17,739,653 research outputs found
Updated Post-WMAP Benchmarks for Supersymmetry
We update a previously-proposed set of supersymmetric benchmark scenarios,
taking into account the precise constraints on the cold dark matter density
obtained by combining WMAP and other cosmological data, as well as the LEP and
b -> s gamma constraints. We assume that R parity is conserved and work within
the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking scalar
and gaugino masses m_0 and m_1/2. In most cases, the relic density calculated
for the previous benchmarks may be brought within the WMAP range by reducing
slightly m_0, but in two cases more substantial changes in m_0 and m_1/2 are
made. Since the WMAP constraint reduces the effective dimensionality of the
CMSSM parameter space, one may study phenomenology along `WMAP lines' in the
(m_1/2, m_0) plane that have acceptable amounts of dark matter. We discuss the
production, decays and detectability of sparticles along these lines, at the
LHC and at linear e+ e- colliders in the sub- and multi-TeV ranges, stressing
the complementarity of hadron and lepton colliders, and with particular
emphasis on the neutralino sector. Finally, we preview the accuracy with which
one might be able to predict the density of supersymmetric cold dark matter
using collider measurements.Comment: 43 pages LaTeX, 13 eps figure
Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ
The extended gamma ray source MGRO J1908+06, discovered by the Milagro air
shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ
experiment at TeV energies, with a statistical significance of 6.2 standard
deviations. The peak of the signal is found at a position consistent with the
pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional
Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees,
consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The
observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54
\pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured
gamma ray flux is consistent with the results of the Milagro detector, but is
2-3 times larger than the flux previously derived by H.E.S.S. at energies of a
few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable
excess rate observed by ARGO-YBJ along 4 years of data taking support the
identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula
of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times
the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the
author lis
Reconclining phi radiative decays with other data for a0(980), fo(980), pi-pi -> KK and pi-pi -> eta-eta
Data for phi -> gamma (eta-pizero) are analysed using the KK loop model and
compared with parameters of a0(980) derived from Crystal Barrel data. The
eta-pi mass spectrum agrees closely and the absolute normalisation lies just
within errors. However, BES parameters for fo(980) predict a normalisation for
phi -> gamma (pizero-pizero) at least a factor 2 lower than is observed. This
discrepancy may be eliminated by including constructive interference between
fo(980) and sigma. The magnitude required for sigma -> KK is consistent with
data on pi-pi -> KK. A dispersion relation analysis by Buttiker, Descotes-Genon
and Moussallam of pi-pi -> KK leads to a similar conclusion. Data on pi-pi ->
eta-eta also require decays of sigma to eta-eta. Four sets of pi-pi -> KK data
all require a small but definite fo(1370) signal.Comment: 21 pages, 11 figures, Small rearrangement of reference
Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb
collisions at TeV at the Large Hadron Collider is
presented. We observe a growing trend with energy now not only for the
longitudinal and the outward but also for the sideward pion source radius. The
pion homogeneity volume and the decoupling time are significantly larger than
those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/388
Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at TeV
Inclusive transverse momentum spectra of primary charged particles in Pb-Pb
collisions at = 2.76 TeV have been measured by the ALICE
Collaboration at the LHC. The data are presented for central and peripheral
collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross
section. The measured charged particle spectra in and GeV/ are compared to the expectation in pp collisions at the same
, scaled by the number of underlying nucleon-nucleon
collisions. The comparison is expressed in terms of the nuclear modification
factor . The result indicates only weak medium effects ( 0.7) in peripheral collisions. In central collisions,
reaches a minimum of about 0.14 at -7GeV/ and increases
significantly at larger . The measured suppression of high- particles is stronger than that observed at lower collision energies,
indicating that a very dense medium is formed in central Pb-Pb collisions at
the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
Helping neighbors during historic wildfires
In September 2020, high winds and severe drought fueled the most destructive wildfire season in Oregon history. More than 4,000 homes were destroyed, and more than one million acres of land burned. By comparison, two homes in Oregon were lost to forest fires in 2019
- …