1,051 research outputs found

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Model predictive control for a dual active bridge inverter with a floating bridge

    Get PDF
    This paper presents a Model Predictive Control technique applied to a dual active bridge inverter where one of the bridges is floating. The proposed floating bridge topology eliminates the need for isolation transformer in a dual inverter system and therefore reduces the size, weight and losses in the system. To achieve multilevel output voltage waveforms the floating inverter DC link capacitor is charged to the half of the main DC link voltage. A finite-set Model Predictive Control technique is used to control the load current of the converter as well as the floating capacitor voltage. Model predictive control does not require any switching sequence design or complex switching time calculations as used for SVM, thus the technique has some advantages in this application. A detailed analysis of the converter as well as the predictive control strategy is given in this paper. Simulation and experimental results to validate the approach are also presented

    Control Strategies for Open-End Winding Drives Operating in the Flux-Weakening Region

    Get PDF
    This paper presents and compares control strategies for three-phase open-end winding drives operating in the flux-weakening region. A six-leg inverter with a single dc-link is associated with the machine in order to use a single energy source. With this topology, the zero-sequence circuit has to be considered since the zero-sequence current can circulate in the windings. Therefore, conventional over-modulation strategies are not appropriate when the machine enters in the flux-weakening region. A few solutions dealing with the zero-sequence circuit have been proposed in literature. They use a modified space vector modulation or a conventional modulation with additional voltage limitations. The paper describes the aforementioned strategies and then a new strategy is proposed. This new strategy takes into account the magnitudes and phase angles of the voltage harmonic components. This yields better voltage utilization in the dq frame. Furthermore, inverter saturation is avoided in the zero-sequence frame and therefore zero-sequence current control is maintained. Three methods are implemented on a test bed composed of a three-phase permanent-magnet synchronous machine, a six-leg inverter and a hybrid DSP/FPGA controller. Experimental results are presented and compared for all strategies. A performance analysis is conducted as regards the region of operation and the machine parameters.Projet SOFRACI/FU

    Dual‐Inverter Circuit Topologies for Supplying Open‐Ended Loads

    Get PDF
    Power electronic converters are nowadays the most suitable solution to provide a variable voltage/current in industry. The most commonly used power converter is the three-phase two-level voltage source inverter which transforms a direct-current input voltage into alternating-current output voltage with adjustable magnitude and frequency. Power inverters are used to supply three-phase loads which are typically connected in wye or delta configurations. However, in previous years, a type of connection consisting on leaving both terminal ends of the load opened has been studied as an alternative to standard wye or delta connection. To supply loads with this type of connection, two power inverters (one at each terminal end of the load) are required in a circuit topology called dual-inverter. In this chapter, a general study of the dual-inverter topology is presented. The advantages and issues of such converter are studied and different modulation strategies are shown and discussed. Moreover, multilevel dual-inverter converters are presented as an extension to the basic two-level idea. For evaluation purposes, simulations results are presented

    A Space Vector PWM With Common-Mode Voltage Elimination for Open-End Winding Five-Phase Drives With a Single DC Supply

    Get PDF
    Open-end winding three-phase drive topologies have been extensively investigated in the last two decades. In the majority of cases supply of the inverters at the two sides of the winding is provided from isolated dc sources. Recently, studies related to multiphase open-end winding drives have also been conducted, using isolated dc sources at the two winding sides. This paper investigates for the first time a five-phase open-end winding configuration, which is obtained by connecting a two-level five-phase inverter at each side of the stator winding, with both inverters supplied from a common dc source. In such a configuration it is essential to eliminate the common-mode voltage (CMV) that is inevitably created by usual PWM techniques. Based on the vector space decomposition (VSD), the switching states that create zero CMV are indentified and plotted. A space vector pattern with large redundancy of switching states is obtained. Suitable space vectors are then selected to realize the required voltage reference at the machine terminals with zero CMV. The large number of redundant states enables some freedom in the choice of switching states to impress these space vectors. Out of numerous possibilities, two particular switching sequences are chosen for further investigation. Both are implemented in an experimental setup, and the results are presented and discussed. © 2013 IEEE

    Power Sharing Algorithm for Vector Controlled Six-Phase AC Motor with Four Customary Three-Phase Voltage Source Inverter Drive

    Get PDF
    This paper considered a six-phase (asymmetrical) induction motor, kept 30\ub0 phase displacement between two set of three-phase open-end stator windings configuration. The drive system consists of four classical three-phase voltage inverters (VSIs) and all four dc sources are deliberately kept isolated. Therefore, zero-sequence/homopolar current components cannot flow. The original and effective power sharing algorithm is proposed in this paper with three variables (degree of freedom) based on synchronous field oriented control (FOC). A standard three-level space vector pulse width modulation (SVPWM) by nearest three vectors (NTVs) approach is adopted to regulate each couple of VSIs. The proposed power sharing algorithm is verified by complete numerical simulation modeling (Matlab/Simulink-PLECS software) of whole ac drive system by observing the dynamic behaviors in different designed condition. Set of results are provided in this paper, which confirms a good agreement with theoretical development

    Improved space vector modulation with reduced switching vectors for multi-phase matrix converter

    Get PDF
    Multi-phase converter inherits numerous advantages, namely superior fault tolerance, lower per-leg power rating and higher degree of freedom in control. With these advantages, this thesis proposes an improved space vector modulation (SVM) technique to enhance the ac-to-ac power conversion capability of the multi-phase matrix converter. The work is set to achieve two objectives. First is to improve the SVM of a three-to-seven phase single end matrix converter by reducing number of space vector combinations. Second is to use the active vector of the SVM to eliminate the common-mode voltage due to the heterogeneous switching combination of a dual three-to-five phase matrix converter. In the first part, the proposed technique utilizes only 129 out of 2,187 possible active space vectors. With the reduction, the SVM switching sequence is greatly simplified and the execution time is shortened. Despite this, no significant degradation in the output and the input waveform quality is observed from the MATLAB/Simulink simulation and the hardware prototype. The results show that the output voltage can reach up to 76.93% of the input voltage, which is the maximum physical limit of a three-to-seven phase matrix converter. In addition, the total harmonics distortion (THD) for the output voltage is measured to be below 5% over the operating frequency range of 0.1 Hz to 300 Hz. For the second part, the common-mode voltage elimination is based on the cancellation of the resultant vectors (that causes the common-mode to be formed), using a specially derived active vectors of the dual matrix converter. The elimination strategy is coupled with the ability to control the input power factor to unity. The proposed concept is verified by the MATLAB/Simulink simulation and is validated using a 5 kW three-to-five phase matrix converter prototype. The SVM switching algorithm itself is implemented on a dSPACE-1006 digital signal processor platform. The results prove that the common-mode voltage is successfully eliminated from the five-phase induction motor winding. Furthermore, the output phase voltage is boosted up to 150% of the input voltage in linear modulation range

    Space-vector PWM with common-mode voltage elimination for multiphase drives

    Get PDF
    Switching common-mode voltage (CMV) generated by the pulse width modulation (PWM) of the inverter causes common-mode currents, which lead to motor bearing failures and electromagnetic interference problems in multiphase drives. Such switching CMV can be reduced by taking advantage of the switching states of multilevel multiphase inverters that produce zero CMV. Specific space-vector PWM (SVPWM) techniques with CMV elimination, which only use zero CMV states, have been proposed for three-level five-phase drives, and for open-end winding five-, six-, and seven-phase drives, but such methods cannot be extended to a higher number of levels or phases. This paper presents a general (for any number of levels and phases) SVPMW with CMV elimination. The proposed technique can be applied to most multilevel topologies, has low computational complexity and is suitable for low-cost hardware implementations. The new algorithm is implemented in a low-cost field-programmable gate array and it is successfully tested in the laboratory using a five-level five-phase motor drive.Ministerio de Ciencia e InnovaciónEuropean CommissionMinisterio de Economía y Competitividad | Ref. DPI2012-31283Ministerio de Economía y Competitividad | Ref. DPI2015-6541
    corecore