; Wouda 
et al., 2018a), full body joint kinematics (Weygers et al., 2020; Wouda et 
al., 2018a), CoM velocity (Sabatini and Mannini, 2016), Centre of Pressure 
(CoP) trajectory (Podobnik et al., 2020) etc. A drawback of this method 
is that the machine model cannot be related to an underlying physical 
model of motion. Furthermore, in order to create new models, training 
datasets are required.

• Employing correlation models: Finally, instead of building any of the 
above models, correlates for gait parameters of interest can be extracted 
from IMU data. For instance, Fino and colleagues use an average 
of the acceleration over each step as a correlate for lateral Margin of 
Stability (MoS) (Fino et al., 2020). Such an approach may be suitable 
when measuring complex measures using a limited sensor setup and 
limited processing. Although this offers a simple approach to estimate 
relevant gait parameters, this approach may not provide a mechanistic 
underpinning and must be tested for reliability in cases of variable gait.

Therefore, in order to measure gait parameters of interest, the approach may 
depend on the parameter itself, or complexity of the setup. Usually, optical 
motion capture systems are considered to be gold standards for kinematic 
measures. However, they do not measure orientations directly, and require 
proper marker placement and segment modelling. The choice of the underlying 
biomechanical model influences the joint angles being measured (Wouda et 
al., 2018b). Therefore, in case of joint kinematics, IMUs could be considered 
as a more reliable alternative, as they measure rate of change of joint angle 
directly.

Measuring spatiotemporal metrics that rely on movement of just one foot, or 
temporal metrics relative to both feet have been shown in literature (Okkalidis 
et al., 2020a; Pacini Panebianco et al., 2018; Schepers et al., 2010b; Storm et 
al., 2016). This includes parameters such as stance time, stride length etc. 
However, measuring spatiotemporal metrics with a three IMU setup that 
require knowledge of relative foot movement is not trivial. In Chapters IX 
and X, we show that the PGL is able to measure the different gait parameters 
including those that require knowledge about relative foot movement.

11
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The PGL employs a number of assumptions and biomechanical constraints 
in order to track the relative movement of the feet and CoM. It employs the 
simplified inverted pendulum model of walking, which allows us to ignore 
knee joint kinematics. Furthermore, we assumed that the CoM is bounded by 
the pelvis (Devetak et al., 2019; Floor-Westerdijk et al., 2012), which allows us 
to estimate accelerations of the CoM by placing an IMU on the pelvis.

The Centroidal Moment Pivot (CMP) point constraint was central for the PGL. 
Although the CMP point is used in humanoid gait (Popovic et al., 2005), we 
considered that the assumptions of CMP point are also valid in human gait 
(Chapter IV). This helped us approximate the relative movement of feet 
and CoM as the IMUs cannot measure this directly. The uncertainty in the 
assumptions of the CMP point can be reduced if we can model foot roll during 
stance and estimate moments around the CoM.

Additional portable sensors such as pressure insoles or an additional sternum 
IMU can be used to solve the issues above. Employing a sparse pressure sensor 
layout under the metatarsal and heel should be sufficient to estimate the CoP 
given that the dimensions of the feet are known (Chapter IV). This helps 
as the trajectory of the CoP overlaps that of the CMP point (Chapter V). 
Furthermore, pressure insoles can improve our estimations of foot contact, 
gait cycle phases, and 3D ground reaction forces (Chapter IV). A recent study 
showed that the foot can be modelled as a multi-segment model, simply 
by adding IMUs to different locations on the foot (Okkalidis et al., 2020b). 
Furthermore, the uncertainty in CMP assumptions is expected to increase 
during turns due to trunk rotations. Using simple models, the sternum IMU can 
be used to estimate the moments around the CoM, which can help reduce the 
uncertainty with CMP point (Chapter X). Another biomechanical constraint 
used in the PGL is the use of zero height during stance phases (Chapters IX, 
X). This makes it unsuitable for measuring gait on uneven terrain, such as 
stair climbing, up or down hill walking. Barometers and ultrasound sensors 
have been used to measure changes in height of the IMUs (Jao et al., 2020). 
These may help reduce the drift during stair or slope climbing whilst keeping 
the size of sensors small. In these cases, we recommend studying the inclusion 
of adding portable sensors to the PGL (preferably a pressure insole and a 
sternum IMU). We expect these changes to only minimally compromise the 
portability and inconspicuousness of the envisioned minimal sensing setup.
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The accuracy of spatiotemporal parameters measured by the 
Portable Gait Lab system due to inclusion of portable sensors 
such as pressure insoles or sternum IMU must be studied.

To deal with uncertainties of the different biomechanical constraints 
used in the PGL, we used sensor fusion techniques. Particularly, the error 
extended Kalman filter, and extended Kalman filter approaches were used  
(Chapters VI – X). The Kalman filter is essentially a Bayesian fusion model, 
that fuses different sources of information whilst assuming that the noise 
associated with each information is known, and thereby, an optimal estimate 
can be derived. Other sensor fusion techniques may be employed as long as the 
dependent parameters are tuned well (Caruso et al., 2021). Thus, the relative 
estimations of foot and CoM distances within the PGL are an optimal estimate. 
This is unlike a true measure of relative distances as is the case in the work 
of Weenk and colleagues (Weenk et al., 2015). Therefore, the PGL estimates 
the most optimal output given the errors associated with the IMUs, process 
of integration, as well as biomechanical models of gait are known.

Usability of the Portable Gait Lab (PGL) in the clinic and daily life
We tested the PGL in persons with stroke walking in a straight line (Chapter X). 
Although the results are not generalizable due to the limited dataset used, the 
study shows the feasibility of using the PGL in stroke population. A subsequent 
study is currently being setup at the Roessingh Research and Development 
with more persons with stroke performing variable walking tasks by Roelien 
Russcher.

The results of the PGL were optimized using the reference systems (VICON© or 
ForceShoes™) for validating the 3D ground reaction forces, and kinematics of 
the CoM and feet (Chapters VI - IX). In Chapter X, we make efforts to reduce 
this dependency on the reference system, by identifying parameters that can 
be measured easily in the clinic such as total distance travelled, and distance 
between either foot at the end of walking task. Additional measures that can 
be explored for this purpose include average CoM velocity. These efforts can 
help translate the PGL into a standalone system that be commercialized. The 
Dutch sensor product development company 2M Engineering Ltd., also a 

11
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partner of the AMBITION project, has developed a prototype of the PGL that 
can be used in actual practice. This helps us bridge the gap between academia 
and clinical application.

The PGL has potential to be developed as a home monitoring system. The 
system must be optimized for use by persons with stroke, i.e., the wearability 
and setup must be simple. The users could wear the three IMUs that form 
the PGL during training or exercise sessions that they perform at home. Pre-
defined set of instructions must be provided so that they can calibrate and 
perform the tasks themselves. The gait metrics that will be measured by the 
PGL in these tasks can be used by clinicians to track performance during 
daily life. This could help clinicians and users optimize ADL such that they 
promote rehabilitation.

Framing movement right
Anatomical reference frames are used in order to express changes in joint 
kinematics, as they are clinically relevant. Data from optical marker based 
systems are calibrated in order to derive these special frames. However, when 
we study kinematics using IMUs, we have the opportunity to explore a body-
fixed reference frame, as the IMUs move along with the body. For instance, 
Fino and colleagues use the average inclination with respect to gravity to 
define a body-fixed frame (Fino et al., 2020). Rebula and colleagues estimate 
the average heading from a number of strides in order to define the body-fixed 
frame with respect to the foot movement (Rebula et al., 2013). In Chapters 
VI – X, we extend the concept of body-fixed frame to define reference frames 
that changes per step. Applying this step-wise reference frame allows us to 
compare gait kinematics across all steps, including turning or shuffling steps. 
This approach offers us a new perspective in studying gait biomechanics. 
These body-fixed reference frames could be closer to the somatosensory 
reference frame used by the body when planning motion (Burdet et al., 2013). 
This could provide an avenue for studying changes in planning or control of 
limbs in the presence of a perturbation (Burdet et al., 2013; Vlutters et al., 
2018).
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IMU Calibration: good initialization begets reliable kinematics
IMUs are essentially sensors of change, as they measure changes in angular 
and linear kinematics. Therefore, good calibration of the initial state is 
necessary for subsequent optimal estimation of gait biomechanics. In this 
thesis, we calibrate the initial orientation of the foot sensors using the first 
step made by the user. For the pelvis sensors, additional movements were 
incorporated to estimate the initial orientation. In Chapters VI and VII, we 
show the use of a bowing task that allowed estimation of the medio-lateral 
axes of the pelvis. In Chapter X, we explored the sit to stand movement during 
the Timed Up and Go test for the same purpose. If we wish to move towards 
using the PGL in clinical or home applications, the calibration procedure must 
be extracted from movements in ADL that are comfortable for persons with 
balance issues. As ADL is rich with variable movement, activity classifiers 
may be employed to select movements appropriate for the calibration. This 
problem of movement classification using wearable sensors has been studied 
commonly in literature (Attal et al., 2015; Lara and Labrador, 2013; Liu and 
Schultz, 2019; van Meulen et al., 2016a).

Passing the baton: New avenues for Portable Gait Lab (PGL)
We attempted to protect the concepts introduced in Chapters V – X by filing a 
patent (Mohamed Refai et al., 2021). The principles of the PGL are additionally 
available for the scientific community in the form of the different publications 
included in this thesis (Mohamed Refai et al., 2020a, 2020b, 2020c, 2020d, 
2019a, 2019b). However, we believe that the functionality and applicability 
of the PGL can be broader than those identified in this thesis and the patent.

Sy and colleagues measured joint kinematics of the lower extremity during 
gait using only three IMUs and a number of biomechanical constraints (Sy 
et al., 2020). It would be fruitful to include their model with the PGL to 
develop a minimal system that provides a complete picture of gait including 
biomechanics of the feet and CoM, as well as joint kinematics for the lower 
extremity.

Ankle push-off propels the CoM during gait (Zelik and Adamczyk, 2016), and is 
a clinically relevant kinetic parameter that must be studied post stroke (Alingh 
et al., 2020; Roelker et al., 2019; Yang et al., 2018). Push-off power is measured 
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as the product of ankle velocity and ankle torque (Caputo and Collins, 2014). 
Ankle joint angles could be approximated using the three IMU setup and the 
method of Sy and colleagues (Sy et al., 2020). Using simple approximations, 
the total ground reaction forces acting on the body as estimated using the PGL 
(Chapter VI) can be approximated to forces acting under each foot (Karatsidis 
et al., 2016; Ren et al., 2008). Alternatively, using pressure insoles, we can 
measure the ground reaction forces and moments of each foot during walking 
(Chapter IV). Therefore, it might be feasible to measure ankle push-off power 
during gait using the PGL by applying additional biomechanical constraints 
and including pressure insoles.

The minimal sensing setup has to be further developed for additional gait 
patterns seen in daily life such as climbing stairs, side stepping, walking 
a slope etc. The approach is further complicated if the person with stroke 
employs walking aids such as a cane. The aids may also be instrumented in 
order to measure its movement (Sprint et al., 2016). We have to be aware that 
parameters such as gait events, Base of Support (BoS), and Margin of Stability 
(MoS) have to be redefined for this special case. The inverted pendulum model 
of walking can no longer be employed. Additionally, if the person leans on the 
cane, the CoM moves further from the pelvis and may oscillate outside the 
body during this period. Therefore, the underlying assumptions and models 
used in the PGL have to be revisited.

Nonetheless, interesting efforts have been made by Eleonora Costamagna in 
her PhD thesis in this direction. In her studies, she instrumented a walking 
frame with force sensors, placed pressure sensors under the feet of the 
participants, and measured movement using optical motion capture system 
(Costamagna et al., 2019, 2017). She developed a combined stability margin 
that includes the frame of the walking aid in measuring the stability during 
stance (Costamagna et al., 2017). IMUs were later added to the instrumented 
walkers developed by Costamagna (Cheng et al., 2016; Sun et al., 2019). The 
IMU data was only used to understand gait patterns of walker (rollator) users, 
and to estimate gait speed and distance travelled. Therefore, further work is 
required to estimate gait stability using only IMUs. IMUs placed on the user 
can be used to measure the relative movement of the user and the walking aid. 
However, the distance between them cannot be measured directly, and this 
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requires additional sensors. An infrared, ultrasound, or ultra wide band based 
time of flight sensor may offer a simple approach in determining the distance 
between the walker and the user. It is wise to begin with an extended set of 
sensors before exploring avenues for minimization. Similar attempts can also 
be made when the user relies on a single walking cane. However, the combined 
stability margin has to be redefined for this case too (Costamagna et al., 2017).

Developing the Portable Gait Lab system to measure gait 
quality in persons using walking aids or other relevant metrics 
such as ankle push off would improve the usability of the 
system.

11.3.4. Marker-less motion capture systems
Motion capture systems that use markers and are powered by artificial 
intelligence pose a potential competition to the advancement of IMUs in 
the measurement of gait biomechanics. The root mean square of errors in 
estimating 3D joint angles using a marker-less system varied per movement 
task, and was at best 2 degrees for the lower extremity for walking tasks when 
compared to marker based systems (Colyer et al., 2018). In comparison, a full 
body suit of IMUs showed similar errors (Zhang et al., 2013). DeepLabCut™ is 
an example of an open access software that helps tracking motion in animal 
models (Nath et al., 2019), and efforts to track human movement are underway. 
Another system, DensePose, can track several human poses at the same time 
(Güler et al., 2018). However, these systems depend on existing models of pose, 
line of sight, and require processing power. Nevertheless, they may also offer 
an approach where the user doesn’t have to wear any sensors and can perform 
unrestricted movements either at the clinic, or at home.

11.4. AUGMENTED MOVEMENT FEEDBACK

The human body constantly receives intrinsic feedback when we navigate or 
interact in our environment. This feedback is derived from the perceptual 
information from sensory processes such as vision, proprioception, and 
audition that sense movement (Molier et al., 2010). In persons with stroke, 
intrinsic feedback may be affected, and in such cases, augmented feedback 
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can be useful. Feedback regarding the progress of undergoing therapy can 
be provided to the clinician or the patient themselves. They could be used 
to assist the disturbed intrinsic feedback or be used to tailor patient specific 
therapies. For instance, if we could conclude that motor recovery does not 
take place anymore for a person with stroke, feedback may be used to improve 
a functional ability using compensatory strategies. Regardless, the different 
fundamental ways of feedback or aspects that can be identified are (Molier et 
al., 2010):

• Nature: Feedback can be provided about the movement itself i.e., 
Knowledge of Performance (KP) or about the outcome of the movement 
i.e., Knowledge of Results (KR).

• Timing: Feedback can be delivered during the movement i.e., concurrent 
or can be postponed until after the movement has been completed i.e., 
terminal.

• Frequency: The feedback frequency aspect could either be summary or 
faded. Summary feedback is provided at fixed intervals, for instance after 
every ‘x’ trials. Faded feedback on the other hand follows a schedule, 
for instance, first feedback is provided after the ‘x’th trial, then after the 
‘3x’th trial, and so on.

The sources of augmented feedback or types can be categorised as follows 
(Molier et al., 2010; Sigrist et al., 2013):

• Auditory: includes verbal encouragements or beeps,
• Sensory: includes force, tactile and position feedback,
• Visual: includes vision of own movement, virtual or augmented realities, 

or simply scores and reports on a screen.
• Multimodal: A mixture of different modalities.

Aspects of augmented feedback must be clearly discerned before applying 
them in clinical rehabilitation (Molier et al., 2010). Metrics that track recovery 
of the upper extremity and identify compensation strategies are required in 
order to develop feedback paradigms. For instance, concurrent feedback can be 
provided in order to warn participants about possible compensatory strategies. 
At the end of the movement, KR feedback can be provided to summarize the 
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goals that were achieved as part of the movement. For instance, when the 
participant is reaching, tactile sensors may be placed on the arm or chest. 
When the participant employs the alternative hand, or bends the trunk, the 
tactile sensors may warn them. At the end of the task, the smoothness or the 
movement quality of the task may be reported to the clinician who keeps a 
periodic tab on the progress and advises the participant to change movements 
if necessary. There has been progress in this direction, for example, detecting 
trunk compensation using wearable systems have already been reported in 
literature (Ranganathan et al., 2017).

In persons with gait impairment, joint angle was commonly measured 
to provide feedback, and feedback was most commonly provided by touch 
(Shull et al., 2014). Feedback during gait was provided in order to improve 
walking stability and to reduce joint loading (Shull et al., 2014). In cases of 
persons with stroke, the clinician may use the spatiotemporal parameters 
measured using the PGL in order to track changes over time. This information 
can help clinicians or therapists tweak the therapies such that it optimizes 
lower extremity function post impairment. However, care must be taken while 
defining feedback aspects and paradigms for the lower extremity. For instance, 
concurrent feedback during gait post stroke might be risky as it may affect 
balance and may lead to falls.

Note that auditory, sensory, or visual feedback requires active attention by 
the user, and subsequent cognitive effort by the user to translate it to the 
desired movement. Contrarily, intuitive feedback can be provided by providing 
opposing forces or torques that correct the movement of the user. There are 
solutions such as the GyroGlove™ that helps reduce hand tremors (Panisse 
et al., 2016), or the GyBAR that helps with balance issues (Lemus et al., 2020). 
The GyBAR is a gyroscope installed into a backpack (Lemus et al., 2020), and 
has been shown to improve the user’s ability to walk further on a thin beam, 
and also standing balance for persons with stroke.

Finally, future studies must focus on first measuring movement quality post 
stroke, and then identifying patient specific therapy goals. This can help 
develop feedback paradigms that either promote behavioural restitution over 
compensation strategies or vice versa.

11
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Knowledge of metrics that measure movement quality can help 
develop patient tailored feedback paradigms.

11.5. FUTURE RESEARCH QUESTIONS

Based on the knowledge gained in this thesis, its limitations, and the inspiring 
discussions with the project partners that took place during the AMBITION 
meetings, we highlight a number of different research goals that may be 
explored as a follow up of this thesis:

11.5.1. Behavioural restitution versus compensation:
• Identifying biomechanical metrics that are capable of measuring 

movement quality and distinguishing behavioural restitution from 
compensation post stroke.

• Identifying feedback paradigms that are patient specific and can 
individually target behavioural restitution or compensatory strategies 
post stroke.

11.5.2. Upper Extremity:
• Studying the feasibility of a minimal three IMU system (one on each 

wrist, and one on chest) in detecting reaching and measuring reaching 
quality post stroke.

• Developing minimal and wearable sensing systems for measuring finger 
individuation and grasping/gripping forces.

11.5.3. Lower Extremity:
• Improving the relative distance estimation by the Portable Gait Lab 

system by including additional portable sensors such as pressure insoles, 
or sternum IMU.

• Studying the feasibility of the Portable Gait Lab system in measuring 
variable walking in persons with stroke including turns, shuffling, 
backward stepping, climbing stairs etc.

• Developing models to measure push-off during gait using the Portable 
Gait Lab system in healthy populations and those with neurological 
disorders.



275

General Discussion

• Developing models that enable the use of the Portable Gait Lab system 
in measuring gait quality in persons using walking aids such as crutches 
or wheeled walkers.

11.6. GENERALIZABILITY OF THE FINDINGS

In this thesis, movement quality was provided within the context of 
differentiating recovery from compensatory strategies post stroke. However, 
movement quality is also affected in other populations with neurological 
disorders such as Parkinson’s, Huntington’s, Multiple sclerosis, cerebral 
palsy, etc. (Centonze et al., 2020; Mañago et al., 2020; Tosserams et al., 
2020). Our findings regarding the kinematics of reaching can be applied to 
other populations that study changes in reaching quality (Connell and Tyson, 
2012). Nevertheless, the underlying spontaneous recovery pattern seen in 
stroke may not apply to other neurological disorders (Langhorne et al., 2011). 
Moreover, the compensatory strategies used may differ based on the area or 
severity of damage done in the central nervous system (Nonnekes et al., 2019). 
Also, in persons with lower extremity amputation, compensation strategies 
were observed on both the intact and amputated leg (Prinsen et al., 2011). 
Therefore, biomechanical metrics that reflect movement quality must be 
studied specifically for each population.

Furthermore, our efforts in developing minimal systems, including the PGL, 
can be applicable to other fields that perform gait analysis. As we validated 
the PGL mostly with healthy gait performed at self-selected walking speeds, 
the system has potential applications for commercial wearables that track 
gait. The system could also be applicable to gait in elderly to monitor risk of 
fall using the spatiotemporal and balance metrics that PGL can measure. The 
PGL could be used to design smarter prosthesis or exoskeletons. In case of 
exoskeletons, the CMP point can be used to control foot placement (Hamza et 
al., 2020), and using the ideas presented in this thesis, the CMP point can be 
used to estimate parameters such as step length and relative foot distances.

In case of neurological populations other than stroke, variability in gait 
patterns that may affect the application of PGL must be first considered. 
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For instance, persons with Parkinson’s suffer from Freezing of Gait (FoG). 
During these instances, there is no clear swing phase, and therefore the CMP 
constraint cannot be used (Chapter IX). This is because we employ the CMP 
constraint during the stance phase when the contralateral leg is in swing. 
Nonetheless, the IMUs could be used to detect FoG, and the CMP constraint 
could be applied accordingly (Shi et al., 2020). The PGL may be used in 
rehabilitation after trauma or corrective surgery of the lower extremity. In 
these situations, the PGL could help track changes in gait quality during the 
course of recovery and offer indications for selection of appropriate patient 
tailored therapies.

The PGL may be used to improve estimation of relative foot distances during 
running. However, it would be useful to first validate the assumptions of the 
CMP point during running before applying the PGL. Therefore, the PGL has 
potential across different fields, if the variations in gait are studied within the 
context of the constraints used.

11.7. CONCLUDING REMARKS

This thesis offers a platform through which we can address future avenues 
for standardization of stroke rehabilitation and integration of technology in 
practice and care. We reviewed our understanding of movement recovery in 
the upper extremity and developed wearable solutions for measuring gait 
quality. We also identified questions that need to be addressed in order to 
apply these findings in actual practice. In the far future, we might be able to 
pre-emptively prevent stroke or are able to regrow our lost brain cells after a 
stroke. In this utopia, we do not need to concern ourselves with hemiparesis. 
Hitherto, we have to rely on extracting the best outcome from the current 
state of the art and optimize them for use in daily life.
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APPENDIX A: SEARCH STRATEGY USED IN CHAPTER II

Search strategy in PubMed July 1, 2020 (read from bottom-up).

Set Search terms

#5 #4 NOT (“animals”[MeSH Terms] NOT “humans”[MeSH Terms]) Filters: English

#4 #1 AND #2 AND #3

#3

“Movement”[Mesh:NoExp] OR “Motion”[Mesh] OR “Mechanical Phenomena”[Mesh:NoExp] 
OR “Biomechanical Phenomena”[Mesh:NoExp] OR “Torque”[Mesh] OR “Spatio-Temporal 
Analysis”[Mesh] OR “Kinetics”[Mesh] OR torque*[tiab] OR biomechanic*[tiab] OR 
Kinematic*[tiab] OR kinetic*[tiab] OR angle*[tiab] OR force*[tiab] OR motion[tiab] OR 
acceler*[tiab] OR deceler*[tiab] OR rotation[tiab] OR velocity*[tiab] OR speed*[tiab] OR 
spatiotemporal[tiab]

#2

“Pronation”[Mesh] OR “Supination”[Mesh] OR “Hand Strength”[mesh] OR reach*[tiab] 
OR coordination[tiab] OR grasp*[tiab] OR grip*[tiab] OR hand strength[tiab] OR pinch 
strength[tiab] OR “Upper Extremity”[Mesh] OR Upper Extremit*[tiab] OR Upper Limb*[tiab] 
OR arm[tiab] OR arms[tiab] OR shoulder[tiab] OR elbow*[tiab] OR forearm*[tiab] OR 
wrist*[tiab] OR hand[tiab] OR hands[tiab] OR finger*[tiab] OR thumb*[tiab]

#1

“Stroke”[Mesh] OR “Stroke Rehabilitation”[Mesh] OR cva[tiab] OR cvas[tiab] OR 
poststroke*[tiab] OR post-stroke*[tiab] OR stroke*[tiab] OR apoplex*[tiab] OR 
cerebrovascular diseas*[tiab] OR cerebrovascular accident*[tiab] OR cerebrovascular 
disorder*[tiab] OR ((brain*[tiab] OR cerebr*[tiab] OR cerebell*[tiab] OR intracran*[tiab] 
OR intracerebral*[tiab] OR vertebrobasilar*[tiab]) AND vascular*[tiab] AND (disease[tiab] 
OR diseases[tiab] OR accident*[tiab] OR disorder*[tiab])) OR ((brain*[tiab] OR cerebr*[tiab] 
OR cerebell*[tiab] OR intracran*[tiab] OR intracerebral*[tiab] OR vertebrobasilar*[tiab]) 
AND (haemorrhag*[tiab] OR hemorrhag*[tiab] OR ischemi*[tiab] OR ischaemi*[tiab] OR 
infarct*[tiab] OR haematoma*[tiab] OR hematoma*[tiab] OR bleed*[tiab]))

Search strategy in EMBASE July 1, 2020 (read from bottom-up).

Set Search terms

#5 #4 AND (‘article’/it OR ‘article in press’/it OR ‘review’/it) AND [english]/lim

#4 #1 AND #2 AND #3

#3

‘movement (physiology)’/de OR ‘limb movement’/de OR ‘arm movement’/exp OR ‘hand 
movement’/exp OR ‘motion’/de OR ‘velocity’/exp OR ‘mechanics’/de OR ‘biomechanics’/exp 
OR ‘force’/exp OR ‘kinematics’/exp OR ‘kinetics’/de OR ‘torque’/exp OR ‘temporal analysis’/
exp OR ‘spatial analysis’/de OR torque*:ti,ab OR biomechanic*:ti,ab OR kinematic*:ti,ab 
OR kinetic*:ti,ab OR angle*:ti,ab OR force*:ti,ab OR motion:ti,ab OR acceler*:ti,ab OR 
deceler*:ti,ab OR rotation:ti,ab OR velocity*:ti,ab OR speed*:ti,ab OR spatiotemporal:ti,ab

#2

‘pronation’/exp OR ‘supination’/exp OR ‘hand strength’/exp OR reach*:ti,ab OR 
coordination:ti,ab OR grasp*:ti,ab OR grip*:ti,ab OR ‘hand strength’:ti,ab OR ‘pinch 
strength’:ti,ab OR ‘upper limb’/exp OR ‘upper extremit*’:ti,ab OR ‘upper limb*’:ti,ab 
OR arm:ti,ab OR arms:ti,ab OR shoulder:ti,ab OR elbow*:ti,ab OR forearm*:ti,ab OR 
wrist*:ti,ab OR hand:ti,ab OR hands:ti,ab OR finger*:ti,ab OR thumb*:ti,ab
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Set Search terms

#1

‘cerebrovascular accident’/exp OR cva:ab,ti OR cvas:ab,ti OR stroke:ab,ti OR apoplex*:ab,ti 
OR poststroke*:ab,ti OR ((brain*:ab,ti OR cerebr*:ab,ti OR cerebell*:ab,ti OR intracran*:ab,ti 
OR intracerebral*:ab,ti OR vertebrobasilar*:ab,ti) AND vascular*:ab,ti AND (disease:ab,ti 
OR diseases:ab,ti OR accident*:ab,ti OR disorder*:ab,ti)) OR (cerebrovascular*:ab,ti AND 
(disease:ab,ti OR diseases:ab,ti OR accident*:ab,ti OR disorder*:ab,ti)) OR ((brain*:ab,ti 
OR cerebr*:ab,ti OR cerebell*:ab,ti OR intracran*:ab,ti OR intracerebral*:ab,ti OR 
vertebrobasilar*:ab,ti) AND (haemorrhag*:ab,ti OR hemorrhag*:ab,ti OR ischemi*:ab,ti OR 
ischaemi*:ab,ti OR infarct*:ab,ti OR haematoma*:ab,ti OR hematoma*:ab,ti OR bleed*:ab,ti))

Search strategy in Scopus July 1, 2020 (read from bottom-up).

Set Search terms

#5
#4 AND ( LIMIT-TO ( SRCTYPE , “j” ) ) AND ( LIMIT-TO ( DOCTYPE , “ar” ) OR LIMIT-TO 
( DOCTYPE , “re” ) OR LIMIT-TO ( DOCTYPE , “ip” ) ) AND ( LIMIT-TO ( LANGUAGE , 
“English” ) )

#4 #1 AND #2 AND #3

#3
( TITLE-ABS-KEY ( movement OR motion OR mechanical OR biomechanic* OR kinematic* 
OR kinetic* OR angle* OR force* OR motion OR acceler* OR deceler* OR rotation OR 
velocity* OR speed* OR spatiotemporal ) )

#2

( TITLE-ABS-KEY ( pronation OR supination OR hand AND strength OR reach* OR 
coordination OR grasp* OR grip* OR pinch AND strength OR “Upper Extremit*” OR “Upper 
Limb*” OR arm OR arms OR shoulder OR elbow* OR forearm* OR wrist* OR hand OR hands 
OR finger* OR thumb* ) )

#1

( ( TITLE-ABS-KEY ( cva OR cvas OR poststroke* OR stroke* OR apoplex* ) OR TITLE-
ABS-KEY ( ( ( brain* OR cerebr* OR cerebell* OR intracran* OR intracerebral* OR 
vertebrobasilar* ) AND vascular* AND ( disease OR diseases OR accident* OR disorder* ) 
) ) OR TITLE-ABS-KEY ( ( ( brain* OR cerebr* OR cerebell* OR intracran* OR intracerebral* 
OR vertebrobasilar* ) AND ( haemorrhag* OR hemorrhag* OR
ischemi* OR ischaemi* OR infarct* OR haematoma* OR hematoma* OR bleed* ) ) ) ) )

Search strategy in the Cochrane Library July 1, 2020 (read from bottom-up).

Set Search terms

#4 #1 AND #2 AND #3 in Cochrane Reviews (Reviews and Protocols), Other Reviews and Trials

#3
Movement or Motion or Mechanical or biomechanic* or Kinematic* or kinetic* or 
angle* or force* or motion or acceler* or deceler* or rotation or velocity* or speed* or 
spatiotemporal:ti,ab,kw

#2
Pronation or Supination or Hand Strength or reach* or coordination or grasp* or grip* 
or pinch strength or “Upper Extremit*” or “Upper Limb*” or arm or arms or shoulder or 
elbow* or forearm* or wrist* or hand or hands or finger* or thumb*:ti,ab,kw

#1

cva or cvas or poststroke* or stroke* or apoplex* or ((brain* or cerebr* or cerebell* or 
intracran* or intracerebral* or vertebrobasilar*) and vascular* and (disease or diseases 
or accident* or disorder*)) or (cerebrovascular* and (disease or diseases or accident* 
or disorder*)) or ((brain* or cerebr* or cerebell* or intracran* or intracerebral* or 
vertebrobasilar*) and (haemorrhag* or hemorrhag* or ischemi* or ischaemi* or infarct* 
or haematoma* or hematoma* or bleed*)):ti,ab,kw
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Appendix

APPENDIX C: ASSESSING IF THE STUDIES IDENTIFIED IN 
CHAPTER II FOLLOWED INTERNATIONAL RECOMMENDA-
TIONS

Figure C.1 For each of the recently provided international recommendations on stroke (Kwakkel 
et al., 2019) by the Stroke Recovery and Rehabilitation Roundtable (SRRR), the percentage of 
studies identified in Chapter II that followed them is shown. We see (Table C.2) that none of the 
studies followed all the recommendations of the SRRR. Abbreviations: w: week, m: months, NA: 
not applicable, NR: not reported, UK: unknown or unclear.
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APPENDIX D: SEARCH STRATEGY USED IN CHAPTER III

Table D.1 Search string per database

PubMed

#1 Stroke

“Stroke”[Mesh] OR “Stroke Rehabilitation”[Mesh] OR cva[tiab] 
OR cvas[tiab] OR poststroke*[tiab] OR post-stroke*[tiab] 
OR stroke*[tiab] OR apoplex*[tiab] OR cerebrovascular 
diseas*[tiab] OR cerebrovascular accident*[tiab] OR 
cerebrovascular disorder*[tiab] OR ((brain*[tiab] OR 
cerebr*[tiab] OR cerebell*[tiab] OR intracran*[tiab] OR 
intracerebral*[tiab] OR vertebrobasilar*[tiab]) AND 
vascular*[tiab] AND (disease[tiab] OR diseases[tiab] OR 
accident*[tiab] OR disorder*[tiab])) OR ((brain*[tiab] 
OR cerebr*[tiab] OR cerebell*[tiab] OR intracran*[tiab] 
OR intracerebral*[tiab] OR vertebrobasilar*[tiab]) AND 
(haemorrhag*[tiab] OR hemorrhag*[tiab] OR ischemi*[tiab] 
OR ischaemi*[tiab] OR infarct*[tiab] OR haematoma*[tiab] OR 
hematoma*[tiab] OR bleed*[tiab]))

#2 Kinetics 
and 
kinematics

((“Movement”[Mesh:NoExp] OR “Motion”[Mesh] OR 
“Spatio-Temporal Analysis”[Mesh] OR “Kinetics”[Mesh] 
OR Kinematic*[tiab] OR kinetic*[tiab] OR angle*[tiab] 
OR motion[tiab] OR acceler*[tiab] OR deceler*[tiab] OR 
rotation[tiab] OR velocity*[tiab] OR speed*[tiab] OR 
spatiotemporal[tiab]))

#3 Upper limb 
kinetics and 
kinematics

OR “Upper Extremity”[Mesh] OR Upper Extremit*[tiab] 
OR Upper Limb*[tiab] OR arm[tiab] OR arms[tiab] OR 
shoulder[tiab] OR elbow*[tiab] OR forearm*[tiab] OR 
wrist*[tiab] OR hand[tiab] OR hands[tiab] OR finger*[tiab] OR 
thumb*[tiab]

#4 
Smoothness

Smooth*

Scopus

#1 Stroke

TITLE-ABS-KEY ( cva OR cvas OR poststroke* OR stroke* OR 
apoplex* OR ( ( brain* OR cerebr* OR cerebell* OR intracran* 
OR intracerebral* OR vertebrobasilar* ) AND vascular* AND 
( disease OR diseases OR accident* OR disorder* ) ) OR ( 
cerebrovascular* AND ( disease OR diseases OR accident* 
OR disorder* ) ) OR ( ( brain* OR cerebr* OR cerebell* OR 
intracran* OR intracerebral* OR vertebrobasilar* ) AND ( 
haemorrhag* OR hemorrhag* OR ischemi* OR ischaemi* OR 
infarct* OR haematoma* OR hematoma* OR bleed* ) ) )

#2 Kinetics 
and 
kinematics

TITLE-ABS-KEY ( movement OR motion OR kinematic* OR 
kinetic* OR angle* OR motion OR acceler* OR deceler* OR 
rotation OR velocity* OR speed* OR spatiotemporal )

#3 Upper limb 
kinetics and 
kinematics

TITLE-ABS-KEY ( “Upper Extremit*” OR “Upper Limb*” OR 
arm OR arms OR shoulder OR elbow* OR forearm* OR wrist* 
OR hand OR hands OR finger* OR thumb* )

#4 
Smoothness

TITLE-ABS-KEY ( smooth* )
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Cochrane

#1 Stroke

cva OR cvas OR poststroke* OR stroke* OR apoplex* 
OR ((brain* OR cerebr* OR cerebell* OR intracran* OR 
intracerebral* OR vertebrobasilar*) AND vascular* AND 
(disease OR diseases OR accident* OR disorder*)) OR 
(cerebrovascular* AND (disease OR diseases OR accident* OR 
disorder*)) OR ((brain* OR cerebr* OR cerebell* OR intracran* 
OR intracerebral* OR vertebrobasilar*) AND (haemorrhag* 
OR hemorrhag* OR ischemi* OR ischaemi* OR infarct* OR 
haematoma* OR hematoma* OR bleed*))

#2 Kinetics 
and 
kinematics

reach* OR coordination OR grasp* OR grip* OR “Upper 
Extremit*” OR “Upper Limb*” OR arm OR arms OR shoulder 
OR elbow* OR forearm* OR wrist* OR hand OR hands OR 
finger* OR thumb*

#3 Upper limb 
kinetics and 
kinematics

Movement OR Motion OR Mechanical OR biomechanic* 
OR Kinematic* OR kinetic* OR angle* OR motion OR 
acceler* OR deceler* OR rotation OR velocity* OR speed* OR 
spatiotemporal

#4 
Smoothness

Smooth*

Embase

#1 Stroke

‘cerebrovascular accident’/exp OR cva:ab,ti OR cvas:ab,ti 
OR stroke:ab,ti OR apoplex*:ab,ti OR poststroke*:ab,ti 
OR ((brain*:ab,ti OR cerebr*:ab,ti OR cerebell*:ab,ti 
OR intracran*:ab,ti OR intracerebral*:ab,ti OR 
vertebrobasilar*:ab,ti) AND vascular*:ab,ti AND (disease:ab,ti 
OR diseases:ab,ti OR accident*:ab,ti OR disorder*:ab,ti)) OR 
(cerebrovascular*:ab,ti AND (disease:ab,ti OR diseases:ab,ti 
OR accident*:ab,ti OR disorder*:ab,ti)) OR ((brain*:ab,ti 
OR cerebr*:ab,ti OR cerebell*:ab,ti OR intracran*:ab,ti 
OR intracerebral*:ab,ti OR vertebrobasilar*:ab,ti) AND 
(haemorrhag*:ab,ti OR hemorrhag*:ab,ti OR ischemi*:ab,ti 
OR ischaemi*:ab,ti OR infarct*:ab,ti OR haematoma*:ab,ti OR 
hematoma*:ab,ti OR bleed*:ab,ti))

#2 Kinetics 
and 
kinematics

reach*:ti,ab OR coordination:ti,ab OR grasp*:ti,ab OR 
grip*:ti,ab OR ‘upper limb’/exp OR ‘Upper Extremit*’:ti,ab 
OR ‘Upper Limb*’:ti,ab OR arm:ti,ab OR arms:ti,ab OR 
shoulder:ti,ab OR elbow*:ti,ab OR forearm*:ti,ab OR 
wrist*:ti,ab OR hand:ti,ab OR hands:ti,ab OR finger*:ti,ab OR 
thumb*:ti,ab

#3 Upper limb 
kinetics and 
kinematics

‘movement (physiology)’/de OR ‘limb movement’/de OR ‘arm 
movement’/exp OR ‘hand movement’/exp OR ‘motion’/de OR 
‘velocity’/exp OR ‘mechanics’/de OR ‘biomechanics’/exp OR 
‘force’/exp OR ‘kinematics’/exp OR ‘kinetics’/de OR ‘torque’/
exp OR ‘temporal analysis’/exp OR ‘spatial analysis’/de OR 
torque*:ti,ab OR biomechanic*:ti,ab OR Kinematic*:ti,ab OR 
kinetic*:ti,ab OR angle*:ti,ab OR force*:ti,ab OR motion:ti,ab 
OR acceler*:ti,ab OR deceler*:ti,ab OR rotation:ti,ab OR 
velocity*:ti,ab OR speed*:ti,ab OR spatiotemporal:ti,ab

#4 
Smoothness

Smooth*:ti,ab
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CINAHL

#1 Stroke

(cva OR cvas OR poststroke* OR stroke* OR apoplex) 
OR ( brain* OR cerebr* OR cerebell* OR intracran* OR 
intracerebral* OR vertebrobasilar* ) AND vascular* AND 
( disease OR diseases OR accident* OR disorder* ) OR 
(cerebrovascular* AND ( disease OR diseases OR accident* OR 
disorder* ) ) OR ( brain* OR cerebr* OR cerebell* OR intracran* 
OR intracerebral* OR vertebrobasilar* ) AND ( haemorrhag* 
OR hemorrhag* OR ischemi* OR ischaemi* OR infarct* OR 
haematoma* OR hematoma* OR bleed* )

#2 Kinetics 
and 
kinematics

reach* OR coordination OR grasp* OR grip* OR “Upper 
Extremit*” OR “Upper Limb*” OR arm OR arms OR shoulder 
OR elbow* OR forearm* OR wrist* OR hand OR hands OR 
finger* OR thumb*

#3 Upper limb 
kinetics and 
kinematics

Movement OR Motion OR Mechanical OR biomechanic* 
OR Kinematic* OR kinetic* OR angle* OR motion OR 
acceler* OR deceler* OR rotation OR velocity* OR speed* OR 
spatiotemporal

#4 
Smoothness

smooth*

All articles with #1 AND #2 AND #3 AND #4 NOT (‘animal’/exp NOT ‘human’/exp) were 
retrieved.



308

APPENDIX E: MODELLING REACH-TO-GRASP MOVEMENT IN 
HEALTHY PARTICIPANTS

As reach-to-grasp movement does not follow a minimal jerk profile (Hughes et 
al., 2013), here, we model a base velocity profile for reach-to-grasp movements 
required for testing the different simulations proposed in Chapter II. For this, 
data from the EXPLICIT study containing 12 healthy participants performing 
reach-to-grasp a block as part of the ARAT using the dominant hand was 
used. The study was registered at the Netherlands National Trial Register 
(NTR1424), approved by the Medical Ethics Committee of the VU University 
Medical Centre, Amsterdam, The Netherlands and carried out in accordance 
with the Code of Ethics of the World Medical Association, Declaration of 
Helsinki. The average age of the participants was 64.2 ± 5.8 years, and seven 
of them identified as males. Fig. E.1 shows all 28 trials of reach-to-grasp 
movement performed by a healthy participant. The profile, unlike a minimal 
jerk model is skewed and the peak speed is not at half of the reaching duration.

Using Fig. E.1, we can define requirements for the shape of the asymmetric 
profile. For instance, the velocity at the beginning and end of the movement 
should be zero. Further, the velocity peaks at 32.7% of the total reaching time. 
Using these constraints, a polynomial model of the reaching velocity can be 
generated using six variables of the form

𝑦𝑦(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐𝑥𝑥2 + 𝑑𝑑𝑥𝑥3 +  𝑒𝑒𝑥𝑥4 +  𝑓𝑓𝑥𝑥5. 

The polynomial fit using the equation and the aforementioned constraints can be seen in Fig. E.2 

(g = 0). Although this velocity profile satisfies all the requirements, it does not have the desired 

profile of Fig. E.1. An additional variable g was added and tuned to improve the profile. The new 

polynomial equation is therefore 

𝑦𝑦(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐𝑥𝑥2 + 𝑑𝑑𝑥𝑥3 +  𝑒𝑒𝑥𝑥4 +  𝑓𝑓𝑥𝑥5 + 𝑔𝑔𝑥𝑥6 . 

Multiple solutions were found while solving the above equation due to redundancy (seven variables, 

six equations). Therefore, a cost function was introduced to optimize the parameter g: 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  ∫|𝑣𝑣−𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓|𝑑𝑑𝑑𝑑
∫ 𝑣𝑣 𝑑𝑑𝑑𝑑 , 

with v as the average velocity profile of participant 1 and vfit the modelled polynomial velocity 

profile. vfit was adjusted based on the distance and duration of the reaching movement v. v was 

derived by normalizing all trails to movement distance and duration. The error term was minimized 

using the interior-point algorithm (implemented using MATLABTM function fmincon). A g value of 54 

was found to be most optimum. This fit will be referred to as ‘Polynomial 1’. 

 

Figure E.2 Influence of varying the parameter ‘g’ on the polynomial fit. A value of 81.5 provided the closest fit 

with the reach-to-grasp movement in healthy participants. 
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Figure E.1 Twenty-eight reaching profiles measured on the dominant hand of a single healthy 
participant.
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with v as the average velocity profile of participant 1 and vfit the modelled 
polynomial velocity profile. vf it was adjusted based on the distance and 
duration of the reaching movement v. v was derived by normalizing all trails 
to movement distance and duration. The error term was minimized using the 
interior-point algorithm (implemented using MATLABTM function fmincon). 
A g value of 54 was found to be most optimum. This fit will be referred to as 
‘Polynomial 1’.

To generalize the polynomial model for all participants, all trails of all healthy 
participants were normalized, and averaged after removing outlies. This 
velocity profile did not however have a zero velocity and zero acceleration at 
the end and beginning of the movement.

Using the average profile, the error cost function was minimized by tuning 
variable g, and also the location of the peak value, using fmincon. This resulted 
in a value of 81.5 for the g parameter and 0.3157 for the peak location. The 
error between the new found profile and the normalized mean velocity profile 
was 0.04. This model had a lower steep slope following the peak velocity, and 
this polynomial will be referred as ‘Polynomial 2’.
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It was found that the difference between the two polynomial profiles is not 
that large. Over all trails, Polynomial 1, had an average error of 0.2369 while 
Polynomial 2 had an slightly lower average error of 0.2169. Polynomial 2 will 
be used in the analysis and can also been seen in Fig. F.1.
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using the interior-point algorithm (implemented using MATLABTM function fmincon). A g value of 54 
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To generalize the polynomial model for all participants, all trails of all healthy participants were 

normalized, and averaged after removing outlies. This velocity profile did not however have a zero 

velocity and zero acceleration at the end and beginning of the movement. 

Using the average profile, the error cost function was minimized by tuning variable g, and also the 

location of the peak value, using fmincon. This resulted in a value of 81.5 for the g parameter and 

0.3157 for the peak location. The error between the new found profile and the normalized mean 

Figure E.2 Influence of varying the parameter ‘g’ on the polynomial fit. A value of 81.5 provided 
the closest fit with the reach-to-grasp movement in healthy participants.
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APPENDIX F: MODELS FOR REACH-TO-POINT AND REACH-
TO-GRASP MOVEMENTS

Figure F.1 The velocity profiles (vsymm and vasymm) used in Chapter III are shown here. Here, they 
are plotted with a duration of 1 s, and a reaching distance of 0.3 m. The response of each metric 
to different types of simulated perturbations applied to these profiles were studied.
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APPENDIX G: MATHEMATICAL DEFINITION OF SELECTED 
SMOOTHNESS METRICS

•  Number of sub-movements (NOS) (Rohrer and Hogan, 2006): This algorithm 
fits the velocity profile by a combination of minimal jerk velocity profiles. 
This is done by using interior-point algorithm (fmincon in MATLAB) and 
minimizing the error function:

Appendix G: Mathematical definition of selected smoothness metrics 

• Number of sub-movements (NOS) (Rohrer and Hogan, 2006): This algorithm fits the 

velocity profile by a combination of minimal jerk velocity profiles. This is done by using 

interior-point algorithm (fmincon in MATLAB) and minimizing the error function:  

 where G(t) is the movement speed profile and F(t) is the 

fitted speed profile. 

 

where Ns denotes the number of sub-movements, vmj the minimal jerk speed profile, ∆ 

the sub-movement distance, T the sub-movement duration and Ts the sub-movement 

time shift. Subscript i denotes the ith sub-movement. ∆, Ts and T are minimized, while the 

function was ten times initialized at random points within the solution space, with Ns = 1. 

For ∆, the solution space is between 0 and 1 m, for T between 0.01 and 3 seconds and for 

Ts between 0 s and the total duration of the movement. If the error was below 0.02, the 

optimization ends, otherwise, a 1 is added to Ns and the optimization continues. Further, 

the minimization was aborted if Ns was greater than 7. In that case, it was assumed that 

there was no optimized solution. Finally, NOS gives the number of subtracted sub-

movements Ns, which is the measure for smoothness.  

 

• Speed metric (SM) (Rohrer et al., 2002): 𝑆𝑆𝑆𝑆   =    𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

, where vmean and vpeak are 

respectively the mean and peak velocity of the whole movement.  

 

• Normalized reaching speed (NRS) (Mazzoleni et al., 2011): 𝑁𝑁𝑁𝑁𝑆𝑆 = 𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝−𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

 

 

• Movement arrest period ratio (MAPR) (Beppu et al., 1984): 𝑆𝑆𝑀𝑀𝑀𝑀𝑁𝑁   =    𝑡𝑡(𝑣𝑣≥𝐹𝐹⋅𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝)𝑇𝑇 , where 

F is the fraction that is taken from the peak velocity to calculate the threshold and T is the 

total duration. Rohrer and colleagues (Rohrer et al., 2002) used a F-value of 0.1. 

where G(t) is the movement speed 
profile and F(t) is the fitted speed 
profile.

Appendix G: Mathematical definition of selected smoothness metrics 

• Number of sub-movements (NOS) (Rohrer and Hogan, 2006): This algorithm fits the 

velocity profile by a combination of minimal jerk velocity profiles. This is done by using 

interior-point algorithm (fmincon in MATLAB) and minimizing the error function:  

 where G(t) is the movement speed profile and F(t) is the 

fitted speed profile. 

 

where Ns denotes the number of sub-movements, vmj the minimal jerk speed profile, ∆ 

the sub-movement distance, T the sub-movement duration and Ts the sub-movement 

time shift. Subscript i denotes the ith sub-movement. ∆, Ts and T are minimized, while the 

function was ten times initialized at random points within the solution space, with Ns = 1. 

For ∆, the solution space is between 0 and 1 m, for T between 0.01 and 3 seconds and for 

Ts between 0 s and the total duration of the movement. If the error was below 0.02, the 

optimization ends, otherwise, a 1 is added to Ns and the optimization continues. Further, 

the minimization was aborted if Ns was greater than 7. In that case, it was assumed that 

there was no optimized solution. Finally, NOS gives the number of subtracted sub-

movements Ns, which is the measure for smoothness.  

 

• Speed metric (SM) (Rohrer et al., 2002): 𝑆𝑆𝑆𝑆   =    𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

, where vmean and vpeak are 

respectively the mean and peak velocity of the whole movement.  

 

• Normalized reaching speed (NRS) (Mazzoleni et al., 2011): 𝑁𝑁𝑁𝑁𝑆𝑆 = 𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝−𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

 

 

• Movement arrest period ratio (MAPR) (Beppu et al., 1984): 𝑆𝑆𝑀𝑀𝑀𝑀𝑁𝑁   =    𝑡𝑡(𝑣𝑣≥𝐹𝐹⋅𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝)𝑇𝑇 , where 

F is the fraction that is taken from the peak velocity to calculate the threshold and T is the 

total duration. Rohrer and colleagues (Rohrer et al., 2002) used a F-value of 0.1. 

 where Ns denotes the number of sub-movements, vmj the minimal jerk 
speed profile, Δ the sub-movement distance, T the sub-movement 
duration and Ts the sub-movement time shift. Subscript i denotes the 
ith sub-movement. Δ, Ts and T are minimized, while the function was 
initialized ten times at random points within the solution space, with 
Ns = 1. For Δ, the solution space is between 0 and 1 m, for T between 0.01 
and 3s and for Ts between 0 s and the total duration of the movement. If 
the error was below 0.02, the optimization ends, otherwise, a 1 is added 
to Ns and the optimization continues. Further, the minimization was 
aborted if Ns was greater than 7. In that case, it was assumed that there 
was no optimized solution. Finally, NOS gives the number of subtracted 
sub-movements Ns, which is the measure for smoothness.

•  Speed metric (SM) (Rohrer et al., 2002): 

Appendix G: Mathematical definition of selected smoothness metrics 

• Number of sub-movements (NOS) (Rohrer and Hogan, 2006): This algorithm fits the 

velocity profile by a combination of minimal jerk velocity profiles. This is done by using 

interior-point algorithm (fmincon in MATLAB) and minimizing the error function:  

 where G(t) is the movement speed profile and F(t) is the 

fitted speed profile. 

 

where Ns denotes the number of sub-movements, vmj the minimal jerk speed profile, ∆ 

the sub-movement distance, T the sub-movement duration and Ts the sub-movement 

time shift. Subscript i denotes the ith sub-movement. ∆, Ts and T are minimized, while the 

function was ten times initialized at random points within the solution space, with Ns = 1. 

For ∆, the solution space is between 0 and 1 m, for T between 0.01 and 3 seconds and for 

Ts between 0 s and the total duration of the movement. If the error was below 0.02, the 

optimization ends, otherwise, a 1 is added to Ns and the optimization continues. Further, 

the minimization was aborted if Ns was greater than 7. In that case, it was assumed that 

there was no optimized solution. Finally, NOS gives the number of subtracted sub-

movements Ns, which is the measure for smoothness.  

 

• Speed metric (SM) (Rohrer et al., 2002): 𝑆𝑆𝑆𝑆   =    𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

, where vmean and vpeak are 

respectively the mean and peak velocity of the whole movement.  

 

• Normalized reaching speed (NRS) (Mazzoleni et al., 2011): 𝑁𝑁𝑁𝑁𝑆𝑆 = 𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝−𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

 

 

• Movement arrest period ratio (MAPR) (Beppu et al., 1984): 𝑆𝑆𝑀𝑀𝑀𝑀𝑁𝑁   =    𝑡𝑡(𝑣𝑣≥𝐹𝐹⋅𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝)𝑇𝑇 , where 

F is the fraction that is taken from the peak velocity to calculate the threshold and T is the 

total duration. Rohrer and colleagues (Rohrer et al., 2002) used a F-value of 0.1. 

, where vmean and vpeak 

are respectively the mean and peak velocity of the whole movement.



313

Appendix

•  Normalized reaching speed (NRS) (Mazzoleni et al., 2011): 

Appendix G: Mathematical definition of selected smoothness metrics 

• Number of sub-movements (NOS) (Rohrer and Hogan, 2006): This algorithm fits the 

velocity profile by a combination of minimal jerk velocity profiles. This is done by using 

interior-point algorithm (fmincon in MATLAB) and minimizing the error function:  

 where G(t) is the movement speed profile and F(t) is the 

fitted speed profile. 

 

where Ns denotes the number of sub-movements, vmj the minimal jerk speed profile, ∆ 

the sub-movement distance, T the sub-movement duration and Ts the sub-movement 

time shift. Subscript i denotes the ith sub-movement. ∆, Ts and T are minimized, while the 

function was ten times initialized at random points within the solution space, with Ns = 1. 

For ∆, the solution space is between 0 and 1 m, for T between 0.01 and 3 seconds and for 

Ts between 0 s and the total duration of the movement. If the error was below 0.02, the 

optimization ends, otherwise, a 1 is added to Ns and the optimization continues. Further, 

the minimization was aborted if Ns was greater than 7. In that case, it was assumed that 

there was no optimized solution. Finally, NOS gives the number of subtracted sub-

movements Ns, which is the measure for smoothness.  

 

• Speed metric (SM) (Rohrer et al., 2002): 𝑆𝑆𝑆𝑆   =    𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

, where vmean and vpeak are 

respectively the mean and peak velocity of the whole movement.  

 

• Normalized reaching speed (NRS) (Mazzoleni et al., 2011): 𝑁𝑁𝑁𝑁𝑆𝑆 = 𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝−𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

 

 

• Movement arrest period ratio (MAPR) (Beppu et al., 1984): 𝑆𝑆𝑀𝑀𝑀𝑀𝑁𝑁   =    𝑡𝑡(𝑣𝑣≥𝐹𝐹⋅𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝)𝑇𝑇 , where 

F is the fraction that is taken from the peak velocity to calculate the threshold and T is the 

total duration. Rohrer and colleagues (Rohrer et al., 2002) used a F-value of 0.1. 

• Movement arrest period ratio (MAPR) (Beppu et al., 1984): 

Appendix G: Mathematical definition of selected smoothness metrics 

• Number of sub-movements (NOS) (Rohrer and Hogan, 2006): This algorithm fits the 

velocity profile by a combination of minimal jerk velocity profiles. This is done by using 

interior-point algorithm (fmincon in MATLAB) and minimizing the error function:  

 where G(t) is the movement speed profile and F(t) is the 

fitted speed profile. 

 

where Ns denotes the number of sub-movements, vmj the minimal jerk speed profile, ∆ 

the sub-movement distance, T the sub-movement duration and Ts the sub-movement 

time shift. Subscript i denotes the ith sub-movement. ∆, Ts and T are minimized, while the 

function was ten times initialized at random points within the solution space, with Ns = 1. 

For ∆, the solution space is between 0 and 1 m, for T between 0.01 and 3 seconds and for 

Ts between 0 s and the total duration of the movement. If the error was below 0.02, the 

optimization ends, otherwise, a 1 is added to Ns and the optimization continues. Further, 

the minimization was aborted if Ns was greater than 7. In that case, it was assumed that 

there was no optimized solution. Finally, NOS gives the number of subtracted sub-

movements Ns, which is the measure for smoothness.  

 

• Speed metric (SM) (Rohrer et al., 2002): 𝑆𝑆𝑆𝑆   =    𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

, where vmean and vpeak are 

respectively the mean and peak velocity of the whole movement.  

 

• Normalized reaching speed (NRS) (Mazzoleni et al., 2011): 𝑁𝑁𝑁𝑁𝑆𝑆 = 𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝−𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

 

 

• Movement arrest period ratio (MAPR) (Beppu et al., 1984): 𝑆𝑆𝑀𝑀𝑀𝑀𝑁𝑁   =    𝑡𝑡(𝑣𝑣≥𝐹𝐹⋅𝑣𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝)𝑇𝑇 , where 

F is the fraction that is taken from the peak velocity to calculate the threshold and T is the 

total duration. Rohrer and colleagues (Rohrer et al., 2002) used a F-value of 0.1. 

 where F is the fraction that is taken from the peak 
velocity to calculate the threshold and T is the total duration. Rohrer and 
colleagues (Rohrer et al., 2002) used a F-value of 0.1.

•  Velocity arc length (VAL) (Balasubramanian et al., 2012):

 

• Velocity arc length (VAL) (Balasubramanian et al., 2012):  

Here, t1 and t2 are the time points at the start and end of the movement. 

 

• Correlation metric (CM) (Krebs et al., 2001): First, the minimum jerk speed profile is 

calculated by 

𝑣𝑣mj(𝑡𝑡) = Δ (30𝑡𝑡4

𝑇𝑇5 − 60𝑡𝑡3

𝑇𝑇4 + 30𝑡𝑡2

𝑇𝑇3 ),  𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) = 𝑣𝑣(𝑡𝑡)
𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

, 

where v(t) is the hand speed, vmj(t) is the minimal jerk speed profile. ∆ is the distance of 

the reaching movement. T is the duration of the reaching movement. Then, the 

correlation coefficient is calculated in the standard form as 

  

ρ =
∑[(𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 −  �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)(𝑣𝑣𝑛𝑛𝑚𝑚 − �̅�𝑣𝑛𝑛𝑚𝑚)]

√(∑ [(𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 ∑(𝑣𝑣𝑛𝑛𝑚𝑚 − �̅�𝑣𝑛𝑛𝑚𝑚)2])
, 

  

where �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and �̅�𝑣𝑛𝑛𝑚𝑚 are the mean values of the normalized hand speed and minimum 

jerk speed profile. 

 

• Peaks metric (Peaks) (Brooks, 1974): This metric counts the number of vmaxima, where 

vmaxima is defined as 𝑣𝑣(𝑡𝑡): �̇�𝑣(𝑡𝑡) = 0 and �̈�𝑣(𝑡𝑡) < 0, where  𝑣𝑣(𝑡𝑡), 𝑣𝑣 ̇ (𝑡𝑡),  and �̈�𝑣(𝑡𝑡) are 

respectively the first, second and third time derivative of position. 

 

• Number of Peaks normalized by movement duration (NPt) (Kahn et al., 2006): 

𝑃𝑃𝑃𝑃𝑛𝑛𝑚𝑚 =  𝑃𝑃𝑃𝑃
𝑇𝑇  

 

• Number of peaks normalized by movement distance (NPd) (Abdul Rahman et al., 2017): 

 Here, t1 and t2 are the time points at the start and end of the movement.

•  Correlation metric (CM) (Krebs et al., 2001): First, the minimum jerk speed 
profile is calculated by

 

 

• Velocity arc length (VAL) (Balasubramanian et al., 2012):  

Here, t1 and t2 are the time points at the start and end of the movement. 

 

• Correlation metric (CM) (Krebs et al., 2001): First, the minimum jerk speed profile is 

calculated by 

𝑣𝑣mj(𝑡𝑡) = Δ (30𝑡𝑡4

𝑇𝑇5 − 60𝑡𝑡3

𝑇𝑇4 + 30𝑡𝑡2

𝑇𝑇3 ),  𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) = 𝑣𝑣(𝑡𝑡)
𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

, 

where v(t) is the hand speed, vmj(t) is the minimal jerk speed profile. ∆ is the distance of 

the reaching movement. T is the duration of the reaching movement. Then, the 

correlation coefficient is calculated in the standard form as 

  

ρ =
∑[(𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 −  �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)(𝑣𝑣𝑛𝑛𝑚𝑚 − �̅�𝑣𝑛𝑛𝑚𝑚)]

√(∑ [(𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 ∑(𝑣𝑣𝑛𝑛𝑚𝑚 − �̅�𝑣𝑛𝑛𝑚𝑚)2])
, 

  

where �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and �̅�𝑣𝑛𝑛𝑚𝑚 are the mean values of the normalized hand speed and minimum 

jerk speed profile. 

 

• Peaks metric (Peaks) (Brooks, 1974): This metric counts the number of vmaxima, where 

vmaxima is defined as 𝑣𝑣(𝑡𝑡): �̇�𝑣(𝑡𝑡) = 0 and �̈�𝑣(𝑡𝑡) < 0, where  𝑣𝑣(𝑡𝑡), 𝑣𝑣 ̇ (𝑡𝑡),  and �̈�𝑣(𝑡𝑡) are 

respectively the first, second and third time derivative of position. 

 

• Number of Peaks normalized by movement duration (NPt) (Kahn et al., 2006): 

𝑃𝑃𝑃𝑃𝑛𝑛𝑚𝑚 =  𝑃𝑃𝑃𝑃
𝑇𝑇  

 

• Number of peaks normalized by movement distance (NPd) (Abdul Rahman et al., 2017): 

 

 where v(t) is the hand speed, vmj(t) is the minimal jerk speed profile. Δ is 
the distance of the reaching movement. T is the duration of the reaching 
movement. Then, the correlation coefficient is calculated in the standard 
form as

 

• Velocity arc length (VAL) (Balasubramanian et al., 2012):  

Here, t1 and t2 are the time points at the start and end of the movement. 

 

• Correlation metric (CM) (Krebs et al., 2001): First, the minimum jerk speed profile is 

calculated by 

𝑣𝑣mj(𝑡𝑡) = Δ (30𝑡𝑡4

𝑇𝑇5 − 60𝑡𝑡3

𝑇𝑇4 + 30𝑡𝑡2

𝑇𝑇3 ),  𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) = 𝑣𝑣(𝑡𝑡)
𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

, 

where v(t) is the hand speed, vmj(t) is the minimal jerk speed profile. ∆ is the distance of 

the reaching movement. T is the duration of the reaching movement. Then, the 

correlation coefficient is calculated in the standard form as 

  

ρ =
∑[(𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 −  �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)(𝑣𝑣𝑛𝑛𝑚𝑚 − �̅�𝑣𝑛𝑛𝑚𝑚)]

√(∑ [(𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 ∑(𝑣𝑣𝑛𝑛𝑚𝑚 − �̅�𝑣𝑛𝑛𝑚𝑚)2])
, 

  

where �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and �̅�𝑣𝑛𝑛𝑚𝑚 are the mean values of the normalized hand speed and minimum 

jerk speed profile. 

 

• Peaks metric (Peaks) (Brooks, 1974): This metric counts the number of vmaxima, where 

vmaxima is defined as 𝑣𝑣(𝑡𝑡): �̇�𝑣(𝑡𝑡) = 0 and �̈�𝑣(𝑡𝑡) < 0, where  𝑣𝑣(𝑡𝑡), 𝑣𝑣 ̇ (𝑡𝑡),  and �̈�𝑣(𝑡𝑡) are 

respectively the first, second and third time derivative of position. 

 

• Number of Peaks normalized by movement duration (NPt) (Kahn et al., 2006): 

𝑃𝑃𝑃𝑃𝑛𝑛𝑚𝑚 =  𝑃𝑃𝑃𝑃
𝑇𝑇  

 

• Number of peaks normalized by movement distance (NPd) (Abdul Rahman et al., 2017): 

 where 

 

• Velocity arc length (VAL) (Balasubramanian et al., 2012):  

Here, t1 and t2 are the time points at the start and end of the movement. 

 

• Correlation metric (CM) (Krebs et al., 2001): First, the minimum jerk speed profile is 

calculated by 

𝑣𝑣mj(𝑡𝑡) = Δ (30𝑡𝑡4

𝑇𝑇5 − 60𝑡𝑡3

𝑇𝑇4 + 30𝑡𝑡2

𝑇𝑇3 ),  𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) = 𝑣𝑣(𝑡𝑡)
𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

, 

where v(t) is the hand speed, vmj(t) is the minimal jerk speed profile. ∆ is the distance of 

the reaching movement. T is the duration of the reaching movement. Then, the 

correlation coefficient is calculated in the standard form as 

  

ρ =
∑[(𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 −  �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)(𝑣𝑣𝑛𝑛𝑚𝑚 − �̅�𝑣𝑛𝑛𝑚𝑚)]

√(∑ [(𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 ∑(𝑣𝑣𝑛𝑛𝑚𝑚 − �̅�𝑣𝑛𝑛𝑚𝑚)2])
, 

  

where �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and �̅�𝑣𝑛𝑛𝑚𝑚 are the mean values of the normalized hand speed and minimum 

jerk speed profile. 

 

• Peaks metric (Peaks) (Brooks, 1974): This metric counts the number of vmaxima, where 

vmaxima is defined as 𝑣𝑣(𝑡𝑡): �̇�𝑣(𝑡𝑡) = 0 and �̈�𝑣(𝑡𝑡) < 0, where  𝑣𝑣(𝑡𝑡), 𝑣𝑣 ̇ (𝑡𝑡),  and �̈�𝑣(𝑡𝑡) are 

respectively the first, second and third time derivative of position. 

 

• Number of Peaks normalized by movement duration (NPt) (Kahn et al., 2006): 

𝑃𝑃𝑃𝑃𝑛𝑛𝑚𝑚 =  𝑃𝑃𝑃𝑃
𝑇𝑇  

 

• Number of peaks normalized by movement distance (NPd) (Abdul Rahman et al., 2017): 

 and 

 

• Velocity arc length (VAL) (Balasubramanian et al., 2012):  

Here, t1 and t2 are the time points at the start and end of the movement. 

 

• Correlation metric (CM) (Krebs et al., 2001): First, the minimum jerk speed profile is 

calculated by 

𝑣𝑣mj(𝑡𝑡) = Δ (30𝑡𝑡4

𝑇𝑇5 − 60𝑡𝑡3

𝑇𝑇4 + 30𝑡𝑡2

𝑇𝑇3 ),  𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) = 𝑣𝑣(𝑡𝑡)
𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

, 

where v(t) is the hand speed, vmj(t) is the minimal jerk speed profile. ∆ is the distance of 

the reaching movement. T is the duration of the reaching movement. Then, the 

correlation coefficient is calculated in the standard form as 

  

ρ =
∑[(𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 −  �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)(𝑣𝑣𝑛𝑛𝑚𝑚 − �̅�𝑣𝑛𝑛𝑚𝑚)]

√(∑ [(𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 ∑(𝑣𝑣𝑛𝑛𝑚𝑚 − �̅�𝑣𝑛𝑛𝑚𝑚)2])
, 

  

where �̅�𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and �̅�𝑣𝑛𝑛𝑚𝑚 are the mean values of the normalized hand speed and minimum 

jerk speed profile. 

 

• Peaks metric (Peaks) (Brooks, 1974): This metric counts the number of vmaxima, where 
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•  Number of peaks normalized by movement distance (NPd) (Abdul Rahman 

et al., 2017):
 𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 =  𝑃𝑃𝑃𝑃
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• Inverse number of peaks and valleys (IPV) (Pila et al., 2017) is defined by 

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 =  1
(𝑃𝑃𝑃𝑃 ∗ 2) − 1, 

where PM is the number of peaks, defined earlier, vpeak is the peak velocity within the 

movement and T is the total movement duration. Note here that the number of peaks 

and valleys is defined as (𝑃𝑃𝑃𝑃 ∗ 2) − 1. 

 

• Acceleration metric (AM) (Mazzoleni et al., 2011): 𝐴𝐴𝑃𝑃 = �̈�𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
�̈�𝑥𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

, where �̈�𝑥 is the second 

derivative of x(t) with respect to time, which is the acceleration. 
 

• Integrated absolute jerk (IAJ) (Duff et al., 2010): ηiaj = ∫ |𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1 , where 𝑥𝑥(𝑡𝑡) is the third 

derivative of x(t) with respect to time, which is the jerk. 

 

• Mean absolute jerk (MAJ) (Bigoni et al., 2016): ηmaj = 1
𝑡𝑡2−𝑡𝑡1

∫ |𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1  

 

• Mean absolute jerk, normalized by peak speed (MAJPS) (Rohrer et al., 2002): 

  

ηmajps = 1
𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡2 − 𝑡𝑡1) ∫ 𝑥𝑥(𝑡𝑡)2

𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡. 
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𝑡𝑡1
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𝑑𝑑𝑡𝑡. 

• Normalized integrated jerk (NIJ) (Adamovich et al., 2009): 

ηNIJ    = √  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2
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•  Acceleration metric (AM) (Mazzoleni et al., 2011): 
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𝑡𝑡2−𝑡𝑡1

∫ |𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1  

 

• Mean absolute jerk, normalized by peak speed (MAJPS) (Rohrer et al., 2002): 

  

ηmajps = 1
𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡2 − 𝑡𝑡1) ∫ 𝑥𝑥(𝑡𝑡)2

𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡. 

 

• Integrated squared jerk (ISJ) (Laczko et al., 2017): ηisj = ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1

. 

• Root mean squared jerk (RMSJ) (Young and Marteniuk, 1997): ηrmsj = √ 1
(𝑡𝑡2−𝑡𝑡1) ∫ 𝑥𝑥(𝑡𝑡)2𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡. 

• Normalized integrated jerk (NIJ) (Adamovich et al., 2009): 

ηNIJ    = √  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

• Dimensionless squared jerk (DSJt) (Teulings et al., 1997):  

 is the second derivative of x(t) with respect to time, which is the 
acceleration.

•  Integrated absolute jerk (IAJ) (Duff et al., 2010): 

𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 =  𝑃𝑃𝑃𝑃
∆ . 

 

• Inverse number of peaks and valleys (IPV) (Pila et al., 2017) is defined by 

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 =  1
(𝑃𝑃𝑃𝑃 ∗ 2) − 1, 

where PM is the number of peaks, defined earlier, vpeak is the peak velocity within the 

movement and T is the total movement duration. Note here that the number of peaks 

and valleys is defined as (𝑃𝑃𝑃𝑃 ∗ 2) − 1. 

 

• Acceleration metric (AM) (Mazzoleni et al., 2011): 𝐴𝐴𝑃𝑃 = �̈�𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
�̈�𝑥𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

, where �̈�𝑥 is the second 

derivative of x(t) with respect to time, which is the acceleration. 
 

• Integrated absolute jerk (IAJ) (Duff et al., 2010): ηiaj = ∫ |𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1 , where 𝑥𝑥(𝑡𝑡) is the third 

derivative of x(t) with respect to time, which is the jerk. 

 

• Mean absolute jerk (MAJ) (Bigoni et al., 2016): ηmaj = 1
𝑡𝑡2−𝑡𝑡1

∫ |𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1  

 

• Mean absolute jerk, normalized by peak speed (MAJPS) (Rohrer et al., 2002): 

  

ηmajps = 1
𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡2 − 𝑡𝑡1) ∫ 𝑥𝑥(𝑡𝑡)2

𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡. 

 

• Integrated squared jerk (ISJ) (Laczko et al., 2017): ηisj = ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1

. 

• Root mean squared jerk (RMSJ) (Young and Marteniuk, 1997): ηrmsj = √ 1
(𝑡𝑡2−𝑡𝑡1) ∫ 𝑥𝑥(𝑡𝑡)2𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡. 

• Normalized integrated jerk (NIJ) (Adamovich et al., 2009): 

ηNIJ    = √  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

• Dimensionless squared jerk (DSJt) (Teulings et al., 1997):  

where  

𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 =  𝑃𝑃𝑃𝑃
∆ . 

 

• Inverse number of peaks and valleys (IPV) (Pila et al., 2017) is defined by 

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 =  1
(𝑃𝑃𝑃𝑃 ∗ 2) − 1, 

where PM is the number of peaks, defined earlier, vpeak is the peak velocity within the 

movement and T is the total movement duration. Note here that the number of peaks 

and valleys is defined as (𝑃𝑃𝑃𝑃 ∗ 2) − 1. 

 

• Acceleration metric (AM) (Mazzoleni et al., 2011): 𝐴𝐴𝑃𝑃 = �̈�𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
�̈�𝑥𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

, where �̈�𝑥 is the second 

derivative of x(t) with respect to time, which is the acceleration. 
 

• Integrated absolute jerk (IAJ) (Duff et al., 2010): ηiaj = ∫ |𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1 , where 𝑥𝑥(𝑡𝑡) is the third 

derivative of x(t) with respect to time, which is the jerk. 

 

• Mean absolute jerk (MAJ) (Bigoni et al., 2016): ηmaj = 1
𝑡𝑡2−𝑡𝑡1

∫ |𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1  

 

• Mean absolute jerk, normalized by peak speed (MAJPS) (Rohrer et al., 2002): 

  

ηmajps = 1
𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡2 − 𝑡𝑡1) ∫ 𝑥𝑥(𝑡𝑡)2

𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡. 

 

• Integrated squared jerk (ISJ) (Laczko et al., 2017): ηisj = ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1

. 

• Root mean squared jerk (RMSJ) (Young and Marteniuk, 1997): ηrmsj = √ 1
(𝑡𝑡2−𝑡𝑡1) ∫ 𝑥𝑥(𝑡𝑡)2𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡. 

• Normalized integrated jerk (NIJ) (Adamovich et al., 2009): 

ηNIJ    = √  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

• Dimensionless squared jerk (DSJt) (Teulings et al., 1997):  

 is the third derivative of x(t) with respect to time, which is the jerk.

•  Mean absolute jerk (MAJ) (Bigoni et al., 2016): 

𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 =  𝑃𝑃𝑃𝑃
∆ . 

 

• Inverse number of peaks and valleys (IPV) (Pila et al., 2017) is defined by 

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 =  1
(𝑃𝑃𝑃𝑃 ∗ 2) − 1, 

where PM is the number of peaks, defined earlier, vpeak is the peak velocity within the 

movement and T is the total movement duration. Note here that the number of peaks 

and valleys is defined as (𝑃𝑃𝑃𝑃 ∗ 2) − 1. 

 

• Acceleration metric (AM) (Mazzoleni et al., 2011): 𝐴𝐴𝑃𝑃 = �̈�𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
�̈�𝑥𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

, where �̈�𝑥 is the second 

derivative of x(t) with respect to time, which is the acceleration. 
 

• Integrated absolute jerk (IAJ) (Duff et al., 2010): ηiaj = ∫ |𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1 , where 𝑥𝑥(𝑡𝑡) is the third 

derivative of x(t) with respect to time, which is the jerk. 

 

• Mean absolute jerk (MAJ) (Bigoni et al., 2016): ηmaj = 1
𝑡𝑡2−𝑡𝑡1

∫ |𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1  

 

• Mean absolute jerk, normalized by peak speed (MAJPS) (Rohrer et al., 2002): 

  

ηmajps = 1
𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡2 − 𝑡𝑡1) ∫ 𝑥𝑥(𝑡𝑡)2

𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡. 

 

• Integrated squared jerk (ISJ) (Laczko et al., 2017): ηisj = ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1

. 

• Root mean squared jerk (RMSJ) (Young and Marteniuk, 1997): ηrmsj = √ 1
(𝑡𝑡2−𝑡𝑡1) ∫ 𝑥𝑥(𝑡𝑡)2𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡. 

• Normalized integrated jerk (NIJ) (Adamovich et al., 2009): 

ηNIJ    = √  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

• Dimensionless squared jerk (DSJt) (Teulings et al., 1997):  
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•  Mean absolute jerk, normalized by peak speed (MAJPS) (Rohrer et al., 2002):
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• Dimensionless squared jerk (DSJt) (Teulings et al., 1997):  

•  Integrated squared jerk (ISJ) (Laczko et al., 2017): 
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 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

• Dimensionless squared jerk (DSJt) (Teulings et al., 1997):  

•  Root mean squared jerk (RMSJ) (Young and Marteniuk, 1997): 

𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 =  𝑃𝑃𝑃𝑃
∆ . 

 

• Inverse number of peaks and valleys (IPV) (Pila et al., 2017) is defined by 

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 =  1
(𝑃𝑃𝑃𝑃 ∗ 2) − 1, 

where PM is the number of peaks, defined earlier, vpeak is the peak velocity within the 

movement and T is the total movement duration. Note here that the number of peaks 

and valleys is defined as (𝑃𝑃𝑃𝑃 ∗ 2) − 1. 

 

• Acceleration metric (AM) (Mazzoleni et al., 2011): 𝐴𝐴𝑃𝑃 = �̈�𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
�̈�𝑥𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

, where �̈�𝑥 is the second 

derivative of x(t) with respect to time, which is the acceleration. 
 

• Integrated absolute jerk (IAJ) (Duff et al., 2010): ηiaj = ∫ |𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1 , where 𝑥𝑥(𝑡𝑡) is the third 

derivative of x(t) with respect to time, which is the jerk. 

 

• Mean absolute jerk (MAJ) (Bigoni et al., 2016): ηmaj = 1
𝑡𝑡2−𝑡𝑡1

∫ |𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1  

 

• Mean absolute jerk, normalized by peak speed (MAJPS) (Rohrer et al., 2002): 

  

ηmajps = 1
𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡2 − 𝑡𝑡1) ∫ 𝑥𝑥(𝑡𝑡)2

𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡. 

 

• Integrated squared jerk (ISJ) (Laczko et al., 2017): ηisj = ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1

. 

• Root mean squared jerk (RMSJ) (Young and Marteniuk, 1997): ηrmsj = √ 1
(𝑡𝑡2−𝑡𝑡1) ∫ 𝑥𝑥(𝑡𝑡)2𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡. 

• Normalized integrated jerk (NIJ) (Adamovich et al., 2009): 

ηNIJ    = √  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

• Dimensionless squared jerk (DSJt) (Teulings et al., 1997):  

•  Normalized integrated jerk (NIJ) (Adamovich et al., 2009):

𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 =  𝑃𝑃𝑃𝑃
∆ . 

 

• Inverse number of peaks and valleys (IPV) (Pila et al., 2017) is defined by 

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 =  1
(𝑃𝑃𝑃𝑃 ∗ 2) − 1, 

where PM is the number of peaks, defined earlier, vpeak is the peak velocity within the 

movement and T is the total movement duration. Note here that the number of peaks 

and valleys is defined as (𝑃𝑃𝑃𝑃 ∗ 2) − 1. 

 

• Acceleration metric (AM) (Mazzoleni et al., 2011): 𝐴𝐴𝑃𝑃 = �̈�𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
�̈�𝑥𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

, where �̈�𝑥 is the second 

derivative of x(t) with respect to time, which is the acceleration. 
 

• Integrated absolute jerk (IAJ) (Duff et al., 2010): ηiaj = ∫ |𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1 , where 𝑥𝑥(𝑡𝑡) is the third 

derivative of x(t) with respect to time, which is the jerk. 

 

• Mean absolute jerk (MAJ) (Bigoni et al., 2016): ηmaj = 1
𝑡𝑡2−𝑡𝑡1

∫ |𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1  

 

• Mean absolute jerk, normalized by peak speed (MAJPS) (Rohrer et al., 2002): 

  

ηmajps = 1
𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡2 − 𝑡𝑡1) ∫ 𝑥𝑥(𝑡𝑡)2

𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡. 

 

• Integrated squared jerk (ISJ) (Laczko et al., 2017): ηisj = ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1

. 

• Root mean squared jerk (RMSJ) (Young and Marteniuk, 1997): ηrmsj = √ 1
(𝑡𝑡2−𝑡𝑡1) ∫ 𝑥𝑥(𝑡𝑡)2𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡. 

• Normalized integrated jerk (NIJ) (Adamovich et al., 2009): 

ηNIJ    = √  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

• Dimensionless squared jerk (DSJt) (Teulings et al., 1997):  •  Dimensionless squared jerk (DSJt) (Teulings et al., 1997):

ηDSJt    = √  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

 

 

• Log dimensionless squared jerk (LDSJt) (van Kordelaar et al., 2014):  

ηLDSJt    = ln (√  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
) . 

 

• Dimensionless squared jerk (DSJm) (Marini et al., 2017): 

ηDSJm    = 1
2 √  

(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡,

𝑡𝑡2

𝑡𝑡1
 

Note that this although this is similar to the DSJt  (Teulings et al., 1997), there is an 

additional 1/2 in the equation. 

 

• Dimensionless squared jerk (DSJb) (Balasubramanian et al., 2012):  

ηDSJb    =
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣peak
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

 

• Log dimensionless squared jerk (LDSJb) (Balasubramanian et al., 2012): 

ηLDSJb    = ln (  
(𝑡𝑡2 − 𝑡𝑡1)3

𝑣𝑣peak
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
), 

 

• Rotational jerk (RJ) (Repnik et al., 2018): 

ηrot    = log √ 
(𝑡𝑡2 − 𝑡𝑡1)5

2𝜃𝜃𝑝𝑝  ∫ ‖𝑑𝑑2𝜔𝜔(𝑡𝑡)
𝑑𝑑𝑡𝑡2 ‖

2
𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
, 

where t1 is the beginning of the movement, t1 the end of the movement, 𝜔𝜔(𝑡𝑡) is the hand angular 
velocity vector and parameter 𝜃𝜃𝑝𝑝 normalizes the jerk index with angular displacement of the 
rotation movement. 

 

•  Log dimensionless squared jerk (LDSJt) (van Kordelaar et al., 2014):

ηDSJt    = √  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

 

 

• Log dimensionless squared jerk (LDSJt) (van Kordelaar et al., 2014):  

ηLDSJt    = ln (√  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
) . 

 

• Dimensionless squared jerk (DSJm) (Marini et al., 2017): 

ηDSJm    = 1
2 √  

(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡,

𝑡𝑡2

𝑡𝑡1
 

Note that this although this is similar to the DSJt  (Teulings et al., 1997), there is an 

additional 1/2 in the equation. 

 

• Dimensionless squared jerk (DSJb) (Balasubramanian et al., 2012):  

ηDSJb    =
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣peak
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

 

• Log dimensionless squared jerk (LDSJb) (Balasubramanian et al., 2012): 

ηLDSJb    = ln (  
(𝑡𝑡2 − 𝑡𝑡1)3

𝑣𝑣peak
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
), 

 

• Rotational jerk (RJ) (Repnik et al., 2018): 

ηrot    = log √ 
(𝑡𝑡2 − 𝑡𝑡1)5

2𝜃𝜃𝑝𝑝  ∫ ‖𝑑𝑑2𝜔𝜔(𝑡𝑡)
𝑑𝑑𝑡𝑡2 ‖

2
𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
, 

where t1 is the beginning of the movement, t1 the end of the movement, 𝜔𝜔(𝑡𝑡) is the hand angular 
velocity vector and parameter 𝜃𝜃𝑝𝑝 normalizes the jerk index with angular displacement of the 
rotation movement. 

 

•  Dimensionless squared jerk (DSJm) (Marini et al., 2017):

ηDSJt    = √  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

 

 

• Log dimensionless squared jerk (LDSJt) (van Kordelaar et al., 2014):  

ηLDSJt    = ln (√  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
) . 

 

• Dimensionless squared jerk (DSJm) (Marini et al., 2017): 

ηDSJm    = 1
2 √  

(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡,

𝑡𝑡2

𝑡𝑡1
 

Note that this although this is similar to the DSJt  (Teulings et al., 1997), there is an 

additional 1/2 in the equation. 

 

• Dimensionless squared jerk (DSJb) (Balasubramanian et al., 2012):  

ηDSJb    =
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣peak
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

 

• Log dimensionless squared jerk (LDSJb) (Balasubramanian et al., 2012): 

ηLDSJb    = ln (  
(𝑡𝑡2 − 𝑡𝑡1)3

𝑣𝑣peak
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
), 

 

• Rotational jerk (RJ) (Repnik et al., 2018): 

ηrot    = log √ 
(𝑡𝑡2 − 𝑡𝑡1)5

2𝜃𝜃𝑝𝑝  ∫ ‖𝑑𝑑2𝜔𝜔(𝑡𝑡)
𝑑𝑑𝑡𝑡2 ‖

2
𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
, 

where t1 is the beginning of the movement, t1 the end of the movement, 𝜔𝜔(𝑡𝑡) is the hand angular 
velocity vector and parameter 𝜃𝜃𝑝𝑝 normalizes the jerk index with angular displacement of the 
rotation movement. 

 

 Note that although this is similar to the DSJt (Teulings et al., 1997), there 
is an additional 1/2 in the equation.
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• Dimensionless squared jerk (DSJb) (Balasubramanian et al., 2012):

ηDSJt    = √  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

 

 

• Log dimensionless squared jerk (LDSJt) (van Kordelaar et al., 2014):  

ηLDSJt    = ln (√  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
) . 

 

• Dimensionless squared jerk (DSJm) (Marini et al., 2017): 

ηDSJm    = 1
2 √  

(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡,

𝑡𝑡2

𝑡𝑡1
 

Note that this although this is similar to the DSJt  (Teulings et al., 1997), there is an 

additional 1/2 in the equation. 

 

• Dimensionless squared jerk (DSJb) (Balasubramanian et al., 2012):  

ηDSJb    =
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣peak
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

 

• Log dimensionless squared jerk (LDSJb) (Balasubramanian et al., 2012): 

ηLDSJb    = ln (  
(𝑡𝑡2 − 𝑡𝑡1)3

𝑣𝑣peak
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
), 

 

• Rotational jerk (RJ) (Repnik et al., 2018): 

ηrot    = log √ 
(𝑡𝑡2 − 𝑡𝑡1)5

2𝜃𝜃𝑝𝑝  ∫ ‖𝑑𝑑2𝜔𝜔(𝑡𝑡)
𝑑𝑑𝑡𝑡2 ‖

2
𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
, 

where t1 is the beginning of the movement, t1 the end of the movement, 𝜔𝜔(𝑡𝑡) is the hand angular 
velocity vector and parameter 𝜃𝜃𝑝𝑝 normalizes the jerk index with angular displacement of the 
rotation movement. 

 

• Log dimensionless squared jerk (LDSJb) (Balasubramanian et al., 2012):

ηDSJt    = √  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

 

 

• Log dimensionless squared jerk (LDSJt) (van Kordelaar et al., 2014):  

ηLDSJt    = ln (√  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
) . 

 

• Dimensionless squared jerk (DSJm) (Marini et al., 2017): 

ηDSJm    = 1
2 √  

(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡,

𝑡𝑡2

𝑡𝑡1
 

Note that this although this is similar to the DSJt  (Teulings et al., 1997), there is an 

additional 1/2 in the equation. 

 

• Dimensionless squared jerk (DSJb) (Balasubramanian et al., 2012):  

ηDSJb    =
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣peak
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

 

• Log dimensionless squared jerk (LDSJb) (Balasubramanian et al., 2012): 

ηLDSJb    = ln (  
(𝑡𝑡2 − 𝑡𝑡1)3

𝑣𝑣peak
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
), 

 

• Rotational jerk (RJ) (Repnik et al., 2018): 

ηrot    = log √ 
(𝑡𝑡2 − 𝑡𝑡1)5

2𝜃𝜃𝑝𝑝  ∫ ‖𝑑𝑑2𝜔𝜔(𝑡𝑡)
𝑑𝑑𝑡𝑡2 ‖

2
𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
, 

where t1 is the beginning of the movement, t1 the end of the movement, 𝜔𝜔(𝑡𝑡) is the hand angular 
velocity vector and parameter 𝜃𝜃𝑝𝑝 normalizes the jerk index with angular displacement of the 
rotation movement. 

 

• Rotational jerk (RJ) (Repnik et al., 2018):

ηDSJt    = √  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

 

 

• Log dimensionless squared jerk (LDSJt) (van Kordelaar et al., 2014):  

ηLDSJt    = ln (√  12
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1
) . 

 

• Dimensionless squared jerk (DSJm) (Marini et al., 2017): 

ηDSJm    = 1
2 √  

(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣mean
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡,

𝑡𝑡2

𝑡𝑡1
 

Note that this although this is similar to the DSJt  (Teulings et al., 1997), there is an 

additional 1/2 in the equation. 

 

• Dimensionless squared jerk (DSJb) (Balasubramanian et al., 2012):  

ηDSJb    =
(𝑡𝑡2 − 𝑡𝑡1)3

 𝑣𝑣peak
2 ∫ 𝑥𝑥(𝑡𝑡)2𝑑𝑑𝑡𝑡.

𝑡𝑡2

𝑡𝑡1
 

 

• Log dimensionless squared jerk (LDSJb) (Balasubramanian et al., 2012): 
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• Rotational jerk (RJ) (Repnik et al., 2018): 
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2
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where t1 is the beginning of the movement, t1 the end of the movement, 𝜔𝜔(𝑡𝑡) is the hand angular 
velocity vector and parameter 𝜃𝜃𝑝𝑝 normalizes the jerk index with angular displacement of the 
rotation movement. 
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 is the fast Fourier transform operation. The parameters 
are in this transformation are chosen such that each bin in the frequency 
domain is equal to 0.2 Hz

• Spectral method (SPM) (Balasubramanian et al., 2009):
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 where ṽ(t) is the zero padded version of v(t), V (ω) is the Fourier magnitude 
spectrum of ṽ(t), and [0, ωc] is the frequency band occupied by the given 
movement. Before detecting the maxima, spectral smoothing was done 
using a moving average filter using a window size of 5 samples.

•  Spectral arc length 2012 (SPAL) (Balasubramanian et al., 2012):

 where V(ω) is the Fourier magnitude spectrum of v(t), and [0, ωc] is the 
frequency band occupied by the given movement.

•  Spectral arc length (SPARC) (Balasubramanian et al., 2015) uses the same 
formula as the SPAL. However, to determine ωc the following additional 
formula is used:

 

•  Combined smoothness metric (CSM) (Kostić and Popović, 2013):

• Spectral arc length (SPARC) (Balasubramanian et al., 2015) uses the same formula as the 

SPAL. However, to determine ωc the following additional formula is used: 

 . 

• Combined smoothness metric (CSM) (Kostic and Popovic, 2013): 

𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑒𝑒(𝐽𝐽ℎ+𝐽𝐽𝑖𝑖) + 𝑒𝑒(𝑃𝑃ℎ+𝑃𝑃𝑖𝑖) +  𝑉𝑉𝑖𝑖
𝑉𝑉ℎ

+ 𝑇𝑇𝑖𝑖
𝑇𝑇ℎ

 , 

where 𝐽𝐽𝑖𝑖 is the mean negative jerk, normalized by peak velocity, 𝑃𝑃𝑖𝑖  is the number of peaks in 

the velocity profile, 𝑉𝑉𝑖𝑖 is the ratio of mean velocity and peak velocity and 𝑇𝑇𝑖𝑖 is the ratio of 

area under the velocity profile and its convex hull. The terms 𝐽𝐽ℎ, 𝑃𝑃ℎ, 𝑉𝑉ℎ and 𝑇𝑇ℎ are the normal 

values, which were 1.15, 1, 0.5 and 0.9 respectively (Kostic and Popovic, 2013). 

 

  

 where Ji is the mean negative jerk, normalized by peak velocity, Pi is the 
number of peaks in the velocity profile, Vi is the ratio of mean velocity 
and peak velocity and Ti is the ratio of area under the velocity profile 
and its convex hull. The terms Jh, Ph, Vh  and Th are the normal values, 
which were 1.15, 1, 0.5 and 0.9 respectively (Kostić and Popović, 2013).
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APPENDIX I – INFLUENCE OF THE VELOCITY PROFILE 
MODEL ON MONOTONICITY IN THE SUB-MOVEMENT SIMU-
LATION

A preliminary analysis showed that for the sub-movement simulation, the 
monotonicity of jerk based metrics depended on the base velocity profile for 
the symmetric velocity profile. Therefore, the influence of base velocity profiles 
on the monotonicity was assessed with additional simulations performed 
using Hann and Blackman window as the base symmetric velocity profile. 
Both windows had a total duration of 1s, and a total reaching distance of 0.3 m.

It was found that the monotonicity of jerk based metrics depends on the design 
of the base velocity profile for the vsymm. Further, the choice of normalization 
used influenced the monotonicity. The (L)DSJb metric is normalized by peak 
velocity while (L)DSJt is normalized by mean velocity. Using a Hann velocity 
profile, it was seen that only (L)DSJt increased monotonically. However, when 
employing a Blackman window, all jerk metrics changed monotonically with 
increasing sub-movements and delay between them respectively.

Table I.1 Monotonicity of change in the valid Jerk metrics for the Sub-movements 
simulation

Base Profiles Shows Monotonic Change

DSJt LDSJt DSJb LDSJb

vsymm Minimum Jerk No No No No

Hann Yes Yes No No

Blackman Yes Yes Yes Yes

vasymm Polynomial Yes Yes Yes Yes

Metrics included: Dimensionless Squared jerk (DSJt and DSJb), and log of DSJt and DSJb (LDSJb 
and LDSJt)
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Summary

Stroke, ischemic or haemorrhagic, is the second cause of death worldwide 
(Avan et al., 2019), and the prevalence for stroke is expected to increase 
(Stevens et al., 2017). Most persons with stroke suffer from motor impairment 
on one side of the body, which includes restricted muscle movement or mobility 
(Langhorne et al., 2009a). These affect the independency of the persons with 
stroke, and also subject them to issues of balance, and risk of falls (Kwakkel 
et al., 2019; Li et al., 2018; Morris et al., 2013).

We need to measure recovery in order to develop appropriate therapy post 
stroke. Clinical outcomes suffer from ceiling effects, low resolution, and 
subjectivity (Gladstone et al., 2002; Hsueh et al., 2008; Kwakkel et al., 2017; 
Levin et al., 2009). Contrarily, kinematic and kinetic metrics of movement 
can provide an objective measure of movement quality. These metrics can 
also help distinguish behavioural restitution from compensation strategies 
post stroke (Jones, 2017; Kwakkel et al., 2017). These differences can be used 
to identify tailored therapies that optimally target individual recovery in 
persons with stroke. However, metrics that measure motor recovery and help 
differentiate it from compensation strategies are yet to be identified.

Measuring kinematic and kinetic metrics accurately requires large laboratory 
setups that are not portable. Sensing systems that are wearable can help 
reduce the hassle in setting up measurements, and increase the number of 
measurements performed post stroke. This can offer a better picture of motor 
recovery (Kwakkel et al., 2019). Moreover, minimal systems are better suited 
for clinicians if they wish to measure recovery of the person with stroke in 
their home environment during functional activities (van Meulen et al., 2016a). 
Therefore, there is a need to develop and adapt wearable sensing systems to 
measure metrics of interest.

Based on these gaps, the goal of the thesis was ‘To identify metrics that reflect 
movement quality of upper and lower extremities after stroke and develop wearable 
minimal systems for tracking the proposed metrics’. This broad goal was split into 
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several sub-questions identified within two sections throughout the thesis: 
Section Upper Extremity and Section Lower Extremity.

SECTION UPPER EXTREMITY

In the first section on the Upper Extremity, we focused on identifying kinematic 
and kinetic metrics that can provide objective measures of movement quality 
of the upper extremity. In Chapter II, we identified longitudinal studies that 
used kinematic and/or kinetic metrics to investigate post-stroke recovery 
of reaching using a systematic literature search. We identified 32 studies 
that fit our inclusion criteria, and extracted 46 different kinematic metrics. 
Majority of these studies studied the changes in kinematics within the scope of 
movement quality, but they did not explicitly address the differences between 
behavioural restitution and compensation. This issue needs to be addressed 
urgently. The Stroke Recovery and Rehabilitation Roundtable (SRRR) taskforce 
provided a list of criteria in order to standardize measurement of motor 
recovery post stroke. These criteria could be a useful starting point for setting 
up future studies that identify kinematic and/or kinetic metrics that measure 
movement quality and can distinguish between behavioural restitution and 
compensation.

Of the several objective measures studied post stroke, smoothness has 
commonly been used to measure movement quality of the upper paretic limb 
during reaching tasks (Balasubramanian et al., 2015). However, we found 
that the definition for smoothness of reaching task varied amongst studies 
(Balasubramanian et al., 2015; Rohrer et al., 2002), and therefore, a ‘valid’ 
metric was hard to find. In order to address this ambiguity, we analysed all 
metrics used in stroke research to measure smoothness of reaching by the 
upper paretic limb in Chapter III. After a systematic review, we found 32 
different definitions for smoothness. We assessed each of their mathematical 
definitions and excluded 17 metrics that did not satisfy a set of pre-defined 
criteria. Finally, we assessed the response of the remaining 15 smoothness 
metrics to simulated changes associated with smoothness deficits in the 
reaching profile. Eventually, we found that, for reach-to-point movements, 
the Correlation Metric, and the Spectral Arc Length (SPARC) are valid metrics. 
For reach-to-grasp movements, only SPARC was found to be a valid metric. In 
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a follow up study, that is not included in this thesis, we investigated the time 
course of smoothness deficits early post stroke using the SPARC metric (Saes 
et al., n.d.). We found that recovery from motor impairment reflected by Fugl-
Meyer followed a similar time course to the recovery of smoothness reflected 
by SPARC for reach-to-grasp tasks (Saes et al., n.d.). Therefore, SPARC shows 
promise as a valid smoothness metric for reaching tasks of the upper limb after 
stroke and can be used to study motor recovery post stroke.

Chapters II and III offer us insights into our current understanding of 
kinematics that can reflect movement quality in the upper paretic limb 
especially during reaching. In these chapters and in Chapter XI (General 
Discussion), we offer recommendations for setting up future studies to identify 
metrics that should be tracked post stroke, and also recommend development 
of minimal and wearable systems that can measure these objective metrics.

SECTION LOWER EXTREMITY

In the case of the Lower Extremity, there are a number of different 
spatiotemporal and balance parameters that have been related to gait quality 
(Bruijn et al., 2013; Punt et al., 2017b; van Meulen et al., 2016c). Nevertheless 
as measuring gait quality requires extensive laboratory setups, we rather 
focused on developing wearable solutions in this section. We envision that 
the portability of wearable systems can help accelerate studies that aim to 
study gait recovery.

Measuring gait quality using metrics such as Extrapolated Centre of Mass 
(XCoM) requires knowledge of 3D Ground Reaction Forces (GRF), and 
relative foot positions. As part of an earlier project, the Forceshoes™ was 
conceptually designed and evaluated at the Biomedical Signals and Systems 
group, University of Twente, and built at Xsens Technologies B.V., The 
Netherlands. It consisted of two 3D Force and Moment (F&M) sensors, and 
Inertial Measurement Units (IMUs) on each shoe.

However, the F&M sensors were thick, and heavy, thereby making the 
Forceshoes™ cumbersome. In Chapter IV, we explored the feasibility of 
pressure insoles as an alternative to the bulky Force and Moment (F&M) 
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sensors for measuring 3D GRF. We used subject specific regression models 
that could estimate 3D F&M from 1D plantar pressures and found that the 
approach was applicable for variable walking speeds. We also studied different 
configurations of sensors within the pressure insoles to optimise system 
complexity and accuracy. We found that sensors only under the toe and heel 
were sufficient to estimate the XCoM with an average Root Mean Square (RMS) 
error of 2.2 ± 0.3 cm in the walking direction while walking at a preferred 
speed. Recommendations for minimizing the Forceshoes™ were also provided 
in this chapter.

Portable Gait Lab
The IMUs on-board the Forceshoes™ measured movement kinematics. 
Nonetheless, the kinematics are prone to drift due to strapdown integration, 
and additionally, the IMUs cannot measure relative foot distances. Therefore, 
ultrasound sensors were added to the Forceshoes™ (Weenk et al., 2015). 
However, the additional ultrasound sensors do not help with the portability 
of the setup. Therefore, we developed a minimal sensing setup that employed 
only IMUs to measure kinematics and kinetics of gait.

Existing studies attempted to solve the issue of drift associated with the IMU 
only setup using artificial mathematical constraints (Bancroft et al., 2008; Niu 
et al., 2019; Skog et al., 2012; Sy et al., 2020; Zhao et al., 2018). However, these 
studies do not comment on relative foot distances or may fail during variable 
gait. Therefore, in Chapter V, we explored the Centroidal Moment Pivot (CMP) 
point as a realistic biomechanical principle that can relate movement of the 
foot with that of the Centre of Mass (CoM). The CMP point assumes that the 
net moment around the CoM is zero for ‘stable’ gait (Popovic et al., 2005; 
Schepers et al., 2009), and thus provides:

𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓   =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶  − (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
 )    (S.1) 

where 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  is the virtual CMP point on the ground in the anterio-posterior (AP) or medio-

lateral (ML) direction. f corresponds to the foot that is in stance phase, when the contralateral foot is 

in swing. In (S.1), we require prior knowledge of CoM positions in 3D (𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶 , and 𝒑𝒑𝑍𝑍

𝐶𝐶), and GRF (F) in 3D.  

We studied the relation between the 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  and Centre of Pressure (CoP) in Chapter V. We 

saw that the mean distance between CMP and CoP was 10.5 ± 1.2 % of the foot length over the gait 

cycle. When IMUs are employed, estimating the CoP requires a model of foot rolling during stance, 

and weight shift between the left and right side. Therefore, we simplified (S.1) by assuming that the 

𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  overlaps with the foot trajectory measured by the IMUs, and that the equation is valid during 

single stance phase. We analysed this in Chapter V and found an average error between the CMP and 

foot positions measured by VICON© markers of 9.4 ± 0.1 cm and 1.6 ± 0.4 cm in the AP and ML 

directions respectively. Therefore, we concluded that, after accounting for the error margins, the 

relative movement of the feet and CoM can be modelled during gait using (S.1). 

From Chapters VI – X, we pursued the idea proposed above. We developed a three IMU setup; 

one on each foot, and one on the pelvis, called the Portable Gait Lab (PGL) that employed the CMP 

point assumptions to estimate relative foot and CoM distances. We employed sensor fusion 

techniques to handle the uncertainties with regards to the measurements and assumptions. In 

Chapter VI, we first showed the feasibility of the PGL in estimating 3D GRF from the accelerations at 

the CoM that were measured by the pelvis IMU. We validated the approach on data collected from 

eight healthy participants performing variable over ground gait. The results were compared with the 

reference ForceShoes™. The mean and standard deviation of error between the estimated and the 

reference values of 3D GRF, normalized against the range of the reference, was 12.1 ± 3.3 % across all 

walking tasks, in the horizontal plane.  

The foot movement measured by the foot IMUs was additionally used to express the measured 

GRF with respect to the moving and turning body. The changing reference frame was called the current 

step frame and was defined using the change in foot positions. In Chapter VII, we showed the feasibility 

of estimating the changing reference frame using information from the pelvis IMU alone. This could 

be useful for later studies that wish to measure 3D GRF using only a single pelvis IMU.  

Next, we require 3D CoM positions for (S.1). CoM positions can be derived from CoM velocity, 

which in turn can be estimated from the CoM accelerations. Therefore, we first improved the 

estimations of CoM velocity using a complementary filter method in Chapter VIII. This method fused 

two sources of information regarding the CoM velocity. The RMS of the error between the CoM 

  (S.1)

where cmpf
ax is the virtual CMP point on the ground in the anterio-posterior 

(AP) or medio-lateral (ML) direction. f corresponds to the foot that is in 
stance phase, when the contralateral foot is in swing. In (S.1), we require prior 
knowledge of CoM positions in 3D (pC

ax, and pC
Z), and GRF (F) in 3D.
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We studied the relation between the cmpf
ax and Centre of Pressure (CoP) 

in Chapter V. We saw that the mean distance between CMP and CoP was 
10.5 ± 1.2 % of the foot length over the gait cycle. When IMUs are employed, 
estimating the CoP requires a model of foot rolling during stance, and weight 
shift between the left and right side. Therefore, we simplified (S.1) by assuming 
that the cmpf

ax overlaps with the foot trajectory measured by the IMUs, and 
that the equation is valid during single stance phase. We analysed this in 
Chapter V and found an average error between the CMP and foot positions 
measured by VICON© markers of 9.4 ± 0.1 cm and 1.6 ± 0.4 cm in the AP and 
ML directions respectively. Therefore, we concluded that, after accounting for 
the error margins, the relative movement of the feet and CoM can be modelled 
during gait using (S.1).

From Chapters VI – X, we pursued the idea proposed above. We developed a 
three IMU setup; one on each foot, and one on the pelvis, called the Portable 
Gait Lab (PGL) that employed the CMP point assumptions to estimate relative 
foot and CoM distances. We employed sensor fusion techniques to handle 
the uncertainties with regards to the measurements and assumptions. In 
Chapter VI, we first showed the feasibility of the PGL in estimating 3D GRF 
from the accelerations at the CoM that were measured by the pelvis IMU. 
We validated the approach on data collected from eight healthy participants 
performing variable over ground gait. The results were compared with the 
reference Forceshoes™. The mean and standard deviation of error between the 
estimated and the reference values of 3D GRF, normalized against the range 
of the reference, was 12.1 ± 3.3 % across all walking tasks, in the horizontal 
plane.

The foot movement measured by the foot IMUs was additionally used to 
express the measured GRF with respect to the moving and turning body. The 
changing reference frame was called the current step frame and was defined 
using the change in foot positions. In Chapter VII, we showed the feasibility 
of estimating the changing reference frame using information from the pelvis 
IMU alone. This could be useful for later studies that wish to measure 3D GRF 
using only a single pelvis IMU.
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Next, we require 3D CoM positions for (S.1). CoM positions can be derived from 
CoM velocity, which in turn can be estimated from the CoM accelerations. 
Therefore, we first improved the estimations of CoM velocity using a 
complementary filter method in Chapter VIII. This method fused two sources 
of information regarding the CoM velocity. The RMS of the error between the 
CoM velocity estimated from PGL against the reference VICON© measurement 
was found to be 0.1 ± 0.02 m/s across three healthy participants performing 
six variable walking tasks.

In Chapter IX, we employed the approaches described so far to track relative 
foot and CoM distances. Here, we designed a Kalman filter that fused 
information from strapdown integration of IMU data, and biomechanical 
constraints such as zero velocity, zero height, CoM velocity (Chapter VII), 
and relative segment distances from the CMP assumption; to eventually track 
relative foot and CoM positions. We validated the methods for variable over 
ground gait in six healthy participants. We were able to estimate step lengths 
and step widths with an average absolute error of 4.6 ± 1.5 cm, and 3.8 ± 1.5 cm 
respectively when compared against the reference VICON©. Additionally, we 
showed that the approach helped identify asymmetric gait patterns.

Finally, in Chapter X, we validated the use of the PGL to measure 
spatiotemporal and balance measures in four persons with chronic stroke 
performing the 10 metre walk test. We compared the estimated values with 
reference Forceshoes™ (Weenk et al., 2015). The PGL was able to track foot and 
CoM trajectories with an RMS of the differences of 2.9 ± 0.2 cm and 4.6 ± 3.6 cm 
respectively. The distances between either foot at the end of the walking 
task, and step lengths were estimated by PGL with an average error with the 
reference of 1.98 ± 2.2 cm and 7.8 ± 0.1 cm respectively across participants. 
We showed that the PGL estimated the foot and CoM positions, stance times 
and step lengths well. Therefore, the PGL offers a portable alternative for 
measuring spatiotemporal gait parameters post stroke. Nonetheless, the study 
in Chapter X is limited in the number of participants, and we recommend 
setting up measurements with participants with varying levels of severity.

Finally, in Chapter XI (General Discussion), we offer recommendations for 
improving the PGL and its applicability for gait analysis in other populations. 
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We summarize future research directions that must be addressed as a follow 
up of this thesis.

CONCLUSION

This thesis lays one brick towards building knowledge in improving the 
quality of life post stroke. We focused on understanding movement quality 
post stroke. In Section Upper Extremity, we assess our current understanding of 
the use of biomechanical metrics for movement quality during reaching in the 
upper extremity. Further work is required before we can reach consensus on 
metrics that can measure movement quality and help distinguish behavioural 
restitution from compensation. The same can be said for the lower extremity. 
However, in Section Lower Extremity, the thesis contributes to developing novel 
techniques for developing wearable sensing systems for assessing the quality 
of variable gait in daily life. These offer clinicians and researchers tools to 
increase measurement times post stroke or move towards home monitoring 
after discharge. We hope the ideas and arguments presented in this thesis can 
contribute to standardizing stroke recovery research.
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Samenvatting

Beroerte (ischemisch of hemorragisch) is wereldwijd de tweede doodsoorzaak 
(Avan et al., 2019) en de verwachting is dat de prevalentie van beroerte zal 
toenemen (Stevens et al., 2017). De meeste mensen met een beroerte hebben 
een motorische beperking aan één kant van het lichaam, waaronder beperkte 
spierbeweging of mobiliteit (Langhorne et al., 2009). Dit beïnvloedt de 
onafhankelijkheid van de personen en stelt hen ook bloot aan balansproblemen 
en het risico op vallen (Kwakkel et al., 2019; Li et al., 2018; Morris et al., 2013).

We moeten het herstel meten om een geschikte therapie na een beroerte te 
ontwikkelen. Klinische uitkomstmaten hebben echter problemen zoals ‘ceiling 
effects’, lage resolutie en subjectiviteit (Gladstone et al., 2002; Hsueh et al., 
2008; Kwakkel et al., 2017; Levin et al., 2009). Kinematische en kinetische 
bewegings-metrieken kunnen daarentegen een objectieve maatstaf zijn voor 
de bewegingskwaliteit. Deze metrieken kunnen ook helpen om ‘behavioural 
restitution’ of herstel te onderscheiden van compensatiestrategieën na 
een beroerte (Jones, 2017; Kwakkel et al., 2017). Deze verschillen kunnen 
worden gebruikt om therapieën op maat te identificeren die optimaal gericht 
zijn op individueel herstel bij personen die een beroerte hebben gehad. 
Metrieken die motorherstel meten en helpen dit te onderscheiden van 
compensatiestrategieën, moeten echter nog worden geïdentificeerd.

Het nauwkeurig meten van kinematische en kinetische metrieken vereist 
grote laboratoriumopstellingen die niet draagbaar zijn. Aangezien minimale 
draagbare detectiesystemen het opzetten van de metingen eenvoudiger maakt, 
kunnen er na een beroerte meer metingen uitgevoerd worden. Dit kan een 
beter beeld geven van motorisch herstel (Kwakkel et al., 2019). Bovendien zijn 
minimale systemen geschikter voor clinici als ze het herstel van de persoon na 
een beroerte in hun thuisomgeving willen meten tijdens dagelijkse activiteiten 
(van Meulen et al., 2016a). Daarom is er behoefte aan de ontwikkeling van 
draagbare detectiesystemen die metrische gegevens meten die van belang zijn.

Op basis van deze hiaten, was het doel van het proefschrift ‘Het identificeren 
van metrieken die de bewegingskwaliteit van de bovenste en onderste extremiteit 
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na een beroerte kunnen identificeren en het ontwikkelen van draagbare minimale 
systemen voor het meten van de voorgestelde metrieken’. Dit brede doel werd 
opgesplitst in verschillende deelvragen die in twee secties in het proefschrift 
zijn geïdentificeerd; Secties Boventse Extremiteit (Upper Extremity) en Onderste 
Extremiteit (Lower Extremity).

Sectie Bovenste Extremiteit
In de eerste Sectie Bovenste Extremiteit hebben we ons gericht op het 
identificeren van kinematische en kinetische metrieken die objectieve 
maatstaven kunnen geven van de bewegingskwaliteit van de bovenste 
extremiteit. In Hoofdstuk II hebben we longitudinale studies geïdentificeerd 
die kinematische en/of kinetische metrieken gebruikten om het herstel van 
reiken met de paretische arm na een beroerte te onderzoeken met behulp 
van een systematisch literatuuronderzoek. Van de 32 studies die voldoen 
aan de inclusiecriteria, hebben we 46 verschillende kinematische metrieken 
geëxtraheerd. De meerderheid van deze studies onderzocht de veranderingen 
in de kinematica in het kader van bewegingskwaliteit, maar ze gingen niet 
expliciet in op de verschillen tussen herstel en compensatie. Dit probleem moet 
dringend worden aangepakt. De taskforce Stroke Recovery and Rehabilitation 
Roundtable (SRRR) heeft een lijst met criteria opgesteld om het meten van 
motorisch herstel na een beroerte te standaardiseren (Kwakkel et al., 2019). 
Deze criteria zouden een nuttig uitgangspunt kunnen zijn voor het opzetten 
van toekomstige studies die kinematische en/of kinetische metrieken 
identificeren die de bewegingskwaliteit meten en die onderscheid kunnen 
maken tussen gedragsherstel en compensatie.

Van de verschillende objectieve metrieken die na een beroerte zijn bestudeerd, 
wordt ‘smoothness’ vaak gebruikt om de bewegingskwaliteit van de paretische 
arm te meten tijdens de taken om naar iets te reiken (Balasubramanian et 
al., 2015). We ontdekten echter dat de definitie voor smoothness in taken 
om naar iets te reiken, varieerde tussen de studies (Balasubramanian et 
al., 2015; Rohrer et al., 2002), waardoor een ‘geldige’ metriek moeilijk te 
vinden was. Om deze probleem aan te pakken, hebben we in Hoofdstuk III 
een rigoureuze analyse uitgevoerd van de smoothness metrieken die worden 
gebruikt in het onderzoek naar beroertes. Dit werd gedaan door eerst 
systematisch de literatuur te herzien. We vonden 32 verschillende definities 
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voor de smoothness metriek tijdens het reiken van de paretische arm. We 
hebben elk van hun wiskundige definities beoordeeld aan de hand van een 
reeks vooraf gedefinieerde criteria en 17 metrieken uitgesloten. Ten slotte 
hebben we de respons beoordeeld van de resterende 15 smoothness maten op 
gesimuleerde veranderingen die verband houden met smoothness tekorten 
tijdens het reiken van de arm. Uiteindelijk ontdekten we dat, voor reiken met 
de arm naar iets te wijzen, de Correlation Metric en de Spectral Arc Length 
(SPARC) geldige metrieken zijn. Voor reiken met de arm naar iets gepakt moet 
worden, bleek alleen SPARC een geldige metriek. In een vervolgstudie, die niet 
in dit proefschrift is opgenomen, hebben we het tijdsverloop van smoothness 
tekorten kort na een beroerte onderzocht met behulp van de SPARC-metriek 
(Saes et al., n.d.). We ontdekten dat het herstel van motorische beperking 
weerspiegeld door Fugl-Meyer, een vergelijkbaar tijdsverloop volgde als het 
herstel van smoothness weerspiegeld door SPARC, voor taken van reiken met 
de arm naar iets gepakt moet worden (Saes et al., n.d.). Daarom is SPARC 
veelbelovend als een geldige metriek voor smoothness voor taken van reiken 
met de arm na een beroerte, en kan het worden gebruikt om motorisch herstel 
na een beroerte te bestuderen.

Hoofdstukken II en III bieden ons inzicht in onze huidige kennis van 
kinematica die de kwaliteit van de beweging in de paretische arm vooral 
tijdens reik-taken kan reflecteren. In deze hoofdstukken en in Hoofdstuk XI 
(Generale Discussie) doen we aanbevelingen voor het opzetten van 
toekomstige studies om metrieken te identificeren die na een beroerte moeten 
worden bijgehouden, en bevelen we ook de ontwikkeling aan van minimale en 
draagbare systemen die deze objectieve metrieken kunnen meten.

Sectie Onderste Extremiteit
In het geval van de onderste extremiteit zijn er een aantal verschillende 
spatiotemporale en balansparameters die gerelateerd zijn aan de gangkwaliteit 
(Bruijn et al., 2013; Punt et al., 2017; van Meulen et al., 2016b). Omdat het 
meten van de gangkwaliteit echter uitgebreide laboratoriumopstellingen 
vereist, hebben we ons in deze sectie eerder gericht op het ontwikkelen 
van draagbare oplossingen. We stellen ons voor dat de draagbaarheid van 
draagbare systemen kan helpen bij het versnellen van onderzoeken die gericht 
zijn op het bestuderen van loopherstel.
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Het meten van de loopkwaliteit met behulp van meetgegevens zoals het 
geëxtrapoleerde zwaartepunt (XCoM) vereist kennis van 3D Ground Reaction 
Forces (GRF) en relatieve voetposities. Als onderdeel van een eerder project, de 
Forceshoes™ is conceptueel ontworpen en geëvalueerd door de Biomedische 
Signalen en Systemen groep, Universiteit Twente, en gebouwd door Xsens 
Technologies BV, Nederland. Het bestond uit twee 3D Force and Moment 
(F&M)-sensoren en twee ‘Inertial Measument Units’ (IMUs) op elke schoen.

De F&M-sensoren waren echter dik en zwaar, wat de Forceshoes™ log maakte. 
In Hoofdstuk IV hebben we de haalbaarheid onderzocht van drukzolen als 
alternatief voor de omvangrijke F&M-sensoren voor het meten van 3D F&M. 
We gebruikten gebruiker specifieke regressiemodellen die 3D F&M konden 
inschatten op basis van 1D druk informatie, en ontdekten dat de benadering 
toepasbaar was voor variabele loopsnelheden. We hebben ook verschillende 
configuraties van sensoren in de drukzolen bestudeerd om de complexiteit en 
nauwkeurigheid van het systeem te optimaliseren. We ontdekten dat sensoren 
onder de teen en hiel voldoende waren om de XCoM te schatten met een 
gemiddelde Root Mean Square (RMS) fout van 2,2 ± 0,3 cm in de looprichting 
tijdens het lopen met een voorkeurssnelheid. Hoofdstuk IV belichtte ook de 
bijdrage van voetkinematica en -kinetiek bij het schatten van de XCoM. In dit 
hoofdstuk werden ook aanbevelingen gegeven voor het minimaliseren van de 
Forceshoes™.

Portable Gait Lab
De IMU’s aan de Forceshoes™ hebben bewegingskinematica gemeten. De 
kinematica is echter vatbaar voor drift als gevolg van de strapdown-integratie 
en bovendien kunnen de IMU’s de relatieve voetafstanden niet meten. 
Daarom werden een echografiesysteem toegevoegd aan de Forceshoes™. Het 
extra echografiesysteem helpt echter niet bij aan de draagbaarheid van het 
systeem. Er zijn eerdere onderzoeken geweest die de drift tussen de voet-
IMU’s verminderden zonder het gebruik van extra afstandssensoren, door 
kunstmatige wiskundige beperkingen te gebruiken (Bancroft et al., 2008; 
Niu et al., 2019; Skog et al., 2012; Sy et al., 2020; Zhao et al., 2018). Deze 
onderzoeken geven echter geen commentaar op relatieve voetafstanden of 
geven fouten tijdens variabel lopen. Daarom is, in Hoofdstuk V, het Centroidal 
Moment Pivot (CMP) punt geïdentificeerd als een realistisch biomechanisch 
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principe dat beweging van de voet kan relateren aan dat van de CoM. Het CMP 
punt neemt aan dat de netto momenten rond de CoM nul zijn voor een stabiele 
gang (Popovic et al., 2005; Schepers et al., 2009), en geeft:

𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓   =  𝒑𝒑𝑎𝑎𝑎𝑎

𝐶𝐶  − (𝒑𝒑𝑍𝑍
𝐶𝐶 ⋅ 𝐹𝐹𝑎𝑎𝑎𝑎

𝐹𝐹𝑍𝑍
 )    (S.1) 

where 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  is the virtual CMP point on the ground in the anterio-posterior (AP) or medio-

lateral (ML) direction. f corresponds to the foot that is in stance phase, when the contralateral foot is 

in swing. In (S.1), we require prior knowledge of CoM positions in 3D (𝒑𝒑𝑎𝑎𝑎𝑎
𝐶𝐶 , and 𝒑𝒑𝑍𝑍

𝐶𝐶), and GRF (F) in 3D.  

We studied the relation between the 𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  and Centre of Pressure (CoP) in Chapter V. We 

saw that the mean distance between CMP and CoP was 10.5 ± 1.2 % of the foot length over the gait 

cycle. When IMUs are employed, estimating the CoP requires a model of foot rolling during stance, 

and weight shift between the left and right side. Therefore, we simplified (S.1) by assuming that the 

𝒄𝒄𝒄𝒄𝒑𝒑𝑎𝑎𝑎𝑎
𝑓𝑓  overlaps with the foot trajectory measured by the IMUs, and that the equation is valid during 

single stance phase. We analysed this in Chapter V and found an average error between the CMP and 

foot positions measured by VICON© markers of 9.4 ± 0.1 cm and 1.6 ± 0.4 cm in the AP and ML 

directions respectively. Therefore, we concluded that, after accounting for the error margins, the 

relative movement of the feet and CoM can be modelled during gait using (S.1). 

From Chapters VI – X, we pursued the idea proposed above. We developed a three IMU setup; 

one on each foot, and one on the pelvis, called the Portable Gait Lab (PGL) that employed the CMP 

point assumptions to estimate relative foot and CoM distances. We employed sensor fusion 

techniques to handle the uncertainties with regards to the measurements and assumptions. In 

Chapter VI, we first showed the feasibility of the PGL in estimating 3D GRF from the accelerations at 

the CoM that were measured by the pelvis IMU. We validated the approach on data collected from 

eight healthy participants performing variable over ground gait. The results were compared with the 

reference ForceShoes™. The mean and standard deviation of error between the estimated and the 

reference values of 3D GRF, normalized against the range of the reference, was 12.1 ± 3.3 % across all 

walking tasks, in the horizontal plane.  

The foot movement measured by the foot IMUs was additionally used to express the measured 

GRF with respect to the moving and turning body. The changing reference frame was called the current 

step frame and was defined using the change in foot positions. In Chapter VII, we showed the feasibility 

of estimating the changing reference frame using information from the pelvis IMU alone. This could 

be useful for later studies that wish to measure 3D GRF using only a single pelvis IMU.  

Next, we require 3D CoM positions for (S.1). CoM positions can be derived from CoM velocity, 

which in turn can be estimated from the CoM accelerations. Therefore, we first improved the 

estimations of CoM velocity using a complementary filter method in Chapter VIII. This method fused 

two sources of information regarding the CoM velocity. The RMS of the error between the CoM 

 (S.1)

waar cmpf
ax is het virtuele CMP punt op de grond in de anteroposteriore 

(AP) of mediolaterale (ML) richting. f verwijst naar de voet die zich in de 
standfase bevindt, wanneer de contralaterale voet in swingfase is. In (S.1) 
hebben we voorkennis nodig van de CoM posities in 3D (pC

ax, en pC
Z), en de 

grondreactiekrachten (F) in 3D.

We bestudeerden eerst de relatie tussen cmpf
ax en het drukmiddelpunt (CoP) 

in Hoofdstuk V. We zagen dat de gemiddelde afstand tussen de CMP en CoP 
10,5 ± 1,2% van de voetlengte over de gangcyclus was. Wanneer IMU’s worden 
gebruikt, vereist het schatten van de CoP een model van het rollen van de voet 
tijdens het standfase en het verschuiven van het gewicht tussen de linker- 
en rechterkant. Daarom hebben we (S.1) vereenvoudigd door aan te nemen 
dat de cmpf

ax overlapt met de voetposities gemeten door de IMU’s, en dat de 
vergelijking geldig is tijdens de standfase van enkele voet. We analyseerden dit 
in Hoofdstuk V en vonden een gemiddelde fout tussen de CMP- en voetposities 
gemeten door VICON© markers van respectievelijk 9,4 ± 0,1 cm en 1,6 ± 0,4 cm 
 in de AP- en ML-richting. Daarom hebben we geconcludeerd dat, na het in 
acht nemen van de foutmarges, de relatieve beweging van de voeten en CoM 
tijdens het lopen gemodelleerd kan worden met behulp van (S.1).

Vanaf de Hoofdstukken VI - X, hebben we het hierboven voorgestelde idee 
verder ontwikkeld. We hebben een configuratie met drie IMU’s ontwikkeld; 
één op elke voet en één op het bekken, genaamd de Portable Gait Lab (PGL) 
dat de CMP punt aannames gebruikte om relatieve voet- en CoM-afstanden te 
schatten. We hebben sensorfusietechnieken gebruikt om met de onzekerheden 
met betrekking tot de metingen en aannames om te gaan. In Hoofdstuk VI 
 hebben we eerst de haalbaarheid van de PGL laten zien om 3D GRF te 
schatten van de versnellingen bij de CoM die werden gemeten door de IMU 
op het bekken. We hebben de aanpak gevalideerd op basis van gangmeten die 
zijn verzameld bij acht gezonde proefpersonen die verschillende looptaken 



338

uitvoerde. De resultaten werden vergeleken met de referentiekrachten 
gemeten door de Forceshoes™. Het gemiddelde en de standaarddeviatie van 
de fout tussen de geschatte 3D GRF en de referentiewaarden, genormaliseerd 
ten opzichte van het referentiebereik, was 12,1 ± 3,3% in het horizontale vlak, 
voor alle looptaken.

De voetbeweging gemeten door de voet-IMU’s werd aanvullend gebruikt om 
de gemeten GRF uit te presenteren met betrekking tot het bewegende lichaam. 
Het veranderende referentieframe werd het huidige stappenframe (‘current 
step frame’) genoemd en werd gedefinieerd met behulp van de verandering in 
voetposities. In Hoofdstuk VII hebben we de haalbaarheid laten zien van het 
schatten van het veranderende referentieframe met alleen informatie van de 
bekken-IMU. Dit kan nuttig zijn voor latere studies die 3D GRF willen meten 
met slechts één IMU op het bekken.

Vervolgens hebben we 3D CoM posities nodig voor (S.1). De CoM posities 
zijn afgeleid van CoM snelheid, die worden geschat op basis van de CoM-
versnellingen. Daarom hebben we eerst de schattingen van CoM-snelheid 
verbeterd met behulp van een ‘complementary filter’ methode in Hoofdstuk 
VIII. Deze methode combineert twee bronnen die aanvullende informatie over 
de CoM snelheid leverden. De RMS van de fout tussen de CoM snelheid geschat 
op basis van PGL en de VICON© referentiemeting bleek 0,1 ± 0,02 m/s te zijn 
voor drie gezonde proefpersonen die zes verschillende looptaken uitvoerden.

In Hoofdstuk IX hebben we de tot dusver beschreven benaderingen gebruikt 
om relatieve voet- en CoM afstanden te volgen. Hier hebben we een Kalman 
filter ontworpen dat informatie van de strapdown integratie van IMU data 
en biomechanische randvoorwaarden zoals ‘zero velocity’, ‘zero height’, CoM 
snelheid (Hoofdstuk VII), en relatieve segmentafstanden van de CMP-
aanname samenvoegde, om uiteindelijk de relatieve voet- en CoM- posities 
te meten. We valideerden de methodes voor verschillende looppatronen bij zes 
gezonde proefpersonen. We waren in staat om staplengtes en stapbreedtes te 
schatten met een gemiddelde absolute fout van respectievelijk 4,6 ± 1,5 cm 
en 3,8 ± 1,5 cm in vergelijking met de referentie VICON©. Bovendien toonden 
we aan dat de aanpak hielp bij het identificeren van een asymmetrisch 
looppatroon.
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Tenslotte hebben we in Hoofdstuk X het gebruik van de PGL gevalideerd 
om spatiotemporale en balansparameters te meten bij vier mensen met 
een beroerte in de chronische fase die de 10 meter looptest uitvoerden. We 
vergeleken de geschatte waarden met Forceshoes™ als de referentiesysteem 
(Weenk et al., 2015). De PGL was in staat om voet- en CoM- trajecten te meten 
met een RMS van de verschillen met de referentie van 2,9 ± 0,2 cm en 4,6 
± 3,6 cm. De afstanden tussen beide voeten aan het einde van de looptaak 
en staplengtes werden geschat door de PGL met een gemiddelde fout van 
respectievelijk 1,98 ± 2,2 cm en 7,8 ± 0,1 cm ten opzichte van de referentie, 
over de deelnemers. We toonden aan dat de PGL de voet- en CoM- posities, 
staptijden, en staplengtes goed inschatte. Daarom biedt de PGL een draagbaar 
alternatief voor het meten van spatiotemporale gangparameters na een 
beroerte. Desalniettemin is onze studie in Hoofdstuk X beperkt in het aantal 
proefpersonen, en we raden aan om metingen uit te voeren met deelnemers 
uit verschillende (herstel-)fases na een beroerte.

Ten slotte doen we in Hoofdstuk XI (General Discussion) aanbevelingen voor 
het verbeteren van de PGL en de toepasbaarheid ervan voor ganganalyse in 
andere populaties. We vatten toekomstige onderzoeksrichtingen samen die 
als vervolg op dit proefschrift moeten worden aangepakt.

CONCLUSIE

Dit proefschrift legt een steen voor het opbouwen van onze kennis om de 
kwaliteit van leven na een beroerte te verbeteren. We hebben ons gericht op 
het begrip van bewegingskwaliteit na een beroerte. In de Sectie Bovenste 
Extremiteit beoordelen we onze huidige kennis van het gebruik van 
biomechanische metrieken voor bewegingskwaliteit tijdens het reiken in 
de bovenste extremiteit. Onze studies tonen aan dat verdere werk is nodig 
voordat we consensus kunnen bereiken over specifieke metrieken die de 
bewegingskwaliteit kunnen meten en helpen om onderscheid te maken 
tussen herstel en compensatie. Hetzelfde kan gezegd worden voor de onderste 
extremiteit. In de Sectie Onderste Extremiteit draagt het proefschrift echter 
bij aan de ontwikkeling van nieuwe technieken voor het ontwikkelen van 
draagbare detectiesystemen voor het beoordelen van de kwaliteit van 
verschillende lopen in het dagelijks leven. Deze bieden clinici en onderzoekers 
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hulpmiddelen om het aantal metingen na een beroerte te verhogen of om 
na ontslag over te gaan op thuismonitoring. We hopen dat de ideeën en 
argumenten die in dit proefschrift worden gepresenteerd, kunnen bijdragen 
aan het standaardiseren van het onderzoek van herstel na een beroerte.
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