50 research outputs found

    Sum Coloring : New upper bounds for the chromatic strength

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is derived from the Graph Coloring Problem (GCP) by associating a weight to each color. The aim of MSCP is to find a coloring solution of a graph such that the sum of color weights is minimum. MSCP has important applications in fields such as scheduling and VLSI design. We propose in this paper new upper bounds of the chromatic strength, i.e. the minimum number of colors in an optimal solution of MSCP, based on an abstraction of all possible colorings of a graph called motif. Experimental results on standard benchmarks show that our new bounds are significantly tighter than the previous bounds in general, allowing to reduce substantially the search space when solving MSCP .Comment: pre-prin

    A whiter shade of pale, a blacker shade of dark: Parameters of spatially induced blackness

    Get PDF
    The surface-mode property of “blackness” is induced by simultaneous contrast with an adjacent, more luminant surround. As numerous studies have shown, the degree of blackness induced within an achromatic test field is a function of the relative luminance of the adjacent chromatic inducing field, but not of its hue. But in the converse case of chromatic test fields, susceptibility to blackening has been reported to vary with wavelength. The present study investigates this possibility, that some wavelengths are more susceptible. We also questioned whether “white” and “black” sensory components function as opposites in blackness appearance. We recorded the appearance of a central monochromatic test field of constant luminance (10 cd/m2), with wavelength ranging across the visible spectrum, while a broadband white annulus was set to six luminance levels ranging across three log steps. Three color-normal observers followed a color-naming technique. All six opponent-hue names and their combinations were response options; blackness and whiteness in the test field could therefore be reported independently. Of primary interest were the achromatic responses. When represented within a multidimensional space, these revealed the “white-to-black” dimension but in addition a quality ~dimension! of “desaturation.” Compared against chromatic properties of the test field, the results provide evidence that blackness is a function of inducing field brightness (not luminance). This result is in accord with observations made by Shinomori et al. (1997) using a different procedure. We conclude that blackness induction occurs at a stage of visual processing subsequent to the origin of the brightness signal from a combination of opponent-process channels

    Minimum Sum Edge Colorings of Multicycles

    Get PDF
    In the minimum sum edge coloring problem, we aim to assign natural numbers to edges of a graph, so that adjacent edges receive different numbers, and the sum of the numbers assigned to the edges is minimum. The {\em chromatic edge strength} of a graph is the minimum number of colors required in a minimum sum edge coloring of this graph. We study the case of multicycles, defined as cycles with parallel edges, and give a closed-form expression for the chromatic edge strength of a multicycle, thereby extending a theorem due to Berge. It is shown that the minimum sum can be achieved with a number of colors equal to the chromatic index. We also propose simple algorithms for finding a minimum sum edge coloring of a multicycle. Finally, these results are generalized to a large family of minimum cost coloring problems

    Brilliance, contrast, colorfulness, and the perceived volume of device color gamut

    Get PDF
    With the advent of digital video and cinema media technologies, much more is possible in achieving brighter and more vibrant colors, colors that transcend our experience. The challenge is in the realization of these possibilities in an industry rooted in 1950s technology where color gamut is represented with little or no insight into the way an observer perceives color as a complex mixture of the observer’s intentions, desires, and interests. By today’s standards, five perceptual attributes – brightness, lightness, colorfulness, chroma, and hue - are believed to be required for a complete specification. As a compelling case for such a representation, a display system is demonstrated that is capable of displaying color beyond the realm of object color, perceptually even beyond the spectrum locus of pure color. All this begs the question: Just what is meant by perceptual gamut? To this end, the attributes of perceptual gamut are identified through psychometric testing and the color appearance models CIELAB and CIECAM02. Then, by way of demonstration, these attributes were manipulated to test their application in wide gamut displays. In concert with these perceptual attributes and their manipulation, Ralph M. Evans’ concept of brilliance as an attribute of perception that extends beyond the realm of everyday experience, and the theoretical studies of brilliance by Y. Nayatani, a method was developed for producing brighter, more colorful colors and deeper, darker colors with the aim of preserving object color perception – flesh tones in particular. The method was successfully demonstrated and tested in real images using psychophysical methods in the very real, practical application of expanding the gamut of sRGB into an emulation of the wide gamut, xvYCC encoding

    K3K_3-WORM colorings of graphs: Lower chromatic number and gaps in the chromatic spectrum

    Get PDF
    A K3K_3-WORM coloring of a graph GG is an assignment of colors to the vertices in such a way that the vertices of each K3K_3-subgraph of GG get precisely two colors. We study graphs GG which admit at least one such coloring. We disprove a conjecture of Goddard et al. [Congr. Numer., 219 (2014) 161--173] who asked whether every such graph has a K3K_3-WORM coloring with two colors. In fact for every integer k3k\ge 3 there exists a K3K_3-WORM colorable graph in which the minimum number of colors is exactly kk. There also exist K3K_3-WORM colorable graphs which have a K3K_3-WORM coloring with two colors and also with kk colors but no coloring with any of 3,,k13,\dots,k-1 colors. We also prove that it is NP-hard to determine the minimum number of colors and NP-complete to decide kk-colorability for every k2k \ge 2 (and remains intractable even for graphs of maximum degree 9 if k=3k=3). On the other hand, we prove positive results for dd-degenerate graphs with small dd, also including planar graphs. Moreover we point out a fundamental connection with the theory of the colorings of mixed hypergraphs. We list many open problems at the end.Comment: 18 page

    Az új algoritmusok és kódolási eljárások alkalmazása a mobil hírközlésben és informatikában = Application of new algorithms and coding procedures in mobile communications and computing

    Get PDF
    A kutatási munka során az alábbi résztémákban értünk el eredményeket: - mobil IP, - all IP hálózatok, - útkeresési algoritmusok, - hívásátadási algoritmusok, - mobil technológiák együttműködése, - a szolgáltatás minősége (QoS), - a mobil és informatikai hálózatok és rendszerek biztonsági kérdései, - több-felhasználós vétel, - kódosztásos többszörös hozzáférés, - forgalmi modellezés, - kódkonstrukció kódosztásos technológiákhoz, - kvantum számítástechnikai eljárások, - gráfelmélet, - kombinatorikus optimalizálás. A fenti szakterületeken végzett kutatásaink eredményei közül azokat emeljük ki, amelyeket az alábbi témákban értünk el: - A heterogén mobil hálózatok együttműködési problémái, - A mobil Internet Protokoll alkalmazásával kapcsolatos vizsgálatok, - Többfelhasználós detekciós módszerek a kódosztásos többszörös hozzáféréses mobil rendszerekben, - A heterogén mobil hálózatok forgalmi modellezése, - A mobil informatikai és távközlési hálózatok, rendszerek és szolgáltatások - biztonsági kérdései, - Kvantum számítástechnika és mérnöki alkalmazásai, - Útkeresési és csatornakijelölési algoritmusok fejlesztése és vizsgálata mobil hálózatok számára, alkalmazott gráfelmélet. A kutatásban résztvevők az eredményeket három megvédett PhD disszertációban, egy benyújtás előtt álló akadémiai doktori értekezésben és több beadás előtt álló PhD értekezésben használták fel. A tudományos iskola publikációs listája 135 elemből áll. | The members of the Scientific School have got new results in the following scientific fields: - Mobile IP, all IP networks, - Routing algorithms, - Hand-over algorithms, - Interworking of heterogeneous mobile technologies, - Quality of services (QoS), - Security problems of mobile and information networks and systems, - Multi-user detection, - Code division multiple access, - Traffic modeling, - Code construction for code division technologies, - Quantum computing, - Graph theory, - Combinatorial optimization. On the above mentioned scientific field we have the most important results in the following areas: - Interoperability issues of heterogeneous mobile networks, - Investigations on the applicability of mobile Internet Protocol, - Multi-user detection methods in code division multiple access systems, - Traffic models of heterogeneous mobile networks, - Security issues of mobile information and telecommunication networks, systems and services, - Quantum computing and its engineering applications, - Development and research of routing and channel assigning algorithms for mobile networks, application of the graph theory. The participants of the research used their results in three defended PhD theses, in a dissertation for DSc title, and in some other PhD theses before the final process. The number of the publications of the Scientific School is 135

    Lower Bound for (Sum) Coloring Problem

    Get PDF
    The Minimum Sum Coloring Problem is a variant of the Graph Vertex Coloring Problem, for which each color has a weight. This paper presents a new way to find a lower bound of this problem, based on a relaxation into an integer partition problem with additional constraints. We improve the lower bound for 18 graphs of standard benchmark DIMACS, and prove the optimal value for 4 graphs by reaching their known upper bound

    A comprehensive review of vehicle detection using computer vision

    Get PDF
    A crucial step in designing intelligent transport systems (ITS) is vehicle detection. The challenges of vehicle detection in urban roads arise because of camera position, background variations, occlusion, multiple foreground objects as well as vehicle pose. The current study provides a synopsis of state-of-the-art vehicle detection techniques, which are categorized according to motion and appearance-based techniques starting with frame differencing and background subtraction until feature extraction, a more complicated model in comparison. The advantages and disadvantages among the techniques are also highlighted with a conclusion as to the most accurate one for vehicle detection
    corecore