25 research outputs found

    Systematic literature review of realistic simulators applied in educational robotics context

    Get PDF
    This paper presents a systematic literature review (SLR) about realistic simulators that can be applied in an educational robotics context. These simulators must include the simulation of actuators and sensors, the ability to simulate robots and their environment. During this systematic review of the literature, 559 articles were extracted from six different databases using the Population, Intervention, Comparison, Outcomes, Context (PICOC) method. After the selection process, 50 selected articles were included in this review. Several simulators were found and their features were also analyzed. As a result of this process, four realistic simulators were applied in the review’s referred context for two main reasons. The first reason is that these simulators have high fidelity in the robots’ visual modeling due to the 3D rendering engines and the second reason is because they apply physics engines, allowing the robot’s interaction with the environment.info:eu-repo/semantics/publishedVersio

    Deep reinforcement learning for soft, flexible robots : brief review with impending challenges

    Get PDF
    The increasing trend of studying the innate softness of robotic structures and amalgamating it with the benefits of the extensive developments in the field of embodied intelligence has led to the sprouting of a relatively new yet rewarding sphere of technology in intelligent soft robotics. The fusion of deep reinforcement algorithms with soft bio-inspired structures positively directs to a fruitful prospect of designing completely self-sufficient agents that are capable of learning from observations collected from their environment. For soft robotic structures possessing countless degrees of freedom, it is at times not convenient to formulate mathematical models necessary for training a deep reinforcement learning (DRL) agent. Deploying current imitation learning algorithms on soft robotic systems has provided competent results. This review article posits an overview of various such algorithms along with instances of being applied to real-world scenarios, yielding frontier results. Brief descriptions highlight the various pristine branches of DRL research in soft robotics

    Control-based 4D printing: adaptive 4D-printed systems

    Get PDF
    Building on the recent progress of four-dimensional (4D) printing to produce dynamic structures, this study aimed to bring this technology to the next level by introducing control-based 4D printing to develop adaptive 4D-printed systems with highly versatile multi-disciplinary applications, including medicine, in the form of assisted soft robots, smart textiles as wearable electronics and other industries such as agriculture and microfluidics. This study introduced and analysed adaptive 4D-printed systems with an advanced manufacturing approach for developing stimuli-responsive constructs that organically adapted to environmental dynamic situations and uncertainties as nature does. The adaptive 4D-printed systems incorporated synergic integration of three-dimensional (3D)-printed sensors into 4D-printing and control units, which could be assembled and programmed to transform their shapes based on the assigned tasks and environmental stimuli. This paper demonstrates the adaptivity of these systems via a combination of proprioceptive sensory feedback, modeling and controllers, as well as the challenges and future opportunities they present

    Motion Planning for Autonomous Vehicles in Partially Observable Environments

    Get PDF
    Unsicherheiten, welche aus Sensorrauschen oder nicht beobachtbaren Manöverintentionen anderer Verkehrsteilnehmer resultieren, akkumulieren sich in der Datenverarbeitungskette eines autonomen Fahrzeugs und führen zu einer unvollständigen oder fehlinterpretierten Umfeldrepräsentation. Dadurch weisen Bewegungsplaner in vielen Fällen ein konservatives Verhalten auf. Diese Dissertation entwickelt zwei Bewegungsplaner, welche die Defizite der vorgelagerten Verarbeitungsmodule durch Ausnutzung der Reaktionsfähigkeit des Fahrzeugs kompensieren. Diese Arbeit präsentiert zuerst eine ausgiebige Analyse über die Ursachen und Klassifikation der Unsicherheiten und zeigt die Eigenschaften eines idealen Bewegungsplaners auf. Anschließend befasst sie sich mit der mathematischen Modellierung der Fahrziele sowie den Randbedingungen, welche die Sicherheit gewährleisten. Das resultierende Planungsproblem wird mit zwei unterschiedlichen Methoden in Echtzeit gelöst: Zuerst mit nichtlinearer Optimierung und danach, indem es als teilweise beobachtbarer Markov-Entscheidungsprozess (POMDP) formuliert und die Lösung mit Stichproben angenähert wird. Der auf nichtlinearer Optimierung basierende Planer betrachtet mehrere Manöveroptionen mit individuellen Auftrittswahrscheinlichkeiten und berechnet daraus ein Bewegungsprofil. Er garantiert Sicherheit, indem er die Realisierbarkeit einer zufallsbeschränkten Rückfalloption gewährleistet. Der Beitrag zum POMDP-Framework konzentriert sich auf die Verbesserung der Stichprobeneffizienz in der Monte-Carlo-Planung. Erstens werden Informationsbelohnungen definiert, welche die Stichproben zu Aktionen führen, die eine höhere Belohnung ergeben. Dabei wird die Auswahl der Stichproben für das reward-shaped Problem durch die Verwendung einer allgemeinen Heuristik verbessert. Zweitens wird die Kontinuität in der Reward-Struktur für die Aktionsauswahl ausgenutzt und dadurch signifikante Leistungsverbesserungen erzielt. Evaluierungen zeigen, dass mit diesen Planern große Erfolge in Fahrversuchen und Simulationsstudien mit komplexen Interaktionsmodellen erreicht werden

    A Corroborative Approach to Verification and Validation of Human--Robot Teams

    Get PDF
    We present an approach for the verification and validation (V&V) of robot assistants in the context of human-robot interactions (HRI), to demonstrate their trustworthiness through corroborative evidence of their safety and functional correctness. Key challenges include the complex and unpredictable nature of the real world in which assistant and service robots operate, the limitations on available V&V techniques when used individually, and the consequent lack of confidence in the V&V results. Our approach, called corroborative V&V, addresses these challenges by combining several different V&V techniques; in this paper we use formal verification (model checking), simulation-based testing, and user validation in experiments with a real robot. We demonstrate our corroborative V&V approach through a handover task, the most critical part of a complex cooperative manufacturing scenario, for which we propose some safety and liveness requirements to verify and validate. We construct formal models, simulations and an experimental test rig for the HRI. To capture requirements we use temporal logic properties, assertion checkers and textual descriptions. This combination of approaches allows V&V of the HRI task at different levels of modelling detail and thoroughness of exploration, thus overcoming the individual limitations of each technique. Should the resulting V&V evidence present discrepancies, an iterative process between the different V&V techniques takes place until corroboration between the V&V techniques is gained from refining and improving the assets (i.e., system and requirement models) to represent the HRI task in a more truthful manner. Therefore, corroborative V&V affords a systematic approach to 'meta-V&V,' in which different V&V techniques can be used to corroborate and check one another, increasing the level of certainty in the results of V&V

    Human-like arm motion generation: a review

    Get PDF
    In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analyzed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioral and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.FCT Project UID/MAT/00013/2013FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Feasibility of Muscle Synergy Outcomes in Clinics, Robotics, and Sports: A Systematic Review

    Get PDF
    In the last years, several studies have been focused on understanding how the central nervous system controls muscles to perform a specific motor task. Although it still remains an open question, muscle synergies have come to be an appealing theory to explain the modular organization of the central nervous system. Even though the neural encoding of muscle synergies remains controversial, a large number of papers demonstrated that muscle synergies are robust across different tested conditions, which are within a day, between days, within a single subject and between subjects that have similar demographic characteristics. Thus, muscle synergy theory has been largely used in several research fields, such as clinics, robotics and sports. The present systematical review aims at providing an overview on the applications of muscle synergy theory in clinics, robotics and sports; in particular, the review is focused on the papers that provide tangible information for: (i) diagnosis or pathology assessment in clinics; (ii) robot-control design in robotics; and (iii) athletes’ performance assessment or training guidelines in sports

    Contributions to shared control and coordination of single and multiple robots

    Get PDF
    L’ensemble des travaux présentés dans cette habilitation traite de l'interface entre un d'un opérateur humain avec un ou plusieurs robots semi-autonomes aussi connu comme le problème du « contrôle partagé ».Le premier chapitre traite de la possibilité de fournir des repères visuels / vestibulaires à un opérateur humain pour la commande à distance de robots mobiles.Le second chapitre aborde le problème, plus classique, de la mise à disposition à l’opérateur d’indices visuels ou de retour haptique pour la commande d’un ou plusieurs robots mobiles (en particulier pour les drones quadri-rotors).Le troisième chapitre se concentre sur certains des défis algorithmiques rencontrés lors de l'élaboration de techniques de coordination multi-robots.Le quatrième chapitre introduit une nouvelle conception mécanique pour un drone quadrirotor sur-actionné avec pour objectif de pouvoir, à terme, avoir 6 degrés de liberté sur une plateforme quadrirotor classique (mais sous-actionné).Enfin, le cinquième chapitre présente une cadre général pour la vision active permettant, en optimisant les mouvements de la caméra, l’optimisation en ligne des performances (en terme de vitesse de convergence et de précision finale) de processus d’estimation « basés vision »

    Combining task and motion planning for mobile manipulators

    Get PDF
    Aplicat embargament des de la data de defensa fins el dia 31/12/2019Premi Extraordinari de Doctorat, promoció 2018-2019. Àmbit d’Enginyeria IndustrialThis thesis addresses the combination of task and motion planning which deals with different types of robotic manipulation problems. Manipulation problems are referred to as mobile manipulation, collaborative multiple mobile robots tasks, and even higher dimensional tasks (like bi-manual robots or mobile manipulators). Task and motion planning problems needs to obtain a geometrically feasible manipulation plan through symbolic and geometric search space. The combination of task and motion planning levels has emerged as a challenging issue as the failure leads robots to dead-end tasks due to geometric constraints. In addition, task planning is combined with physics-based motion planning and information to cope with manipulation tasks in which interactions between robots and objects are required, or also a low-cost feasible plan in terms of power is looked for. Moreover, combining task and motion planning frameworks is enriched by introducing manipulation knowledge. It facilitates the planning process and aids to provide the way of executing symbolic actions. Combining task and motion planning can be considered under uncertain information and with human-interaction. Uncertainty can be viewed in the initial state of the robot world or the result of symbolic actions. To deal with such issues, contingent-based task and motion planning is proposed using a perception system and human knowledge. Also, robots can ask human for those tasks which are difficult or infeasible for the purpose of collaboration. An implementation framework to combine different types of task and motion planning is presented. All the required modules and tools are also illustrated. As some task planning algorithms are implemented in Prolog or C++ languages and our geometric reasoner is developed in C++, the flow of information between different languages is explained.Aquesta tesis es centra en les eines de planificació combinada a nivell de tasca i a nivell de moviments per abordar diferents problemes de manipulació robòtica. Els problemes considerats són de navegació de robots mòbil enmig de obstacles no fixes, tasques de manipulació cooperativa entre varis robots mòbils, i tasques de manipulació de dimensió més elevada com les portades a terme amb robots bi-braç o manipuladors mòbils. La planificació combinada de tasques i de moviments ha de cercar un pla de manipulació que sigui geomètricament realitzable, a través de d'un espai de cerca simbòlic i geomètric. La combinació dels nivells de planificació de tasca i de moviments ha sorgit com un repte ja que les fallades degudes a les restriccions geomètriques poden portar a tasques sense solució. Addicionalment, la planificació a nivell de tasca es combina amb informació de la física de l'entorn i amb mètodes de planificació basats en la física, per abordar tasques de manipulació en les que la interacció entre el robot i els objectes és necessària, o també si es busca un pla realitzable i amb un baix cost en termes de potència. A més, el marc proposat per al combinació de la planificació a nivell de tasca i a nivell de moviments es millora mitjançant l'ús de coneixement, que facilita el procés de planificació i ajuda a trobar la forma d'executar accions simbòliques. La combinació de nivells de planificació també es pot considerar en casos d'informació incompleta i en la interacció humà-robot. La incertesa es considera en l'estat inicial i en el resultat de les accions simbòliques. Per abordar aquest problema, es proposa la planificació basada en contingències usant un sistema de percepció i el coneixement de l'operari humà. Igualment, els robots poden demanar col·laboració a l'operari humà per a que realitzi aquelles accions que són difícils o no realitzables pel robot. Es presenta també un marc d'implementació per a la combinació de nivells de planificació usant diferents mètodes, incloent tots els mòduls i eines necessàries. Com que alguns algorismes estan implementats en Prolog i d'altres en C++, i el mòdul de raonament geomètric proposat està desenvolupat en C++, es detalla el flux d'informació entre diferents llenguatges.Award-winningPostprint (published version

    Learning deep representations for robotics applications

    Get PDF
    In this thesis, two hierarchical learning representations are explored in computer vision tasks. First, a novel graph theoretic method for statistical shape analysis, called Compositional Hierarchy of Parts (CHOP), was proposed. The method utilises line-based features as its building blocks for the representation of shapes. A deep, multi-layer vocabulary is learned by recursively compressing this initial representation. The key contribution of this work is to formulate layerwise learning as a frequent sub-graph discovery problem, solved using the Minimum Description Length (MDL) principle. The experiments show that CHOP employs part shareability and data compression features, and yields state-of- the-art shape retrieval performance on 3 benchmark datasets. In the second part of the thesis, a hybrid generative-evaluative method was used to solve the dexterous grasping problem. This approach combines a learned dexterous grasp generation model with two novel evaluative models based on Convolutional Neural Networks (CNNs). The data- efficient generative method learns from a human demonstrator. The evaluative models are trained in simulation, using the grasps proposed by the generative approach and the depth images of the objects from a single view. On a real grasp dataset of 49 scenes with previously unseen objects, the proposed hybrid architecture outperforms the purely generative method, with a grasp success rate of 77.7% to 57.1%. The thesis concludes by comparing the two families of deep architectures, compositional hierarchies and DNNs, providing insights on their strengths and weaknesses
    corecore