10,950,723 research outputs found

    Monte Carlo simulation for radiative kaon decays

    Full text link
    For high precision measurements of K decays, the presence of radiated photons cannot be neglected. The Monte Carlo simulations must include the radiative corrections in order to compute the correct event counting and efficiency calculations. In this paper we briefly describe a method for simulating such decays.Comment: 11 pages, 1 figur

    Non-Minimal Coupling to a Lorentz-Violating Background and Topological Implications

    Full text link
    The non-minimal coupling of fermions to a background responsible for the breaking of Lorentz symmetry is introduced in Dirac's equation; the non-relativistic regime is contemplated, and the Pauli's equation is used to show how an Aharonov-Casher phase may appear as a natural consequence of the Lorentz violation, once the particle is placed in a region where there is an electric field. Different ways of implementing the Lorentz breaking are presented and, in each case, we show how to relate the Aharonov-Casher phase to the particular components of the background vector or tensor that realises the violation of Lorentz symmetry.Comment: 8 pages, added references, no figure

    Robust and fragile Werner states in the collective dephasing

    Full text link
    We investigate the concurrence and Bell violation of the standard Werner state or Werner-like states in the presence of collective dephasing. It is shown that the standard Werner state and certain kinds of Werner-like states are robust against the collective dephasing, and some kinds of Werner-like states is fragile and becomes completely disentangled in a finite-time. The threshold time of complete disentanglement of the fragile Werner-like states is given. The influence of external driving field on the finite-time disentanglement of the standard Werner state or Werner-like states is discussed. Furthermore, we present a simple method to control the stationary state entanglement and Bell violation of two qubits. Finally, we show that the theoretical calculations of fidelity based on the initial Werner state assumption well agree with previous experimental results.Comment: 7 pages, 6 figures, 1 table, RevTex4, Accepted by EPJ

    Creating Ioffe-Pritchard micro-traps from permanent magnetic film with in-plane magnetization

    Full text link
    We present designs for Ioffe-Pritchard type magnetic traps using planar patterns of hard magnetic material. Two samples with different pattern designs were produced by spark erosion of 40 μ\mum thick FePt foil. The pattern on the first sample yields calculated axial and radial trap frequencies of 51 Hz and 6.8 kHz, respectively. For the second sample the calculated frequencies are 34 Hz and 11 kHz. The structures were used successfully as a magneto-optical trap for 87^{87}Rb and loaded as a magnetic trap. A third design, based on lithographically patterned 250 nm thick FePt film on a Si substrate, yields an array of 19 traps with calculated axial and radial trap frequencies of 1.5 kHz and 110 kHz, respectively.Comment: 8 pages, 5 figures Revised and accepted for EPJD, improved picture

    Eikonal representation in the momentum-transfer space

    Get PDF
    By means of empirical fits to the differential cross section data on pp and p(bar)p elastic scattering, above 10 GeV (center-of-mass energy), we determine the eikonal in the momentum - transfer space (q^2- space). We make use of a numerical method and a novel semi-analytical method, through which the uncertainties from the fit parameters can be propagated up to the eikonal in the q2q^2- space. A systematic study of the effect of the experimental information at large values of the momentum transfer is developed and discussed in detail. We present statistical evidence that the imaginary part of the eikonal changes sign in the q^2- space and that the position of the zero decreases as the energy increases; after the position of the zero, the eikonal presents a minimum and then goes to zero through negative values. We discuss the applicability of our results in the phenomenological context, outlining some connections with nonperturbative QCD. A short review and a critical discussion on the main results concerning "model-independent" analyses are also presented.Comment: 18 pages, 17 figures, 4 tables, svjour.cls. Revised discussion on the proton's electromagnetic form factor and references added. To appear in Eur. Phys. J.

    Covariant canonical quantization of fields and Bohmian mechanics

    Full text link
    We propose a manifestly covariant canonical method of field quantization based on the classical De Donder-Weyl covariant canonical formulation of field theory. Owing to covariance, the space and time arguments of fields are treated on an equal footing. To achieve both covariance and consistency with standard noncovariant canonical quantization of fields in Minkowski spacetime, it is necessary to adopt a covariant Bohmian formulation of quantum field theory. A preferred foliation of spacetime emerges dynamically owing to a purely quantum effect. The application to a simple time-reparametrization invariant system and quantum gravity is discussed and compared with the conventional noncovariant Wheeler-DeWitt approach.Comment: 17 pages, revised, to appear in Eur. Phys. J.

    Full separability criterion for tripartite quantum systems

    Get PDF
    In this paper, an intuitive approach is employed to generalize the full separability criterion of tripartite quantum states of qubits to the higher-dimensional systems (Phys. Rev. A \textbf{72}, 022333 (2005)). A distinct characteristic of the present generalization is that less restrictive conditions are needed to characterize the properties of full separability. Furthermore, the formulation for pure states can be conveniently extended to the case of mixed states by utilizing the kronecker product approximate technique. As applications, we give the analytic approximation of the criterion for weakly mixed tripartite quantum states and investigate the full separability of some weakly mixed states.Comment: 5 pages. To be published in Europ. J.

    Flavor changing neutral currents from lepton and B decays in the two Higgs doublet model

    Full text link
    Constraints on the whole spectrum of lepton flavor violating vertices are shown in the context of the standard two Higgs doublet model. The vertex involving the eτe-\tau mixing is much more constrained than the others, and the decays proportional to such vertex are usually very supressed. On the other hand, bounds on the quark sector are obtained from leptonic decays of the Bd,s0B_{d,s}^{0} mesons and from ΔMBd0\Delta M_{B_{d}^{0}}. We emphasize that although the Bd0Bˉd0B_{d}^{0}-\bar{B}_{d}^{0} mixing restricts severely the % d-b mixing vertex, the upper bound for this vertex could still give a sizeable contribution to the decay Bd0μμˉB_{d}^{0}\to \mu \bar{\mu} respect to the standard model contribution, from which we see that such vertex could still play a role in the phenomenology.Comment: 9 pages, 2 figures, LaTeX2e. Minor typos corrected. References added and corrected. Introduction change

    Anisotropic field dependence of the magnetic transition in Cu2Te2O5Br2

    Full text link
    We present the results of measurements of the thermal conductivity of Cu2Te2O5Br2, a compound where tetrahedra of Cu^{2+} ions carrying S=1/2 spins form chains along the c-axis of the tetragonal crystal structure. The thermal conductivity kappa was measured along both the c- and the a-direction as a function of temperature between 3 and 300 K and in external magnetic fields H up to 69 kOe, oriented both parallel and perpendicular to the c-axis. Distinct features of kappa(T) were observed in the vicinity of T_N=11.4 K in zero magnetic field. These features are unaltered in external fields which are parallel to the c-axis, but are more pronounced when a field is applied perpendicularly to the c-axis. The transition temperature increases upon enhancing the external field, but only if the field is oriented along the a-axis.Comment: 5 pages, 3 figure

    Josephson oscillation of a superfluid Fermi gas

    Full text link
    Using the complete numerical solution of a time-dependent three-dimensional mean-field model we study the Josephson oscillation of a superfluid Fermi gas (SFG) at zero temperature formed in a combined axially-symmetric harmonic plus one-dimensional periodic optical-lattice (OL) potentials after displacing the harmonic trap along the axial OL axis. We study the dependence of Josephson frequency on the strength of the OL potential. The Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti et al. [Science 293 (2001) 843] for a Bose-Einstein condensate and of the experiment of Pezze et al. [Phys. Rev. Lett. 93 (2004) 120401] for an ideal Fermi gas. We demonstrate a breakdown of Josephson oscillation in the SFG for a large displacement of the harmonic trap. These features of Josephson oscillation of a SFG can be tested experimentally.Comment: 7 pages, 10 figure
    corecore