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Abstract—Most current non-intrusive load monitoring (NILM)
algorithms disaggregate one appliance at a time, remove the
appliance contribution towards the total load, and then move on
to the next appliance. On one hand, this is effective since it avoids
multi-class classification, and analytical models for each appli-
ance can be developed independently of other appliances, and
thus potentially transferred to unseen houses that have different
sets of appliances. On the other hand, however, these methods
can significantly under/over estimate the total consumption since
they do not minimise the difference between the measured
aggregate readings and the sum of estimated individual loads.
By considering this difference, we propose a post-processing
approach for improving the accuracy of event-based NILM. We
pose an optimisation problem to refine the original disaggregation
result and propose a heuristic to solve a (combinatorial) boolean
quadratic problem through relaxing zero-one constraint sets to
compact zero-one intervals. We propose a method to set the
regularization term, based on the appliance working power. We
demonstrate high performance of the proposed post-processing
method compared with the simulated annealing method and
original disaggregation results, for three houses in the REFIT
dataset using two state-of-the-art event-based NILM methods.

I. INTRODUCTION

Non-intrusive load monitoring (NILM), that is, disaggre-

gating total household/building energy consumption, down

to appliance level, using purely software tools, has gained

increased interest due to large scale smart meter deployments

world wide, and NILM’s potential to provide actionable energy

feedback and support smart home automation. Consequently,

NILM has become a very active research topic [1], [2], [3].

Most current NILM methods disaggregate one appliance at

the time, and do not check if the sum of the disaggregated

loads is approaching the true measured result (see, for ex-

ample, [3], [4], [5], [6], [7], [8]). Deviating from traditional

NILM approaches (see [1], [9] and reference theirin), [10] uses

NILM disaggregation results as a starting point to minimise

the difference between the total measured aggregate reading

and the sum of disaggregated loads via simulated annealing to

avoid significant over/under estimation of the NILM approach.

However, the method of [10] is sub-optimal and potentially

of high complexity. Having this in mind, in this paper, we

propose a generic post-processing algorithm to improve the

disaggregation accuracy after conventional event-based NILM

is applied. In particular, after disaggregation, we cast an opti-

misation problem as minimising the distance between the sum

of the disaggregated loads and the total measured consumption

and add a regularization term to weigh the confidence in the

accuracy of the initial disaggregation for each appliance. The

resulting optimization problem is a boolean quadratic problem

(combinatorial in nature) that is hard to solve exactly; we

provide an effective heuristic based on relaxing the zero-one

type constraints to the interval-type [0, 1] constraints.

II. PROBLEM FORMULATION

The task of NILM is to estimate individual usage informa-

tion of each appliance from aggregated meter data. Focusing

on the case where the meter measures only active power, the

aggregate reading from the meter can be expressed as:

Pi =

M∑

m=1

P
m
i + ni, (1)

where Pi and Pm
i are the total household’s power and power of

appliance m at time sample i, respectively, and ni is the noise

that includes measurement errors, base-load and all unknown

appliances running. The power disaggregation task is now for

i ∈ [1, N ] and m ∈ [1,M ] given Pi, to estimate Pm
i , where N

is the total number of samples and M is the number of known

appliances in the house. Two classes of NILM methods are

proposed to address this problem: state-based methods (see

[1], [3], [7], [8], [11] and references therein) and event-based

methods.

Event-based NILM approaches usually consist of three steps

[12]. The first step is event detection: detecting changes in

time-series aggregated data (also called edges) due to one

or more appliances changing their states. The second step

is feature extraction: once events are detected, the electrical

features, such as active power, profile between edges, duration,

are isolated for each event. The last step is classification

and pattern matching: different classification tools are used

here to classify the events into pre-defined categories, each

corresponding to a known appliance. Various classification

tools have been used for event-based NILM [13], [14], [15],

such as support vector machines (SVM) [6], neural networks

[16], nonnegative tensor factorization [9], k-means [17], de-

cision trees (DT) [4] and Graph signal processing (GSP)

classification [10].

Let αm∗

i ∈ {0, 1} with i ∈ [1, NE ] and m ∈ [1,M ]
represent results of an event-based NILM method, where NE

is the total number of time instances at which at least one event

(event here is a change of state of an appliance) is detected.

That is, αm∗

i = 1 means that after NILM, it is estimated that

the ith event is caused by Appliance m being switched on

or off; αm∗

i = 0 means that Appliance m was not turned on

or off at Event i. For j ∈ [1, N ], let ∆Pj = Pj+1 − Pj .
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Then, according to αm∗

i and corresponding ∆Pj , we can

decide whether the detected edge is a rising or falling edge

and estimate Sm∗

j ∈ {0, 1}, the state of Appliance m at the

sample j, which is 1 if Appliance m is running at time sample

j, j ∈ [1, N ], or 0 otherwise. Note that while αm∗

i points to

events when the appliance is turned on or off, Sm∗

j indicates

whether Appliance m is running at time sample j (Sm∗

j = 1)

or not (Sm∗

j = 0).

In other words, given the variables αm∗
i , i = 1, ..., NE ,m =

1, ...,M we can recover the state Sm∗
j of each appliance m ∈

[1,M ] for all time instances j ∈ [1, N ]. For example, let there

be only one non-zero αm∗
i that corresponds to Appliance m =

1; let this quantity be α1
3, i.e., Appliance 1 changes its state

during Event 3. Suppose that from ∆P we also learn that

this change corresponds to a raising edge. Then, we recover:

S1
j = 0, for time instances j preceding Event 3, and S1

j = 1,

for time instances j following Event 3.

Given the average working power Pm obtained from

training or appliance manual, one can estimate the power

consumption for each appliance at each time sample j as

P̂m
j = PmSm∗

j . This can further be refined via post-

processing described next.

III. POST-PROCESSING FOR EVENT-BASED NILM

Before applying post-processing on event-based NILM al-

gorithms we first introduce the fidelity term [9], [10] as:

N∑

j=1

|Pj − P
0

j −

M∑

m=1

S
m
j Pm|

2
(2)

where P̂m
j = Sm

j Pm is the estimated power consumption of

Appliance m at time j and P 0
j is the estimated base-load.

The fidelity term, given by Eq(2), represents the difference

between aggregate power without the base-load, i.e., Pj −P 0
j ,

and the sum of the estimated loads after disaggregation,∑M

m=1
Sm
j Pm. In [18], an approach was introduced that uses

the output of a NILM algorithm as a ‘prior’ for a NILM

approach paired with a heuristic optimization scheme. In [10],

simulated annealing (SA) is used to refine the disaggregation

results from an event-based NILM approach for single-state

appliances with high working power by changing the state of

disaggregated appliances Sm
i , one at the time, to minimise (2).

Though changing the states of appliances Sm
i to minimise

Eq. (2) sounds like a logical step that will inevitably lead

to performance improvement, there are several reasons why

minimising (2) might not provide more accurate results. First,

we cannot distinguish two appliances with similar working

powers Pm by minimising the fidelity term alone. Secondly,

the fluctuations of power values around the mean Pm during

the appliance operation is ignored. Thirdly, the sum of two

or more appliance loads might be close to another load,

leading to wrong fidelity minimisation. Finally, noise including

measurement errors and unknown appliances is not taken into

account. In summary, purely minimising Eq. (2) is not a robust

way of disaggregating appliances, and hence it is rarely used

alone in practice.

To improve the reliability and accuracy of post-processing,

we introduce the influence of disaggregation results as reg-

ularization to the fidelity term. The objective function now

becomes:

min
Sm
j

∈{0,1}

N∑

j=1

|Pj − P
0

j −

M∑

m=1

S
m
j Pm|

2
+

N∑

j=1

M∑

m=1

λm|S
m
j − S

m∗

j |
2

(3)

where MN optimisation variables, Sm
j ∈ {0, 1}, m =

1, ...,M , j = 1, ..., N , take values from a discrete set (0

or 1), and λm is the weight of the regularization term for

Appliance m. The regularization term |Sm
j −Sm∗

j |2 in Eq. (3)

reflects the difference between states of appliances estimated

by optimising the fidelity term and states estimates given by

NILM algorithms. Large λm means we have more confidence

in the results of the original NILM for Appliance m. Small λm,

on the other hand, means that we have less confidence in the

NILM result, and put more weight in minimising the fidelity

term. Note that λm is appliance dependent, to reflect the case

that a NILM method is usually good for disaggregating certain

appliances, and bad for others.

To reduce the computational complexity and considering

that the event-based NILM algorithm will provide edge detec-

tion results α∗, we modify the objective function as:

min
αm
i

∈{0,1}

NE∑

i=1

||∆Pi| −

M∑

m=1

α
m
i |∆Pm||

2
+

NE∑

i=1

M∑

m=1

λm|α
m
i − α

m∗

i |
2

(4)

to only optimise for sample i when the events are detected. The

minimisation here is with respect to MNE discrete variables

αm
i taking values 0 or 1.

We also use ∆P , instead of P . Similarly, we use ˆ∆Pm
i =

∆Pmαm
i to estimate power change of Appliance m at the

ith event, where ∆Pm is the average power change of the

appliance when it changes states. NE is the total number of

events detected, which is usually much smaller than N , hence

post-processing complexity has been reduced. We heuristically

find the following choice for tuning parameters λm:

λm = ζ
θ2

∆Pm2

M∑

m=1

β2

|∆P − ∆Pm|2
. (5)

where ∆P is the average aggregate power change for events

detected. As expected, λm is inversely proportional to the

appliance mean power, which implies that for high loads,

we put more weight on the fidelity term, since these loads

contribute to the total aggregate the most. Second, being

inversely proportional to |∆P −∆Pm|2, λm depends on all

household loads; that is, if Appliance m’s mean power value

is close to mean power of some other appliance, we rely less

on the fidelity term.

Optimisation problems (3) and (4) are (combinatorial)

boolean quadratic programs that are known to be very hard to

solve exactly, e.g., [19]. To solve efficiently the optimisation

problem, we introduce relaxation, that is, instead of being

one or zero, Sm
i and αm

i in Eq. (3) and (4) take soft real-

number values in the set [0, 1]. This way, we can convert the

minimisation problem in (3) and (4) to a convex optimisation

problem, which enables the use of known convex optimisation

tools (a problem with convex quadratic cost and (convex) box

constraints).

To solve Eq. (4) we use CVX, a package for specifying

and solving convex programs [20], [21]. In particular, to solve
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Eq.(4), the infeasible path-following algorithm is used [22].

This method always finds a non-negative solution and uses

two Newton steps per iteration.

After the above post-processing method is applied, and a

solution αm∗
i ∈ [0, 1] to the relaxed version of problem (4) is

obtained, we replace αm∗

i with αm
i,final = 1 if the optimal

result obtained is larger than a pre-set threshold 0.5, and

αm
i,final = 0, otherwise. In other words, we project the solution

back to the discrete set {0, 1}. We re-estimate the consumed

power of each appliance using new αm
i,final as αm

i,final∆Pm.

IV. RESULTS

To demonstrate effectiveness of the proposed post-

processing method, we apply it to the output of two event-

based NILM approaches, namely GSP [10] and DT [4]. We

use the REFIT dataset [23], which contains active power

measurements collected at every 8 seconds. The REFIT dataset

contains data from 20 households in the UK monitored over a

period of 2 years. In each house, only up to 9 appliances were

sub-metered, hence there are many unknown appliances. We

pick one month data which is April 2014 from three houses to

test the performance of our proposed post-processing approach

comparing the results with the SA post-processing used in

[10] and the original disaggregation results [10], [4]. We use

a previous month recordings for training. We heuristically find

the scaling factors for Eq. (5) as θ ≈ 500, β = 20, ζ ≈ 1000.

We use FM defined as PR = TP/(TP + FP ), RE =
TP/(TP + FN), FM = 2(PR ∗ RE)/(PR + RE) as

the evaluation metrics. FM is adapted from [24] and has

been used in many previous NILM papers to assess the

appliance classification accuracy, where true positive (TP )

stands for the number of edges we detected correctly, false

positive (FP ) is the number of edges we detected that do not

actually exist and false negative (FN ) indicates the number

of edges of appliance that are not detected. High precision

(PR) represents accurate detection with less FP , and high

recall (RE) represents a higher number of events detected

with less FN . FM is the balance of PR and RE and is

good at representing the event detecting accuracy, but has no

information on energy disaggregation accuracy. Thus, we also

use Accuracy (Acc.) [25] defined as:

Acc. = 1 −

∑N
j=1

|P̂m
j − Pm

j |

2
∑

N
j=1

Pm
j

. (6)

During the simulations we found that the minimisation

of Eq. (4) is solved by the proposed method using less

than 300 iterations. In SA [10], fidelity term is optimised

sample by sample to improve calculation efficiency, and each

sample needs more than 300 iterations to coverage to the

minimum. In Table I, we compare the execution time of the

proposed method and SA for three REFIT houses. One month

testing data contains 1546, 3341, and 2968 events detected,

respectively, for Houses 2, 6, and 17. It can be seen from

Table I that the proposed method converges to a minimum

much faster than the SA.

Next, we compare the accuracy of the post-processing

results. We use DW to label dishwasher, MW for microwave

and WM for washing machine.

TABLE I
COMPARISON OF EXECUTION TIME (SEC/SAMPLE) BETWEEN SIMULATED

ANNEALING (SA) BASED POST-PROCESSING AND THE PROPOSED

POST-PROCESSING NILM FOR THREE REFIT HOUSES.

SA Proposed

House2 0.23 0.008

House6 0.17 0.003

House17 0.15 0.002

TABLE II
Acc. BETWEEN ORIGINAL GSP [10] AND DT [4], SA BASED

POST-PROCESSING AND THE PROPOSED POST-PROCESSING NILM FOR

REFIT HOUSE2.

Appliances Kettle Toaster DW MW

GSP
NILM 0.61 0.53 0.78 0.71

NILM+SA 0.79 0.68 - 0.71
NILM+Proposed 0.81 0.74 0.79 0.83

DT
NILM 0.63 0.44 0.70 0.72

NILM+SA 0.74 0.54 - 0.73
NILM+Proposed 0.79 0.67 0.70 0.80

TABLE III
FM BETWEEN ORIGINAL GSP AND DT, SA BASED POST-PROCESSING

AND THE PROPOSED POST-PROCESSING NILM FOR REFIT HOUSE2.

Appliances Kettle Toaster DW MW

GSP
NILM 0.80 0.60 0.75 0.79

NILM+SA 0.81 0.64 - 0.80
NILM+Proposed 0.92 0.71 0.80 0.85

DT
NILM 0.76 0.58 0.74 0.81

NILM+SA 0.81 0.64 - 0.81
NILM+Proposed 0.88 0.69 0.78 0.83

Tables II and III display the comparison of Acc. and FM

between the proposed post-processing method, SA and original

disaggregation results using GSP and DT NILM algorithm for

House 2 in the REFIT dataset. It is clear that both SA and

the proposed method improved the disaggregation result for

all listed appliances with respect to the original NILM result.

The proposed methods is also better than SA for the mentioned

appliances.

Fridge has small mean Pm, thus noise including measure-

ment error, unknown appliances, and fluctuations from other

high power loads will easily cause error when minimising the

fidelity term. For that reason, the SA provides results with

extremely low accuracy, so in [10], SA is not applied for

refrigerator. Our proposed method avoids this problem via λm,

the weight of regularization term, as in (5), leading to results

very close to NILM algorithms, thus not included in the table.

SA purely optimises (2) and provides poor results for WM

and DW in House 2. So the SA post-processing in [10] is not

applied for these two appliances.

TABLE IV
Acc. BETWEEN ORIGINAL GSP AND DT, SA BASED POST-PROCESSING

AND THE PROPOSED POST-PROCESSING NILM FOR REFIT HOUSE6.

Appliances Kettle Toaster DW MW

GSP
NILM 0.82 0.40 0.48 0.62

NILM+SA 0.84 0.52 0.55 0.70
NILM+Proposed 0.88 0.59 0.53 0.78

DT
NILM 0.76 0.45 0.43 0.61

NILM+SA 0.80 0.55 0.52 0.69
NILM+Proposed 0.83 0.55 0.53 0.74

Tables IV and V show the comparison of Acc. and FM for

House 6 in the REFIT dataset. Fridge again is not included

for the same reasons as in House 2. For appliances listed in

the tables, both the proposed and SA post-processing methods
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TABLE V
FM BETWEEN ORIGINAL GSP, SA BASED POST-PROCESSING AND THE

PROPOSED POST-PROCESSING NILM FOR REFIT HOUSE6.

Appliances Kettle Toaster DW MW

GSP
NILM 0.95 0.63 0.34 0.78

NILM+SA 0.95 0.75 0.52 0.80
NILM+Proposed 0.95 0.80 0.61 0.80

DT
NILM 0.91 0.58 0.41 0.81

NILM+SA 0.91 0.64 0.46 0.80
NILM+Proposed 0.93 0.67 0.49 0.81

show good improvement compared with NILM only, i.e., with

no post-processing.

TABLE VI
Acc. BETWEEN ORIGINAL GSP AND DT, SA BASED POST-PROCESSING

AND THE PROPOSED POST-PROCESSING NILM FOR REFIT HOUSE17.

Appliances Kettle MW WM

GSP
NILM 0.77 0.61 0.30

NILM+SA 0.78 0.65 0.45
Proposed 0.83 0.73 0.47

DT
NILM 0.69 0.65 0.36

NILM+SA 0.75 0.69 0.44
NILM+Proposed 0.79 0.74 0.45

TABLE VII
FM BETWEEN ORIGINAL GSP, SA BASED POST-PROCESSING AND THE

PROPOSED POST-PROCESSING NILM FOR REFIT HOUSE17.

Appliances Kettle MW WM

GSP
NILM 0.93 0.70 0.56

NILM+SA 0.94 0.74 0.62
NILM+Proposed 0.93 0.78 0.62

DT
NILM 0.88 0.73 0.59

NILM+SA 0.90 0.78 0.63
NILM+Proposed 0.92 0.80 0.61

Tables VI and VII show results for House 17 in the REFIT

dataset. For the tested appliances, the improvements for both

SA and the proposed method are obvious. Except for kettle,

which is accurately disaggregated with the original algorithm,

the results for other two appliances show significant im-

provements due to post-processing, where again the proposed

method outperforms SA [10].

V. CONCLUSION

In this paper, a post-processing method is introduced to

help improve accuracy of event-based NILM algorithms. The

performance of the proposed method is compared with sim-

ulated annealing in [10] using three houses from the REFIT

dataset and two state-of-the-art event-based NILM methods.

The proposed method has better performance than SA, the

post-processing of [10], and lower processing time.

The proposed methodology involves as an intermediate

step a heuristic to solve a (combinatorial) boolean quadratic

problem through relaxing zero-one constraint sets to compact

zero-one intervals. Future work will include a branch-and-

bound algorithm and alternative convex relaxation methods

including semidefinite programming (SDP)-based relaxations.
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