
 

IMPROVED SPACE VECTOR MODULATION WITH REDUCED SWITCHING 

VECTORS FOR MULTI-PHASE MATRIX CONVERTER  

SK MOIN AHAMMED  

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Doctor of Philosophy (Electrical Engineering) 

Faculty of Electrical Engineering  

Universiti Teknologi Malaysia 

JUNE  2016 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/83531019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


iii 

 

 

 

 

 

 

 

 

 

 

 

 

Specially dedicated to my beloved Mom, Dad and my Wife  

for their enduring love, care and motivation. 

 

 

 

 

 

 



iv 

 

 

 

ACKNOWLEDGEMENT 

 

 

 

 

Firstly, I would like to thank my supervisor Prof. Dr. Zainal Salam for his 

valuable suggestions, guidance and consistent support throughout this project.  Special 

thanks to my second supervisor Prof. Dr. Haitham Abu-Rub of Texas A&M 

University at Qatar for the generous financial support to undertake this project.  

 

Secondly, I would like to thank my colleagues at the Power Electronics 

Research Laboratory, Universiti Teknologi Malaysia for their support, cooperation 

and interest.  Also, my appreciation to the research staff and fellows at Texas A&M at 

Qatar.  

 

Lastly, but not least, I would like to thank my wife; this thesis would not exist 

without her patience, understanding and support. 



v 

 

 

 

ABSTRACT 

Multi-phase converter inherits numerous advantages, namely superior fault 

tolerance, lower per-leg power rating and higher degree of freedom in control. With 

these advantages, this thesis proposes an improved space vector modulation (SVM) 

technique to enhance the ac-to-ac power conversion capability of the multi-phase 

matrix converter. The work is set to achieve two objectives. First is to improve the 

SVM of a three-to-seven phase single end matrix converter by reducing number of 

space vector combinations. Second is to use the active vector of the SVM to eliminate 

the common-mode voltage due to the heterogeneous switching combination of a dual 

three-to-five phase matrix converter. In the first part, the proposed technique utilizes 

only 129 out of 2,187 possible active space vectors. With the reduction, the SVM 

switching sequence is greatly simplified and the execution time is shortened. Despite 

this, no significant degradation in the output and the input waveform quality is 

observed from the MATLAB/Simulink simulation and the hardware prototype. The 

results show that the output voltage can reach up to 76.93% of the input voltage, which 

is the maximum physical limit of a three-to-seven phase matrix converter. In addition, 

the total harmonics distortion (THD) for the output voltage is measured to be below 

5% over the operating frequency range of 0.1 Hz to 300 Hz. For the second part, the 

common-mode voltage elimination is based on the cancellation of the resultant vectors 

(that causes the common-mode to be formed), using a specially derived active vectors 

of the dual matrix converter. The elimination strategy is coupled with the ability to 

control the input power factor to unity. The proposed concept is verified by the 

MATLAB/Simulink simulation and is validated using a 5 kW three-to-five phase 

matrix converter prototype. The SVM switching algorithm itself is implemented on a 

dSPACE-1006 digital signal processor platform. The results prove that the common-

mode voltage is successfully eliminated from the five-phase induction motor winding. 

Furthermore, the output phase voltage is boosted up to 150% of the input voltage in 

linear modulation range. 
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ABSTRAK 

 

Penukar pelbagai fasa memiliki beberapa kelebihan iaitu bertoleransi tinggi 

terhadap kesilapan, mempunyai kadar kuasa yang rendah bagi setiap fasa dan tahap 

kebebasan yang tinggi dalam sistem kawalan. Dengan kelebihan-kelebihan ini, tesis 

ini mencadangkan penambahbaikan dalam teknik modulasi vektor ruang (SVM) untuk 

meningkatkan keupayaan penukar kuasa ac-to-ac untuk penukar matriks pelbagai 

fasa. Projek ini menetapkan untuk mencapai dua objektif. Pertama untuk 

menambahbaik SVM bagi penukar matriks tunggal tiga-ke-tujuh fasa dengan 

mengurangkan bilangan gabungan vektor ruang. Kedua ialah untuk menggunakan 

vektor aktif SVM untuk menyahkan voltan mod sepunya akibat daripada 

ketidakseragaman pengsuisan daripada sebuah penukar dwi-matriks tiga-ke-lima fasa. 

Dalam bahagian pertama, teknik yang dicadangkan menggunakan hanya 129 daripada 

2,187 vektor ruang yang aktif. Oleh kerana pengurangan vektor yang besar, maka 

aturan pengsuisan SVM dapat dipermudahkan dan masa pemprosesan algoritma dapat 

diringkaskan. Walaupun bilangan vektor aktif dikurangkan dengan banyaknya, kualiti 

gelombang input dan output tidak terjejas seperti yang terbukti dari simulasi 

MATLAB/Simulink dan prototaip perkakasan. Keputusan menunjukkan bahawa 

voltan output boleh mencecah sehingga 76.93% daripada voltan input, yang mana 

adalah limit fizikal bagi penukar matriks tiga-ke-tujuh fasa. Tambahan pula, herotan 

harmoniks total (THD) bagi voltan output diukur di bawah 5% dalam julat frekuensi 

0.1 Hz ke 300 Hz. Bagi bahagian yang kedua, penghapusan voltan mod sepunya 

adalah berdasarkan penyahan vektor paduan dengan menggunakan vektor aktif khusus 

yang terhasil daripada penukar dwi-matriks. Strategi penghapusan disertakan dengan 

keupayaan untuk mengawal faktor kuasa masukan kepada uniti. Konsep yang 

dicadangkan disahkan dengan simulasi MATLAB/Simulink dan dibuktikan 

menggunakan sebuah prototaip 5 kW penukar matriks tiga-ke-lima fasa. Algoritma 

pengsuisan SVM itu sendiri diimplementasikan oleh pemprosesan isyarat signal 

digital dSPACE-1006. Keputusan menunjukkan bahawa voltan mod sepunya berjaya 

dihapuskan daripada lilitan motor berinduksi lima fasa. Tambahan lagi, fasa voltan 

output dinaikkan ke 150% daripada voltan input di dalam julat modulasi linear.
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of Multi-phase Matrix Converter 

Matrix converter is a direct ac-to-ac power converter which allows power flow 

in two directions. This functionality is achieved by the aid of fully controlled 

semiconductor switches, arranged in a form of matrix array. Nowadays, matrix 

converter is steadily gaining popularity and is considered as a reliable future 

alternative to the more established voltage source inverter, for a number of reasons. 

Firstly, it does not require an intermediate (dc link) energy storage element. Secondly, 

regardless of any load, the input power factor can be fully controlled at any instant. 

Thirdly, it has an inherent four-quadrant operation mode, which enables for a fast and 

flexible performance—particularly for motor drive applications. Some of the practical 

applications of the converter are multi-phase drives for aircraft, marine applications, 

electric vehicles and on-board traction propulsion systems. 

 The most common matrix converter is the three-phase (input) to three-phase 

(output) [1-2] configuration. This topology is mainly utilized for the traditional 

variable speed drive [2-4]. Notwithstanding the widespread usage of the three-phase 

based system, there is a growing interest for multi-phase (more than three phases) 

converter for certain niche applications [5-14]. The multi-phase systems inherit 

numerous advantages; these include the higher degree of freedom in control, greater 

system redundancy (thus greater fault tolerance) and lower per-leg converter rating. 

Furthermore, the operation of the multi-phase motor is quieter and it allows for an 

independent control of two or more series/parallel connected motors [5-7].   
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 The voltage-source inverter is the most widely used in the multi-phase motor 

drive. Despite its popularity, it does not allow for a reversible power flow due to the 

uncontrollable diode bridge rectifier at the input stage. Furthermore, it is based on a 

two-stage conversion process, with an energy storage element in between the stages. 

Hence its efficiency is greatly compromised. For certain application that requires 

reversed power flow (e.g. dynamic braking), a resistor is provided at the dc link to 

dissipate the power. An alternative to the voltage-source inverter is the voltage source 

back-to-back converter (VSBBC). This topology uses a controlled rectifier at the input 

stage, feeding a conventional inverter with multi-phase output. The major advantage 

of the VSBBC is that it offers a bidirectional power flow with almost the same number 

of power switches as the voltage-source inverter. However, it is still considered as a 

two-stage power converter, as the input and the output converters are coupled with a 

dc link capacitor. 

 In contrast, the matrix converter is considered as a direct ac-to-ac power 

conversion, i.e. without intermediate energy storage element. The absence of the dc 

link capacitor decreases its footprint and improves the system lifetime. Moreover, the 

matrix converter is essentially a single stage converter with an inherent quasi three-

level property. This characteristic enables all the three instantaneous line-to-line input 

voltages to appear at the output voltages simultaneously. As far as per switch 

conduction current is concerned, the matrix converter is lower; thus it is better suited 

for high current, low-frequency as well as start-up applications. Above all, the power 

density and the power-to-mass ratio of the matrix converter is significantly higher than 

the voltage-source inverter or the VSBBC for a wide range of switching frequencies 

[15-18].    

1.2 Modulation Techniques for Multi-phase Matrix Converter  

Modulation is the switching strategy imposed on the power switches to 

efficiently transfer the power from the input to the load. The effectiveness of the 

modulation methods is measured based on several objectives: 1) to obtain the highest 

value of fundamental voltage for a given input, 2) to minimize the number of switching 
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instants in order to achieve certain output waveform quality, 2) to be able to maintain 

zero displacement angle between the input voltage and the current (unity power 

factor). For a given converter topology, these objectives may contradict; hence the 

necessary compromises.  

 Despite the numerous merits of the multi-phase matrix converter, little 

attention is given to the advancement of its modulation strategy. Whilst there exists 

quite a number of modulation techniques developed for the multi-phase voltage-

source inverter [5-7] and the VSBBC [19-21], there appears to be very limited 

(similar) work carried out on the multi-phase matrix converter. To date, most of the 

established modulation strategies for matrix converter are based on the carrier-based 

PWM—primarily the sinusoidal PWM (SPWM) switching strategies [11-14, 22-23]. 

Besides these, there are several work on the matrix converter involving the space 

vector modulation (SVM) for motor drives [24-29] and distributed generation [30-31] 

applications. The SVM is more adaptable for digital implementation because the 

switching angles are formulated by simple vector calculations. It has freedom to 

generate independent gating signals at low modulation ratio and its performance is 

superior than the carrier based PWM [33-34]. Furthermore, the SVM can be utilized 

to achieve different control goals such as fault tolerance, common mode voltage 

elimination and switching frequency reduction [32]. In addition, it also exhibits better 

harmonic profile, which is particularly advantageous for high power converters.  

 Several variations of the SVM have been utilized for three-to-three phase 

matrix converter [24-29]. Recently, the SVM has been implemented in a three-to-five 

phase matrix converter too [10]. Despite these successes, there is no attempt to apply 

the SVM to a matrix converter with five phases or more. The main advantage of using 

a higher number of phases is the reduction in pulsating torque (ripple). The lower 

pulsation results in smoother machine operation, lower oscillation, reduced 

mechanical fatigue and acoustic noise. Additionally, the rotor harmonic currents 

losses are lessened, due to the reduced power drawn by the motor. There are several 

works on the SVM for the three-to-three phase matrix converter, but they are only 

limited to single ended motor drives [35-40]. It would be interesting if these converters 

can be applied to open-end motors as well. 
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1.3 Issues on Common-mode Voltage  

For a motor that is fed by the pulse width modulated switching converters, the 

common-mode voltage is bound to be formulated at the output. The-common-mode 

voltage is detrimental and has been identified as a main source of premature motor 

failures [41-43]. It is also known to cause overvoltage stress to the winding 

insulation—affecting its lifetime and contributes to a host of EMI-related problems. 

Furthermore, the presence of high frequency common-mode voltage component with 

large magnitude at the motor neutral point, generates high frequency leakage current 

to ground path, as well as induced shaft voltage [41].  

There are numerous efforts to reduce or eliminate the common-mode voltage 

in the three- and five-phase motor drives [44-48]. Expectedly, most of them are related 

to the conventional voltage-source inverter. A high frequency AC-link with single 

stage bidirectional power electronic transformer is used to suppress the common-mode 

voltage at the load end [49]. In [50], a hybrid 81-level multilevel voltage-source 

inverter that implements space vector modulation (SVM) to eliminate the common-

mode voltage in the three-phase drive is proposed, while in [51], the zero vectors of 

the SVM are used. In another work [52], a hybrid PWM is proposed to reduce the 

bearing currents, shaft voltage and common-mode voltage in a dual voltage-source 

inverter-fed, three-phase open-end motor drive. In [53], two SVM switching 

techniques with common-mode voltage reduction capability are described for a five-

phase, and in [54] the algorithm is enhanced by allowing for over-modulation. A two-

level voltage-source inverter feeding a five-phase drive to eliminate the common-

mode voltage is investigated in [55]; it is based on the vector space decomposition 

concept. A carrier based PWM scheme to eliminate the common-mode voltage in five-

phase and six-phase voltage-source inverter-fed drive with open-end stator winding 

are proposed in [56, 57]. In [58-59], various SVM techniques are applied to multi-

level voltage-source inverter with multi-phase open-end winding drive topologies. 

The interest in the dual open-end drive is due to the fact that it can deliver much higher 

power than the single ended type. 

Despite extensive works on three-phase as well as multi-phase voltage-source 

inverter drives [50-59], little attention is given to the common-mode voltage 
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elimination for multi-phase matrix converter. This is crucial because one of the factor 

to increase reliability of the drive system is to eliminate the circulating common-mode 

current, which is the consequence of the common-mode voltage. However, there are 

some effort and works in that directions, but mostly they are focused on the three-

phase matrix converter. For example, authors in [60] have applied a predictive control 

to reduce the common-mode voltage in the three-phase system, which results in a 50% 

increase in the overall efficiency. Recently, several contributions on common-mode 

voltage mitigation [61-69] are reported on square-type matrix converter1 open-end 

drive system. In general, the objective of such work is two-fold: 1) to eliminate the 

common-mode voltage across the windings of the open-end motor and 2) to increase 

the output voltage range by extending the linear modulation range.  

 

1.4 Problem Statements 

In view of the literary gap and considering the clear advantages of higher 

number of output phases, this work attempts to utilize the SVM for the multi-phase 

matrix converter with a higher number of phase e.g. seven. The main problem of the 

SVM implementation for the higher phases is the large number of switching states that 

must be considered. Thus one of the challenges of this work is to reduce the number 

of switching vectors to a manageable level. This in turn, will decrease the execution 

time, thereby increasing the efficiency of the algorithm. Notwithstanding the fewer 

switching states, the modulation must exhibit an improvement or at least maintain the 

harmonic profile, compared to the carrier based PWM. Furthermore, the SVM should 

be able to generate a balanced sinusoidal input currents with unity power factor—both 

at high and low output frequency. This is a major concern in matrix converter, as it is 

quite difficult to achieve sinusoidal input current with controllable power factor. 

Another issue to be addressed by this work is the elimination of the common-

mode voltage from the output of the matrix converter. Note that, for the case of the 

                                                 
1Square matrix converter means 3 × 3 or 5 × 5 or n × n phase. In other words, the input is multiple of output or vice versa. 

Non-square matrix converter means number of input and output phases are different in the form of n×m, where n and m are not 

multiple of each other. 
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square-type matrix converter, the common-mode voltage is readily eliminated by 

utilizing the rotating vectors [61-69]. In particular, for the three-to-three phase matrix 

converter, all the different input phases correspond to all the three output phases’ 

positions, thus actively nullifying the instantaneous common-mode voltage. This is 

because, ideally, the sum of the voltages formed by the input-output rotating vectors 

at the motor terminal at any instant is always zero. On the contrary, for the non-square 

matrix converter (since the number of input phases differ from the output phases), it 

is not possible to take advantage of the same rotating vectors, as the input-output space 

vector positions are always asymmetrical. This situation is known as heterogeneous 

switching. However, there are opportunities for the common-mode voltage to be 

eliminated by applying ingenious modulation techniques. One possibility to be 

explored is to introduce appropriate active vectors in the SVM switching sequence. 

1.5 Objective of the Research 

The proposed research work has the following specific objectives:  

 

1) To develop an improved SVM modulation strategy for the three-to-seven 

matrix converter. The desirable features of  the proposed technique is the reduction of 

the SVM switching states and improved harmonic profile compared to the carrier 

based PWM. Furthermore, the proposed SVM is able to generate a balanced sinusoidal 

input currents with a near unity power factor—both at high and low output 

frequencies. 

 

2)  To eliminate the common-mode voltage across the windings of the open-end 

motor by using the active vectors. The common-mode voltage elimination must also 

be coupled with the ability to control the input power factor to unity. Furthermore, the 

use of dual open-end drive is expected to boost the output phase voltage up to 150% 

of the input phase voltage in the linear modulation range.  
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1.6 Scope of Work 

 The work carried out in this thesis are mainly bounded by the following scopes: 

 A large part of the work deals with the formulation of switching strategies of 

the SVM. This involves the mathematical formulation of switching instants to increase 

the performance of the matrix converter. The first scope is to design the SVM for the 

three-to-seven phase matrix converter with reduced switching vectors. The second 

scope is to use the SVM to eliminate the common-mode voltage in an open-end motor 

driven by the dual three-to-five phase matrix converter. 

 The ideas are to be verified by MATLAB/Simulink simulation. In addition, to 

validate the simulation results, the experimental work is carried out. The experiments 

are done with matrix converter rated at approximately 5 kW (peak). The SVM 

algorithms are implemented on a digital signal processor platform. 

 

1.7 Thesis Organization 

The content of this thesis is divided into five chapters, including the 

Introduction. It is organized as follows: 

Chapter 2 is the literature review. It serves as the pre-requisite reading for the 

reader to follow through the thesis effectively. Thus it mainly focuses on the 

background information of the matrix converter topology, its characteristics and 

operation. It also describes the detail of the SVM modulation. Note that, since the 

nature of this work can be distinctly divided into two parts, the specific literature 

review and the definition of the research gaps (or the problem statements) are not 

formulated here; rather they are described in the respective chapter.  

Chapter 3 covers the SVM strategy for the five-to-seven phase matrix 

converter. It begins with a review on the previous modulation strategies for the SVM 



8 

 

 

 

published in the literature. From the review, the need for an improved SVM for the 

three-to-seven phase matrix converter is established. The complete space vector model 

for the converter is developed. Hence, the proposed idea of the switching vector 

reduction is analyzed. The concept is verified by using the MATLAB/Simulink. 

Finally, an experimental test rig is set up to validate the simulation results. 

Chapter 4 deals with the elimination of the common-mode voltage. The 

topology under study is the open-end five-phase induction motor fed by a dual matrix 

converter. Initially, the discussion revolves around the causes and the effects of the 

common-mode voltage on the drive performance. Then the SVM strategy to eliminate 

the common-mode voltage is proposed.  The idea is verified by simulation and 

validated by experiments. 

Chapter 5 draws the overall conclusion of the work and highlights its 

contribution to the research field. It also suggests some future research that can be 

taken up as continuation of this work.   
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