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Abstract: In the last decade, the objectives outlined by the needs of personal robotics have led to the
rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature
review of the most recent research on the generation of human-like arm movements in humanoid and
manipulation robotic systems. Search methods and inclusion criteria are described. The studies are
analyzed taking into consideration the sources of publication, the experimental settings, the type of
movements, the technical approach, and the human motor principles that have been used to inspire
and assess human-likeness. Results show that there is a strong focus on the generation of single-arm
reaching movements and biomimetic-based methods. However, there has been poor attention to
manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons,
human-like arm motion generation may not fully respect human behavioral and neurological key
features and may result restricted to specific tasks of human-robot interaction. Limitations and
challenges are discussed to provide meaningful directions for future investigations.
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1. Introduction

New questions inevitably arise during the design of novel Human-Robot Interaction (HRI) or
Collaboration (HRC) paradigms and often concern the authority and the autonomy level of new
intelligent devices [1]. Ethical and anthropological issues have been recently considered by the
government of Japan with the initiative called Society 5.0 [2]. As described by Gladden [2], the evolution
of human society has been featured by a Society 1.0 of hunters-gatherers, a Society 2.0 of farmers,
a Society 3.0 that results from the Industrial Revolution and by the current Society 4.0, which adds value
to the industry by digitally connecting informative networks (an “information society”). The Society
5.0 is expected to be a technologically post-humanized society where humans and robots coexist
in the same environment and work to improve the quality of life by offering customized services
to cope with various needs. The new social paradigm differs from the current Society 4.0 by the
fact that robots will not only be passive tools as they are today. On the contrary, they are expected
to be active agents capable of proactive data collecting, making decisions and friendly behaving
to maintain human beings at the core of the society, but not alone within it. Due to the process of
post-humanization that is taking place, this new anticipated society is significantly dependent on
the emerging transformative technologies that will impact the interactions among individuals as it
has never happened so far. For example, a humanoid robot can be considered a personal helper
designed to respond to the needs of human beings. Such an artificial man [3] could carry and
manipulate objects for people with disabilities, could replace some cognitive functions, or take part in
the education of children. A robot with these features is human-centered because it is meant to interact,
collaborate, and work in unstructured environments with human beings [4]. For this reason, research
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in robotics and artificial intelligence needs to be necessarily enriched by different scientific disciplines,
such as ethics, psychology, anthropology, and neuroscience, to simulate or mimic life-like activities
and appearance [2,4–6]. These new abilities in robots significantly influence how they are perceived by
interacting human partners.

Studies have revealed a very positive attitude towards robots and the idea of being
surrounded by them in different personal and societal contexts [7,8]. People commonly expect
from robots a very pragmatic daily help in domestic, entertaining, and educational applications.
Moreover, having intelligent devices that perform repetitive or dangerous tasks is desirable because
safety and monotonousness seem to be the most important issues in industrial settings. Particularly,
robotics, in the upcoming Society 5.0, is expected to augment the capabilities of human workers instead
of replacing them. The current industry has been featured by robots designed for complete automation
of workflows, while, in the next future, industry will include robots intended to satisfy the necessities
of human co-workers with the consequent increase of the productivity of an entire company [8].
Therefore, in this new human-centered robotics, augmentation will gradually replace automation with
the introduction of novel artificially intelligent devices that enhance collaboration in shared workspaces.
For instance, the fundamental principles of motor interpretation behind successful human-human joint
actions can be used when adopting motion planning strategies [9–12]. Koppenborg et al. [13] showed
that the predictability and the velocity of the motion in robotic manipulators significantly influence
the performance of the collaboration with human partners. Specifically, high-speed movements
increase anxiety and risk perception of human co-workers, whom, consequently, act unpleasantly
and inefficiently. Therefore, time parametrization also plays an essential role in any motion planning
process that is intended for human-robot interaction. Body motion in robotics has also been recently
considered a language to communicate emotional states of social robots [14]. This study revealed
that social robots for educational support had more significant impressions on learners with body
language than without it. However, movements of robots without a social role are also interpreted as
social cues by human observers [15]. Therefore, there is an automatic and implicit cognitive process
for the attribution of mental states in robots to anticipate their behaviors, which is independent of their
assigned purposes. For these reasons, designers of human-centered robots and roboticists of different
areas of research cannot skip accurate strategies of motion planning to obtain socially acceptable
interactions with humans.

In the past decade, the action research area (of the so-called “New Robotics” introduced
by Schaal [4]) has been densely characterized with the proposal of a wide range of techniques for
human-like arm motion generation. This review provides an overview of the primary studies on
novel human-like arm motion planners that are meant to enhance human-robot interactions and
collaborations. Through the analysis and the assessment of the most recent studies, major limitations
can be identified, and future investigations can be directed.

The remainder of the paper is organized as follows: in Section 2, the design of this review and the
search methods are defined; in Section 3, the collection of the search outcomes is provided, and the
results are discussed accordingly to the features of the proposed solutions; the paper ends in Section 4
with a discussion of the obtained results, and, in Section 5, with a description of the open issues in the
current literature.

2. Literature Review

The aim of this paper was to provide a comprehensive background of human-like arm motion
generation for robots by reviewing the corresponding most recent literature. An extensive description
of different approaches and techniques is essential for the identification of the current issues and the
definition of new activities of investigation. Special attention was put on the criteria used for the
evaluation of human-likeness of the generated movements, on the tools and the robotic devices used
for experimentations, on the physical nature of the applied methodologies and on obstacles-avoidance.
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The reliability, the performance, advantages and disadvantages were analyzed and generally discussed
to summarize the modern state of the art in the generation of human-like arm motion.

Being the sources of the vast majority of peer-reviewed publications on human-robot interaction
and, more generically, robotics, the Association for Computing Machinery (ACM) Digital Library,
the IEEEXplore, the Scopus, and the Web of Science were searched. The search terms that were used in
the advanced boolean method are: (TITLE-ABS-KEY (arm) OR TITLE-ABS-KEY (upper-limb))AND
(TITLE-ABS-KEY (human-like) OR TITLE-ABS-KEY (legible) OR TITLE-ABS-KEY (predictable)) AND
(TITLE-ABS-KEY (motion) OR TITLE-ABS-KEY (movement) OR TITLE-ABS-KEY (trajectory)) AND
(humanoid OR robot) AND (planning OR generation) AND PUBYEAR > 2005 AND (LIMIT-TO
(LANGUAGE, “English”)) AND (LIMIT-TO (SRCTYPE, “p”) OR LIMIT-TO (SRCTYPE, “j”)).

The sources published in peer-reviewed conferences or journals were included, while unpublished
or non-peer-reviewed manuscripts, book chapters, posters, and abstracts were excluded. Moreover,
anything published before 2006 was also excluded because the state of the art might not reflect the
capabilities that robots have today. For the sake of completeness, papers proposing methodologies
tested only on simulated frameworks were included as well as on real robotic platforms. The focus is
on those methods and techniques capable of generating human-like arm movements on humanoid
and generic robotic devices. The minimum inclusion requirement of the proposed planning techniques
is the capability of producing arm and hand trajectories showing typical human-like characteristics,
which have been widely analyzed and described in psychology and neurophysiology.

3. Results

In this section, the results are guided by specific research questions and analyzed according to the
schema illustrated in Figure 1. The reviewed papers are firstly examined according to the sources of
publication and the equipment used for experimentation (Section 3.1). Then, in Section 3.2, general
concepts and assumptions behind the generation of human-like arm motion are investigated by taking
into consideration the space of incoming information, the physical nature of the involved variables and
the spaces of formation of a trajectory. A deeper analysis is reported in Section 3.3, which describes how
different techniques for transferring human regularities into the robotics domain work. Specifically,
the applied principles of human motor control (HMC) are discussed (Section 3.3.1) to better understand
the underlying inspirational concepts. The included studies are also classified according to the type of
movement that is generated (Section 3.3.2) and how obstacles-avoidance is addressed (Section 3.3.3).

Finally, efficiency is studied by the analysis of applied techniques of optimization, capabilities of
generalization of the proposed learning methods are investigated and adaptation to unpredictable
external perturbations is examined by the description of the reviewed closed-loop controllers
(Section 3.3.4). The main characteristics of the included studies are summarized and can be compared
in Table A1.

3.1. Overview of the Results

The original search returned 156 results. There were 54 publications left after removing the
duplicates across the databases and applying the inclusion and exclusion criteria described in Section 2.
The included papers were published starting from 2006 and, therefore, concern the most recent research
in the topic. Figure 2 illustrates how the publications are shared among the databases of search. Scopus
with 61.11% of papers is clearly the primary source of knowledge. It is followed by IEEEXplore follows
with 22.22%, Web of Science with 11.11%, and ACM Digital Library with 5.56%.
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Before describing more in detail the selected studies, an overview concerning the experimental
equipment is presented. The types of results were classified according to the robotic systems that
were used to validate the proposed methods of human-like arm motion generation. This preliminary
distinction is important to deduce implications regarding their level of applicability. For this purpose,
the pie chart in Figure 3 illustrates the percentage of papers describing methods that were tested on
robotic manipulators (37.03%), on humanoid robots (35.19%), and on simulations only (27.78%).

Robotic manipulators and, in second place, humanoids are arguably the most preferred tool
for testing and showing the level of human-likeness provided by different generation techniques.
A humanoid robot can provide a high level of anthropomorphism that can be used to encourage
interactions with human partners [16,17]. Figure 4 shows the anthropomorphic robotic systems that
were utilized in the included studies. They are briefly presented to indicate the number of degrees of
freedom (DOFs) and provide an overview of their technical capabilities that allowed to implement and
test the proposed methods of human-like arm motion generation.

Figure 1. Organization and analysis of the included studies.
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Figure 2. Pie chart showing the percentage of papers related to the databases.
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Figure 3. Pie chart showing the types of experimental results.
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Figure 4. Humanoid robots that have been used to test human-like arm motion generation, namely:
ARoS [18] (a), iCub [19] (b), ROMEO [20] (c), NAO [21] (d), ABB FRIDA [22] (e), HRP-2 [23] (f), Rollin’
Justin [24] (g), HERB 2.0 [25] (h), MAHRU [26] (i), and Simon [27] (j).

ARoS [18] (Figure 4a) is an anthropomorphic robotic system composed by a static torso, two
7-DOFs lightweight Amtec arms, each one equipped with a three-fingered Barrett hand, a 2-DOFs
neck, and a stereo vision system. iCub [19] (Figure 4b), with 30 DOFs in its upper torso, was designed
to have a high degree of manipulation: each hand has 9 DOFs, and the two arms have 7 DOFs
each. Additionally, it has cameras, microphones and position/force sensors that permit it to obtain
audiovisual information and to safely interact with the environment. ROMEO [20] (Figure 4c) has
a total of 37 DOFs, which include 7 DOFs per arm, 6 DOFs per leg, 2 DOFs for each eye, 1 DOF for
each foot, 2 DOFs for the neck, 2 DOFs for the head and 1 DOF for the spine. NAO [21] (Figure 4d)
is a humanoid robot designed to adopt specific behaviors according to the needs of the user. It has
a total of 25 DOFs of which 14 DOFs are in the upper body, with two 5-DOFs arms, each one equipped
with a 1-DOF hand. Designed for assembly applications, ABB FRIDA [22] (Figure 4e) is an upper-torso
humanoid robot with two 7-DOFs arms, each one equipped with a servo gripper for small-part
handling. The HRP-2 robot [23] (Figure 4f) is a humanoid robot equipped with two legs and two 6-DOFs
arms, each one equipped with grippers. It has been designed for cooperative works with humans and
has three Charge-Coupled Device (CCD) cameras mounted in the head. Rollin’ Justin [24] (Figure 4g)
is a humanoid robot with 43 DOFs in the upper-body and an omnidirectional torso driven by 4 wheels.
HERB 2.0 [25] (Figure 4h) is a humanoid robot specifically designed to operate with human partners
in domestic environments. It is equipped with wheels, which allow the robot to navigate indoors,
and with two 7-DOFs arms, each one equipped with a three-fingered Barrett hand. It also has an array
of four laser scanners that provides clouds of 3D points in the surrounding environment. MAHRU [26]
(Figure 4i) is a network-based humanoid robot with 35 DOF, including 6-DOFs for each arm and
4-DOFs for each hand. It also has two 6-DOFs legs, a stereo camera is mounted on the head and
a microphone and four force sensors allow the robots to physically interact with the environment.
Simon [27] (Figure 4j) is an upper-torso humanoid robot with two DOFs on the torso, two 7-DOFs arms,
each one equipped with a four-fingered hand, a microphone and cameras for a stereo vision.
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3.2. General Insights on Approaching Human-Likeness of Arm Motion

The procedures of human-like arm motion generation can be classified according to primary
features that offer general but important insights on concepts, ideas and choices that are behind the
genesis of a motion. A first classification addresses how the knowledge regarding the workspace of
a robot is used to plan a feasible path. A method can be called global when the information of the entire
workspace is processed off-line before the execution of a movement. On the contrary, local methods
plan a motion on-line by taking into account portions of the workspace that are of immediate interest.
This division is not always distinct, but, typically, these two approaches concern the implementation
of strategies for the avoidance of collisions, when it is addressed. A second classification focuses on
the physical nature of the variables that are involved in the motion generation process. Some methods
are based on kinematic variables only (position, velocity and acceleration), while others also consider
dynamical quantities (forces and torques). A proper selection of these physical variables defines
the state space of a robot and might be driven by the expected interaction with the environment
or with a human partner. However, the choice of considering dynamics, instead of kinematics only,
is often influenced by biological motor principles when human-like motion generation is supported
by discoveries in neuroscience. Regularities of human upper-limb motion can also be replicated
on different levels concerning the space where a robot acts. Some applications may constraint the
dimensionality of this space that consequently affects the complexity of a planning algorithm. For these
reasons, a third classification concerns the space in which the generation of a motion takes place:
it could be the operational space or the joints space of manipulation [28].

For example, Chen et al. [29] introduced a technique to reduce the dimensionality of the joints
space for human-like dual-arm motion planning. This approach wants to replicate the demonstrations
of human operators acting on common daily tasks. In particular, the replica of a bi-manual task
of pouring water from a cup to another one was performed. The position and the orientation of
human hands were mapped into the joints space of two 6-DOFs manipulators by inverse kinematics.
Then, the configuration space (i.e., the joints space) is reduced to minimize the computational burden of
the search of a collision-free path, which is provided by the bi-directional Rapidly-exploring Random
Trees (RRT-Connect) algorithm [30]. Therefore, this approach works in the joints space of a manipulator;
it runs off-line and globally deals with the workspace of the robot. Dynamical variables of the motion
were not considered because Chen et al. [29] focused on the study of the non-linear relationship of the
joints positions in the attempt of extracting this particular aspect of the human upper-limb motion.

An example of local planning in the operational space is described by Rano and Iossifidis [31],
who presented an attractor dynamics approach for human-like hand motion generation. The authors
considered the spherical coordinates (the heading directions and the velocity vector) of an end-effector
to model human arm motion of reaching movements with a robotic manipulator. The proposed
dynamical systems are based on attractive vector fields in the vicinity of a goal for the end-effector
and repulsive vector fields for the obstacles in the workspace. Importantly, the attractor dynamics
were properly designed to replicate the planarity characteristic of a human hand motion, which is
also observed in scenarios cluttered with obstacles [32]. In other words, a straight-line solution for the
trajectory of the end-effector was analytically determined in obstacles-free scenarios where expectations
on planarity were respected. However, to prevent unwanted collisions with obstacles, the trajectory
could not maintain small values of torsion (i.e., good planarity) because the repulsion effects are
significant only in the proximity of the obstacles and poor on other regions of the workspace [31].

A hybrid joints/operational-space approach based on dynamic movement primitives [33]
was proposed by Lauretti et al. [34] to enhance functional anthropomorphism in redundant
manipulators. Specifically, Cartesian and joints-related characteristics are extracted from recorded
human upper-limb movements during the execution of reaching tasks. The parameters of Cartesian
and of joint Dynamical Movement Primitives (DMPs) are learnt from the recorded demonstrations
and used to compute compatible desired trajectories in the operational and in the joints spaces.
These references are coupled into an inverse dynamics controller that prioritizes operational-space
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constraints, while exploits the redundant variables of manipulation to replicate human recorded
motion. Experiments with a 7-DOFs robotic arm and comparisons with classical Cartesian DMPs
approaches demonstrated that the proposed hybrid method could provide acceptable accuracy in
positioning and orientating the end-effector, higher levels of anthropomorphism within given physical
joint limits and a successful obstacles-avoidance.

Dynamic models that simulate the capabilities of the human arm have also been used to generate
biologically-inspired arm motion [35,36]. For example, Fu et al. [35] investigated how the motor
synergies hypothesis behind the motion of human arms can improve planning reaching movements
for a planar manipulator. Specifically, motor synergies are responsible for the activation of a group of
muscles in a coordinated manner. Therefore, approaching control can be simplified by managing fewer
variables corresponding to the synergies of a motion. The general planning strategy is formulated with
a framework for optimal control that minimizes the contribution of the control activation inputs acting
on the joints of the manipulator. Fu et al. [35] proposed the extraction of motor synergies from control
inputs to solve the optimization problem in a lower dimensionality and, consequently, decrease the
computational burden of the algorithm. Experiments on a 3-DOFs planar human-like arm moving on
a bi-dimensional workspace demonstrated how the reduction of dimensionality generally improved
the performance of planning by providing a higher success rate and a lower cost of the objective
function spending less computation time. Further investigations on the properties of motor synergies
showed their capability to adapt for the optimization of specific criteria, such as energy efficiency,
jerk, and smoothness of the resulting trajectory, while achieving the intended goal of a movement.

Figure 5 illustrates a classification of the included studies concerning how the available workspace
is approached, the physical nature of the variables that are involved in the planning process, and the
space of configurations.

global

68.52%

local

31.48%

(a) global vs. local methods

kinematics

75.93%

dynamics

24.07%

(b) kinematics vs. dynamics-based methods

operational space

79.63%

joints space

20.37%

(c) operational vs. joints space-based methods

Figure 5. A preliminary distinction of the included studies.

There is a clear predominance of global methods acting in the operational space and physically
operating with the kinematic variables of a robotic device. Figure 5a shows that 68.52% of the included
studies proposed global planning strategies, while only 31.48% of them treated the workspace locally.
Modeling the workspace of a robot as a unique static environment generally simplifies the planning
algorithms, permits taking advantage of the same assumptions in different portions of the scenario and
can generally replicate more loyal human-like regularities of the arm-hand motion. On the contrary,
local methods are generally more complex and can normally operate in dynamic scenarios accounting
for on-line obstacles-avoidance. However, the risk of generating motion in local portions of the
workspace is to lose the efficacy in replicating the kinematic features of human arm-hand motion.
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As it can been seen in Figure 5b, 75.93% of the reviewed studies introduced techniques that
operate with kinematic variables, while 24.07% of them also considered the dynamics of manipulation.
These findings are mainly due to the requirements of simplicity of the proposed solutions, as well as to
the fact that most of the studies on human arm motion have been conducted on a kinematic level of
the analysis. However, dynamic variables are necessarily introduced in biologically-inspired solutions
that aim at replicating the muscles activities in humans. Moreover, the dynamics of a robotic agent is
also needed in applications when specific physical interactions with the environment are required.

The vast majority of the included studies presented solutions that operate in the operational space
(79.63%) and only 20.37% of them in the joints space of manipulation (Figure 5c). Generating motion in
the operational space generally means searching for a trajectory in a space with lower dimensionality
than in the joints space. Additionally, patterns on human movements have been principally analyzed
by considering the hand motion, which reflects properties on the end-effector trajectory in robotics.
However, techniques that exclusively perform in the operational space may discard shreds of evidence
of human arm movements that arise on different degrees of freedom, such as joint synchrony and
a bell-shaped angular velocity profile [37–39]. A largely observed disadvantage of working in the
joints space is related to a higher dimensionality of the search space that significantly influences
the computational expense of the proposed solutions. For this reason, many authors introduced
techniques of dimensionality reduction to achieve better performance without degrading the intended
level of human-likeness.

3.3. From Humans to Robots

3.3.1. Applied Principles of Human Motor Control

In many and different ways, the included studies have considered human motor control in the
construction of the proposed methods. For this reason, it is important to have specific insights into the
principles and techniques that transfer human motion into robotics and assess the human-likeness of
the generated movements. In Figure 6, the most relevant principles and metrics of human-like motion
in robotics are illustrated. In this section, robotic applications are analyzed according to the popularity
and originality of the human motor consistencies that support a proposed solution to the human-like
motion generation problem.

Trajectory smoothness

Rapid Upper Limb Assessment

Qualitative assessment

Spatio-Temporal Correspondence

Repeatability

Hand path planarity

2/3 Power Law

Quasi-straight hand path

Uni-modal bell-shaped hand velocity profile

Biomimetics

5.56%

1.85%

12.96%

1.85%

9.26%

3.7%

3.7%

24.07%

27.78%

51.85%

Figure 6. Bar chart showing in which percentage principles of human-likeness have been used for
development and assessment in the included studies.
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Biomimetics

In the majority of the reviewed articles, human-like arm motion generation has been approached
with techniques of biomimetics (51.85%). This particular set of solutions is based on the extraction
of bio-markers and of physical regularities from recorded movements with the ultimate purpose of
mimicking arm trajectories. For instance, Kim et al. [40] proposed a technique for deriving values of
the elbow elevation angle from series of recorded human reaching movements in a three-dimensional
environment. The elbow elevation angle (also called swivel angle or simply elbow angle) is the angle
between the sagittal body plane and the plane formed by the triangle shoulder-elbow-wrist [40,41].
This angle features a human arm posture uniquely when the wrist is fully constrained in position
and orientation. For this reason, it is the key human-like factor for transferring motion from human
records to the humanoid robot MAHRU (Figure 4i). A trajectory is computed in the joints space
by analytical inverse kinematics that considers six holonomic constraints concerning the position of
the wrist, the hand palm direction and the elbow elevation angle, which encodes the human-likeness
of a movement. Experimental results showed the similarity with the recorded human motion and
the possibility of addressing real-time applications with the proposed solution. The latter was also
upgraded with further functionalities that improve the communication with a human partner that
might be moving in front of the robot [42]. Specifically, Kim et al. [42] defined the concepts of motion
plane, which is the closest plane where the wrist trajectory belongs to, and of motion center, which is
the centroid of the wrist trajectory on the motion plane. Changing the direction of the movement
is possible by aligning the normal vector to the motion plane applied in the motion center with the
desired direction that keeps attention on a human observer. Additionally, the elbow elevation angle and
the magnitude of the wrist position are properly scaled to maintain human-like characteristics on the
modified movement.

Mimicking reaching and grasping movements was also addressed by Zhao et al. [43] through
the minimization of the total potential energy of a human arm. The considered potential energy is
the sum of a gravitational component, which is derived from the physical parameters of the arm,
and of an elastic component that is obtained from acquisitions of human motion data on different
subjects. Considering the planning of reaching movements, the minimization is permitted by the
application of the Gradient Projection Method (GPM) that accounts for exploiting the null space
of the Jacobian matrix [28]. The position of the end-effector is assumed to reflect a minimum jerk
trajectory with null boundary conditions, which has been observed in human reaching motion [44].
Moreover, Zhao et al. [43] extended this solution to grasping movements by the introduction of a novel
human-like arm motion planner that combines the advantages of the Gradient Projection Method in
redundant manipulators and the RRT algorithm [45] (a GPM-RRT planner). A sampling-based planner,
like RRT, allows to define a trajectory for the end-effector orientation, which is unknown a priori, and,
most importantly, permits biasing the construction of a tree with optimal configurations provided by
the GPM. Notably, in the case of grasping, further human data are needed to be acquired to quantify
how determined hand orientations affect wrist discomfort, which is defined as the distance from
a comfortable wrist posture. Therefore, when the robotic arm acts on grasping not only minimizes its
potential energy but also its wrist discomfort to mimic human demonstrations (Figure 7). Qualitative
observations on the human and on the robotic swivel angle trajectories showed the validity of the
proposed planner in comparison with non-human-like alternatives.
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Figure 7. Comparisons of the human grasping movement and the human-like grasping movement
of a 7-DOFs robotic arm [43]: (a) the start arm configuration, (b) an intermediate arm configuration,
(c) the final arm configuration.

Liarokapis et al. [46] introduced an optimization-based technique of human-robot arm mapping
that takes inspiration from the principles of functional anthropomorphism [16]. The priority is the
successful accomplishment of a task in the operational space, while human-like prerequisites of the
motion are secondarily satisfied. A magnetic motion capture system provides the positions of shoulder,
elbow and wrist from random reaching movements of different participants. Then, anthropomorphism
can be transferred to complex robotic arm-hand platforms by the minimization of dissimilarity metrics,
which represent different geometrical distance with human recorded motion. In particular, a sum of
distances between the positions of recorded human arm points and the robotic joints revealed to be the
most efficient metric. The proposed solution is formulated with a non-linear constrained optimization
problem that guarantees a low computational cost and applicability on chains of arbitrary kinematics.
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The objective function of the optimization problem concerns the distance with the goal pose for
a selected fingertip of the robotic hand, which replicates the human hand thumb during mimicking.
Only the forward kinematics of the arm and of the fingers are used to determine end-effector and
phalanxes poses, respectively. Constraints on anthropomorphism are softly added to the objective
function through parameters that weight the influence of human postures in the accomplishment
of a task. Comparisons with the classical inverse kinematics and simple joint-to-joint mapping
showed that the proposed method was the only one capable of achieving strong similarity with
recorded human postures while successfully reaching goals in the operational space. Although the
significant non-linearities in the formulation of the optimization problem, the proposed method
of human-robot mapping revealed to be suitable for tele-operation and general applications with
real-time requirements.

One of the advantages of human-like arm motion planning based on biomimetic principles
is the possibility of customizing movements on the characteristics of human operators. Expressing
anthropomorphism by mimicking humans is arguably the most intuitive and direct way that roboticists
have at their disposal, and, probably for this reason, biomimetic approaches are mainly preferred.
Additionally, an efficient motion mapping from humans permits remote tele-manipulation in real-time
when there is the need, for instance, to operate in dangerous or inaccessible environments. On the other
hand, biomimetics methods require accurate and expensive motion capture systems that cannot always
be available, as well as complex post-processing frequently due to noisy signals and adaptation on
different embodiments. Moreover, these methods are often tailored for the recorded human movements
or specific manipulation tasks, even though some effort on generalization has been carried on by
applying techniques of machine learning. A learned model often results very dependent on a task or
a set of movements that compose a training dataset and, therefore, represent patterns that cannot be
generalized on any human-like upper-limb behavior. It is also worth noting that, while biomimetics
focuses on joints-space patterns of human motion to encapsulate human-likeness, kinematic analysis of
the human hand is often neglected in the generation of end-effector trajectories. However, many studies
on human reaching and manipulation have shown specific regularities in the operational space of the
human arm [47–49].

Kinematic Assessment of the End-Effector Trajectory

It is state of the art that the human hand is typically featured by a quasi-straight path and
a uni-modal bell-shaped velocity profile during reaching and prehension [47,48,50]. For this reason,
many of the proposed solutions have taken inspiration from these psychological pieces of evidence
to generate human-like arm motion. Specifically, the 27.78% and the 24.07% of the included studies,
respectively, considered the hand velocity profile and the shape of the hand path to synthesize and
assess human-likeness. For example, Arimoto and Sekimoto [51] introduced a virtual spring-damper
hypothesis for three-dimensional reaching movements of a 5-DOFs robotic manipulator that is driven
by the Euclidean distance between the initial and the goal end-effector positions. This method extends
a virtual spring hypothesis for bi-dimensional reaching movements and avoids the application of
any inverse kinematics or dynamics to resolve the redundancy of the problem. Taking inspiration
from the physiology of the human arm motion, Arimoto and Sekimoto [51] proposed to directly
generate torque controls by the parametrization of stiffness and damping factors belonging to a virtual
spring-damper system that connects the initial and the goal positions of the end-effector. Additionally,
control signals are featured by passive damping on the joints of the manipulator and are influenced by
the effect of the gravity force. Interestingly, the latter is estimated according to studies in handwriting
control. The kinematic analysis of the generated reaching movements showed quasi-straight paths and
single-peaked profiles of the velocity in the operational space. Acting on stiffness, different end-effector
velocity peaks can be produced, while the shape of the end-effector path remains invariant.
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Atawnih et al. [52] introduced a control scheme that does not depend on the dynamic model of
a manipulator and, therefore, does not suffer of the corresponding uncertainties. The proposed solution
takes advantage of a prescribed performance control that allows to impose bounds on the evolution of
the operational-space error over a given period of time. These bounds are set to reflect the minimum
jerk principle of human arm motion in order to replicate the kinematic characteristics of a hand during
reaching: a quasi-straight path and a single-peaked bell-shaped velocity profile (Figure 8). The control
design provides torques on the joints by setting their angular velocity deviations from reference
joints-space velocities, which are dependent on the evolution of the operational-space error through
the pseudo-inverse of the Jacobian matrix. Moreover, the addition of active compliance to external
forces on the end-effector increases safety and offers a major degree of human-likeness for physical
interaction. A desired impedance between an external force and the resulting displacement of the
end-effector is modeled and integrated into the proposed control scheme. Simulations with a 5-DOFs
arm and real experiments with a 7-DOFs robotic manipulator demonstrated the capability of the system
to reach a given operational-space target in a required period of time. The produced end-effector
trajectories are replicable in the same conditions and are featured with human-like quasi-straight paths
and bell-shaped velocity profiles. Additionally, the manifestation of external forces is successfully
absorbed by the motion in stationary and moving conditions.

A technique for time adjustment of the end-effector velocity was presented by Kashima and Hori [53].
Taking inspiration from observations of delays in human arm motion between the elbow and the
shoulder, the authors proposed a modified minimum angular jerk principle for the optimal selection
of this delay. This inter-joints time adjustment is designed to obtain exact symmetric end-effector
velocities over a given duration of a reaching movement. This trajectory generation method was tested
on a 4-DOFs simulated arm acting on a three-dimensional operational space, and it was compared
with recorded human reaching movements and classical minimum jerk models. Investigation on short
and lengthy distances from a goal position showed that the proposed trajectory formulation is featured
by a symmetric uni-modal bell-shaped hand velocity profile and can replicate different curvatures of
the human hand better than traditional methods that minimize either the angular or the hand jerk.

An accurate replica of human hand positions and velocities during arm movements is strongly
motivated by clear shreds of evidence in neuroscience and psychology. For this reason, many of
the proposed human-like arm motion generation methods can synthesize these kinematic features
by taking inspiration from different principles of the human upper-limb movements. Additionally,
these techniques often take advantage of controlling schemas, which find applications when real-time
requirements are needed. However, planning movements with kinematic constraints in the operational
space is often intended for specific tasks and for reaching movements only, which transport the
end-effector by point-to-point trajectories that ignore manipulation in the workspace. This is arguably
due to the inevitable constraints that manipulation introduces and that may negatively affect the
kinematic analysis of human-likeness.
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(a)

(b)

Figure 8. Straight path and a single-peaked bell-shaped velocity profile of the end-effector motion [52].
(a) End-effector paths and joint configurations during unconstrained movement to pd1 and pd2.
(b) Cartesian velocity profile ‖ ṗ‖ to pd1 (left) and pd2 (right).
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Qualitative Assessment

A qualitative assessment for the synthesis and the evaluation of human-likeness of robotic
manipulation was also taken into consideration by the 12.96% of the included studies. For instance,
Dragan and Srinivasa [54] proposed an arm motion planning method that integrates the inferences of
human observers to mathematically formalize principles of the action interpretation theory. Specifically,
Dragan and Srinivasa [54] introduced the notions of legibility and predictability as opposite properties
of the motion that stem from inferences of an observer. In a scenario with multiple potential goals
for a movement, a motion is predictable when, given a goal, it matches human expectations. On the
contrary, a motion is legible when permits an observer to quickly and confidently infer the correct goal.
These concepts are translated into trajectory functionals for a constrained optimization that can plan
predictable or legible arm movements in robots. Although the goal of the authors is not to explicitly
generate human-like arm movements, the latter may be the outcome if this matches the expectations
of a human observer. Legible movements, in particular, are intended to show the underlying intention
of an action in ambiguous environments (with multiple potential goals) that might be shared with
human partners. Thus, the integration of human inferences into robotic manipulation may significantly
improve human-robot collaboration. Experiments with the robot HERB (Figure 4h) demonstrated the
feasibility of the proposed planners and the exposition of the robot motion to human volunteers fairly
supported the formulations of predictability and legibility in the domain of robotics.

The support from subjective ratings of robotic movements has also been used in combination with
quantitative metrics of evaluation. For example, the trajectory planner described by De Momi et al. [55]
finds support in different validating options. Specifically, De Momi et al. [55] introduced a neural
network-based approach for robot-human handover tasks, which involves four independent neural
networks (NNs) trained to learn the features of real human reaching movements towards evenly
distributed goal positions in a three-dimensional space. After the training, the proposed solution is
capable of predicting a human-like end-effector trajectory and its corresponding time of execution.
Then, inverse kinematics is applied to transfer the motion to a 7-DOFs robotic manipulator.
A qualitative assessment of the proposed solution was performed by recruiting volunteers for
classifying an observed robotic movement as “biologically-inspired” or as “non biologically-inspired”.
In order to focus the attention on the end-effector and not on the motion of joints, the robot was
covered and participants wore soundproof headset that mitigated the motor noise. Experimental
results of this subjective ratings and of quantitative evaluations of human-likeness were in support of
the proposed approach.

Collecting and analyzing qualitative opinions of naïve subjects concerning the intention and
the biological origin of a motion is certainly an easy and immediate manner of receiving descriptive
feedback. However, the intrinsic subjectivity of such an analysis is the major drawback that induces
the researchers to not only rely on it. Additionally, a qualitative assessment may also be misled
by embodiment factors of the moving agent, which might distort the opinion of a human observer
and contaminate the results. For these reasons, the number and the type of participants, as well
as the experimental protocol design, are essentially important in user studies for the assessment of
human-like arm movements in robotics.

Repeatability

The consistency and repeatability of robotic arm motion have been considered important
human-like properties by the 9.26% of the included studies (Figure 6). For instance, Koskinopoulou
and Trahanias [56] presented an observation-based imitation framework capable of replicating human
arm movements, as well as producing novel (unseen) actions. The proposed solution overcomes
common correspondence issues that might affect standard learning from demonstration techniques by
the employment of intermediate latent space representations. Specifically, human actions are visually
recorded, while robotic actions are kinesthetically taught. Then, these high dimensional spaces of
action are reduced to bi-dimensional latent spaces by non-linear techniques of principal components
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extraction. During the training phase, these latent spaces are associated by the minimization of the
errors between human and robotic trajectories pairings. After training, the reproduction of human
movements is performed by inversely projecting the robotic latent space back onto its high dimensional
action space in the respect of physical joints limits. Experimental results with a 6-DOFs robotic
manipulator showed the feasibility of the described imitation framework on writing and pick-and-place
tasks. The ability to consistently generate similar arm motions on the basis of human repetitions was
quantitatively assessed on the reduced latent space, as well as on the action space, of the robot.
The detection of irrelevant operational-space errors also exhibited the capability of repeating arm
trajectories when comparable human trials are observed.

Methods that enhance repeatability during imitation can certainly generate human-like arm
movements. However, there is a relevant risk of ignoring other characteristics that are typical of human
upper-limb motion. While providing repeatable features can simplify observation-based learning
and intensify predictability, it can also seriously undermine human-like generalization capabilities.
Similarly to biomimetic approaches, expensive equipments and complex post-processing might also
be required to record human demonstrations and show consistency on different kinematic levels
(e.g., velocity, acceleration, etc.).

Trajectory Smoothness

While in classical motion planning techniques the smoothness of a movement is measured by
the sum of squared velocities or accelerations along a trajectory [57,58], smooth human arm motion
needs to be recognized by the mean of jerk-based metrics [59]. Only the 5.56% of the included studies
considered such a validation to assess human-likeness with the generation of limited jerky movements.
For instance, the movements generated by the solution from De Momi et al. [55] were also evaluated
through a measure of jerk on the principal plane of motion. Specifically, the sum of the squared
norms of the jerk vectors in the path is normalized along the total time of execution and the length of
the trajectory. This metric offers an independent index of smoothness for the detection of biological
behaviors during the analysis of generic reaching movements [59].

The measure of the jerk of the motion provides a compact and intuitive manner to validate the
smoothness of human-like arm trajectories. However, in many of the included studies, this metric was
totally ignored. It is also important to note the fact that a measure of the jerk cannot be the only tool of
assessment, but it must be included in a multiple validation system. Otherwise, a null jerk motion,
which produces a triangle-shaped velocity profile, might be wrongly associated with the smoothest
human-like trajectory that can be ever generated.

2/3 Power Law

The two-thirds power law (2/3-PL) formulates the non-linear relationship that exists between the
wrist velocity and curvature of human planar reaching movements [60,61]. This kinematic characteristic
was considered by only the 3.7% of the included studies as a valid reference of human-likeness in
robotics. For instance, the 2/3-PL was part of the set of metrics that De Momi et al. [55] used to support
and consolidate the biological origin of the generated arm movements.

The two-thirds power law was also used for determining its impact on the perception of robotic
motion in comparison with other levels of anthropomorphism [62]. Specifically, Hugues et al. [62]
designed a virtual car assembly scenario with different robotic platforms for the establishment of
a small user study with naïve participants. Geometric inverse kinematics procedures on a given set
of robots were modified to provide three parameters of anthropomorphism: namely, a base inertia,
an end-effector inertia and the two-thirds power law. While inertia on the base and on the end-effector
was simulated by spring-damper systems, the 2/3-PL was respected by forcing the end-effector
velocity in accordance to the curvature of its path. A simple protocol was set up by questioning
on singular perceived sensations and feelings, while a simulated robotic manipulator was watched
moving its end-effector on a circling planar path. Results showed that the most influencing criterion
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was the end-effector inertia, which positively impacts on the perceived flexibility, naturalness and
human-likeness of the generated motion. Consequently, these movements encouraged safety, less stress,
and willingness to work with a robotic partner. On the contrary, the impact of the 2/3-PL on the
perceived motion was mostly neutral.

In general, the application of the two-thirds power law in the generation of biologically-inspired
arm movements is relatively simple and can be eventually used to replicate common human tasks, like
hand writing. On the other hand, the assessment of human-likeness in robotic motion may require the
planning and recording of a significant number of arm movements with the corresponding kinematic
features. The 2/3-PL is only exhibited by bi-dimensional human trajectories, but it was shown that
introduces systematic errors in correlation with the overall shape of the path [49].

Hand Path Planarity

The planarity of the hand path is a characteristic of human upper-limb movements that also occurs
in the presence of obstacles [32]. For this reason, the 3.7% of the included studies took operational-space
planarity into consideration of human-like arm motion generation (Figure 6). It can be used to assess
human-likeness, simplify arm motion planning and mimic human arm postures. For instance,
Xu and Ding [63] presented a method for bi-manual transporting tasks that constrains the motion
of the end-effectors to lay on separated planes and utilizes synergies to reduce the dimensionality of
the search for a feasible movement. Specifically, the definition of planes of motion in the operational
space allows the control of the wrists by two virtual 2-DOFs manipulators that are attached on
a torso-like structure. From an anthropomorphic arm, a virtual manipulator is obtained by restraining
a wrist to move along different possible shoulder-wrist lines, which can draw planar curves in
the operational space. Positional constraints between the left and the right arms permit to find
an analytical solution to the translation planning problem. While translations are planned, orientations
are consequently stabilized to maintain a constant rotation matrix between the left and the right
wrists and to keep contact with the transported object. Simulations demonstrated the feasibility
of the proposed motion planner for bi-manual transportation tasks. Moreover, comparisons with
conventional inverse kinematics methods showed more natural end-effector trajectories and the
avoidance of awkward arm postures.

On the one hand, planar human hand paths in reaching and transporting tasks can be used to
significantly simplify the arm motion generation problem to show human-like features. On the other
hand, this simplification might only result valid on specific scenarios and movements. Moreover,
a serious reduction of the search-space dimensionality might negatively affect other important aspects
that are typically observed on human arm movements. For this reason, planar operational-space
trajectories should be analyzed in connection with other human-like metrics and should preferably
emerge from independently applied human motor control principles.

Spatio-Temporal Correspondence (STC)

Taking inspiration from the theory of chaos, Gielniak et al. [27] introduced the Spatio-Temporal
Correspondence (STC) as a tool to synthesize and evaluate human-like motion. Similarly to
biomimetics, the proposed algorithm starts from recorded human trajectories and brings together
three procedures into a pipeline to generate human-like robotic movements. The first step produces
human-like motion through the maximization of the correspondence in space and time with a reference
trajectory extracted from human goal-directed activities. This correspondence emulates the local
couplings of connected degrees of freedom that, in biological structures, like humans, are exerted by
groups of muscles. The attempt of coordinating a reference trajectory through spatial and temporal
shifts is realized by the minimization of a measure of dissimilarity, which has been generally used
for chaotic signals: the Spatio-Temporal Correspondence. After this step, the resulting human-like
trajectory is subjected to optimal control [64] to produce a certain degree of variance for the motion.
This second step is motivated by the fact that humans rarely replicate the same movement twice,
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even when the same task is performed. Adding variance around the reference trajectory (from the
previous step) preserves the original human-like characteristics and, most importantly, respects the
constraints of the motion in the joints space. Then, the optimal control provides a variant of the
reference trajectory within the physical limits of the joints and respects any eventual synchrony.
The third step projects the torque control commands onto the null space of the Jacobian that maps
forces on the end-effector to the torque on the joints. This projection guarantees that the variant joints
space trajectory does not compromise the operational space constraints of the reference trajectory,
like holding a cup or pointing an object. Several tests with the humanoid robot Simon (Figure 4j)
demonstrated that mapped motion from humans is perceived more natural, and its intention is
easier to identify when it is coordinated with the STC method. Further experiments showed the
capability of the proposed method of recovering human-likeness even in the presence of imperfect
embodiments (e.g., any agent kinematically or dynamically different than the original one) or of
lost information during mapping (e.g., down-sampling of the trajectory signal). Adding variance to
the generated human-like trajectories did not degrade the ability to recognize motion’s intentions
by human observers, and the variants exhibited the capacity of respecting both operational- and
joints-space constraints. However, as expected, the performance and the ability to generate human-like
variants of the proposed solution decrease as the number of constraints increases.

The Spatio-Temporal Correspondence is a versatile tool that can be used either to generate
human-like arm movements or to quantitatively and objectively evaluate human-likeness. Another
advantage is that the proposed solution is not heavily data-dependent because only one input trajectory
is necessary for the generation of many possible variants around it. However, like for biomimetics
approaches, there is the need for recording task-oriented human movements that often require the
application of expensive equipments. This also means that, for each constraint in the operational space
(end-effector position and orientation), an input reference movement is needed and one of its generated
variants has to be appropriately selected. Notably, the proposed method also risks undermining fluent
real-time interactions with human partners because two optimization processes in the pipeline (first and
second steps) may significantly slow down the generation of the final human-like motion.

Rapid Upper Limb Assessment (RULA)

Advances in ergonomics research have been an inspiration for novel human-like
manipulation techniques that can also improve the performance of traditional motion planners in
robotics. Zacharias et al. [65] proposed a solution that takes advantage of the RULA (Rapid Upper
Limb Assessment) criterion to generate human-like configurations and towards a determined
end-effector pose in the operational space of a robot. In ergonomics, the RULA criterion scores
conditions of stress and strain of human arm postures on a range from 1 to 7 with lower scores
identifying more natural and comfortable configurations. The proposed path planner is equipped with
knowledge concerning the reachability of the workspace in a human-like manner. This knowledge
is generated off-line and depends on the robotic agent that is applied for manipulation. In this
particular study, Zacharias et al. [65] conducted simulations and tests with the robot Rollin’ Justin that
is illustrated in Figure 4g. The dexterous workspace is modeled by a capability map that is composed of
discrete subregions where the end-effector can reach determined positions with different orientations.
Each subregion includes spheres with a certain index of reachability, which measures the success
rate in finding inverse kinematics solutions that place the end-effector onto uniformly distributed
points on these spheres. Then, the restriction of the capability map to those robotic postures that
possess acceptable RULA scores (usually no more than 4) provides a portion of that workspace that
intuitively manifests the preferences of human manipulation. Given this restricted capability map,
a RULA-driven inverse kinematics process (RulaIK) is proposed for reachable goal positions and
orientations. While standard IK solvers depend on randomly selected initial arm configurations,
the RulaIK iteratively try to solve the inversion of the kinematics starting from human-like postures
with limited RULA scores that interest the region in the vicinity of a goal. Compared with standard
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methods, the application of the RulaIK demonstrated to generate awkward postures with a significantly
lower frequency. Moreover, the computed restricted capability map is also used to bias the sampling
of a bi-directional RRT planner [30] by selecting arm postures in a preferred range of RULA scores
and that are feasible configurations in the region between the start and the goal postures. Tests on
pick-and-place tasks in comparisons with standard methods exhibited a faster convergence and smaller
mean RULA scores over the resulting trajectories when the RulaIK was used in combination with
RULA-biased sampling for path planning. Interestingly, a similar but slightly worse performance was
achieved when the RulaIK was used in combination with uniform random sampling for path planning.
This result shows the significant influence of a human-like goal configuration on the planning time
and on the overall ergonomics of a trajectory.

RULA-driven arm motion planning provides human-like arm trajectories that can also be
perceived natural because they are acting on a region of the workspace that is usually preferred
by human operators. However, typical human time parametrization is ignored, and, for this reason,
the proposed planner might negatively affect human observations of a resulting trajectory. Although
a faster convergence is achieved by the mean of RULA-biased IK and sampling, the total planning
time is not compatible with the requirements of a fluent human-robot interaction. Additionally,
the construction of a capability map with restriction on RULA configurations is robot-dependent and
also adds a level of complexity that has to be negotiated with the level of accuracy in the discretization
of the workspace.

3.3.2. Classification of the Generated Human-Like Arm Movements

In this section, more insights regarding the type of movements that can be generated by the
reviewed solutions are provided. Specifically, a proper classification is necessary to understand
better the degree of applicability of the proposed techniques and how they should be upgraded
for a wider generalization in different tasks. As Figure 9 illustrates, 87.04% of the included studies
addressed human-like single-arm motion generation, while only 18.52% of them proposed techniques
for dual-arm motion planning. This outcome certainly depends on the robotic devices that are available
for experimentation and on the tasks being addressed. Featured by a limited degree of complexity,
reaching (sometimes also called point-to-point) movements have been the focus of the 74.07% of
the included studies. This category of movements generally transports an end-effector from one
point to another point of the Euclidean space SE (3) without the engagement of any particular
manipulation of objects. On the contrary, picking and placing actions of the presented planners
concern manipulation of rigid objects in the workspace of a robot. In particular, 37.04% of the reviewed
papers addressed the generation of human-like pick movements, while 20.37% of them considered
placing (Figure 9). Interestingly, most of the placing actions were part of the planning and execution
of more general pick-and-place tasks. A more specialized branch of robotics research in human-like
arm motion generation has investigated planar movements for writing/drawing applications and the
reproduction of rhythmic trajectories, which regards the 14.81% and the 9.26% of the included studies,
respectively (Figure 9). The latter areas of research attract particular attention for their originality and
vast unexplored fields of application.
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Figure 9. Classification of the human-like arm movements that are generated by the reviewed
motion planners.

For instance, Li et al. [66] introduced a trajectory planning method that can test different
hypotheses concerning the role of the human Central Nervous System (CNS) in handwriting
and drawing. Human actions seem to be represented in the CNS in more abstractive terms
than with specific commands to the muscles [67]. For this reason, handwriting and drawing are
encoded in terms of strokes in positions and directions without any specific motor command [66].
Specifically, three methods for imitating human handwriting and drawing are described: basic strokes,
Bezier curves and non-gradient numerical optimization methods. The basic stroke method addresses
the writing of alphanumeric characters with two basic elements (or strokes): circular arcs and
line segments. Both of them are described analytically, and the inverse kinematics of a 2-DOFs
manipulator is computed. The time parametrization of the resulting path is adaptable to different
velocities profiles that can also simulate neurophysiological injuries and diseases. Concerning the
Bezier curve method, Li et al. [66] took inspiration from computer graphics for the definition of
a particular parametric curve, i.e., the cubic Bezier. This curve depends on four control points that
are recorded after the visual acquisition of the image that has to be drawn. Then, a decoding process
loads the saved parameters into a piecewise Bezier function that reproduces the handwriting. Finally,
a trapezoidal speed profile is defined, and the end-effector motion is translated into specific joints-space
commands. A variation of the Bezier curve method provides the non-gradient numerical optimization
method that takes inspiration from vehicle guidance. Simulations with a three-links manipulator
demonstrated the feasibility of the proposed trajectory planners in drawing complex figures mixed
with alphanumeric characters.

Yang et al. [68] introduced a biologically-inspired method for the generation of cyclic (or rhythmic)
arm movements that resemble the stability properties of animal and human motion. Specifically,
the neural oscillatory circuits on the spinal cord, which are known as Central Pattern Generators
(CPG), are formulated into artificial neural oscillatory networks and combined with a virtual force
inducer (VFI) acting in the operational space of a manipulator. The VFI interacts with a series of
oscillators that operate on each joint influencing the corresponding torque. Particularly, each neural
oscillator tracks the joint sensory signal feedback to exhibit an adaptive behavior during interactions
with the environment (the phenomenon of “entrainment”). The control scheme accounts for the
joints space dynamical model of a multi-DOFs manipulator, which is featured by a Proportional
Derivative (PD) controller in the operational space that follows a desired trajectory and by the scaled
contribution of the rhythmic commands from the neural oscillators. Interestingly, the proposed scheme
can achieve cyclic pattern generation without calculating the inverse dynamics and confronting the
ill-posed problem of redundant systems. Simulations and experiments with planar and multi-DOFs
manipulators demonstrated the capability of the proposed solution of generating smooth reaching
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movements, of producing cyclic repeatability of the joint positions, and of adapting to unexpected
environmental changes.

Being a relatively recent and trending topic of research, techniques of human-like dual-arm
motion and manipulation are of particular interest. Some authors presented algorithms designed
for single- and dual-arm applications [22,27,69], while others only addressed bi-manual planning
problems [70–72]. Lamperti et al. [22] proposed a solution for resolving the redundancy of
an anthropomorphic dual-arm robotic system through the minimization of muscular effort. With two
7-DOFs arms, the redundant variables raise from 1 in uni-manual motion to 8 in bi-manual motion
when there are constant rules of inter-limbs cooperation with one object. The right hand posing
problem is solved by minimizing the muscular activation that supports a manipulator against gravity
with respect to given operational-space constraints. The right arm configuration is uniquely identified
by the hand pose and by an optimal swivel angle that minimizes muscular effort. A swivel angle,
indeed, is the angle between the sagittal body plane of motion and the plane projected by the
triangle wrist-elbow-shoulder, which is a key factor in featuring the human-likeness of a posture [41].
Then, the left hand posing problem is solved by considering the relative translational and rotational
constraints with a given right hand pose. Similarly, the definition of the left arm posture is completed
by the left swivel angle that minimizes the muscular effort of the left robotic arm. Addressing many
samples of different dual-arm tasks, Lamperti et al. [22] fitted the data that relate arm configurations
(14 variables) to the eight redundant variables that define the right hand pose, the right and the left
swivel angles. Under the limits of the selected tasks, the fitting algorithm improves the performance of
the proposed dual-arm redundancy solver because approximates the redundant variables by linear
combinations of polynomial basis functions. Experiments with the humanoid robot ABB FRIDA
(Figure 4e) showed the necessity of scaling the fitted functions according to the dimensions of the
robotic manipulators. Results demonstrated the ability of the proposed method to generate human-like
dual-arm movements when compared with those ones of a simulated bi-manual human kinematic
model, which has spherical joints on the shoulders and the wrists.

Through the study of synergies in dual-arm manipulation tasks, Suarez et al. [72] designed
a dual-arm human-robot mapping system that is based on the extraction of principal movement
directions (PMDs) to simplify sampling-based motion planning in the joints space. Specifically,
the positions and the orientations of the hands of a human operator are firstly recorded and sampled
during the execution of an assigned assembly task. Then, these data are transformed into the
operational space of a humanoid robot with two 6-DOFs manipulators equipped with a 16-DOFs
hand each. Subsequently, the samples are translated into the joints space of the robot and the values
of the joints are properly filtered to minimize their variance. The synergies of a particular task are
then extracted as principal components of the dual-arm configurations that are the result of the
mapping process. These principal components were called principal movement directions (PMDs)
and represent the recorded dispersion of the samples. After the selection of feasible and collision-free
dual-arm goal configurations, more instances of the RRT-Connect algorithm [30] are launched in
a PMDs-subspace that reduces the dimensionality of the original search space (i.e., the dual-arm
joints space). Experiments with assembly and free-movement tasks showed a significant increase of
the planning computational performance when a minimal number of PMDs, which are sufficiently
representative of the task-related human variance, is adopted.

In the same direction of research, Garcia et al. [73] proposed a synergies-based partition of the
operational space for dual-arm reaching and grasping with a humanoid robot mounted on a mobile
platform. The synergies represent a human-like coordination between the translational movements
and the dual-arm motion of the robot that is approaching a region of the workspace for grasping
two cylindrical objects on a table. Human motion is captured and used as reference for transferring
human-likeness, which is maximized by an optimization-based human-robot mapping that ensures the
correct placement of the end-effectors for a successful grasping. Then, principal components analysis
is run on the space of configurations for the torso and the joints to extract a minimum number of
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synergies that significantly comprise the variance of the samples. This analysis permits to partition the
torso translational space of the robot according to similarities of the captured dual-arm movements
and, consequently, reduce the dimensionality of the planning search space for new joints-space states.
For this reason, the proposed motion planner modifies the original version of the RRT-Connect
algorithm [30] to take advantage of the acquired knowledge and considerably decreases the required
planning time and iterations.

The vast majority of the included studies presented methods for the human-like generation of
single-arm reaching movements, while poor attention has been put on drawing and rhythmic motion.
More recently, more complex robotic applications of pick-and-place and dual-arm manipulation has
started to attract the interest of an interdisciplinary research that takes inspiration from biological and
behavioral findings. Although more generic tools of arm motion generation that can offer human-like
solutions for different classes of robotic movements are often auspicious, it emerged that research
seems to be focused on narrow sets of applications. For instance, while more advanced solutions
might potentially integrate simpler utilizations with few modifications, the techniques for planning
human-like writing/drawing and rhythmic movements seem to be an isolated branch of investigation
that can hardly be merged with more classical methods for reaching, picking and placing. Additionally,
the great part of the included human-like dual-arm motion planners depends on biomimetic measures
and on databases of human captured motion data that strongly limit task generalization.

3.3.3. Obstacles-Avoidance in Human-Like Arm Motion Generation

Endowing robots with the capability of avoiding and preventing collisions with obstacles in the
workspace is a necessary skill in scenarios that are shared with humans for interacting purposes [1,3,4].
However, only the 27.78% of the reviewed papers addressed this particular issue. The proposed
obstacles-avoidance mechanisms are summarized in Table A2. For example, Rosell et al. [74] proposed
a human-like sampling of the configurations of a robotic arm-hand system that also improve the
efficiency of a PRM-based graph building [75] in hand pre-shaping movements during grasping.
Specifically, the hand motion of a human operator is captured during the execution of unconstrained
movements and then mapped onto a robotic anthropomorphic hand to extract the inter-fingers
coordination by a principal component analysis. Rosell et al. [74] took into consideration human-like
requirements that may regulate the palm orientation constantly facing an object to be grasped during
prehension. These considerations, and the principal components of the fingers’ motion, permit to
solve a planning query between two feasible arm-hand configurations with reduced dimensionality.
The feasibility of the proposed virtually constrained planner was successfully tested with a 6-DOFs
arm equipped with a four-fingered hand. The arm-hand system moves from an unconstrained to
a constrained configuration in order to grasp a can on a table in a environment cluttered with obstacles.
Additionally, comparisons with standard PRM planning showed that the proposed method can provide
sequences of human-like postures with a higher success rate in a minor computational time.

Assuming a pre-determined mental image of a final arm posture in human goal-directed
movements, Xie et al. [76] introduced the hypothesis of the “Target Arm Pose” (TAP) in human-like arm
motion planning for robotic manipulators. The TAP hypothesis determines final arm configurations
that maximize dexterity by seeking for a high Jacobian condition number in the inversion of
the kinematics. A detailed analysis of the obstacles in the workspace and the proper selection of
intermediate TAP configurations facilitate the generation of collision-free human-like arm movements.
While the human motion of the fingers is mimicked by the minimum jerk model, the inversion of
the kinematics at joint jerk level (IK-JJL) generates reaching movements by tracking an end-effector
trajectory, which respects the boundary conditions with given TAPs and avoids the physical limits
of the joints. In presence of obstacles, the TAP hypothesis for intermediate via postures is combined
with the RRT-Connect algorithm [30] to generate collision-free paths. Simulation and tests showed
the feasibility of the IK-JJL in planning reaching movements in obstacles-free scenarios. Moreover,
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the combination of the TAP hypothesis with the RRT-Connect algorithm improved the performance of
the latter in planning reaching and grasping movements through narrow passages.

Liu et al. [77] proposed an analytical inverse kinematics algorithm for anthropomorphic
manipulators to map human-like configurations from recorded human arm motion data. In particular,
the shoulder, elbow, wrist and palm points are operational-space key positions for a task-constrained
human-robot mapping. While the position of the shoulder is fixed at the base of a robotic arm and
the position of the palm/end-effector is dictated by the task, there is some flexibility in mapping
the position of the elbow and the wrist because only a grasping direction constrains the end-effector
orientation. The proposed human-robot configuration correspondence solves the inverse kinematics
problem with respect to the link lengths and the joints limits of the manipulator. Specifically,
the wrist key position is constrained to be on the line connecting the elbow and the palm positions
(wrist-elbow-in-line) so that all the key positions lie on the same reference plane. Then, the obtained
posture is iteratively adjusted if any of the joints limits is surpassed. This adjustment procedure starts
by circularly moving the wrist position to obtain a feasible elbow joint angle. Next, the elbow key
position is initially chosen to be the closest to the captured human elbow that lies on the reference
plane. If any joints-space infeasibility is detected, then the position of the elbow is iteratively moved
on an arc that defines different swivel angle values. The simulations with a 7-DOFs redundant arm
demonstrated that the proposed IK method provides a high end-effector accuracy that slightly decrease
in motion tracking but can show sufficiently rigorous human-likeness, which is manifested by the
detected similarities with the human swivel angle. Interestingly, the human-like performance does
not degrade when simple avoidance of a spherical obstacle is considered. The elbow key position
is maintained, while the flexibility of the wrist is exploited to adjust the robot configuration and
avoid collisions.

Although preventing self-collisions and avoiding obstacles in the workspace of a robot is a priority
of human-centered robotics, the reviewed techniques of human-like arm motion generation rarely
address it. Most of the proposed solutions for obstacles avoidance work under assumptions that
significantly simplify a planning problem and take advantages of sampling-based motion planners
that can surely provide collisions-free paths, but, on the other hand, require smoothing procedures and
neglect typical human-like time parametrizations. Additionally, experiments on collisions prevention
often ignore assessing kinematic human-like features that characterize human arm movements [32].

3.3.4. Efficient, Generalized, and Adaptive Human-Like Arm Motion Generation

Human voluntary movements are the physical linkage that the brain uses to communicate with
the external world [78]. The movement generation system embodies the intentionality of a subject
as the desire to change a portion of the surrounding environment, and the prediction of an action,
which is based on learned internal models. The sensations and changes resulting from the execution of
a movement feedback to the nervous system that might adjust the motion generation mechanisms
(adaptation). There is a complete specification of upper-limb trajectories before the beginning of the
action, but there is also a continuous motion redefinition as an arm moves [78]. This implies that
planning and controlling arm trajectories can be considered independent and interconnected stages of
human-like arm motion generation [79]. The planning stage of volitional movements, in particular, is
featured by optimality requirements (efficiency) when accurate prediction is necessary to satisfy the
specifications of goal-directed actions [44,80]. As part of a more general feed-forward control policy,
human motor planning also evokes “internal models” (generalization) that are constructed by learning
from prior knowledge and offer more precise expressions of an intended action [78]. Being part of
a combined human motor framework, it is important to analyze optimization, learning, and control
techniques that have been proposed as solutions for human-like arm motion generation.

In the last decades, optimality principles and models have been studied and empirically
developed under biological and psychological perspectives as a manifestation that features the
evolution of the human motor system [81–83]. The 37.04% of the reviewed papers presented different
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optimization-based solutions that consider the minimization of typical costs in human upper-limb
movements. For instance, Albrecht et al. [84] applied bilevel optimization to imitate human reaching
movements that were tracked and clustered during the execution of daily kitchen routines. Specifically,
a human-like arm trajectory is obtained by optimizing on two levels to address the replication of
a wide range of movements. The resolution of a low-level problem comprehends the minimization of
a weighted combination of three cost functions that have been experimentally observed in humans:
a hand jerk cost [44], an angular jerk cost [38], and a torque change cost [80]. The resolution of
a high-level problem finds the correct combination of the weights to minimize the distance between
the optimal solution and the recorded human data in a single cluster. The availability of weighting
factors permits adapting the cost according to the diverse tasks that identify the clusters. Simulations
and experiments with the robot iCub (Figure 4b) demonstrated that the proposed method can
correctly imitate human reaching movements better than the single optimal criteria alone, even
though similarities can be limited by the embodiment of a robotic device.

In our previous studies, a human-like arm motion planning that minimizes the angular jerk of
collisions-free trajectories was described [70,85,86]. Taking inspiration from psychological findings
in human prehension [48], the proposed method is based on the resolution of two non-linearly
constrained optimization problems: one for the selection of a goal posture, which ensures a correct
collisions-free posing of an end-effector; and another for the selection of a bounce posture, which
guarantees naturalistic obstacles-avoidance on the entire generated path. Then, the selected goal
and bounce postures are integrated to compose a minimum angular jerk trajectory that endows
a humanoid robot with the capability of manipulating objects in scenarios cluttered with obstacles.
The goal and bounce postures selection problems are formulated in AMPL [87] (A Mathematical
Programming Language) and are solved by IPOPT [88], which is an Interior Point OPTimizer [89] for
large-scale non-linear optimization. Simulations and experiments on assembly tasks with the robot
ARoS (Figure 4a) demonstrated the feasibility of the proposed solutions in generating human-like
single-arm movements [85], as well as bi-manual asynchronous [86] and synchronous [70] movements.

Training and learning models and processes in human arm-hand motion can describe how adult
motor behavior emerge [90] and how the information of actions can be memorized and stored in
internal models for generating prehension and manipulation [38,48]. The 22.22% of the included studies
introduced techniques for learning and generalizing from the observation of human patterns of motion
during the execution of particular tasks. For instance, Park and Kim [91] described an optimal database
construction of human re-targeted motion to learn arm motion primitives for a real-time human-like
trajectory planning. Particularly, an Evolutionary Algorithm (EA) is applied as a global optimizer
to iteratively select minimal joint torques trajectories among a collection of captured human motion
data. The latter are clustered according to task-related conditions, which need to be respected for the
correct accomplishment of an intended action. Within these conditions, the principal components of
motion are extracted for a dimensionality reduction and for reconstructing new evolved movements
that locally minimize the joint torque along the movement duration. Experiments with the humanoid
MAHRU (Figure 4i) demonstrated that the proposed method is capable of learning minimal torque
arm trajectories and generate human-like motion in real-time by reconstructing a movement through
its principal components under given boundary conditions. The general performance decreases as the
size of the clusters in the database increases because the selected principal components may not fully
describe the variance of the captured motion.

Taking inspiration from human adaptation to perturbations in reach-to-grasp movements,
Shukla and Billard [92] introduced a coupled dynamical system to control the arm-hand interdependency
during task execution. Specifically, a Programming by Demonstration approach [93] is followed to
learn the explicit coupling between the hand and the fingers motion during unperturbed and perturbed
grasping actions. Human movements from different subjects were recorded, transferred to a robotic
embodiment, and modeled as Gaussian Mixture Models [94] for estimating operational-space position
and velocities, which maximize the likelihood of the generated demonstrations. In particular, three joint
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distributions are learned to form the proposed coupled dynamical system (CDS): one encodes the
dynamics of the hand transportation, one encodes the fingers motion, and one encodes the state of the
fingers inferred from the hand position. The norm of the distance between the hand position and its target
represents the coupling function to deduce the state of the fingers, which activates a controller to update
the values of the finger joints. When perturbations occur, tuning the controlling parameters can regulate
the speed and the amplitude of hand reopening, which can either adhere to human-like requirements or
surpass human physical limitations to cope with fast adaptation demands. Simulations and tests with
the robot iCub (Figure 4b) showed the necessity of having an explicit arm-hand coupling for a successful
grasping when, for example, a target suddenly changes after the onset of the motion and when a grip
type needs to be substituted.

A deep neural network approach was proposed by Su et al. [95] to optimize the redundancy of
anthropomorphic manipulators and reproduce the human-like features of human recorded motion.
In particular, target poses and swivel angle motion are mapped from the given demonstrations with
a network of five hidden modules, which apply convolution, a drop-out module to prevent over-fitting,
and a regression layer. After training, the regression model can predict human-like swivel angle
kinematics from novel target end-effector poses. Then, the predicted swivel angle motion is fed to
an inverse kinematics controller to reproduce human-like elbow positions through the redundant
variables of an anthropomorphic manipulator. Simulations with a 7-DOFs robotic arm showed
the capability of replicating human-like postures in tracking tasks. Additionally, compared with
other artificial neural network-based models, the proposed learning approach exhibited a higher
reconstruction accuracy, a lesser predicting time and a greater noise robustness.

Studies in humans have shown that there is a complete trajectory specification before the onset of,
for example, reaching and drawing movements. However, this specification continues throughout the
motion and shows adaptations to unpredicted task-related variations [78]. Although visual information
and, more generally, sensory feedback, necessarily close a controlling loop, some evidence on humans
concerning fast motion adaptation suggests the existence of feedback-free internal controlling models
that emerge from experience [78,96]. However, accuracy requirements seem to be achieved by visually
detecting a hand moving, which suggests motion modifications based on physical and environmental
sensations [78]. The 29.63% of the included studies introduced closed-loop controllers to cope with
fast unpredicted changes that may occur in the workspace of a robot and to allow a compliant physical
interaction with the environment. For instance, starting from the Virtual Spring-Damper controller
introduced by Arimoto and Sekimoto [51], Bae et al. [97] took inspiration from the human muscle
tension effect under gravity to increase energy efficiency and conform to a more repeatable human-like
motion. Specifically, a torsional spring effect in the joints-space is added to the previous proportional
derivative closed-loop controller, which ensures a correct trajectory tracking in the operational space.
Feeding back a joints-space signal permits to privilege arm configurations, which are usually adopted
by humans to minimize the tension of the muscles under gravity. Experiments with a 7-DOFs
redundant manipulator revealed that the introduction of the muscle tension effect can reduce the
average power consumption and trigger joints-space repeatability, which would otherwise be lost
after a few repetitions. Moreover, it was shown that the proposed human-like controller is featured
by compliant behaviors because it can promptly absorb external disturbances and maintain good
operational-space tracking capabilities and joints-space repeatability.

Stefanovic and Galiana [98] introduced a spinal-like regulator for replicating behavioral patterns
that are typical in volitional reaching movements. In particular, this approach finds its foundations on
the imitation of the centers of pattern generation that exist in the spinal cord and couple brain activity
with the spinal motor areas. For this reason, the proposed controller is based on spinal-like circuits,
which can exhibit intelligent functions that resemble internal models and reflexive reactions to external
perturbations. The applicability of the proposed biological-like controller to multi-joint artificial limbs
is tested using a two-links simulated robotic arm, which executes planar reaching tasks on different
ranges of the available workspace. The results showed the capability of the proposed method of
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scaling the operational-space trajectories on spatial and temporal levels to fit with human-like arm
motion requirements. Specifically, the inherent spinal gains of the controller can be tuned to change
the end-effector path curvatures and speeds to generate quasi-straight trajectories with bell-shaped
velocity profiles. The regulator can also successfully absorb sustained perturbations and adaptively
track moving targets to restore and maintain a human-like trajectory profile.

With the purpose of mimicking the human joint coordination at a behavioral level, Togo et al. [99]
took inspiration from the uncontrolled manifold (UCM) concept [100] to introduce a feedback controller
capable of reproducing the trial-to-trial joints-space variance of reaching movements. This variance of
redundant motor elements (i.e., joint angles) is quantified by a UCM component, which is orthogonal
to another component (ORT) that directly affects the performance variables (i.e., coordinates in the
operational space of a manipulator). The proposed “UCM reference feedback controller” (Figure 10)
regulates the task-relevant elements (the ORT component) with respect to the minimum intervention
principle introduced by Todorov and Jordan [101].

Figure 10. Concept of the uncontrolled manifold (UCM) reference feedback controller [99].

A one-dimensional target tracking task with a simulated 3-DOFs arm is addressed for tests and
comparisons with captured human reaching motion. The minimum jerk criterion with null boundary
conditions [44] is used to generate human-like operational-space trajectories, which are then tracked
by the proposed human-like regulating method. In conformity with the minimum torque change
principle of human reaching movements [80], a task-constrained optimal problem is analytically
solved to provide a reference configuration and, through inverse dynamics, a torque signal for the arm.
Visual information of the actual trajectory is fed back to the controller with added normal distributed
noise that simulates human imperfections in the visual perception of moving targets. Additionally,
the proposed controller is supplied with a somato-sensory feedback for internally monitoring the joint
position and velocities during motion. Normal distributed noise signals are also added to the joints
torque signals and to the optimal configuration references to simulate signal-dependent noise of motor
commands and the influence of visual perception uncertainties on the variability of the joints angles,
respectively. The efficacy and the capability of reproducing human-like joints coordination of the
proposed uncontrolled manifold regulator were statistically assessed by simulations and comparisons
with captured human reaching movements.
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From the analysis of the included studies emerges a wide variety of optimization, learning,
and controlling methods that have been fairly applied for human-like arm motion generation. However,
a common motor framework capable of an efficient modular integration seems to be still missing,
even though roboticists have often referred to the genesis of movements as a linked functional
decomposition of these technical features [79,102]. The proposed human-like arm motion planning and
learning methods are generally based on task-related human captured data. They involve optimization
techniques on a global level in the attempt of clustering motion patterns, as well as on a local level
with respect to human motion minimization principles. Learning approaches take advantage of
dimensionality reduction mechanisms to simplify the generation process and extract synergies for
a motion reconstruction in unseen environmental situations. Additionally, decision-making systems
have also been presented as the result of learning from captured human data to select the most
appropriate movement planning method. Although collections of human motor features guarantee
an authentic source of knowledge and an unequivocal tool of comparison, these optimization and
learning techniques may suffer from a lack of generalization because of internal models that store and
feed experience in a categorical and human-dependant manner. Controlling human-like trajectories
have also been studied to optimize the input motor commands of robotic manipulators. The reviewed
controllers are of biological and behavioral inspiration and have been tested with devices of few degrees
of freedom. Therefore, their application on complex human-like redundant circumstances remains
unaccounted. The regulated trajectories are often generated on-line without any given reference from
prior planning stages, even though the human Central Nervous System seems to generate optimized
motion outputs close to a final motor solution before the onset of a movement [78,99]. Learning
of control parameters and internal models are also absent in the analyzed human-like arm motion
regulators, despite the fact that training and practice find neuroscientific and psychological bases in
planning and controlling voluntary movements [103,104].

4. Discussion

A literature review on the most recent techniques of human-like arm motion generation has
been presented. The analysis included 54 papers that were firstly classified according to the sources
of knowledge. The vast majority of the papers was found in Scopus, immediately followed by the
IEEEXplore, Web of Science, and, with minor contribution, ACM Digital Library. The equipment
of the included studies was roughly equally composed by simulators, robotic manipulators and
anthropomorphic platforms. The latter devices are of particular impact on motion planning solutions
because provide a significant level of anthropomorphism that can positively influence interactions
with humans [16,17]. The large majority of the reviewed papers proposed global methods that operate
with kinematic variables and address the generation of trajectories in the operational space of robotic
manipulators. This result might be due to the fact that a globally-considered static environment can
provide solutions in a low dimensional space and a more accurate match with kinematic human-like
features [48,50,105]. However, such methods might be reductive and risk to ignore human-like
characteristics of the joints space, such as synchrony and bell-shaped angular velocity profiles [37].
Dynamics variables are often the focus of biologically-inspired solutions, which have been poorly
addressed due to the difficulties that arise in transferring the activities of the muscles into robotic
manipulators. Local human-like arm motion generation methods have also been scarcely proposed,
but they can introduce the capability of simulating human reflexes and react to changing scenarios
during the execution of a movement. However, these techniques only partially consider the workspace
and, therefore, may fail to achieve human-likeness in complex tasks.
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Roboticists have considered a variety of human motor control principles as inspirational and
evaluational tools for proposing techniques of human-like arm motion generation. The included
studies showed that researchers have mainly focused on biomimetic and human-robot mapping
approaches, which can ensure a strong resemblance with human motion that is acknowledged as
an objective reference of an action. In particular, human-robot transferring techniques can guarantee
real-time execution of the movements, which is essential during tele-operation. However, most of these
methods need expensive and complicated equipment for capturing human movements, databases to
collect them and post-processing for features extraction. Additionally, these techniques generally lack
of generalization because usually work for a limited range of goal-directed tasks. Similar issues are
also experienced by learning-based methods to teach specific tasks to a robot by imitation or training.
Although learning from observations ensures a stable repeatability and a degree of adaptation to
external perturbations, generalization is seldom achieved.

The kinematics of the obtained end-effector trajectories have often been compared to the hand
path and hand velocity profile of human reaching to show similarities and divergences between robotic
and human movements. Most of these particular solutions were developed for single-arm motion and
based on human-like optimization principles that minimize energy under tasks-related constraints.
Manipulation in the workspace of a robot is often neglected when kinematics is assessed because of the
inevitable complications that pick-and-place tasks would import into the analysis of human-likeness.
The majority of the proposed methods were not tested with qualitatively assessments to understand the
perception of human observers. However, there are many scientific shreds of evidence demonstrating
that, for pleasant human-robot interactions and collaborations, the movements of the robot have to
be perceived as natural, predictable, and showing the intention of the underlying action without any
verbal communication [12,106–108].

The smoothness of a trajectory has often been measured in relation with the third derivative of
position, i.e., the jerk, which is a compact and intuitive index of human-likeness. However, smoothness
is not exclusively connected with jerk, but it must be assessed more comprehensively with other
validation systems, such as, for example, the number of movement units [109]. The application of the
two-third power law (2/3-PL) is relatively simple for the generation of biologically-inspired planar
movements, like writing or drawing. However, the 2/3-PL has shown to introduce systematic errors on
the complete shape of a trajectory and needs to be extended to explain regularities of three-dimensional
reaching movements [49]. Although path planarity in the operational space may significantly simplify
a planning problem, this human motor principle should emerge from other independent human-like
motor principles instead of being a constraint of the generation process. Otherwise, there is a risk of
complicating a planning problem and decrease the overall performance. The repeatability of motion
on imitating observed human movements can certainly increase predictability and simplify learning,
but it can seriously undermine generalization on different tasks. With two optimization processes
in sequence, the Spatio-Temporal Correspondence [27] can negatively affect real-time interactions
with humans, but it is a versatile tool that can be used to either assess or generate human-like
body trajectories from one single sample. Human-like arm motion has also been achieved by the
RULA-driven technique [65], which introduced an upper limb assessment of the inverse kinematics and
the sampling of the search space to enhance ergonomics, but ignored human-like time parametrizations.

Most of the included studies addressed single-arm reaching movements, while human-like
dual-arm applications are emerging and pick-and-place tasks still deserve more attention. The simple
nature of motion without manipulation and the vast literature concerning the psychology of human
reaching have probably encouraged roboticists towards this direction of investigation. Replicating
human writing, drawing, and rhythmic movements revealed to be a small research branch, which
seems to be isolated because not of easy integration with more classical methods of picking, placing,
and reaching motion generation.
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The prevention of self-collisions and the avoidance of obstacles in the workspace of a robot were
rarely considered in the reviewed papers, even though these are necessary features for interacting
devices in human-centered environments. Additionally, many of the proposed solutions ignored
a human-like kinematic analysis during the avoidance of obstacles and addressed collisions prevention
under simplifying assumptions, which reduce their range of applicabilities.

Roboticists have usually defined the genesis of human-like motion as a connected system of
different functional modules [79] where optimization, learning, and control are integrated. However,
the included studies do not refer to a common framework of motor generation for optimizing human
motor models, learning internal models and control on external disturbances. On a local level, human
motor minimization principles are applied, while learning techniques are used for clustering motion
on a global level, for extracting regularities of captured human movements and for implementing
decision-making settings. Studies have shown that the synthesis of motor solutions happens in
the Central Nervous System before execution [78]. However, the reviewed controllers act in the
absence of prior optimized trajectories that may guide the process of on-line regulation. Moreover,
these controllers are applied to a few degrees of freedom and remain to be tested on more complex
redundant manipulators and interacting tasks.

A categorization of the included studies in accordance with their most peculiar methodological
features permits to analyze their possible fields of application. With a significant presence in the
current literature of human-like arm motion generation, biomimetic techniques for the generation of
single-arm reaching movements certainly endow human operators with novel capabilities. For instance,
for an efficient tele-operation of a robotic manipulator, accurate human-robot mapping methods for
a real-time execution are necessary. Additionally, biomimetic methods privilege the mimicking of
simple reaching motion because it is often sufficient for tele-operated tasks and the activation of
different types of end-effector might not resemble typical human prehension. Due to the complexity
of joint manipulation, dual-arm human-like mimicking is at its early stage of investigation and is
expected to advance in the near future. While such techniques aim at directly augmenting human
capabilities, the rest of the proposed methods aims at a more indirect augmentation, which passes
through human-robot interactions that resemble human-human interactions. In these situations,
arm movements are planned to achieve human-like kinematic characteristics and high levels of
smoothness to meet the expectations of human observers and co-workers. A full autonomy of
such human-like devices is achieved by, for instance, their capability of successfully accomplishing
pick-and-place tasks in office-like and industrial-like scenarios, which are often cluttered with
generic obstacles. The analysis of the included studies also showed that an advanced level of
motor independence is also reached when internal human-like functionals are minimized, repetitive
human-like behaviors are learned, and human-like reactions to external perturbations are controlled.
It is also worth noticing that, in a broader sense, robots are more human-centered through the
generation of human-like arm motion. Their ultimate services augment the human capabilities
of action because their goal is not to replace human operators but, instead, to interact and collaborate
with them.

5. Conclusions

The limitations of the discussed literature on robotic human-like arm motion generation show the
necessities of investigating comprehensive solutions, which can benefit from generalization capabilities
for a wide range of tasks, types of movements, and scenarios. The intentionality of motion needs to
be encoded because it plays an essential role during interaction and collaboration between robots
and human partners. More focus is needed on manipulative features and on obstacles-avoidance
mechanisms that do not degrade the level of human-likeness with the increase of the complexity
of a given task. For instance, behavioral studies show that collisions between the upper-limbs
and objects in the environment seem to be anticipated and prevented through specific via postures
during grasping [48,110]. For this reason, the generation of collisions-free arm trajectories in robotics
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should take inspiration from similar techniques of human obstacles-avoidance instead of relying on
non-human-like solutions, such as sampling-based path planning algorithms.

What emerges is the necessity of having quantitative and qualitative means of assessment to
obtain objective and complementary information concerning the human-likeness of robotic trajectories.
Many of the reviewed techniques mainly referred to either task-related metrics or biomimetics, which
might mismatch with the perception of human interacting partners during the applications on different
situations. Moreover, clinical protocols and numerical indices for the detection of upper-limb motion
pathologies [111–114] have been totally ignored by the included studies but can certainly inspire future
work. For instance, a kinematic movement analysis of the upper extremity functions was proposed
by van Andel et al. [111] to assess motion disorders in daily living activities. Similarly, Gates et al. [112]
identified the kinematical requirements of upper-limb ranges of motion that are necessary on several
human self-caring and ordinary actions. The construction of an open ongoing database of human
upper-limb ranges of motion was proposed by Major et al. [113] to share feasible inputs for the design
of tunable robotic rehabilitation solutions. An upper-limb motion deviation index (ULMDI) was also
introduced [114] as a synthetic and comprehensive measure of arm motion pathologies that cause
kinematic deviations from healthy upper-limb gestures. Such diagnostic tools should inspire the
design of anthropomorphic manipulators and the development of novel solutions of human-like arm
motion generation that improve interactions with healthy and impaired human peers.

Further investigations on dual-arm human-like motion generation should be also addressed
and, for example, undertaken as an extensive branch of the single-arm counterparts. Many of
the reviewed solutions to the bi-manual planning problem refer to mapping configurations of
fixed-structures, instead, which show a lack of flexibility and of merging capabilities with single-arm
tasks. Human principles of optimization, learning, and control should also find place in a modular
framework where a continuous and smooth interaction is enhanced to mimic the functioning of the
Central Nervous System and respond with the challenges of the human-centered robotics [78,79,102].
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Appendix A

Table A1. Literature review analysis.

Authors Year Type of Robot Approach Human-Like
Metrics

Types of the
Generated
Movements

Key Features of the Proposed Method

Kim et al. [40] 2006 humanoid

global;
kinematic;
operational
space

biomimetics
single-arm;
dual-arm;
reaching

A Response Surface Methodology (RSM) allows the
estimation of human swivel angles during reaching in
order to solve the inverse kinematics of a 6-DOFs robotic
arm in a closed-form.

Caggiano et al. [115] 2006 simulated

global;
kinematic;
operational
space

biomimetics single-arm;
writing

A closed-loop inverse kinematic algorithm is tuned to
mimic recorded human hand writing by a simulated
7-DOFs arm with human-like dimensions.

Arimoto and
Sekimoto [51] 2006 manipulator

local; dynamic;
operational
space

kinematic
assessment

single-arm;
reaching

A control law based on the Virtual Spring-Damper
hypothesis is proposed to solve the Bernstein’s
Degree-of-Freedom problem and tested on bi-dimensional
and three-dimensional reaching motion.

Kim et al. [42] 2007 humanoid

global;
kinematic;
operational
space

biomimetics single-arm;
reaching

The regeneration of human-like arm motion enhances
HRI through the engagement of the human attention
by suitably changing motion direction and scaling its
magnitude.

Yang et al. [116] 2009 manipulator
local; dynamic;
operational
space

repeatability
single-arm;
reaching;
rhythmic

A biologically-inspired dynamic controller combines
a Virtual Spring-Damper hypothesis and neural oscillators
in the joints space to achieve human-like reaching and
rhythmic arm motion.

Artemiadis et al.
[117] 2010 manipulator

local; kinematic;
operational
space

biomimetics single-arm;
reaching

The inter-joints dependency of human arm reaching is
probabilistically modeled and maximized by a closed-loop
inverse kinematic algorithm.

Park and Kim [91] 2010 simulated global; dynamic;
joints space biomimetics single-arm;

pick

A clustered database structure is built off-line by applying
an evolutionary process on captured human arm motion
to collect torque efficient movement primitives.
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Table A1. Cont.

Authors Year Type of Robot Approach Human-Like
Metrics

Types of the
Generated
Movements

Key Features of the Proposed Method

Pattacini et al. [118] 2010 humanoid
local; kinematic;
operational
space

kinematic
assessment;
trajectory
smoothness

single-arm;
reaching;
rhythmic

A multi-referential Cartesian controller follows the
minimum-jerk principle in both operational and joints
spaces to ensures typical human-like hand kinematic
behavior and robustness against singularities.

Yang et al. [68] 2010 manipulator
local; dynamic;
operational
space

repeatability single-arm;
rhythmic

The coupling between a virtual spring-damper and
human-like Central Pattern Generators (CPGs) at the
joints is proposed to achieve cyclic motion and adapt to
external perturbations.

Albrecht et al. [84] 2011 humanoid global; dynamic;
joints space biomimetics single-arm;

reaching

A bilevel optimization is applied to imitate clustered
human arm reaching movements: the best imitation
performance results from the combination of typical
human-like minimization principles.

Bae et al. [97] 2011 manipulator
local; dynamic;
operational
space

repeatability single-arm;
rhythmic

The Virtual Spring-Damper controller [51] is augmented
with the capability of generating human-like energy
efficient arm reaching motion by introducing, at the level of
the joints, a human muscle tension effect under the gravity.

Silva et al. [85] 2011 humanoid
global;
kinematic;
joints space

kinematic
assessment

single-arm;
pick; reaching

Single-arm human-like manipulation is achieved
by the selection of optimal goal and bounce arm
configurations, which are composed to obtain
minimum-jerk collisions-free trajectories.

Xie et al. [76] 2011 manipulator
global;
kinematic;
joints space

kinematic
assessment

single-arm;
pick; reaching

Based on the introduction of Target Arm Poses (TAPs),
a human-like arm-hand motion planner that solves the
inverse kinematic problem at a jerk level is proposed and
tested in scenarios cluttered with obstacles.

Bhattacharjee et al.
[119] 2011 simulated

local; dynamic;
operational
space

kinematic
assessment

single-arm;
reaching;
writing

A control scheme, which takes inspiration from the human
muscle damping and stiffness properties, proposes the
formulation of a bijective function that uniquely maps
the joint actuators to time-varying weights that simulate
brain-muscles communication delays.
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Rosell et al. [74] 2011 manipulator

global;
kinematic;
operational
space

biomimetics single-arm;
reaching

A human-like sampling is proposed for grasping in
presence of obstacles. From recorded human hand
motion, inter-fingers coordination is extracted to reduce
the dimensionality of finger motion sampling, while
the motion of the end-effector is planned under palm
orientating constraints.

Zacharias et al. [65] 2011 humanoid

global;
kinematic;
operational
space

qualitative
assessment;
RULA

single-arm;
pick; place;
reaching

The ergonomic RULA criterion is used to identify
regions of the workspace with human-like RULA scores,
which guide the inversion of the kinematics, as well as
any sampling-based planning, towards the selection of
ergonomic configurations.

Fu et al. [35] 2012 simulated
global; dynamic;
operational
space

kinematic
assessment

single-arm;
reaching

Motor synergies of a 3-DOFs human-like arm are studied
to reduce the dimensionality of an optimal control
problem for the generation of reaching planar movements.
A human-like time parametrization of the motion is
also considered.

Shukla and Billard
[92] 2012 humanoid

local; kinematic;
operational
space

biomimetics single-arm;
pick

A Coupled Dynamical System (CDS) is proposed and
learned by demonstrations of human grasping movements.
The coupling of hand motion and aperture of the fingers is
mimicked and stable to fast perturbations of the target in
the operational space.

Strauss and Heinke
[120] 2012 manipulator

local; kinematic;
operational
space

kinematic
assessment

single-arm;
reaching

Dynamical Neural Fields are proposed to generate planar
reaching motion for a 2-DOFs arm, which exhibited
a human-like kinematic behavior of the end-effector.

Taïx et al. [36] 2013 humanoid
global; dynamic;
operational
space

kinematic
assessment

single-arm;
reaching

The biological model of antagonist muscles is applied for
the generation of human-like reaching motion. The control
variables are optimally selected in order to minimize the
energy of the moto-neuronal signals over the duration of
a movement.
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Gielniak et al. [27] 2013 humanoid global; dynamic;
joints space

biomimetics;
STC

single-arm;
dual-arm;
reaching

Human-like arm motion is generated by the maximization
of a Spatio-Temporal Correspondence (STC) with a set of
task-related exemplar trajectories that are tracked from
human agents.

Wang and
Artemiadis [121] 2013 simulated

global;
kinematic;
operational
space

biomimetics single-arm;
reaching

Every-day human reaching movements are captured
to estimate human swivel angle values and propose
a closed-form of the inverse kinematic algorithm for
anthropomorphic robotic arms.

Li et al. [66] 2013 simulated

global;
kinematic;
operational
space

biomimetics single-arm;
writing

Three methods are implemented and compared to replicate
human hand writing and drawing capabilities and suggest
how handwriting actions might be encoded in the Central
Nervous System.

Rano and Iossifidis
[31] 2013 simulated

local;kinematic;
operational
space

hand path
planarity

single-arm;
reaching; pick

A dynamical systems approach, which represents targets
as attractors and obstacles as repellors, is proposed to
generate human-like arm reaching.

Rosado et al. [69] 2013 simulated

global;
kinematic;
operational
space

biomimetics
single-arm;
dual-arm;
reaching

A Kinetic-based motion capture method is proposed to
transfer human arm motion onto a simulated upper-body
humanoid system equipped with a 4-DOFs right arm and
a 7-DOFs left arm.

Dragan and Srinivasa
[54] 2014 humanoid

global;
kinematic;
joints space

qualitative
assessment

single-arm;
pick

Legible arm motion is generated to enhance the
intentionality of robotic actions and improve non-verbal
communication with human partners in shared
workspaces with multiple possible targets.

Atawnih et al. [52] 2014 manipulator
local; dynamic;
operational
space

kinematic
assessment

single-arm;
reaching

A redundant arm torque controller capable of imitating
a human-like kinematic behavior during reaching is
proposed. Its compliant properties allow a safe physical
human-robot interaction.
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Stefanovic and
Galiana [98] 2014 manipulator

local; kinematic;
operational
space

kinematic
assessment

single-arm;
reaching

Planar reaching motion with human-like kinematic
behavior of the end-effector is generated by a spinal-like
controller, which finds biological inspiration in the spinal
motor circuits of primates.

Xia et al. [122] 2014 simulated

global;
kinematic;
operational
space

biomimetics single-arm;
reaching

A novel method to compute swivel angle values under
the physical limits of the joints is proposed starting from
biomimetic studies of the human arm. The resulting
feasible regions constrain the optimal selection of arm
configurations for human-like motion generation.

Zhao et al. [43] 2014 manipulator

global;
kinematic;
operational
space

biomimetics single-arm;
pick; reaching

A novel planner named Gradient Projection Method
Rapidly-exploring Random Trees (GPM-RRT) is proposed
to generate human-like arm trajectories that minimize
gravitational energy, muscular elastic energy and wrist
discomfort in case of grasping.

Gulletta et al. [70] 2015 humanoid
global;
kinematic;
joints space

kinematic
assessment

dual-arm;
pick; place;
reaching

Based on psychological evidence in human motor control,
a human-like bi-manual synchronous motion planner is
proposed as an extended framework of the single-arm
solution presented by Silva et al. [85].

Hugues et al. [62] 2015 simulated

global;
kinematic;
operational
space

qualitative
assessment;
2/3 power
law

single-arm;
rhythmic

User studies on the subjective perception of human-like
motion are performed to compare different strategies for
transferring motion onto virtual robots, which operate in
an industrial-like scenario.

Lamperti et al. [22] 2015 humanoid

global;
kinematic;
operational
space

qualitative
assessment

single-arm;
dual-arm;
reaching

A redundancy resolution method for dual-arm motion
generation that minimizes the muscular effort of the
manipulation chain is presented. A fitting algorithm also
permitted to extract the relationships between the task and
the redundancy variables (swivel angles).
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Liu et al. [123] 2015 simulated

global;
kinematic;
operational
space

biomimetics single-arm;
reaching

A reinforcement learning algorithm with an adaptive noise
exploration strategy is proposed to learn the shape and
the goal parameters of dynamical movement primitives,
which compose energy-efficient and collisions-free
arm trajectories.

Shin and Kim [71] 2015 humanoid
global; dynamic;
operational
space

biomimetics
dual-arm;
pick; place;
reaching

An imitation learning technique from captured human
dual-arm motion is proposed and applied for the
generation of novel robotic arm trajectories. A controller
based on a virtual dynamics model refers to the planned
trajectories for the bi-manipulation of one object.

Silva et al. [86] 2015 humanoid
global;
kinematic;
joints space

kinematic
assessment

single-arm;
pick; place;
reaching

A method for generating human-like asynchronous
bi-manual movements is proposed and based on the
sequential selection of optimal configurations for both
arms of a humanoid robot.

Suarez et al. [72] 2015 simulated

global;
kinematic;
operational
space

biomimetics
dual-arm;
pick; place;
reaching

A principal component analysis is applied to extract
the synergies of captured dual-arm human motion and
identify the major dispersion of human activity. The
most significant components define Principal Movement
Directions (PMDs), which guide sampling-based planners
to generate human-like arm trajectories.

Xie and Zhao [124] 2015 manipulator

global;
kinematic;
operational
space

qualitative
assessment

single-arm;
place

Optimal handing over positions for HRI are investigated
and minimum hand jerk movements are generated by
minimizing the gravitational energy and muscular effort.
Via postures in the free joints space are suggested to guide
sampling-based planners in obstacles-avoidance.
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De Momi et al. [55] 2016 manipulator
global;
kinematic;
joints space

kinematic
assessment;
trajectory
smoothness;
2/3 power
law;
qualitative
assessment

single-arm;
reaching

In order to generate human-like handover motion, four
neural networks are trained on captured human reaching
movements in a structured workspace. Starting from the
Cartesian coordinates of a target, time duration and ten
via points of a new trajectory are predicted.

Chen et al. [125] 2016 manipulator
local; kinematic;
operational
space

biomimetics;
kinematic
assessment

single-arm;
reaching

Human-like hand reaching motion is formed by the
composition of a high level of control, which applies
the dynamics of two potential fields, and of a low level
of control, which considers joints synergies of captured
human self-reaching movements to solve the inverse
kinematics of the manipulator in a closed form.

Kashima and Hori
[53] 2016 simulated

global;
kinematic;
operational
space

biomimetics;
kinematic
assessment

single-arm;
reaching

A time adjustment of the elbow and shoulder relative
motions modifies the formulation of the minimum angular
jerk principle for the generation of human-like arm
reaching movements.

Koskinopoulou and
Trahanias [56] 2016 manipulator

global;
kinematic;
operational
space

biomimetics;
repeatability

single-arm;
pick; place;
reaching;
writing

A novel Learning from Demonstrations (LfD) called
IMFO (IMitation Framework by Observation) is proposed.
Human observed actions are mapped onto a manipulator
on a latent space of representation, which reduces the
dimensionality of the motion and extracts small variations
for a better generalization.

Togo et al. [99] 2016 simulated
local; dynamic;
operational
space

biomimetics;
kinematic
assessment

single-arm;
reaching

An UnControlled Manifold (UCM) reference that
incrementally minimizes joints torque and torque change
is provided to an inverse dynamics controller for the
generation of human-like arm reaching motion.
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Liarokapis et al. [46] 2017 manipulator
global;
kinematic;
joints space

biomimetics single-arm;
pick; reaching

Three geometrical metrics of functional
anthropomorphism are studied to reduce the dissimilarity
in mapping captured human arm-hand motion onto
redundant and hyper-redundant arms and multi-fingered
robotic hands.

Zhao and Wei [126] 2017 manipulator

global;
kinematic;
operational
space

biomimetics single-arm;
reaching

From captured human reaching and grasping motion,
a hierarchical planning strategy (HPS) is proposed and
a Bayesian network is learned to select one of three optimal
human-like arm motion planning algorithms.

Alibeigi et al. [127] 2017 humanoid

global;
kinematic;
operational
space

biomimetics single-arm;
reaching

A real-time human arm motion mimicking system is
proposed. The null space of the Jacobian matrix is used
to maintain a high joints-space similarity with the human
movements and to respect the angular physical limits of
the robot.

Liu et al. [77] 2017 simulated

global;
kinematic;
operational
space

biomimetics single-arm;
pick; reaching

A wrist-elbow-in-line method is proposed to constrain and
analytically solve the inverse kinematics of a manipulator
starting from tracked human arm motion demonstrations.
Extensions to obstacles-avoidance have been addressed.

Xu and Ding [63] 2017 simulated
global;
kinematic;
joints space

hand path
planarity

dual-arm;
place

Defined two planes of motion on which the wrists are
moving, a synergic method for the human-like bi-manual
transportation of one object is proposed and based
on the planning of translations and the stabilization
of orientations.

Chen et al. [29] 2018 humanoid
global;
kinematic;
joints space

biomimetics
dual-arm;
pick; place;
reaching

The application of a neural network auto-encoder with one
hidden layer is proposed to reduce the dimensionality of
the search space for sampling-based algorithms and mimic
human dual-arm goal-directed actions.



Robotics 2020, 9, 102 39 of 48

Table A1. Cont.

Authors Year Type of Robot Approach Human-Like
Metrics

Types of the
Generated
Movements

Key Features of the Proposed Method

Su et al. [128] 2018 manipulator
local; kinematic;
operational
space

biomimetics;
qualitative
assessment

single-arm;
reaching

Human-like motion planning for anthropomorphic
manipulators in tele-operated tasks is proposed. From
captured human reaching movements, a regression
function is trained to obtain feasible human-like swivel
angles and solve the inverse kinematic problem in
real-time.

Tomić et al. [20] 2018 humanoid

global;
kinematic;
operational
space

biomimetics
dual-arm;
pick; place;
reaching

Human dual-arm manipulation actions are mimicked by
optimally transferring the trajectories of real and virtual
markers’ frames onto a humanoid robot.

Garcia et al. [73] 2018 humanoid

global;
kinematic;
operational
space

biomimetics dual-arm;
pick

Synergies of dual-arm grasping are extracted from
captured human motion in correlation with approaching
actions towards the targets and used to partition the
operational space for a better imitation in humanoid
mobile platforms.

Su et al. [95] 2019 simulated
local; kinematic;
operational
space

biomimetics single-arm;
reaching

Improving the learning technique proposed by Su et al.
[128], a deep convolutional neural network (DCNN) is
applied to train a regression function that maps human
swivel angles to hand target poses with smaller mean
errors and higher robustness to noise.

Lauretti et al. [34] 2019 manipulator
local; kinematic;
operational
space

biomimetics;
qualitative
assessment

single-arm;
reaching

A hybrid joint/Cartesian LfD approach based on
Dynamical Motion Primitives that is capable of avoiding
self collisions and obstacles is proposed. The two spaces
are coupled by the Gradient Projection Method, which
favors the Cartesian-space constraints of a given task.
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Table A2. Avoidance of obstacles in the reviewed techniques.

Authors Year Algorithm Test Scenario Key Features of the Obstacles-Avoidance Mechanism

Silva et al. [85] 2011 Optimal bounce posture
selection Assembly-like A back-and-forth movement is superimposed onto

a minimum angular jerk trajectory.

Rosell et al. [74] 2011 PRM [75] Grasping an object on a table
cluttered with obstacles

The construction of a probabilistic roadmap is biased with
a constrained orientation of the palm of the robotic hand.

Xie et al. [76] 2011 RRT-Connect [30] Reaching movements
through narrow passages

Target Arm Poses (TAPs) are defined in the crucial points
of the expected path, which is divided in segments where
the RRT-Connect algorithm is applied.

Zacharias et al. [65] 2011 RRT-Connect [30]
Pick-and-place tasks of
cubes on a table in front of
a humanoid robot

Configurations with human-like RULA scores are
provided to initialize the IK solver and to bias the sampling
routine of path planners, such as the RRT-Connect
algorithm.

Rano and Iossifidis [31] 2013 Repellors dynamics
Picking on a table while
avoiding objects along the
path

An angle and a distance factors in relation with an obstacle
and a relative positional factor between a target and
an obstacle contribute in the formation of a repulsive
vector field.

Dragan and Srinivasa [54] 2014 CHOMP [58] Picking an object on a table
with multiple possible target

A defined legibility functional replaces a classical cost
function in the CHOMP algorithm, which ensures the
generation of a collisions-free arm path.

Gulletta et al. [70] 2015 Optimal bi-manual bounce
posture selection Assembly-like A bi-manual back-and-forth movement is superimposed

onto a bi-manual minimum angular jerk trajectory.

Liu et al. [123] 2015 DMPs-based LfD algorithm Reaching while avoiding
a static spherical object

Shape and goal parameters of DMPs are learned from
demonstrations of human reaching while avoiding one
obstacle along the path.

Silva et al. [86] 2015 Optimal bounce posture
selection Assembly-like A back-and-forth movement is superimposed onto

a minimum angular jerk trajectory.
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Authors Year Algorithm Test Scenario Key Features of the Obstacles-Avoidance Mechanism

Suarez et al. [72] 2015 RRT-Connect [30] Assembly-like
The identification of synergies in dual-arm manipulation
tasks allows to run sampling-based planners on
a human-like low dimensional space.

Xie and Zhao [124] 2015 FR-RRT [129] Handing over a cube in
presence of one obstacle

After the selection of an appropriate via posture that
facilitates the avoidance of the obstacle, the end-effector
trajectory follows an extended minimum jerk principle
and is tracked by the FR-RRT algorithm.

Liu et al. [77] 2017 Analytical IK with
human-like constraints

Avoidance of a moving
spherical-like object

The flexibility of the wrist position is used to maintain the
captured human swivel angle values.

Chen et al. [29] 2018 RRT-Connect [30] Dual-arm manipulation with
objects on a table

RRT-Connect is applied in the hidden layer of the proposed
Auto-Encoder and the selected samples in this space
are mapped onto the original space for the detection of
collisions in the decoding process.

Garcia et al. [73] 2018 RRT-Connect [30] Dual-arm grasping two
objects on a table.

A modified RRT-Connect is proposed to generate
collisions-free configurations that relates the torso postures
with the robot position with respect of the human-like
synergies of the captured motion.

Lauretti et al. [34] 2019 Joint/Cartesian DMPs Reaching in presence of
a static spherical obstacle

Distance-based terms are added to Joint and Cartesian
DMPs to place the end-effector and each joint of the
manipulator away from the obstacles in the workspace.
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