1,109 research outputs found

    Recommendations and guidelines from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 1 -- In vivo small-animal imaging

    Full text link
    The value of in vivo preclinical diffusion MRI (dMRI) is substantial. Small-animal dMRI has been used for methodological development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. Many of the influential works in this field were first performed in small animals or ex vivo samples. The steps from animal setup and monitoring, to acquisition, analysis, and interpretation are complex, with many decisions that may ultimately affect what questions can be answered using the data. This work aims to serve as a reference, presenting selected recommendations and guidelines from the diffusion community, on best practices for preclinical dMRI of in vivo animals. In each section, we also highlight areas for which no guidelines exist (and why), and where future work should focus. We first describe the value that small animal imaging adds to the field of dMRI, followed by general considerations and foundational knowledge that must be considered when designing experiments. We briefly describe differences in animal species and disease models and discuss how they are appropriate for different studies. We then give guidelines for in vivo acquisition protocols, including decisions on hardware, animal preparation, imaging sequences and data processing, including pre-processing, model-fitting, and tractography. Finally, we provide an online resource which lists publicly available preclinical dMRI datasets and software packages, to promote responsible and reproducible research. An overarching goal herein is to enhance the rigor and reproducibility of small animal dMRI acquisitions and analyses, and thereby advance biomedical knowledge.Comment: 69 pages, 6 figures, 1 tabl

    Automated morphometry for mouse brain MRI through structural parcellation and thickness estimation

    Get PDF
    Quantitative morphometric analysis is an important tool in neuroimaging for the study of understanding the physiology of development, normal aging, disease pathology and treatment effect. However, compared to clinical study, image analysis methods specific to preclinical neuroimaging are still lacking. The aim of this PhD thesis is to achieve automatic quantitative structural analysis of mouse brain MRI. This thesis focuses on two quantitative methods which have been widely accepted as quantitative imaging biomarkers: brain structure segmentation and cortical thickness estimation. Firstly, a multi-atlas based structural parcellation framework has been constructed, which incorporates preprocessing steps such as intensity non-uniformity correction and multi-atlas based brain extraction, followed by non-rigid registration and local weighted multi-atlas label fusion. Validation of the framework demonstrated improved performance compared to single-atlas-based structural parcellation, as well as to global weighted multi-atlas label fusion methods. The framework has been further applied to in vivo and ex vivo data acquired from the same cohort so that the respective volumetric analysis can be compared. The results reveal a non-uniform distribution of volume changes from the in vivo to the post-mortem brain. In addition, volumetric analysis based on the segmented structures showed similar statistical power on in vivo or ex vivo data within the same cohort. Secondly, a framework to segment the mouse cerebellar cortex sublayers from brain MRI data and estimate the thickness of the corresponding layers has been developed. Application of the framework on the experimental data demonstrated its ability to distinguish sublayer thickness variation between transgenic strains and their wild-type littermate, which cannot be detected using full cortical thickness measurements alone. In conclusion, two quantitative morphometric analysis frameworks have been pre-sented in this thesis. This demonstrated the successful application of translational quantitative methods to preclinical mouse brain MRI

    Quantification of tumour heterogenity in MRI

    Get PDF
    Cancer is the leading cause of death that touches us all, either directly or indirectly. It is estimated that the number of newly diagnosed cases in the Netherlands will increase to 123,000 by the year 2020. General Dutch statistics are similar to those in the UK, i.e. over the last ten years, the age-standardised incidence rate1 has stabilised at around 355 females and 415 males per 100,000. Figure 1 shows the cancer incidence per gender. In the UK, the rise in lifetime risk of cancer is more than one in three and depends on many factors, including age, lifestyle and genetic makeup

    Early Medial Temporal Atrophy Scale (EMTA)

    Get PDF
    186 p.[ES]La atrofia del lóbulo temporal medial puede ser medida a través del uso de escalas de atrofia visual tales como la escala de atrofia del lóbulo temporal medial (MTA). La escala MTA ha sido diseñada y validada para el estudio de pacientes con Enfermedad de Alzheimer moderada (EA). Sin embargo, la MTA no ha sido diseñada para medir los cambios de atrofia de bajo grado que ocurren en la etapa precoz y media del proceso de envejecimiento. El objetivo de este estudio fue desarrollar y validar una nueva MTA; La “Goiz” (en Euskera) GMTA o “Early” (en ingles) EMTA, una nueva escala diseñada para la valoración de la atrofia precoz del lóbulo temporal medial que tiene la capacidad de medir los cambios de atrofia de bajo grado.[EN]Medial temporal lobe atrophy can be measured through visual rating scales such us the medial temporal lobe atrophy scale (MTA). MTA has been designed and validated for the study of patients with mild to moderate Alzheimer disease (AD). However, MTA has not been designed to measure the low-grade atrophy changes that occur at the early and middle aging process. The aim of this study was develop and validate a new MTA; the early (“Goiz” in Basque language) medial temporal lobe atrophy scale (EMTA) that has the capability to measure the low-grade atrophy changes

    Automated analysis and visualization of preclinical whole-body microCT data

    Get PDF
    In this thesis, several strategies are presented that aim to facilitate the analysis and visualization of whole-body in vivo data of small animals. Based on the particular challenges for image processing, when dealing with whole-body follow-up data, we addressed several aspects in this thesis. The developed methods are tailored to handle data of subjects with significantly varying posture and address the large tissue heterogeneity of entire animals. In addition, we aim to compensate for lacking tissue contrast by relying on approximation of organs based on an animal atlas. Beyond that, we provide a solution to automate the combination of multimodality, multidimensional data.* Advanced School for Computing and Imaging (ASCI), Delft, NL * Bontius Stichting inz Doelfonds Beeldverwerking, Leiden, NL * Caliper Life Sciences, Hopkinton, USA * Foundation Imago, Oegstgeest, NLUBL - phd migration 201

    Automated morphometric analysis and phenotyping of mouse brains from structural µMR images

    Get PDF
    In light of the utility and increasing ubiquity of mouse models of genetic and neurological disease, I describefully automated pipelines for the investigation of structural microscopic magnetic resonance images of mouse brains – for both high-throughput phenotyping, and monitoring disease. Mouse models offer unparalleled insight into genetic function and brain plasticity, in phenotyping studies; and neurodegenerative disease onset and progression, in therapeutic trials. I developed two cohesive, automatic software tools, for Voxel- and Tensor-Based Morphometry (V/TBM) and the Boundary Shift Integral (BSI), in the mouse brain. V/TBM are advantageous for their ability to highlight morphological differences between groups, without laboriously delineating regions of interest. The BSI is a powerful and sensitive imaging biomarker for the detection of atrophy. The resulting pipelines are described in detail. I show the translation and application of open-source software developed for clinical MRI analysis to mouse brain data: for tissue segmentation into high-quality, subject-specific maps, using contemporary multi-atlas techniques; and for symmetric, inverse-consistent registration. I describe atlases and parameters suitable for the preclinical paradigm, and illustrate and discuss image processing challenges encountered and overcome during development. As proof of principle and to illustrate robustness, I used both pipelines with in and ex vivo mouse brain datasets to identify differences between groups, representing the morphological influence of genes, and subtle, longitudinal changes over time, in particular relation to Down syndrome and Alzheimer’s disease. I also discuss the merits of transitioning preclinical analysis from predominately ex vivo MRI to in vivo, where morphometry is still viable and fewer mice are necessary. This thesis conveys the cross-disciplinary translation of up-to-date image analysis techniques to the preclinical paradigm; the development of novel methods and adaptations to robustly process large cohorts of data; and the sensitive detection of phenotypic differences and neurodegenerative changes in the mouse brai

    Development and application of quantitative image analysis for preclinical MRI research

    Get PDF
    The aim of this thesis is to develop quantitative analysis methods to validate MRI and improve the detection of tumour infiltration. The major components include a description of the development the quantitative methods to better validate imaging biomarkers and detect of infiltration of tumour cells into normal tissue, which were then applied to a mouse model of glioblastoma invasion. To do this, a new histology model, called Stacked In-plane Histology (SIH), was developed to allow a quantitative analysis of MRI. Validating imaging biomarkers for glioblastoma infiltration Cancer can be defined as a disease in which a group of abnormal cells grow uncontrollably, often with fatal outcomes. According to (Cancer research UK, 2019), there are more than 363,000 new cancer cases in the UK every year, an increase from the 990 cases reported daily in 2014-2016, with only half of all patients recovering. Glioblastoma (GB) is the most frequent and malignant form of primary brain tumours with a very poor prognosis. Even with the development of modern diagnostic strategies and new therapies, the five-year survival rate is just 5%, with the median survival time only 14 months. Unfortunately, glioblastoma can affect patients at any age, including young children, but has a peak occurrence between the ages of 65 and 75 years. The standard treatment for GB consists of surgical resection, followed by radiotherapy and chemotherapy. However, the infiltration of GB cells into healthy adjacent brain tissue is a major obstacle for successful treatment, making complete removal of a tumour by surgery a difficult task, with the potential for tumour recurrence. Magnetic Resonance Imaging (MRI) is a non-invasive, multipurpose imaging tool used for the diagnosis and monitoring of cancerous tumours. It can provide morphological, physiological, and metabolic information about the tumour. Currently, MRI is the standard diagnostic tool for GB before the pathological examination of tissue from surgical resection or biopsy specimens. The standard MRI sequences used for diagnosis of GB include T2-Weighted (T2W), T1-Weighted (T1W), Fluid-Attenuated Inversion Recovery (FLAIR), and Contrast Enhance T1 gadolinium (CE-T1) scans. These conventional scans are used to localize the tumour, in addition to associated oedema and necrosis. Although these scans can identify the bulk of the tumour, it is known that they do not detect regions infiltrated by GB cells. The MRI signal depends upon many physical parameters including water content, local structure, tumbling rates, diffusion, and hypoxia (Dominietto, 2014). There has been considerable interest in identifying whether such biologically indirect image contrasts can be used as non-invasive imaging biomarkers, either for normal biological functions, pathogenic processes or pharmacological responses to therapeutic interventions (Atkinson et al., 2001). In fact, when new MRI methods are proposed as imaging biomarkers of particular diseases, it is crucial that they are validated against histopathology. In humans, such validation is limited to a biopsy, which is the gold standard of diagnosis for most types of cancer. Some types of biopsies can take an image-guided approach using MRI, Computed Tomography (CT) or Ultrasound (US). However, a biopsy may miss the most malignant region of the tumour and is difficult to repeat. Biomarker validation can be performed in preclinical disease models, where the animal can be terminated immediately after imaging for histological analysis. Here, in principle, co-registration of the biomarker images with the histopathology would allow for direct validation. However, in practice, most preclinical validation studies have been limited to using simple visual comparisons to assess the correlation between the imaging biomarker and underlying histopathology. First objective (Chapter 5): Histopathology is the gold standard for assessing non-invasive imaging biomarkers, with most validation approaches involving a qualitative visual inspection. To allow a more quantitative analysis, previous studies have attempted to co-register MRI with histology. However, these studies have focused on developing better algorithms to deal with the distortions common in histology sections. By contrast, we have taken an approach to improve the quality of the histological processing and analysis, for example, by taking into account the imaging slice orientation and thickness. Multiple histology sections were cut in the MR imaging plane to produce a Stacked In-plane Histology (SIH) map. This approach, which is applied to the next two objectives, creates a histopathology map which can be used as the gold standard to quantitatively validate imaging biomarkers. Second objective (Chapter 6): Glioblastoma is the most malignant form of primary brain tumour and recurrence following treatment is common. Non-invasive MR imaging is an important component of brain tumour diagnosis and treatment planning. Unfortunately, clinic MRI (T1W, T2W, CE-T1, and FLAIR) fails to detect regions of glioblastoma cell infiltration beyond the solid tumour region identified by contrast enhanced T1 scans. However, advanced MRI techniques such as Arterial Spin Labelling (ASL) could provide us with extra information (perfusion) which may allow better detection of infiltration. In order to assess whether local perfusion perturbation could provide a useful biomarker for glioblastoma cell infiltration, we quantitatively analysed the correlation between perfusion MRI (ASL) and stacked in-plane histology. This work used a mouse model of glioblastoma that mimics the infiltrative behaviour found in human patients. The results demonstrate the ability of perfusion imaging to probe regions of low tumour cell infiltration, while confirming the sensitivity limitations of clinic imaging modalities. Third objective (Chapter 7): It is widely hypothesised that Multiparametric MRI (mpMRI), can extract more information than is obtained from the constituent individual MR images, by reconstructing a single map that contains complementary information. Using the MRI and histology dataset from objective 2, we used a multi-regression algorithm to reconstruct a single map which was highly correlated (r>0.6) with histology. The results are promising, showing that mpMRI can better predict the whole tumour region, including the region of tumour cell infiltration

    Mapping sheep to human brain: The need for a sheep brain atlas

    Get PDF
    A brain atlas is essential for understanding the anatomical relationship between neuroanatomical structures. Standard stereotaxic coordinates and reference systems have been developed for humans, non-human primates and small laboratory animals to contribute to translational neuroscience research. Despite similar neuroanatomical and neurofunctional features between the sheep and human brain, little is known of the sheep brain stereotaxy, and a detailed sheep atlas is scarce. Here, we briefly discuss the value of using sheep in neurological research and the paucity of literature concerning the coordinates system during neurosurgical approaches. Recent advancements such as computerized tomography, positron emission tomography, magnetic resonance imaging, functional magnetic resonance imaging and diffusion tensor imaging are used for targeting and localizing the coordinates and brain areas in humans. Still, their application in sheep is rare due to the lack of a 3D stereotaxic sheep atlas by which to map sheep brain structures to its human counterparts. More recently, a T1- and T2-weighted high-resolution MRI 3D stereotaxic atlas of the sheep brain has been generated, however, the journey to create a sheep brain atlas by which to map directly to the human brain is still uncharted. Therefore, developing a detailed sheep brain atlas is valuable for the future to facilitate the use of sheep as a large animal experimental non-primate model for translational neurological research

    The current state-of-the-art of spinal cord imaging: methods.

    Get PDF
    A first-ever spinal cord imaging meeting was sponsored by the International Spinal Research Trust and the Wings for Life Foundation with the aim of identifying the current state-of-the-art of spinal cord imaging, the current greatest challenges, and greatest needs for future development. This meeting was attended by a small group of invited experts spanning all aspects of spinal cord imaging from basic research to clinical practice. The greatest current challenges for spinal cord imaging were identified as arising from the imaging environment itself; difficult imaging environment created by the bone surrounding the spinal canal, physiological motion of the cord and adjacent tissues, and small cross-sectional dimensions of the spinal cord, exacerbated by metallic implants often present in injured patients. Challenges were also identified as a result of a lack of "critical mass" of researchers taking on the development of spinal cord imaging, affecting both the rate of progress in the field, and the demand for equipment and software to manufacturers to produce the necessary tools. Here we define the current state-of-the-art of spinal cord imaging, discuss the underlying theory and challenges, and present the evidence for the current and potential power of these methods. In two review papers (part I and part II), we propose that the challenges can be overcome with advances in methods, improving availability and effectiveness of methods, and linking existing researchers to create the necessary scientific and clinical network to advance the rate of progress and impact of the research
    corecore