130,747 research outputs found

    Substance P regulates puberty onset and fertility in the female mouse

    Get PDF
    Puberty is a tightly regulated process that leads to reproductive capacity. Kiss1 neurons are crucial in this process by stimulating GnRH, yet how Kiss1 neurons are regulated remains unknown. Substance P (SP), an important neuropeptide in pain perception, induces gonadotropin release in adult mice in a kisspeptin-dependent manner. Here, we assessed whether SP, through binding to its receptor NK1R (neurokinin 1 receptor), participates in the timing of puberty onset and fertility in the mouse. We observed that 1) selective NK1R agonists induce gonadotropin release in prepubertal females; 2) the expression of Tac1 (encoding SP) and Tacr1 (NK1R) in the arcuate nucleus is maximal before puberty, suggesting increased SP tone; 3) repeated exposure to NK1R agonists prepubertally advances puberty onset; and 4) female Tac1-/- mice display delayed puberty; moreover, 5) SP deficiency leads to subfertility in females, showing fewer corpora lutea and antral follicles and leading to decreased litter size. Thus, our findings support a role for SP in the stimulation of gonadotropins before puberty, acting via Kiss1 neurons to stimulate GnRH release, and its involvement in the attainment of full reproductive capabilities in female mice. Copyright © 2015 by the Endocrine Society

    Puberty: Is Your Gingiva Having Mood Swings?

    Get PDF
    Objectives/aim: The purpose of this paper is to explore the effects on the different pathological changes in the oral cavity due to puberty, in both males and females. Hormonal changes caused by menstrual cycles, ovulation, the use contraceptives, and increased testosterone and estrogen levels. Methods: This topic will be analyzed by thoroughly reviewing research on articles that relate to the oral health of individuals specifically between the ages of 12-18 years old. Results: Research presents significant evidence that supports changes occurring in the oral cavity during an individual’s stage of puberty. These stages include ovulation, pre-menstruation, menstruation and males transitioning through puberty. During the puberty stage adolescents are more prone to have increased gingival crevicular fluid (GCF), gingival index, and bleeding on probing while research has shown no significant findings on plaque indexes or probing depths. Changes occurring during the menstrual cycle tend to influence the periodontium and induce inflammatory conditions as well. While the periodontium and inflammatory cytokines play a major role in the effects during puberty, changes in diet during this phase can increase the risk of developing caries as well. Conclusion: When adolescents are transitioning into adulthood, there are multiple changes their body goes through. During the literature review, many changes happen during puberty significantly affecting the oral cavity were discovered. These changes have both positive and negative effects. Variations in hormone levels and diet greatly influence the health of the oral cavity and can be a deciding factor on development or severity of oral disease.https://scholarscompass.vcu.edu/denh_student/1008/thumbnail.jp

    Examining the relationship between pubertal stage, adolescent health behaviours and stress

    Get PDF
    Background. This paper examines the associations between puberty and three important health behavlours (smoking, food intake and exercise) and explores whether these associations are mediated by puberty's relationship to stress and psychological difficulties.Method. Data were taken from the first year of the ongoing, 5-year, Health and Behaviours in Teenagers Study (HABITS). This is a school-based study set in 36 schools in London. In the first year of the study, 4320 students (2578 boys, 1742 girls) in their first year of secondary education took part.Results. Among girls, being more pubertally advanced was associated with a greater likelihood of having tried smoking. Among boys, being more pubertally advanced was associated with a greater likelihood of having tried smoking, a higher intake of high-fat food and higher levels of exercise. More pubertally advanced girls experienced more stress but not more psychological difficulties. There were no associations between puberty and either stress or psychological difficulties in boys. Stress and psychological difficulties were associated with health behaviours in girls and boys, but neither of these factors mediated the relationship between pubertal stage and health behaviours found in girls.Conclusions. These results suggest that the onset of puberty has a marked effect on the development of health behaviours. Puberty was related to an acceleration of the development of unhealthy behaviours, except for exercise behaviour in boys, where advanced puberty was associated with more exercise. These changes were unrelated to adolescent issues of stress and a causal explanation for these associations must be sought elsewhere

    Letrozole treatment of pubertal female mice results in activational effects on reproduction, metabolism and the gut microbiome.

    Get PDF
    Polycystic ovary syndrome (PCOS) is a common endocrine disorder in reproductive-aged women that is comprised of two out of the following three features: hyperandrogenism, oligo- or amenorrhea, or polycystic ovaries. In addition to infertility, many women with PCOS have metabolic dysregulation that increases the risk of developing type 2 diabetes, hypertension, and non-alcoholic fatty liver disease. Changes in the gut microbiome are associated with PCOS and gut microbes may be involved in the pathology of this disorder. Since PCOS often manifests in the early reproductive years, puberty is considered to be a critical time period for the development of PCOS. Exposure to sex steroid hormones during development results in permanent, organizational effects, while activational effects are transient and require the continued presence of the hormone. Androgens exert organizational effects during prenatal or early post-natal development, but it is unclear whether androgen excess results in organizational or activational effects during puberty. We recently developed a letrozole-induced PCOS mouse model that recapitulates both reproductive and metabolic phenotypes of PCOS. In this study, we investigated whether letrozole treatment of pubertal female mice exerts organizational or activational effects on host physiology and the gut microbiome. Two months after letrozole removal, we observed recovery of reproductive and metabolic parameters, as well as diversity and composition of the gut microbiome, indicating that letrozole treatment of female mice during puberty resulted in predominantly activational effects. These results suggest that if exposure to excess androgens during puberty leads to the development of PCOS, reduction of androgen levels during this time may improve reproductive and metabolic phenotypes in women with PCOS. These results also imply that continuous letrozole exposure is required to model PCOS in pubertal female mice since letrozole exerts activational rather than organizational effects during puberty

    Enhanced at puberty 1 (EAP1) is a new transcriptional regulator of the female neuroendocrine reproductive axis

    Get PDF
    The initiation of mammalian puberty and the maintenance of female reproductive cycles are events controlled by hypothalamic neurons that secrete the decapeptide gonadotropin-releasing hormone (GnRH). GnRH secretion is, in turn, controlled by changes in neuronal and glial inputs to GnRH-producing neurons. The hierarchical control of the process is unknown, but it requires coordinated regulation of these cell-cell interactions. Here we report the functional characterization of a gene (termed enhanced at puberty 1 [EAP1]) that appears to act as an upstream transcriptional regulator of neuronal networks controlling female reproductive function. EAP1 expression increased selectively at puberty in both the nonhuman primate and rodent hypothalamus. EAP1 encoded a nuclear protein expressed in neurons involved in the inhibitory and facilitatory control of reproduction. EAP1 transactivated genes required for reproductive function, such as GNRH1, and repressed inhibitory genes, such as preproenkephalin. It contained a RING finger domain of the C3HC4 subclass required for this dual transcriptional activity. Inhibition of EAP1 expression, targeted to the rodent hypothalamus via lentivirus-mediated delivery of EAP1 siRNAs, delayed puberty, disrupted estrous cyclicity, and resulted in ovarian abnormalities. These results suggest that EAP1 is a transcriptional regulator that, acting within the neuroendocrine brain, contributes to controlling female reproductive function.This work was supported by grants from the NIH, the National Institute of Child Health and Human Development/NIH (to S.R. Ojeda), the European Society for Paediatric Endocrinology (to H. Jung), the German Research Foundation (to S. Heger), and the European Commission (PIONEER to S. Heger)

    Pubertal presentation in seven patients with congenital adrenal hyperplasia due to P450 Oxidoreductase deficiency

    Get PDF
    Context: P450 oxidoreductase (POR) is a crucial electron donor to all microsomal P450 cytochrome (CYP) enzymes including 17α-hydroxylase (CYP17A1), 21-hydroxylase (CYP21A2) and P450 aromatase. Mutant POR causes congenital adrenal hyperplasia with combined glucocorticoid and sex steroid deficiency. P450 oxidoreductase deficiency (ORD) commonly presents neonatally, with disordered sex development in both sexes, skeletal malformations, and glucocorticoid deficiency. \ud \ud Objective: The aim of the study was to describe the clinical and biochemical characteristics of ORD during puberty. \ud \ud Design: Clinical, biochemical, and genetic assessment of seven ORD patients (five females, two males) presenting during puberty was conducted. \ud \ud Results: Predominant findings in females were incomplete pubertal development (four of five) and large ovarian cysts (five of five) prone to spontaneous rupture, in some only resolving after combined treatment with estrogen/progestin, GnRH superagonists, and glucocorticoids. Pubertal development in the two boys was more mildly affected, with some spontaneous progression. Urinary steroid profiling revealed combined CYP17A1 and CYP21A2 deficiencies indicative of ORD in all patients; all but one failed to mount an appropriate cortisol response to ACTH stimulation indicative of adrenal insufficiency. Diagnosis of ORD was confirmed by direct sequencing, demonstrating disease-causing POR mutations. \ud \ud Conclusion: Delayed and disordered puberty can be the first sign leading to a diagnosis of ORD. Appropriate testosterone production during puberty in affected boys but manifest primary hypogonadism in girls with ORD may indicate that testicular steroidogenesis is less dependent on POR than adrenal and ovarian steroidogenesis. Ovarian cysts in pubertal girls may be driven not only by high gonadotropins but possibly also by impaired CYP51A1-mediated production of meiosis-activating sterols due to mutant POR

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Genomic analysis of male puberty timing highlights shared genetic basis with hair colour and lifespan.

    Get PDF
    The timing of puberty is highly variable and is associated with long-term health outcomes. To date, understanding of the genetic control of puberty timing is based largely on studies in women. Here, we report a multi-trait genome-wide association study for male puberty timing with an effective sample size of 205,354 men. We find moderately strong genomic correlation in puberty timing between sexes (rg = 0.68) and identify 76 independent signals for male puberty timing. Implicated mechanisms include an unexpected link between puberty timing and natural hair colour, possibly reflecting common effects of pituitary hormones on puberty and pigmentation. Earlier male puberty timing is genetically correlated with several adverse health outcomes and Mendelian randomization analyses show a genetic association between male puberty timing and shorter lifespan. These findings highlight the relationships between puberty timing and health outcomes, and demonstrate the value of genetic studies of puberty timing in both sexes
    corecore