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Abstract—The large-scale deployment of smart metering
worldwide has ignited renewed interest in electrical load disag-
gregation, or non-intrusive load monitoring (NILM). Most NILM
algorithms disaggregate one appliance at a time, remove the
estimated appliance contribution from the total load, and then
move on to disaggregate the next appliance. On one hand, this is
efficient since multi-class classification is avoided and analytical
models for each appliance can be developed independently of
other appliances with the benefit of being transferred to unseen
houses that have different sets of appliances. On the other hand,
however, these methods can significantly under- or over- estimate
the total consumption since they do not minimise the difference
between the measured aggregate load and the sum of estimated
individual loads. Motivated by minimising the latter difference
without losing the benefits of existing NILM algorithms, we
propose novel post-processing approaches for improving the
accuracy of existing NILM. This is posed as an optimisation
problem to refine the final NILM result using regularisation,
based on the level of confidence in the original NILM output.
First, we propose a heuristic method to solve this (combinatorial)
boolean quadratic problem through relaxing zero-one constraint
sets to compact zero-one intervals. Convex-based solutions, in-
cluding norm-1, norm-2 and semi-definite programming-based
relaxation, are proposed trading off accuracy and complexity. We
demonstrate good performance of the proposed post-processing
methods, applicable to any event-based NILM, compared with
4 state-of-the-art benchmarks, using public REFIT and REDD
electrical load datasets.

Index Terms—energy disaggregation, smart metering, NILM

I. INTRODUCTION

The key motivator for ongoing large-scale smart metering
deployments worldwide [1], [2] is to maximise benefits of
the smart grid. Smart meter data has been shown to improve
grid operation and maintenance of distribution networks [3],
fault detection [4], non-technical loss detection [5], outage
prediction [6], load forecasting [7], demand response [8] and
improving customer satisfaction, including accurate billing and
meaningful energy feedback via Non-Intrusive Load Mon-
itoring (NILM), that is, disaggregating the total household
consumption down to the load level [9], [10], [11]. Hence,
smart meter data analytics are critical to the success of the
smart grid [12].

While this paper focuses on NILM, the proposed methods
are also applicable to the broader smart meter analytics com-
munity, many of which rely on optimisation methods, e.g.,
demand response management [8], electricity theft detection
[13], and power flow optimisation in microgrids [14].

Estimates of individual load consumption can be obtained
by submetering. However, this is intrusive and non-scalable,
particularly for the residential sector, since this requires addi-
tional appliance-level meters, beyond a standard smart meter.
An alternative approach, i.e., NILM, is to estimate consump-
tion of individual loads directly from aggregate, smart meter
readings through algorithms designed for this purpose. NILM
can thus support energy efficiency measures [15], demand side
management including load shifting [16], anomaly detection
[17] and many other applications that require load-level energy
consumption.

While research on NILM has primarily revolved on high
frequency load measurements, the lower rates provided by
smart metering initiatives [1], [2] are driving research into
low-rate smart meter datasets [18] and low-rate NILM methods
[10], [16]. Low-rate NILM is particularly challenging due to
noise from unknown appliances, signal transients that act as
noise, load fluctuations, and the fact that the average household
owns over 40 appliances.

NILM methods can be classified as state-based or event-
based methods. State-based NILM approaches represent the
operation of an appliance as a finite state machine and
perform disaggregation based on the state transition model
learned during training. The most common representations are
Hidden Markov Model (HMM)-based methods [19] and their
variants, including Factorial HMM (FHMM) [20], Additive
Factorial HMM with quadratic programming [21] or semi-
definite programming relaxation (SDR) relaxation [22], Super-
state HMM [9], and Latent Bayesian modelling [23]. Though
HMM-based approaches in some cases provide state-of-the-
art results, they require a large amount of relatively noiseless
appliance training data to construct state transition models.
Hence, they perform poorly in the presence of noise, caused
by unknown appliances [16]. The complexity is exponential
with the number of loads, and they struggle when appliance
state durations vary significantly [24].

Event-based NILM approaches [25], [26], [27], on the other
hand, are based on detecting the event of appliance being
switched on or off, and then classifying the extracted features,
where each class corresponds to one appliance. These methods
usually consist of three steps: (1) event detection: detecting
changes in time-series aggregate signal due to one or more
appliances changing their state [28]; (2) feature extraction: the
electrical features, such as active power, duration, min/max

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/195295229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

value, etc., are isolated for each event; (3) classification and
pattern matching, used to classify the events using extracted
features into pre-defined categories, each corresponding to
one appliance, that are learned during training. The multi-
state appliances are usually treated as multiple single-state
appliances, where each state is considered as a single appliance
and afterwards the contribution of all the states are summed to
obtain an estimate of the total appliance consumption. Various
classification methods have been used, including support vec-
tor machines (SVM) [29], neural networks [30], non-negative
tensor factorization [31], k-means [32], decision trees (DT)
[33], and Graph Signal Processing (GSP) [10].

Event-based NILM methods are popular due to their low
complexity, since a simple edge detection is needed followed
by conventional classification. However, most event-based
NILM methods disaggregate one appliance at a time, and do
not check if the sum of the disaggregated loads is approaching
the true measured result, e.g., [19], [20], [33], [34], [29], [35],
[36], [37]. This is a preferred approach (vs. disaggregating all
appliances at once) since it facilitates transfer learning [38]
(i.e., applying the developed appliance models to ‘unseen’
houses) and avoids multi-class classification [9], [20], [39],
[25], [40], which is often less robust to noise. However,
disaggregating one appliance at a time, potentially results in
significant load over/under estimation [31]. By monitoring
how close the sum of the disaggregated loads is to the
aggregate value after a first pass at NILM, that is, through
post-processing, one can potentially improve the accuracy of
current NILM methods without losing their advantages.

Prior work on post-processing NILM output has focused
on manually checking if the disaggregated result is within
acceptable limits, e.g., [16], [41], or is proposed as part of
a specific NILM algorithm [10], [21], [42], [23]. In contrast,
we propose a generic method to improve the accuracy after
conventional NILM is applied, that does not require any
manual intervention, by casting our post-processing problem
as an optimisation problem that aims to minimise the distance
between the sum of the disaggregated loads and the total
measured consumption. A regularisation term is added to
assign a weight based on confidence in the accuracy of the
initial disaggregation result for each appliance.

The resulting optimisation problem is a boolean quadratic
problem (combinatorial in nature) with zero-one type con-
straints, that belongs to the class of NP-hard problems [43],
[44]. By adapting recent convex optimisation methods [43],
[45], we provide three approaches to solve the posed opti-
misation problem which trade off complexity and accuracy.
The first two methods are based on relaxation which changes
the constraint of the optimisation problem to a soft real value
between zero and one: the first, more complex approach, uses
norm-2 minimisation, while the second, reduces the complex-
ity, by casting the problem as a norm-1-type minimisation (see,
e.g., [45]). After the optimal solution is found, the result is
projected back to 0 or 1, entry-wise. The third approach is
based on semi-definite programming relaxation (SDR) [43].

Our motivation for using SDR comes from its demonstrated
high accuracy in many similar problems, such as electricity
theft detection with smart meters [13], power flow optimisation

in microgrids [14], and finding approximate solution with
FHMM-based NILM [22], where the quadratic programming
relaxation of [21] is replaced by SDR to boost performance.

Optimisation methods have been used to address the NILM
problem by minimising the difference between power con-
sumption of the detected events and all possible combinations
of loads [46], [24], [47]. Though various optimisation meth-
ods have been proposed, e.g., integer programming [48] and
genetic algorithms [49], noise, unknown loads, and similar
appliance signatures render these approaches ineffective (see
the last paragraph of Section IIIA). Our proposed methods
differ from the aforementioned approaches, since optimisation
is used to refine or post-process the NILM result by regularis-
ing the cost function with our confidence in the initial NILM
estimate.

To the best of our knowledge, this is the first attempt to
develop a generic approach that can be used to improve the
output of NILM, yielding the following contributions:
• a novel modelling method of how one can incorporate

systematically a first-pass NILM and post-processing into
a common framework leading to a clear mathematical
formulation;

• novel adaptive parameter selection based on the level
of confidence in the first-pass NILM output for each
appliance;

• three proposed approximate solutions to the formulated
optimization problem based on convex relaxation and
convex optimization tools [43], [45];

• demonstrating improvements of the proposed generic
post-processing methods on two state-of-the-art first-pass
NILM methods using two public electrical load measure-
ment datasets;

• demonstrating improvements of the proposed post-
processing methods with four state-of-the-art post-
processing methods [10], [21], [42];

• a detailed analysis, in terms of accuracy and complexity,
of the suitability of the proposed and existing post-
processing NILM methods for different appliance com-
binations contributing to the aggregate load.

II. BACKGROUND

In this section we review state-of-the-art post-processing
approaches in order to identify the research gap and how our
contributions addresses this.

Despite significant progress made in recent years to crack
the low-rate NILM problem suited for widespread national
smart metering programmes [9], [10], [32], [16], [50], [51],
[52], state-of-the-art low-rate NILM methods still do not
demonstrate acceptable levels of accuracy, scalability and
complexity necessary for widespread deployment.

Therefore most approaches have revolved around improving
low-rate NILM accuracy and complexity. Event-based NILM,
as discussed in the previous section, has gained significant
traction for low-rate NILM due to its relatively lower complex-
ity and robustness to noise compared to state-based methods.

Only recently has post-processing of NILM, that is, im-
proving the accuracy of NILM output, been gaining attention
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as a way of leveraging on NILM advantages and improving
accuracy in a targeted manner by observing the results of the
first-pass of NILM.

While [41] and [16] manually check the appliance power
level and operation time after disaggregation and retain only
the estimates that are within expected limits, they do not apply
any post-processing method to improve the estimated result.
In [10], Simulated Annealing (SA) is used to minimise the
difference between the sum of estimated power of appliances
and actual measurements. SA is a probabilistic technique for
approximating the global optimum, which randomly searches
around the starting points obtained from NILM and updates
the result when improvements are observed in the objective
function. Though SA can find the optimal result, it usually
requires many iterations to converge to the global optimum.
Moreover, often SA results in a local minimum, away from
the globally optimal result.

Additive Factorial Approximate MAP (AFAMAP) in Ad-
ditive Factorial HMM [21], [23] compares the observation
(aggregate measurement) with the sum of disaggregated loads.
Additionally, in [21], Branch and bound (BNB) is used to
refine the results of AFAMAP where the difference between
the sum of estimated and aggregate power is minimised. BNB
is a well-investigated method for discrete and combinatorial
optimisation problems, that partitions the solution into two
branches and recalculates the objective function; depending
on the obtained value, one branch is chosen to continue the
partition until the optimal result is found. BNB finds the global
optimum within an accuracy of ε, but is often slow. Indeed,
the worst case complexity is comparable to the full search.

More recently, in [42], a GSP-based post-processing (GSP-
P) method is proposed to refine the disaggregation results
by matching the falling and rising edges obtained by edge
detection. For each rising edge, a graph is generated and
according to minimisation of graph signal total variation
all possible candidate rising edges are picked. Due to high
complexity, the method is used only for appliances that tend
to be confused with other appliances with similar power levels.

However, the above post-processing methods are designed
for specific NILM algorithms, whereas we propose generic
post-processing methods for improving the result of any event-
based NILM approach. We cast the NILM post-processing
problem as an optimisation problem with a regularisation
term that depends on the output of the original NILM, and
propose solutions to optimally and automatically tune the
regularisation parameters by adapting three state-of-the-art
convex optimisation methods: two relaxation-based methods
and a third on SDR. These convex-based relaxed optimisation
solutions (polynomial) are drastically smaller than solving the
original NP hard problem. Complexity constraints are ad-
dressed through the proposed norm-2 and norm-1 approaches.
We analyse how the different relaxations compare in terms of
both complexity and accuracy for our NILM prost-processing
problem.

III. NOTATION AND PROBLEM FORMULATION

A. Notation

The task of NILM is to estimate individual loads contribut-
ing to the aggregate meter data. Focusing on the most common
case when the meter measures only active power, the aggregate
reading of the meter at time sample j can be expressed as:

Pj =

M∑
m=1

Pmj + nj , (1)

where j = 1, . . . , N and m = 1, . . . ,M with N being the total
number of samples and M the number of known appliances.
In Eq. (1), Pj and Pmj are the total aggregate power and power
consumption of Appliance m at time sample j, respectively;
nj is the noise that includes measurement errors, base-load
and all unknown appliances in the on state at time sample j .
The NILM task is to estimate all Pmj , given Pj .

Let ∆Pj = Pj+1−Pj be the change of the aggregate power
signal. Let w be a threshold, such that if |∆Pj | > w an event
is detected, i.e., an appliance changed its state, e.g., switched
on or off. Let Ei denote the i-th event, where i = 1 · · · , NE
with NE being the total number of events in a processing
window. We set the value of Ei to j if Event i is detected
at time instant j. Once events are identified, these events are
classified and appliance consumption determined.

Let αmi = 1 if, after NILM, it is predicted that Event i
is caused by Appliance m changing its state, and αmi = 0,
otherwise. When αmi = 1, if ∆PEi > 0, the detected edge is
a falling edge, otherwise, it is a rising edge. Based on this rule,
we set Smj = 1, if Appliance m is running at time sample j, or
Smj = 0 otherwise. Note that, given αmi (which are results of
NILM), we predict the state Smj of Appliance m. For example,
α1

2 = 1 and α1
3 = 1 indicate that Appliance 1 changed its

state during Events 2 and 3. Suppose that ∆PE2
> 0 and

∆PE3 < 0, then the power change at Event 2 corresponds
to a rising edge and Event 3 to a falling edge, indicating the
time when the appliance was most likely switched on and off,
leading to S1

j = 1, for time interval j ∈ [E2, E3].
Given the average working power Pm of Appliance m, ob-

tained by training on sub-metering data or using the appliance
manual, we can estimate the power consumed by this appliance
at each time sample j as P̂mj = PmSmj . We can also express
similarly estimated power signal change ∆P̂mi = ∆Pmαmi
with ∆Pm being the average of power change value |∆Pm|.
We assume that only a single appliance triggers an event.

If NILM is successful, the sum of estimated power con-
sumption of all appliances should be close to the aggregate
power, that is,

N∑
j=1

|Pj − P 0
j −

M∑
m=1

Smj P
m|2. (2)

should be almost zero, where P 0
j is the estimated base-load at

time sample j. Following terminology of [31], [10], we will
refer to the above term as the fidelity term, which represents
the difference between aggregate power without the base-load,
i.e., Pj − P 0

j , and the sum of the loads estimated by NILM,
i.e.,

∑M
m=1 S

m
j P

m.
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The next logical step is to minimise Eq. (2) over all possible
Smj . However, there are several reasons why minimising
Eq. (2) is not a good idea. First, we cannot distinguish two
appliances with similar working power Pm by minimising the
fidelity term alone. Secondly, the fluctuations of power values
around the mean Pm during the appliance operation is ignored.
Thirdly, the sum of multiple appliance loads might be close
to another load, leading to wrong minimisation. Finally, noise
including measurement errors and unknown appliances is not
taken into account.

B. Post-processing NILM: Proposed Problem Formulation

Instead of minimising Eq. (2) over all possible solutions,
we assume that a NILM method has been applied to lead to
a solution Sm∗i , for which, the fidelity term is fixed as:

N∑
j=1

|Pj − P 0
j −

M∑
m=1

Sm∗j Pm|2. (3)

Starting from Sm∗i , in [10], SA is used to minimise the fidelity
term by updating Sm∗i . Note that SA usually updates only
several appliance states (appliances with unique high working
power) to correct misclassification of the employed NILM.

To improve the reliability and accuracy of this post-
processing step, we introduce the disaggregation result as a
regularisation term. Then the optimisation problem becomes:

min
Sm
j
∈{0,1}

N∑
j=1

|Pj − P 0
j −

M∑
m=1

S
m
j P

m|2 +

N∑
j=1

M∑
m=1

λm|Smj − S
m∗
j |2 (4)

where MN optimisation variables, Smj , take values from
a discrete set (0 or 1), and λm ≥ 0 is the weight of
the regularisation term for Appliance m. (Here, again, Sm∗j ,
j = 1, · · · , N , is the estimate obtained by an initial NILM
method used.) In this optimisation set-up, the fidelity term
shows how far the result is from the observation, while the
regularisation term weights our confidence in the original
NILM output. Large λm means we have more confidence in
the results of the original NILM for Appliance m. Small λm
means that we have less confidence in the NILM result, and
put more weight in minimising the fidelity term. Note that λm
is appliance dependent, to reflect the case that a NILM method
has different accuracy for different appliances.

To reduce the computational complexity and considering
that the NILM algorithm will provide edge detection results
α∗, we modify the objective function as:

min
αm
i
∈{0,1}

NE∑
i=1

||∆PEi |− |
M∑
m=1

α
m
i ∆Pm||2 +

NE∑
i=1

M∑
m=1

λm|αmi −α
m∗
i |

2 (5)

to only optimise for sample i when the events are detected. The
minimisation here is with respect to MNE discrete variables
αmi taking values 0 or 1. Since N is usually large, while
number of events NE is much smaller (i.e., appliances are
rarely switched on/off), this significantly reduces complexity,
and largely eliminates noise and fluctuations during appliance
operation.

Besides testing the original SA, as proposed in [10], we also
use, in Section V, SA and BNB to find the values of αmi that
minimise Eq. (5) starting from αm

∗

i .

IV. PROPOSED SOLUTIONS

In this section we provide three solutions to the optimisation
problem Eq. (5) or a related problem (see ahead Eq. (6)).

A. Problem relaxation

Eq. (5) is a boolean (combinatorial) quadratic problem that
is known to be hard to solve exactly [43]. To solve efficiently
this optimisation problem, we introduce relaxation, that is,
instead of being one or zero, αmi in Eq. (5) takes soft real-
number values in the set [0, 1]. This way, we can convert the
minimisation problem in (5) to a convex optimisation problem,
which enables the use of known convex optimisation tools (a
problem with convex quadratic cost and box constraints).

To solve Eq. (5), the infeasible path-following algorithm
[53] is used based on two Newton steps per iteration, which
always finds a non-negative solution, and is implemented in
CVX, a package for specifying and solving convex programs
[54], [55]. For large-scale problems, one can also implement
other efficient methods such as [56].

After the above method is applied, and a solution αmi ∈
[0, 1] to the relaxed version of the problem in Eq. (5) is
obtained, we replace the obtained αmi with αmi,final = 1 if
αmi > 0.5, and with αmi,final = 0, otherwise. In other words,
we project the solution back to the discrete set {0, 1}.

We also consider an optimisation problem with a modified,
`1-norm type regularisation; see [45] for a similar regulari-
sation in a different, compressed sensing, context. The main
motivation for this is that both the output of the NILM and
post-processing NILM are usually expected to be sparse, i.e.,
they have many zeros and a few non-zero entries. (Appliances
generally rarely change state.) It is well known that `1-
type regularisation yields sparse solutions. This provides a
motivation to attempt to improve the NILM post-processing
by moving from `2-norm-type regularisation in Eq. (5) to `1-
norm-type regularisation in Eq. (6). Note that the optimisation
variable in Eq. (6) is the same as in Eq. (5), and the regular-
isation coefficients λm’s remain the same.

min
αm
i
∈{0,1}

NE∑
i=1

||∆PEi | − |
M∑
m=1

α
m
i ∆Pm||2 +

NE∑
i=1

M∑
m=1

λm|αmi −α
m∗
i |. (6)

Note that each time the objective function in Eq. (6) is
calculated, NEM fewer multiplication operations are needed
compared to (5).

B. Semi-definite programming-based relaxation (SDR)

SDR is a powerful, computationally efficient approximation
technique for a class of combinational optimisation problems
that finds a wide range of applications [43], [13], [14], [22].
To make our optimisation suitable for SDR, we adapt Eq. (5)
as follows. First we introduce the new optimisation variable
zmi = 2αmi − 1. Then the optimisation problem becomes:

min
zm
i
∈{−1,+1}

NE∑
i=1

|gi −
M∑
m=1

z
m
i r

m
i |

2
+

NE∑
i=1

M∑
m=1

λ
′
m|z

m
i − z

m∗
i |

2
, (7)

where gi = |∆PEi | − 1
2

∑M
m=1 |∆Pmi |, rmi =

∆Pmi
2 , zm

∗

i =
2αm

∗

i − 1 and λ′m = λm/4. Eq. (7) has the optimisation
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variable zmi , where zmi takes either value -1 or +1. Note that
Problem Eq. (7) is equivalent to Eq. (5). For example, once
the optimal value of zmi is obtained, αmi can be recovered as:
αmi = 0.5(zmi + 1).

We now express Eq. (7) in the standard format of a
boolean quadratic program, so that the SDR method [43]
can be applied. To this end, we construct a new NEM
length vector with all elements from zmi in a fixed order z =[
z1

1 , z
1
2 , . . . , z

1
NE
, z2

1 , z
2
2 , . . . , z

2
NE
, . . . , zM1 , zM2 , . . . , zMNE

]>
.

Then (7) is equivalently expressed as:

min
z∈{−1,+1}NE×M

‖Bz− d‖22 , (8)

where d =
[
g,
√
λ′1z

1∗,
√
λ′2z

2∗, ...,
√
λ′MzM

∗
]>

with g =

[g1, g2, ..., gNE ] and zm∗ =
[
zm1
∗, zm2

∗, ..., zmNE
∗], and

B =


r1 ◦ I r2 ◦ I · · · rM ◦ I√
λ′1I 0 · · · 0

0
√
λ′2I · · · 0

...
...

. . .
...

0 0 · · ·
√
λ′MI

 (9)

where rm is an NE ×NE matrix with all elements in the ith
row equal to rmi , I is an NE ×NE identity matrix, and 0 is
an NE × NE zero matrix. Here, ◦ is the Hadamard product
operation of two matrices.

Following [43] (see [43] for more details on the derivation
of the involved algorithmic steps), we relax the problem of
Eq. (8) into the following problem:

min
y∈RNEM+1

{y>Gy}

s.t. y2
j = 1, j = 1, ..., NEM + 1

(10)

where matrix G is given by:

G =

[
B>B −B>d
−d>B ||d||22

]
.

Then we solve the semi-definite relaxation of problem (10):

min tr (GY)

s.t. Y ≥ 0, Y = Y>

Yi,i = 1,∀i = 1, ..., NEM + 1.

(11)

where Y = yy>. Here, notation Y ≥ 0 means that matrix
Y is positive semi-definite (PSD). (11) is a semi-definite
program, and hence it can be efficiently solved. We solve
it here numerically using CVX. Compared to the previous
convex relaxation solving Eq. (5) or (6) with respect to
αmi ∈ [0, 1], the optimisation variable size in Eq. (11) is
squared. Hence, from a computational point of view, Eq. (5)
or (6) is preferred for higher dimensions of NE ×M . On the
other hand, SDR may exhibit higher accuracy.

Once Y∗ is obtained, we need to recover the discrete
−1/ + 1 variables zmi . This is achieved via the eigenvalue
decomposition:

Y∗ =

NEM+1∑
i=1

µiuiu
>
i , (12)

where, µi is the i-th largest eigenvalue of Y, and ui is the unit-
norm eigenvector of Y∗ that corresponds to the eigenvalue µi.

Next, an NEM + 1 length vector y∗ is set to
√
µ1u1, and

we calculate an intermediate solution variable ŷ as:

ŷj =

{
+1, if y∗j > 0
−1, otherwise

for j = 1, ..., NEM + 1. (13)

Since only the leading eigenvalue-eigenvector pair (u1, µ1)
is needed, it is not necessary to perform the full eigenvalue
decomposition, thus significantly reducing the computational
cost of this algorithmic step. Then, we calculate ẑ:

ẑj =

{
ŷj , if ŷNEM+1 = 1
−ŷj , if ŷNEM+1 = −1

for j = 1, ..., NEM.

(14)
and change ẑ back to the event classifier α̂:

α̂ =
ẑ + 1

2
. (15)

such that the final NILM output is:

αmi = α̂(m−1)·NE+i. (16)

C. Adaptive calculation of the regularisation term weight

We recommend the following heuristic choice for tuning
parameters λm:

λm =
θ2

∆Pm
2

β

min
n∈[1,M ],n6=m

||∆Pn| − |∆Pm||
. (17)

Two parameters θ and β are used to balance the weight of
the regularisation term. We set θ = [∆Papp], where operand
[x] rounds a positive number x to the nearest power of 10 and
∆Papp =

∑M
m=1 |∆Pm|

M . Similarly, we set β = [∆Pall], where
∆Pall is the average value of |∆Pi|. Note that the accuracy
of the final result is not very sensitive to the choice of λm,
hence θ is rounded to the nearest power of 10.
λm is inversely proportional to the appliance mean power,

which implies that for high loads, we put more weight on the
fidelity term, since these loads contribute to the total aggregate
the most. For high loads m, the first term of Eq. (17) is smaller
or very close to 1. Thus, the fidelity term is given more weight.
On the other hand, if an appliance has very small |∆Pm|, a
larger value of λm indicates that the optimisation weight is on
the original NILM approach, i.e., we trust the NILM output.

If there is another appliance that has average power fluctu-
ation similar to Appliance m, the denominator of the second
term of Eq. (17) is small, which suggests larger λm. Then, we
put more weight on the original NILM result, since optimising
the fidelity term would not be able to separate these two
appliances. Note that β is set to be close to the average value
of aggregate power change for all events detected, including
noise and unknown high load appliances, which are usually
larger than θ. The second term of Eq. (17) will be much larger
than 1, and hence ensures that the second term of Eq. (5) is
of comparable size to the fidelity term.



6

TABLE I: Summary of the proposed post-processing algorithms.
Proposed NILM
Post-processing

Objective
Function

Computational
Complexity

Average
Num. Iterations

Norm2 Eq. (5) O(NEM) 25
Norm1 Eq. (6) O(NEM) 15
SDR Eq. (11) O((NEM + 1)3) 8

D. Summary of the proposed algorithms

All three proposed solutions consist of two steps: 1) solv-
ing a convex optimisation problem; and 2) “projecting” the
solution back to the corresponding 0-1 set. For Step 1, the
algorithms guarantee to converge and to a global solution of
the convex problem [43]. Step 2, a simple projection step, can
always be performed. Hence, all our methods are guaranteed
to be stable and always converge to the global solution of the
corresponding convex relaxed problem and to a sub-optimal
solution of the overall NP-Hard combinatorial problem [43].

Table I summarises the three proposed methods and com-
pares their computational complexity per iteration [57]. The
average number of iterations per window is obtained by aver-
aging the number of iterations needed to get optimal solutions
for all testing windows. SDR has the largest computational
complexity, so in practice, we expect higher computational
cost and longer execution time.

V. RESULTS AND DISCUSSION

We apply the proposed methods to the output of two state-
of-the-art event-based NILM approaches, GSP [10] and DT
[33]. We use REFIT (8sec sampling rate) [18] and REDD (1sec
sampling rate) [58] datasets. For the REDD dataset, we use the
first week for training and the rest for testing. For REFIT, we
pick one month of data (April 2014) to test the performance
and use the previous month’s measurements for training. Two
houses with typical appliances, and different ‘noise level’ [9],
are chosen from each dataset. The total number of considered
appliances M depends on the house and is between 6 and 10.
FM is used as evaluation metric to assess the appliance

classification accuracy, as in [16], [42], [10], [20]. It is defined
as FM = 2(PR∗RE)/(PR+RE), where PR = TP/(TP+
FP ), RE = TP/(TP +FN), and true positive (TP ) stands
for the number of edges detected correctly, false positive (FP )
the number of edges detected that do not actually exist, and
false negative (FN ) indicates the number of edges of an
appliance state change that are not detected. To assess energy
disaggregation accuracy, we use Accuracy (Acc.) [58] defined
as:

Acc. = 1−
∑N
j=1 |P̂mj − Pmj |
2
∑N
j=1 P

m
j

. (18)

To reduce complexity, the datasets are split into windows,
which are independently processed. For NILM norm2 and
norm1 methods, we use window size NE = 1000, and
for NILM SDR NE = 100 (due to the larger size of the
optimisation variable, which is a 101 × 101 matrix in this
case).

For benchmarking, BNB method [21] applied to Eq. (5),
GSP method [42] (denoted by GSP-P) and two different SA
methods are used: SA1 denotes the method of [10], i.e., using

SA to optimise the fidelity term only, and SA2 refers to the
method where SA is applied to Eq. (5).

To compare the relative complexity of different post-
processing approaches, we show the execution time of the
proposed methods, SA1, SA2, BNB and GSP-P, in Table II.
For SA [10], Eq. (5) is optimised sample by sample to improve
calculation efficiency, and each sample needs more than 300
iterations to converge to the minimum. It is clear that the
proposed NILM norm1 converges faster than other methods.
All three proposed post-processing approaches are faster than
SA, BNB and GSP-P (except SDR for REDD houses). The
average execution time of BNB is over 0.5sec per sample,
which implies that roughly half an hour is needed to process
one month of data from a single REFIT house (with 3000
events per month). The fastest proposed method, Norm1, only
needs few seconds and the slowest of the proposed methods,
SDR, needs no more than 3min to complete the same task.
TABLE II: Average execution time per sample in [sec] for two
REDD and two REFIT houses for seven post-processing methods.

REDD
House1

REDD
House2

REFIT
House2

REFIT
House6

SA1 0.19 0.18 0.20 0.17
SA2 0.21 0.22 0.23 0.18

Norm2 0.009 0.008 0.008 0.008
Norm1 0.001 0.001 0.002 0.003
SDR 0.065 0.053 0.072 0.063
BNB 0.55 0.61 0.49 0.54

GSP-P 0.037 0.043 0.082 0.075

Next, we compare the accuracy of the methods. We use
F to label fridge, BG bathroom GFI, K kettle, T toaster,
DW dishwasher, MW microwave, WM washing machine, WD
washer dryer, KO kitchen outlet, S stove, and AVG for the
average accuracy across all these appliances.

Fig. 1 shows per-appliance and average results for House
2 from the REFIT dataset. Fig. 2 show results for House 6,
averaged over all considered appliances. It can be seen from
the figures that all post-processing methods improve the dis-
aggregation result for all listed appliances with respect to the
original NILM. The three proposed methods are more accurate
than SA1 and SA2. NILM SDR has the highest accuracy for
most appliances compared to the other methods. Since BNB
finds the globally optimal solution of the optimisation problem
it solves (to within an accuracy ε), it is not surprising that it
has similar, or occasionally slightly better, performance than
the proposed methods. Note that the optimal solution to the
problem of Eq. (5) does not necessarily correspond to the
most accurate result for the NILM problem. The optimisation
problem Eq. (5) itself is part of the modeling approach and
makes certain inherent assumptions. For example, we assume
each appliance is operating at its average power with no
fluctuation, which may not ideally match actual submetered
load measurements. This is an explanation why NILM BNB
does not always provide the best result in terms of Acc.
However, the main problem of the BNB approach is its high
execution time. GSP-P [42] provides certain improvements for
some appliances, but its average is always worse that any of
the three proposed methods.

Figs. 3 and 4 show the results for REDD Houses 1 and 2,
respectively. Similarly to REFIT results, NILM SDR and BNB
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Fig. 1: Results for REFIT House2. NILM denotes the result without
any post-processing, i.e., after GSP-based or DT-based NILM. From
top to bottom, the figures show: Acc after GSP-based NILM; Acc
after DT-based NILM; FM after GSP-based NILM; FM after DT-
based NILM.

provide the best post-processing results for most appliances.
For some appliances, such as KO in House 2, WD and
F in House 1, NILM approaches without post-processing
already have fairly accurate results and thus post-processing
cannot improve much. For appliances such as BG and MW,
which have unique and relatively high loads, we can observe
significant improvement.

Based on the above results, the following conclusions can be
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Fig. 2: REFIT House 6 results: Average performance across all
appliances.

made: 1. The gain with post-processing is lager for the noisier,
REFIT dataset, since for the relatively clean, REDD dataset,
NILM approaches without post-processing already provide
good results. 2. If an appliance is disaggregated accurately
with original NILM, then post-processing does not help much
(e.g., F and WD in REDD House 1, K and MW in REFIT
House 2). 3. The post-processing gains are similar for the two
NILM algorithms (GSP and DT). 4. All the three proposed
methods (as in Table I) outperform SA and GSP-P methods,
and exhibit (at least) comparable accuracy with respect to
BNB, while significantly reducing the computational time.

VI. CONCLUSION

In this paper, three post-processing methods based on con-
vex optimisation tools are introduced to improve accuracy of
NILM algorithms. The proposed methodology involves, as an
intermediate step, a heuristic approach to solve a (combina-
torial) boolean quadratic problem through relaxing zero-one
constraint sets to compact zero-one intervals. SDR is applied
to solve boolean quadratic problems with zero-one constraint
sets. The three proposed approaches provide different trade-
offs between performance and computational efficiency. The
performance is compared with several post-processing NILM
methods [10], [21], [42]. The experiments show that the
proposed methods have better or similar performance to the
benchmarks, but at much lower complexity.

Regarding the overall combinatorial (NP hard) problem,
we do not have an estimate of ‘quality’ of the sub-optimal
solution, i.e., we do not have a guarantee on how far we are
from the global solution of the combinatorial problem, e.g.,
in terms of approximation accuracy. Note that, approximation
accuracy guarantees have been established for some related
problems [43]. The proposed methods, as add-ons to the
existing NILM, slightly increase the overall complexity of the
disaggregation module. If the employed NILM has very poor
result, it is unlikely that the proposed methods will lead to
improvements. An interesting area of research is assessing the
quality of the NILM output without relying on ground-truth
to decide whether post-processing should be applied or not.
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