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Abstract

We present an approach for the verification and validation (V&V) of robot assistants in the context of human–robot inter-

actions, to demonstrate their trustworthiness through corroborative evidence of their safety and functional correctness.

Key challenges include the complex and unpredictable nature of the real world in which assistant and service robots oper-

ate, the limitations on available V&V techniques when used individually, and the consequent lack of confidence in the

V&V results. Our approach, called corroborative V&V, addresses these challenges by combining several different V&V

techniques; in this paper we use formal verification (model checking), simulation-based testing, and user validation in

experiments with a real robot. This combination of approaches allows V&V of the human–robot interaction task at differ-

ent levels of modeling detail and thoroughness of exploration, thus overcoming the individual limitations of each tech-

nique. We demonstrate our approach through a handover task, the most critical part of a complex cooperative

manufacturing scenario, for which we propose safety and liveness requirements to verify and validate. Should the result-

ing V&V evidence present discrepancies, an iterative process between the different V&V techniques takes place until cor-

roboration between the V&V techniques is gained from refining and improving the assets (i.e., system and requirement

models) to represent the human–robot interaction task in a more truthful manner. Therefore, corroborative V&V affords a

systematic approach to ‘‘meta-V&V,’’ in which different V&V techniques can be used to corroborate and check one

another, increasing the level of certainty in the results of V&V.
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1. Introduction

Robotic assistants that interact with people in an informal,

unstructured, and complex manner are increasingly being

considered for industrial and domestic domains. In manu-

facturing, the drive toward more flexible production, qual-

ity, and consistency in the production, and the reduction of

tiring and dangerous tasks requires that humans work near

robots, or even teach and physically interact with them as

co-workers.

A way to enhance robots, to allow their safe and trust-

worthy participation in human–robot interactions (HRI), is

the incorporation of safety and fault recovery mechanisms

at all levels, from low-level mechanical systems and basic

controllers to higher-level decision-making systems (Alami

et al., 2006; Pipe et al., 2011). For example, restricting

motion when near humans has been applied as a low-level

safety solution (Pedrocchi et al., 2013). However, to allow

robot assistants to transition from research laboratories and

very limited application scenarios (such as surveillance,

transport or entertainment) to the broader domestic and

industrial domains, they need to be demonstrably trust-

worthy (Eder et al., 2014). Collaborative robots will also

need to conform to recent standards, e.g., ISO 10218-

1:2011 (2011), ISO 13482:2014 (2014), and ISO/TS

15066:2016 (2016). Thus, HRI requires the development

of coherent and credible frameworks for V&V.

A major challenge in V&V of robot assistants is that no

single technique is adequate to cover the whole system in

practice. ‘‘Correct’’ functioning in an HRI scenario is likely
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to depend on precise physical details, as well as complex

high-level interactions. Individually, formal methods, such

as model checking and theorem proving, simulation-based

testing, or experiments in real-world scenarios, cannot

examine the entire state space of the interaction with realis-

tic detail. The advantages of these techniques—formal,

simulation, and experiments—in terms of coverability (i.e.,

the exploration of the state space, such as combinations of

human–robot actions or motion ranges) and realism can be

exploited when combining them.

Combining V&V techniques in the HRI domain yields

an additional benefit—trust in the correctness of V&V

results. When using a single V&V technique, this is hard

to achieve. System models used in formal methods or

simulation-based testing, and requirements models, are

subject to manual input errors, despite efforts in automating

translations between models and translations from code to

models. The use of complementary V&V techniques can

highlight discrepancies and help system developers gain

confidence in the resulting evidence about safety and live-

ness requirements.

1.1. Our contribution

Our contribution, presented in this paper, is twofold:

1. To propose an approach to the verification and valida-

tion of robots and autonomous systems that allows dif-

ferent V&V techniques to corroborate one another,

and where the outcomes from applying one technique

are used to improve the other techniques. This

approach, called corroborative V&V, provides a greater

degree of certainty in the V&V results than would be

found in using the V&V techniques individually.

2. To demonstrate the effectiveness of corroborative

V&V by applying it to the most critical part of a colla-

borative manufacturing HRI scenario, the robot-to-

human handover task.

In this paper, we combine formal methods, simulation-

based testing, and user validation through experiments with

a real robot, in the context of HRI. If the evidence agrees

when verifying and validating the same requirement

through the three techniques, we will be more confident in

the results. Otherwise, an iterative process is used to refine

and improve the truthfulness of the assets, the system, and

requirement models underpinning each technique. Hence,

corroborative V&V provides increased confidence in the

evidence, compared with using V&V techniques in isola-

tion. At the same time, by enabling V&V to span across

several levels of detail or abstraction, our approach pro-

vides a thorough exploration of the robot’s range of beha-

viors, thus overcoming limitations of individual V&V

techniques.

The proposed approach is exemplified through an

object handover task, the most critical component of a

cooperative manufacture scenario, for the BERT 2 robot

(Lenz et al., 2010). We formulated safety and liveness

requirements based on relevant standards. We then used

this case study to show that corroborative V&V can provide

a greater degree of confidence than when using V&V tech-

niques in isolation. The instantiation of our approach for

the case study comprises, as V&V techniques, probabilistic

model checking in PRISM (Kwiatkowska et al., 2011),

simulation-based testing in ROS (Open Source Robotics

Foundation, 2019) and Gazebo (Open Source Robotics

Foundation, 2014), and an experimental setup in the Bristol

Robotics Laboratory.

A formal model comprising probabilistic timed auto-

mata was constructed by hand, representing the HRI.

Probabilistic computation tree logic (PCTL�)
(Kwiatkowska et al., 2011) properties were derived from

the requirements, to be verified against the formal model.

We developed a simulator in ROS–Gazebo, with the real

code for the robot and a simulated human co-worker. Tests

were derived from model-based and pseudorandom tech-

niques, as in our previous work (Araiza-Illan et al., 2015,

2016), to stimulate the HRI components toward checking

the satisfaction of the requirements. Automated checkers

implemented as assertion monitors, as described in our pre-

vious work (Araiza-Illan et al., 2015, 2016), were also

derived from the requirements and added to the simulator.

Applying the complementary V&V techniques exposed

discrepancies in the resulting evidence, allowing the assets

to be examined and refined. Iterating over this process led

to agreement between the three techniques, thus providing

greater confidence in the correctness of the resulting evi-

dence and the suitability of subsequent design

recommendations.

The paper proceeds as follows. Section 2 presents the

corroborative V&V approach, outlining the V&V tech-

niques, their corresponding assets to be developed from the

HRI system and its requirements, and their interactions to

gain confidence in the resulting evidence. We then intro-

duce the case study, the handover task, and the require-

ments to be verified in Section 3. Next, we present the

instantiation of the proposed corroborative V&V approach

for the case study in Section 4, including the development

of assets comprising the formal model, the simulator, and

the translations of the requirements into logical properties

and assertions. We present the V&V results for two of the

proposed requirements in Section 5, describing in detail the

encountered evidence discrepancies, with the consequent

asset refinement and improvement processes until a high

degree of corroboration between the V&V results is

reached. In Section 6, we then demonstrate V&V of the

remaining requirements using the three V&V techniques.

Section 7 discusses the findings and limitations in the

application of the corroborative V&V approach to our case

study. In Section 8, we compare our approach to others in

the literature, highlighting how corroborative V&V pro-

vides a novel V&V framework and complements existing

approaches. Finally, we offer conclusions and directions for

future work in Section 9.
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2. Corroborative V&V

As noted in the introduction, corroborative V&V provides

a thorough exploration of the robot’s range of behaviors

across different levels of abstraction, thus overcoming lim-

itations of individual V&V techniques. Our approach to

the V&V of human–robot teams is shown in Figure 1. We

propose the combined use of a number of techniques to

verify and validate robots in HRI tasks, which are shown in

ellipses. Each technique is underpinned by two assets: a

requirements model, shown in a rectangle, and a system

model, shown in an octagon. In this paper, we focus on the

use of three particular V&V techniques, but other meth-

odologies can be integrated into the corroborative V&V

process if required. This is discussed in more detail in

Section 7.1. We introduce the techniques, the assets, and

the corroborative V&V workflows, indicated by the arrows

in Figure 1, in the following subsections.

2.1. V&V techniques

Formal verification encapsulates a set of mathematical

techniques, which are used to prove properties about a for-

mal model of a system. Some of the most common formal

verification techniques are model checking (Clarke et al.,

1999) and theorem proving (Fitting, 1996). In this paper,

we use model checking, which lets us verify that formal

models (which represent the robot and its non-deterministic

environment) satisfy temporal logical properties (derived

from requirements) for every possible way in which the

models can be executed. As we examine every possible

execution of the formal model, we can demonstrate

whether or not the model satisfies the temporal logical

properties.

In ‘‘traditional’’ model checking, finite state machines

are modeled and explored exhaustively in order to deter-

mine whether some property holds (Clarke et al., 1999).

Properties are typically expressed as logical formulas writ-

ten in a logical language, e.g., linear-time temporal logic or

computation tree logic. The output of a model checker is

typically a Boolean value, true or false, indicating whether

the model satisfies a given property. Where the model does

not satisfy the property, an ‘‘error trace’’ or counterexample

is output, describing the sequence of states that led to the

violation of the property (Fisher, 2011). Probabilistic model

checking, explained further in Section 4.1, extends this

method to allow the computation of the probability that a

given property will be satisfied.

Simulation-based testing involves running a simulator

under different inputs (or tests), to observe the resulting

outputs and determine whether the simulated system

behaves as intended. Software and hardware components

can be modeled to achieve an appropriate compromise

between realism, modeling effort, and computational cost,

and real code can be run. Nonetheless, the exploration of a

system under test is not exhaustive. Systematic methodolo-

gies to explore the system under test, such as coverage-

driven verification (Araiza-Illan et al., 2015, 2016), should

be used to increase efficiency and effectiveness under com-

putational constraints. A coverage-driven verification test-

ing process needs testbench components, including a test

generator and a driver, to stimulate the system under test, a

coverage collector, to keep track of the V&V progress, and

a checker, which models the requirements and automates

the checking (Piziali, 2004).

Experiments are performed within a test rig to verify

and validate robots interacting in realistic environments

with respect to textual requirements. As experiments often

involve human volunteers, health and safety assessments,

and expensive equipment, the number of times that a par-

ticular scenario can be examined is often severely limited,

compared with simulation or formal verification. In this

paper, experiments are focused toward achieving clear evi-

dence on the principal requirements, as well as to ground

the corroborative V&V process in reality.

The diagonal axis in Figure 1 arranges the three tech-

niques based on how realistic and how coverable they are,

where coverability refers to how much of its asset a tech-

nique can analyze. Note that there is generally a trade-off

between realism and coverability. Formal verification (e.g.,

using a model checker) can exhaustively check the entire

state space of a formal model (Clarke et al., 1999), while

simulation-based testing only samples the state space of a

simulation model. However, a simulation model is able to

better account for physical details that are difficult to cap-

ture in a formal model, such as physical dynamics, and is

therefore able to more realistically model the actual system.

Physical experiments are even more realistic, but the num-

ber of experiments that can be performed will probably be

significantly lower than the number of simulations that can

be performed, since experiments are more heavily con-

strained by time and other resources. Additionally, physical

experiments can be adversely constrained by ethical or

safety concerns, which are not an issue in simulation-based

testing and formal verification.

Fig. 1. Framework for corroborative V&V.
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2.2. V&V assets

In Figure 1, it is shown that requirements can be modeled

in a number of ways. Textual requirements are the written

requirements that describe the desired behavior of a robot

and can also include some assumptions about the human

user’s behavior and the environment in which the robot

operates (e.g., materials required to complete the task are

available at the start). Textual requirements are used in

experiments to determine whether the robot (i.e., the physi-

cal system) satisfies them. Textual requirements for robots

are typically based on the needs of the system’s users but

are increasingly based on legal or ethical frameworks speci-

fied by a regulatory or standards authority. For example,

ISO/TS 15066:2016 (2016) defines many safety require-

ments for collaborative robots. In practice, verifying a tex-

tual requirement in experiments may necessitate refinement

of the text with consideration of the actual scenario, to

avoid ambiguities.

Assertions are requirements of a system expressed in an

assertion specification language using the syntax of pro-

gramming languages such as C or Python (Foster et al.,

2004), or as assertion monitors, such as the ones implemen-

ted in Araiza-Illan et al. (2015, 2016) and Huang et al.

(2014a). Assertions are commonly formulated in a

precondition-implies-postcondition manner, and can be

implemented directly in the code under testing, or within the

simulation models. Tools are available to convert temporal

logical properties into monitors for runtime verification, as

in Havelund and Rosu (2002) and Huang et al. (2014a), the

latter for testing robots. The systems under verification are

stimulated to attempt to trigger the preconditions in the

assertions and consequently their respective postconditions.

The outcomes of these checks are interpreted to determine

whether the requirements are satisfied.

A software simulator, usually written in a high-level pro-

gramming language, contains models of the robot’s behavior

as well as its environment. In simulation-based testing, the

simulator program is executed a number of times (computa-

tion time allowing), to collect information from the assertion

checks and the simulation itself. As mentioned in the intro-

duction, a number of both open source and proprietary simu-

lation and development frameworks exists in robotics, such

as ROS, Player/Stage, Gazebo, V-REP, and Webots.

Logical properties are logical statements, each of which

captures one or more requirements of the system using

some formal logic. Different logics can be used for differ-

ent applications; e.g., if we want to capture requirements

relating to time, we might use linear temporal logic (Fisher,

2011). Alternatively, if we are interested in the probability

of the requirement being met, we might use PCTL�.
Formal modeling tools specialize in supporting particular

types of formal model and temporal logic, such as PCTL�

by PRISM (Kwiatkowska et al., 2011). Formal models are

discrete computational descriptions of high-level behaviors.

Finite state automata (Clarke et al., 1999) and probabilistic

timed automata (Parker, 2016) are two examples.

Figure 1 arranges the requirements models in order of

how expressive or precise they are. ‘‘Expressivity’’ here

indicates the breadth of realism that could be referred to in

the requirement model, while ‘‘precision’’ refers to how spe-

cific the expressions may be. A single requirement may be

implemented as assertions in many ways, e.g., according to

interpretations by different programmers. As assertions are

based on programming languages, whose semantics are

more well-defined than natural languages, we consider

assertions to be more precise than textual requirements.

Logical properties are, in turn, more precise than assertions

and textual requirements, as they have precise, mathemati-

cal definitions. Conversely, assertions can be more expres-

sive than logical properties, as they can capture aspects of

the system that are difficult to specify at higher levels of

abstraction (e.g., physical states that depend on modeled

dynamics). However, the assertions are less expressive than

the textual requirements: subjective requirements, such as

user satisfaction, are difficult to model in programming lan-

guages. It should also be noted that the more realistic levels

of the framework can support a broader set of requirements,

since they allow the monitoring of parameters or the analy-

sis of components that might not be available in more

abstract models.

Ideally, the assets mentioned before would be generated

during the development of the robot itself. For example,

textual requirements would be developed at the start of the

traditional product engineering life cycle and might be

based on standards and regulations, such as ISO 10218-

1:2011 (2011) for industrial robots. At the next stage in the

life cycle, the product would be designed. Simulation and

formal analysis are often used in the hardware and software

domains at the design stage in order to gain confidence in

the correctness of the design with respect to the specifica-

tions. Hence, formal models and simulators would be devel-

oped. This practice can be adopted for the design of robot

assistants, as demonstrated by Kirwan et al. (2013) for

autonomous navigation. Experiments would be performed

during implementation of the robot system in real-life HRI,

after designing the corresponding setup. If it is not possible

to develop all assets during the initial development of the

human–robot system—e.g., if the human–robot system has

already been developed—the approach can still be applied.

In this case, it is necessary to develop assets based on exist-

ing materials.

Re-examining equivalent requirements implemented at

different abstraction levels of the framework provides an

opportunity to refine individual assets to represent the HRI

more accurately and truthfully, making the framework

robust with respect to human error and providing a high

degree of confidence in the resulting evidence. When refin-

ing the assets, complexity needs to be carefully managed,

e.g., through abstraction. Re-modeling formal models and

simulators can result in a state space explosion and a sig-

nificant increase in time and memory (Clarke et al., 2012).

As explained previously, each level of our framework rep-

resents a different compromise between realism and the
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coverability of the state space. Any decisions affecting the

balance of this compromise should be made by those con-

ducting the V&V.

The bidirectional arrows between the different system

models in Figure 1, and between the different requirements

models, indicate that the development of any of these mod-

els may be informed by the equivalent model at another

level of abstraction. Such development may be carried out

manually or by using some of the techniques mentioned in

Section 8. Our framework allows for the incorporation of

such techniques to suit the application in question.

2.3. Workflows

Our approach leaves open the order in which the different

V&V techniques in Figure 1 should be used. Such deci-

sions should be made with consideration for the specific

HRI application in question. Furthermore, these decisions

will typically be made in a reactive manner, because

insights gained from any of the techniques can lead to

modifications in any of the system models or requirements

models, necessitating a further stage of V&V to increase

confidence in the results, possibly with a different

technique.

For example, we could start with a set of logical proper-

ties and a formal model of the robot system. Formal verifi-

cation would then be used to verify that the formal model

satisfies the logical properties. This process is indicated by

the arrows from ‘‘Logical Properties’’ and ‘‘Formal Model’’

to ‘‘Formal Verification’’ in Figure 1. The result of formal

verification is evidence that the formal model is correct

with respect to the logical properties. During this V&V, we

might discover that the formal model does not satisfy a par-

ticular property. If we trust this V&V result, modifications

to the formal model could be an appropriate way to explore

possible design modifications. The ‘‘Simulator’’ and ‘‘Test

Rig’’ would then need to be updated accordingly, as repre-

sented by the bi-directional dashed arrows between system

models in Figure 1. Alternatively, the property violation

may be due to an error in the model or in the logical prop-

erty (i.e., we have incorrectly formalized a requirement).

We may wish to revise the properties or formal model (or

both) manually if the fault lies there. This is indicated by

the arrows from ‘‘Formal Verification’’ back to ‘‘Logical

Properties’’ and ‘‘Formal Model.’’ Similarly, we might wish

to gain more confidence in the correctness of the formal

model and logical properties by employing one of the other

V&V techniques, before proceeding to modify the real sys-

tem and the other assets.

The same requirements, implemented as assertions,

could then be monitored during simulation-based testing,

providing more V&V evidence. This technique is indicated

by the arrows from ‘‘Simulator’’ and ‘‘Assertions’’ to

‘‘Simulation-based Testing.’’ During testing, we might find

requirement violations, as we did with formal verification,

and we would then have to decide a course of action: revis-

ing the relevant assets (e.g., the simulator or the assertions),

or proceeding to compare the results with experiments to

gain more confidence, if results were similar to formal veri-

fication. (The comparison between the outputs of the V&V

techniques is indicated by the bold arrows in Figure 1.)

Conversely, evidence generated by the simulation might

not align with evidence generated by the other V&V tech-

niques, resulting in a lack of corroboration. There are a

number of potential causes of such disagreements:

� System model inaccuracies. All the V&V techniques

use models of the real world. The models might have

been constructed erroneously or might be inconsistent

with the real world, or relative to one another.
� Requirement model inaccuracies. In our approach, the

real-world requirements of the system are converted

into textual requirements, assertions, and properties for

V&V. These requirements models might not have been

correctly formulated.
� Tool inaccuracies. It is possible that numerical approxi-

mations affect the V&V results. In addition, third-party

tools can contain bugs that are unknown.

We could now proceed to perform ‘‘Experiments.’’ As

before, we might find a problem with the textual require-

ments or the robot’s test rig during experimentation. At the

same time, the evidence from formal verification or

simulation-based testing can be compared against the

experiment results. We might also discover that one of the

requirements is satisfied during simulation-based testing or

formal verification but not during the experiments. In this

case, we might need to refine any of the other assets, as

explained before.

Careful comparisons must be made between the differ-

ent representations in order to discover the cause of the

conflicts. Such comparisons are indicated by the bi-

directional bold arrows between ‘‘Formal Verification’’ and

‘‘Simulation-based Testing,’’‘‘Simulation-based Testing’’

and ‘‘Experiments,’’ and ‘‘Formal Verification’’ and

‘‘Experiments,’’ respectively, in Figure 1.

3. The BERT handover task: A case study

Corroborative V&V can be used to provide a higher degree

of confidence in the V&V evidence than when using V&V

techniques in isolation. In this section, we present an (inten-

tionally) simple HRI case study to demonstrate this. The

corroborative V&V of a more complex case study would

have been difficult to fully explain within the bounds of this

paper. It was thought preferable to cover a simpler scenario

in a great amount of detail, rather than a more complex

HRI scenario in less detail. Nevertheless, corroborative

V&V might be applied to more complex scenarios than the

one presented here.

Despite its simplicity, our HRI case study concerns

robot-to-human handover, the most critical part in a

human–robot collaborative manufacturing task. The case
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study uses BERT 2, an upper-body humanoid robot

designed to facilitate research into complex human–robot

interactions, including verbal and non-verbal communica-

tion, such as gaze and physical gestures (Lenz et al., 2010)

(see Figure 2). BERT 2’s software architecture was origi-

nally developed using YARP (YARP, 2019). More recently,

this system has been wrapped with a ROS interface.

We verify an object handover to exemplify our

approach, in the context of a broader collaborative manu-

facture scenario where BERT 2 and a person work together

to assemble a table (Lenz et al., 2012). In the handover, the

first step is an activation signal from the human to the

robot. BERT 2 then picks up a nearby object and holds it

out to the human. The robot announces that it is ready to

handover. The human responds verbally to indicate ‘‘ready

to receive.’’ (For practical reasons, human-to-robot verbal

signals were relayed to the robot by pressing a key.) Then,

the human is expected to pull gently on the object while

looking at it. BERT 2 then calculates three binary sensor

conditions:

� Gaze. The human’s head position and orientation rela-

tive to the object are tracked using the Vicon� motion-

tracking system for an approximate measure of whether

he or she is looking at the object.
� Pressure. Changes in the robot’s finger positions are

sensed to detect whether the human is applying pres-

sure to take the weight of the object.
� Location. The Vicon� motion-tracking system is used

to determine whether the human’s hand is located on

the object.

The sensor conditions must be calculated within a time

threshold for BERT 2 to determine whether the human ‘‘is

ready.’’ The robot should release its grip on the object if all

three conditions are satisfied. Otherwise, the robot should

terminate the handover and not release the object. The

human may disengage and the robot can time out, which

would cancel the remainder of the handover task. The sen-

sors are not completely accurate and might sometimes give

incorrect readings.

3.1. System requirements

A safety requirement ensures that ‘‘nothing bad happens,’’

whereas a liveness requirement ensures that ‘‘something

good happens eventually’’ or inside a threshold of time, for

practical reasons (e.g., in simulation). The requirements for

any HRI task depend on its safety and functional context.

For example, in our case study the robot would need to

achieve a particular handover success rate threshold to keep

up with manufacturing throughput or avoid unacceptable

damage costs, as per the users’ requirements. We consid-

ered two different thresholds for our first functional require-

ment, based on estimates of acceptable productivity in two

different settings. The first threshold is considered for

deployed use in a hypothetical manufacturing environment.

Requirement 1a. At least 95% of handover attempts should

be completed successfully.

In a research and development environment, a lower

threshold may be considered satisfactory to provide proof-

of-concept, showing that the system works most of the time.

Requirement 1b. At least 60% of handover attempts should

be completed successfully.

The following requirements were chosen to illustrate

our approach, inspired by Grigore et al. (2011) and draw-

ing from standards ISO 10218-1:2011 (2011) for industrial

robots, ISO 13482:2014 (2014) for personal care robots,

and ISO/TS 15066:2016 (2016) for collaborative robots:

Requirement 2. If the human is not ready, the robot shall

not hand over the object.

Requirement 3. If the human is ready, the robot shall hand

over the object.

Requirement 4. The robot always reaches a decision within

a threshold of time.

Requirement 5. The robot shall always either time out,

decide to release the object, or decide not

to release the object.

Requirement 6. The robot shall not close its hand when the

human is too close.

Requirement 7. The robot shall start at restricted speed.

Requirement 8. If the robot is within 10 cm of the human,

the robot’s hand speed is less than 250

mm/s.

These requirements are ambiguous in terms of how they

are assessed over the available system information, reflect-

ing the generality of the standards and the shortfalls of

using natural language when first establishing require-

ments. To verify and validate them, we need to interpret

Fig. 2. BERT 2 in the handover task test rig. Video available at

multimedia Extension 1.
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them in terms of available variables and system behaviors

according to the assets.

4. Corroborative V&V of the case study

After establishing the system’s requirements, we developed

a plan for the application of corroborative V&V to the case

study. We chose to focus on a ‘‘typical use case’’ for the

handover task, in which the human has a working familiar-

ity with the robot and intends to complete the task success-

fully. Any of the requirements may be used as bases for

comparison between techniques used, provided that the

requirement may be modeled at all levels of abstraction.

We chose to focus on our principal functional requirements

(requirements 1a and 1b, concerning the handover success

rate) as a first basis for failure finding and to refine the

assets if necessary. The handover success rate could be

expected to be sensitive to a wide range of foreseen and

unforeseen events. As a scalar measure, it allows evidence

from the V&V techniques to be compared in a quantitative

manner, whereas comparisons of Boolean results might be

insensitive to important modeling discrepancies.

After focusing on requirements 1a and 1b, we proceed

to verify the remaining requirements (requirements 2–8),

identifying any further need to improve assets or the system

itself. The V&V of the full set of requirements provides a

more comprehensive evaluation of the system’s requirement

satisfaction, while facilitating the evaluation of the benefits

of combining individual V&V techniques to complement

one another.

As mentioned in Section 2.3, corroborative V&V will

be carried out in a reactive manner according to the result-

ing evidence. In terms of the order in which we applied the

V&V techniques, we chose to begin with a comparison of

formal verification and simulation-based testing for

requirements 1a and 1b, to acquire as much insight as pos-

sible into the system and our modeling assumptions before

committing resources to more expensive physical experi-

ments. The subsequent stages of V&V and asset modifica-

tion, explained in Section 5, were conducted with the aim

of achieving agreement on the handover success rate

(requirements 1a and 1b) that was corroborated by all three

V&V techniques.

To apply our approach to the BERT 2 handover scenario,

it was necessary to implement each element in Figure 1.

Appropriate tools for formal verification and simulation-

based testing were selected first. Requirements models were

then translated from the textual requirements in Section 3,

and system models were constructed to reflect the physical

system. We developed relevant assets for a chosen set of

tools, comprising the probabilistic model checker PRISM,

ROS–Gazebo and a coverage-driven verification testbench

for simulation-based testing, and experiment designs at the

Bristol Robotics Laboratory. We detail the development of

these components in the following subsections.

4.1. Formal verification

We chose PRISM, a probabilistic symbolic model checker

(Kwiatkowska et al., 2011), for the formal verification

component. In PRISM, probabilistic systems can be modeled

as discrete- and continuous-time Markov chains, Markov

decision processes, and probabilistic timed automata. In

PRISM models, transitions between states can be annotated

with probabilities. The models consist of a set of modules,

each representing a different process within the system

being modeled. Modules are executed concurrently. Each

module consists of a number of variables along with transi-

tion rules for updating those variables according to precon-

ditions. Communication between modules is made possible

by reading globally accessible variables and by synchroni-

zations between transitions in different modules. Execution

of a PRISM model starts from an initial state (of which there

can be many) and advances by application of transitions

whose preconditions have been satisfied. These transitions

then update the state of the model. This continues until a

fixed point is reached, when it is no longer possible to

update the state (Parker, 2016).

Properties to verify can be expressed in a probabilistic

logic such as PCTL� (Baier and Katoen, 2008). Rather than

outputting a Boolean value, PRISM can be used to output a

probability that a given property holds for some sequence

of states, or path, through a model (Parker, 2016). PRISM

has been used to model and verify a range of probabilistic

systems, such as security protocols (Duflot et al., 2013),

biological systems (Konur and Gheorghe, 2015), robots

and multi-robot systems (Konur et al., 2012; Llarena and

Rosenblueth, 2012).

4.1.1. Formal model. The PRISM model of the handover

task consists of nine different modules: the human, the

human’s gaze, hand pressure, and location, the robot (rep-

resenting BERT 2), BERT 2’s gaze, pressure, and location

sensors, as well as a timekeeper module, which keeps track

of time elapsed in the model. Figure 3 shows how the dif-

ferent modules within the PRISM formal model communi-

cate. There are four modules that model the human’s

behavior: Human, which models the human’s decision-

making and communications with the robot; and gaze,

Fig. 3. Inter-module communication within the PRISM formal

model.
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pressure, and location, which model the human’s gaze,

hand pressure, and hand location. Four modules model the

BERT 2 robotic system: Robot, which models the robot’s

decision-making and communication with the human, and

gaze sensor, pressure sensor, and location sensor, which

model sensors that track the human’s gaze, hand pressure,

and hand location. The timekeeper module monitors all of

the other modules to measure time elapsed.

The model consists of around 300 lines of PRISM code

and is therefore too long to reproduce in this paper. We

could represent the PRISM modules as diagrammatic state

transition systems; however, owing to the large number of

states of each module, such diagrams are hard to read.

Therefore, for illustrative purposes, the robot, human, and

timekeeper modules are shown in Figures 4, 5, and 6,

respectively. Additionally, the full code for the PRISM

model is available online (Webster et al., 2018).

The PRISM code can be interpreted as follows. The first

line in the human module defines the start of the module.

The second line defines a module variable, ‘‘humanState,’’

which is an integer in the range 0 to 99. Its initial value is

set to ‘‘start,’’ which is the name of a constant integer set

outside the module:

const int start = 0;

Lines 3–9 are transition rules, which determine how the

state of the human module changes over time. For example,

the first rule (see line 3) says that if the human is in the

state called ‘‘start,’’ then the state is updated to

‘‘activatedRobot.’’ In other words, the first thing the human

does in this scenario is to activate the robot for the hand-

over task. The rule also contains a synchronization label,

‘‘activateRobot,’’ which means that this transition must

occur at the same time as all other transitions with the same

label. In this case, the only other module containing

this label is the timekeeper module (Figure 6), as the syn-

chronizations in this model are used primarily to keep track

of how much time has elapsed. Another feature of PRISM is

probabilistic non-determinism, which can be seen in lines

8–9 of the human module, in which the human may disen-

gage from the handover task with a probability set by

pDisengages or remain engaged with a probability set

by pStaysOnTask. These are modeled as two constant

double-precision floating point numbers:

const double pDisengages = 0;
const double pStaysOnTask = 1-pDisengages;

For our case study, the probability that the human

disengages (i.e., becomes bored or distracted) is set to zero

as we are examining the typical use case in which the

human is always focused on the task. Similarly, we assume

that the human’s gaze, hand pressure, and location are

always within acceptable bounds for the handover task, i.e.,

the probabilities that these are acceptable are each set to

1.0. In this model, we are primarily concerned with the

robot’s reliability, so we assume that the human is com-

pletely reliable and engaged with the task at hand. Note

that these probabilities could be set differently if, for

instance, we wanted to incorporate the human’s tiredness

level in the model, or if we wanted to specify that the

Fig. 4. The human module written in PRISM.

Fig. 5. The robot module written in PRISM.

Fig. 6. An excerpt from the timekeeper module written in PRISM.
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person’s interest in the task may waver, affecting gaze and

hand pressure and location.

Clearly, the human module only captures the tiny frag-

ment of human behavior that is relevant to the handover

sub-task. In more complex HRI scenarios, the human mod-

ule might have to be much more complex. Indeed, it is

extremely unlikely that a PRISM module will ever be able

to capture the full complexity and nuance of human beha-

vior. However, it is still desirable, and in fact necessary, for

V&V to model the human’s interactions with the robot,

even if the model is abstract and coarse-grained.

Real-world sensors do not work perfectly, and this is

reflected in the formal model. As a result, it is possible that

the handover task will not always complete successfully.

The gaze sensor reports that the human is looking at the

object only 95% of the time. The rest of the time the sensor

reports (incorrectly) that the human is not looking at the

object. When the gaze sensor reports correctly that the

human’s gaze is okay, the gaze sensor has reported a ‘‘true

positive.’’ When the gaze sensor incorrectly reports that the

human’s gaze is not okay, we call this a ‘‘false negative.’’

Similarly, the gaze sensor might correctly report that the

person is not looking at the object (a true negative, also

with probability 95%) or might incorrectly report that the

person is looking at the object (a false positive).

The part of the formal model that handles the gaze, pres-

sure, and location sensor states can be seen in lines 16–22

of Figure 5. Note that true positives and their correspond-

ing false negatives are mutually exclusive, and therefore

P(false negative)= 1� P(true positive). The same is also

true of true negatives and false positives:

const double pGazeTP = 0.95;
const double pGazeFN = 1-pGazeTP;
const double pGazeTN = 0.95;
const double pGazeFP = 1-pGazeTN;

The pressure and location sensors are given the same

probabilities of 95% for true positives or negatives and 5%

for false negatives or positives. With no experimental

results or hardware specifications to refer to, it was

assumed that sensors would be accurate ‘‘most of the time.’’

A reliability of 95% was therefore chosen as a first

estimate.

4.1.2. Logical properties. Logical properties, representing

requirements, were expressed in terms of PCTL�. We use

the following PCTL� symbols (Parker, 2016): :p meaning

that p is not true, p ^ q meaning that both p and q are true,

p _ q meaning that either (or both) of p or q is true, p � q

meaning that if p is true then q is true, Fp meaning that

eventually p will be true, Gp meaning that p is always true

from now on, Xp meaning that p is true in the next state

and pUq meaning that p is true until q is true. P(q) denotes

the probability of q being true in the initial state.

For example, consider requirement 3: ‘‘Once the human

is ready, BERT 2 will hand over the object.’’ This require-

ment can be implemented as a temporal logical formula:

G (robot State=GPLOk�F robotState= handoverSuccessful)

ð1Þ

which reads ‘‘it is always the case that if gaze, position, and

location are correct, then eventually the handover is suc-

cessful (i.e., the object is released to the human).’’ We can

then find the probability of this formula being true on any

given path through the state space. We do this by forming a

property in probabilistic computation tree logic (specifi-

cally, PCTL*), which can be analyzed using a probabilistic

model checker like PRISM:

P= ? G (robotState=GPLOk�F robotState= handoverSuccessful)ð Þ ð2Þ

Using the operation P= ?(f ) tells the model checker that

we want to find out the probability of the formula f .

Another requirement, requirement 1a, is that the prob-

ability of completion of the handover task should be greater

than 95%. This can be rephrased as, ‘‘the success rate of the

handover task is at least 95%.’’ This can be formulated as a

property in PRISM as follows:

P F robot State= hand over Successfulð Þø 0:95 ð3Þ

This property states that the probability that the robot

will eventually release the object is at least 0.95, or 95%.

Note that the translation of textual requirements into

logical properties is not direct, since there might be differ-

ent interpretations, depending on the available variables,

probabilities, and so on. Hence, this translation process car-

ries the potential for misinterpretation. For example, in

properties (1) to (3), ‘‘hand over Successful’’ is used as a

synonym for ‘‘object handed over,’’ which might not be

correct in all cases (e.g., the human may drop the object

after release).

The full code for the PRISM models and properties used

in this paper can be found online (Webster et al., 2018).

4.2. Simulation-based testing

A simulator for the handover task was implemented in the

ROS framework for robot code development and the

Gazebo simulator. Among Gazebo’s features are support for

3D graphics rendering and various physics engines (includ-

ing ODE (Smith, 2019), used in this paper). Although now

available as a standalone Ubuntu Linux package, Gazebo

was originally developed as a ROS package and retains its

compatibility with ROS. A URDF (universal robot descrip-

tion format) file, used in ROS to describe the kinematic

structure of the robot, actuators, and sensors, can simply be
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extended to describe parameters used by the physics engine,

such as inertial properties and friction coefficients. This

compatibility allows the same control code to be used in

simulations and in the actual robot, providing consistency

between simulations, experiments, and deployed use. A

screenshot of the ROS/Gazebo simulation can be seen in

Figure 7.

For the simulator, additional ROS nodes were con-

structed in Python to simulate BERT 2’s sensor systems

and embedded actuation controllers. The pre-existing

URDF file describing BERT 2 was extended as described

previously for use in Gazebo. The simulated human beha-

vior was controlled by a ROS node written in Python, driv-

ing a simplified physical model of the head and hand.

A testbench was incorporated into the simulator. The

testbench comprised a test generator, a driver, a checker,

and a coverage collector. Exploring meaningful and inter-

esting sequences of behaviors from the robot and its envi-

ronment in an HRI task is challenging. For this reason, we

stimulate the robot’s code in the simulation indirectly by

stimulating its environment (e.g., the person’s behavior)

instead, and we use a combination of model-based and

pseudorandom test generation. Also, to alleviate the com-

plexity of generating and timing different types of system

inputs, the test generator is based on a two-tiered approach

(Araiza-Illan et al., 2016), where an abstract test is gener-

ated first and then concretized by instantiating low-level

parameters. The high-level actions of the human in the

simulator include sending signals to the robot or setting

abstract parameters for gaze, location, and pressure. Low-

level parameters include the robot’s initial pose and the

poses and force vectors applied by the human during the

interaction. For example, we computed an abstract test of

high-level actions for the human, by exploring the model

in UPPAAL (Uppsala Universitet and Aalborg University,

2015), so that the robot was activated (sending a signal to

activate the robot and waiting for the robot to present the

object), the gaze, pressure and location sensor readings

were correct (set gaze, pressure, and location to mean

‘‘ready’’), and the robot released the object. This allowed

requirement 3, ‘‘If the human is ready, BERT 2 should

hand over the object,’’ to be tested.

The driver distributed the test components in the simula-

tor. A self-checker—i.e., automated assertion monitors—

was added according to the requirements, described in more

detail in the following subsection. Finally, a coverage col-

lector gathered statistics on the triggering of the assertion

monitors. The simulator code is available online (GitHub,

2019).

4.2.1. Assertion monitors. For requirements checking,

assertion monitors were implemented as state machines in

Python, allowing sequences of events to be captured. If the

precondition of an assertion is satisfied, the machine transi-

tions to check the relevant postconditions, to determine

whether the assertion holds or not. Otherwise, the postcon-

ditions are never checked.

For example, requirements 1a and 1b and requirement 3

were both initially monitored as the following sequence:

if (sensors_OK)
wait_for(robot_decision)
assert(robot_released_object)

Note that, as with the logical properties, there may be

different ways to implement an assertion for the same tex-

tual requirement, and there is scope for misinterpretation.

The results of the assertion checks, if triggered, are col-

lected and a conclusion about the satisfaction of the veri-

fied requirements can be drawn at the end of simulation.

The number of times each assertion monitor has been trig-

gered in a set of tests can be used as a measure of the cov-

erage achieved by that test set.

4.3. Experiments

BERT 2 can be verified experimentally with respect to the

textual requirements using a custom facility at the Bristol

Robotics Laboratory, as shown in Figure 2. When seeking

to verify the probabilistic properties of a system, the experi-

ments should ideally provide an unbiased sampling repre-

sentative of the system’s deployed environment. However,

some phenomena might be difficult to reproduce naturally

in experiments, owing to their rarity, safety considerations,

or other practical limitations. Consequently, experiment-

based estimates of their likelihood might be inaccurate, as

might estimates of dependent properties, such as the overall

success rate of the task.

In the case of the handover task, we cannot confidently

seek an overall success rate that accounts for the full possi-

ble range of conditions relating to hardware, software, the

environment, and the human (including mood, anatomy, and

Fig. 7. Screenshot of the simulated handover task. The human

head and hand are represented in orange. The object to be handed

over is shown in blue. Video available at multimedia Extension 2.
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level of understanding of the task). Human factors are par-

ticularly challenging to test in an unbiased way. This prob-

lem can be ameliorated by acknowledging the constraints of

the experiments or proactively constraining them to achieve

a more reliable characterization of a subset of the system’s

state space. The constraints become a part of the resulting

V&V evidence. Thus, the experiments deliver an estimate of

‘‘success rate within some set of constraints,’’ instead of an

estimate of ‘‘overall success rate.’’ More affordable or cover-

able V&V tools, such as simulation or formal modeling,

may be employed to gain confidence beyond this con-

strained experiment. Additionally, more detailed experi-

ments may be performed to explore a wider range of human

factors affecting the scenario, and to determine the overall

success rate of the handover task beyond constraints. This is

beyond the scope of this paper, however.

As we were focusing on the ‘‘typical use case’’ of the

handover scenario, in which the human has a working

familiarity with the robot and intends to complete the task

successfully, experiments were constrained accordingly.

Each of the 10 subjects was given clear instructions on how

to successfully complete the task, followed by a practice

session, which ended when the task was successfully com-

pleted three times in a row. Subjects were instructed to try

to complete the task successfully in each test. All subjects

confirmed that they had no physical disability that would

affect their interaction with the robot. The robot started

each test in a random pose. The object was placed in a

fixed location, with random orientation about its vertical

axis (thus changing the orientation of the optical markers,

potentially affecting sensing of the object or influencing

human hand placement on grasping).

Approval for experiments with volunteer subjects was

obtained from the University of the West of England’s

Ethics Committee beforehand. A large, diverse cohort

enables more comprehensive V&V to be carried out, but a

cohort of 10 adult volunteers was deemed sufficient for the

purpose of demonstrating corroborative V&V. We recruited

the volunteers from the Bristol Robotics Laboratory and

the local area. Most had prior robotics experience: three

were postgraduate robotics students, one was a robotics

entrepreneur, four were postdoctoral roboticists. Two had

no prior experience of robotics. All subjects signed a con-

sent form prior to participation.

4.3.1. Textual requirements. For physical experiments,

requirements 1–3 can be verified in their textual form

based on visual observation, informed by video recordings

and user feedback as necessary, e.g., to judge whether the

human was ready or whether something had gone wrong.

Requirements 4–8 refer to software or physical para-

meters that cannot be reliably monitored by visual observa-

tion. It is therefore appropriate to implement objective

monitoring to inform judgments as to whether the textual

requirements are satisfied. To this end, ROS’s built-in rosbag

package was used to record all sensor readings, actuation

signals, robot poses, and high-level control messages sent

during each test. Offline monitoring of these requirements

was achieved by playing back the recordings while running

assertion monitors, as described in Section 4.2.1.

In the case of requirements 6–8, these monitors

depended on the robot’s own sensing systems as the best

available estimates of speed and spatial relationships. In

real-world V&V exercises, independent sensing should be

used.

Requirements 4 and 5 refer to the runtime behavior of

the robot’s high-level control code. Hence, the monitors

used in the simulation may also be applied to the experi-

ment recordings, because the same robot code is used in

each case.

All experiment recordings, along with the assertion

monitor reports from simulations and experiments, are

available from the University of Bristol’s Research Data

Repository (Western et al., 2019).

5. Corroborative V&V of requirements

1a and 1b

After generating assets for V&V through different V&V

techniques, we can generate corroborative V&V evidence

about the handover scenario, according to the plan

described in Section 4.

To discover whether the V&V techniques corroborate

one another, we compare evidence of the handover success

rate (requirements 1a and 1b) from formal verification (evi-

dence E1) and simulation-based testing (E2). Sources of

discrepancy are identified and investigated in experiments

with the physical system. Experiment-based verification of

the handover success rate in the ‘‘typical use case’’ (E3) is

then generated. More detailed system characteristics mea-

sured during these experiments are used to inform modifi-

cations to the simulator, leading to new evidence (E4) that

agrees closely with E3. These simulations also reveal a

new aspect of the system’s behavior. All insights gained up

to this point are then used to inform modifications to the

formal model, and the resulting evidence (E5) is found to

agree closely with E3 and E4, satisfying our objective of

achieving corroboration between the three V&V tech-

niques. The enacted workflow, depicted in Figure 8, is

described in detail in the subsequent subsections.

5.1. Formal verification: Evidence E1

As described in Section 4.1.1, the formal model includes

probabilities of certain events coming to pass. Using the

probabilistic model of the handover scenario, we are able

to determine that handover has close to 100% success rate:

P(F hand over Successful)= 0:9999948082592586 ð4Þ

That is, almost 100.0% of the time, the handover task

completes successfully. This is a very high probability of

success, meaning that very few paths through the model
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result in failure of the handover task. There are two reasons

for this. First, the model is based on a typical use case (see

Section 4) in which the human’s gaze, hand pressure, and

location are assumed to be correct at all times. This reduces

the likelihood of handover failure. Second, the robot waits

for all of its sensors to report that gaze, pressure, and loca-

tion are correct before releasing its gripper. If any of these

sensors does not report an acceptable value, then the robot

continues to wait. This continues until the modeled robot

eventually ‘‘times out’’ after 100 s. Given that the human

always responds correctly in this version of the model, and

there are no other sources of unreliability in the model, the

only way the model can fail is if the robot times out while

waiting for the sensors to report that the human’s gaze, pres-

sure, and location are within acceptable bounds. As there

are far more paths through the model in which the handover

completes successfully, the probability of success is very

close to 100.0%.

The formal model has shown that BERT 2 satisfies

requirements 1a and 1b:

Requirement 1a. At least 95% of handover attempts should

be completed successfully.

Requirement 1b. At least 60% of handover attempts should

be completed successfully.

However, it is important to note that the formal model is

using very rough estimates of the sensor reliabilities. To

improve the accuracy of the formal model, it is necessary to

find more accurate figures for the sensor reliability. These

could be obtained from manufacturer specifications, or

through experiments with the BERT 2 robot.

Despite the shortcomings of the formal model in its current

form, we can still derive V&V evidence, which we call E1:

E1: the success rate of handover is 100.0%.

5.2. Simulation: Evidence E2 does not

corroborate E1

Evidence E1 can now be verified by another V&V tech-

nique. In this case, we use simulation as it is less costly than

experimentation.

Visual inspection of preliminary simulations indicated

that the object sometimes fell from the robot’s hand on

grasping or during carrying (‘‘grip failure’’), a possibility

not previously considered. A new assertion monitor was

constructed to capture this event in isolation. Additionally,

the monitor for requirement 1 was adapted to the following

form to account for the possibility of grip failure.

Compared with the initial implementation presented in

Section 4.2, an earlier precondition is used to trigger the

monitor: (robot_grasps_object). The original pre-

condition (sensors_OK) is now asserted as a postcondi-

tion and is preceded by an additional postcondition

(object_contacts_robot_hand), which is asserted

repeatedly until sensing is complete. This ensures that a

verdict of ‘‘false’’ will be returned if the robot drops the

object prematurely, regardless of any subsequent behavior.

if (robot_grasps_object)
while !sensing_Done

assert(object_contacts_robot_hand)
assert(sensors_OK)
wait_for(robot_decision)
assert(robot_released_object)

In a set of 100 simulations of the handover task, 80

attempts were then completed successfully. This result

forms evidence E2:

E2: the success rate of handover is 80%.

Note that E1 and E2 disagree with each other, and are

therefore not corroborative. As explained in Section 2.3,

there are a number of potential causes of such a disagree-

ment: inaccuracies in either the system models or the

requirement models, or in the tools. The latter becomes

more unlikely when established tools are used.

In our case, the occurrence of grip failure was clearly the

main source of discrepancy. A modeling inaccuracy was

present in at least one of the two V&V techniques used: the

formal model implicitly assumed a grip failure rate of 0%,

whereas simulation indicated 20%. Both the formal model

and the simulator assets were modified to account for this,

as is shown in the following subsections.

5.3. Experiments: Evidence E3

Before committing resources to user experiments, a set of

hardware experiments was conducted to characterize the

robot’s actual grip failure rate. BERT 2 was programmed to

carry out the grasp-and-carry portion of the handover task

100 times, and grip failure was found to occur in three

cases.

At this point, despite some discrepancy, formal model-

ing and simulation were in agreement that the system satis-

fied the research-level minimum success rate of 60%.

Furthermore, the simulation-based estimate was deemed

likely to be conservatively low, owing to the inaccurately

Fig. 8. Simplified representation of the corroborative V&V

workflow enacted in our case study, denoting the sequence in

which evidence items E1 – E5 were produced from individual

V&V techniques.
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high grip failure rate. It was therefore deemed worthwhile

to proceed to user experiments.

User experiments were carried out as described in

Section 4.3. Results are summarized in Table 1. To deter-

mine whether it was appropriate to treat our experimental

data as independent samples of a single distribution, we

investigated whether there was any noticeable effect of

learning or prior robotics experience on the outcome of a

test. A statistical analysis was performed using IBM�
SPSS� v23.0. A Kruskal–Wallis H test did not indicate a

significant effect of the robotics experience categories on

the number of handovers completed successfully after

training (x2(3)= 1:5, p = 0:682) or on the number of train-

ing runs required (x2(3)= 2:872, p = 0:412). Furthermore,

a Spearman correlation calculation revealed no significant

correlation between the test number (1–10) and the total

number of human-related failures in that test across sub-

jects (r = 0:220, p = 0:541, two-tailed). It is possible that

more extensive testing with a larger cohort would reveal

weak but statistically significant effects of these para-

meters. However, for the purposes of demonstrating our

method, our cohort and experiment design were deemed to

be adequate based on these results.

The handover was successfully completed in 88 out of

100 tests. As in simulation, this can be taken as an estimate

of the true success rate of the experimental system.

E3: the success rate of handover is 88% in the typical use case.

Here, the ‘‘typical use case’’ is that described in Section

4.3.

Again we found notable disagreement between E3 and

the previously generated evidence. A more specific discre-

pancy had already been identified in terms of the grip fail-

ure rate. To seek closer agreement between the three V&V

techniques, we explored the potential sources of discre-

pancy in greater detail.

The video recordings and ROS logs, including sensor

data, were reviewed to confirm the faults responsible for

each failed handover in the user experiments. The failure

rate for each failure mode was identified as the number of

occurrences divided by the number of opportunities for that

fault to occur. The results are listed in the first column of

Table 2. ‘‘False negative’’ here was defined relative to the

subject’s observable actions. Thus, false negative pressure

sensing was identified where the review of logs and videos

indicated that the subject was observably applying pressure

to the object but the sensing threshold was not exceeded.

Similarly, false negative location sensing was identified

where the subject’s hand was on the object during the sen-

sing period but the robot’s location sensor returned a nega-

tive result. Rates of other possible failure modes (e.g., time

outs or false negative gaze sensing) are implicitly estimated

to be 0% based on these experiments. This should not be

taken as evidence that these modes never occur, only that

they are rare. Also, rates of false positive sensor readings

could not be defined because, after training, there were no

cases in which the subject did not apply their gaze, pres-

sure, and hand location according to the protocol.

5.4. Modifying the simulator asset

The observed rates for individual failure modes were taken

as the best available estimates of those properties in the typ-

ical use case and were used to tune the simulator asset (and,

subsequently, the formal model asset) to represent that case.

In the previous simulations, the grip failure rate of 20%

was clearly much higher than the experimental observation

of 3%, while the simulated sensing did not reproduce the

other observed failure modes. Several aspects of the simula-

tor were refined with the aim of approximating the experi-

mentally observed rates of individual failure modes without

sacrificing realism.

The accuracy of the simulated dynamics of the robot’s

handling of the object was improved by replacing default

or placeholder values with more realistic estimates of

Table 1. User experiment results for the cohort of 10 volunteers, by subject. Robotics experience is denoted by N (none), S

(postgraduate student), D (postdoctoral roboticist), or E (robotics entrepreneur). Failure modes are denoted by R (robot grip failure), P

(false negative pressure sensing), and L (false negative location sensing).

Subject ID 1 2 3 4 5 6 7 8 9 10 Mean

Experience E D S N N D S D D S
No. of training runs 5 4 6 6 6 3 3 6 3 6 4.8
No. of successes (post-training) 9 10 8 7 9 10 10 6 9 10 8.8
Failure modes P P, L R, P, P R L, P, L, P P

Table 2. Test outcomes and occurrence rates of individual

failure modes for the typical use case, according to 100 user

experiments and 500 simulations after tuning.

User experiments Simulation

Number of tests 100 500
Handover success 88.0% (88/100) 87.8% (439/500)
Runtime error 0.0% (0/100) 0.2% (1/500)
Grip failure 2.0% (2/100) 1.6% (8/499)
False negative gaze 0.0% (0/98) 0.0% (0/491)
False negative pressure 7.1% (7/98) 6.5% (32/491)
False negative location 3.1% (3/98) 4.2% (21/491)
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inertial properties, material properties, and joint torque or

velocity limits.

The instances of false negative ‘‘location’’ sensing were

identified as arising from the motion-tracking system

briefly losing track of the object (hand location is measured

relative to the object) and reassigning its location to another

point. Mimicking this behavior, the simulated motion track-

ing was set to reassign the observed location of the object

(but not the person’s hand or head) to an arbitrary point in

3.1% of readings.

Based on the recordings, all cases of false negative pres-

sure sensing seen in the user experiments were attributed to

the subject pulling on the object more gently than in other

cases. The exact forcing pattern applied by the subjects

could not be extracted from the experiment data. Instead,

the lower threshold of the distribution from which the simu-

lated human pulling force was selected was reduced from

5 N to 1 N through a process of trial and error to approxi-

mate the failure rate seen in user experiments.

After tuning, a set of 500 simulations was run. In all

tests, the simulated human enacted the trace of high-level

actions corresponding to the typical use case, remaining

engaged in the task and applying gaze, pressure, and loca-

tion within the relevant bounds. The results, included in

Table 2, indicate that the tuning process was successful in

approximating the individual failure rates observed in user

experiments. Close corroboration is also achieved in the

handover success rate, although it must be acknowledged

that this correspondence slightly overestimates the true

accuracy of the simulator; larger errors are seen in the rates

of individual failure modes. Nevertheless, we have

improved confidence in the simulation as a representation

of the physical system and in the corroborative evidence

provided by each V&V technique. E3 is now supported by

new evidence from simulation-based testing:

E4: The success rate of handover is 87.8% in the typical use

case.

Furthermore, the simulations exposed a failure mode

not previously considered. In one test, the handover success

monitor returned no result and inspection of the logs

revealed that the robot’s control code crashed because of a

runtime error:

RuntimeError: Unable to connect to move_group
action server ‘place’ within allotted time

(2)

This message indicates that a time out occurred when

invoking the robot’s motion planning module. The robot’s

high-level control code does not include any means of han-

dling such exceptions. Although rare, these events might

significantly affect the user’s trust if they occur in deploy-

ment, and could lead to violations of critical safety require-

ments. In our case, the error caused the only violations of

requirements 4 and 5. The exposure of the error, which

required high-volume testing and a realistic implementation

of the system, demonstrates a key strength of simulation as

a complement to formal modeling and user experiments. It

is conceivable that the error never occurs in the actual sys-

tem, e.g., owing to differences in computational load dur-

ing simulation. However, further testing on the real system

cannot rule out the possibility completely. A more conser-

vative approach is to adopt the simulation-based estimate

of the error’s frequency as the basis for further corrobora-

tive V&V and design recommendations.

5.5. Modifying the formal model asset

Now that we have verified determined simulation evidence

E3, we can attempt to corroborate it using formal verifica-

tion to address the discrepancy discovered between E1 and

E3 during the first V&V cycle. As described in Section 5.1,

evidence E1 generated by formal verification disagrees with

evidence E3, generated by experiments:

E1: the success rate of handover is 100.0%.

E3: the success rate of handover is 88% in the typical use case.

The formal model currently uses placeholder estimates

for the reliability of the gaze, pressure, and location sen-

sors on the BERT 2 robot. However, using some of the

experimental data in Table 2, it is possible to replace the

corresponding estimates in the formal model with more

accurate values. In particular, we can use the following

values:

� Gaze sensor, false negative: 0.0%;
� Pressure sensor, false negative: 7.1%;
� Location sensor, false negative: 3.1%.

False negatives and true positives are mutually exclu-

sive, since the former refers to when the person’s gaze,

pressure, or location is correct but the sensor reports (incor-

rectly) that it is not, and the latter refers to when the per-

son’s gaze, pressure, or location is correct and the sensor

reports (correctly) that it is. Therefore, we can infer true

positive values:

� Gaze sensor, false negative: 0.0%, true positive: 100.0%;
� Pressure sensor, false negative: 7.1%, true positive:

92.9%;
� Location sensor, false negative: 3.1%, true positive:

96.9%.

As the experiments did not report any situations where

there were false positives, we assume that the rate of false

positive sensor failures is 0.0% for each sensor, and there-

fore the rate of true negatives for each sensor is 100.0%.

We can now set the probabilities in the model

accordingly:
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const double pGazeFN = 0.00;
const double pGazeTP = 1-pGazeFN;
const double pGazeFP = 0.00;
const double pGazeTN = 1-pGazeFP;
const double pPressureFN = 0.071428571;
const double pPressureTP = 1-pPressureFN;
const double pPressureFP = 0.00;
const double pPressureTN = 1-pPressureFP;
const double pLocationFN = 0.030612245;
const double pLocationTP = 1-pLocationFN;
const double pLocationFP = 0.00;
const double pLocationTN = 1-pLocationFP;

Verifying the model, we can obtain the success rate of

the handover task:

P(F hand over Successful)= 0:9999954384256133 ð5Þ

It can be seen that the success rate remains at almost

100.0%. This is to be expected, as the sensor failure rates

have changed slightly, but it remains the case that the only

way for the handover to fail is for the robot to time out.

There is still a significant difference between this suc-

cess rate and the success rate reported by simulation

(87.8%) and experiments (88%). This may be, in part, a

result of the way in which the sensors were modeled in the

formal model. It was assumed that sensors might make any

number of ‘‘samples,’’ while the robot waited for the person

to grasp the object in the correct way. Each one of these

samples is a separate event, in which the sensor takes a

reading that is reported back to the robot’s decision-making

system. Therefore, each time the sensor takes a reading

there is a probability of failure, and false positives and

negatives are possible. The formal model reflects this, and

the failure rates given apply to each reading taken by the

sensor, rather than the average failure rate per handover.

The PRISM code defining the gaze sensor module was as

follows:

module gazeSensor
gazeSensorState : [0..1000] init null;

[senseGaze] robotState=waitForGPLUpdate &
gazeState=gazeOk -. pGazeFN:
(gazeSensorState’=
gazeNotOk) + pGazeTP:
(gazeSensorState’=gazeOk);

[senseGaze] robotState=waitForGPLUpdate &
gazeState=gazeNotOk -. pGazeTN:
(gazeSensorState’=
gazeNotOk) + pGazeFP:
(gazeSensorState’=gazeOk);

endmodule

The first transition rule says that if the robot is currently

waiting for the person to grasp the object

(waitForGPLUpdate) and the gaze is okay (i.e., the

person is looking in the right direction), then the value of

gazeSensorState is updated to either gazeOk or

gazeNotOk, depending on the probability of false nega-

tive and true positive. The second transition rule does

something similar for the case where the person is not

looking in the right direction. Note that the only guards on

these transitions specify that the robot is waiting for the

person to grasp the object and that the gaze is either okay

or not okay. (The synchronization senseGaze is simply

used to keep track of how long sensing is taking within a

timekeeper module and is not relevant in this example.)

Therefore, these sensor readings can happen any number

of times while the robot is waiting for the person to be

ready to receive the object and complete the handover task.

This way of modeling the handover scenario produces

less accurate results when combined with the failure rates

established by experiment. This is because the failure rates

determined were based on the number of experiments in

which, for example, the pressure sensor was seen to give a

false negative reading. For example, the probability of 0.071

for a pressure sensor false negative reading was obtained by

dividing the number of experiments in which a false nega-

tive reading occurred at some point (7) by the total number

of experiments not interrupted by gripper failure (98).

Therefore, it would be more accurate to re-model the

scenario in a way that reflects experimental reality; that is,

the probability of a sensor failure for a handover of the

object should be based on the observed average rate of fail-

ure of that sensor. This was achieved by modifying the

gaze, pressure, and location sensor modules in the PRISM

model:

module gazeSensor
gazeSensorState : [0..1000] init null;

gazeSensorSet: bool init false;
[senseGaze] robotState=waitForGPLUpdate &

gazeState=gazeOk & !gazeSensorSet -.

pGazeFN: (gazeSensorState’=gazeNotOk) &
(gazeSensorSet’=true) + pGazeTP:
(gazeSensorState’=gazeOk) &
(gazeSensorSet’=true);

[senseGaze] robotState=waitForGPLUpdate &
gazeState=gazeNotOk & !gazeSensorSet -.

pGazeTN: (gazeSensorState’=gazeNotOk) &
(gazeSensorSet’=true) + pGazeFP:
(gazeSensorState’=gazeOk) &
(gazeSensorSet’=true);

endmodule

In this revised model, each sensor’s state can be set only

once. For example, for the gaze sensor, this is done by

introducing a Boolean variable gazeSensorSet that is

initially false, but is set to true once a sensor reading has

been taken, and is never again set to false. Therefore, this

model reflects the experiments more closely.
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Verifying the new model gives us a new value for the

reliability of the handover task:

P(F hand over Successful)= 0:9001457729154516 ð6Þ

The handover task now completes successfully with a

probability of 90.0%. This is closer to the simulation and

experiment results of 87.8% and 88.0%, respectively, but

there is still a noticeable difference. One possible reason

for this is that the gripper failure rate, as determined by

experiment and built into the simulation, is not yet modeled

in PRISM. The following transition describes what happens

within the robot module once the gaze, pressure, and loca-

tion are found to be correct:

[tick] robotState=GPLOk -. (handContents’
=nothing) &
(robotState’=handoverSuccessful);

Here, once the robot’s state reaches GPLOk, indicating

that gaze, pressure, and location are within acceptable

bounds, the robot releases its gripper and hands over the

object to the person. Therefore, the handContents vari-

able is updated to reflect that the robot’s hand or gripper is

now empty, and the robot’s state is updated to show that

handover has been successful. To introduce the possibility

of gripper failure, this transition was modified to incorpo-

rate a probabilistic choice:

[tick] robotState=GPLOk -. pGripperOk:
(handContents’=
nothing) & (robotState’=
handoverSuccessful) +
pGripperFailure: (handContents’=nothing) &
(robotState’=handoverUnsuccessful);

Now, one of two things can happen. The first possibility

is that the handover completes successfully, as before, with

a probability of pGripperOk. The second is that the

handover fails, with probability pGripperFailure.

These two probabilities are set like so:

const double pGripperFailure = 0.02;
const double pGripperOk = 1 -
pGripperFailure;

Here, ‘‘pGripperFailure’’ is set to 0.02 in accordance

with the gripper failure rate of 2% determined by experi-

ment (see Table 2). We verify the model once again to

determine a handover success rate of 88.2%:

P(F hand over Successful)= 0:8821428574571426 ð7Þ

In a similar way, a new transition was introduced into

the transition system to model the possibility of failure of

BERT 2’s motion planning module, as described in Section

5.4. This transition occurs at the start of the handover task

as the robot prepares to move its arm to grasp the object

for handover. The revised transition rule incorporates

probabilities for the success or failure of the motion plan-

ning module:

[activateRobot] robotState=waiting -.

pMotionOk:
(robotState’= moveHandToObjectLocation) +
pMotionFailure: (robotState’=motionError);

These probabilities were based on the data shown in

Table 2:

const double pMotionFailure = 0.002; // 0.2%
const double pMotionOk = 1 - pMotionFailure;

Verifying the model once more gives an updated hand-

over success rate of 88.0%:

P(F hand over Successful)= 0:8803785717422283 ð8Þ

Thus, the final evidence provided by formal verification

may be stated as:

E5: the success rate of handover is 88.0% in the typical use

case.

After conducting corroborative V&V of the handover

task for the BERT 2 system, it was found that all V&V

techniques were corroborative on the probability of a suc-

cessful handover. The probabilities are shown in Table 3.

Having established confidence in our models using cor-

roborative V&V, we can assert that in the typical use case

requirement 1b is satisfied but requirement 1a is not.

6. V&V of requirements 2–8

In the previous section, we focused our efforts on the V&V

of requirements 1a and 1b in order to demonstrate corro-

borative V&V of a robotic system. However, for the sake

of completeness and in line with best practices in engineer-

ing, we also attempted V&V of requirements 2–8 using

each of the three V&V techniques. These V&V results are

presented without reference to corroboration, but corro-

borative V&V could be applied to requirements 2–8 in a

similar manner to requirements 1a and 1b.

It can be seen in the following subsections that the dif-

ferent V&V techniques do not all agree on how well

requirements 2–8 are met. This is similar to the case study

for requirements 1a and 1b before corroborative V&V.

Given enough time, it would be possible to apply the corro-

borative V&V approach to this expanded set of

Table 3. Results of corroborative V&V.

Formal verification 88.0%
Simulation 87.8%
Experiments 88.0%
Average 87.9% 6 0.1%
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requirements in order to find the source of the disagree-

ments between V&V techniques and to improve the level

of corroboration between them.

6.1. Experiments

For the user experiments, the full set of textual requirements

was evaluated through a combination of offline assertion

monitoring and visual observation, as described in Section

4.3.1. Table 4 presents the verdicts returned from each indi-

vidual test. Requirement 1 is included for completeness.

Note that for requirements 4–8, up to seven of the missing

verdicts were attributable to errors in the recording process

rather than the tests themselves.

As noted previously, the handover success rate in the

user experiments satisfies requirement 1b but violates

requirement 1a. Correspondingly, violations of requirement

3 arise from the cases of false negative sensor readings.

Additionally, we see that requirement 7 is violated in 78

out of 98 tests; the robot occasionally violates its speed

threshold on resetting, presumably depending on its initial

pose. A notable ‘‘coverage hole’’ is seen in this test set for

requirement 2, as the human was judged to be ready for the

handover in every test. All other requirements were covered

in at least 25 tests, and no other violations were observed.

6.2. Simulation-based testing

Table 5 presents the results of the assertions monitored in

the same 500 simulation-based tests summarized in Table

2, representing the typical use case. Comparing Table 5

with the experiment results in Table 4, we see broad corro-

boration, but with several noteworthy discrepancies, dis-

cussed next.

All assertions were covered—i.e., all monitors were trig-

gered at least once—except for requirement 8. This

indicates that the human and robot should not come within

10 cm of each other during the interaction. While this is

possible given the length of the object to be handed over,

the experiments revealed that closer proximities are seen in

typical use. Hence, this constitutes a notable coverage hole

in these tests.

Contrary to the experiment results, requirement 2 was

covered in several tests and no violations of requirement 3

were observed. Further investigation of this discrepancy

revealed a potential requirements inaccuracy; the assertion

corresponding to this requirement expressed ‘‘the human is

ready’’ as sensors_ok. In this sense, the assertion moni-

tor verifies only the high-level control of the robot, dis-

counting the possibility of sensor errors. Hence, the results

are still informative, but some modification of the assertion

monitors would be required to achieve a more comprehen-

sive V&V of these requirements.

As noted previously, requirements 4 and 5 were violated

by the single runtime error. The observation that require-

ment 7 is violated in 63 out of 500 tests is consistent with

the experimental results.

6.3. Formal verification

Requirement 2 says that if the human is not ready, the robot

shall not hand over the object. It is formalized as follows:

P G

:
gaze State= gazeOk^

pressure State= pressureOk^
location State= locationOk

0
@

1
A

)
: robot State= hand over Successful_

robot State= handoverUnsuccessful

� �

2
666664

3
777775

0
BBBBB@

1
CCCCCA

ð9Þ

This property says that it is always the case that if the

human’s gaze, pressure, and hand location are not correct,

Table 4. User experiments: Results on textual requirements from 100 tests. ‘‘Covered’’ indicates the number of tests from which a

verdict could be achieved. ‘‘Passed’’ and ‘‘Failed’’ indicate the number of tests in which the requirement was deemed to be satisfied or

violated, respectively. ‘‘Pass rate’’ is calculated as the ratio ‘‘Passed’’:‘‘Covered’’.

Requirement 1 2 3 4 5 6 7 8

Covered 100 0 98 93 93 25 98 90
Passed 88 0 88 93 93 25 78 90
Failed 12 0 10 0 0 0 20 0
Pass rate 0.88 – 0.9 1.0 1.0 1.0 0.8 1.0

Table 5. Simulation: Assertion coverage and results corresponding to each of the requirements (corrected for missing results) in a set

of 500 tests.

Requirement 1 2 3 4 5 6 7 8

Covered 500 53 446 500 500 500 500 0
Passed 439 53 446 499 499 500 437 0
Failed 61 0 0 1 1 0 63 0
Pass rate 0.878 1.0 1.0 0.998 0.998 1.0 0.874 –

Webster et al. 89



then it is not the case that the robot has attempted to hand

over the object. (Handing over the object results in either

the ‘‘handoverSuccessful’’ or ‘‘handoverUnsuccessful’’

states.) Verifying this property in PRISM gives a probability

of 1.0, meaning that it is always true.

Requirement 3, which says that, ‘‘if the human is ready,

the robot shall hand over the object,’’ is formalized in a sim-

ilar way:

P G

gaze State= gazeOk^
pressure State= pressureOk^
location State= locationOk

0
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)
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It was expected that this property would be evaluated by

PRISM as less than 1.0, owing to the possibility of sensor

and gripper failures. Indeed, verification using PRISM gave

a result of 0.8803785717422283.

Requirement 4 states that the robot always reaches a

decision within a threshold of time. This is formalized as

follows:

P G

robot State=GPLOkð Þ
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Here, the phrase ‘‘reaches a decision’’ was taken to

mean that the robot had decided to release the object. In

the model, this can result in ‘‘handoverSuccessful’’ if the

gripper works properly or ‘‘handoverUnsuccessful’’ if the

gripper fails. The requirement specifies that this should

happen within ‘‘a threshold of time’’ but does not specify

the amount of time. In our model, we specified that the

gripper release would take 2.0 s, based on consultation

with the robot’s users. Time was quantified in the model

using an ‘‘objectReleaseTimer,’’ which is set to zero when

the robot determines that the humans’ gaze, pressure, and

location are acceptable. The objectReleaseTimer was set to

work in 0.1 s intervals in order to provide adequate preci-

sion without increasing the size of the state space to intract-

able levels. Therefore, this property captures requirement 4

as it states that once the robot has found the human’s gaze,

pressure, and location to be acceptable, then it will attempt

to release the gripper (either successfully or unsuccessfully)

within 2.0 s.

This property was verified and the probability was deter-

mined to be 0.9999999999999996, or 100.0%, allowing for

floating point arithmetic precision errors in PRISM’S compu-

tation engine (Parker, 2016).

Requirement 5 states that the robot shall always either

time out, decide to release the object, or decide not to

release the object. It is formalized as follows:

P G

(F robot State= hand over Successful)_
(F robot State= handoverUnsuccessful)_
(F robot State=wait ForGPLUpdateU

robot State= timedOut)
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This property specifies the probability that it is always

the case that the robot eventually decides to release the

object (either successfully or unsuccessfully) or times out

while waiting for the human’s gaze, pressure, and location

to update to acceptable values. The latter case, where the

robot times out, is effectively the same as the robot decid-

ing not to hand over the object.

This property was verified, revealing a probability of

0.9979999999999996; this was expected, as the runtime

error encountered in Section 5.4, which was also included

in the PRISM model, has a failure rate of 0.2% or 0.002.

To check that this was the case, another property was speci-

fied which says that the robot can behave as expected in

the previous property, or eventually encounter a runtime

error:

P G
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(F robot State= handoverUnsuccessful)_
(F (robot State=waitForGPLUpdateU

robot State= timedOut))_
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2
66664

3
77775

0
BBBB@

1
CCCCA
ð13Þ

This property was verified, resulting in a probability of

0.9999999999999993, or 100.0%, allowing for precision

errors.

Requirement 6 states that the robot shall not close its

hand when the human is too close, requirement 7 says that

the robot shall start in a restricted speed mode, and require-

ment 8 says that if the robot is within 10 cm of the human

the robot’s hand speed is less than 250 mm/s. These proper-

ties could not be modeled, specified, or verified formally

as the PRISM model of the handover scenario does not

include a model of a proximity sensor, and does not allow

for speeds or distances to to be set within the control sys-

tem. It is possible, in principle, to re-model the scenario to

include such detail. However, adding complexity to the

model adds to the computational resources required to ver-

ify the model. In some cases, formal verification can

become intractable. Therefore, it may be more practical for

V&V of requirements 6–8 to rely more heavily on evidence

gained from simulation and experiment where physical

properties can be much more fine-grained.

6.4. Computational demands

Properties (4) to (13) were verified against several different

PRISM models representing the handover task. These models

were created during the corroborative V&V process shown

in Section 5. The complexity of the PRISM model checking
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for these properties is shown in Table 6. From left to right,

the columns show the requirement and property verified,

numbers of states and transitions used, time required for

building the model and time and memory required to verify

the model. PRISM 4.2.1 was used on an eight-core Intel�
Core� i7 laptop with 16 GB of memory running Ubuntu

Linux 12.04.

It can be seen that properties (10)–(13) took significantly

longer to verify than the other properties. This is most prob-

ably the result of the use of nested temporal logic operators

(e.g., F , G , X , U) in these properties compared with proper-

ties (4)–(8), which use simpler formulas. For properties

(9)–(13), it took the same time to build the model (69.4 s),

as these properties were all checked against a single PRISM

model file, which needed to be built only once before these

properties could be verified. The amount of memory used

for property (9) was not returned by PRISM, so this value

has been omitted from the table.

Simulation-based testing was performed using ROS

Indigo, and Gazebo v2.2.3 on a quad-core Intel� Core� i7

laptop with 8 GB of memory running Ubuntu Linux 14.04.

With all online monitors running, simulations were exe-

cuted at a speed of 0:8 × real-time on average, taking 69.3

s per test. Of course, with the advantages of batch and par-

allel processing, simulation-based testing remains consider-

ably faster than physical experiments.

7. Discussion

Through the corroborative combination of a number of

V&V techniques, namely formal verification, simulation-

based testing, and experiments, we have determined the

handover success rate (requirements 1a and 1b) with greater

confidence than could be achieved by any of the V&V

techniques in isolation. Each of the different V&V tech-

niques was used iteratively to corroborate the evidence

found by the other techniques during the corroborative

V&V process. Although the experiments alone would have

returned a similar value for the handover success rate,

achieving corroboration in model checking and in

simulation gives a higher level of confidence that the

experimental results are correct and that the robot system

meets its requirements.

The corroborative V&V process exposed key differences

between the models used in the V&V techniques, specifi-

cally the false negative and true positive rates for the gaze,

pressure, and location sensors, as well as the grip failure rate.

For requirements 4–6, the combination of simulation-based

testing and formal verification exposed important system

behaviors not observed in the experiments, i.e., requirement

violations. The observed runtime error (which caused viola-

tions of requirements 4 and 5) could only be exposed

through a large number of tests in simulation. The subse-

quent inclusion of this error in the formal model and the

simulator ensured that its impact on the behavior of the sys-

tem could be explored with more coverability using formal

verification and simulation-based testing. Furthermore, cor-

rected models for these two V&V techniques were obtained

to balance coverability capabilities, expressivity, and realism.

Corroborative V&V has demonstrated that (i) the system

satisfies requirement 1b and (ii) the more stringent version,

requirement 1a, is not satisfied, to a greater degree than if

the individual V&V techniques were used without corro-

boration. Based on the insights gained during the V&V pro-

cess, several design recommendations could be made to

improve the handover success rate and to satisfy other

requirements. The sensing process could be made more

robust to sudden changes in the human motion, or to reduce

the number of handover failures due to sensing errors

through mechanisms such as ‘‘debouncing’’ for the sensor

readings. (Debouncing prevents a single event from creat-

ing more than one sensor signal.) Adjustments to the robot’s

hardware or motion planning strategy might improve the

gripper failure rate. A speed limit needs to be introduced

when the robot is reset, to avoid dangerous unintended col-

lisions. Also, as uncontrollable faults can be encountered

during execution, we could instrument our code to perform

diagnostics and fault recovery strategies.

For demonstration purposes, we focused on achieving

corroboration relating to a particular set of requirements,

Table 6. Complexity of formal verification using PRISM.

Build Verification

Requirement Property States Transitions T (s) T (s) M (kB)

1 (4) 42,960 236,643 36.8 0.203 2,253
1 (5) 31,120 150,955 61.4 0.147 1,741
1 (6) 15,614 54,969 84.0 0.062 997
1 (7) 15,615 54,971 90.0 0.057 999
1 (8) 15,623 54,998 40.6 0.053 1,003
2 (9) 15,623 54,998 69.4 0.002 *
3 (10) 15,623 54,998 69.4 20.3 1,536
4 (11) 15,623 54,998 69.4 17.7 1,007
5 (12) 15,623 54,998 69.4 24.9 1,843
5 (13) 15,623 54,998 69.4 50.2 2,048

**
= Value not returned by PRISM.
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requirements 1a and 1b. As our examination of require-

ments 2–8 demonstrates, corroboration on some require-

ments does not entail corroboration across all requirements.

For requirements 1a and 1b, the end result was that all

V&V techniques agreed on the success rate of handover

within a range of 60:1%. In an ideal world, all V&V tech-

niques use accurate models of the world, and are accurate

with respect to one another, so that V&V evidence gener-

ated with one technique should also be found valid by

another. In practice, this might not happen. If two V&V

techniques do not agree, then we might look for inaccura-

cies in the system models, the requirements models, or the

tools, as described in Section 2.3. However, after a number

of iterations through the corroborative V&V diagram

(Figure 1), we might still have V&V techniques in disagree-

ment. One possible reason might be project constraints: we

might lack the resources to continue to address inaccura-

cies. Another reason could be that the V&V techniques

might be lacking: for example, model checking for formal

verification can often be hindered by the state space explo-

sion, which limits the accuracy of models that can be

checked. Alternatively, we might lack the computational

resources to explore sufficient numbers of simulated experi-

ments, or we might lack the personnel to conduct sufficient

numbers of real experiments.

Therefore, in practice, corroboration between V&V

techniques might not be possible. At this point, we might

assess whether our V&V techniques are up to the job.

Perhaps we should use an automated theorem prover rather

than a model checker? Or perhaps a two-dimensional phys-

ical simulation would work better than a three-dimensional

one? Perhaps we could create the simulation using a differ-

ent programming language or use a more powerful com-

puter? The list goes on.

We might also decide that exact corroboration is not nec-

essary if all the V&V techniques are within an acceptable

range. For example, we might have three different pieces of

evidence, each generated by a different V&V technique:

Ei: System reliability is 92%.

Ej: System reliability is 98%.

Ek: System reliability is 93%.

Clearly all three pieces of evidence are not in agreement

with the others. However, the lowest value for system relia-

bility given is 92%, which means that all three V&V tech-

niques agree on the following statement: ‘‘System

reliability is 92% or greater.’’ Note that this statement is

implicit in evidence Ei, Ej, and Ek. In this case, we have

used corroborative V&V to allow us to determine a mini-

mum value for reliability. This value can then be checked

with respect to system requirements to see whether the sys-

tem being modeled is sufficiently reliable.

There may be other reasons, beyond those discussed in

this section, why we cannot reach corroboration between

V&V techniques, and there may be other ways to remedy

this beyond range-based statements like the one described.

It is intended that the suggestions given here may provide

direction for managing corroborative V&V in practical

applications, as well as acknowledging that corroborative

V&V is not perfect. Rather, it is an approach to using V&V

techniques in conjunction with one another to provide a

higher degree of confidence that a system will satisfy its

requirements.

As we have improved the accuracy of our assets on the

basis of the results presented in this paper, we could use

the same V&V techniques to further explore the HRI. For

example, it is possible to explore human behaviors that

deviate from the typical use case, and incorporate aspects

of user uncertainty and variability beyond those used in

this paper. A reformulation of the system and requirement

models under the new conditions might be necessary, as

system traits (e.g., failure rates) characterized under one set

of constraints will not necessarily hold for other sets of

constraints. In such cases, the V&V engineer should judge

whether any prior asset modifications can be generalized to

broader scenarios.

The V&V efforts toward corroboration can be helped by

limiting (or biasing) the explored region of the HRI state

space to seek cases in which the V&V techniques provide

contradictory results. In our case study, we have employed

a probabilistic formulation of the requirements that is rele-

vant to HRI system as non-determinism may arise not only

from the environment but also from the robot and the cou-

pling between them (ROS-based robots exhibit high levels

of concurrency and run on non-real-time operating sys-

tems). Hence, we can compute conditional probabilities,

such as, ‘‘Given that the robot’s gripper fails, what is the

probability that the robot warns the user before the object

drops?’’ that lead to conditional evidence.

In more complex scenarios, it might become more diffi-

cult to identify appropriate modifications to achieve better

agreement between assets. Modifications to system models

may be informed by knowledge gained during V&V. For

example, useful insights may be contributed from systema-

tic risk analyses, such as fault tree analysis or HAZOP

(hazard operability). The latter has recently been proposed

for use in human–robot interactions to manage the inherent

complexity and uncertainty in such systems (Guiochet

et al., 2013).

Increased modeling effort is an evident limitation of cor-

roborative V&V. However, the use of several V&V tech-

niques brings savings to this effort. As our case study

demonstrates, early use of more abstract methods allows

gradual commitment of resources to more realistic and

expensive techniques. Discrepancies can highlight over-

sights and areas of uncertainty, informing the judicious use

of more expensive techniques (e.g., to characterize the

uncertain grip failure rate before proceeding with user

experiments in our case study).

For more comprehensive V&V efforts, coverage-driven

verification (Araiza-Illan et al., 2016) may be used with

corroborative V&V, pursuing coverage of the system in a

systematic way in simulations or experiments. Hybrid
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systems methods (Julius et al., 2007; Kim et al., 2006)

might also be usefully incorporated into corroborative

V&V, although reducing entire HRI scenarios to manage-

able hybrid models is likely to be challenging.

The object handover is only an example of a huge vari-

ety of case studies available in the HRI domain.

Nonetheless, it is of uttermost interest in HRI, as close-

proximity manipulation tasks may be considered in a

plethora of applications, such as the manufacture of white

goods, cooperative handling and attachment of large sub-

components of airplane structures in aerospace assemblies,

or care of older people with early stage dementia by feed-

ing them soup.

While our approach can be extended to any HRI appli-

cation, in principle, an awareness of the limitations of each

V&V technique is essential. For example, human behavior

is notoriously difficult to analyze and assess, with open-

ended and physically unconstrained interactions between

humans and robots being some of the most difficult prob-

lems in HRI research. In complex and nuanced scenarios,

we may wish to emphasize the use of experimentation and

real-world operations over simulation and formal verifica-

tion as providing core evidence for corroborative V&V.

However, it is likely that many complex interactions can be

broken down into simpler sub-interactions, such as object

handover. In these cases, the high levels of efficiency, cov-

erability, and precision offered by formal verification and

simulation-based testing can be more readily utilized.

7.1. Use of other V&V techniques

The corroborative V&V approach can also make use of

other V&V techniques, as well as their accompanying

assets. For example, hardware-in-the-loop experiments

allow hardware modules to be used alongside simulated

hardware in order to verify the behavior of those modules

(Martin and Emami, 2006). In terms of abstraction level,

hardware-in-the-loop fits between simulation and experi-

mentation, as it makes use of both. Hardware-in-the-loop

experiments can verify textual requirements as well as code

assertions, and the system model is a combination of the

hardware modules and simulator. Therefore, we could add

hardware-in-the-loop as a V&V technique within a corro-

borative V&V approach (see Figure 9).

Of course, we could also expand corroborative V&V to

include operations of the robotic system once it is deployed

in the ‘‘real world.’’ Once the system is deployed, it is being

used and operated by its end-users, so naturally, its

‘‘requirement model’’ is the end-users’ actual requirements,

rather than a model captured in natural or formal languages

(see Figure 10). We could also use other V&V techniques,

like coverage-driven verification (Araiza-Illan et al., 2015).

The entire corroborative V&V approach is summarized

in Figure 11. A set of requirements models (shown in rec-

tangles) is linked to system models (shown in octagons)

through a set of V&V techniques. Information gained from

V&V techniques can be compared with other V&V

techniques, shown by bold arrows. This information can

also be fed back to requirements models and system mod-

els (i.e., the V&V assets) in order to refine them to improve

accuracy if the V&V techniques have shown that there is

insufficient corroboration. The assets can then be refined

and compared with one another, before conducting further

V&V until all techniques corroborate one another. Of

course, as we have shown in this paper, this is an ideal

case, and full corroboration will often not be possible.

However, the practice of corroborative V&V allows and

encourages a systematic approach to reaching agreement

between V&V approaches. In turn, this approach to V&V

produces a higher quality of verification and validation

than could be achieved by using the individual approaches

separately.

8. Comparison with other approaches

In this paper, we have described corroborative V&V: an

approach to V&V of robotic systems based on combining

Fig. 9. Corroborative V&V including hardware-in-the-loop.

Fig. 10. Corroborative V&V including real-world operations.
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different V&V techniques and comparing the evidence gen-

erated by them. This was motivated partly by a well-known

issue: the use of a single method for V&V results in a com-

promise between examining the full state space of a system

(in this case, of an HRI) and modeling the system in satis-

factory detail.

8.1. Formal methods for V&V

Model checking (Clarke et al., 1999; Fisher, 2011), a for-

mal method used for V&V, is exhaustive over the state

space of a model but requires abstraction of the full system

(e.g., the high-level control algorithms, low-level control,

and mechanical behavior, and the code that runs in the

robot) into a finite number of states. For this reason, formal

verification can be applied to the analysis of high-level

decision-making engines for safety and liveness purposes,

exemplified by our previous work in HRI scenarios

(Bordini et al., 2009; Dixon et al., 2014; Gainer et al.,

2017;Webster et al., 2015). Reasoning and high-level con-

trol algorithms have been verified through formal verifica-

tion and model checking for other kinds of autonomous

robots, such as ground robots (Mitsch et al., 2017),

unmanned aircraft (Webster et al., 2013), and multi-robot

swarm systems (Dixon et al., 2012; Konur et al., 2012).

Theorem proving, another formal method, has also been

used to verify some of the control code of an autonomous

robot (Walter et al., 2010) and multi-robot swarms

(Behdenna et al., 2009), highlighting the same modeling

challenges in terms of abstractions versus accuracy and

expressivity as in model checking.

8.2. Simulation for V&V

Although formal models can be run in simulation-mode

when model checking is not practical (Nielsen, 2014), dedi-

cated simulators are preferred for robotics V&V. Unlike

formal methods, simulation-based testing is not exhaustive

and cannot offer proof of requirement satisfaction.

However, simulators allow more detailed modeling of the

physical and low-level implementation aspects (e.g., sen-

sors or joint controllers in the actuators), and the robot’s

actual control code can be executed for V&V purposes.

This is because simulators do not need to be exhaustive, so

computational resources can be used to model systems at a

lower level of abstraction than is seen in formal verifica-

tion. For example, a simulator was built in MATLAB by

Kirwan et al. (2013), whereas Arnold and Alexander

(2013) used the Player/Stage 2D simulator and Pinho et al.

(2014) used the SimTwo simulator, in combination with the

ROS robot software development framework, to test auton-

omous navigation control algorithms. Navigation algo-

rithms were also validated in simulation by Sotiropoulos

et al. (2017) by using MORSE, the Modular OpenRobots

Simulation Engine (LAAS CNRS, 2016). In our previous

work, we developed simulators in a 3D physical engine,

Gazebo, containing models of the robot’s joints and contin-

uous motion in space, along with its continuous environ-

ment containing objects and humans (Araiza-Illan et al.,

2015, 2016).

In other domains, such as microelectronics, both formal

methods and simulation-based testing are used, e.g., elec-

tronic design automation tools. Simulation and formal

methods have been used in combination to overcome the

limitations of model checking or to provide human-readable

evidence of failures that can be observed at runtime.

Emulating these principles, academic formal analysis tools

also offer both model checking and simulation-based test-

ing, such as UPPAAL (Nielsen, 2014), Event-B (Event-B,

2019), and the FDR4 tool (University of Oxford, 2012).

Nonetheless, performing both model checking and testing

over the same formal model is disadvantageous when gain-

ing confidence in the resulting V&V evidence, as these two

V&V techniques are subject to the same modeling and cod-

ing errors. This problem is highlighted by Kirwan et al.

(2013), as they crafted a simulator (in MATLAB) and a for-

mal model (in Promela for the SPIN model checker) of

their robot’s software (an autonomous navigation closed-

loop system) independently to overcome the limitations of

simulations and model checking and gain confidence in

their results. Intana et al. (2013) combined the advantages

of simulation and formal verification for wireless sensor

networks. Simulations in an environment called MiXiM

allowed functional issues to be discovered in a high-fidelity

model, whereas formal verification in Event-B was used to

provide proofs of requirement satisfaction or violation to

strengthen the discoveries during simulation. Intana et al.

(2013) do not consider a course of action if the results from

simulation contradict those from formal verification, as is

done in the corroborative V&V approach presented in this

paper.

Experiments in real-world scenarios are costly when

compared with simulation and formal methods and cannot

thoroughly explore the full state space of an HRI scenario.

Simulation and experimentation can be combined through

hybrids of human-in-the-loop and simulation or robot-in-

the-loop and simulation, as proposed by Petters et al.

(2008). However, corroborative V&V allows the use of a

number of techniques, e.g., formal methods, simulation-

based testing, and experiments, to verify and validate vari-

ous requirements, eliminating the need to choose between

examining the full state space of an HRI and modeling the

HRI in satisfactory detail.

Fig. 11. A more abstract view of corroborative V&V using

several V&V techniques.
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8.3. Model validation and meta-V&V

Our corroborative V&V approach draws on different forms

of evidence from various V&V techniques to support a

claim. In that sense, corroborative V&V can be seen as a

‘‘meta-level’’ approach to verification and validation, in

which V&V is achieved through a comparison between the

results of different V&V approaches.

The clear presentation of such arguments, e.g., by goal

structuring notation (Kelly and Weaver, 2004), is an impor-

tant consideration in safety-critical systems. Hawkins et al.

(2011) describe the importance of separating a safety argu-

ment from its accompanying confidence argument, which

justifies the sufficiency of confidence in the safety argu-

ment. Like our approach, but more limited in terms of vari-

ety of V&V techniques, the claims computed with a new

variant of formal analysis, based on models of flows

instead of models of states, are validated by experiments in

the laboratory (Lyons et al., 2013). Lyons et al. (2013)

applied the verification technique to autonomous naviga-

tion algorithms for multi-robot missions for Pioneer-3AT

robots, but their validation stage only involved one robot.

An approach to test robotic software through co-simulation

was presented by Broenink et al. (2010), who used formal

verification to find deadlocks through the FDR2 tool,

while models of the robot’s software and hardware at differ-

ent levels of abstraction allowed a thorough testing of the

discrete and continuous interacting components. These

multiple simulators run in a synchronized manner in a co-

simulation. They do not consider a course of action when

finding discrepancies between the formal analysis and the

simulations.

In corroborative V&V, we seek agreement between dif-

ferent V&V techniques with respect to particular set of

requirements. Discrepancies may arise as a result of inac-

curacies or errors in one or more of the system models,

requirements models, or tools used. In several previous

works, methods have been proposed for improving the

models. For example, formal models are refined iteratively

if they produce a spurious property violation after model

checking in counterexample-guided abstraction refinement

(CEGAR) (Clarke et al., 2000). An initial detailed model is

abstracted to form a simpler upper approximation for which

model checking is tractable. After encountering a violation

of a requirement, that model is iteratively and automatically

refined to determine whether the violation is spurious (i.e.,

does not occur in the more detailed model). The level of

detail that may be accounted for by such techniques

remains limited to that which can be formally modeled. For

a system’s software, this may extend to the concrete code

design, but for complex cyber-physical systems, such as

HRI, there will typically be important details that cannot be

adequately represented. Corroborative V&V may be seen

as an approach in the spirit of CEGAR, with greater depen-

dence on human judgment to extend beyond formal model-

ing and accommodate system models between which

absolute agreement might not be achievable.

Many approaches have been proposed to verify and vali-

date requirement models with respect to consistency, com-

pleteness, and precision. For example, Heitmeyer (2007)

developed a tool that performs formal verification (both

model checking and theorem proving) as well as simulation

and even code generation by integrating multiple external

tools. Nonetheless, further advantages can be gained when

different independently applied V&V techniques are com-

bined to gain confidence in the results, as we propose here.

Frameworks to verify and validate models for simulation

tasks with respect to accuracy and validity have been pro-

posed (Robinson, 1997; Sargent, 2013). These models are

developed by gathering real-world data, and their V&V

continues throughout its simulation use. Dimensions that

can be verified are: concept (aspects to be included in the

model, such as variables of importance), data (e.g., accu-

racy, format), timing, control, and information flows, and

even the code, against bugs. Techniques that can be applied

for V&V include animation, comparison against other mod-

els, and testing (e.g., stress, sensitivity, and historical data

comparison). Nonetheless, the authors do not prescribe a

methodology with associated tools to achieve model V&V.

For ROS-based systems, the accuracy of a formal model

with respect to the robot’s control code may be more rigor-

ously examined by standardizing the formal description of

common ROS components, e.g., using the ‘‘ROS graph’’

formalization developed by Aitken et al. (2014) to enable

automated reconfiguration of ROS systems. Recently, this

formalization has been adopted by Hazim et al. (2016) to

apply model checking to the verification of timing proper-

ties of ROS processes. This approach shows promise for

ensuring that the formal model is representative of the sys-

tem’s performance. Further work is needed to demonstrate

whether it can be usefully extended to capture inaccuracies

in modeling the environment or the requirements, which

may be more challenging to model when considering phys-

ical aspects of the system besides timing.

8.4. Automated software tools

For both requirement and system models, an approach to

ensuring consistency is to generate one model from another

using a trusted method. Automated tools can help in this

process, such as translations from MATLAB or Simulink

control models or control code into formal models for

model checking (Meenakshi et al., 2006; Xie et al., 2004).

Formal system models can be automatically extracted from

real code (Corbett et al., 2000; Gallardo et al., 2012;

Mukhopadhyay, 2015), although not many tools are com-

patible with Python, a popular language for prototyping

robotics code. Logical properties may be automatically

converted into automata (Gastin and Oddoux, 2001), which

may then be encoded as a monitor in the form of a finite-

state machine. Huang et al. (2014a) introduce rosmop, a

tool to automatically convert logical properties into moni-

tors for runtime verification of ROS code. Similar

approaches could be adopted in combination with
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corroborative V&V for HRI to increase the level of confi-

dence in the results, although errors could still propagate

when transforming one model into another, e.g., inaccura-

cies in a logical property will propagate to a monitor.

A simulation-based testing process can be improved by

using tests that not only stimulate the system but can also

find faults, using so-called mutation-based test generation

(Huang et al., 2014b). A system’s safety and liveness

requirements model, crucial in a V&V task, can also be

verified for consistency, correctness, and completeness,

e.g., using a combination of formal methods, static analy-

sis, and simulation, as in Heitmeyer (2007). If a system is

to be designed and implemented from a requirements

model, certified code generators (Naks et al., 2009) and

code synthesis (e.g., refinement) (Ringert et al., 2014) can

be employed. However, the validity of the resulting code is

dependent on the accurate representation of non-software

aspects of the system in the original model, which is espe-

cially challenging in the HRI domain. Furthermore, in

practice, robots are commonly designed and built by differ-

ent interacting teams, owing to the complexity of the

applications.

In summary, various techniques exist to promote correct-

ness in modeling and to bridge different levels of abstrac-

tion for V&V in robotics and other domains. However,

none of these spans the full range of realism and coverabil-

ity needed to thoroughly verify and validate an HRI system

while systematically addressing the possibility for errors to

be introduced at any level of abstraction. Confidence in the

results of these techniques, if used in isolation, is thus lim-

ited. Our proposed approach does not prescribe specific

V&V tools and techniques to be used. Automatic transla-

tion and connections between the used V&V techniques

can be added to the approach, with discretion, to improve

confidence or efficiency in the V&V exercise. For instance,

in our demonstration, we exploit model-based test genera-

tion and the ROS–Gazebo compatibility as additional links

between simulation-based testing and formal methods.

9. Conclusions

We presented corroborative V&V, a novel approach to the

verification and validation of robotic assistants, to help in

demonstrating their trustworthiness in the context of

human–robot interactions. There are a multitude of V&V

techniques, from formal methods like model checking, to

various kinds of simulation, hardware-in-the-loop, experi-

mentation, and real-world deployment. Naturally, there are

trade-offs between different V&V techniques, e.g., owing

to abstraction level, ease of modeling and coverability.

Furthermore, it is likely that different V&V techniques

may not initially agree on whether a particular system

meets a particular requirement. Corroborative V&V allows

us to use the different V&V techniques together, playing to

their individual strengths. Where discrepancies between

V&V techniques are found, corroborative V&V can be

used to ‘‘iron out’’ these differences, working toward a situ-

ation where the majority of the V&V techniques are in

agreement with respect to a particular set of requirements

for a given system.

Therefore, corroborative V&V provides integral assur-

ances on a robot’s safety and functional correctness through

the combination of a number of V&V techniques. The use

of these techniques provides corroboration at different

degrees of coverability (i.e., the exploration of the HRI

task) and HRI modeling expressivity, thus overcoming the

shortfalls of each technique when applied in isolation. For

example, model checking provides an exhaustive explora-

tion of a system model, but at the cost of system detail,

which is often lost in an abstract model. However, in

simulation-based testing, we gain high-fidelity detail by

running the real software, but we cannot test the whole

state space of variables and behaviors. Also, an iterative

process between the different V&V techniques can be used

if the resulting evidence presents discrepancies, refining

and improving the assets (i.e., system and requirement

models) to represent the HRI task in a more truthful man-

ner. This allows a greater level of confidence in the result-

ing evidence about the safety and functional correctness of

the robot.

We demonstrated our corroborative V&V approach

through a handover task, a safety-critical part of a complex

cooperative manufacture scenario, for which we proposed

safety and liveness requirements. We constructed formal

models (probabilistic timed automata), a simulator (in the

robot operating system and Gazebo), and a test rig for the

HRI (in the Bristol Robotics Laboratory), as well as tem-

poral logic properties and assertion checkers from the

requirements. The V&V focus starts with a pair of require-

ments, requirements 1a and 1b, for which we sought corro-

boration between the three techniques by modifying the

formal model and the simulator. We then examined a num-

ber of other requirements, finding previously unknown

functional failures in the system. Our results showcase the

benefits of our approach in terms of thorough exploration

of the system under V&V at different levels of detail and

completeness and in terms of gaining confidence in the

V&V results through corroboration.

9.1. Future work

We will investigate how the translational potential of our

proposed approach can be improved by more explicit eva-

luations of confidence. For example, Guiochet et al. (2015)

summarize various qualitative and quantitative approaches

to assessing confidence in V&V evidence. They present a

quantitative model describing the propagation of confi-

dence through particular argument structures. The results

of our demonstration of corroborative V&V constitute an

‘‘alternative argument’’ structure, in that separate pieces of

evidence can corroborate each other. Where one technique

provides limited assurance—e.g., testing covers a limited

state space of a higher-fidelity model while model checking
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covers the full state space of a lower-fidelity model—this

may be accounted for by applying weighting factors to individ-

ual pieces of evidence provided by each technique. For prob-

abilistic traits of a system, statistical techniques, such as the

modified Wald method (Agresti and Coull, 1998), can be used

to quantify the uncertainty (confidence intervals) arising from

the limited number of tests feasible in simulation or experi-

ment. However, it should be noted that such confidence inter-

vals do not describe the accuracy of the models themselves.

Hence, the implementation of quantitative models of confi-

dence propagation will often rely on informal estimates of the

confidence in individual pieces of evidence.

Finally, we intend to apply corroborative V&V to a

broader collaborative manufacturing task, of which hand-

over may be a subcomponent.
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Clarke EM, Klieber W, Nováček M, et al. (2012) Model checking

and the state explosion problem. In: Meyer B and Nordio M.

(eds.) Tools for Practical Software Verification. LASER 2011.

Berlin: Springer.

Corbett JC, Dwyer MB, Hatcliff J, et al. (2000) Bandera: A

source-level interface for model checking Java programs. In:

Proceedings of the 22nd international conference on software

engineering (ICSE), Limerick, Ireland, 4–11 June 2000, pp.

762–765. New York, NY: ACM.

Dixon C, Webster M, Saunders J, et al. (2014) ‘‘The fridge door is

open’’—Temporal verification of a robotic assistant’s beha-

viours. In: Mistry M, Leonardis A, Witkowski M, et al. (eds.)

Advances in Autonomous Robotics Systems. TAROS 2014.

Cham: Springer, 97–108.

Dixon C, Winfield AF, Fisher M, et al. (2012) Towards temporal

verification of swarm robotic systems. Robotics and Autono-

mous Systems 60(11): 1429–1441.

Duflot M, Kwiatkowska M, Norman G, et al. (2013) Practical

applications of probabilistic model checking to communication

protocols. In: Gnesi S and Margaria G. (eds.) Formal Methods

for Industrial Critical Systems: A Survey of Applications.

Hoboken, NJ: Wiley, 133–150.

Eder K, Harper C and Leonards U (2014) Towards the safety of

human-in-the-loop robotics: Challenges and opportunities for

safety assurance of robotic co-workers. In: 23rd IEEE interna-

tional symposium on robot and human interactive communica-

tion, Edinburgh, UK, 25–29 August 2014, pp. 660–665.

Piscataway, NJ: IEEE.

Event-B (2019) Event-B, and the Rodin platform. Available at:

http://www.event-b.org/ (accessed 1 October 2019).

Fisher M. (2011) An Introduction to Practical Formal Methods

Using Temporal Logic. Chichester: Wiley.

Fitting M. (1996) First-Order Logic and Automated Theorem

Proving. New York, NY: Springer.

Foster H, Krolnik A and Lacey D. (2004) Assertion-based Design.

2nd ed. Boston, MA: Springer.

Gainer P, Dixon C, Dautenhahn K, et al. (2017) CRutoN: Auto-

matic verification of a robotic assistant’s behaviours. In: Pet-

rucci L, Seceleanu C and Cavalcanti A. (eds.) Critical Systems:

Formal Methods and Automated Verification. AVoCS 2017,

FMICS 2017. Cham: Springer, 119–133.

Webster et al. 97

http://www.event-b.org/


Gallardo M, Joubert C, Merino P, et al. (2012) A model-extraction

approach to verifying concurrent C programs with CADP. Sci-

ence of Computer Programming 77(3): 375–392.

Gastin P and Oddoux D. (2001) Fast LTL to Büchi automata trans-
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Appendix: Index to multimedia extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Table of multimedia extensions.

Extension Media type Description

1 Video BERT 2 handover
experimental test rig

2 Video BERT 2 ROS–Gazebo simulation
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