3,273 research outputs found

    A generic optimisation-based approach for improving non-intrusive load monitoring

    Get PDF
    The large-scale deployment of smart metering worldwide has ignited renewed interest in electrical load disaggregation, or non-intrusive load monitoring (NILM). Most NILM algorithms disaggregate one appliance at a time, remove the estimated appliance contribution from the total load, and then move on to disaggregate the next appliance. On one hand, this is efficient since multi-class classification is avoided and analytical models for each appliance can be developed independently of other appliances with the benefit of being transferred to unseen houses that have different sets of appliances. On the other hand, however, these methods can significantly under- or over- estimate the total consumption since they do not minimise the difference between the measured aggregate load and the sum of estimated individual loads. Motivated by minimising the latter difference without losing the benefits of existing NILM algorithms, we propose novel post-processing approaches for improving the accuracy of existing NILM. This is posed as an optimisation problem to refine the final NILM result using regularisation, based on the level of confidence in the original NILM output. First, we propose a heuristic method to solve this (combinatorial) boolean quadratic problem through relaxing zero-one constraint sets to compact zero-one intervals. Convex-based solutions, including norm-1, norm-2 and semi-definite programming-based relaxation, are proposed trading off accuracy and complexity. We demonstrate good performance of the proposed post-processing methods, applicable to any event-based NILM, compared with 4 state-of-the-art benchmarks, using public REFIT and REDD electrical load datasets

    Low-rate non-intrusive load monitoring approaches via graph signal processing

    Get PDF
    The large-scale roll-out of smart metering worldwide brings many new application possibilities. One promising application is appliance-level energy feedback based on identifying individual loads from aggregate measurements. Driven by high application potentials, the research in this area has intensified. In particular, non-intrusive load monitoring (NILM), that is, estimating appliance load consumption from aggregate readings, using software means only, has attracted a lot of attention, since it does not require any additional hardware to be installed. This thesis first proposes two Graph Signal Processing (GSP)-based approaches for disaggregation of total energy consumption down to individual appliances used. The first approach uses the Graph Laplacian Regularisation (GLR) minimiser results as a starting point, adding further refinement via Simulated Annealing (SA). The second approach applies data segmentation and associates data segments with graph nodes. A Dynamic Time Warping (DTW) distance is applied for evaluating weights between graph nodes. GLR minimiser is again used for clustering. Finally, a generic optimisation based approach is proposed for improving the accuracy of existing NILM by minimising the difference between the measured aggregate load and the sum of estimated individual loads with the difference from original NILM approaches' results as regularisation. For all proposed methods, the competitive performance are demonstrated in terms of both accuracy and effciency compared to state-of-the-art approaches, using the public Personalised Retrofit Decision Support Tools For UK Homes Using Smart Home Technology (REFIT) dataset and Reference Energy Disaggregation Dataset (REDD) electrical load datasets.The large-scale roll-out of smart metering worldwide brings many new application possibilities. One promising application is appliance-level energy feedback based on identifying individual loads from aggregate measurements. Driven by high application potentials, the research in this area has intensified. In particular, non-intrusive load monitoring (NILM), that is, estimating appliance load consumption from aggregate readings, using software means only, has attracted a lot of attention, since it does not require any additional hardware to be installed. This thesis first proposes two Graph Signal Processing (GSP)-based approaches for disaggregation of total energy consumption down to individual appliances used. The first approach uses the Graph Laplacian Regularisation (GLR) minimiser results as a starting point, adding further refinement via Simulated Annealing (SA). The second approach applies data segmentation and associates data segments with graph nodes. A Dynamic Time Warping (DTW) distance is applied for evaluating weights between graph nodes. GLR minimiser is again used for clustering. Finally, a generic optimisation based approach is proposed for improving the accuracy of existing NILM by minimising the difference between the measured aggregate load and the sum of estimated individual loads with the difference from original NILM approaches' results as regularisation. For all proposed methods, the competitive performance are demonstrated in terms of both accuracy and effciency compared to state-of-the-art approaches, using the public Personalised Retrofit Decision Support Tools For UK Homes Using Smart Home Technology (REFIT) dataset and Reference Energy Disaggregation Dataset (REDD) electrical load datasets

    Non-intrusive load monitoring solutions for low- and very low-rate granularity

    Get PDF
    Strathclyde theses - ask staff. Thesis no. : T15573Large-scale smart energy metering deployment worldwide and the integration of smart meters within the smart grid are enabling two-way communication between the consumer and energy network, thus ensuring an improved response to demand. Energy disaggregation or non-intrusive load monitoring (NILM), namely disaggregation of the total metered electricity consumption down to individual appliances using purely algorithmic tools, is gaining popularity as an added-value that makes the most of meter data.In this thesis, the first contribution tackles low-rate NILM problem by proposing an approach based on graph signal processing (GSP) that does not require any training.Note that Low-rate NILM refers to NILM of active power measurements only, at rates from 1 second to 1 minute. Adaptive thresholding, signal clustering and pattern matching are implemented via GSP concepts and applied to the NILM problem. Then for further demonstration of GSP potential, GSP concepts are applied at both, physical signal level via graph-based filtering and data level, via effective semi-supervised GSP-based feature matching. The proposed GSP-based NILM-improving methods are generic and can be used to improve the results of various event-based NILM approaches. NILM solutions for very low data rates (15-60 min) cannot leverage on low to highrates NILM approaches. Therefore, the third contribution of this thesis comprises three very low-rate load disaggregation solutions, based on supervised (i) K-nearest neighbours relying on features such as statistical measures of the energy signal, time usage profile of appliances and reactive power consumption (if available); unsupervised(ii) optimisation performing minimisation of error between aggregate and the sum of estimated individual loads, where energy consumed by always-on load is heuristically estimated prior to further disaggregation and appliance models are built only by manufacturer information; and (iii) GSP as a variant of aforementioned GSP-based solution proposed for low-rate load disaggregation, with an additional graph of time-of-day information.Large-scale smart energy metering deployment worldwide and the integration of smart meters within the smart grid are enabling two-way communication between the consumer and energy network, thus ensuring an improved response to demand. Energy disaggregation or non-intrusive load monitoring (NILM), namely disaggregation of the total metered electricity consumption down to individual appliances using purely algorithmic tools, is gaining popularity as an added-value that makes the most of meter data.In this thesis, the first contribution tackles low-rate NILM problem by proposing an approach based on graph signal processing (GSP) that does not require any training.Note that Low-rate NILM refers to NILM of active power measurements only, at rates from 1 second to 1 minute. Adaptive thresholding, signal clustering and pattern matching are implemented via GSP concepts and applied to the NILM problem. Then for further demonstration of GSP potential, GSP concepts are applied at both, physical signal level via graph-based filtering and data level, via effective semi-supervised GSP-based feature matching. The proposed GSP-based NILM-improving methods are generic and can be used to improve the results of various event-based NILM approaches. NILM solutions for very low data rates (15-60 min) cannot leverage on low to highrates NILM approaches. Therefore, the third contribution of this thesis comprises three very low-rate load disaggregation solutions, based on supervised (i) K-nearest neighbours relying on features such as statistical measures of the energy signal, time usage profile of appliances and reactive power consumption (if available); unsupervised(ii) optimisation performing minimisation of error between aggregate and the sum of estimated individual loads, where energy consumed by always-on load is heuristically estimated prior to further disaggregation and appliance models are built only by manufacturer information; and (iii) GSP as a variant of aforementioned GSP-based solution proposed for low-rate load disaggregation, with an additional graph of time-of-day information

    Post-processing for event-based non-intrusive load monitoring

    Get PDF
    Most current non-intrusive load monitoring (NILM) algorithms disaggregate one appliance at a time, remove the appliance contribution towards the total load, and then move on to the next appliance. On one hand, this is effective since it avoids multi-class classification, and analytical models for each appli- ance can be developed independently of other appliances, and thus potentially transferred to unseen houses that have different sets of appliances. On the other hand, however, these methods can significantly under/over estimate the total consumption since they do not minimise the difference between the measured aggregate readings and the sum of estimated individual loads. By considering this difference, we propose a post-processing approach for improving the accuracy of event-based NILM. We pose an optimisation problem to refine the original disaggregation result and propose a heuristic to solve a (combinatorial) boolean quadratic problem through relaxing zero-one constraint sets to compact zero-one intervals. We propose a method to set the regularization term, based on the appliance working power. We demonstrate high performance of the proposed post-processing method compared with the simulated annealing method and original disaggregation results, for three houses in the REFIT dataset using two state-of-the-art event-based NILM methods

    Data fusion strategies for energy efficiency in buildings: Overview, challenges and novel orientations

    Full text link
    Recently, tremendous interest has been devoted to develop data fusion strategies for energy efficiency in buildings, where various kinds of information can be processed. However, applying the appropriate data fusion strategy to design an efficient energy efficiency system is not straightforward; it requires a priori knowledge of existing fusion strategies, their applications and their properties. To this regard, seeking to provide the energy research community with a better understanding of data fusion strategies in building energy saving systems, their principles, advantages, and potential applications, this paper proposes an extensive survey of existing data fusion mechanisms deployed to reduce excessive consumption and promote sustainability. We investigate their conceptualizations, advantages, challenges and drawbacks, as well as performing a taxonomy of existing data fusion strategies and other contributing factors. Following, a comprehensive comparison of the state-of-the-art data fusion based energy efficiency frameworks is conducted using various parameters, including data fusion level, data fusion techniques, behavioral change influencer, behavioral change incentive, recorded data, platform architecture, IoT technology and application scenario. Moreover, a novel method for electrical appliance identification is proposed based on the fusion of 2D local texture descriptors, where 1D power signals are transformed into 2D space and treated as images. The empirical evaluation, conducted on three real datasets, shows promising performance, in which up to 99.68% accuracy and 99.52% F1 score have been attained. In addition, various open research challenges and future orientations to improve data fusion based energy efficiency ecosystems are explored

    Data Consistency for Data-Driven Smart Energy Assessment

    Get PDF
    In the smart grid era, the number of data available for different applications has increased considerably. However, data could not perfectly represent the phenomenon or process under analysis, so their usability requires a preliminary validation carried out by experts of the specific domain. The process of data gathering and transmission over the communication channels has to be verified to ensure that data are provided in a useful format, and that no external effect has impacted on the correct data to be received. Consistency of the data coming from different sources (in terms of timings and data resolution) has to be ensured and managed appropriately. Suitable procedures are needed for transforming data into knowledge in an effective way. This contribution addresses the previous aspects by highlighting a number of potential issues and the solutions in place in different power and energy system, including the generation, grid and user sides. Recent references, as well as selected historical references, are listed to support the illustration of the conceptual aspects
    • …
    corecore