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The need for a sheep brain atlas
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A brain atlas is essential for understanding the anatomical relationship between

neuroanatomical structures. Standard stereotaxic coordinates and reference

systems have been developed for humans, non-human primates and small

laboratory animals to contribute to translational neuroscience research.

Despite similar neuroanatomical and neurofunctional features between the

sheep and human brain, little is known of the sheep brain stereotaxy, and

a detailed sheep atlas is scarce. Here, we briefly discuss the value of using

sheep in neurological research and the paucity of literature concerning the

coordinates system during neurosurgical approaches. Recent advancements

such as computerized tomography, positron emission tomography, magnetic

resonance imaging, functional magnetic resonance imaging and di�usion

tensor imaging are used for targeting and localizing the coordinates and brain

areas in humans. Still, their application in sheep is rare due to the lack of a 3D

stereotaxic sheep atlas by which to map sheep brain structures to its human

counterparts. More recently, a T1- and T2-weighted high-resolution MRI 3D

stereotaxic atlas of the sheep brain has been generated, however, the journey

to create a sheep brain atlas by which to map directly to the human brain is still

uncharted. Therefore, developing a detailed sheep brain atlas is valuable for the

future to facilitate the use of sheep as a large animal experimental non-primate

model for translational neurological research.
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Introduction

A brain atlas is a valuable tool containing pictures of brain sections in different

anatomical orientations (three-dimensional space; coronal, sagittal and axial planes),

with the coordinates of relevant brain structures to define their outlines or volumes. An

atlas enables the researcher to calculate stereotaxic coordinates for a variety of stereotaxic

procedures to accurately target deep brain structures for recording or lesioning (1–4).

This atlas when combined with electrophysiological data helps to better understand the

functional activity in brain networks across species (5). Having a highly precise and

consistent atlas assures consistency in defining the boundaries of various brain structures

between publications from different researchers (6). In addition, atlas and templates
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are necessary to improve understanding of neuroanatomical

structures, leading to advancements in the field of neurology,

and neurosurgery and to aid translational neuroscience research.

Among the various animal species used in neuroscience,

rodents are the most common. Other used species include

domestic animals such as pigs, goats, and sheep, and those

that are also companion animals such as horses, dogs and cats.

Stereotaxic and automatic tissue segmentation systems with

varied detail have been developed for humans, non-human

primates, dogs, cats and rodents, but not for sheep. A detailed

brain atlas exists for humans, the Allen Human Brain Atlas; for

rats, the Rat Brain in Stereotaxic Coordinates (7); for mouse,

Allen Brain Atlas: Mouse Brain; for rhesus macaques, NIH

Blueprint Non-Human Primate (NHP) Atlas; for long-tailed

macaque monkeys (4); for domestic species such as the pig (1),

dog (8–10), cat (5), and horse. Some example two-dimensional

images of brain coronal and sagittal sections of various animal

species is shown in Figure 1. Unfortunately, to our knowledge,

no such detailed atlas is available for sheep.

The sheep (Ovis aries) is an attractive and convenient

animal model for mapping human disorders, particularly for

neurosurgical and neuropathological research. Physiological

and neuroanatomical similarities between sheep and humans,

such as cerebral white matter distribution (11), gyrencephalic

cerebral cortexes, thick meninges, and highly distinct sulci and

gyri (12–14), make sheep an acceptable large brain animal

model for neurological research. Sheep cerebral cortices contain

four lobes defined by external landmarks, similar to those

of humans (15). Furthermore, the sub-cortical structures in

particular, the dorsal striatum, are in two separate sections;

caudate nucleus and putamen in sheep, similar to humans

(14, 16). In addition, the relatively round skull of the sheep

is comparable to the human head, unlike pigs which have

a flat and thick skull (17). Therefore, the brains of sheep

may have distinct anatomical advantages over small brains

for translational research. A detailed review of neuroanatomy

is beyond the scope of this paper, but clinically relevant

areas are compared briefly in Table 1. Other benefits of

using sheep such as greater acceptability to animal ethics

committee compared to companion animals and primates, easily

available, less expensive, reasonably outbreed, easymanagement,

environmental enrichment not required as they live in their

natural pasture, make sheep advantageous an experimental

model for translational research over large animal species, in

particular primates.

Despite similar neuroanatomical and neurofunctional

features between sheep and human brains, and the relatively

low cost of the sheep as a model for teaching human-like brain

anatomy, very little is known about the ovine brain anatomical

relationships, and a detailed sheep atlas is scarce. The only

available atlases are either limited to specific brain areas (35),

consist of a series of gross photographs of sheep brain (36),

or provide labeled coronal sections (both cell and fiber stain)

but do not offer standard stereotaxic coordinates and reference

system (e.g., TheMichigan histological sheep brain atlas; https://

brains.anatomy.msu.edu/brains/sheep/index.html; retrieved on

May 12, 2022). Although there is a sheep atlas with a coordinate

system (covering a few brain areas), histology sections with

labeled brain structures (as in the Michigan histological data

atlas; but not the standard stereotaxic coordinates/reference

system) and neuroimaging atlas there is no comprehensive

atlas that actually combines all these features to enable defined

regions to be easily localized. Therefore, the neuroscience

research community would be benefitted by having a detailed

sheep atlas that combines both neuroanatomical regions on

both histology (as in the Michigan histological data atlas) as well

as neuroimaging (MRI atlases)to enable defined regions to be

easily localized.

Brief history of resources developed
for the study of the sheep brain

The study of the cortico-spinal or pyramid tract fibers of

the sheep brain can be dated back to the late 18th century (the

literature refers to 1877 by Atruro Maracacci)(37). Researchers

made strenuous efforts to map the brain and anatomical areas

and to partition these based on cytoarchitectonic information

available at that early stage. Most of the early studies in sheep

were based on electrical or mechanical stimulation of the

different brain regions and mapping with a pattern of body

response to stimuli (37–39). In 1967, Richard published the first

hard copy sheep atlas, “Atlas stereotaxique du cerveau de beria.”

However, the atlas was written in the French language and was

limited to specific brain areas, including subcortical structures

such as the thalamus, hippocampus, and hypothalamus (35).

The stereotaxic brain atlas in English was prepared by McKenzie

and Smith in 1973 from female merino sheep and was used by

others in guiding electrical stimulation of the brain, diencephalic

lesions, and intracerebroventricular chemical stimulations (40).

Opdam and colleagues, first reported the sheep (merino) model

of focal epilepsy (penicillin-induced) in 2002 using concurrent

EEG and fMRI (41). The localization of coordinates for surgical

placement and electrodes was based on the anatomic atlas of

the sheep brain, however, the authors did not relate the details

of the stereotaxic reference systems to the distinct anatomical

structures identified from their experimental findings to help

map the findings to the structures found in the human brain.

Recent advancement

Recent advances in mapping technology have made it

possible to study neuroanatomical features and localization of

brain areas in a variety of animals, including sheep (3, 42–

44). The established techniques for targeting brain areas and
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FIGURE 1

Representative images of two-dimensional sections of the brain, coronal (right) and sagittal (left) sectons of brains of various species. (A) Human

brain. Coronal sections show the fiber tracts in the left panel and schematic diagrams in the right panel. The sagittal section shows the plane of

(Continued)
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FIGURE 1

the 69 sections depicted in the atlas. The intercommisural line (ICL) and the vertical line (VCA) pass through the center of the anterior and

posterior commissure, and the center of the anterior commissure, respectively. (B) Pig brain. Coronal and sagittal sections in this example show

the coordinates 14.50mm ahead of the posterior commissure and 4.00mm laterally from the midsagittal plane, respectively. (C) Cat brain.

Coronal and sagittal sections are examples of Nissl stained sections from the adult cat (Felis Catus). (D) Dog brain. Coronal and sagittal sections

are shown in the maps of the whole brain from a 5 month old dog (Canis Lupus). The blue line shows the levels at the frontal lobe Images in (A)

are reproduced from the human brain website https://www.thehumanbrain.info/brain/sections.php. Retrieved May 12, 2022. Images in (B) are

reproduced from the Stereotaxic atlas of the pig brain by Felix et al. (1) with permission from Elsevier. Images (C,D) are reproduced from the

brain maps website http://brainmaps.org/ajax-viewer.phpdatid=32&sname=p099-100, retrieved on May 13, 2022.

localizing the coordinates such as CT scan, PET, MRI, fMRI, and

DTI are widely used in humans. The neuroimaging techniques

are being applied to sheep, albeit not extensively because they

fit into conventional scanners and MRI units due to their

comparable body size, skulls and brain volumes to humans

(14, 28, 43, 45).

In 2014, frameless MRI guided stereotactic access to

the ovine brainstem was developed and validated using the

modified BrainsightTM stereotactic system (46). Nevertheless,

the approach was limited to the midbrain and pons on post-

mortem imaging on sheep heads. Nitzsche et al. (44) published

an MRI-based ovine brain template with tissue probability

maps offering a detailed stereotaxic reference frame to localize

brain areas and anatomical features. However, this ovine brain

atlas was limited to cerebral morphology and tissue volume,

mainly gray matter, white matter, cerebrospinal fluid (CSF),

cerebral peduncle, and pons. Other critical anatomical structures

such as the cerebellum, medulla oblongata, olfactory bulb and

subcortical brain areas were not included.

Russell et al. (47) used CT scanning and 3D reconstruction

techniques to study intracranial volume loss as well as regional

neurodegeneration over time (between 5 and 13 months and 11

and 15 months for CLN5 and CLN6 sheep Baten disease models,

respectively) in occipital lobes and propagation throughout the

cerebral cortex. The CT images included olfactory bulbs in the

cerebellum. Nevertheless, details of inner and external sheep

brain structures was again absent from these works.

3D high-resolution MRI sheep brain templates have been

constructed for multi-institution neuroimaging studies using

living animals. More recently, Ella and colleagues generated

the first complete T1 and T2-weighted high-resolution MRI

3D stereotaxic atlas of an in vivo sheep brain (2, 48). This

elegant 3D atlas defined an MRI stereotaxic coordinate system,

probability maps and templates of CSF, gray and white matter.

In addition, the 3D atlas also demonstrated 25 cortical and 28

subcortical brain structures. However, the journey of mapping

the coordinates of sheep brain structures identified in atlases

such as this to that of the human brain still needs to advance,

thereby providing a missing tool for translational research.

Clarke and Whitteridge, (49) made their own atlases for

the cortex to study the cortical visual areas (Visual I and II) of

the sheep for the investigation of controlled eye movement. In

their work, they considered the coordinates used were relative

to the interaural plane in the usual way but the details of

the coordinates for targeting the visual cortex were missing.

However, they have referred to the Richard atlas for the

mid-brain. The visual cortex was found to be thin in sheep

(1.488mm) compared to those of macaques (1.657mm), and

chimpanzees (2.109mm) (50).

Bombardi et al. (51) studied the organization of the lateral

nucleus of sheep amygdaloid complex which is little known in

ruminants. Due to the lack of a proper sheep brain atlas, the

delineation of the nuclear boundaries of the amygdala was based

on the image sections found in the University of Wisconsin and

Michigan State Comparative Mammalian brain collections.

More recently, DTI, mathematical and image-analysis

techniques, of the intracranial pyramidal and extrapyramidal

tracts, were applied to study the laminar organization

and projections of the sheep motor cortex. The results

showed the comparable thickness of the cortex and

other morphometric values to other mammalian species

including the chimpanzee. Somatotopic mapping however

was taken from early studies by Simpson and King due to

the lack of a currently detailed sheep atlas (52). Mapping

orbitofrontal cortex (OFC) and its connection to brain

areas of the sheep with the chimpanzee and humans was

investigated by Tommaso et al. using DTI. The authors

found a higher number of cortico-cortical fibers connecting

the visual areas with OFC similar to that of the human

brain (53).

Conclusion

At least 80–90% of novel therapeutic agents tested on

many rodents are found to be ineffective when translating

therapies into clinical research. One of the factors could be the

inappropriate selection of a suitable experimental animal model

for translational research. In addition, regulatory authorities

expect therapeutic agents and medical device testing on at least

one small rodent and large non-rodent gyrencephalic species

prior to clinical trials. As neuroscience becomes increasingly

advanced, highly accurate and consistent brain atlases are

needed for high-precision neuroscience experimentation. The

neuroscience research community would be benefitted by

having a detailed ovine brain atlas with coordinates that
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TABLE 1 Comparisons of the central nervous system between sheep and humans.

Features/Gross Sheep Human References

Brain shape Smaller and elongated Larger and rounded (18)

Skull thickness (mm) 5.0–6.0 6.5–7.5 (19)

Brain mass (g) 130–140 1,300–1,400 (14)

Four lobes defined by external

landmarks

Present Present (12)

Sulci and gyri Present Present (12–14)

Cerebral cortex Primarily neocortex Primarily neocortex (13, 20)

Motor cortex Located in frontal lobe (superior frontal

gyrus)

Located in frontal lobe (21)

Somatosensory cortex Located in frontal lobe (middle frontal

gyrus)

Located in parietal lobe (21)

Cortical layers Distinct cellular layers I-VI Distinct cellular layers I-VI (22)

Cortical interneuron Significant role Significant role (23)

Frontal lobe Small Very large (18)

Olfactory bulb Large and well-developed Small (24, 25)

Optic chiasm More pronounced Less pronounced

Orbit indentation Side Front (26)

Visual cortex More lateral More midline (26)

White matter Abundant Very abundant (27)

Cerebrum More elongated Less elongated (18)

Rigid tentorium cerebelli Present Present (28)

Cerebellum Smaller, located posteriorly (behind the

cerebrum)

Larger, located caudally (29)

Meninges Thick, well-developed Thick, well-developed (18)

Subventricular zone Laminar structure Laminar structure (30)

Subgranular Zone Laminar structure Laminar structure (30)

Hippocampus Ventral aspects of cerebrum Ventral aspects of cerebrum (24)

Basal ganglia Separate caudate and putamen Separate caudate and putamen (14, 16)

Substantia nigra pars compacta and

pars reticulata cell diameter (µm)

9–26 and 10–23 14–50 and 20–30 (22, 31)

Substantia nigra pars compacta

and pars reticulata average volume

(mm3)

13 and 152 68 (22, 31)

Substantia nigra pars compacta and

pars reticulata average cell number

39,481 and 51,800 436,000 (22, 31)

Gross spinal cord Located posteriorly Located caudally (18)

Vertebral bodies (Cervical spine) Taller than wide Wider than tall (32)

Lumbar spine curvature Kyphotic Lordotic (32)

Spinal canal width Wider (Identical to human) Wider (32)

Spinous process (cervical and

thoracic regions)

Longer Smaller (32)

Spinous process (Lumbar regions) Longer Longer (32)

Sciatic nerve origin L6-S2 L4-S3 (33)

Pineal gland Large and round; located at the interface

between the cerebral hemispheres and

cerebellum, not lobulated

Small, pine cone shaped, located within the

posterior wall of the third ventricle near the

center of the brain, lobulated

(34)

Where no journal reference is given, the human features/gross are adopted for comparison with sheep data from the Nervous System by Snyder et al. (18) with permission from Elsevier.
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combine both neuroanatomical regions on both histology

(as in the Michigan histological data atlas) as well as

neuroimaging (MRI atlases) to enable defined regions to be

easily localized. Although there are some still existing limits

such as the scarcity of neurochemical and electrophysiological

data, as well as the difficulty and high cost of performing

transgenesis experiments, we believe that creating a detailed

ovine brain atlas consisting of well-defined brain regions

(easily identifiable) and somatotopic organization (similar to the

available human and rodents atlas) is necessary for clinically

relevant translational neuroscience and neurological research.

Such an atlas would allow for detailed regional analysis

and easier surgical manipulation, facilitate the generalizability

and comparability of experimental results across studies and

laboratories and reduce the requirement for higher resolution

imaging. This would be a significant piece of research. Such a

tool would be extremely valuable for research in the next 5 to

10 years using sheep as a large animal non-primate model for

translational neurological research.
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