8,967 research outputs found

    Elastoplastic fretting wear behaviour of contact wires

    Get PDF

    The aetiology of social deficits within mental health disorders:The role of the immune system and endogenous opioids

    Get PDF
    The American National Institute for Mental Health (NIMH) has put out a set of research goals that include a long-term plan to identify more reliable endogenous explanations for a wide variety of mental health disorders (Insel, 2013). In response to this, we have identified a major symptom that underlies multiple mental health disorders – social bonding dysfunction. We suggest that endogenous opioid abnormalities can lead to altered social bonding, which is a symptom of various mental health disorders, including depression, schizophrenia and ASD. This article first outlines how endogenous opioids play a role in social bonding. Then we show their association with the body’s inflammation immune function, and review recent literature linking inflammation to mental health ‘immunophenotypes’. We finish by explaining how these immunophenotypes may be caused by alterations in the endogenous opioid system. This is the first overview of the role of inflammation across multiple disorders where we provide a biochemical explanation for why immunophenotypes might exist across diagnoses. We propose a novel mechanism of how the immune system may be causing ‘sickness-type’ behaviours (fatigue, appetite change, social withdrawal and inhibited motivation) in those who have these immunophenotypes. We hope that this novel aetiology can be used as a basis for future research in mental health

    In situ imaging of microstructure formation in electronic interconnections

    Get PDF
    The development of microstructure during melting, reactive wetting and solidification of solder pastes on Cu-plated printed circuit boards has been studied by synchrotron radiography. Using Sn-3.0Ag-0.5Cu/Cu and Sn-0.7Cu/Cu as examples, we show that the interfacial Cu6Sn5 layer is present within 0.05 s of wetting, and explore the kinetics of flux void formation at the interface between the liquid and the Cu6Sn5 layer. Quantification of the nucleation locations and anisotropic growth kinetics of primary Cu6Sn5 crystals reveals a competition between the nucleation of Cu6Sn5 in the liquid versus growth of Cu6Sn5 from the existing Cu6Sn5 layer. Direct imaging confirms that the β-Sn nucleates at/near the Cu6Sn5 layer in Sn-3.0Ag-0.5Cu/Cu joints

    Deficiency of the zinc finger protein ZFP106 causes motor and sensory neurodegeneration

    Get PDF
    Acknowledgements We are indebted to Jim Humphries, JennyCorrigan, LizDarley, Elizabeth Joynson, Natalie Walters, Sara Wells and the whole necropsy, histology, genotyping and MLC ward 6 teams at MRC Harwell for excellent technical assistance. We thank the staff of the WTSI Illumina Bespoke Team for the RNA-seq data, the Sanger Mouse Genetics Project for the initial mouse characterization and Dr David Adams for critical reading of the manuscript. We also thank KOMP for the mouse embryonic stem cells carrying the knockout first promoter-less allele (tm1a(KOMP)Wtsi) within Zfp016. Conflict of Interest statement. None declared. Funding This work was funded by the UK Medical Research Council (MRC) to A.A.-A. and a Motor Neurone Disease Association (MNDA) project grant to A.A.-A. and EMCF. D.L.H.B. is a Wellcome Trust Senior Clinical Scientist Fellow and P.F. is a MRC/MNDA Lady Edith Wolfson Clinician Scientist Fellow. Funding to pay the Open Access publication charges for this article was provided by the MRC grant number: MC_UP_A390_1106.Peer reviewedPublisher PD

    Use of MMG signals for the control of powered orthotic devices: Development of a rectus femoris measurement protocol

    Get PDF
    Copyright © 2009 Rehabilitation Engineering and Assistive Technology Society (RESNA). This is an Author's Accepted Manuscript of an article published in Assistive Technology, 21(1), 1 - 12, 2009, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/10400430902945678.A test protocol is defined for the purpose of measuring rectus femoris mechanomyographic (MMG) signals. The protocol is specified in terms of the following: measurement equipment, signal processing requirements, human postural requirements, test rig, sensor placement, sensor dermal fixation, and test procedure. Preliminary tests of the statistical nature of rectus femoris MMG signals were performed, and Gaussianity was evaluated by means of a two-sided Kolmogorov-Smirnov test. For all 100 MMG data sets obtained from the testing of two volunteers, the null hypothesis of Gaussianity was rejected at the 1%, 5%, and 10% significance levels. Most skewness values were found to be greater than 0.0, while all kurtosis values were found to be greater than 3.0. A statistical convergence analysis also performed on the same 100 MMG data sets suggested that 25 MMG acquisitions should prove sufficient to statistically characterize rectus femoris MMG. This conclusion is supported by the qualitative characteristics of the mean rectus femoris MMG power spectral densities obtained using 25 averages

    Experimental tests on slip factor in friction joints: Comparison between european and American standards

    Get PDF
    Friction joints are used in steel structures submitted to cyclic loading such as, for example, in steel and composite bridges, in overhead cranes, and in equipment subjected to fatigue. Slip-critical steel joints with preloaded bolts are characterized by high rigidity and good performance against fatigue and vibrational phenomena. The most important parameter for the calculation of the bolt number in a friction connection is the slip factor, depending on the treatment of the plane surfaces inside the joint package. The paper focuses on the slip factor values reported in European and North American Specifications, and in literature references. The differences in experimental methods of slip test and evaluation of them for the mentioned standards are discussed. The results from laboratory tests regarding the assessment of the slip factor related to only sandblasted and sandblasted and coated surfaces are reported. Experimental data are compared with other results from the literature review to find the most influent parameters that control the slip factor in friction joint and differences between the slip tests procedure

    Analgesic effectiveness and tolerability of oral oxycodone/naloxone and pregabalin in patients with lung cancer and neuropathic pain. An observational analysis

    Get PDF
    INTRODUCTION: Cancer-related pain has a severe negative impact on quality of life. Combination analgesic therapy with oxycodone and pregabalin is effective for treating neuropathic cancer pain. We investigated the efficacy and tolerability of a dose-escalation combination therapy with prolonged-release oxycodone/naloxone (OXN-PR) and pregabalin in patients with non-small-cell lung cancer and severe neuropathic pain. METHODS: This was a 4-week, open-label, observational study. Patients were treated with OXN-PR and pregabalin. Average pain intensity ([API] measured on a 0-10 numerical rating scale) and neuropathic pain (Douleur Neuropathique 4) were assessed at study entry and at follow-up visits. The primary endpoint was response to treatment, defined as a reduction of API at T28 ≥30% from baseline. Secondary endpoints included other efficacy measures, as well as patient satisfaction and quality of life (Brief Pain Inventory Short Form), Hospital Anxiety and Depression Scale, and Symptom Distress Scale; bowel function was also assessed. RESULTS: A total of 56 patients were enrolled. API at baseline was 8.0±0.9, and decreased after 4 weeks by 48% (4.2±1.9; P<0.0001 vs baseline); 46 (82.1%) patients responded to treatment. Significant improvements were also reported in number/severity of breakthrough cancer pain episodes (P=0.001), Brief Pain Inventory Short Form (P=0.0002), Symptom Distress Scale (P<0.0001), Hospital Anxiety and Depression Scale depression (P=0.0006) and anxiety (P<0.0001) subscales, and bowel function (P=0.0003). At study end, 37 (66.0%) patients were satisfied/very satisfied with the new analgesic treatment. Combination therapy had a good safety profile. CONCLUSION: OXN-PR and pregabalin were safe and highly effective in a real-world setting of severe neuropathic cancer pain, with a high rate of satisfaction, without interference on bowel function

    Impact and compression after impact experimental study of a composite laminate with a cork thermal shield

    Get PDF
    The aim of this paper is to present an experimental study of impact and compression after impact (CAI) tests performed on composite laminate covered with a cork thermal shield (TS) intended for launchers fairing. Drop weight impact tests have been performed on composite laminate sheets with and without TS in order to study its effect on the impact damage. The results show the TS is a good mechanical protection towards impact as well as a good impact revealing material. Nevertheless, totally different damage morphology is obtained during the impact test with or without TS, and in particular at high impact energy, the delaminated area is larger with TS. Afterwards, CAI tests have been performed in order to evaluate the TS effect on the residual strength. The TS appears to increase the residual strength for a same impact energy, but at the same time, it presents a decrease in residual strength before observing delamination. In fact, during the impact tests with TS, invisible fibres’ breakages appear before delamination damage contrary to the impacts on the unshielded sheets

    Multi-scale analysis of fretting fatigue in heterogeneous materials using computational homogenization

    Get PDF
    This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis (FEA). The heterogeneous material for the specimens consists of a single hole model (25% void/cell, 16% void/cell and 10% void/cell) and a four-hole model (25% void/cell). Using a representative volume element (RVE), we try to produce the equivalent homogenized properties and work on a homogeneous specimen for the study of fretting fatigue. Next, the fretting fatigue contact problem is performed for 3 new cases of models that consist of a homogeneous and a heterogeneous part (single hole cell) in the contact area. The aim is to analyze the normal and shear stresses of these models and compare them with the results of the corresponding heterogeneous models based on the Direct Numerical Simulation (DNS) method. Finally, by comparing the computational time and % deviations, we draw conclusions about the reliability and effectiveness of the proposed method

    The Effects of Implements of Husbandry Farm Equipment on Rigid Pavement Performance

    Get PDF
    Current trend has shown that farms are getting fewer, but farm size is becoming larger and larger. As the farm size is getting larger, the farm equipment is simultaneously becoming larger to adapt the new state and federal regulations which encourage farmers to store manure as a liquid and apply it in a short time period. The sizes of farm as well as farm equipment are growing faster than both the pavement design technology and the state regulations. The effect of such an increase on pavements would be an accelerated rate of pavement deterioration. There is a concern that the heavy farm equipment can do significant damage to pavement and bridges. Initiated in early 2007, this study used a comprehensive series of combinations of farm equipments, axle load, speed and traffic wanders to determine the pavement response under various types of farm equipments and to quantify the pavement damage due to various agricultural equipments. Two typical instrumented concrete testing pavement sections were used to measure the critical pavement responses and validate the theoretical pavement response model ISLAB 2005. Through this research, it was determined that traffic wander, seasonal effect, pavement structure, and vehicle type/configuration have pronounced impact on pavement responses. However, traffic speed is not statistically significant with respect to pavement performance. Additionally, all agricultural vehicles tested generated higher pavement responses than a standard semi-truck when they are fully loaded. It is also found that if the rear axle of the agricultural vehicles is driven 18-24 inches (2 feet) away from the pavement shoulder, the pavement damage could be reduced to minimal even when they were fully loaded. The study also found that by increasing concrete pavement thickness by 2.5 inches, the pavement strain response will be reduced as much as 280%. ISLAB2005, a finite element program, was utilized to perform the damage analysis for different pavement structures under various agricultural vehicles with and without slab curling behavior. The damage analysis results confirmed the field behavior that all agricultural vehicles introduce higher pavement responses than a standard semi-truck. The damage analysis also concluded that the damage due to slab curling coupled with heavy agricultural vehicle‟s loading could be devastating for the concrete pavement. The findings of this study is expected to provide a better understanding of the interaction of farm equipment with the pavement structures which will facilitate more rational regulation of Spring load restrictions, additionally with respect to acceptance of new designs and innovations in vehicle configuration. The findings will help highway agencies to design roads that are more capable of resisting to damage related to heavy loading with complex gear configuration
    corecore